WO2015000193A1 - 触摸屏 - Google Patents

触摸屏 Download PDF

Info

Publication number
WO2015000193A1
WO2015000193A1 PCT/CN2013/079292 CN2013079292W WO2015000193A1 WO 2015000193 A1 WO2015000193 A1 WO 2015000193A1 CN 2013079292 W CN2013079292 W CN 2013079292W WO 2015000193 A1 WO2015000193 A1 WO 2015000193A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode lead
conductive
touch screen
layer
metal
Prior art date
Application number
PCT/CN2013/079292
Other languages
English (en)
French (fr)
Inventor
唐根初
董绳财
刘伟
唐彬
Original Assignee
深圳欧菲光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欧菲光科技股份有限公司 filed Critical 深圳欧菲光科技股份有限公司
Priority to KR1020137026487A priority Critical patent/KR20150013391A/ko
Priority to US13/968,360 priority patent/US9430068B2/en
Publication of WO2015000193A1 publication Critical patent/WO2015000193A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a touch screen. Background technique
  • the touch screen is an inductive device that can receive an input signal such as a touch.
  • the touch screen gives a new look to information interaction and is a brand new information interaction device.
  • the Indium Tin Oxides (IT0) conductive layer is a vital component of touch screen sensing modules.
  • a touch screen including a substrate, further comprising:
  • a first molding layer is formed on one side of the substrate, the first molding layer is embedded with a first metal conductive layer, and the first metal conductive layer includes a plurality of first conductive strips insulated from each other; a first electrode lead formed on the first molding layer and electrically connected to the first conductive strip;
  • a transparent insulating film comprising: a first surface and a second surface opposite to the first surface, the first surface facing the first molding layer;
  • a second electrode lead formed on the second molding layer and electrically connected to the second conductive strip
  • the transparent insulating film is provided with a first notch
  • the second molding layer is provided with a second notch
  • the first notch and the second notch are both free to the first electrode lead
  • a free end of the second electrode lead is disposed at a periphery of the second notch.
  • the first conductive strip and the second conductive strip each comprise a conductive mesh formed by a plurality of metal lines crossing, and the conductive mesh of the first conductive strip is in the A projection of the second metal conductive layer overlaps the conductive grid of the second conductive strip.
  • the optically transparent adhesive layer is disposed between the first molding adhesive layer and the first surface of the transparent insulating film, and the optical transparent adhesive layer is disposed. a third notch, the third notch being opposite the free end of the first electrode lead.
  • a first groove is formed on a side of the first molding layer away from the substrate, and a metal wire of the first metal conductive layer is received in the first groove.
  • a patterned second groove is formed on a side of the second molding layer away from the second surface of the transparent insulating film, and a metal wire of the second metal conductive layer is received in the second groove.
  • the ratio of the depth of the first groove to the width of the first groove is not less than 1, and the ratio of the depth of the second groove to the width of the second groove is not less than 1.
  • the substrate is a calcium soda glass or an aluminosilicate glass, and a siloxy group of the substrate adjacent to a surface of the first molding layer is bonded to the first molding layer.
  • the surface roughness of the substrate adjacent to the first molding layer is 5 to 10 nm.
  • the metal line of the first conductive strip is attached to the substrate, and the first conductive strip is located between the substrate and the first molding layer.
  • the first electrode lead is disposed adjacent to one end of the first conductive strip with a strip-shaped first connecting portion, and the first connecting portion is at least opposite to the first conductive strip
  • the two metal wires are electrically connected to each other, and one end of the second electrode lead adjacent to the second conductive strip is provided with a strip-shaped second connecting portion, and the second connecting portion is at least opposite to the second conductive strip The two wires are electrically connected.
  • the first connecting portion is wider than other portions of the first electrode lead, and the second connecting portion is wider than other portions of the second electrode lead.
  • the first electrode lead and the second electrode lead are each a grid structure formed by a cross-connection of conductive lines in a grid.
  • the grid periods of the first electrode lead and the second electrode lead are both smaller than the grid period of the first metal conductive layer and the second metal conductive layer.
  • a first electrode patch cord is disposed between the first electrode lead and the first conductive strip, and a second electrode lead is disposed between the second electrode lead and the second metal conductive layer.
  • the two electrode adapter wires, the first electrode patch cord and the second electrode patch cord are continuous conductive wires.
  • the above touch screen has a lower material cost relative to ⁇ because the conductive layers are made of a metal material.
  • the transparent insulating film of the touch screen is provided with a first notch
  • the second molding layer is provided with a second notch
  • the first notch and the second notch are both facing the free end of the first electrode lead
  • the free end of the second electrode lead is disposed on the periphery of the second vacant groove such that the free end of the first electrode lead and the free end of the second electrode lead are exposed on the same side of the substrate, so as to facilitate the free end of the first electrode lead and the
  • the free ends of the two electrode leads are electrically connected to the circuit board at the same time, which not only simplifies the bonding process of the circuit board, but also simplifies the structural design of the circuit board, and further reduces the manufacturing cost of the touch screen.
  • FIG. 1 is a schematic structural diagram of a touch screen according to an embodiment
  • FIG. 2 is a perspective exploded structural view of the touch screen shown in FIG. 1;
  • FIG. 3 is a schematic view showing a three-dimensional assembly structure of the touch screen shown in FIG. 1;
  • Figure 4 is a schematic enlarged view of a portion A in Figure 3;
  • FIG. 5 is a schematic diagram showing a part of a manufacturing process of the touch screen shown in FIG. 1;
  • FIG. 6 is a schematic structural diagram of a second metal conductive layer of a touch screen according to an embodiment
  • FIG. 7 is a schematic structural view of a first electrode lead of a touch screen according to an embodiment
  • FIG. 8 is a schematic structural view of a second electrode lead of a touch screen according to an embodiment. detailed description
  • Transparent in a transparent insulating film can be understood as “transparent” and “substantially transparent” in the present invention;
  • insulating in a transparent insulating film can be understood as “insulating” and “dielectric” in the present invention.
  • the "transparent insulating film” in the present invention should be understood to include, but is not limited to, a transparent insulating film, a substantially transparent insulating film, a transparent dielectric film, and a substantially transparent dielectric film.
  • a touch screen includes a substrate 110 , a first molding layer 120 , a first metal conductive layer 130 , a first electrode lead 140 , a transparent insulating film 150 , and a first The second molding layer 160, the second metal conductive layer 170 and the second electrode lead 180.
  • the first molding layer 120 is formed on one side of the substrate 110, and the first molding layer 120 is embedded with a first metal conductive layer 130.
  • the first metal conductive layer 130 includes a plurality of first conductive strips insulated from each other.
  • the first electrode lead 140 is formed on the first molding layer 120 and electrically connected to the first conductive strip 132; the transparent insulating film 150 includes a first surface 152 and a second surface 154 opposite to the first surface 152.
  • the first surface 152 faces the first molding layer 120, the second molding layer 160 is formed on the second surface 154 of the transparent insulating film 150, and the second molding layer 160 A second metal conductive layer 170 is embedded, and the second metal conductive layer 170 includes a plurality of second conductive strips 172 insulated from each other; the second electrode lead 180 is formed on the second molding layer 160 and the second conductive strip 172
  • the transparent insulating film 150 is provided with a first notch 156
  • the second molding layer 160 is provided with a second notch 162, and the first notch 156 and the second notch 162 are both opposite to the first electrode lead 140.
  • the end 142, the free end 182 of the second electrode lead 180 is disposed on the periphery of the second notch 162.
