WO2021251630A1 - 복합화력발전소 배가스 처리장치 - Google Patents

복합화력발전소 배가스 처리장치 Download PDF

Info

Publication number
WO2021251630A1
WO2021251630A1 PCT/KR2021/005867 KR2021005867W WO2021251630A1 WO 2021251630 A1 WO2021251630 A1 WO 2021251630A1 KR 2021005867 W KR2021005867 W KR 2021005867W WO 2021251630 A1 WO2021251630 A1 WO 2021251630A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
exhaust gas
heat exchange
agent supply
based reducing
Prior art date
Application number
PCT/KR2021/005867
Other languages
English (en)
French (fr)
Inventor
조한재
이승재
Original Assignee
주식회사 이엠코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠코 filed Critical 주식회사 이엠코
Publication of WO2021251630A1 publication Critical patent/WO2021251630A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to an exhaust gas processing apparatus, and more particularly, to an exhaust gas processing apparatus of a combined cycle power plant.
  • Electricity is generally produced in large-scale power plants.
  • power generation is mainly generated by thermal power generation method that burns fuel, nuclear power generation method using nuclear energy, hydroelectric power generation method using fluid drop, etc.
  • power generation using solar heat, tidal power, wind power method is also used.
  • the thermal power generation method is a method of driving a turbine by burning fuel as a power generation method that is still actively used.
  • fuel In order to obtain electricity from thermal power generation, fuel must be consumed continuously, and the fuel is burned in a gas turbine to generate a large amount of exhaust gas (exhaust gas).
  • exhaust gas This flue gas contains pollutants generated by combustion reaction of fuel and high-temperature thermal reaction, so special treatment is required.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1563079 (2015. 10. 30), Specification
  • the technical problem of the present invention is to solve this problem, and to provide an exhaust gas treatment apparatus of a combined cycle power plant, in particular, a thermal power that can effectively treat the high concentration nitrogen dioxide-containing flue gas generated when the gas turbine of the combined cycle power plant is started It is to provide an exhaust gas treatment device for a power plant.
  • the combined cycle power plant flue gas treatment apparatus of the present invention includes: an injection nozzle having an end located inside the duct between the gas turbine and the heat exchange unit of the combined cycle power plant; a reducing agent supply unit for supplying a reducing agent to the injection nozzle; and a control unit for controlling the reducing agent supply unit, wherein the reducing agent supply unit is a hydrocarbon-based reducing agent supply unit, an ammonia-based reducing agent supply unit, and a hydrocarbon-based reducing agent introduced from the hydrocarbon-based reducing agent supply unit and ammonia introduced from the ammonia-based reducing agent supply unit
  • a mixer for mixing a reducing agent is included, and the mixer has one end connected to the injection nozzle, is located between the ammonia-based reducing agent supply unit and the injection nozzle, and is located between the hydrocarbon-based reducing agent supply unit and the injection nozzle,
  • the heat exchange unit includes one heat exchange module and another heat exchange module, a denitration catalyst is positioned between the one heat exchange module and the other heat
  • the hydrocarbon-based reducing agent supply unit and the ammonia-based reducing agent supply unit may be connected by a connection pipe, and a backflow prevention unit may be disposed on the connection pipe.
  • a branch pipe may be formed in the connecting pipe, and the branch pipe may be connected to the other end of the mixer.
  • the backflow prevention part includes a first backflow prevention part and a second backflow prevention part, the first backflow prevention part is disposed between the branch pipe and the hydrocarbon-based reducing agent supply part, and the second backflow prevention part is the branch pipe and the ammonia It may be disposed between the system reducing agent supply unit.
  • the control unit may control the reducing agent supply unit to supply the hydrocarbon-based reducing agent and the ammonia-based reducing agent to the injection nozzle at a nitrogen oxide concentration of 30 to 100 ppm of the nitrogen oxide-containing exhaust gas between the gas turbine and the heat exchange unit. .
  • the carbon-based reducing agent may be for reducing nitrogen dioxide contained in the nitrogen oxide-containing exhaust gas to nitrogen monoxide.
  • the control unit may control the reducing agent supply unit to supply the hydrocarbon-based reducing agent to the injection nozzle in an amount corresponding to 0.5 equivalents of nitrogen dioxide contained in the nitrogen oxide-containing exhaust gas in a maximum amount.
  • the ratio of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing flue gas may exceed 1.
  • the control unit may control the reducing agent supply unit to supply the hydrocarbon-based reducing agent to the injection nozzle so that the ratio of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing exhaust gas is 2.33 or less.
  • the treatment apparatus further includes a measuring unit for measuring the temperature of the nitrogen oxide-containing exhaust gas, the concentration of one or more of the nitrogen oxide-containing exhaust gas components, and the gas turbine output, the exhaust gas component is nitrogen monoxide or nitrogen dioxide It may include more than one.
  • the control unit may control the reducing agent supply unit to supply the hydrocarbon-based reducing agent to the injection nozzle in association with the measured nitrogen dioxide concentration measured by the measuring unit.
  • the control unit stops the supply of the hydrocarbon-based reducing agent to the injection nozzle when the nitrogen oxide concentration in the exhaust gas discharged from the gas turbine is 5 to 25 ppm, or when the gas turbine reaches 40 to 100% of the maximum output output It is possible to control the reducing agent supply unit to do so.
  • the reducing agent injection direction of the injection nozzle may be a direction toward the center of the duct from the inner wall of the duct.
  • the diffusion module portion includes an outer cylinder portion through which the exhaust gas passes therein, and a hub inserted into the center of the outer cylinder portion to guide the exhaust gas in a centrifugal direction, and the minimum injection position is at the outer circumferential surface of the hub. It may be a position corresponding to a length of 1/2 of the length of the vertical line a from the inner wall of the duct along the perpendicular line a lowered to the inner wall of the duct from an extension line extending in parallel in the longitudinal direction.
