WO2015182812A1 - 선택적 촉매 환원 시스템을 포함한 동력 장치 - Google Patents

선택적 촉매 환원 시스템을 포함한 동력 장치 Download PDF

Info

Publication number
WO2015182812A1
WO2015182812A1 PCT/KR2014/005795 KR2014005795W WO2015182812A1 WO 2015182812 A1 WO2015182812 A1 WO 2015182812A1 KR 2014005795 W KR2014005795 W KR 2014005795W WO 2015182812 A1 WO2015182812 A1 WO 2015182812A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
valve
exhaust gas
engine
degrees celsius
Prior art date
Application number
PCT/KR2014/005795
Other languages
English (en)
French (fr)
Inventor
이재문
이창희
김동환
김상진
Original Assignee
두산엔진주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산엔진주식회사 filed Critical 두산엔진주식회사
Publication of WO2015182812A1 publication Critical patent/WO2015182812A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a power plant comprising a selective catalytic reduction system, and more particularly to a power plant comprising a selective catalytic reduction system using an auxiliary engine for power generation.
  • SCR selective catalytic reduction
  • the nitrogen oxide contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
  • the selective catalytic reduction system is mainly used to hydrolyze urea as a reducing agent to reduce nitrogen oxides. At this time, in order to improve the efficiency of hydrolysis, a method of raising the internal temperature of the hydrolysis chamber to a hydrolysis reaction temperature using a separate electric heater or burner is used.
  • the selective catalytic reduction system mainly uses a high temperature active catalyst having an active temperature range of 250 degrees Celsius to 400 degrees Celsius in consideration of economical efficiency and radiation regulation.
  • Embodiments of the present invention provide a power unit including a selective catalytic reduction system capable of effectively regenerating the catalyst used in the reduction reaction as well as minimizing the energy consumed overall to reduce the nitrogen oxides contained in the exhaust gas.
  • a power unit including a selective catalytic reduction system is used as a main power source and discharges exhaust gas containing nitrogen oxides (NOx), and the exhaust gas of the first engine is moved.
  • Reducing agent is added to the reactor including a first exhaust passage, a catalyst provided on the first exhaust passage to reduce nitrogen oxides contained in the exhaust gas, and exhaust gas moving to the reactor along the first exhaust passage.
  • a reducing agent injecting unit for injecting, a decomposition chamber for generating a reducing agent to be supplied to the reducing agent injecting unit, a circulation passage for branching part of the exhaust gas passing through the reactor from the first exhaust passage and recycling it to the decomposition chamber;
  • a second engine used as an auxiliary power source and emitting exhaust gas at a higher temperature than the first engine, and exhaust of the second engine
  • a second exhaust passage connected to the circulation passage for supplying gas to the decomposition chamber.
  • the power unit including the selective catalytic reduction system includes a first exhaust front valve installed on the first exhaust flow path in front of the reactor, and a first exhaust rear valve installed on the first exhaust flow path in the rear of the reactor;
  • the apparatus may further include a circulation valve installed in the circulation flow path between the branch point of the first exhaust flow path and the confluence point of the second exhaust flow path, and a second exhaust supply valve provided on the second exhaust flow path.
  • the power unit including the selective catalytic reduction system bypasses the reactor and connects the first exhaust passage in front of the first exhaust front valve and the first exhaust passage behind the second exhaust rear valve.
  • the flow path may further include a bypass valve disposed on the bypass flow path.
  • the power unit including the selective catalytic reduction system may further include an auxiliary heating member installed in the circulation passage between the decomposition point of the decomposition chamber and the second exhaust passage.
  • the power unit including the selective catalytic reduction system may further include a blower installed in the circulation passage between the decomposition point of the decomposition chamber and the second exhaust passage.
  • the power unit including the selective catalytic reduction system described above may operate in any one of an exhaust purification mode, a closed loop catalyst regeneration mode, and an open loop catalyst regeneration mode.
  • the first exhaust front valve, the first exhaust rear valve, and the second exhaust supply valve may be opened, and the bypass valve and the circulation valve may be blocked.
  • the closed loop catalyst regeneration mode the circulation valve and the bypass valve may be opened, and the first exhaust front valve, the first exhaust rear valve, and the second exhaust supply valve may be blocked.
  • the open loop catalyst regeneration mode the second exhaust supply valve, the first exhaust rear valve and the bypass valve may be opened, and the first exhaust front valve and the circulation valve may be blocked.
  • the second engine may exhaust the exhaust gas having a temperature in the range of 250 degrees Celsius to 450 degrees Celsius.
  • the auxiliary heating member may increase the temperature of the exhaust gas of the second engine supplied to the decomposition chamber within a range of 350 degrees Celsius to 600 degrees Celsius.
  • the auxiliary heating member may maintain the temperature of the catalyst in the reactor within the range of 350 degrees Celsius to 450 degrees Celsius.
  • the closed loop catalyst regeneration mode may operate when the temperature of the catalyst in the reactor is in the range of 200 degrees Celsius to 300 degrees Celsius.
  • the auxiliary heating member may be operated when the temperature of the exhaust gas discharged from the second engine is less than 380 degrees Celsius.
  • the open loop catalyst regeneration mode may operate when the temperature of the catalyst in the reactor is greater than 300 degrees Celsius and less than 450 degrees Celsius.
  • the open loop catalyst regeneration mode may operate when the temperature of the exhaust gas discharged from the second engine is 380 degrees Celsius or more.
  • the power unit including the selective catalytic reduction system can not only minimize the energy consumed overall to reduce the nitrogen oxides contained in the exhaust gas, but can also effectively regenerate the catalyst used in the reduction reaction.
  • FIG. 1 is a block diagram of a power unit including a selective catalytic reduction system according to an embodiment of the present invention.
  • FIG. 2 and 3 are configuration diagrams showing the operating state of the power unit including the selective catalytic reduction system of FIG.
  • Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • a power device 101 including a selective catalytic reduction (SCR) system may include a first engine 210, a second engine 220, and a first engine 210.