  • the first molding layer 120 is formed on one side of the substrate 110, the first metal conductive layer 130 is embedded in the first molding layer 120, and the second molding layer 160 is formed on the second surface of the transparent insulating film 150. 154, the second metal conductive layer 170 is embedded in the second molding layer 160, and the first surface 152 of the transparent insulating film 150 is bonded to the side of the substrate 110 on which the first molding layer 120 is formed.
  • the conductive layers are made of a metal material, the material cost is relatively low with respect to ⁇ .
  • the transparent insulating film 150 and the second molding layer 160 are both located above the first molding layer 120, the first electrode lead 140 is formed on the first molding layer 120, and the first gap 156 is disposed in the transparent insulating film 150.
  • the second molding layer 160 is provided with a second notch 162, and the first notch 156 and the second notch 162 are both facing the free end 142 of the first electrode lead 140, and the free end 182 of the second electrode lead 180 is disposed on The second missing slot 162 is peripheral.
  • the first electrode lead 140 is used to electrically connect the first metal conductive layer 130 with a flexible printed circuit board (FPCB) 210 of the touch screen
  • the second electrode lead 180 is used to connect the second metal conductive layer.
  • FPCB flexible printed circuit board
  • the first notch 156 and the second notch 162 are disposed such that the free end 142 of the first electrode lead 140 is exposed, and the free end 182 of the second electrode lead 180 is disposed on the periphery of the second notch 162, thereby The free end 142 of the first electrode lead 140 and the free end 182 of the second electrode lead 180 are exposed on the same side of the substrate 110, so that the free end 142 of the first electrode lead 140 and the free end 182 of the second electrode lead 180 are both It can be connected to FPCB210 at the same time, which not only simplifies the bonding process of FPCB210, but also simplifies the structural design of FPCB210, further reducing the manufacturing cost of touch screen.
  • the first electrode lead 140-terminal is electrically connected to the first conductive strip 132, the other end is connected to the FPCB 210 as the free end 142 of the first electrode lead 140; the second electrode lead 180-end and the second conductive strip
  • the strap 172 is electrically connected and the other end is for connection to the FPCB 210 as the free end 182 of the second electrode lead 180.
  • the first electrode lead 140 is formed on the first molding adhesive layer 120 and electrically connected to the first conductive strip 132; the second electrode lead 180 is formed on the second molding adhesive layer 160 and electrically connected to the second conductive strip 172 connection.
  • the material for preparing the first metal conductive layer 130 and the second metal conductive layer 170 may be one of gold, silver, copper, aluminum, nickel, zinc or an alloy of at least two of them. It can be understood that the materials for preparing the first metal conductive layer 130 and the second metal conductive layer 170 are electrical conductors, such as carbon nanotubes, graphene, conductive polymers, and the like.
  • the material forming the first molding layer 120 and the second molding layer 160 may be a solvent-free ultraviolet curing acrylic resin, a photo-curing adhesive, a thermosetting adhesive, and a self-drying adhesive.
  • the photo-curable glue is a mixture of prepolymer, monomer and photoinitiator and auxiliary agent according to molar ratio: 30 ⁇ 50%, 40-60%, 1 ⁇ 6% and 0.2 ⁇ 1%, light-solid glue, Thermosetting adhesive and self-drying adhesive.
  • the prepolymer is selected from at least one of epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, and acrylic resin; the monomer is monofunctional (IBOA, IBOMA, HEMA, etc.), difunctional (TPGDA, HDD A, DEGDA, NPGDA, etc.), at least one of trifunctional and polyfunctional (TMPTA, PETA, etc.); photoinitiators are benzophenone, benzophenone, and the like. Further, an auxiliary agent having a molar ratio of 0.2 to 1% may be added to the above mixture.
  • the auxiliary agent may be hydroquinone, p-methoxyphenol, p-benzoquinone, 2,6-di-tert-butylcresol or the like.
  • the material of the substrate 110 is glass, and the material of the transparent insulating film 150 may be an insulating material polyethylene terephthalate (PET) film. It should be noted that in other embodiments, the substrate 110 and the transparent insulating film 150 may be other materials, such as polybutylene terephthalate.
  • PET polyethylene terephthalate
  • PBT polymethyl methacrylate
  • PC polycarbonate plastic
  • the first molding layer 120 is formed on one side of the substrate 110, and the first metal conductive layer 130 is embedded in the first molding layer 120.
  • a patterned first groove is formed on a side of the first molding layer 120 away from the substrate 110, and the first metal guiding layer is received in the first a recess and matching the shape of the first metal conductive layer 130 to the shape of the first recess.
  • the first molding layer 120 is formed on one side of the substrate 110, and the first groove is formed by imprinting on the side of the first molding layer 120 away from the substrate 110 by using the stamping die 230, and then the first metal is formed.
  • the material of the conductive layer 130 is filled in the first recess, and the first metal conductive layer 130 is formed by a sintering process. Since the first recess can be pressed into a predetermined shape according to the shape of the counter electrode, the first metal conductive layer 130 received in the first recess can be directly formed into a preset shape without etching and forming, simplifying the fabrication. The process avoids a lot of waste of materials and reduces costs. Moreover, since the etching process is not required in the production process of the above touch screen, it is possible to avoid the use of chemical substances in the production process, thereby avoiding environmental pollution.
  • the ratio of the depth of the first groove to the width of the first groove can be reasonably set to Not less than 1.
  • the metal lines of the first conductive strip 132 are attached to the substrate 110, and the first conductive strips 132 are located between the substrate 110 and the first molding layer 120.
  • a metal strip is formed on the substrate 110 by using a metal line forming the first conductive strip 132, and the first conductive strip 132 is formed by exposure development to constitute the first metal conductive layer 130.
  • the conductive layer on one side replaces IT0 with metal, which reduces the cost, and on the other hand, the metallized film can reach the nanometer level, which improves the yield.
  • the glass substrate 110 since the glass has excellent coating properties, the obtained metal film can be made transparent, and the light transmittance of the touch panel can be further improved.
  • the second molding layer 160 is formed on the second surface 154 of the transparent insulating film 150, and the second metal conductive layer 170 is embedded in the second molding layer 160.
  • the second molding layer 160 is disposed away from the second surface 154 of the transparent insulating film 150 to form a patterned second recess, the second metal guiding layer is received in the second recess, and the second metal conductive layer 170 is The shape matches the shape of the second groove. Forming a second molding layer 160 on the second surface 154 of the transparent insulating film 150, and forming a second groove on the side of the second molding layer 160 away from the second surface 154 of the transparent insulating film 150 by embossing.
  • a material forming the second metal conductive layer 170 is filled in the second recess, and the second metal conductive layer 170 is formed by a sintering process. Due to The second groove can be pressed into a predetermined shape according to the shape of the electrode, so that the second metal conductive layer 170 received in the second groove can be directly formed into a predetermined shape without etching and forming, simplifying the manufacturing process. , avoiding a lot of waste of materials and reducing costs. Moreover, since the etching process is not required in the production process of the above touch screen, it is possible to avoid the use of chemical substances in the production process, thereby avoiding environmental pollution.
  • the ratio of the depth of the second groove to the width of the second groove can be reasonably set to Not less than 1.
  • the substrate 110 is a calcium nano glass or a silicate glass, and the siloxy group of the substrate 110 adjacent to the surface of the first molding layer 120 is bonded to the first molding layer 120. .
  • the substrate 110 is subjected to a plasma 220 bombardment treatment near the surface of the first molding layer 120 to expose the siloxy group, and the first molding layer 120 and the silicon oxide are exposed.
  • the base bonding enables the first molding layer 120 to better adhere to the substrate 110, thereby improving the yield of the touch screen.
  • the surface roughness of the substrate 110 adjacent to the first molding layer 120 may be reasonably set to 5. ⁇ 10nm.
  • an optically transparent adhesive layer 190 is further disposed.
  • the optical transparent adhesive layer 190 is disposed between the first molding adhesive layer 120 and the first surface 152 of the transparent insulating film 150.
