WO2014208839A1 - 선택적 촉매 환원 및 촉매 재생 시스템 - Google Patents

선택적 촉매 환원 및 촉매 재생 시스템 Download PDF

Info

Publication number
WO2014208839A1
WO2014208839A1 PCT/KR2013/011262 KR2013011262W WO2014208839A1 WO 2014208839 A1 WO2014208839 A1 WO 2014208839A1 KR 2013011262 W KR2013011262 W KR 2013011262W WO 2014208839 A1 WO2014208839 A1 WO 2014208839A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
valve
main exhaust
urea
ammonia
Prior art date
Application number
PCT/KR2013/011262
Other languages
English (en)
French (fr)
Inventor
이재문
김상진
유창성
이창희
이균
Original Assignee
두산엔진주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산엔진주식회사 filed Critical 두산엔진주식회사
Priority to US14/901,188 priority Critical patent/US9482130B2/en
Priority to CN201380077843.5A priority patent/CN105339620B/zh
Priority to JP2016523613A priority patent/JP6305528B2/ja
Priority to EP13888140.4A priority patent/EP3015670B1/en
Priority to SG11201510694SA priority patent/SG11201510694SA/en
Priority to DK13888140.4T priority patent/DK3015670T3/da
Publication of WO2014208839A1 publication Critical patent/WO2014208839A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/25Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ammonia generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/12By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • F01N2610/085Controlling the air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Embodiments of the present invention relate to a selective catalytic reduction and catalyst regeneration system that not only reduces nitrogen oxides contained in exhaust gases by using a selective catalytic reduction reaction, but also regenerates the catalyst used in the reduction reaction.
  • a selective catalytic reduction (SCR) system is a system for reducing nitrogen oxides by purifying exhaust gases generated from diesel engines, boilers, and incinerators.
  • the nitrogen gas contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
  • the selective catalytic reduction system is used by directly spraying urea (Urea) as a reducing agent to reduce nitrogen oxides or by spraying ammonia (NH 3 ) generated by hydrolysis of urea.
  • Urea urea
  • NH 3 ammonia
  • Embodiments of the present invention provide a selective catalytic reduction and catalyst regeneration system that can minimize the energy consumed overall to reduce the nitrogen oxides contained in the exhaust gas as well as effectively regenerate the catalyst used in the reduction reaction.
  • the selective catalytic reduction and catalyst regeneration system includes a main exhaust flow path through which an exhaust gas containing nitrogen oxides (NOx) moves, and a nitrogen oxide (NOx) of exhaust gas installed on the main exhaust flow path.
  • a reactor including a catalyst for reducing the pressure, a bypass exhaust flow path branched from the main exhaust flow path and bypassing the reactor, and joined to the main exhaust flow path again, and installed on the main exhaust flow path to be introduced into the reactor.
  • An ammonia injection unit for injecting ammonia (NH 3 ) to the exhaust gas, a hydrolysis chamber provided with urea to generate ammonia to be supplied to the ammonia injection unit, and connecting the ammonia injection unit and the hydrolysis chamber
  • An ammonia supply flow passage a branch flow passage branched from the main exhaust flow passage in front of the reactor, and an image behind the reactor
  • a recirculation flow passage branched from the main exhaust flow passage and joining the branch flow passage, and a multifunctional flow passage connecting the confluence point of the branch flow passage and the recirculation flow passage and the hydrolysis chamber.
  • the selective catalytic reduction and catalyst regeneration system includes a first main exhaust valve installed on the main exhaust passage between the branch branch branch and the urea injection unit, the branch branch of the recycle passage branch, and the bypass exhaust passage branch. And a second main exhaust valve provided on the main exhaust flow path between the points at which the gas joins, a bypass exhaust valve provided on the bypass exhaust flow passage, a branch valve provided on the branch flow passage, and a recirculation valve provided on the recirculation flow passage. can do.
  • the first main exhaust valve, the second main exhaust valve, the bypass exhaust valve, the branch valve, and the recirculation valve may be divided into one of a purifying operation state and a regeneration operation state.
  • the first main exhaust valve and the second main exhaust valve are opened, and the bypass exhaust valve and the recirculation valve are shut off, and in the regeneration operation state, the first main exhaust valve and The second main exhaust valve may be shut off, and the bypass exhaust valve and the recirculation valve may be opened.
  • the selective catalytic reduction and catalyst regeneration system may further include a urea supply unit for supplying urea to the hydrolysis chamber, and a chamber connection flow path connecting the urea supply unit and the hydrolysis chamber.
  • the selective catalytic reduction and catalyst regeneration system includes a urea injection unit installed on the main exhaust flow path for injecting urea to the exhaust gas to be introduced into the reactor, and a urea supply flow path directly connecting the urea supply unit and the urea injection unit. It may further include.
  • the ammonia injection unit may be located closer to the reactor than the urea injection unit.
  • the apparatus may further include an ammonia supply valve installed on the chamber connection flow path and a urea supply valve installed in the urea supply flow path.
  • one or more of the ammonia supply valve and the urea supply valve may be opened. And when the regeneration operation state, the ammonia supply valve and the urea supply valve can be shut off.
  • the branch valve and the ammonia supply valve are opened and the urea supply valve is shut off to close the main exhaust.
  • Ammonia can be injected into the flow path.
  • the branch valve, the ammonia supply valve, and the urea supply valve are opened to open the main exhaust. Ammonia and urea may be injected together in the flow path.
  • the branch valve and the ammonia supply valve are shut off and the urea supply valve is opened to open the main exhaust. Urea may be injected into the flow path.
  • the selective catalytic reduction and catalyst regeneration system may further include a heating device installed on the multifunctional flow path for heating the fluid flowing through the multifunctional flow path.
  • a burner is used as the heating apparatus, and the selective catalytic reduction and catalytic regeneration system may further include an external air supply passage connected to the multifunctional passage so as to supply external air to the heating apparatus.
  • the selective catalytic reduction and catalyst regeneration system further includes an outside air supply valve installed on the outside air supply flow path, and the outside air supply valve may be opened when the heating device is operated.
  • the selective catalytic reduction and catalyst regeneration system may further include an air filter installed on the outside air supply passage.
  • the blower may further include a blower installed on the multifunctional flow path.
  • the selective catalytic reduction and catalyst regeneration system can not only minimize the energy consumed overall to reduce the nitrogen oxides contained in the exhaust gas, but also effectively regenerate the catalyst used in the reduction reaction.
  • FIG. 1 is a block diagram showing a selective catalytic reduction and catalyst regeneration system according to an embodiment of the present invention.
  • FIG. 2 to 5 are diagrams illustrating the operating states of the selective catalytic reduction and catalyst regeneration system of FIG. 1, respectively.
  • Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • SCR selective catalytic reduction
  • the selective catalytic reduction and catalyst regeneration system 101 includes a main exhaust passage 210, a reactor 100, a bypass exhaust passage 220, and an ammonia injection unit ( 460, hydrolysis chamber 510, ammonia supply flow path 260, branch flow path 230, recirculation flow path 240, and multifunction flow path 250.
  • an ammonia injection unit 460, hydrolysis chamber 510, ammonia supply flow path 260, branch flow path 230, recirculation flow path 240, and multifunction flow path 250.
  • the selective catalytic reduction and catalyst regeneration system 101 includes a first main exhaust valve 311, a second main exhaust valve 312, a bypass exhaust valve 320, and a branch valve 330. And a recirculation valve 340.
  • the selective catalytic reduction and catalyst regeneration system 101 is a urea supply unit 520, urea storage unit 530, urea injection unit 470, urea supply passage 270, chamber connection
  • the flow path 280 may further include an ammonia supply valve 360 and a urea supply valve 370.
  • the selective catalytic reduction and catalyst regeneration system 101 is a heating device 550, an outside air supply passage 290, an outside air supply valve 390, an air filter 580, a mixer 800 ), And a blower 560.