  • An exhaust passage 610, a reactor 300, a reducing agent injection unit 350, a decomposition chamber 400, a circulation passage 680, and a second exhaust passage 650 are included.
  • the power unit 101 including the selective catalytic reduction system is the bypass flow path 620, the first exhaust front valve 710, the first exhaust rear valve 720, the bypass valve 790, a circulation valve 780, a second exhaust supply valve 750, an auxiliary heating member 450, and a blower 480 may be further included.
  • the power unit 101 including the selective catalytic reduction system is a reducing agent supply passage 630 connecting the decomposition chamber 400 and the reducing agent injection unit 350, decomposition chamber 400
  • the urea (urea, CO (NH 2 ) 2 ) may further include a urea supply unit (not shown) for supplying.
  • the first engine 210 may be a low speed diesel engine that is typically used as a main power source of a ship, and the like, and various engines known to those skilled in the art may be used.
  • the first exhaust passage 610 discharges the exhaust gas discharged from the first engine 210.
  • the exhaust gas of the first engine 210 moving along the first exhaust flow path 610 is generally lowered to a temperature of 150 degrees Celsius or more and less than 250 degrees Celsius while passing through a supercharger (not shown).
  • the supercharger improves the efficiency of the first engine 210 by supplying fresh outside air to the first engine 210 by turning the turbine at the pressure of the exhaust gas of the first engine 210.
  • the second engine 220 may be a medium speed diesel engine used as an auxiliary power source for power generation. That is, the second engine 220 may be used for power generation to produce power required for ships and the like.
  • the second engine 220 emits exhaust gas at a relatively higher temperature than the first engine 210.
  • the second engine 220 may discharge the exhaust gas having a temperature in the range of 250 degrees Celsius to 450 degrees Celsius.
  • the reactor 300 is installed on the first exhaust flow path 210.
  • the reactor 300 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas discharged from the first engine 210.
  • the catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor.
  • the catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like.
  • the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius.
  • the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the efficiency decreases with poisoning.
  • the housing of the reactor 300 may be made of stainless steel (stainless steel) material.
  • the reducing agent injection unit 350 injects the reducing agent to the exhaust gas moving to the reactor 300 along the first exhaust passage 610.
  • the reducing agent injection unit 350 may be installed on the first exhaust passage 610 in front of the reactor 300.
  • the reducing agent injected from the reducing agent injection unit 350 is mixed with the exhaust gas traveling through the first exhaust passage 610, and then reduces nitrogen oxide in the catalyst of the reactor 300.
  • the reducing agent comprises ammonia (NH 3).
  • the decomposition chamber 400 generates a reducing agent to be supplied to the reducing agent injection unit 350.
  • the decomposition chamber 400 hydrolyzes urea (CO (NH 2 ) 2 ) to produce ammonia (NH 3 ).
  • urea CO (NH 2 ) 2
  • ammonia NH 3
  • urea is easily hydrolyzed to produce ammonia (NH 3 ) and isocyanic acid (HNCO)
  • HNCO is again broken down into ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • the circulation passage 680 diverges a portion of the exhaust gas passing through the reactor 300 from the first exhaust passage 610 to be recycled to the decomposition chamber 400.
  • the second exhaust passage 650 is connected to the circulation passage 680 to supply the exhaust gas of the second engine 220 to the decomposition chamber 400. That is, according to one embodiment of the present invention, the exhaust gas discharged from the relatively high temperature of the second engine 220 moves to the decomposition chamber 400 via the second exhaust flow path 650 and the circulation flow path 680 The exhaust gas of the second engine 220 moved to the decomposition chamber 400 supplies thermal energy necessary for decomposition of urea, that is, generation of a reducing agent, to the decomposition chamber 400.
  • the first exhaust front valve 710 is installed on the first exhaust flow path 610 in front of the reactor 300 to open and close the first exhaust flow path 610.
  • the second exhaust back valve 720 is installed on the first exhaust flow path 610 behind the reactor 300 to open and close the first exhaust flow path 610.
  • the circulation valve 780 is installed in the circulation flow path 680 between the branch point with the first exhaust flow path 610 and the joining point with the second exhaust flow path 650 to open and close the circulation flow path 680.
  • the second exhaust supply valve 750 is installed on the second exhaust flow path 650 to turn off the supply of the exhaust gas of the second engine 220 to the circulation flow path 680 through the second exhaust flow path 650. on-off).
  • the bypass flow path 620 bypasses the reactor 300 to open the first exhaust flow path 610 in front of the first exhaust front valve 710 and the first exhaust flow path 610 behind the second exhaust back valve 720. Connect. That is, the bypass flow path 620 may continue to discharge the exhaust gas of the first engine 210 by bypassing the reactor even when the first exhaust front valve 710 and the second exhaust rear valve 720 are blocked.
  • the bypass valve 790 is installed on the bypass flow path 620 to block the exhaust gas of the first engine 210 from being discharged through the bypass flow path 620 when the reactor 300 is in operation.
  • the auxiliary heating member 450 is installed in the circulation passage 680 between the confluence point of the decomposition chamber 400 and the second exhaust passage 650.
  • the auxiliary heating member 450 assists the decomposition chamber 400 when the exhaust gas temperature of the second engine 220 supplied to the decomposition chamber 400 through the circulation passage 680 is not high enough to decompose urea.
  • the exhaust gas supplied to is heated to a temperature sufficient to produce a reducing agent.
  • the auxiliary heating member 450 may raise the temperature of the exhaust gas of the second engine 220 supplied to the decomposition chamber 400 to decompose the urea within a range of 350 degrees Celsius to 600 degrees Celsius.
  • the auxiliary heating member 450 may use various heating means known to those skilled in the art, such as a burner or a heater.
  • the blower 480 is installed in the circulation passage 680 between the confluence point of the decomposition chamber 400 and the second exhaust passage 650.
  • the blower 480 blows the exhaust gas so that the exhaust gas is supplied to the decomposition chamber 400 through the circulation passage 680.
  • the power unit 101 including the selective catalytic reduction system according to an embodiment of the present invention can not only minimize the energy consumed overall to reduce the nitrogen oxides contained in the exhaust gas, Can effectively recycle used catalyst