  • the transparent adhesive layer 190 is provided with a third notch 192, and the third notch 192 faces the free end 142 of the first electrode lead 140.
  • the first molding layer 120 is formed on one side of the substrate 110, the first metal conductive layer 130 is embedded in the first molding layer 120, and the second molding layer 160 is formed on the second surface 154 of the transparent insulating film 150.
  • the second metal conductive layer 170 is embedded in the second molding layer 160, and the first surface 152 of the transparent insulating film 150 and the surface of the substrate 110 on which the first molding layer 120 is formed are bonded through the optical transparent adhesive layer 190.
  • the arrangement of the optical transparent adhesive layer 190 can further strengthen the adhesion strength between the substrate 110 and the transparent insulating film 150, thereby improving the yield of the touch screen while reducing the cost.
  • the material of the optical transparent adhesive layer 190 may be OCA Glue, uv glue, thermosetting glue or self-drying glue to ensure the transparency of the touch screen.
  • a third notch 192 is provided at the free end 142 of the first transparent lead 140 facing the first electrode lead 140 to achieve the purpose of exposing the free end 142 of the first electrode lead 140.
  • the first conductive strip 132 and the second conductive strip 172 each comprise a conductive grid formed by a plurality of metal lines crossing, and the first conductive strip 132 is electrically conductive.
  • the nano-silver ink may be filled in the first groove by a doctor blade technique, and then sintered at 150 ° C to sinter the silver element in the nano-silver ink into the conductive line of the first conductive strip 132.
  • the silver ink has a solid content of 35%, and the solvent volatilizes during sintering. Since the shape of the first groove is pre-embossed into a pattern of the desired electrode. Therefore, when the conductive mesh of the first dot strip 132 is formed, the forming operation is not required, thereby saving material and improving efficiency.
  • the nano-silver ink may be filled in the second recess by a doctor blade technique, and then sintered at 150 ° C to sinter the silver element in the nano-silver ink into the conductive lines of the second conductive strip 172.
  • the silver ink has a solid content of 35%, and the solvent volatilizes during sintering. Since the shape of the second groove is pre-embossed into a pattern of the desired electrode. Therefore, when the conductive mesh of the second conductive strip 172 is formed, the forming operation is not required, thereby saving material and improving efficiency.
  • the conductive mesh of the first conductive strip 132 overlaps the conductive grid of the second conductive strip 172 at the projection of the second conductive layer 170.
  • the conductive lines constituting the first conductive strip 132 and the second conductive strip 172 can be offset from each other by a certain distance, thereby avoiding the occurrence of severe moire.
  • Moiré fringes are optical phenomena that are the result of interference between two lines or two objects at a constant angle and frequency. When the human eye cannot distinguish between the two lines or two objects, it can only be seen. To the pattern of interference, this optical phenomenon is the moire fringe.
  • the conductive grids of the first conductive strip 132 and the second conductive strip 172 may each be a rhombus, a rectangle, a parallelogram, a curved quadrilateral or a polygon, and the curved quadrilateral has four curved sides, and the opposite two curved sides have The same shape and curve orientation.
  • the specific implementation shown in Figure 4 In the example, the conductive grid of the second conductive strip 172 is a regular hexagon. In the embodiment shown in FIG. 6, the conductive grid of the second conductive strip 172 is an irregular polygon.
  • the first electrode lead 140 is disposed near one end of the first conductive strip 132 with a strip-shaped first connecting portion 144, and the second electrode lead One end of the 180 adjacent to the second conductive strip 172 is provided with a strip-shaped second connecting portion 184.
  • the first electrode lead 140 is electrically connected to the first metal conductive layer 130 through the first connection portion 144
  • the second electrode lead 180 is electrically connected to the second metal conductive layer 170 through the second connection portion 184.
  • the first connecting portion 144 is appropriately disposed at least with the first conductive portion.
  • the two metal wires in the strip 132 are electrically connected, and the second connecting portion 184 is electrically connected to at least two of the second conductive strips 172.
  • the first connecting portion 144 is wider than other portions of the first electrode lead 140 , and the second connecting portion 184 is closer to the second electrode lead 180 .
  • the other parts are wide. Because the first connecting portion 144 is wider than other portions of the first electrode lead 140, and has a larger contact area, the first electrode lead 140 is electrically connected to the plurality of conductive lines of the first metal conductive layer 130, further enhancing the first Electrical connection of the electrode lead 140 to the first metal conductive layer 130. Since the second connecting portion 184 is wider than the other portions of the second electrode lead 180 and has a large contact area, the electrical connection between the second electrode lead 180 and the second metal conductive layer 170 can be enhanced by the same reason. In this way, improve the yield and reduce costs.
  • the first electrode lead 140 and the second electrode lead 180 are each a grid structure formed by cross-connecting conductive lines in a grid.
  • the first/second molding layer 160 is embossed to receive the groove of the first/second electrode lead 180, and the material of the first/second electrode lead 180 is scraped into the corresponding groove.
  • the electrode lead of the grid structure is used, and the material of the electrode lead can be prevented from being scraped off during the blade coating process, which facilitates the operation of the blade coating process.
  • the material of the first/second electrode lead 180 may be a nano silver paste. It can be understood that the first electrode lead 140 and the second electrode lead 180 can also be solid wires, and the first metal conductive layer 130 and the second metal conductive layer 170 can be electrically connected to the FPCB 210.
  • the first electrode lead 140 and the second electrode lead 180 have a mesh period smaller than the first metal conductive layer 130 and the The grid period of the second metal conductive layer 170.
  • the grid period is the size of the conductive grid.
  • a first electrode extension 146 is disposed between the first electrode lead 140 and the first conductive strip 132
  • the second electrode lead 180 is
  • a second electrode patch cord 186 is disposed between the second metal conductive layers 170, and the first electrode patch cord 146 and the second electrode patch cord 186 are continuous conductive lines.
  • the first connecting portion 144 is electrically connected to the first metal conductive layer 130 through the first electrode patch cord 146
  • the second connecting portion 184 is electrically connected to the second metal conductive layer 170 through the second electrode patch cord 186.
  • first electrode patch cord 146 and the second electrode patch cord 186 are continuous conductive lines, even if the first conductive metal layer and the second conductive metal layer have different grid periods, the conductive grid can ensure the first
  • the electrode lead 140 is electrically connected to the first metal conductive layer 130
  • the second electrode lead 180 is electrically connected to the second metal conductive layer 170.
  • first electrode extension line 146, the second electrode extension line 186, the first electrode extension line 146, and the second electrode extension line 186 which are larger than the conductive lines constituting the first electrode lead 140 and the second electrode lead 180. It is thick, but it should not be understood that the first electrode patch cord 146 and the second electrode patch cord 186 are thicker than the metal thin wires constituting the first electrode lead 140 and the second electrode lead 180. In a specific application, the first electrode patch cord 146 and the second electrode adapter can be determined according to the application environment. The thickness of line 186.
  • the first electrode lead 140 can be electrically connected to the first metal conductive layer 130, and the second electrode lead 180 and the second metal can be realized.
  • the purpose of electrically connecting the conductive layer 170 is merely illustrative of several embodiments of the present invention, and the description thereof is more specific and detailed, but is not to be construed as limiting the scope of the invention. It should be noted that a number of variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be determined by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸屏,包括基板、第一成型胶层,第一金属导电层、第一电极引线、透明绝缘膜、第二成型胶层、第二金属导电层及第二电极引线,因导电层均采用金属材料,相对于ITO具有较低的材料成本;与此同时,该触摸屏的透明绝缘膜设置第一缺槽,第二成型胶层设置第二缺槽,且该第一缺槽和第二缺槽均正对第一电极引线的自由末端,将第二电极引线的自由末端设置于第二缺槽外围,从而第一电极引线的自由末端和第二电极引线的自由末端均外露于基板的同一侧,以便于第一电极引线的自由末端和第二电极引线的自由末端均同时与电路板电连接,不仅简化了电路板的贴合工艺,还可以简化电路板的结构设计,进一步降低触摸屏的制作成本。