  • the main exhaust passage 210 serves as a passage through which the exhaust gas containing nitrogen oxides (NOx) moves.
  • the exhaust gas generated in the combustion process of the diesel engine may pass through the main exhaust flow path 210.
  • the diesel engine may be a low speed or medium speed diesel engine used in a ship.
  • the reactor 100 is installed on the main exhaust flow path 210.
  • the reactor 100 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas.
  • the catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor.
  • the catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like.
  • the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius.
  • the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the efficiency decreases with poisoning.
  • the housing of the reactor 100 may be made of stainless steel (stainless steel) material.
  • the bypass exhaust flow path 220 branches from the main exhaust flow path 210 to bypass the reactor 100, and then joins the main exhaust flow path 210 again. When the inflow of the exhaust gas to the reactor 100 is blocked, the bypass exhaust flow path 220 bypasses the reactor 100 to discharge the exhaust gas to the outside.
  • the ammonia injection unit 460 is installed on the main exhaust flow path 210 to inject ammonia NH 3 to the exhaust gas to be introduced into the reactor 100.
  • the injected ammonia is mixed with the exhaust gas to reduce the nitrogen oxide contained in the exhaust gas.
  • the ammonia injection unit 460 may spray together isocyanic acid (HNCO) in addition to ammonia.
  • HNCO isocyanic acid
  • Isocyanic acid can be broken down into ammonia in high temperature environments.
  • the urea injection unit 470 is installed on the main exhaust flow path 210 to inject urea to the exhaust gas to be introduced into the reactor 100.
  • the injected urea is mixed with the exhaust gas and decomposed into ammonia by the thermal energy of the exhaust gas when the exhaust gas is at a high temperature.
  • the ammonia thus produced reduces the nitrogen oxide contained in the exhaust gas, similar to the ammonia injected from the ammonia injection unit 460.
  • the ammonia injection portion 460 is located closer to the reactor 100 than the urea injection portion 470. That is, the urea injection unit 470 is relatively far from the reactor 100 is installed. This is to secure a time and space until the urea injected from the urea injection unit 470 is mixed with the exhaust gas and decomposed into ammonia by the thermal energy of the exhaust gas.
  • the mixer 800 is installed on the main exhaust flow path 210 between the ammonia injection unit 460 and the reactor 100.
  • the mixer 800 evenly mixes the exhaust gas with ammonia, which is a reducing agent, before the exhaust gas enters the reactor 100.
  • the hydrolysis chamber 510 is hydrolyzed by receiving urea (CO (NH 2 ) 2 ) to generate ammonia (NH 3 ) to be supplied to the ammonia injection unit 460.
  • urea (CO (NH 2 ) 2 ) is hydrolyzed in the hydrolysis chamber 510, isocyanic acid (HNCO) is produced together with ammonia (NH 3 ).
  • the ammonia supply passage 260 connects the hydrolysis chamber 510 and the ammonia injection unit 460 to transfer the ammonia generated in the hydrolysis chamber 510 to the ammonia injection unit 460.
  • the urea supply unit 520 supplies urea to the hydrolysis chamber 510.
  • the chamber connection flow path 280 connects the urea supply part 520 and the hydrolysis chamber 510.
  • the urea supply passage 270 directly connects the urea supply unit 520 and the urea injection unit 470.
  • the urea supply unit 520 may supply urea to the hydrolysis chamber 510 through the chamber connection passage 280, or may supply urea to the urea injection unit 470 through the urea supply passage 270.
  • Branch flow path 230 is branched from main exhaust flow path 210 in front of reactor 100.
  • the recirculation flow path 240 branches from the main exhaust flow path 210 behind the reactor 100 and joins the branch flow path 230.
  • the multifunction flow path 250 connects the confluence point of the branch flow path 230 and the recirculation flow path 240 and the hydrolysis chamber 510.
  • the exhaust gas not passing through the reactor 100 may be introduced into the hydrolysis chamber 510 through the branch flow path 230 and the multifunctional flow path 250. That is, when the exhaust gas that has not passed through the reactor 100 is relatively high, the exhaust gas is supplied to the hydrolysis chamber 510 through the branch flow path 230 and the multifunctional flow path 250 to supply the heat energy of the exhaust gas to the water. It may be utilized to hydrolyze urea in the decomposition chamber 510.
  • the exhaust gas passing through the reactor 100 is branched flow path 230, multi-functional flow path 250, hydrolysis chamber 510, ammonia supply flow path 260, and ammonia injection unit It may be introduced to the reactor 100 again through 460 in turn. That is, the exhaust gas having passed through the reactor 100 may be recycled back to the reactor 100.
  • the heating device 550 is installed on the multifunction flow path 250 to heat up the fluid flowing through the multifunction flow path 250.
  • the heating device 550 may be a burner.
  • the heating device 550 may include a fuel supply device, a control device for controlling the supply fuel amount for heating temperature control, and a stabilizer.
  • the heating device 550 may be a plasma burner having improved performance by using plasma.
  • the outside air supply passage 290 may be selectively provided when a burner is used as the heating device 550 in one embodiment of the present invention.
  • the outside air supply flow path 290 is connected to the multifunction flow path 250 to supply the outside air to the heating device 550. That is, when the heating device 550 is used as a burner, the outside air supply passage 290 supplies oxygen necessary for burning the burner.
  • the air filter 580 is installed on the outside air supply passage 290.
  • the air filter 580 removes foreign matters including external air introduced through the external air supply passage 290.
  • the blower 560 is installed on the multifunction flow path 250.
  • the blower 560 powers the fluid passing through the multifunction flow path 250. That is, the blower 560 may provide power so that the exhaust gas flows into the hydrolysis chamber 510 through the branch flow path 230 and the multifunction flow path 250, or the exhaust gas may be the recirculation flow path 240 and the multifunction flow path 250. Can be powered to circulate through.
  • the first main exhaust valve 311 is installed in the main exhaust flow path 210 in front of the reactor 100, and the second main exhaust valve 312 is installed in the main exhaust flow path 210 behind the reactor 100.
  • the first main exhaust valve 311 may be installed on the main exhaust passage 210 between the branch branch 230 and the urea injection unit 470.
  • the second main exhaust valve 312 may be installed on the main exhaust flow path 210 between the branch where the recirculation flow path 240 branches and the point where the bypass exhaust flow path 220 and the main exhaust flow path 210 join again. Can be.
  • the bypass exhaust valve 320 is installed on the bypass exhaust flow path 220, the branch valve 330 is installed on the branch flow path 230, and the recirculation valve 340 is installed on the recycle flow path 240.
  • ammonia supply valve 360 is installed on the chamber connection flow path 280, and the urea supply valve 370 is installed on the urea supply flow path 270.
  • outside air supply valve 390 is provided in the outside air supply passage 290.
  • first main exhaust valve 311 and the bypass exhaust valve 320 may be unified through one three-way valve.
  • first main exhaust valve 311 and the branch valve 340 may be unified through one three-way valve.
  • first main exhaust valve 311, the bypass exhaust valve 320, and the branch valve 330 may be unified through one four-way valve.
  • branch valve 330 and the recirculation valve 340 may be unified through the three-way valve, and the branch valve 330, the recirculation valve 340, and the external air supply valve 390 are also unified through the four-way valve. Can be.
  • each valve may be variously modified according to a technique known to those skilled in the art, and the position and type of the valves in one embodiment of the present invention are not limited to the valves shown in FIG. 1. .
  • the selective catalytic reduction and catalyst regeneration system 101 operates in one of a purifying operation state and a regeneration operation state.
  • the first main exhaust valve 311, the second main exhaust valve 312, the bypass exhaust valve 320, the branch valve 330, the recirculation valve 340, the ammonia supply valve 360, the urea supply valve ( 370 and the outside air supply valve 390 are respectively opened and closed in a purifying operation state and a regeneration operation state.
  • Selective catalytic reduction and catalyst regeneration system 101 is divided into a purification operation state or a re-state operation state.
  • the purifying operation state is a state in which an operation of reducing nitrogen oxide contained in exhaust gas flowing through the main exhaust flow path 210 is performed.