  • the urea in the decomposition chamber 400 by using the thermal energy of the exhaust gas of the second engine 220 used as an auxiliary power source for power generation to generate a reducing agent
  • the energy required to generate can be minimized. Therefore, it is also possible to minimize the consumption of additional fuel required to produce a reducing agent.
  • the power plant 101 including the selective catalytic reduction system according to an embodiment of the present invention may operate in any one of an exhaust purification mode, a closed loop catalyst regeneration mode, and an open loop catalyst regeneration mode.
  • the exhaust purification mode is a reducing agent generated in the decomposition chamber 400 by using thermal energy of the exhaust gas of the second engine 220 used as an auxiliary power source for power generation. And reducing the nitrogen oxide contained in the exhaust gas.
  • the first exhaust front valve 710, the first exhaust rear valve 720, and the second exhaust supply valve 750 are opened.
  • the bypass valve 790 and the circulation valve 780 are blocked.
  • the exhaust gas of the second engine 220 is supplied to the decomposition chamber 400 via the second exhaust passage 650 and the circulation passage 680, and the reducing agent generated in the decomposition chamber 400 is the reducing agent supply passage ( Movement along the 630 is injected into the reducing agent injection unit 350.
  • the reducing agent injected from the reducing agent injection unit 350 is mixed with the exhaust gas of the first engine 210 moving through the first exhaust flow path 610, and then, in the catalyst of the reactor 300, nitrogen oxide contained in the exhaust gas is removed. Reduce.
  • the auxiliary heating member 450 increases the temperature of the exhaust gas of the second engine 220 supplied to the decomposition chamber 400 within a range of 350 degrees Celsius to 600 degrees Celsius.
  • the auxiliary heating member 450 heats up the exhaust gas of the second engine 220 to a temperature sufficient to effectively decompose urea in the decomposition chamber 400.
  • the auxiliary heating member 450 has a minimum operation of the second engine 220.
  • the temperature of the exhaust gas can be raised to the target temperature.
  • the closed loop catalyst regeneration mode regenerates the catalyst of the poisoned reactor 300 in the process of reducing nitrogen oxides contained in the exhaust gas of the first engine 210.
  • the catalyst poisoning substance may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, that is, a temperature in the range of 350 degrees Celsius to 450 degrees Celsius, the catalyst of the reactor 300 may be heated to regenerate the poisoned catalyst.
  • the catalyst of the reactor 9300 may be exhausted from the first engine 210 for a long time. Reducing the contained nitrogen oxides can be poisoned.
  • the power unit 101 including the selective catalytic reduction system operates to switch from the exhaust purification mode to the closed loop catalyst regeneration mode to regenerate the catalyst of the reactor 300. You can.
  • the exhaust gas circulating in the closed loop is heated to regenerate the catalyst, so that the exhaust gas can be raised to a temperature sufficient to effectively regenerate the catalyst without consuming little energy.
  • the circulation valve 780 and the bypass valve 790 are opened in the closed loop catalyst regeneration mode.
  • the first exhaust front valve 710, the first exhaust rear valve 720, and the second exhaust supply valve 750 are blocked.
  • a closed loop connected to the reducing agent supply flow path 630, the first exhaust flow path 610, and the circulation flow path 680 is formed, and the blower 480 is operated to circulate the exhaust gas in the closed loop.
  • the auxiliary heating member 450 heats and heats the exhaust gas circulating in the closed loop, and the heated exhaust gas regenerates the catalyst of the reactor 300.
  • the auxiliary heating element 450 is operated to maintain the temperature of the catalyst in the reactor 300 within the range of 350 degrees Celsius to 450 degrees Celsius.
  • the Peruvian catalyst regeneration mode operates when the temperature of the catalyst in the reactor 300 is in the range of 200 degrees Celsius to 300 degrees Celsius, and in the closed loop catalyst regeneration mode, the auxiliary heating member 450 is operated in the second engine 220. It operates when the temperature of the exhaust gas is less than 380 degrees Celsius.
  • the power unit 101 including the selective catalytic reduction system according to an embodiment of the present invention can be switched to the open-loop catalyst regeneration mode when the temperature of the catalyst in the reactor 300 is greater than 300 degrees Celsius and less than 450 degrees Celsius have.
  • the operation of the open loop catalyst regeneration mode is maintained when the temperature of the exhaust gas discharged from the second engine 220 is 380 degrees Celsius or more.
  • the open loop catalyst regeneration mode utilizes the exhaust gas of the second engine 220 to regenerate the catalyst of the reactor 300.
  • the catalyst When the temperature of the catalyst in the reactor 300 exceeds 300 degrees Celsius, the catalyst can be regenerated only by the heat energy of the exhaust gas of the second engine 220, thereby raising the exhaust gas circulating in the closed loop to the auxiliary heating member 450. By stopping the operation, it is possible to reduce the consumption of fuel due to the operation of the auxiliary heating member 450.
  • the second exhaust supply valve 750, the first exhaust rear valve 720, and the bypass valve 790 are opened.
  • the first exhaust front valve 710 and the circulation valve 780 are blocked.
  • the exhaust gas of the first engine 210 is discharged through the bypass flow path 620, and the exhaust gas of the second engine 220 supplies the second exhaust flow path 650, the circulation flow path 680, and the reducing agent. It is introduced into the reactor 300 via the flow path 630 to regenerate the catalyst in the reactor (300).
  • the power unit 101 including the selective catalytic reduction system according to an embodiment of the present invention can not only minimize the energy consumed to reduce the nitrogen oxides contained in the exhaust gas as well as to reduce the reaction.
  • the catalyst used can be effectively recycled.
  • first engine 210 second engine
  • reactor 350 reducing agent injection unit
  • decomposition chamber 450 auxiliary heating member
  • blower 610 first exhaust flow path
  • bypass flow path 630 reducing agent supply flow path
  • first exhaust front valve 720 second exhaust rear valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명의 실시예에 따르면 선택적 촉매 환원 시스템을 포함한 동력 장치는 질소산화물을 함유한 배기가스를 배출하는 제1 엔진과, 제1 엔진의 배기가스가 이동하는 제1 배기 유로와, 제1 배기 유로 상에 설치되어 배기가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기와, 제1 배기 유로를 따라 반응기로 이동하는 배기가스에 환원제를 분사하는 환원제 분사부와, 환원제 분사부에 공급할 환원제를 생성하는 분해 챔버와, 반응기를 거친 배기가스의 일부를 분해 챔버로 재순환시키는 순환 유로와, 제1 엔진보다 상대적으로 높은 온도의 배기가스를 배출하는 제2 엔진, 그리고 제2 엔진의 배기가스가 이동하며 순환 유로와 연결된 제2 배기 유로를 포함한다.