  • the denitration catalyst is accommodated in a plurality of denitration catalyst casings, a ring is formed on one side of each of the denitration catalyst casings, and a wire rope having a ring fixing part formed at one end passes through the ring formed in each of the denitration catalyst casings.
  • the denitration catalyst casing is connected, and a wheel is formed on the other side of each of the denitration catalyst casings, and the other end of the wire rope is connected to a wire rope retractor and disposed between the one heat exchange module and the other heat exchange module.
  • the plurality of denitration catalyst casings may be moved between the guide rails.
  • the denitration catalyst may be disposed in a section in which the nitrogen oxide-containing flue gas temperature reaches 200°C to 500°C.
  • the heat exchange unit may further include an inlet heat exchange module, wherein the one heat exchange module is disposed in front of the other heat exchange module, and the inlet heat exchange module is disposed in front of the one heat exchange module.
  • the denitration catalyst may be a dual function catalyst to which an oxidation catalyst function is added.
  • the dual-functional catalyst may be one in which a catalyst component responsible for a denitration function and a catalyst component responsible for an oxidation function exist together on one catalyst support.
  • An additional denitration catalyst may be disposed at a rear end of the denitration catalyst.
  • the one heat exchange module may be disposed at a front end of the other heat exchange module, and the additional denitration catalyst may be disposed at a rear end of the other heat exchange module.
  • the additional denitration catalyst may be disposed in a section in which the nitrogen oxide-containing flue gas temperature reaches 200°C to 400°C.
  • An oxidation catalyst may be disposed at a rear end of the additional denitration catalyst.
  • the heat exchange unit further includes an outlet heat exchange module, the outlet heat exchange module is disposed at the rear end of the other heat exchange module, the one heat exchange module is disposed in front of the other heat exchange module, and the additional denitration catalyst may be disposed at a front end of the outlet-side heat exchange module, and the oxidation catalyst may be disposed at a rear end of the outlet-side heat exchange module.
  • the exhaust gas of the combined cycle power plant can be treated very effectively and efficiently.
  • the present invention can exhibit an excellent treatment effect for the exhaust gas generated at the start-up time of the combined cycle power plant.
  • FIG. 1 is a view for explaining a combined cycle power plant flue gas processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a control unit applicable to the exhaust gas processing apparatus of FIG. 1 .
  • FIG. 3 is a view for explaining a mixer applicable to the exhaust gas processing apparatus of FIG. 1 .
  • FIG. 4 is a cross-sectional view A-A' of the duct part in which the injection nozzle of the exhaust gas processing apparatus of FIG. 1 is installed.
  • FIG. 5 is an enlarged view showing a state in which the injection nozzle of FIG. 4 is installed in the duct.
  • FIG. 6 is an enlarged view showing a state in which the injection nozzle of FIG. 4 is separated from the duct.
  • FIG. 7 is a partially enlarged view showing a part of the exhaust gas processing apparatus of FIG. 1 .
  • FIG. 8 is a view showing the state of a denitration catalyst applicable to the exhaust gas treatment apparatus of FIG. 1 .
  • FIG. 9 is a perspective view illustrating a denitration catalyst casing capable of accommodating a denitration catalyst applicable to the exhaust gas treatment apparatus of FIG. 1 .
  • FIG. 10 is a perspective view showing a bottom surface of the denitration catalyst casing of FIG.
  • FIG. 11 is a view showing the use state of the denitration catalyst casing of FIG.
  • FIG. 12 is a view for explaining a modified example of the exhaust gas processing apparatus of FIG.
  • 'front end' and 'rear end' are relative concepts, and when the flue gas flow direction is based, the exhaust gas inlet side is referred to as the front end and the exhaust gas outlet side is referred to as the rear end.
  • flue gas treatment apparatus a combined cycle power plant flue gas treatment apparatus (hereinafter, flue gas treatment apparatus) according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 11 .
  • FIG. 1 is a view for explaining a combined cycle power plant flue gas treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a control unit applicable to the flue gas treatment apparatus of FIG. 1
  • FIG. It is a view for explaining a mixer applicable to the exhaust gas treatment device
  • FIG. 4 is a cross-sectional view A-A' of the duct where the injection nozzle of the exhaust gas processing device of FIG. 1 is installed
  • FIG. 5 is the injection nozzle of FIG. 4 in the duct
  • FIG. 6 is an enlarged view showing a state in which the injection nozzle of FIG. 4 is separated from the duct
  • FIG. 7 is a partially enlarged view showing a part of the exhaust gas treatment apparatus of FIG.
  • FIG. 8 is a view showing the state of the denitration catalyst applicable to the exhaust gas treatment apparatus of FIG. 1
  • FIG. 9 is a perspective view showing a denitration catalyst casing that can accommodate the denitration catalyst applicable to the exhaust gas treatment apparatus of FIG. 9 is a perspective view showing the bottom surface of the denitration catalyst casing
  • FIG. 11 is a view showing the use state of the nitrogen removal catalyst casing of FIG.
  • the exhaust gas treatment apparatus 10 includes an injection nozzle 11, a reducing agent supply unit 50, and a control unit 60 (see FIGS. 1 and 2), specific space and temperature conditions
  • an injection nozzle 11 a reducing agent supply unit 50, and a control unit 60 (see FIGS. 1 and 2), specific space and temperature conditions
  • the injection nozzle 11 has an end located inside the duct between the gas turbine 1 and the heat exchange unit 8 of the combined cycle power plant, and the reducing agent supply unit 50 supplies the reducing agent to the injection nozzle 11, and the control unit ( 60) controls the reducing agent supply unit (50).
  • the reducing agent can be selectively injected into the space between the gas turbine 1 and the heat exchange unit 8 .