  • the selective catalytic reduction and catalyst regeneration system 101 may be operated in three stages depending on the temperature of the exhaust gas flowing through the main exhaust flow path 210.
  • the selective catalytic reduction and catalyst regeneration system 101 is based on the first set temperature, the second set temperature, and the third set temperature in order to divide the operation into three stages again in the purification operation state.
  • the purifying operation state includes a low temperature step in which the temperature of the exhaust gas flowing into the reactor 100 is a first set temperature, a middle temperature step in which the temperature of the exhaust gas flowing into the reactor 100 is a second predetermined temperature, and a reactor
  • the temperature of the exhaust gas introduced into the 100 may be divided into a high temperature step that is a third set temperature.
  • the temperature of the exhaust gas passing through the main exhaust flow path 210 is increased as the operating time increases after the diesel engine exhausting the exhaust gas is initially started.
  • the first set temperature may be less than 250 degrees Celsius
  • the second set temperature may be 250 degrees Celsius or more and less than 300 degrees Celsius
  • the third set temperature may be 300 degrees Celsius or more.
  • the range of the first set temperature, the second set temperature, and the third set temperature may vary depending on the use environment.
  • FIG. 2 shows the low temperature stage in the purge operation state.
  • the first main exhaust valve 311 and the second main exhaust valve 312 are basically opened.
  • the bypass exhaust valve 320 and the recirculation valve 340 are blocked.
  • the branch valve 330 and the ammonia supply valve 360 are opened, and the urea supply valve 370 is blocked to inject ammonia into the main exhaust flow path 210.
  • the exhaust gas supplied from the branch flow path 230 branched from the main exhaust flow path 210 before the heating device 550 passes through the reactor 100 is heated.
  • the heated exhaust gas is introduced into the hydrolysis chamber 510 to provide thermal energy for hydrolyzing the urea.
  • the blower 560 supplies power to the exhaust gas flowing through the branch flow path 230 and the multi-function flow path 250.
  • the external air supply valve 390 provided in the external air supply flow path 290 is also opened to supply oxygen for combustion to the heating device 550.
  • the urea When the urea is directly injected into the main exhaust flow path 210 when the temperature of the exhaust gas flowing into the reactor through the main exhaust flow path 210 is less than 250 degrees Celsius, the biuret and cyanuric acid generated as the urea is decomposed By-products, such as cyanuric acid), melamine, and ammeline, can form to clog the nozzles or obstruct the flow of exhaust gases.
  • urea when the temperature of the exhaust gas flowing into the reactor 100 is less than 250 degrees Celsius, urea is not directly injected into the main exhaust flow path 210, but is heated in the hydrolysis chamber 510.
  • the ammonia produced by efficiently hydrolyzing using the high temperature exhaust gas heated by the apparatus 550 may be injected into the main exhaust flow path 210. Therefore, by using ammonia as the reducing agent it is possible to minimize the generation of by-products in the process of reducing the nitrogen oxide contained in the exhaust gas.
  • FIG. 3 shows the mesophilic stage in the purification operation state.
  • the first main exhaust valve 311 and the second main exhaust valve 312 are basically opened.
  • the bypass exhaust valve 320 and the recirculation valve 340 are blocked.
  • the branch valve 330, the ammonia supply valve 360, and the urea supply valve 370 are all opened. That is, both urea and ammonia are injected into the main exhaust flow path 210.
  • the middle temperature step as much as a urea is injected through the urea injection unit 470, a small amount of ammonia is injected through the ammonia injection unit 460. That is, in the middle temperature stage where the temperature of the exhaust gas flowing into the reactor 100 is 250 degrees Celsius or more and less than 300 degrees Celsius, hydrolysis of urea by the thermal energy of the exhaust gas flowing through the main exhaust flow path 210 can be expected to some extent. In this case, the amount of ammonia to be produced in the hydrolysis chamber 510 may be reduced rather than the low temperature step.
  • the external air supply valve 390 provided in the external air supply flow path 290 is also partially or fully opened in order to supply oxygen for combustion to the heating device 550.
  • FIG. 4 shows the high temperature stage in the purge operation state.
  • the first main exhaust valve 311 and the second main exhaust valve 312 are basically opened.
  • the bypass exhaust valve 320 and the recirculation valve 340 are blocked.
  • branch valve 330 and the ammonia supply valve 360 are blocked and the urea supply valve 370 is opened at the high temperature stage of the purification operation state. That is, urea is injected into the main exhaust flow path 210.
  • the operation of the heating apparatus 550 and the blower 560 may be stopped, and the external air supply valve of the external air supply passage 290 may be 390 may also be blocked.
  • the regeneration operation state is a state in which an operation of regenerating a catalyst installed in the reactor 100 is poisoned.
  • the catalytic poisoning substance may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, the catalyst can be heated to regenerate the poisoned catalyst.
  • the catalyst when the catalyst is poisoned and the activity decreases, the catalyst is regenerated by switching to the regeneration operation state and raising the internal temperature of the reactor.
  • FIG. 5 shows a reproduction operation state. As shown in FIG. 5, in the regeneration operation state for regenerating the poisoned catalyst, the first main exhaust valve 311, the second main exhaust valve 312, and the branch valve 330 are shut off. The bypass exhaust valve 320 and the recirculation valve 340 are opened.
  • the multi-function flow path 550 is used for both the purification of the exhaust gas and the regeneration of the catalyst.
  • the reactor 100 in the regeneration operation state of the selective catalytic reduction and catalyst regeneration system 101 according to an embodiment of the present invention, the reactor 100, the recirculation flow path 240, the multifunctional flow path 250, and the ammonia supply flow path 260 are used.
  • a closed loop comprising a is formed.
  • the heating device 550 heats the fluid circulating in the closed loop, that is, the exhaust gas passing through the reactor 100 and heats it up. As described above, according to one embodiment of the present invention, since the exhaust gas circulating in the closed loop is heated up, the heating device 550 can raise the temperature of the exhaust gas efficiently even though it consumes less fuel. The heated exhaust gas provides thermal energy to the poisoned catalyst to remove the poisoned substance.
  • the outside air supply valve 390 installed in the outside air supply passage 290 is partially opened to supply oxygen necessary for combustion of the burner to supply the outside air to the heating device 550. Can be.
  • the second main exhaust valve 312 in order to maintain a constant pressure on the closed loop, is partially opened to exhaust the exhaust gas by the flow rate of the outside air introduced through the external air supply valve 390. It can also be discharged to the outside.
  • the exhaust gas discharged from the diesel engine may be discharged to the outside through the bypass exhaust passage 220. That is, the catalyst of the reactor 100 can be regenerated without stopping the diesel engine.
  • the selective catalytic reduction and catalyst regeneration system 101 can minimize the energy consumed to reduce the nitrogen oxides contained in the exhaust gas as well as the catalyst used in the reduction reaction. Can be played effectively.
  • the use efficiency of energy may be improved by changing the state of the reducing agent used according to the temperature of the exhaust gas flowing into the reactor 100 in the process of purifying the exhaust gas.
  • main exhaust flow path 220 bypass exhaust flow path
  • first main exhaust valve 312 second main exhaust valve
  • 340 recirculation valve 360: ammonia supply valve
  • hydrolysis chamber 520 urea supply
  • urea storage unit 550 heating device
  • blower 580 air filter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명의 실시예는 선택적 촉매 환원 및 촉매 재생 시스템에 관한 것으로, 선택적 촉매 환원 및 촉매 재생 시스템은 질소산화물을 함유한 배기 가스가 이동하는 메인 배기 유로와, 상기 메인 배기 유로 상에 설치되어 배기 가스의 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기와, 상기 메인 배기 유로에서 분기되어 상기 반응기를 우회한 후 다시 상기 메인 배기 유로와 합류하는 우회 배기 유로와, 상기 메인 배기 유로 상에 설치되어 상기 반응기에 유입될 배기 가스에 암모니아를 분사하는 암모니아 분사부와, 우레아를 제공받아 상기 암모니아 분사부에 공급할 암모니아를 생성하는 가수분해 챔버와, 상기 암모니아 분사부와 상기 가수분해 챔버를 연결하는 암모니아 공급 유로와, 상기 반응기 전방의 상기 메인 배기 유로에서 분기된 분기 유로와, 상기 반응기 후방의 상기 메인 배기 유로에서 분기되어 상기 분기 유로와 합류하는 재순환 유로, 및 상기 분기 유로와 상기 재순환 유로의 합류 지점과 상기 가수분해 챔버를 연결하는 다기능 유로를 포함한다.