Description

선택적 촉매 환원 시스템을 포함한 동력 장치
본 발명은 선택적 촉매 환원 시스템을 포함한 동력 장치에 관한 것으로, 더욱 상세하게는 발전용 보조 엔진을 사용하는 선택적 촉매 환원 시스템을 포함한 동력 장치에 관한 것이다.
일반적으로 선박 등에 사용되는 동력 장치는 저속 디젤 엔진과 과급기(turbocharger) 등을 포함한다. 선택적 촉매 환원(selective catalytic reduction, SCR) 시스템은 디젤 엔진에서 발생된 배기가스를 정화하여 질소산화물을 저감시키기 위한 시스템이다.
선택적 촉매 환원 시스템은 촉매가 내부에 설치된 반응기에 배기가스와 환원제를 함께 통과시키면서 배기가스에 함유된 질소산화물과 환원제를 반응시켜 질소와 수증기로 환원 처리한다.
선택적 촉매 환원 시스템은 질소산화물을 저감시키기 위한 환원제로 우레아(urea)를 가수분해시켜 주로 사용하고 있다. 이때, 가수분해의 효율을 향상시키기 위해 가수분해 챔버의 내부 온도를 별도의 전기 히터 또는 버너를 이용하여 가수분해 반응 온도까지 상승시키는 방법을 사용하고 있다.
하지만, 가수분해에 소모되는 에너지가 적지 않으므로, 전체적인 선택적 촉매 환원 시스템의 운전에 필요 이상으로 많은 에너지가 소모되는 문제점이 있다.
또한, 선택적 촉매 환원 시스템은 경제성과 방사능 규제 등을 고려하여 섭씨 250도 내지 섭씨 400도의 활성 온도 범위를 갖는 고온 활성 촉매를 주로 이용하고 있다.
그런데 고온 활성 촉매가 설치된 반응기에 섭씨 250도 이하의 온도를 갖는 배기가스가 유입되면, 디젤 엔진의 연료에 함유된 황 성분에 의해 촉매가 피독되면서 촉매의 활성이 지속적으로 저하되는 문제점이 있다.
본 발명의 실시예는 배기가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있는 선택적 촉매 환원 시스템을 포함한 동력 장치를 제공한다.
본 발명의 실시예에 따르면, 선택적 촉매 환원 시스템을 포함한 동력 장치는 주동력원으로 사용되며 질소산화물(NOx)을 함유한 배기가스를 배출하는 제1 엔진과, 상기 제1 엔진의 배기가스가 이동하는 제1 배기 유로와, 상기 제1 배기 유로 상에 설치되어 배기가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기와, 상기 제1 배기 유로를 따라 상기 반응기로 이동하는 배기가스에 환원제를 분사하는 환원제 분사부와, 상기 환원제 분사부에 공급할 환원제를 생성하는 분해 챔버와, 상기 반응기를 거친 배기가스의 일부를 상기 제1 배기 유로에서 분기시켜 상기 분해 챔버로 재순환시키는 순환 유로와, 발전용 보조 동력원으로 사용되며 상기 제1 엔진보다 상대적으로 높은 온도의 배기가스를 배출하는 제2 엔진, 그리고 상기 제2 엔진의 배기가스를 상기 분해 챔버에 공급하기 위해 상기 순환 유로와 연결된 제2 배기 유로를 포함한다.
또한, 상기한 선택적 촉매 환원 시스템을 포함한 동력 장치는 상기 반응기 전방의 상기 제1 배기 유로 상에 설치된 제1 배기 전방 밸브와, 상기 반응기 후방의 상기 제1 배기 유로 상에 설치된 제1 배기 후방 밸브와, 상기 제1 배기 유로와의 분기점과 상기 제2 배기 유로와의 합류점 사이의 상기 순환 유로에 설치된 순환 밸브, 그리고 상기 제2 배기 유로 상에 설치된 제2 배기 공급 밸브를 더 포함할 수 있다.
또한, 상기한 선택적 촉매 환원 시스템을 포함한 동력 장치는 상기 반응기를 우회하여 상기 제1 배기 전방 밸브 전방의 상기 제1 배기 유로와 상기 제2 배기 후방 밸브 후방의 상기 제1 배기 유로를 연결하는 바이패스 유로와, 상기 바이패스 유로 상에 설치된 바이패스 밸브를 더 포함할 수 있다.
또한, 상기한 선택적 촉매 환원 시스템을 포함한 동력 장치는 상기 분해 챔버와 상기 제2 배기 유로의 합류점 사이의 상기 순환 유로에 설치된 보조 가열 부재를 더 포함할 수 있다.
또한, 상기한 선택적 촉매 환원 시스템을 포함한 동력 장치는 상기 분해 챔버와 상기 제2 배기 유로의 합류점 사이의 상기 순환 유로에 설치된 블로워를 더 포함할 수 있다.
또한, 상기한 선택적 촉매 환원 시스템을 포함한 동력 장치는 배기 정화 모드, 폐루프 촉매 재생 모드, 및 개루프 촉매 재생 모드 중 어느 하나의 모드로 동작할 수 있다. 그리고 상기 배기 정화 모드에서 상기 제1 배기 전방 밸브와 상기 제1 배기 후방 밸브 그리고 상기 제2 배기 공급 밸브는 개방하고, 상기 바이패스 밸브와 상기 순환 밸브는 차단할 수 있다. 상기 폐루프 촉매 재생 모드에서 상기 순환 밸브와 상기 바이패스 밸브는 개방하고, 상기 제1 배기 전방 밸브와 상기 제1 배기 후방 밸브 그리고 상기 제2 배기 공급 밸브는 차단할 수 있다. 상기 개루프 촉매 재생 모드에서 상기 제2 배기 공급 밸브와 상기 제1 배기 후방 밸브 그리고 바이패스 밸브는 개방하고, 상기 제1 배기 전방 밸브와 상기 순환 밸브는 차단할 수 있다.
상기 제2 엔진은 섭씨 250도 내지 섭씨 450도 범위 내의 온도를 갖는 배기가스를 배출할 수 있다.
상기 배기 정화 모드에서 상기 보조 가열 부재는 상기 분해 챔버에 공급되는 상기 제2 엔진의 배기가스의 온도를 섭씨 350도 내지 섭씨 600도 범위 내로 승온시킬 수 있다.
상기 폐루프 촉매 재생 모드와 상기 개루프 촉매 재생 모드에서 상기 보조 가열 부재는 상기 반응기 내 촉매의 온도를 섭씨 350도 내지 섭씨 450도 범위 내로 유지시킬 수 있다.
상기 폐루프 촉매 재생 모드는 상기 반응기 내 촉매의 온도가 섭씨 200도 내지 섭씨 300도 범위 내일 때 동작할 수 있다.
상기 폐루프 촉매 재생 모드에서 상기 보조 가열 부재는 상기 제2 엔진에서 배출된 배기가스의 온도가 섭씨 380도 미만일 때 가동될 수 있다.
상기 개루프 촉매 재생 모드는 상기 반응기 내 촉매의 온도가 섭씨 300도 초과 섭씨 450도 미만일 때 동작할 수 있다.
상기 개루프 촉매 재생 모드는 상기 제2 엔진에서 배출된 배기가스의 온도가 섭씨 380도 이상일 때 동작할 수 있다.
본 발명의 실시예에 따르면, 선택적 촉매 환원 시스템을 포함한 동력 장치는 배기가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있다.
도 1은 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치의 구성도이다.
도 2 및 도 3은 도 1의 선택적 촉매 환원 시스템을 포함한 동력 장치의 동작 상태를 나타낸 구성도들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 선택적 촉매 환원(selective catalytic reduction, SCR) 시스템을 포함한 동력 장치(101)는 제1 엔진(210), 제2 엔진(220), 제1 배기 유로(610), 반응기(300), 환원제 분사부(350), 분해 챔버(400), 순환 유로(680), 및 제2 배기 유로(650)를 포함한다.