  • the injection nozzle 11 may be supplied from the reducing agent supply unit 50 in a state in which two reducing agents of different series, namely, a hydrocarbon-based reducing agent and an ammonia-based reducing agent, are mixed together.
  • the reducing agent supply unit 50 is the hydrocarbon-based reducing agent supply unit 51, the ammonia-based reducing agent supply unit 53, and the hydrocarbon-based reducing agent introduced from the hydrocarbon-based reducing agent supply unit 51 and the ammonia-based reducing agent supply unit 53 introduced from the ammonia-based reducing agent supply unit 53
  • the mixer 55 has one end connected to the injection nozzle 11, is located between the ammonia-based reducing agent supply unit 51 and the injection nozzle 11, and is located between the hydrocarbon-based reducing agent supply unit 53 and the injection nozzle 11. .
  • the hydrocarbon-based reducing agent and the ammonia-based reducing agent can be selectively injected into the space between the gas turbine and the heat exchange unit in a sufficiently mixed state, and two reducing agents of different series in the same space After the gas has sufficiently contacted the exhaust, a process of contacting the denitration catalyst may be performed in a separate space separated therefrom. As a result, it seems that more effective denitrification is possible.
  • the control unit 60 controls the reducing agent supply unit 50, specifically, the nitrogen oxide-containing flue gas temperature between the gas turbine 1 and the heat exchange unit 8 is 300 °C to 500 °C, preferably more than 300 °C 500 °C or less , more preferably at 320 ° C. to 480 ° C.
  • the reducing agent supply unit 50 controls the reducing agent supply unit 50 to supply the hydrocarbon-based reducing agent and the ammonia-based reducing agent to the injection nozzle 11 .
  • nitrogen dioxide is reduced to nitrogen monoxide by the reducing agent in such a temperature range, and as a result, effective denitrification seems to occur.
  • a temperature range it seems that the reaction of reducing nitrogen dioxide to nitrogen monoxide (Selective Non-Catalytic Reduction; SNCR) is mainly performed by a hydrocarbon-based reducing agent without a catalyst.
  • SNCR Selective Non-Catalytic Reduction
  • nitrogen dioxide can be effectively reduced to nitrogen monoxide in such a temperature range. Below or below this temperature range, there is a concern that it is difficult to reduce nitrogen dioxide to nitrogen monoxide, and in this temperature range, nitrogen monoxide is Rather, it may be oxidized to nitrogen dioxide.
  • the nitrogen dioxide contained in the nitrogen oxide-containing flue gas is reduced to nitrogen monoxide mainly by the hydrocarbon-based reducing agent, the nitrogen dioxide content in the exhaust gas is reduced, and the ammonia-based reducing agent is applied together with the hydrocarbon-based reducing agent, so that the denitration by the denitration catalyst is more It seems to work effectively.
  • the ammonia-based reducing agent which participates in the catalytic reaction by contacting the catalyst, and reduces nitrogen oxides, is already in contact with the denitration catalyst before contacting with the nitrogen oxides (especially nitrogen oxides in which the nitrogen dioxide and nitrogen monoxide contents are adjusted favorably for the catalytic reaction) It seems that it is in a state of being in sufficient contact with , and the same effect is confirmed through experimental examples to be described later.
  • a gas turbine burns fuel to rotate the turbine, and exhaust gas generated during combustion is discharged to the rear end.
  • a gas turbine is a rotary heat engine that starts a turbine with high-temperature/high-pressure combustion gas, and generally includes a compressor, a combustor, and a turbine. At the initial start-up of such a gas turbine, a high content of nitrogen dioxide is included in the nitrogen oxide-containing flue gas, so it is not easy to process, but it can be effectively treated by such a configuration.
  • the hydrocarbon-based reducing agent may be for reducing nitrogen dioxide in the nitrogen oxide-containing exhaust gas to nitrogen monoxide, and the hydrocarbon-based reducing agent is 0.5 equivalent of nitrogen dioxide included in the nitrogen oxide-containing exhaust gas. It is preferred to include the corresponding amount in the reducing agent in the maximum amount. More preferably, the hydrocarbon-based reducing agent may be included in the reducing agent in an amount corresponding to 0.3 to 0.5 equivalents of nitrogen dioxide contained in the nitrogen oxide-containing exhaust gas.
  • the control unit 60 preferably injects a hydrocarbon-based reducing agent in an amount corresponding to 0.5 equivalents, more preferably 0.3 to 0.5 equivalents of nitrogen dioxide contained in the nitrogen oxide-containing exhaust gas in a maximum amount.
  • the reducing agent supply unit 50 By controlling the reducing agent supply unit 50 to be supplied to the nozzle, it is possible to effectively treat nitrogen oxides without using an excess hydrocarbon-based reducing agent.
  • the exhaust gas can be treated so that the amount of the hydrocarbon-based reducing agent supplied to the injection nozzle is linked to the amount of nitrogen dioxide in the exhaust gas, which measures the concentration of nitrogen dioxide with a sensor to be described later, and accordingly, the injection amount of the hydrocarbon-based reducing agent It can depend on the way you control it.
  • control unit 60 interlocks with the measured value of the nitrogen dioxide concentration in the nitrogen oxide-containing exhaust gas measured at the front end of the denitration catalyst (eg, inside the duct between the gas turbine and the heat exchange unit) to inject the hydrocarbon-based reducing agent into the injection nozzle
  • the exhaust gas can be treated by controlling the reducing agent supply unit 50 to supply to (11).
  • Such measurement may be performed by the measurement unit 40 (refer to FIG. 2 ).
  • the nitrogen dioxide can be reduced to nitrogen by a slow reaction as shown in Reaction Formulas (2A) and (2B) by contacting the denitration catalyst. .