Description

선택적 촉매 환원 및 촉매 재생 시스템
본 발명의 실시예는 선택적 촉매 환원 반응을 이용하여 배기 가스가 함유한 질소산화물을 저감시킬 뿐만 아니라 환원 반응에 사용된 촉매를 재생하는 선택적 촉매 환원 및 촉매 재생 시스템에 관한 것이다.
일반적으로 선택적 촉매 환원(selective catalytic reduction, SCR) 시스템은 디젤 엔진, 보일러, 소각기 등에서 발생된 배기 가스를 정화하여 질소산화물을 저감시키기 위한 시스템이다.
선택적 촉매 환원 시스템은 촉매가 내부에 설치된 반응기에 배기 가스와 환원제를 함께 통과시키면서 배기 가스에 함유된 질소산화물과 환원제를 반응시켜 질소와 수증기로 환원 처리한다.
선택적 촉매 환원 시스템은 질소산화물을 저감시키기 위한 환원제로 우레아(Urea)를 직접 분사하여 사용하거나 우레아를 가수분해시켜 생성된 암모니아(NH3)를 분사하여 사용하고 있다.
하지만, 우레아가 섭씨 250도 미만의 온도를 갖는 배기 가스에 직접 분사되면, 우레아가 분해되면서 생성되는 뷰렛(biuret), 시아누르산(cyanuric acid), 멜라민(melamine), 및 아멜린(ammeline) 등과 같은 부산물에 의해 노즐이 막히거나 배기 가스의 흐름을 방해하는 문제점이 있다.
또한, 우레아를 가수분해시켜 암모니아를 생성하기 위해서는 가수분해 챔버의 내부 온도를 전기 히터 또는 버너를 이용하여 가수분해 반응 온도까지 상승시켜야 하므로, 가수분해에 별도로 많은 에너지가 소모되는 문제점이 있다.
본 발명의 실시예는 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있는 선택적 촉매 환원 및 촉매 재생 시스템을 제공한다.
본 발명의 실시예에 따르면, 선택적 촉매 환원 및 촉매 재생 시스템은 질소산화물(NOx)을 함유한 배기 가스가 이동하는 메인 배기 유로와, 상기 메인 배기 유로 상에 설치되어 배기 가스의 질소산화물(NOx)을 저감시키기 위한 촉매를 포함하는 반응기와, 상기 메인 배기 유로에서 분기되어 상기 반응기를 우회한 후 다시 상기 메인 배기 유로와 합류하는 우회 배기 유로와, 상기 메인 배기 유로 상에 설치되어 상기 반응기에 유입될 배기 가스에 암모니아(NH3)를 분사하는 암모니아 분사부와, 우레아(Urea)를 제공받아 상기 암모니아 분사부에 공급할 암모니아를 생성하는 가수분해 챔버와, 상기 암모니아 분사부와 상기 가수분해 챔버를 연결하는 암모니아 공급 유로와, 상기 반응기 전방의 상기 메인 배기 유로에서 분기된 분기 유로와, 상기 반응기 후방의 상기 메인 배기 유로에서 분기되어 상기 분기 유로와 합류하는 재순환 유로, 및 상기 분기 유로와 상기 재순환 유로의 합류 지점과 상기 가수분해 챔버를 연결하는 다기능 유로를 포함한다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 분기 유로가 분기된 지점과 상기 우레아 분사부 사이의 상기 메인 배기 유로 상에 설치된 제1 메인 배기 밸브와, 상기 재순환 유로가 분기된 지점과 상기 우회 배기 유로가 합류하는 지점 사이의 상기 메인 배기 유로 상에 설치된 제2 메인 배기 밸브와, 상기 우회 배기 유로에 설치된 우회 배기 밸브와, 상기 분기 유로에 설치된 분기 밸브, 그리고 상기 재순환 유로에 설치된 재순환 밸브를 더 포함할 수 있다. 상기 제1 메인 배기 밸브, 상기 제2 메인 배기 밸브, 상기 우회 배기 밸브, 상기 분기 밸브, 및 상기 재순환 밸브는 정화 동작 상태 또는 재생 동작 상태 중 어느 한 동작 상태로 구분 동작할 수 있다.
상기 정화 동작 상태일 때, 상기 제1 메인 배기 밸브와 상기 제2 메인 배기 밸브는 개방되고, 상기 우회 배기 밸브와 상기 재순환 밸브는 차단되며, 상기 재생 동작 상태일 때, 상기 제1 메인 배기 밸브와 상기 제2 메인 배기 밸브는 차단되고, 상기 우회 배기 밸브와 상기 재순환 밸브는 개방될 수 있다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 가수분해 챔버에 우레아(Urea)를 공급하는 우레아 공급부와, 상기 우레아 공급부와 상기 가수분해 챔버를 연결하는 챔버 연결 유로를 더 포함할 수 있다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 메인 배기 유로 상에 설치되어 상기 반응기에 유입될 배기 가스에 우레아를 분사하는 우레아 분사부와, 상기 우레아 공급부와 상기 우레아 분사부를 직접 연결하는 우레아 공급 유로를 더 포함할 수 있다.
상기 암모니아 분사부는 상기 우레아 분사부 보다 상대적으로 상기 반응기에 인접하게 위치할 수 있다.
상기 챔버 연결 유로 상에 설치된 암모니아 공급 밸브 및 상기 우레아 공급 유로에 설치된 우레아 공급 밸브를 더 포함할 수 있다.
상기 정화 동작 상태일 때, 상기 암모니아 공급 밸브 및 상기 우레아 공급 밸브 중 하나 이상이 개방될 수 있다. 그리고 상기 재생 동작 상태일 때, 상기 암모니아 공급 밸브 및 상기 우레아 공급 밸브는 차단될 수 있다.
상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제1 설정 온도일 때, 상기 분기 밸브와 상기 암모니아 공급 밸브는 개방되고 상기 우레아 공급 밸브는 차단되어 상기 메인 배기 유로에 암모니아가 분사될 수 있다.
상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제2 설정 온도일 때, 상기 분기 밸브와, 상기 암모니아 공급 밸브, 그리고 상기 우레아 공급 밸브가 개방되어 상기 메인 배기 유로에 암모니아 및 우레아가 함께 분사될 수 있다.
상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제3 설정 온도일 때, 상기 분기 밸브와 상기 암모니아 공급 밸브는 차단하고 상기 우레아 공급 밸브는 개방되어 상기 메인 배기 유로에 우레아가 분사될 수 있다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 다기능 유로 상에 설치되어 상기 다기능 유로를 흐르는 유체를 승온시키는 가열 장치를 더 포함할 수 있다.
상기 가열 장치로 버너(burner)가 사용되며, 상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 가열 장치에 외기를 공급할 수 있도록 상기 다기능 유로와 연결된 외기 공급 유로를 더 포함할 수 있다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 외기 공급 유로 상에 설치된 외기 공급 밸브를 더 포함하며, 상기 가열 장치가 가동되면 상기 외기 공급 밸브가 개방될 수 있다.
상기한 선택적 촉매 환원 및 촉매 재생 시스템은 상기 외기 공급 유로 상에 설치된 에어 필터를 더 포함할 수 있다.
상기 다기능 유로 상에 설치된 블로워를 더 포함할 수 있다.
본 발명의 실시예에 따르면, 선택적 촉매 환원 및 촉매 재생 시스템은 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있다.
도 1은 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템을 나타낸 구성도이다.
도 2 내지 도 5는 도 1의 선택적 촉매 환원 및 촉매 재생 시스템의 동작 상태를 각각 도시한 구성도들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 선택적 촉매 환원(selective catalytic reduction, SCR) 및 촉매 재생 시스템(101)을 설명한다.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 메인 배기 유로(210), 반응기(100), 우회 배기 유로(220), 암모니아 분사부(460), 가수분해 챔버(510), 암모니아 공급 유로(260), 분기 유로(230), 재순환 유로(240), 및 다기능 유로(250)를 포함한다.
또한, 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 제1 메인 배기 밸브(311), 제2 메인 배기 밸브(312), 우회 배기 밸브(320), 분기 밸브(330), 및 재순환 밸브(340)를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 우레아 공급부(520), 우레아 저장부(530), 우레아 분사부(470), 우레아 공급 유로(270), 챔버 연결 유로(280), 암모니아 공급 밸브(360), 및 우레아 공급 밸브(370)를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 가열 장치(550), 외기 공급 유로(290), 외기 공급 밸브(390), 에어 필터(580), 믹서(800), 및 블로워(560)를 더 포함할 수 있다.
메인 배기 유로(210)는 질소산화물(NOx)을 함유한 배기 가스가 이동하는 통로가 된다. 일례로, 디젤 엔진의 연소 과정에서 발생된 배기 가스가 메인 배기 유로(210)를 통과할 수 있다. 이때, 디젤 엔진은 선박에 사용되는 저속 또는 중속 디젤 엔진일 수 있다.
반응기(100)는 메인 배기 유로(210) 상에 설치된다. 반응기(100)는 배기 가스가 함유한 질소산화물(NOx)을 저감시키는 촉매를 포함한다. 촉매는 배기 가스에 함유된 질소산화물(NOx)과 환원제의 반응을 촉진시켜 질소산화물(NOx)을 질소와 수증기로 환원 처리한다.
촉매는 제올라이트(Zeolite), 바나듐(Vanadium), 및 백금(Platinum) 등과 같이 해당 기술 분야의 종사자에게 공지된 다양한 소재로 만들어질 수 있다. 일례로, 촉매는 섭씨 250도 내지 섭씨 350도 범위 내의 활성 온도를 가질 수 있다. 여기서, 활성 온도는 촉매가 피독되지 않고 안정적으로 질소산화물을 환원시킬 수 있는 온도를 말한다. 촉매가 활성 온도 범위 밖에서 반응할 경우, 피독되면서 효율이 저하된다.