또한, 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 바이패스 유로(620), 제1 배기 전방 밸브(710), 제1 배기 후방 밸브(720), 바이패스 밸브(790), 순환 밸브(780), 제2 배기 공급 밸브(750), 보조 가열 부재(450), 및 블로워(480)를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 분해 챔버(400)와 환원제 분사부(350)를 연결하는 환원제 공급 유로(630)와, 분해 챔버(400)에 우레아(urea, CO(NH2)2)를 공급하는 우레아 공급부(미도시)를 더 포함할 수 있다.
제1 엔진(210)은 통상 선박 등의 주동력원으로 사용되는 저속 디젤 엔진일 수 있으며, 해당 기술 분야의 종사자에게 공지된 다양한 엔진이 사용될 수 있다.
제1 배기 유로(610)는 제1 엔진(210)에서 배출된 배기가스를 배출시킨다. 제1 배기 유로(610)를 따라 이동하는 제1 엔진(210)의 배기가스는 일반적으로 과급기(미도시)를 거치면서 섭씨 150도 이상 섭씨 250도 미만의 온도로 낮아진다. 과급기는 제1 엔진(210)의 배기가스가 갖는 압력으로 터빈을 돌려 제1 엔진(210)에 새로운 외기를 공급함으로써, 제1 엔진(210)의 효율을 향상시킨다.
제2 엔진(220)은 발전용 보조 동력원으로 사용되는 중속 디젤 엔진일 수 있다. 즉, 제2 엔진(220)은 선박 등에 필요한 전력을 생산하는 발전용으로 사용될 수 있다.
또한, 본 발명의 일 실시예에서, 제2 엔진(220)은 제1 엔진(210)보다 상대적으로 높은 온도의 배기가스를 배출한다. 구체적으로, 제2 엔진(220)은 섭씨 250도 내지 섭씨 450도 범위 내의 온도를 갖는 배기가스를 배출할 수 있다.
반응기(300)는 제1 배기 유로(210) 상에 설치된다. 반응기(300)는 제1 엔진(210)에서 배출된 배기가스가 함유한 질소산화물(NOx)을 저감시키는 촉매를 포함한다. 촉매는 배기가스에 함유된 질소산화물(NOx)과 환원제의 반응을 촉진시켜 질소산화물(NOx)을 질소와 수증기로 환원 처리한다.
촉매는 제올라이트(Zeolite), 바나듐(Vanadium), 및 백금(Platinum) 등과 같이 해당 기술 분야의 종사자에게 공지된 다양한 소재로 만들어질 수 있다. 일례로, 촉매는 섭씨 250도 내지 섭씨 350도 범위 내의 활성 온도를 가질 수 있다. 여기서, 활성 온도는 촉매가 피독되지 않고 안정적으로 질소산화물을 환원시킬 수 있는 온도를 말한다. 촉매가 활성 온도 범위 밖에서 반응할 경우, 피독되면서 효율이 저하된다.
또한, 반응기(300)의 하우징은, 일례로, 스테인레스 스틸(stainless steel)을 소재로 만들어질 수 있다.
환원제 분사부(350)는 제1 배기 유로(610)를 따라 반응기(300)로 이동하는 배기가스에 환원제를 분사한다. 구체적으로, 환원제 분사부(350)는 반응기(300) 전방의 제1 배기 유로(610) 상에 설치될 수 있다. 환원제 분사부(350)에서 분사된 환원제는 제1 배기 유로(610)를 이동하는 배기가스와 혼합된 후, 반응기(300)의 촉매에서 질소산화물을 환원시킨다. 여기서, 환원제는 암모니아(NH3)를 포함한다.
분해 챔버(400)는 환원제 분사부(350)에 공급될 환원제를 생성한다. 분해 챔버(400)는 우레아(urea, CO(NH2)2)를 가수분해하여 암모니아(NH3)를 생성한다. 분해 챔버(400) 내의 온도가 섭씨 300도 내지 섭씨 500도 범위 내로 유지되면, 우레아가 용이하게 가수분해되면서 암모니아(NH3)와 이소시안산(Isocyanic acid, HNCO)이 생성되고, 이소시안산(HNCO)은 다시 암모니아(NH3)와 이산화탄소(CO2)로 분해된다.
순환 유로(680)는 반응기(300)를 거친 배기가스의 일부를 제1 배기 유로(610)에서 분기시켜 분해 챔버(400)로 재순환시킨다.
제2 배기 유로(650)는 제2 엔진(220)의 배기가스를 분해 챔버(400)에 공급하기 위해 순환 유로(680)와 연결된다. 즉, 본 발명의 일 실시예에 따르면, 상대적으로 고온인 제2 엔진(220)에서 배출된 배기가스가 제2 배기 유로(650)와 순환 유로(680)를 거쳐 분해 챔버(400)로 이동하며, 분해 챔버(400)로 이동한 제2 엔진(220)의 배기가스는 분해 챔버(400)에 우레아의 분해, 즉 환원제의 생성에 필요한 열에너지를 공급한다.
제1 배기 전방 밸브(710)는 반응기(300) 전방의 제1 배기 유로(610) 상에 설치되어 제1 배기 유로(610)를 개폐한다. 제2 배기 후방 밸브(720)는 반응기(300) 후방의 제1 배기 유로(610) 상에 설치되어 제1 배기 유로(610)를 개폐한다.
순환 밸브(780)는 제1 배기 유로(610)와의 분기점과 제2 배기 유로(650)와의 합류점 사이의 순환 유로(680)에 설치되어 순환 유로(680)를 개폐한다.
제2 배기 공급 밸브(750)는 제2 배기 유로(650) 상에 설치되어 제2 엔진(220)의 배기가스가 제2 배기 유로(650)를 통해 순환 유로(680)로 공급되는 것을 오프(on-off)한다.
바이패스 유로(620)는 반응기(300)를 우회하여 제1 배기 전방 밸브(710) 전방의 제1 배기 유로(610)와 제2 배기 후방 밸브(720) 후방의 제1 배기 유로(610)를 연결한다. 즉, 바이패스 유로(620)는 제1 배기 전방 밸브(710)와 제2 배기 후방 밸브(720)가 차단되더라도 제1 엔진(210)의 배기가스를 반응기를 우회하여 계속 배출시킬 수 있다.
바이패스 밸브(790)는 바이패스 유로(620) 상에 설치되어 반응기(300)가 가동 중일 때 제1 엔진(210)의 배기가스가 바이패스 유로(620)를 거쳐 배출되는 것을 차단한다.
보조 가열 부재(450)는 분해 챔버(400)와 제2 배기 유로(650)의 합류점 사이의 순환 유로(680)에 설치된다. 보조 가열 부재(450)는 순환 유로(680)를 통해 분해 챔버(400)에 공급되는 제2 엔진(220)의 배기가스 온도가 우레아를 분해시킬 만큼 충분히 높지 않을 경우, 보조적으로 분해 챔버(400)에 공급되는 배기가스를 가열하여 환원제를 생성하기에 충분한 온도로 승온시킨다.
구체적으로, 보조 가열 부재(450)는 우레아의 분해를 위해 분해 챔버(400)에 공급되는 제2 엔진(220)의 배기가스의 온도를 섭씨 350도 내지 섭씨 600도 범위 내로 승온시킬 수 있다.
보조 가열 부재(450)는 버너 또는 히터와 같이 해당 기술 분야의 종사자에게 공지된 다양한 가열 수단을 사용할 수 있다.
블로워(480)는 분해 챔버(400)와 제2 배기 유로(650)의 합류점 사이의 순환 유로(680)에 설치된다. 블로워(480)는 순환 유로(680)를 통해 분해 챔버(400)에 배기가스가 공급되도록 배기가스를 송풍시킨다.
이와 같은 구성에 의하여, 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 배기가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있다
구체적으로, 본 발명의 일 실시예에 따르면, 발전용 보조 동력원으로 사용되는 제2 엔진(220)의 배기가스가 갖는 열에너지를 활용하여 분해 챔버(400)에서 우레아를 분해시켜 환원제를 생성하므로 환원제를 생성하기 위해 소요되는 에너지를 최소화할 수 있다. 따라서 환원제를 생성하기 위해 소요되는 추가적인 연료의 소모도 최소화할 수 있다.
이하, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)의 동작 원리를 설명한다.