Description

触摸屏
技术领域
本发明涉及电子技术领域, 特别是涉及一种触摸屏。 背景技术
触摸屏作为一种可接收触摸等输入信号的感应式装置。触摸屏赋予了 信息交互崭新的面貌, 是一种全新的信息交互设备。 在传统的触摸屏中, 掺锡氧化铟(Indium Tin Oxides, IT0)导电层是触摸屏感应模组至关重要 的组成部分。
一般地, 在制备 ΙΤΟ层时, 需要在一基材的整面先进行 ΙΤΟ镀膜, 再进行 ΙΤ0图案成形以得到电极, 最后制作透明电极银引线。 在 ΙΤΟ图 案成形过程中, 需要使用刻蚀工艺对形成的 ΙΤΟ膜进行蚀刻, 而 ΙΤΟ是 一种昂贵的材料, 图案成形时会造成大量 ΙΤ0浪费, 导致生产成本高。 发明内容
基于此, 有必要针对生产成本高的问题, 提供一种可降低成本的触摸 屏。
一种触摸屏, 包括基板, 还包括:
第一成型胶层, 形成于所述基板的一侧, 所述第一成型胶层嵌设有第 一金属导电层, 所述第一金属导电层包括多个相互绝缘的第一导电条带; 第一电极引线, 形成于所述第一成型胶层并与所述第一导电条带电连 接;
透明绝缘膜, 包括第一表面及与所述第一表面相对的第二表面, 所述 第一表面朝向所述第一成型胶层;
第二成型胶层, 形成于所述透明绝缘膜的第二表面, 所述第二成型胶 层嵌设有第二金属导电层, 所述第二金属导电层包括多个相互绝缘的第二 导电条带;
第二电极引线, 形成于所述第二成型胶层并与所述第二导电条带电连 接;
所述透明绝缘膜设有第一缺槽, 所述第二成型胶层设有第二缺槽, 所 述第一缺槽和所述第二缺槽均正对所述第一电极引线的自由末端, 所述第 二电极引线的自由末端设置于所述第二缺槽外围。
在其中一个实施例中, 所述第一导电条带与所述第二导电条带均包括 由多条金属线交叉构成的导电网格, 所述第一导电条带的导电网格在所述 第二金属导电层的投影与所述第二导电条带的导电网格交叠。
在其中一个实施例中, 还包括光学透明胶层, 所述光学透明胶层设置 于所述第一成型胶层与所述透明绝缘膜的第一表面之间, 所述光学透明胶 层设有第三缺槽, 所述第三缺槽正对所述第一电极引线的自由末端。
在其中一个实施例中, 所述第一成型胶层远离所述基板的一侧开设有 图形化的第一凹槽, 所述第一金属导电层的金属线收容于所述第一凹槽, 所述第二成型胶层远离所述透明绝缘膜第二表面的一侧开设有图形化的 第二凹槽, 所述第二金属导电层的金属线收容于所述第二凹槽。
在其中一个实施例中, 所述第一凹槽的深度与所述第一凹槽的宽度的 比值不小于 1, 所述第二凹槽的深度与所述第二凹槽的宽度的比值不小于 1。
在其中一个实施例中, 所述基板为钙钠玻璃或硅铝酸盐玻璃, 所述基 板靠近所述第一成型胶层的表面的硅氧基与所述第一成型胶层键合。
在其中一个实施例中, 所述基板靠近所述第一成型胶层的表面粗糙度 为 5~10nm。
在其中一个实施例中, 所述第一导电条带的金属线附着于所述基板, 所述第一导电条带位于所述基板与所述第一成型胶层之间。
在其中一个实施例中, 所述第一电极引线靠近所述第一导电条带的一 端设有条形的第一连接部, 所述第一连接部至少与所述第一导电条带中的 两条金属线电连接, 所述第二电极引线靠近所述第二导电条带的一端设有 条形的第二连接部, 所述第二连接部至少与所述第二导电条带中的两条金 属线电连接。
在其中一个实施例中, 所述第一连接部比所述第一电极引线的其他部 位宽, 所述第二连接部比所述第二电极引线的其他部位宽。
在其中一个实施例中, 所述第一电极引线和所述第二电极引线均为由 导电线呈网格交叉连接形成的网格结构。
在其中一个实施例中, 所述第一电极引线及所述第二电极引线的网格 周期均小于所述第一金属导电层及所述第二金属导电层的网格周期。
在其中一个实施例中, 所述第一电极引线与所述第一导电条带之间设 有第一电极转接线, 所述第二电极引线与所述第二金属导电层之间设有第 二电极转接线, 所述第一电极转接线及所述第二电极转接线均为连续的导 电线。
上述触摸屏, 因导电层均采用金属材料, 相对于 ιτο具有较低的材料 成本。 与此同时, 上述触摸屏的透明绝缘膜设置第一缺槽, 第二成型胶层 设置第二缺槽, 且该第一缺槽和第二缺槽均正对第一电极引线的自由末 端, 将第二电极引线的自由末端设置于第二缺槽外围, 从而第一电极引线 的自由末端和第二电极引线的自由末端均外露于基板的同一侧, 以便于第 一电极引线的自由末端和第二电极引线的自由末端均同时与电路板电连 接, 不仅简化了电路板的贴合工艺, 还可以简化电路板的结构设计, 进一 步降低触摸屏的制作成本。 附图说明
图 1为一实施方式的触摸屏的结构示意图;
图 2为图 1所示触摸屏的立体分解结构示意图;
图 3为图 1所示触摸屏的立体组装结构示意图;
图 4为图 3中 A处的放大结构示意图;
图 5为图 1所示触摸屏的部分制作流程示意图; 图 6为一实施方式的触摸屏的第二金属导电层的结构示意图;
图 7为一实施方式的触摸屏的第一电极引线的结构示意图;
图 8为一实施方式的触摸屏的第二电极引线的结构示意图。 具体实施方式
为了便于理解本发明, 下面将参照相关附图对本发明进行更全面的描 述。 附图中给出了本发明的首选实施例。 但是, 本发明可以以许多不同的 形式来实现, 并不限于本文所描述的实施例。 相反地, 提供这些实施例的 目的是使对本发明的公开内容更加透彻全面。
除非另有定义, 本文所使用的所有的技术和科学术语与属于本发明的 技术领域的技术人员通常理解的含义相同。 本文中在本发明的说明书中所 使用的术语只是为了描述具体的实施例的目的, 不是旨在于限制本发明。 本文所使用的术语 "及 I或"包括一个或多个相关的所列项目的任意的和 所有的组合。
透明绝缘膜中的"透明"在本发明中可理解为 "透明 "和 "基本透明";透 明绝缘膜中的 "绝缘 "在本发明中可理解为"绝缘"和"介电质 (dielectric ) ", 因此本发明中的"透明绝缘膜"应当理解包括但不限于透明绝缘膜、 基本透 明绝缘膜、 透明介电质薄膜和基本透明介电质薄膜。
如图 1、 图 2和图 3所示的实施例中, 一种触摸屏, 包括基板 110、 第一成型胶层 120, 第一金属导电层 130、 第一电极引线 140、 透明绝缘膜 150、 第二成型胶层 160、 第二金属导电层 170及第二电极引线 180。
其中, 第一成型胶层 120形成于所述基板 110的一侧, 第一成型胶层 120嵌设有第一金属导电层 130, 第一金属导电层 130包括多个相互绝缘 的第一导电条带 132; 第一电极引线 140形成于所述第一成型胶层 120并 与第一导电条带 132电连接; 透明绝缘膜 150包括第一表面 152及与第一 表面 152相对的第二表面 154, 第一表面 152朝向第一成型胶层 120, 第 二成型胶层 160形成于透明绝缘膜 150的第二表面 154,第二成型胶层 160 嵌设有第二金属导电层 170, 第二金属导电层 170包括多个相互绝缘的第 二导电条带 172; 第二电极引线 180形成于第二成型胶层 160并与第二导 电条带 172电连接;透明绝缘膜 150设有第一缺槽 156,第二成型胶层 160 设有第二缺槽 162,第一缺槽 156和第二缺槽 162均正对第一电极引线 140 的自由末端 142, 第二电极引线 180的自由末端 182设置于第二缺槽 162 外围。