또한, 반응기(100)의 하우징은, 일례로, 스테인레스 스틸(stainless steel)을 소재로 만들어질 수 있다.
우회 배기 유로(220)는 메인 배기 유로(210)에서 분기되어 반응기(100)를 우회한 후, 다시 메인 배기 유로(210)와 합류한다. 배기 가스의 반응기(100) 유입이 차단될 때, 우회 배기 유로(220)는 반응기(100)를 우회시켜 배기 가스를 외부로 배출한다.
암모니아 분사부(460)는 메인 배기 유로(210) 상에 설치되어 반응기(100)에 유입될 배기 가스에 암모니아(NH3)를 분사한다. 분사된 암모니아는 배기 가스와 혼합되어 배기 가스에 함유된 질소산화물을 환원시킨다.
또한, 본 발명의 일 실시예에서, 암모니아 분사부(460)는 암모니아 이외에 이소시안산(HNCO)을 함께 분사할 수 있다. 이소시안산은 고온의 환경에서 암모니아로 분해될 수 있다.
우레아 분사부(470)는 메인 배기 유로(210) 상에 설치되어 반응기(100)에 유입될 배기 가스에 우레아를 분사한다. 분사된 우레아는 배기 가스와 혼합되며, 배기 가스가 고온일 때 배기 가스가 갖는 열에너지에 의해 암모니아로 분해된다. 이렇게 생성된 암모니아는, 암모니아 분사부(460)에서 분사된 암모니아와 마찬가지로, 배기 가스에 함유된 질소산화물을 환원시킨다.
본 발명의 일 실시예에서, 암모니아 분사부(460)는 우레아 분사부(470) 보다 상대적으로 반응기(100)에 인접하게 위치한다. 즉, 우레아 분사부(470)가 상대적으로 반응기(100)로부터 멀리 떨어져 설치된다. 이는 우레아 분사부(470)에서 분사된 우레아가 배기 가스와 혼합된 후 배기 가스의 열에너지에 의해 암모니아로 분해되기까지의 시간적 공간적 여유를 확보하기 위함이다.
믹서(mixer, 800)는 암모니아 분사부(460)와 반응기(100) 사이의 메인 배기 유로(210) 상에 설치된다. 믹서(800)는 배기 가스가 반응기(100)에 유입되기 전에 환원제인 암모니아와 배기 가스를 고르게 혼합시킨다.
가수분해 챔버(510)는 우레아(urea, CO(NH2)2)를 제공받아 가수분해시켜 암모니아 분사부(460)에 공급할 암모니아(NH3)를 생성한다. 가수분해 챔버(510)에서 우레아(urea, CO(NH2)2)가 가수분해되면, 암모니아(NH3)와 함께 이소시안산(Isocyanic acid, HNCO)이 생성된다.
암모니아 공급 유로(260)는 가수분해 챔버(510)와 암모니아 분사부(460)를 연결하여, 가수분해 챔버(510)에서 생성된 암모니아를 암모니아 분사부(460)로 전달한다.
우레아 공급부(520)는 가수분해 챔버(510)에 우레아를 공급한다. 그리고 챔버 연결 유로(280)가 우레아 공급부(520)와 가수분해 챔버(510)를 연결한다. 또한, 우레아 공급 유로(270)는 우레아 공급부(520)와 우레아 분사부(470)를 직접 연결한다.
이와 같이, 우레아 공급부(520)는 챔버 연결 유로(280)를 통해 가수분해 챔버(510)에 우레아를 공급하거나, 우레아 공급 유로(270)를 통해 우레아 분사부(470)로 우레아를 공급할 수 있다.
분기 유로(230)는 반응기(100) 전방의 메인 배기 유로(210)에서 분기된다. 그리고 재순환 유로(240)는 반응기(100) 후방의 메인 배기 유로(210)에서 분기되어 분기 유로(230)와 합류한다.
다기능 유로(250)는 분기 유로(230)와 재순환 유로(240)의 합류 지점과 가수분해 챔버(510)를 연결한다.
이와 같이, 본 발명의 일 실시예에 따르면, 반응기(100)를 거치지 않은 배기 가스가 분기 유로(230)와 다기능 유로(250)를 거쳐 가수분해 챔버(510)에 유입될 수 있다. 즉, 반응기(100)를 거치지 않은 배기 가스가 상대적으로 고온일 때, 배기 가스를 분기 유로(230)와 다기능 유로(250)를 통해 가수분해 챔버(510)에 공급하여 배기 가스가 갖는 열에너지를 가수분해 챔버(510) 내에서 우레아를 가수분해시키는데 활용할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 반응기(100)를 거친 배기 가스가 분기 유로(230), 다기능 유로(250), 가수분해 챔버(510), 암모니아 공급 유로(260), 및 암모니아 분사부(460)를 차례로 거쳐 다시 반응기(100)에 유입될 수 있다. 즉, 반응기(100)를 거친 배기 가스를 다시 반응기(100)로 재순환시킬 수 있다.
가열 장치(550)는 다기능 유로(250) 상에 설치되어 다기능 유로(250)를 흐르는 유체를 승온시킨다. 본 발명의 일 실시예에서, 가열 장치(550)는 버너(burner)일 수 있다. 구체적으로, 가열 장치(550)는 연료 공급 장치와, 가열 온도 제어를 위해 공급 연료량을 제어하는 제어 장치, 그리고 안정 장치 등을 포함할 수 있다.
또한, 가열 장치(550)는 플라스마(plasma)를 이용하여 성능을 향상시킨 플라스마 버너일 수 있다.
외기 공급 유로(290)는 본 발명의 일 실시예에서 가열 장치(550)로 버너가 사용될 경우 선택적으로 마련될 수 있다. 외기 공급 유로(290)는 가열 장치(550)에 외기를 공급할 수 있도록 다기능 유로(250)와 연결된다. 즉, 가열 장치(550)가 버너로 사용될 경우, 외기 공급 유로(290)는 버너의 연소에 필요한 산소를 공급한다.
에어 필터(580)는 외기 공급 유로(290) 상에 설치된다. 에어 필터(580)는 외기 공급 유로(290)를 통해 유입되는 외기가 포함하는 이물질을 제거한다.
블로워(560)는 다기능 유로(250) 상에 설치된다. 블로워(560)는 다기능 유로(250)를 통과하는 유체에 동력을 제공한다. 즉, 블로워(560)는 배기 가스가 분기 유로(230)와 다기능 유로(250)를 통해 가수분해 챔버(510)로 유입되도록 동력을 제공하거나, 배기 가스가 재순환 유로(240)와 다기능 유로(250)를 통해 순환하도록 동력을 제공할 수 있다.
제1 메인 배기 밸브(311)는 반응기(100) 전방의 메인 배기 유로(210)에 설치되고, 제2 메인 배기 밸브(312)는 반응기(100) 후방의 메인 배기 유로(210)에 설치된다.
이때, 제1 메인 배기 밸브(311)는 분기 유로(230)가 분기된 지점과 우레아 분사부(470) 사이의 메인 배기 유로(210) 상에 설치될 수 있다. 그리고 제2 메인 배기 밸브(312)는 재순환 유로(240)가 분기된 지점과 우회 배기 유로(220)와 메인 배기 유로(210)가 다시 합류하는 지점 사이의 메인 배기 유로(210) 상에 설치될 수 있다.
우회 배기 밸브(320)는 우회 배기 유로(220) 상에 설치되며, 분기 밸브(330)는 분기 유로(230) 상에 설치되고, 재순환 밸브(340)는 재순환 유로(240) 상에 설치된다.
또한, 암모니아 공급 밸브(360)는 챔버 연결 유로(280) 상에 설치되고, 우레아 공급 밸브(370)는 우레아 공급 유로(270) 상에 설치된다.
또한, 외기 공급 밸브(390)는 외기 공급 유로(290)에 설치된다.
여기서, 제1 메인 배기 밸브(311)와 우회 배기 밸브(320)는 하나의 3방 밸브를 통해 단일화될 수 있다.
또한, 제1 메인 배기 밸브(311)와 분기 밸브(340)는 하나의 3방 밸브를 통해 단일화될 수도 있다.
또한, 제1 메인 배기 밸브(311), 우회 배기 밸브(320), 및 분기 밸브(330)는 하나의 4방 밸브를 통해 단일화될 수도 있다.
또한, 분기 밸브(330)와 재순환 밸브(340)도 3방 밸브를 통해 단일화될 수 있으며, 분기 밸브(330), 재순환 밸브(340), 및 외기 공급 밸브(390)도 4방 밸브를 통해 단일화될 수 있다.
이와 같이, 각 밸브들은 해당 기술 분야의 종사자에게 공지된 기술에 따라 다양하게 변경 실시될 수 있으며, 본 발명의 일 실시예에서 각 밸브들의 위치 및 종류가 도 1에 나타낸 밸브들에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 정화 동작 상태 또는 재생 동작 상태 중 어느 한 동작 상태로 구분 동작한다.
즉, 제1 메인 배기 밸브(311), 제2 메인 배기 밸브(312), 우회 배기 밸브(320), 분기 밸브(330), 재순환 밸브(340), 암모니아 공급 밸브(360), 우레아 공급 밸브(370), 및 외기 공급 밸브(390)는 각각 정화 동작 상태와 재생 동작 상태로 구분하여 개폐된다.
이하, 도 2 내지 도 5를 참조하여 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)의 동작 원리를 구체적으로 살펴본다.
본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)은 정화 동작 상태 또는 재상 동작 상태로 구분 동작한다.
정화 동작 상태는 메인 배기 유로(210)를 흐르는 배기 가스가 함유한 질소산화물을 저감시키는 동작을 수행하는 상태이다. 또한, 정화 동작 상태에서, 선택적 촉매 환원 및 촉매 재생 시스템(101)은 메인 배기 유로(210)를 흐르는 배기 가스의 온도에 따라 3단계로 동작될 수 있다.
이와 같이, 선택적 촉매 환원 및 촉매 재생 시스템(101)이 정화 동작 상태에서 다시 3단계로 구분 동작하기 위해 제1 설정 온도, 제2 설정 온도, 및 제3 설정 온도를 기준으로 삼는다.
구체적으로, 정화 동작 상태는 반응기(100)에 유입되는 배기 가스의 온도가 제1 설정 온도인 저온 단계와, 반응기(100)에 유입되는 배기 가스의 온도가 제2 설정 온도인 중온 단계, 그리고 반응기(100)에 유입되는 배기 가스의 온도가 제3 설정 온도인 고온 단계로 구분될 수 있다. 메인 배기 유로(210)를 통과하는 배기 가스의 온도는 배기 가스를 배출하는 디젤 엔진이 초기 가동된 후, 가동 시간이 증가할수록 높아진다.