  • the content of nitrogen dioxide in the exhaust gas is reduced by the hydrocarbon-based reducing agent before contact with the catalyst and the content of nitrogen monoxide is increased by increasing the reaction formula ( 2A) and (2B) rather than the reaction according to the reaction formula (1B) can be induced, so that a faster denitrification reaction can occur.
  • the denitrification reaction is possible in a wider temperature range. That is, even when the denitration catalyst and the exhaust gas come into contact at 200 to 500 degrees Celsius, denitration by the catalytic reaction is possible.
  • the denitration catalyst can be applied in such a relatively wide temperature range, in one embodiment of the present invention, as long as the denitration catalyst is located between one heat exchange module and the other heat exchange module, the relative It can also be arranged in a high temperature position.
  • one heat exchange module is located in front of the other heat exchange module, and the rear end of one heat exchange module in which the denitration catalyst is located preferably has an exhaust gas temperature of 80% or more of the gas turbine load (eg, 80% to 100% load). ) may be a section in which the average range of 450 ⁇ 60°C is maintained.
  • the conventional selective catalytic reduction method when a denitration catalyst is placed at the rear end of a heat exchange module at a relatively high temperature, denitration is mainly performed by a slow reaction as in Reaction Formulas (2A) and (2B), so without increasing the amount of catalyst Since it is difficult to achieve a desired degree of denitrification, it is common to place a denitration catalyst at the rear end of a heat exchange module at a relatively low temperature.
  • the rear end of the heat exchange module which is relatively low temperature, may preferably be a section in which the flue gas temperature is maintained in the range of 350 ⁇ 60° C. on average at 80% or more of the gas turbine load (eg, 80% to 100% load).
  • a location where the temperature rises faster than the conventional denitration catalyst installation location e.g., gas Effective denitration is possible by the present invention by placing the denitration catalyst at a position closer to the turbine).
  • the nitrogen oxide-containing flue gas to be treated contains nitrogen dioxide in a high content.
  • the treatment target is preferably the nitrogen oxide-containing exhaust gas generated at the initial stage of gas turbine startup (eg, before the gas turbine reaches 40% to 80% of the maximum output), and the nitrogen oxide concentration of such nitrogen oxide-containing exhaust gas is 30 to 100 ppm, and the nitrogen dioxide content of the nitrogen oxides contained in the nitrogen oxide-containing flue gas may be 40 to 90 vol%.
  • the ratio (eg, molar ratio) of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing flue gas may exceed 1, preferably more than 1 to 100 or less, more preferably more than 1 to 9 or less, even more preferably It may be 2.4 to 9. At such a ratio, it appears that nitrogen dioxide in the flue-gas can be more easily converted to nitrogen monoxide, resulting in more effective denitrification.
  • control unit 60 is configured to control the gas turbine at the initial stage of operation (eg, until the gas turbine reaches 40% to 80% of the maximum output), the nitrogen oxide concentration of the nitrogen oxide-containing exhaust gas is 30 to 100ppm, and/or It can be controlled so that the reducing agent supply unit 50 supplies the hydrocarbon-based reducing agent and the ammonia-based reducing agent to the injection nozzle 11 at a nitrogen dioxide content of 40 to 90 vol% among nitrogen oxides of the nitrogen oxide-containing exhaust gas.
  • control unit 60 has a ratio (eg, molar ratio) of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing flue gas is more than 1, preferably more than 1 to 100 or less, more preferably more than 1 to 9 or less, even more preferably In 2.4 to 9, the reducing agent supply unit 50 may control to supply the hydrocarbon-based reducing agent and the ammonia-based reducing agent to the injection nozzle 11 .
  • the ratio of nitrogen dioxide / nitrogen monoxide is less than 2.49, for example, 2.33 or less (eg, 0 to 2.33) is preferably maintained, more preferably 0.43 to 2.33, and even more preferably 0.67 to 1.5. This is because, as confirmed from the experimental examples, denitrification occurs relatively easily at such a ratio. This is thought to be because the reaction according to Scheme (1B) and/or Scheme (1C) occurs more easily at such a ratio, and even nitrogen monoxide remaining unreacted by Scheme (1B) is in the reaction shown in Scheme (1C).
  • control unit 60 preferably has a ratio (eg, molar ratio) of nitrogen dioxide / nitrogen monoxide in the flue gas is less than 2.49, for example, 2.33 or less (eg, 0 to 2.33), more preferably 0.43 to 2.33, more
  • the reducing agent supply unit 50 may be controlled to supply the hydrocarbon-based reducing agent to the injection nozzle 11 so as to be 0.67 to 1.5.
  • the control unit 60 may control the reducing agent supply unit 50 to stop.
  • control unit 60 may control the reducing agent supply unit 50 to stop supplying the hydrocarbon-based reducing agent to the injection nozzle 11 at a nitrogen oxide concentration of 5 to 25 ppm in the nitrogen oxide-containing exhaust gas.
  • concentration in this range is mainly in a state in which the gas turbine operates stably, and the nitrogen dioxide content in the exhaust gas is not high, so that it can be sufficiently treated by denitration according to Reaction Formula (1C). Accordingly, such interruption may be carried out depending on the operating state of the gas turbine, for example, preferably 40% or more (eg, 40% to 100%) of the gas turbine maximum output, more preferably It can be carried out when it shows 80% or more (eg, 80% to 100%).
  • the control unit 60 so as to stop supplying the hydrocarbon-based reducing agent to the injection nozzle 11 .
  • the control unit 60 can control the reducing agent supply unit (50).
  • control unit 60 the control unit 60 , the reducing agent supply unit 50 , and the injection nozzle 11 will be looked at in more detail.
  • control unit 60 controls the reducing agent supply unit 50 to control the reducing agent supply unit 50 to supply the hydrocarbon-based reducing agent and the ammonia-based reducing agent to the injection nozzle 11 .