본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 배기 정화 모드, 폐루프 촉매 재생 모드, 및 개루프 촉매 재생 모드 중 어느 하나의 모드로 동작할 수 있다.
도 1에 도시한 바와 같이, 배기 정화 모드는 발전용 보조 동력원으로 사용되는 제2 엔진(220)의 배기가스가 갖는 열에너지를 활용하여 분해 챔버(400)에서 생성된 환원제로 제1 엔진(210)의 배기가스가 함유한 질소산화물을 저감시키는 동작을 수행한다.
구체적으로, 배기 정화 모드에서는 제1 배기 전방 밸브(710)와 제1 배기 후방 밸브(720) 그리고 제2 배기 공급 밸브(750)가 개방된다. 그리고 바이패스 밸브(790)와 순환 밸브(780)는 차단된다.
따라서, 제2 엔진(220)의 배기가스가 제2 배기 유로(650)와 순환 유로(680)를 거쳐 분해 챔버(400)에 공급되고, 분해 챔버(400)에서 생성된 환원제가 환원제 공급 유로(630)를 따라 이동하여 환원제 분사부(350)로 분사된다. 환원제 분사부(350)에서 분사된 환원제는 제1 배기 유로(610)를 이동하는 제1 엔진(210)의 배기가스와 혼합된 후, 반응기(300)의 촉매에서 배기가스에 함유된 질소산화물을 환원시킨다.
또한, 배기 정화 모드에서 보조 가열 부재(450)는 분해 챔버(400)에 공급되는 제2 엔진(220)의 배기가스의 온도를 섭씨 350도 내지 섭씨 600도 범위 내로 승온시킨다.
보조 가열 부재(450)는 분해 챔버(400)에서 효과적으로 우레아가 분해될 수 있도록 충분한 온도로 제2 엔진(220)의 배기가스를 승온시킨다.
이때, 제2 엔진(220)의 배기가스는 상대적으로 높은 온도, 즉 섭씨 250도 내지 섭씨 450도 범위 내의 온도를 가지므로, 보조 가열 부재(450)는 최소한의 가동으로 제2 엔진(220)의 배기가스의 온도를 목표 온도까지 승온시킬 수 있다. 이에, 환원제를 생성하기 위해 소요되는 추가적인 연료의 소모도 최소화할 수 있다.
도 2에 도시한 바와 같이, 폐루프 촉매 재생 모드는 제1 엔진(210)의 배기가스가 함유한 질소산화물을 환원시키는 과정에서 피독된 반응기(300)의 촉매를 재생시킨다.
섭씨 150도 이상 섭씨 250도 미만의 상대적으로 낮은 온도에서 배기가스가 함유한 질소산화물을 저감시키기 위한 환원 반응이 일어나면, 배기가스의 황산화물(SOx)과 암모니아(NH3)가 반응하여 촉매 피독 물질이 생성된다. 촉매 피독 물질은 황산암모늄(Ammonium sulfate, (NH4)2SO4)과 아황산수소암모늄(Ammonium bisulfate, NH4HSO4) 중 하나 이상을 포함할 수 있다. 이러한 촉매 피독 물질은 촉매에 흡착되어 촉매의 활성을 저하시킨다. 촉매 피독 물질은 상대적으로 높은 온도, 즉 섭씨 350도 내지 섭씨 450도 범위 내의 온도에서 분해되므로, 반응기(300)의 촉매를 승온시켜 피독된 촉매를 재생할 수 있다.
제1 엔진(210)의 배기가스는 과급기(미도시)를 거치면서 섭씨 150도 이상 섭씨 250도 미만의 온도로 낮아질 수 있으므로, 반응기9300)의 촉매가 장시간 제1 엔진(210)의 배기가스가 함유한 질소산화물을 저감시키면 피독될 수 있다.
이와 같이, 반응기(300)의 촉매가 피독되어 활성이 저하되면, 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 배기 정화 모드에서 폐루프 촉매 재생 모드로 전환 동작하여 반응기(300)의 촉매를 재생시킬 수 있다.
또한, 폐루프 촉매 재생 모드에서는 폐루프를 순환하는 배기가스를 승온시켜 촉매를 재생시키므로, 적은 에너지를 소모하고도 효과적으로 배기가스를 촉매를 재생시키기에 충분한 온도로 승온시킬 수 있다.
구체적으로, 폐루프 촉매 재생 모드에서는 순환 밸브(780)와 바이패스 밸브(790)는 개방된다. 그리고 제1 배기 전방 밸브(710)와 제1 배기 후방 밸브(720) 그리고 제2 배기 공급 밸브(750)는 차단된다.
따라서, 환원제 공급 유로(630), 제1 배기 유로(610), 및 순환 유로(680)로 연결되는 폐루프가 형성되고, 블로워(480)가 가동되어 배기가스를 폐루프 순환시킨다. 그리고 보조 가열 부재(450)는 폐루프 순환하는 배기가스를 가열하여 승온시키고, 이렇게 승온된 배기가스는 반응기(300)의 촉매를 재생시킨다.
폐루프 촉매 재생 모드에서 보조 가열 부재(450)는 반응기(300) 내 촉매의 온도를 섭씨 350도 내지 섭씨 450도 범위 내로 유지시키도록 가동된다.
또한, 페루프 촉매 재생 모드는 반응기(300) 내 촉매의 온도가 섭씨 200도 내지 섭씨 300도 범위 내일 때 동작하고, 폐루프 촉매 재생 모드에서 보조 가열 부재(450)는 제2 엔진(220)에서 배출된 배기가스의 온도가 섭씨 380도 미만일 때 가동된다.
반면, 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 반응기(300) 내 촉매의 온도가 섭씨 300도 초과 섭씨 450도 미만일 때에는 개루프 촉매 재생 모드로 전환 동작할 수 있다.
또한, 개루프 촉매 재생 모드는 제2 엔진(220)에서 배출된 배기가스의 온도가 섭씨 380도 이상일 때 그 동작이 유지된다.
도 3에 도시한 바와 같이, 개루프 촉매 재생 모드는 제2 엔진(220)의 배기가스를 활용하여 반응기(300)의 촉매를 재생시킨다.
반응기(300) 내 촉매의 온도가 섭씨 300도를 초과하면 제2 엔진(220)의 배기가스가 갖는 열에너지만으로도 촉매를 재생할 수 있으므로, 보조 가열 부재(450)로 폐루프 순환하는 배기가스를 승온시키는 동작을 중단하여 보조 가열 부재(450)의 가동에 따른 연료의 소모를 줄일 수 있다.
구체적으로, 개루프 촉매 재생 모드에서는 제2 배기 공급 밸브(750)와 제1 배기 후방 밸브(720) 그리고 바이패스 밸브(790)는 개방된다. 그리고 제1 배기 전방 밸브(710)와 순환 밸브(780)는 차단된다.
따라서, 제1 엔진(210)의 배기가스는 바이패스 유로(620)를 통해 배출되고, 제2 엔진(220)의 배기가스는 제2 배기 유로(650), 순환 유로(680), 및 환원제 공급 유로(630)를 거쳐 반응기(300)에 유입되어 반응기(300) 내 촉매를 재생시킨다.
이와 같은 동작에 의하여, 본 발명의 일 실시예에 따른 선택적 촉매 환원 시스템을 포함한 동력 장치(101)는 배기가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지를 최소화할 수 있을 뿐만 아니라 환원 반응에 사용된 촉매를 효과적으로 재생할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
101: 선택적 촉매 환원 시스템을 포함한 동력 장치
210: 제1 엔진 210: 제2 엔진
300: 반응기 350: 환원제 분사부
400: 분해 챔버 450: 보조 가열 부재
480: 블로워 610: 제1 배기 유로
620: 바이패스 유로 630: 환원제 공급 유로
650: 제2 배기 유로 680: 순환 유로
710: 제1 배기 전방 밸브 720: 제2 배기 후방 밸브
750: 제2 배기 공급 밸브 780: 순환 밸브
790: 바이패스 밸브