일례로, 제1 설정 온도는 섭씨 250도 미만이고, 제2 설정 온도는 섭씨 250도 이상 섭씨 300도 미만이며, 제3 설정 온도는 섭씨 300도 이상일 수 있다.
하지만, 본 발명의 일 실시예에서, 제1 설정 온도, 제2 설정 온도, 및 제3 설정 온도의 범위는 사용 환경에 따라 달라질 수 있다.
도 2는 정화 동작 상태에서의 저온 단계를 나타낸다. 도 2에 도시한 바와 같이, 배기 가스에 함유된 질소산화물을 저감하는 정화 동작 상태에서는 기본적으로 제1 메인 배기 밸브(311)와 제2 메인 배기 밸브(312)는 개방된다. 그리고 우회 배기 밸브(320) 및 재순환 밸브(340)는 차단된다.
또한, 정화 동작 상태의 저온 단계에서는 분기 밸브(330)와 암모니아 공급 밸브(360)는 개방되고, 우레아 공급 밸브(370)는 차단되어 메인 배기 유로(210)에 암모니아가 분사된다.
또한, 가수분해 챔버(510)에서 우레아를 가수분해 시키기 위해, 가열 장치(550)가 반응기(100)를 거치기 전의 메인 배기 유로(210)에서 분기된 분기 유로(230)로부터 공급받은 배기 가스를 가열하고, 승온된 배기 가스가 가수분해 챔버(510)에 유입되어 우레아를 가수분해 시키기 위한 열에너지를 제공한다.
이때, 블로워(560)는 분기 유로(230)와 다기능 유로(250)를 흐르는 배기 가스에 동력을 제공한다.
또한, 가열 장치(550)로 버너가 사용될 경우, 연소에 필요한 산소를 가열 장치(550)에 공급하기 위해, 외기 공급 유로(290)에 설치된 외기 공급 밸브(390)도 개방된다.
메인 배기 유로(210)를 통해 반응기에 유입되는 배기 가스의 온도가 섭씨 250도 미만일 때 우레아를 직접 메인 배기 유로(210)에 분사하면, 우레아가 분해되면서 생성되는 뷰렛(biuret), 시아누르산(cyanuric acid), 멜라민(melamine), 및 아멜린(ammeline) 등과 같은 부산물 생성되어 노즐을 막거나 배기 가스의 흐름을 방해할 수 있다.
하지만, 본 발명의 일 실시예에 따르면, 반응기(100)에 유입되는 배기 가스의 온도가 섭씨 250도 미만일 때 우레아를 직접 메인 배기 유로(210)에 분사하지 않고, 가수분해 챔버(510)에서 가열 장치(550)에 의해 승온된 높은 온도의 배기 가스를 사용하여 효율적으로 가수분해시켜 생성된 암모니아를 메인 배기 유로(210)에 분사할 수 있다. 따라서, 환원제로 암모니아를 사용하여 배기 가스가 함유한 질소산화물을 저감하는 과정에서 부산물의 생성을 최소화할 수 있다.
도 3은 정화 동작 상태에서의 중온 단계를 나타낸다. 도 3에 도시한 바와 같이, 배기 가스에 함유된 질소산화물을 저감하는 정화 동작 상태에서는 기본적으로 제1 메인 배기 밸브(311)와 제2 메인 배기 밸브(312)는 개방된다. 그리고 우회 배기 밸브(320) 및 재순환 밸브(340)는 차단된다.
또한, 정화 동작 상태의 중온 단계에서는 분기 밸브(330)와, 암모니아 공급 밸브(360), 그리고 우레아 공급 밸브(370)가 모두 개방된다. 즉, 메인 배기 유로(210)에 우레아와 암모니아가 모두 분사된다.
그리고 중온 단계에서는 우레아 분사부(470)를 통해 우레아가 분사된 만큼 적은 양의 암모니아를 암모니아 분사부(460)를 통해 분사하게 된다. 즉, 반응기(100)에 유입되는 배기 가스의 온도가 섭씨 250도 이상 섭씨 300도 미만인 중온 단계에서는 메인 배기 유로(210)를 흐르는 배기 가스가 갖는 열에너지에 의한 우레아의 가수분해를 어느 정도 기대할 수 있으므로, 저온 단계보다 가수분해 챔버(510)에서 생성해야 하는 암모니아의 양을 줄일 수 있다.
따라서, 중온 단계에서는 가열 장치(550)와 블로워(560)의 운전에 필요한 전력 및 연료 등을 줄일 수 있으므로, 상대적으로 적은 작동 비용이 요구된다.
또한, 가열 장치(550)로 버너가 사용될 경우, 연소에 필요한 산소를 가열 장치(550)에 공급하기 위해, 외기 공급 유로(290)에 설치된 외기 공급 밸브(390)도 일부 또는 전부 개방된다.
도 4는 정화 동작 상태에서의 고온 단계를 나타낸다. 도 4에 도시한 바와 같이, 배기 가스에 함유된 질소산화물을 저감하는 정화 동작 상태에서는 기본적으로 제1 메인 배기 밸브(311)와 제2 메인 배기 밸브(312)는 개방된다. 그리고 우회 배기 밸브(320) 및 재순환 밸브(340)는 차단된다.
또한, 정화 동작 상태의 고온 단계에서는 분기 밸브(330)와 암모니아 공급 밸브(360)는 차단하고 우레아 공급 밸브(370)는 개방된다. 즉, 메인 배기 유로(210)에 우레아가 분사된다.
반응기(100)에 유입되는 배기 가스의 온도가 섭씨 300도 이상인 고온 단계에서는 메인 배기 유로(210)를 흐르는 배기 가스가 갖는 열에너지에 의한 우레아의 가수분해가 안정적으로 가능하다. 따라서, 가수분해 챔버(510)에서 우레아를 가수분해하여 암모니아를 생성할 필요가 없다.
이와 같이, 고온 단계에서는 가수분해 챔버(510)에서 암모니아를 생성할 필요가 없으므로, 가열 장치(550) 및 블로워(560)의 동작을 중지시킬 수 있으며, 외기 공급 유로(290)의 외기 공급 밸브(390)도 차단할 수 있다.
즉, 고온 단계에서는 가열 장치(550)와 블로워(560)의 운전에 전력 및 연료 등이 소모되지 않으므로, 선택적 촉매 환원 및 촉매 재생 시스템(101)의 전체적인 에너지 이용 효율을 향상시킬 수 있다.
재생 동작 상태는 반응기(100)의 내부에 설치된 촉매가 피독되면 이를 재생시키는 동작을 수행하는 상태이다.
섭씨 150도 이상 섭씨 250도 미만의 상대적으로 낮은 온도에서 배기 가스의 질소산화물을 저감시키기 위한 환원 반응이 일어나면, 배기 가스의 황산화물(SOx)과 암모니아(NH3)가 반응하여 촉매 피독 물질이 생성된다. 촉매 피독 물질은 황산암모늄(Ammonium sulfate, (NH4)2SO4)과 아황산수소암모늄(Ammonium bisulfate, NH4HSO4) 중 하나 이상을 포함할 수 있다. 이러한 촉매 피독 물질은 촉매에 흡착되어 촉매의 활성을 저하시킨다. 촉매 피독 물질은 상대적으로 높은 온도에서 분해되므로, 촉매를 승온시켜 피독된 촉매를 재생할 수 있다.
따라서, 촉매가 피독되어 활성이 저하되면, 재생 동작 상태로 전환하여 반응기의 내부 온도를 상승시킴으로써, 촉매를 재생시킨다.
도 5는 재생 동작 상태를 나타낸다. 도 5에 도시한 바와 같이, 피독된 촉매를 재생하는 재생 동작 상태에서는 제1 메인 배기 밸브(311)와, 제2 메인 배기 밸브(312), 그리고 분기 밸브(330)는 차단된다. 그리고 우회 배기 밸브(320)와 재순환 밸브(340)는 개방된다.
또한, 본 발명의 일 실시예에서, 다기능 유로(550)는 배기 가스의 정화와 촉매의 재생에 모두 사용된다.
이와 같이, 본 발명의 일 실시예에 따른 선택적 촉매 환원 및 촉매 재생 시스템(101)의 재생 동작 상태에서는 반응기(100), 재순환 유로(240), 다기능 유로(250), 및 암모니아 공급 유로(260)를 포함하는 폐루프가 형성된다.
그리고 가열 장치(550)가 폐루프를 순환하는 유체, 즉 반응기(100)를 거친 배기 가스를 가열하여 승온시킨다. 이와 같이, 본 발명의 일 실시예에 따르면, 폐루프를 순환하는 배기 가스를 승온 시키므로, 가열 장치(550)가 적은 연료를 소모하고도 효율적으로 배기 가스의 온도를 높일 수 있다. 그리고 승온된 배기 가스는 피독된 촉매에 열에너지를 제공하여 피독 물질을 제거한다.
다만, 가열 장치(550)로 버너가 사용될 경우, 버너의 연소에 필요한 산소를 공급하기 위해 외기 공급 유로(290)에 설치된 외기 공급 밸브(390)가 일부 개방되어 가열 장치(550)에 외기를 공급할 수 있다.
이때, 센서를 이용하여 폐루프 상의 산소 농도를 모니터링하고, 이에 따라 외기 공급 밸브(90)를 제어함으로써, 폐루프 상의 산소 농도를 일정하게 유지할 수 있다.
또한, 본 발명의 일 실시예에서는, 폐루프 상의 압력을 일정하게 유지하기 위해, 제2 메인 배기 밸브(312)를 일부 개방하여 외기 공급 밸브(390)를 통해 유입된 외기의 유량만큼 배기 가스를 외부로 배출시킬 수도 있다.
또한, 촉매를 재생할 때, 디젤 엔진에서 배출되는 배기 가스는 우회 배기 유로(220)를 통해 외부로 배출할 수 있다. 즉, 디젤 엔진의 가동 중단 없이, 반응기(100)의 촉매를 재생할 수 있다.
이와 같이, 본 발명의 일 실시예에 따르면, 선택적 촉매 환원 및 촉매 재생 시스템(101)은 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있다.
구체적으로, 배기 가스를 정화하는 과정에서 반응기(100)에 유입되는 배기 가스의 온도에 따라 사용하는 환원제의 상태를 달리하여 에너지의 이용 효율을 향상시킬 수 있다.
또한, 촉매를 재생하는 과정에서 폐루프를 형성함으로써, 촉매의 재생에 소모되는 에너지를 최소화할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
< 부호의 설명 >
100: 반응기
101: 선택적 촉매 환원 및 촉매 재생 시스템
210: 메인 배기 유로 220: 우회 배기 유로
230: 분기 유로 240: 재순환 유로
260: 암모니아 공급 유로 270: 우레아 공급 유로
280: 챔버 연결 유로 290: 외기 공급 유로
311: 제1 메인 배기 밸브 312: 제2 메인 배기 밸브
320: 우회 배기 밸브 330: 분기 밸브
340: 재순환 밸브 360: 암모니아 공급 밸브
370: 우레아 공급 밸브 390: 외기 공급 밸브
460: 암모니아 분사부 470: 우레아 분사부
510: 가수분해 챔버 520: 우레아 공급부
530: 우레아 저장부 550: 가열 장치
560: 블로워 580: 에어 필터