上述触摸屏, 将第一成型胶层 120形成于基板 110的一侧, 第一金属 导电层 130嵌设于第一成型胶层 120, 第二成型胶层 160形成于透明绝缘 膜 150的第二表面 154, 第二金属导电层 170嵌设于第二成型胶层 160, 再将透明绝缘膜 150的第一表面 152与基板 110形成有第一成型胶层 120 的一侧贴合。 如此, 因导电层均采用金属材料, 相对于 ιτο具有较低的材 料成本。
其中, 透明绝缘膜 150与第二成型胶层 160均位于第一成型胶层 120 上方, 第一电极引线 140形成于第一成型胶层 120, 在透明绝缘膜 150设 置第一缺槽 156, 第二成型胶层 160设置第二缺槽 162, 且该第一缺槽 156 和第二缺槽 162均正对第一电极引线 140的自由末端 142, 将第二电极引 线 180的自由末端 182设置于第二缺槽 162外围。 在制备触摸屏时, 第一 电极引线 140用于将第一金属导电层 130与触摸屏的印刷电路板(Flexible Printed Circuit Board, FPCB ) 210电连接, 第二电极引线 180用于将第二 金属导电层 170与触摸屏的 FPCB210电连接, 从而使 FPCB210感测到触 摸屏上的操作。 如此, 第一缺槽 156和第二缺槽 162的设置, 以使第一电 极引线 140的自由末端 142外露, 再将第二电极引线 180的自由末端 182 设置于第二缺槽 162外围, 从而第一电极引线 140的自由末端 142和第二 电极引线 180的自由末端 182均外露于基板 110的同一侧, 以便于第一电 极引线 140的自由末端 142与第二电极引线 180的自由末端 182均能同时 与 FPCB210连接, 不仅简化了 FPCB210的贴合工艺, 还简化了 FPCB210 的结构设计, 进一步降低触摸屏的制作成本。 其中, 第一电极引线 140—端与第一导电条带 132电连接, 另一端用 于与 FPCB210连接的为第一电极引线 140的自由末端 142;第二电极引线 180—端与第二导电条带 172电连接,另一端用于与 FPCB210连接的为第 二电极引线 180的自由末端 182。
其中, 第一电极引线 140形成于所述第一成型胶层 120并与第一导电 条带 132电连接; 第二电极引线 180形成于第二成型胶层 160并与第二导 电条带 172电连接。 用于制备第一金属导电层 130及第二金属导电层 170 的材料可以为金、 银、 铜、 铝、 镍、 锌或其中至少二者的合金中的一种。 可以理解, 制备第一金属导电层 130及第二金属导电层 170的材料为电的 导体即可实现相应的功能, 如碳纳米管, 石墨烯, 导电高分子等。
其中, 形成第一成型胶层 120和第二成型胶层 160的材料可以为无溶 剂紫外固化亚克力树脂、光固胶、热固胶及自干胶。其中光固胶为预聚物、 单体及光引发剂及助剂按照摩尔配比: 30~50%、 40-60%, 1~6%及 0.2~1% 组成的混合物、 光固胶、 热固胶及自干胶。 其中, 预聚物选为环氧丙烯酸 酯、 聚氨酯丙烯酸酯、 聚醚丙烯酸酯、 聚酯丙烯酸酯、 丙烯酸树脂中的至 少一种; 单体为单官能(IBOA、 IBOMA、 HEMA等) 、 二官能(TPGDA、 HDD A, DEGDA、 NPGDA等) 、 三官能及多官能 (TMPTA、 PETA等) 中的至少一种; 光引发剂为二苯甲酮、 二苯乙酮等。 进一步的, 在上述混 合物中还可添加摩尔配比为 0.2~1%的助剂。 助剂可为对苯二酚、 对甲氧 基苯酚、 对苯醌、 2, 6—二叔丁基甲苯酚等。
其中, 基板 110的材料为玻璃, 透明绝缘膜 150的材料均可以为绝缘 材料对苯二甲酸乙二酯(PET)薄膜。 需要指出的是, 在其他的实施例中, 基板 110和透明绝缘膜 150还可为其他材质, 如聚对苯二甲酸丁二酯
(PBT) 、 聚甲基丙烯酸甲酯 (PMMA) 、 聚碳酸酯塑料 (PC) 等。
如图 1和图 5所示的具体实施例中,第一成型胶层 120形成于基板 110 的一侧,第一金属导电层 130嵌设于第一成型胶层 120。第一成型胶层 120 远离基板 110的一侧开设有图形化的第一凹槽, 将第一金属导层收容于第 一凹槽, 并使第一金属导电层 130的形状与第一凹槽的形状相匹配。 将第 一成型胶层 120形成于基板 110的一侧, 用压印模具 230在第一成型胶层 120远离基板 110的一侧通过压印的方式形成第一凹槽, 再将形成第一金 属导电层 130的材料填充于第一凹槽, 并通过烧结工艺形成第一金属导电 层 130。 由于第一凹槽可根据对电极形状的需求, 印压成预设形状, 故收 容于第一凹槽的第一金属导电层 130可直接成型为预设形状, 而不必进行 蚀刻成形, 简化制作工艺, 避免了材料的大量浪费, 降低了成本。 且因上 述触摸屏的生产过程中不需要进行蚀刻工艺, 故可避免在生产过程中使用 化学物质, 从而避免对环境造成污染。
其中, 为了使第一金属导电层 130的材料填充于第一凹槽后, 在经过 烧结成型的过程中不发生断裂, 第一凹槽的深度与第一凹槽的宽度的比值 可合理设置为不小于 1。
在其他实施例中, 第一导电条带 132的金属线附着于基板 110, 第一 导电条带 132位于基板 110和第一成型胶层 120之间。 具体地, 使用形成 第一导电条带 132的金属线在基板 110—侧镀金属膜, 再通过暴光显影的 方式形成第一导电条带 132, 从而构成第一金属导电层 130。 如此, 一方 面导电层采用金属替代 IT0, 降低了成本, 另一方面可使镀金属膜达到纳 米级, 提高了良品率。 采用玻璃材质的基板 110, 因玻璃具有优良的镀膜 性能, 可使所得的金属膜达到透明, 可进一步提高触摸屏的透光率。
如图 1和图 5所示的具体实施例中, 第二成型胶层 160形成于透明绝 缘膜 150的第二表面 154, 第二金属导电层 170嵌设于第二成型胶层 160。 第二成型胶层 160远离透明绝缘膜 150第二表面 154的一侧开设有图形化 的第二凹槽, 将第二金属导层收容于第二凹槽, 并使第二金属导电层 170 的形状与第二凹槽的形状相匹配。将第二成型胶层 160形成于透明绝缘膜 150的第二表面 154, 在第二成型胶层 160远离透明绝缘膜 150第二表面 154的一侧通过压印的方式形成第二凹槽, 再将形成第二金属导电层 170 的材料填充于第二凹槽, 并通过烧结工艺形成第二金属导电层 170。 由于 第二凹槽可根据对电极形状的需求, 印压成预设形状, 故收容于第二凹槽 的第二金属导电层 170可直接成型为预设形状, 而不必进行蚀刻成形, 简 化制作工艺, 避免了材料的大量浪费, 降低了成本。 且因上述触摸屏的生 产过程中不需要进行蚀刻工艺, 故可避免在生产过程中使用化学物质, 从 而避免对环境造成污染。