  • the control unit 60 may be configured as a control device including a central processing unit (CPU) capable of processing data, such as a microprocessor.
  • CPU central processing unit
  • the control device is not limited as long as it can control the reducing agent supply unit 50, and an input/output unit ( It may be a commercially available product including a data storage unit (not shown) capable of storing data generated or written in the control process (not shown) or a manufactured product according to a known technology.
  • the reducing agent supply unit 50 is, as shown in FIG. 1, the hydrocarbon-based reducing agent supply unit 51, the ammonia-based reducing agent supply unit 53, and the hydrocarbon-based reducing agent and ammonia-based reducing agent supply unit introduced from the hydrocarbon-based reducing agent supply unit 51.
  • a mixer 55 for mixing the ammonia-based reducing agent introduced from 53 is included.
  • the mixer 55 has one end connected to the injection nozzle 11 by the reducing agent supply pipe 58, and is located between the ammonia-based reducing agent supply unit 53 and the injection nozzle 11 as well as the hydrocarbon-based reducing agent supply unit. It is also located between the (51) and the injection nozzle (11).
  • the hydrocarbon-based reducing agent supply unit 51 and the ammonia-based reducing agent supply unit 53 may each have a structure that can store the reducing agent for a certain time, such as a tank, or a structure that can supply the reducing agent in real time, such as a pipe.
  • the mixer 55 is not limited to a specific structure as long as it can mix the hydrocarbon-based reducing agent and the ammonia-based reducing agent.
  • the mixer 55 may have a structure in which a baffle 553 is formed in the path through which the reducing agent moves, thereby preventing the movement and generating turbulence to mix the reducing agent.
  • Such a mixer 55 may have a baffle 553 formed inside the mixer housing 551 , and an inlet 555 and an outlet 557 may be formed at one side and the other side, respectively.
  • the inlet 555 is connected to the branch pipe 59
  • the outlet 557 is connected to the reducing agent supply pipe 58 to easily move the reducing agent.
  • the hydrocarbon-based reducing agent supply unit 51 and the ammonia-based reducing agent supply unit 53 are connected by a connection pipe 57 , and backflow prevention units 52 and 54 may be disposed in the connection pipe 57 .
  • a branch pipe 59 is formed in such a connection pipe 57 , the branch pipe 59 can be connected to the other end of the mixer 55 , and the backflow preventing parts 52 and 54 are the first backflow preventing parts 52 . ) and a second backflow prevention part 54, the first backflow prevention part 52 is disposed between the branch pipe 59 and the hydrocarbon-based reducing agent supply part 51, and the second backflow prevention part 54 is It may be disposed between the branch pipe 59 and the ammonia-based reducing agent supply unit 53 .
  • the backflow prevention units 52 and 54 may be formed of a check valve or the like.
  • the reducing agent supply unit 50 also includes a pump (51a, 53a), a shut-off valve (not shown), and the like, and the control unit 60 specifically operates or operates such a pump (51a, 53a) and/or a shut-off valve.
  • the supply of the reducing agent can be controlled by stopping or the like.
  • the control unit 60 may also receive the data measured by the measurement unit 40, and more effectively control the reducing agent supply unit 50 to process the exhaust gas.
  • the measuring unit 40 may include a sensor and the like to measure the temperature of the nitrogen oxide-containing exhaust gas, the concentration of one or more of the nitrogen oxide-containing exhaust gas components, and one or more selected from the gas turbine output.
  • the exhaust gas component may include at least one of nitrogen monoxide and nitrogen dioxide. Therefore, the control unit 60 can more effectively control the reducing agent supply unit 50 in the temperature condition, concentration condition, gas turbine output condition, etc. previously looked at to treat the exhaust gas.
  • the injection nozzle 11 can selectively inject the reducing agent into the duct between the gas turbine 1 and the heat exchange unit 8 by spraying the reducing agent from the end, as shown in FIGS. 1 and 4 to 7 . .
  • the injection nozzle 11 is not limited as such, but is coupled through the duct 3 as shown in FIG. 4, and the reducing agent injection direction of the injection nozzle 11 is from the inner wall of the duct 3 to the duct 3 It may be a direction toward the center. Due to this structure, the reducing agent can be supplied to a specific position in a very simple manner through the duct 3 without the help of a structure that obstructs the flow of the exhaust gas inside the duct 3 .
  • the reducing agent supply pipe 58 for supplying the reducing agent to the injection nozzle 11 may be connected to one end exposed to the outside of the duct 3 of the injection nozzle 11 .
  • the duct 3 to which the injection nozzle 11 is coupled may be formed of a pipe between the diffusion module part 2 and the heat exchange part 8, and the duct expansion pipe 4 adjacent to the heat exchange part 8 is also a duct (3). may be included as part of The duct 3 may also include a damping connection 31 for damping vibrations.
  • the injection nozzle 11 may be located at the rear end of the buffer connection part 31 .
  • the duct 3 has a structure consisting of a first duct part 3a, a second duct part 3b, and a buffer connection part 31 between the first duct part 3a and the second duct part 3b. It may be, and the buffer connection part 31 may have a structure formed to absorb vibration and block the propagation of vibration to the rear end (refer to FIG.
  • the buffer connection part 31 may be formed to include various types of shock absorbers, and for example, may be formed to include a structure such as a corrugated pipe that absorbs vibrations, such as a bellows.
  • the injection nozzle 11 in such a duct can be installed very conveniently in the structure shown in FIGS. 5 to 6 .
  • the coupling flange 112 is formed to protrude around the body 111 of the injection nozzle 11, and the coupling flange 112 is formed with the flange of the flange through pipe 114 (flange through pipe 114 in FIG. 6).
  • the duct (3) of the bent portion formed at the outer end] can be fixed by abutting it.
  • a gasket 113 is inserted between the coupling flanges 112 to block the gap and to form a structure capable of buffering.