Claims (16)

  1. 질소산화물(NOx)을 함유한 배기 가스가 이동하는 메인 배기 유로;
    상기 메인 배기 유로 상에 설치되어 배기 가스의 질소산화물(NOx)을 저감시키기 위한 촉매를 포함하는 반응기;
    상기 메인 배기 유로에서 분기되어 상기 반응기를 우회한 후 다시 상기 메인 배기 유로와 합류하는 우회 배기 유로;
    상기 메인 배기 유로 상에 설치되어 상기 반응기에 유입될 배기 가스에 암모니아(NH3)를 분사하는 암모니아 분사부;
    우레아(Urea)를 제공받아 상기 암모니아 분사부에 공급할 암모니아를 생성하는 가수분해 챔버;
    상기 암모니아 분사부와 상기 가수분해 챔버를 연결하는 암모니아 공급 유로;
    상기 반응기 전방의 상기 메인 배기 유로에서 분기된 분기 유로;
    상기 반응기 후방의 상기 메인 배기 유로에서 분기되어 상기 분기 유로와 합류하는 재순환 유로; 및
    상기 분기 유로와 상기 재순환 유로의 합류 지점과 상기 가수분해 챔버를 연결하는 다기능 유로
    를 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  2. 제1항에서,
    상기 분기 유로가 분기된 지점과 상기 우레아 분사부 사이의 상기 메인 배기 유로 상에 설치된 제1 메인 배기 밸브와;
    상기 재순환 유로가 분기된 지점과 상기 우회 배기 유로가 합류하는 지점 사이의 상기 메인 배기 유로 상에 설치된 제2 메인 배기 밸브와;
    상기 우회 배기 유로에 설치된 우회 배기 밸브와;
    상기 분기 유로에 설치된 분기 밸브; 그리고
    상기 재순환 유로에 설치된 재순환 밸브
    를 더 포함하며,
    상기 제1 메인 배기 밸브, 상기 제2 메인 배기 밸브, 상기 우회 배기 밸브, 상기 분기 밸브, 및 상기 재순환 밸브는 정화 동작 상태 또는 재생 동작 상태 중 어느 한 동작 상태로 구분 동작하는 선택적 촉매 환원 및 촉매 재생 시스템.
  3. 제2항에서,
    상기 정화 동작 상태일 때, 상기 제1 메인 배기 밸브와 상기 제2 메인 배기 밸브는 개방되고, 상기 우회 배기 밸브와 상기 재순환 밸브는 차단되며,
    상기 재생 동작 상태일 때, 상기 제1 메인 배기 밸브와 상기 제2 메인 배기 밸브는 차단되고, 상기 우회 배기 밸브와 상기 재순환 밸브는 개방되는 선택적 촉매 환원 및 촉매 재생 시스템.
  4. 제2항에서,
    상기 가수분해 챔버에 우레아(Urea)를 공급하는 우레아 공급부와;
    상기 우레아 공급부와 상기 가수분해 챔버를 연결하는 챔버 연결 유로
    를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  5. 제4항에서,
    상기 메인 배기 유로 상에 설치되어 상기 반응기에 유입될 배기 가스에 우레아를 분사하는 우레아 분사부와;
    상기 우레아 공급부와 상기 우레아 분사부를 직접 연결하는 우레아 공급 유로
    를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  6. 제5항에서,
    상기 암모니아 분사부는 상기 우레아 분사부 보다 상대적으로 상기 반응기에 인접하게 위치하는 선택적 촉매 환원 및 촉매 재생 시스템.
  7. 제5항에서,
    상기 챔버 연결 유로 상에 설치된 암모니아 공급 밸브 및 상기 우레아 공급 유로에 설치된 우레아 공급 밸브를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  8. 제7항에서,
    상기 정화 동작 상태일 때, 상기 암모니아 공급 밸브 및 상기 우레아 공급 밸브 중 하나 이상이 개방되고,
    상기 재생 동작 상태일 때, 상기 암모니아 공급 밸브 및 상기 우레아 공급 밸브는 차단되는 선택적 촉매 환원 및 촉매 재생 시스템.
  9. 제8항에서,
    상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제1 설정 온도일 때,
    상기 분기 밸브와 상기 암모니아 공급 밸브는 개방되고 상기 우레아 공급 밸브는 차단되어 상기 메인 배기 유로에 암모니아가 분사되는 선택적 촉매 환원 및 촉매 재생 시스템.
  10. 제8항에서,
    상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제2 설정 온도일 때,
    상기 분기 밸브와, 상기 암모니아 공급 밸브, 그리고 상기 우레아 공급 밸브가 개방되어 상기 메인 배기 유로에 암모니아 및 우레아가 함께 분사되는 선택적 촉매 환원 및 촉매 재생 시스템.
  11. 제8항에서,
    상기 정화 동작 상태에서, 상기 메인 배기 유로를 통해 상기 반응기에 유입되는 배기 가스의 온도가 제3 설정 온도일 때,
    상기 분기 밸브와 상기 암모니아 공급 밸브는 차단하고 상기 우레아 공급 밸브는 개방되어 상기 메인 배기 유로에 우레아가 분사되는 선택적 촉매 환원 및 촉매 재생 시스템.
  12. 제1항 내지 제11항 중 어느 한 항에서,
    상기 다기능 유로 상에 설치되어 상기 다기능 유로를 흐르는 유체를 승온시키는 가열 장치를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  13. 제12항에서,
    상기 가열 장치로 버너(burner)가 사용되며,
    상기 가열 장치에 외기를 공급할 수 있도록 상기 다기능 유로와 연결된 외기 공급 유로를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  14. 제13항에서,
    상기 외기 공급 유로 상에 설치된 외기 공급 밸브를 더 포함하며,
    상기 가열 장치가 가동되면 상기 외기 공급 밸브가 개방되는 선택적 촉매 환원 및 촉매 재생 시스템.
  15. 제13항에서,
    상기 외기 공급 유로 상에 설치된 에어 필터를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
  16. 제12항에서,
    상기 다기능 유로 상에 설치된 블로워를 더 포함하는 선택적 촉매 환원 및 촉매 재생 시스템.
PCT/KR2013/011262 2013-06-28 2013-12-06 선택적 촉매 환원 및 촉매 재생 시스템 WO2014208839A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/901,188 US9482130B2 (en) 2013-06-28 2013-12-06 Selective catalytic reduction and catalytic regeneration system
CN201380077843.5A CN105339620B (zh) 2013-06-28 2013-12-06 选择性催化还原及催化剂再生系统
JP2016523613A JP6305528B2 (ja) 2013-06-28 2013-12-06 選択的触媒還元及び触媒再生システム
EP13888140.4A EP3015670B1 (en) 2013-06-28 2013-12-06 Selective catalytic reduction and catalytic regeneration system
SG11201510694SA SG11201510694SA (en) 2013-06-28 2013-12-06 Selective catalytic reduction and catalytic regeneration system
DK13888140.4T DK3015670T3 (da) 2013-06-28 2013-12-06 System til selektiv katalytisk reduktion og katalytisk regenerering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130075789A KR101445038B1 (ko) 2013-06-28 2013-06-28 선택적 촉매 환원 및 촉매 재생 시스템
KR10-2013-0075789 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208839A1 true WO2014208839A1 (ko) 2014-12-31

Family

ID=51761265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011262 WO2014208839A1 (ko) 2013-06-28 2013-12-06 선택적 촉매 환원 및 촉매 재생 시스템

Country Status (8)