其中, 为了使第二金属导电层 170的材料填充于第二凹槽后, 在经过 烧结成型的过程中不发生断裂, 第二凹槽的深度与第二凹槽的宽度的比值 可合理设置为不小于 1。
请参阅图 5, 在其中一个实施例中, 所述基板 110为钙纳玻璃或硅氧 盐玻璃, 基板 110靠近第一成型胶层 120的表面的硅氧基与第一成型胶层 120键合。 在将第一成型胶层 120形成于基板 110之前, 将基板 110靠近 第一成型胶层 120的表面进行等离子体 220轰击处理,以使硅氧基露出来, 第一成型胶层 120与硅氧基键合, 使第一成型胶层 120更好的与基板 110 粘合, 提高触摸屏的良品率。
请参阅图 5, 在其中一个实施例中, 为了提高基板 110与第一成型胶 层 120的粘合效果, 所述基板 110靠近所述第一成型胶层 120的表面粗糙 度可合理设置为 5~10nm。
请参阅图 2和图 3, 在其中一个实施例中, 还包括光学透明胶层 190, 光学透明胶层 190设置于第一成型胶层 120与透明绝缘膜 150的第一表面 152之间, 光学透明胶层 190设有第三缺槽 192, 第三缺槽 192正对第一 电极引线 140的自由末端 142。 将第一成型胶层 120形成于基板 110的一 侧, 第一金属导电层 130嵌设于第一成型胶层 120, 第二成型胶层 160形 成于透明绝缘膜 150的第二表面 154, 第二金属导电层 170嵌设于第二成 型胶层 160, 再将透明绝缘膜 150的第一表面 152与基板 110形成有第一 成型胶层 120的表面通过光学透明胶层 190贴合。 光学透明胶层 190的设 置, 可进一步加强基板 110与透明绝缘膜 150的粘合强度, 在降低成本的 同时提高了触摸屏的良品率。其中,光学透明胶层 190的材料可以为 OCA 胶、 uv胶、 热固胶或者自干胶等, 以保证触摸屏的透光性。 同时, 在光 学透明胶层 190正对第一电极引线 140的自由末端 142处设有第三缺槽 192, 以实现第一电极引线 140的自由末端 142外露的目的。
请参阅图 2和图 3, 在其中一个实施例中, 第一导电条带 132与第二 导电条带 172均包括由多条金属线交叉构成的导电网格, 第一导电条带 132的导电网格在第二金属导电层 170的投影与第二导电条带 172的导电 网格交叠。
具体地, 可使用刮涂技术在第一凹槽中填充纳米银墨水, 再在 150°C 条件下烧结,使纳米银墨水中的银单质烧结成第一导电条带 132的导电线。 其中, 银墨水固含量 35% , 溶剂在烧结中挥发。 由于第一凹槽的形状预先 压印成为所需电极的图形化。 因此, 当第一带点条带 132的导电网格形成 后, 不用再进行成形操作, 从而节约了材料、 提高了效率。
具体地, 可使用刮涂技术在第二凹槽中填充纳米银墨水, 再在 150°C 条件下烧结,使纳米银墨水中的银单质烧结成第二导电条带 172的导电线。 其中, 银墨水固含量 35% , 溶剂在烧结中挥发。 由于第二凹槽的形状预先 压印成为所需电极的图形化。 因此, 当第二导电条带 172的导电网格形成 后, 不用再进行成形操作, 从而节约了材料、 提高了效率。
其中, 第一导电条带 132的导电网格在第二金属导电层 170的投影与 第二导电条带 172的导电网格交叠。 可使构成第一导电条带 132及第二导 电条带 172的导电线相互错开一定距离, 从而避免产生严重的莫尔条紋现 象。
莫尔条紋是一种光学现象, 是两条线或两个物体之间以恒定的角度和 频率发生干涉的视觉结果, 当人眼无法分辨这两条线或两个物体时, 只能 看到干涉的花紋, 这种光学现象就是莫尔条紋。
其中, 第一导电条带 132与第二导电条带 172的导电网格均可以为菱 形、 矩形、 平行四边形、 曲边四边形或者多边形, 曲边四边形具有四条曲 边, 相对的两条曲边具有相同的形状及曲线走向。 如图 4所示的具体实施 例中, 第二导电条带 172的导电网格为正六边形。 如图 6所示的具体实施 例中, 第二导电条带 172的导电网格为不规则的多边形。
请参阅图 3和图 4, 在其中一个实施例中, 所述第一电极引线 140靠 近所述第一导电条带 132的一端设有条形的第一连接部 144, 所述第二电 极引线 180靠近所述第二导电条带 172的一端设有条形的第二连接部 184。 如此, 第一电极引线 140通过第一连接部 144与第一金属导电层 130电连 接,第二电极引线 180通过第二连接部 184与第二金属导电层 170电连接。 为了加强第一电极引线 140与第一金属导电层 130的电连接性, 及第二电 极引线 180与第二金属导电层 170的电连接性,故合理设置第一连接部 144 至少与第一导电条带 132中的两条金属线电连接, 第二连接部 184至少与 第二导电条带 172中的两条金属线电连接。
请参阅图 3和图 4, 在其中一个实施例中, 所述第一连接部 144比所 述第一电极引线 140的其他部位宽, 所述第二连接部 184比所述第二电极 引线 180的其他部位宽。 因第一连接部 144比第一电极引线 140额其他部 位宽, 具有较大的接触面积, 从而使第一电极引线 140与第一金属导电层 130的多条导电线电连接, 进一步增强第一电极引线 140与第一金属导电 层 130的电连接性。因第二连接部 184比第二电极引线 180额其他部位宽, 具有较大的接触面积, 同理推倒, 可增强第二电极引线 180与第二金属导 电层 170的电连接性。 如此, 提高良品率, 降低成本。
请参阅图 7和图 8, 在其中一个实施例中, 所述第一电极引线 140和 所述第二电极引线 180均为由导电线呈网格交叉连接形成的网格结构。 具 体地, 在第一 /第二成型胶层 160压印出收容第一 /第二电极引线 180的凹 槽, 再将第一 /第二电极引线 180的材料刮涂入对应的凹槽。采用网格结构 的电极引线, 在刮涂过程中, 可使电极引线的材料不易被刮出, 方便刮涂 工艺的操作。同时可防止在对第一 /第二电极引线 180的材料进行烧结工艺 时产生凝聚效应导致引线断裂, 提高良品率, 降低成本。 其中, 第一 /第二 电极引线 180的材料可以为纳米银浆。 可以理解,第一电极引线 140和第二电极引线 180均还可以为实心线, 也可以实现将第一金属导电层 130和第二金属导电层 170均与 FPCB210 电连接的目的。
请参阅图 3、 图 7和图 8, 在其中一个实施例中, 所述第一电极引线 140及所述第二电极引线 180的网格周期均小于所述第一金属导电层 130 及所述第二金属导电层 170的网格周期。 网格周期即导电网格的大小。 因 第一电极引线 140及第二电极引线 180与第一金属导电层 130及第二金属 导电层 170电连接时, 难免会对不准。 如此, 可增强第一电极引线 140及 第二电极引线 180与第一金属导电层 130及第二金属导电层 170的电连接 性, 提高良品率, 降低成本。