  • the injection nozzle 11 can be inserted into the flange through-pipe 114 to be fixed very conveniently, and also very conveniently by withdrawing it from the flange through-pipe 114 as shown in FIG. can also be separated.
  • a detachable coupling member such as a bolt or a nut
  • a diffusion module part 2 that regulates the exhaust gas flow and guides it to the inner wall side of the duct 3 may be disposed between the injection nozzle 11 and the gas turbine 1, and the reducing agent by the injection nozzle 11 may be disposed.
  • An embodiment of the present invention may further include a minimum injection position 11m, which is a minimum position that can be reached by being injected.
  • the diffusion module part 2 is located between the gas turbine 1 and the duct 3, and is inserted into the center of the outer cylinder part 21 and the outer cylinder part 21 through which the exhaust gas passes in the centrifugal direction. It includes a guide hub 22 (see FIGS. 1 and 4 ).
  • the hub 22 may be fixed to the outer cylinder part 21 by the support 23 .
  • the minimum injection position 11m is from the inner wall of the duct 3 along the perpendicular a from the outer circumferential surface of the hub 22 to the inner wall of the duct 3 from the extension line L extending in parallel in the longitudinal direction of the hub. It may be a position corresponding to 1/2 the length (a/2) of the length of the vertical line a (refer to FIG. 7 ).
  • the reducing agent As the reducing agent reaches the position above the minimum injection position (11m) by the injection nozzle, it can act more effectively.
  • the reducing agent that does not reach the minimum injection position (11m) may be difficult to sufficiently contact the exhaust gas, and the reducing agent that does not sufficiently contact the exhaust gas is discharged in an unreacted state and may rather become a new pollutant.
  • the denitration catalyst 7 is positioned between one heat exchange module 83 and the other heat exchange module 85 included in the heat exchange unit 8 . Since the denitration catalyst is located at such a position, the reaction by the denitration catalyst can proceed in a space separated from a space where two types of reducing agents are mixed and reacted in contact with the exhaust gas. In addition, since the exhaust gas whose temperature is controlled by the heat exchange module comes into contact with the denitration catalyst, it is more preferable in terms of catalyst protection. However, since it may not be easy to install the denitration catalyst in a narrow space between the heat exchange modules, the denitration catalyst 7 can be more easily installed by being accommodated in the denitration catalyst casing 700 .
  • the denitration catalyst in the state shown in FIG. 8 may be accommodated in the plurality of denitration catalyst casings 700 shown in FIG. 9 .
  • 8 is a state in which the denitration catalyst is supported on the carrier 71 and the carrier 71 is accommodated in the catalyst housing 73 having one side and the other open, and the catalyst in this state is accommodated in the denitration catalyst casing 700 It can be installed more easily even in a narrow space.
  • Each of the denitration catalyst casings 700 may accommodate one or more catalyst housings 73 in which the carriers 71 are accommodated.
  • One side and the other side of the denitration catalyst casing 700 are also opened, and grids 710 and 750 are formed in each to prevent the catalyst housing 73 accommodated therein from being separated.
  • the grating 710 may be detachably attached to the casing body 730 by the same configuration as the bolt 701 and the nut 703 .
  • the plurality of denitration catalyst casings 700 are disposed between a pair of guide rails 740a and 740b and can move therebetween, and the pair of guide rails includes one heat exchange module 83 and another heat exchange module 85 . ) can be placed between With such a structure, the plurality of denitration catalyst casings can be stably moved between the heat exchange modules.
  • a ring 790 is formed on one side of each of the denitration catalyst casing 700, and a wire rope 770 having a ring fixing part 775 formed at one end of each denitration catalyst casing (
  • Each of the denitration catalyst casings 700 may be connected through the ring 790 formed in the 700 .
  • a wheel 780 is formed on the other side of each of the denitration catalyst casing 700 , and the other end of the wire rope 770 may be connected to the wire rope retractor 760 . Due to such a structure, the denitration catalyst can be easily moved between the heat exchange modules 83 and 85 even in a state in which the denitration catalyst is accommodated in the plurality of denitration catalyst casings 700 .
  • a ring fixing part 775 is formed at one end of the wire rope 770 and the other end is connected to the wire rope retractor 760, and the denitration catalyst casing 700 connected by a wire rope 770 between one end of the wire rope and the other end. Because of this location, when the other end of the wire rope is pulled, the ring fixing part 775 formed at one end of the wire rope presses the ring 790, and the denitration catalyst casing 700 in which the pressurized ring is formed is also pressurized to move in the pulling direction. As a result, the denitration catalyst casing adjacent thereto is also pressed by the movement, and as a result, all of the plurality of denitration catalyst casings move in the traction direction.
  • an openable and openable door 320 is formed on one side wall 310 of the heat exchange unit, and a through hole 340 through which the wire rope 770 passes through the other side wall 330 . ), and the other end of the wire rope passes through the through hole 340 to be connected to the wire rope retractor 760 installed outside the heat exchange unit, and then operates the wire rope retractor in the direction of the arrow, a pair of guide rails 740a, 740b), the denitration catalyst can be easily installed even in a narrow space such as between heat exchange modules in a manner such as moving the denitration catalyst casing 700 between the heat exchange modules (refer to the arrow in FIG. 11).
  • the ring 790 is not limited to the illustrated shape as long as one side and the other side are open to allow the wire rope 770 to pass through, and may have various shapes such as a donut shape, a cylindrical shape, and the like.
  • the ring fixing part 775 is not limited to the illustrated shape as long as one end of the wire rope 770 is fixed to the ring 790, and the end of the wire rope is fixed to the support or the end of the wire rope is fixed to the support. It can be made in a manner such as molding in the shape of.
  • the support may be a wire rope clip, a wire rope clamp (eg, a wire rope end stop clamp ring), or the like.