Country Link
US (1) US9482130B2 (ko)
EP (1) EP3015670B1 (ko)
JP (1) JP6305528B2 (ko)
KR (1) KR101445038B1 (ko)
CN (1) CN105339620B (ko)
DK (1) DK3015670T3 (ko)
SG (1) SG11201510694SA (ko)
WO (1) WO2014208839A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516542A (ja) * 2016-03-29 2019-06-20 ビーエーエスエフ コーポレーション Scr触媒の脱硫方法
JP2019518896A (ja) * 2016-04-13 2019-07-04 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company ディーゼルエンジンのための排気システム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601496B1 (ko) * 2014-09-30 2016-03-08 두산엔진주식회사 선택적 촉매 환원 시스템
KR101662394B1 (ko) * 2014-09-30 2016-10-04 두산엔진주식회사 촉매 예열 시스템
KR101708099B1 (ko) * 2014-12-31 2017-02-17 두산엔진주식회사 선택적 촉매 환원 시스템 및 이를 포함한 동력 장치
KR102154363B1 (ko) * 2015-02-23 2020-09-09 한국조선해양 주식회사 Scr 시스템 및 그 제어 방법
KR102182935B1 (ko) * 2015-03-13 2020-11-25 현대중공업 주식회사 저압 scr 시스템
KR102116590B1 (ko) * 2015-05-27 2020-06-08 현대중공업파워시스템 주식회사 폐열회수 보일러
KR102116591B1 (ko) * 2015-05-27 2020-05-29 현대중공업파워시스템 주식회사 폐열회수 보일러
KR101784614B1 (ko) 2015-06-18 2017-10-11 현대중공업 주식회사 저압 scr 시스템 및 그 제어 방법
KR101722840B1 (ko) 2015-06-18 2017-04-18 현대중공업 주식회사 저압 scr 시스템
KR101784615B1 (ko) 2015-06-18 2017-10-11 현대중공업 주식회사 저압 scr 시스템 및 그 제어 방법
KR101763661B1 (ko) 2015-06-30 2017-08-02 (주)기련이엔씨 축열식 선택적 촉매환원장치
KR102386653B1 (ko) * 2015-11-24 2022-04-15 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102402304B1 (ko) * 2015-11-30 2022-05-27 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102386633B1 (ko) * 2015-11-30 2022-04-15 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102063677B1 (ko) * 2015-12-23 2020-01-09 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템을 포함한 동력 장치
KR101735535B1 (ko) * 2015-12-28 2017-05-29 주식회사 덱코 선박용 질소 산화물 제거 장치
KR102042876B1 (ko) * 2015-12-29 2019-11-13 에이치에스디엔진 주식회사 환원제 공급 시스템 및 이의 제어방법
KR102154378B1 (ko) * 2016-02-23 2020-09-09 한국조선해양 주식회사 에너지 절감을 위한 scr 시스템
KR102154377B1 (ko) * 2016-02-23 2020-09-09 한국조선해양 주식회사 에너지 절감을 위한 scr 시스템
KR102140949B1 (ko) * 2016-02-23 2020-09-14 현대중공업 주식회사 에너지 절감을 위한 scr 시스템
JP6676438B2 (ja) 2016-03-30 2020-04-08 日本碍子株式会社 還元剤噴射装置、排ガス処理方法、及び排ガス処理装置
KR102214866B1 (ko) * 2016-04-15 2021-02-09 현대중공업 주식회사 Lp scr 시스템
GB201608643D0 (en) * 2016-05-17 2016-06-29 Thermo Fisher Scient Bremen Elemental analysis system and method
KR101785207B1 (ko) * 2016-05-30 2017-10-12 두산엔진주식회사 선택적 촉매 환원 시스템
KR102481132B1 (ko) * 2016-05-31 2022-12-27 에이치에스디엔진 주식회사 버너장치 및 이를 포함하는 선택적 촉매 환원 시스템
KR102506291B1 (ko) * 2016-08-31 2023-03-06 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템
KR102506274B1 (ko) * 2016-08-31 2023-03-07 에이치에스디엔진 주식회사 블로워 및 이를 구비한 선택적 촉매 환원 시스템
KR102506297B1 (ko) * 2016-08-31 2023-03-06 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템
US10843132B2 (en) * 2016-09-26 2020-11-24 Shell Oil Company Method of reducing nitrogen oxide compounds
WO2018055165A1 (en) 2016-09-26 2018-03-29 Shell Internationale Research Maatschappij B.V. Method of regenerating a denox catalyst
KR102603482B1 (ko) * 2016-10-26 2023-11-16 에이치디현대인프라코어 주식회사 배기가스 후처리 시스템
WO2018094420A1 (en) * 2016-11-21 2018-05-24 Clean Train Propulsion Internal combustion engine aftertreatment heating loop
CN106917681B (zh) * 2017-03-28 2019-06-25 中国华电科工集团有限公司 利用尿素为还原剂脱硝的燃气分布式能源系统及工艺
KR102333324B1 (ko) * 2017-05-26 2021-12-02 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템
KR102333304B1 (ko) * 2017-05-26 2021-12-02 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템
KR102274931B1 (ko) * 2017-06-30 2021-07-08 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템
US10746071B2 (en) 2018-05-01 2020-08-18 Caterpillar Inc. Engine aftertreatment system
WO2020041140A1 (en) * 2018-08-22 2020-02-27 Shell Oil Company A selective catalytic reduction process and method of regenerating deactivated scr catalyst of a parallel flue gas treating system
CN109316962A (zh) * 2018-11-20 2019-02-12 张扬 中低温scr脱硝用尿素热解及催化剂再生一体化工艺
JP7254010B2 (ja) * 2019-11-19 2023-04-07 日立造船株式会社 加水分解システム、脱硝設備及び加水分解システムの制御方法
BR112022010306A2 (pt) * 2019-12-02 2022-08-16 Cummins Emission Solutions Inc Câmara de decomposição
KR102075879B1 (ko) * 2020-01-02 2020-02-10 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템을 포함한 동력 장치
CN112648052B (zh) * 2020-12-25 2022-03-25 一汽解放汽车有限公司 一种尿素罐保压控制系统及其保养方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024503A (ja) * 2007-07-17 2009-02-05 Mazda Motor Corp エンジンの排気浄化装置
US20090199537A1 (en) * 2008-02-11 2009-08-13 Detroit Diesel Corporation Methods to protect selective catalyst reducer aftertreatment devices during uncontrolled diesel particulate filter regeneration
KR100924591B1 (ko) * 2009-07-08 2009-10-30 한국기계연구원 고체 우레아와 선택적 환원촉매를 이용한 유해배출가스 정화시스템
US20100132342A1 (en) * 2007-05-03 2010-06-03 Mack Trucks, Inc. Exhaust Aftertreatment System
JP2010229929A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724575Y2 (ja) * 1989-12-12 1995-06-05 ニチアス株式会社 内燃機関の排気浄化装置
JP3453964B2 (ja) * 1995-11-02 2003-10-06 株式会社デンソー ハイブリッド車両の排気システム
DE19740702C1 (de) * 1997-09-16 1998-11-19 Siemens Ag Verfahren und Vorrichtung zum Betrieb einer mit Luftüberschuß arbeitenden Brennkraftmaschine
DE19913462A1 (de) * 1999-03-25 2000-09-28 Man Nutzfahrzeuge Ag Verfahren zur thermischen Hydrolyse und Dosierung von Harnstoff bzw. wässriger Harnstofflösung in einem Reaktor
KR20020081294A (ko) * 2000-12-01 2002-10-26 퓨얼 테크 인코포레이티드 사이드 스트림 요소 분해에 의하여 실행되는 산화질소의선택적 촉매 환원법
US6871490B2 (en) * 2002-12-19 2005-03-29 Caterpillar Inc Emissions control system for increasing selective catalytic reduction efficiency
JP4262522B2 (ja) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ エンジン用排気ガス処理装置および排気ガス処理方法
US7776265B2 (en) * 2004-03-18 2010-08-17 Cummins Filtration Ip, Inc. System for diagnosing reagent solution quality
JP4267538B2 (ja) 2004-08-23 2009-05-27 日野自動車株式会社 排気浄化装置
DE112005002903B4 (de) * 2004-11-25 2010-01-28 Komatsu Ltd. Abgasreinigungsvorrichtung für Brennkraftmaschine
JP2006233945A (ja) 2005-02-28 2006-09-07 Hino Motors Ltd 排気浄化装置
JP4643710B2 (ja) * 2005-07-07 2011-03-02 ボルボ ラストバグナー アーベー 少なくとも1つの排ガス制御ユニットの診断方法、装置、及びコンピュータプログラム製品
JP2007032472A (ja) * 2005-07-28 2007-02-08 Hitachi Ltd 尿素水を用いた排気処理装置
JP4646934B2 (ja) * 2007-03-01 2011-03-09 株式会社日立ハイテクノロジーズ エンジンの排気処理装置及びこれを用いたエンジンの排気処理方法
JP5287229B2 (ja) * 2008-12-26 2013-09-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2010081665A1 (de) * 2009-01-13 2010-07-22 Man Nutzfahrzeuge Aktiengesellschaft Verfahren zum betrieb von komponenten der abgasnachbehandlung sowie abgasnachbehandlungsvorrichtung
US20100251700A1 (en) * 2009-04-02 2010-10-07 Basf Catalysts Llc HC-SCR System for Lean Burn Engines
DE102009053950A1 (de) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
JP2011144766A (ja) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd 排ガス脱硝システムおよびこれを備えた船舶ならびに排ガス脱硝システムの制御方法
KR101180961B1 (ko) * 2010-11-25 2012-09-13 대우조선해양 주식회사 선박용 내연기관 시스템 및 이에 적합한 배기가스 정화시스템
CN202778262U (zh) * 2012-09-24 2013-03-13 中国机电出口产品投资有限公司 一种可调节式选择性非催化还原脱硝装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132342A1 (en) * 2007-05-03 2010-06-03 Mack Trucks, Inc. Exhaust Aftertreatment System
JP2009024503A (ja) * 2007-07-17 2009-02-05 Mazda Motor Corp エンジンの排気浄化装置
US20090199537A1 (en) * 2008-02-11 2009-08-13 Detroit Diesel Corporation Methods to protect selective catalyst reducer aftertreatment devices during uncontrolled diesel particulate filter regeneration
JP2010229929A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 内燃機関の排気浄化装置
KR100924591B1 (ko) * 2009-07-08 2009-10-30 한국기계연구원 고체 우레아와 선택적 환원촉매를 이용한 유해배출가스 정화시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516542A (ja) * 2016-03-29 2019-06-20 ビーエーエスエフ コーポレーション Scr触媒の脱硫方法
JP2019518896A (ja) * 2016-04-13 2019-07-04 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company ディーゼルエンジンのための排気システム

Also Published As

Publication number Publication date
US9482130B2 (en) 2016-11-01
EP3015670A4 (en) 2017-03-08
CN105339620B (zh) 2018-07-27
US20160131000A1 (en) 2016-05-12
KR101445038B1 (ko) 2014-09-26
SG11201510694SA (en) 2016-01-28
JP6305528B2 (ja) 2018-04-04
JP2016528423A (ja) 2016-09-15
EP3015670B1 (en) 2020-02-26
DK3015670T3 (da) 2020-05-04
EP3015670A1 (en) 2016-05-04
CN105339620A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2014208839A1 (ko) 선택적 촉매 환원 및 촉매 재생 시스템
WO2015046666A1 (ko) 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
WO2014208841A1 (ko) 선택적 촉매 환원장치의 환원제 열분해 시스템
WO2013111989A1 (ko) 후처리 시스템 장치 및 제어방법
WO2015182812A1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
WO2011090258A2 (ko) 요소수유입로와 분사노즐의 막힘을 방지할 수 있는 배기가스 탈질시스템과 요소수 응고를 방지할 수 있는 요소수 공급장치
WO2016036041A1 (ko) 플라즈마 에스씨알 시스템
WO2020242013A1 (en) Apparatus for treating exhaust gas of thermal plant
WO2017204589A1 (ko) 선택적 촉매 환원 시스템 및 이를 구비한 동력 장치
WO2021251630A1 (ko) 복합화력발전소 배가스 처리장치
WO2018080179A1 (ko) 배기가스 후처리 시스템
WO2014196705A1 (ko) 고체 암모늄염 반응기, 그 제어방법 및 고체 암모늄염과 선택적 환원촉매를 이용한 질소산화물 정화시스템
KR101662394B1 (ko) 촉매 예열 시스템
WO2015034167A1 (ko) 선택적 촉매 환원 시스템
WO2016108616A1 (ko) 선택적 촉매 환원 시스템 및 이를 포함한 동력 장치
KR20170059159A (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
WO2015053432A1 (ko) 선택적 촉매 환원 시스템
WO2016178444A1 (ko) 건설기계용 요소수 히팅 및 냉각장치
WO2017209454A1 (ko) 환원제 분해 시스템
WO2016105153A1 (ko) 선택적 촉매 환원 시스템
KR20170009332A (ko) 선박 엔진 배기가스 처리 시스템
WO2018043948A1 (ko) 선택적 촉매 환원 시스템
KR102063677B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102075879B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102137323B1 (ko) 선택적 촉매 환원 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077843.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016523613

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013888140

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14901188

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888140

Country of ref document: EP

Kind code of ref document: A1