请参阅图 7和图 8, 在其中一个实施例中, 所述第一电极引线 140与 所述第一导电条带 132之间设有第一电极转接线 146, 所述第二电极引线 180与所述第二金属导电层 170之间设有第二电极转接线 186, 所述第一 电极转接线 146及所述第二电极转接线 186均为连续的导电线。 因第一电 极引线 140及第二电极引线 180与第一金属导电层 130及第二金属导电层 170电连接时, 难免会对不准。 第一连接部 144通过第一电极转接线 146 与第一金属导电层 130电连接, 第二连接部 184通过第二电极转接线 186 与第二金属导电层 170电连接。 由于第一电极转接线 146及第二电极转接 线 186均为连续的导电线, 如此, 即使第一导电金属层及第二导电金属层 的网格周期不同的导电网格, 也可以保证第一电极引线 140与第一金属导 电层 130电连接效果好, 及第二电极引线 180与第二金属导电层 170电连 接效果好。
图 7和图 8为突显第一电极转接线 146、 第二电极转接线 186, 第一 电极转接线 146、 第二电极转接线 186比构成第一电极引线 140、 第二电 极引线 180的导电线粗, 但不应理解为限定第一电极转接线 146、 第二电 极转接线 186比构成第一电极引线 140、第二电极引线 180的金属细线粗。 在具体应用时可以根据应用环境决定第一电极转接线 146、 第二电极转接 线 186的粗细。
需要指出的是, 即使不设置第一电极转接线 146和第二电极转接线 186, 也可以实现第一电极引线 140与第一金属导电层 130电连接, 及第 二电极引线 180与第二金属导电层 170电连接的目的。 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和 详细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以 做出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利 的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1、 一种触摸屏, 包括基板, 其特征在于, 还包括:
第一成型胶层, 形成于所述基板的一侧, 所述第一成型胶层嵌设有第 一金属导电层, 所述第一金属导电层包括多个相互绝缘的第一导电条带; 第一电极引线, 形成于所述第一成型胶层并与所述第一导电条带电连 接;
透明绝缘膜, 包括第一表面及与所述第一表面相对的第二表面, 所述 第一表面朝向所述第一成型胶层;
第二成型胶层, 形成于所述透明绝缘膜的第二表面, 所述第二成型胶 层嵌设有第二金属导电层, 所述第二金属导电层包括多个相互绝缘的第二 导电条带;
第二电极引线, 形成于所述第二成型胶层并与所述第二导电条带电连 接;
所述透明绝缘膜设有第一缺槽, 所述第二成型胶层设有第二缺槽, 所 述第一缺槽和所述第二缺槽均正对所述第一电极引线的自由末端, 所述第 二电极引线的自由末端设置于所述第二缺槽外围。
2、 根据权利要求 1所述的触摸屏, 其特征在于, 所述第一导电条带 与所述第二导电条带均包括由多条金属线交叉构成的导电网格, 所述第一 导电条带的导电网格在所述第二金属导电层的投影与所述第二导电条带 的导电网格交叠。
3、 根据权利要求 1所述的触摸屏, 其特征在于, 还包括光学透明胶 层, 所述光学透明胶层设置于所述第一成型胶层与所述透明绝缘膜的第一 表面之间, 所述光学透明胶层设有第三缺槽, 所述第三缺槽正对所述第一 电极引线的自由末端。
4、 根据权利要求 1所述的触摸屏, 其特征在于, 所述第一成型胶层 远离所述基板的一侧开设有图形化的第一凹槽, 所述第一金属导电层的金 属线收容于所述第一凹槽, 所述第二成型胶层远离所述透明绝缘膜第二表 面的一侧开设有图形化的第二凹槽, 所述第二金属导电层的金属线收容于 所述第二凹槽。
5、 根据权利要求 4所述的触摸屏, 其特征在于, 所述第一凹槽的深 度与所述第一凹槽的宽度的比值不小于 1, 所述第二凹槽的深度与所述第 二凹槽的宽度的比值不小于 1。
6、 根据权利要求 4所述的触摸屏, 其特征在于, 所述基板为钙钠玻 璃或硅铝酸盐玻璃, 所述基板靠近所述第一成型胶层的表面的硅氧基与所 述第一成型胶层键合。
7、 根据权利要求 6所述的触摸屏, 其特征在于, 所述基板靠近所述 第一成型胶层的表面粗糙度为 5~10nm。
8、 根据权利要求 1所述的触摸屏, 其特征在于, 所述第一导电条带 的金属线附着于所述基板, 所述第一导电条带位于所述基板与所述第一成 型胶层之间。
9、 根据权利要求 2所述的触摸屏, 其特征在于, 所述第一电极引线 靠近所述第一导电条带的一端设有条形的第一连接部, 所述第一连接部至 少与所述第一导电条带中的两条金属线电连接, 所述第二电极引线靠近所 述第二导电条带的一端设有条形的第二连接部, 所述第二连接部至少与所 述第二导电条带中的两条金属线电连接。
10、 根据权利要求 9所述的触摸屏, 其特征在于, 所述第一连接部比 所述第一电极引线的其他部位宽, 所述第二连接部比所述第二电极引线的 其他部位宽。
11、 根据权利要求 9所述的触摸屏, 其特征在于, 所述第一电极引线 和所述第二电极引线均为由导电线呈网格交叉连接形成的网格结构。
12、 根据权利要求 11所述的触摸屏, 其特征在于, 所述第一电极引 线及所述第二电极引线的网格周期均小于所述第一金属导电层及所述第 二金属导电层的网格周期。
13、 根据权利要求 12所述的触摸屏, 其特征在于, 所述第一电极引 线与所述第一导电条带之间设有第一电极转接线, 所述第二电极引线与所 述第二金属导电层之间设有第二电极转接线, 所述第一电极转接线及所述 第二电极转接线均为连续的导电线。
PCT/CN2013/079292 2013-07-01 2013-07-12 触摸屏 WO2015000193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137026487A KR20150013391A (ko) 2013-07-01 2013-07-12 터치 스크린
US13/968,360 US9430068B2 (en) 2013-07-01 2013-08-15 Touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310272530.7A CN103345317B (zh) 2013-03-25 2013-07-01 触摸屏
CN201310272530.7 2013-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/968,360 Continuation US9430068B2 (en) 2013-07-01 2013-08-15 Touch screen