  • the ring fixing part 775 may preferably be detachably attached to a wire rope by screwing or the like.
  • an opening and closing portion 325 such as a hinge may be formed on one side of the door.
  • the wire rope retractor 760 is a device for towing a wire rope, and may be, for example, a wire rope winch equipped with a motor.
  • the heat exchange unit 8 may be a part of a boiler for waste heat recovery, and in addition to one heat exchange module 83 and the other heat exchange module 85 , an inlet heat exchange module 81 , an outlet heat exchange module 87 , It may further include a heat exchange module, such as a flue-side heat exchange module (89).
  • the stack-side heat exchange module 89 is a heat exchange module adjacent to the stack 6 .
  • the upper and lower ends of each heat exchange module (81, 83, 85, 87, 89) may be connected to each other, and a tank for storing and circulating high-pressure steam or heat recovery fluid may be installed in the connection part. have.
  • the heat exchange modules 81 , 83 , 85 , 87 , 89 sequentially circulate a fluid from the module 89 at the rear end toward the module 81 at the front end to generate high-pressure steam.
  • the temperature of the heat exchange modules 81 , 83 , 85 , 87 , and 89 may be sequentially lowered from the module 81 at the front end toward the module 89 at the rear end.
  • a catalyst may be additionally installed in the space between the heat exchange modules, which will be described in more detail with reference to FIG. 12 .
  • 12 is a view for explaining a modified example of the exhaust gas processing apparatus of FIG.
  • the exhaust gas treatment device 10-1 which is a modified example, includes an additional denitration catalyst 7-1 at the rear end of the denitration catalyst 7, and an oxidation catalyst at the rear end of the additional denitration catalyst 7-1 ( 9) can be arranged.
  • the exhaust gas treatment device 10-1 shown in FIG. 12 is the same as the exhaust gas treatment device 10 shown in FIG. 1 except for the addition of an additional denitration catalyst 7-1 and an oxidation catalyst 9. indicates that it has been Therefore, in order to avoid repetition, the description will be focused on the configuration added to the device 10-1 shown in FIG. 12 except for the contents overlapping with the exhaust gas processing device 10 shown in FIG.
  • the additional denitration catalyst 7-1 is disposed between the other heat exchange module 85 and the outlet side heat exchange module 87, and the exhaust gas contacts the additional denitration catalyst under a temperature condition of 200 to 400 degrees Celsius to form an additional denitration catalyst.
  • the reaction may be allowed to proceed. After that, in contact with the oxidation catalyst 9 disposed between the outlet-side heat exchange module 87 and the flue-side heat exchange module 89, carbon monoxide and volatile organic compounds present in the exhaust gas can be removed by oxidation reaction on the catalyst. do.
  • the oxidation catalyst 9 is capable of treating substances that can be treated by an oxidation method or a decomposition method, such as hydrocarbons such as aldehydes, incomplete combustion products such as carbon monoxide, and unreacted reducing agents such as unreacted ammonia. With such an oxidation catalyst, it is possible to remove volatile organic compounds and unreacted reducing agents that may be included in the exhaust gas. Such volatile organic compounds may be included in the nitrogen oxide-containing flue gas or derived from a reducing agent. Accordingly, with such a configuration, carbon monoxide, volatile organic compounds, etc. contained in the nitrogen oxide-containing flue gas or derived from a reducing agent are treated, and the flue gas can be treated more effectively.
  • the denitration catalyst or additional denitration catalyst applicable to an embodiment of the present invention is not limited as long as it can reduce nitrogen oxide to nitrogen by selective catalytic reduction (SCR).
  • SCR selective catalytic reduction
  • it may include an ammonia-SCR reaction catalyst (eg, a metal oxide catalyst containing vanadium, etc.), and may be manufactured by a known method such as an ion exchange method or a dry impregnation method or may be commercially available.
  • the denitration catalyst or the additional denitration catalyst may be a dual function catalyst to which an oxidation catalyst function is added.
  • the dual function catalyst to which the oxidation catalyst function is added means a catalyst to which an oxidation catalyst function is added in addition to the denitration catalyst function, and is not limited to the form or type of the catalyst, for example, the dual function catalyst is one catalyst support It may be that the catalyst component responsible for the denitrification function and the catalyst component responsible for the oxidation function exist together. Preferably, the catalyst component responsible for the denitration function may be located in front of the catalyst component responsible for the oxidation function. In this case, the catalyst component responsible for the denitration function may be a vanadium oxide catalyst component having a reducing ability, and the catalyst component responsible for the oxidation function may be a noble metal-based catalyst component.
  • the noble metal may be platinum, palladium, silver, or the like.
  • THC or ammonia slip can also be suppressed by such a dual function catalyst, and more effective exhaust gas treatment is possible in terms of pressure difference.
  • a more preferred hydrocarbon-based reducing agent may be, for example, at least one selected from ethanol, ethylene glycol, glycerin, sugar, and fructose.
  • the oxidation catalyst applicable to an embodiment of the present invention is not limited as long as it is a catalyst applicable to a material that can be treated by an oxidation method or a decomposition method, for example, platinum, palladium, and/or silver It may be an oxidation catalyst containing.
  • the oxidation catalyst may also be prepared by a known method or may be commercially available.
  • An electric heater and a cooler were also installed in the mixer so that the reducing agent and the exhaust gas contacted and mixed at 400 ⁇ 4°C.
  • Ammonia was injected into the mixer after adjusting the NH 3 /NOx molar ratio to 1.26 at the front of the mixer.
  • ammonia gas of 1% concentration (Balance gas N 2 ) was used, and the injection flow rate was adjusted by MFC.
  • the injection amount of ethylene glycol was controlled using a metering pump. Ethylene glycol is measured by the temperature denitration rate by adjusting the molar ratio of NO 2 than injection (ethylene glycol / NO 2) by injection.