Claims (13)

  1. 주동력원으로 사용되며 질소산화물(NOx)을 함유한 배기가스를 배출하는 제1 엔진;
    상기 제1 엔진의 배기가스가 이동하는 제1 배기 유로;
    상기 제1 배기 유로 상에 설치되어 배기가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기;
    상기 제1 배기 유로를 따라 상기 반응기로 이동하는 배기가스에 환원제를 분사하는 환원제 분사부;
    상기 환원제 분사부에 공급할 환원제를 생성하는 분해 챔버;
    상기 반응기를 거친 배기가스의 일부를 상기 제1 배기 유로에서 분기시켜 상기 분해 챔버로 재순환시키는 순환 유로;
    발전용 보조 동력원으로 사용되며 상기 제1 엔진보다 상대적으로 높은 온도의 배기가스를 배출하는 제2 엔진; 및
    상기 제2 엔진의 배기가스를 상기 분해 챔버에 공급하기 위해 상기 순환 유로와 연결된 제2 배기 유로
    를 포함하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  2. 제1항에서,
    상기 반응기 전방의 상기 제1 배기 유로 상에 설치된 제1 배기 전방 밸브;
    상기 반응기 후방의 상기 제1 배기 유로 상에 설치된 제1 배기 후방 밸브;
    상기 제1 배기 유로와의 분기점과 상기 제2 배기 유로와의 합류점 사이의 상기 순환 유로에 설치된 순환 밸브; 및
    상기 제2 배기 유로 상에 설치된 제2 배기 공급 밸브
    를 더 포함하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  3. 제2항에서,
    상기 반응기를 우회하여 상기 제1 배기 전방 밸브 전방의 상기 제1 배기 유로와 상기 제2 배기 후방 밸브 후방의 상기 제1 배기 유로를 연결하는 바이패스 유로와;
    상기 바이패스 유로 상에 설치된 바이패스 밸브
    를 더 포함하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  4. 제3항에서,
    상기 분해 챔버와 상기 제2 배기 유로의 합류점 사이의 상기 순환 유로에 설치된 보조 가열 부재를 더 포함하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  5. 제4항에서,
    상기 분해 챔버와 상기 제2 배기 유로의 합류점 사이의 상기 순환 유로에 설치된 블로워를 더 포함하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  6. 제4항에서,
    배기 정화 모드, 폐루프 촉매 재생 모드, 및 개루프 촉매 재생 모드 중 어느 하나의 모드로 동작하며,
    상기 배기 정화 모드에서 상기 제1 배기 전방 밸브와 상기 제1 배기 후방 밸브 그리고 상기 제2 배기 공급 밸브는 개방하고, 상기 바이패스 밸브와 상기 순환 밸브는 차단하고,
    상기 폐루프 촉매 재생 모드에서 상기 순환 밸브와 상기 바이패스 밸브는 개방하고, 상기 제1 배기 전방 밸브와 상기 제1 배기 후방 밸브 그리고 상기 제2 배기 공급 밸브는 차단하며,
    상기 개루프 촉매 재생 모드에서 상기 제2 배기 공급 밸브와 상기 제1 배기 후방 밸브 그리고 바이패스 밸브는 개방하고, 상기 제1 배기 전방 밸브와 상기 순환 밸브는 차단하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  7. 제6항에서,
    상기 제2 엔진은 섭씨 250도 내지 섭씨 450도 범위 내의 온도를 갖는 배기가스를 배출하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  8. 제7항에서,
    상기 배기 정화 모드에서 상기 보조 가열 부재는 상기 분해 챔버에 공급되는 상기 제2 엔진의 배기가스의 온도를 섭씨 350도 내지 섭씨 600도 범위 내로 승온시키는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  9. 제7항에서,
    상기 폐루프 촉매 재생 모드와 상기 개루프 촉매 재생 모드에서 상기 보조 가열 부재는 상기 반응기 내 촉매의 온도를 섭씨 350도 내지 섭씨 450도 범위 내로 유지시키는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  10. 제9항에서,
    상기 폐루프 촉매 재생 모드는 상기 반응기 내 촉매의 온도가 섭씨 200도 내지 섭씨 300도 범위 내일 때 동작하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  11. 제9항에서,
    상기 폐루프 촉매 재생 모드에서 상기 보조 가열 부재는 상기 제2 엔진에서 배출된 배기가스의 온도가 섭씨 380도 미만일 때 가동되는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  12. 제9항에서,
    상기 개루프 촉매 재생 모드는 상기 반응기 내 촉매의 온도가 섭씨 300도 초과 섭씨 450도 미만일 때 동작하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
  13. 제9항에서,
    상기 개루프 촉매 재생 모드는 상기 제2 엔진에서 배출된 배기가스의 온도가 섭씨 380도 이상일 때 동작하는 선택적 촉매 환원 시스템을 포함한 동력 장치.
PCT/KR2014/005795 2014-05-29 2014-06-30 선택적 촉매 환원 시스템을 포함한 동력 장치 WO2015182812A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0065013 2014-05-29
KR1020140065013A KR101677797B1 (ko) 2014-05-29 2014-05-29 선택적 촉매 환원 시스템을 포함한 동력 장치