Publications (1)

Publication Number Publication Date
WO2015000193A1 true WO2015000193A1 (zh) 2015-01-08

Family

ID=52143133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079292 WO2015000193A1 (zh) 2013-07-01 2013-07-12 触摸屏

Country Status (5)

Country Link
US (1) US9430068B2 (zh)
KR (1) KR20150013391A (zh)
CN (1) CN103345317B (zh)
TW (1) TWI533330B (zh)
WO (1) WO2015000193A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345317B (zh) 2013-03-25 2014-10-29 深圳欧菲光科技股份有限公司 触摸屏
TWI512804B (zh) * 2013-12-12 2015-12-11 Ind Tech Res Inst 電極結構及其製作方法、使用此電極結構的觸控元件及觸控顯示器
TW201525817A (zh) * 2013-12-20 2015-07-01 Wintek Corp 觸控面板
CN104597646B (zh) * 2014-12-22 2018-09-07 上海天马微电子有限公司 一种显示面板和显示装置
EP3176680A4 (en) * 2015-02-27 2018-01-17 Fujikura, Ltd. Wiring body, wiring substrate, and touch sensor
TWI514232B (zh) * 2015-06-23 2015-12-21 Innolux Corp 觸控顯示面板
CN105353915B (zh) * 2015-12-01 2018-06-22 信利光电股份有限公司 一种触摸屏制作方法
CN107092901B (zh) * 2017-06-02 2020-04-03 京东方科技集团股份有限公司 一种触控面板的指纹识别方法及制备方法
CN108920035B (zh) * 2018-06-30 2021-07-02 广州国显科技有限公司 触控面板及其制作方法
CN112271016A (zh) * 2020-11-11 2021-01-26 湖南怡田美农业科技有限公司 触摸屏
CN115220607B (zh) * 2022-07-27 2022-11-29 四川省利任元创新科技有限责任公司 一种ogs电容式触摸屏及制作方法
CN116301442A (zh) * 2023-05-24 2023-06-23 浙江大华技术股份有限公司 银纳米线触控电极单元及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191741A (ja) * 2009-02-19 2010-09-02 Panasonic Corp タッチパネル
CN201725303U (zh) * 2010-03-05 2011-01-26 敏理投资股份有限公司 矩阵型触控面板
KR20120040032A (ko) * 2010-10-18 2012-04-26 삼성전기주식회사 전도성 필름의 제조방법
CN102645996A (zh) * 2011-02-22 2012-08-22 松下电器产业株式会社 触摸面板及其制造方法
CN103105970A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 触摸屏感应模组及包含该触摸屏感应模组的显示器
CN203338283U (zh) * 2013-03-25 2013-12-11 深圳欧菲光科技股份有限公司 触摸屏

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265748A (ja) * 2008-04-22 2009-11-12 Hitachi Displays Ltd タッチパネル付き表示装置
CN104635983B (zh) * 2008-07-31 2018-01-30 郡是株式会社 触摸开关
US8576182B2 (en) * 2009-09-01 2013-11-05 Atmel Corporation Methods and apparatuses to test the functionality of capacitive sensors
WO2011072045A2 (en) * 2009-12-08 2011-06-16 Envont Llc Polymeric hybrid organometalloglass
WO2011108869A2 (ko) * 2010-03-03 2011-09-09 미래나노텍 주식회사 정전 용량 방식 터치 패널 및 그 제조방법
KR101042553B1 (ko) 2010-12-15 2011-06-20 주식회사 에스아이 플렉스 터치스크린 패널 및 그 제조방법
KR101655485B1 (ko) 2010-12-23 2016-09-07 엘지이노텍 주식회사 터치 패널 및 이의 제조 방법
JP5437351B2 (ja) * 2010-12-27 2014-03-12 Hoya株式会社 携帯型電子機器用カバーガラスのガラス基板、携帯型電子機器用画像表示装置、携帯型電子機器
KR101274945B1 (ko) 2011-04-27 2013-06-14 주식회사 이노터치테크놀로지 투영 정전용량 터치 패널 및 그의 제조 방법
CN102930922B (zh) * 2012-10-25 2015-07-08 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
CN103853380B (zh) * 2012-12-03 2017-04-12 Lg伊诺特有限公司 电极构件及包括该电极构件的触屏
JP5370706B1 (ja) * 2012-12-14 2013-12-18 デクセリアルズ株式会社 画像表示装置の製造方法
CN103345317B (zh) 2013-03-25 2014-10-29 深圳欧菲光科技股份有限公司 触摸屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191741A (ja) * 2009-02-19 2010-09-02 Panasonic Corp タッチパネル
CN201725303U (zh) * 2010-03-05 2011-01-26 敏理投资股份有限公司 矩阵型触控面板
KR20120040032A (ko) * 2010-10-18 2012-04-26 삼성전기주식회사 전도성 필름의 제조방법
CN102645996A (zh) * 2011-02-22 2012-08-22 松下电器产业株式会社 触摸面板及其制造方法
CN103105970A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 触摸屏感应模组及包含该触摸屏感应模组的显示器
CN203338283U (zh) * 2013-03-25 2013-12-11 深圳欧菲光科技股份有限公司 触摸屏

Also Published As

Publication number Publication date
CN103345317B (zh) 2014-10-29
US9430068B2 (en) 2016-08-30
KR20150013391A (ko) 2015-02-05
TW201503168A (zh) 2015-01-16
US20150002755A1 (en) 2015-01-01
CN103345317A (zh) 2013-10-09
TWI533330B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2015000193A1 (zh) 触摸屏
TWI493409B (zh) 監視器及其觸控式螢幕感應模組
TWI510993B (zh) 觸摸屏感應模組及其製作方法和顯示器
US9313887B2 (en) Conductive film, manufacturing method thereof, and touch screen having the same
TWI492121B (zh) 觸摸屏
TWI503715B (zh) 導電膜及其製備方法以及包含該導電膜之觸控式面板
CN207924639U (zh) 触控屏、触控显示装置和电子装置
WO2014063417A1 (zh) 透明导电膜中的导电结构、透明导电膜及制作方法
CN103257748B (zh) 触控面板及制造方法
TWM482791U (zh) 觸控式螢幕
TWI509481B (zh) 透明導電膜
US20140293150A1 (en) Touch screen
US20140307178A1 (en) Touch screen sensing module, manufacturing method thereof and display device
JP2015515706A (ja) 単層タッチスクリーン及びその製造方法
TW201445389A (zh) 透明導電膜
CN110764657A (zh) 触控层、触控模组和电子设备
CN103440064B (zh) 触摸屏元件及触摸屏
CN203224850U (zh) 触摸屏感应模组及包含该触摸屏感应模组的显示器
CN203338283U (zh) 触摸屏
CN112271016A (zh) 触摸屏
JP5617570B2 (ja) タッチパネル
CN203276218U (zh) 触控面板
CN203376712U (zh) 触摸屏元件及触摸屏
KR20190061504A (ko) 터치 센서 시트와 그 제조 방법 및 터치 센서 시트를 구비하는 터치스크린 패널

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137026487

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888812

Country of ref document: EP

Kind code of ref document: A1