Publications (1)

Publication Number Publication Date
WO2015182812A1 true WO2015182812A1 (ko) 2015-12-03

Family

ID=54699124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005795 WO2015182812A1 (ko) 2014-05-29 2014-06-30 선택적 촉매 환원 시스템을 포함한 동력 장치

Country Status (2)

Country Link
KR (1) KR101677797B1 (ko)
WO (1) WO2015182812A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109519258A (zh) * 2018-11-07 2019-03-26 浙江银轮机械股份有限公司 一种带单旁通阀的scr催化器组件
CN113638792A (zh) * 2021-08-31 2021-11-12 沪东重机有限公司 柴油机尾气排放的lp-scr电气控制与安保系统及其工作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030571B1 (ko) * 2015-12-22 2019-10-11 에이치에스디엔진 주식회사 환원제 공급장치
KR102140948B1 (ko) * 2016-02-23 2020-08-05 현대중공업 주식회사 에너지 절감을 위한 scr 시스템
KR102367288B1 (ko) * 2017-09-28 2022-02-24 에이치에스디엔진 주식회사 선택적 촉매 환원 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321647A (ja) * 2006-05-31 2007-12-13 Hitachi Ltd エンジン用の排気処理装置
KR20130014235A (ko) * 2011-07-29 2013-02-07 자동차부품연구원 엔진 배기 정화장치 및 이를 사용한 운송수단
KR20130140641A (ko) * 2010-08-19 2013-12-24 다우 글로벌 테크놀로지스 엘엘씨 차량 배출 제어 시스템에서 우레아-함유 물질을 가열하기 위한 방법 및 장치
KR20140000556A (ko) * 2012-06-25 2014-01-03 두산엔진주식회사 선택적 촉매 환원 시스템을 포함한 선박용 동력 장치
KR20140000797A (ko) * 2012-06-25 2014-01-06 두산엔진주식회사 선택적 촉매 환원 시스템 및 보조 발전 시스템을 포함한 선박용 동력 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321647A (ja) * 2006-05-31 2007-12-13 Hitachi Ltd エンジン用の排気処理装置
KR20130140641A (ko) * 2010-08-19 2013-12-24 다우 글로벌 테크놀로지스 엘엘씨 차량 배출 제어 시스템에서 우레아-함유 물질을 가열하기 위한 방법 및 장치
KR20130014235A (ko) * 2011-07-29 2013-02-07 자동차부품연구원 엔진 배기 정화장치 및 이를 사용한 운송수단
KR20140000556A (ko) * 2012-06-25 2014-01-03 두산엔진주식회사 선택적 촉매 환원 시스템을 포함한 선박용 동력 장치
KR20140000797A (ko) * 2012-06-25 2014-01-06 두산엔진주식회사 선택적 촉매 환원 시스템 및 보조 발전 시스템을 포함한 선박용 동력 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109519258A (zh) * 2018-11-07 2019-03-26 浙江银轮机械股份有限公司 一种带单旁通阀的scr催化器组件
CN109519258B (zh) * 2018-11-07 2024-01-26 浙江银轮机械股份有限公司 一种带单旁通阀的scr催化器组件
CN113638792A (zh) * 2021-08-31 2021-11-12 沪东重机有限公司 柴油机尾气排放的lp-scr电气控制与安保系统及其工作方法

Also Published As

Publication number Publication date
KR101677797B1 (ko) 2016-11-18
KR20150137332A (ko) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2014208839A1 (ko) 선택적 촉매 환원 및 촉매 재생 시스템
WO2015182812A1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR20140000556A (ko) 선택적 촉매 환원 시스템을 포함한 선박용 동력 장치
WO2015046666A1 (ko) 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
WO2016195195A1 (ko) 버너 시스템
KR20140000797A (ko) 선택적 촉매 환원 시스템 및 보조 발전 시스템을 포함한 선박용 동력 장치
KR101662394B1 (ko) 촉매 예열 시스템
WO2016108616A1 (ko) 선택적 촉매 환원 시스템 및 이를 포함한 동력 장치
KR101254915B1 (ko) 선택적 촉매 환원 시스템 및 보조 발전 시스템을 포함한 선박용 동력 장치
WO2018080179A1 (ko) 배기가스 후처리 시스템
KR101636208B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR101662431B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR20170099131A (ko) 에너지 절감을 위한 scr 시스템
WO2016105153A1 (ko) 선택적 촉매 환원 시스템
KR102063677B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR101708125B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102140949B1 (ko) 에너지 절감을 위한 scr 시스템
KR102075879B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR20190135695A (ko) Scr시스템
KR20170099128A (ko) 에너지 절감을 위한 scr 시스템
KR102137323B1 (ko) 선택적 촉매 환원 시스템
KR102386653B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102386633B1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR20170075515A (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
KR102506291B1 (ko) 선택적 촉매 환원 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893071

Country of ref document: EP

Kind code of ref document: A1