  • the reaction temperature of the SCR catalyst was changed from 175°C to 550°C, and the effect on denitrification was confirmed.
  • the reaction temperature range of 500 ° C or less is selected in consideration of the reaction temperature range that can be reached when the reducing agent and the exhaust gas come into contact at 300 ° C to 500 ° C, and the reaction temperature range exceeding 500 ° C is the catalytic reaction temperature
  • the experiment was carried out by arbitrarily raising the temperature of the catalyst testing apparatus to 550 °C in order to understand the effect.
  • the denitrification rate was calculated under each condition, and the results are shown in the table below.
  • the catalyst reaction temperature was fixed at 300 °C, but the temperature of the exhaust gas to which the reducing agent is supplied was changed, and the change in the denitration rate was identified.
  • the catalyst reaction temperature of 300° C. was set in consideration of the relatively low temperature among the reaction temperatures capable of exhibiting a denitration rate of 90% or more in Experimental Example 1.
  • the first chamber and the second chamber are disposed so that the reducing agent is supplied to the exhaust gas in the first chamber, and the catalytic reaction can be performed in the second chamber at the rear end of the first chamber, and the SCR catalyst (ivy) in the second chamber materials) was installed.
  • An electric heater was installed at the front end of the first chamber and the second chamber, respectively, and an air-cooled cooler was installed at the front end of the second chamber to control the reaction temperature.
  • the space velocity of the SCR catalyst was 45000hr -1 .
  • the denitration rate by the catalytic reaction was calculated, and the results are shown in Table 2.
  • the NO 2 /NOx content was also measured at the front end of the catalyst in the second chamber. .
  • there was no significant difference from the NO 2 /NOx content measured in the first chamber and it was confirmed that the NO 2 conversion rate was maintained even at the catalytic reaction temperature at the flue gas temperature shown in Table 2.
  • Table 2 shows the ratio of nitrogen dioxide / nitrogen monoxide in the exhaust gas.
  • the ratio of nitrogen dioxide / nitrogen monoxide in the exhaust gas was calculated by dividing the NO 2 concentration remaining in the exhaust gas after conversion by the NO concentration present in the exhaust gas after conversion (NO concentration present before conversion + NO concentration newly generated by conversion). .
  • the control unit controls the reducing agent supply unit to supply the reducing agent (eg, hydrocarbon-based reducing agent) to the injection nozzle so that the ratio of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing flue gas is less than 2.49. It can be seen that it is more preferable to
  • the catalytic reaction temperature was fixed at 300°C as in Experimental Example 2, but the ratio of nitrogen dioxide/nitrogen monoxide in the exhaust gas was changed, and the experiment was conducted.
  • the space velocity of the SCR catalyst was different from Experimental Example 2, in order to better understand the difference in the denitrification effect according to the difference in the ratio of nitrogen dioxide/nitrogen monoxide in the exhaust gas.
  • nitrogen was used as a balance gas and O 2 was adjusted to 15%, and then the NO and NO 2 concentrations were adjusted to be the ratios described in the table below.
  • An SCR catalyst (Ivy Materials) was placed in the catalyst experiment equipment, and an electric heater and a cooler were installed to control the reaction temperature.
  • the space velocity of the SCR catalyst was 30,000 ⁇ 2000hr -1 .
  • a mixer was applied so that ammonia passed through the catalyst experiment device in a mixed state with the simulated flue gas.
  • An electric heater and a cooler were also installed in the mixer to control the mixing temperature.
  • Ammonia was injected into the mixer after adjusting the molar ratio of NH 3 /NOx to 1.2 at the front of the mixer.
  • ammonia gas of 1% concentration (Balance gas N 2 ) was used, and the injection flow rate was adjusted by MFC.
  • the denitrification rate was calculated under each condition, and the results are shown in the table below.
  • the NO 2 /NO ratio in the contact exhaust gas is preferably 2.33 or less, more preferably 0.43 to 2.33, and still more preferably 0.67 to 1.5. Therefore, the reducing agent (eg, hydrocarbon-based reducing agent) may be for maintaining such a ratio.
  • the reducing agent eg, hydrocarbon-based reducing agent
  • the control unit preferably has a ratio of nitrogen dioxide / nitrogen monoxide in the nitrogen oxide-containing flue gas is 2.33 or less, more preferably 0.43 to 2.33, even more preferably 0.67 to It can be seen that it is more preferable to control the reducing agent supply unit to supply a reducing agent (eg, a hydrocarbon-based reducing agent) to the injection nozzle so that it becomes 1.5.
  • a reducing agent eg, a hydrocarbon-based reducing agent
  • the same SCR catalyst as in Experimental Example 1 and a separate platinum-based oxidation catalyst (IV Materials) were purchased and used. At this time, the space velocity of the platinum-based oxidation catalyst was 60,000 hr -1 .
  • a 40% portion of the SCR catalyst as in Experimental Example 1 was coated, so that the content of Pt relative to the catalyst weight was 0.05wt%. and dried at 120° C. for 4 hours and then calcined at 500° C. for 5 hours to prepare a dual function catalyst.
  • Table 4 shows the experimental results when only ammonia was applied as the reducing agent and the SCR catalyst was applied, and Tables 5 and 6 show the experimental results when ammonia and ethylene glycol were applied as reducing agents and an oxidation catalyst was additionally applied to the denitration catalyst. .
  • Table 5 shows the experimental results when the oxidation catalyst is applied to a separate support, and Table 6 shows the experimental results when the dual-function catalyst is applied.
  • Table 7 shows the experimental results of the differential pressure change in each case at the reaction temperature of 380 °C. In this case, ND in the table indicates not detected.
  • reaction temperature (°C) Denitrification rate (%) THC removal rate (%) Ammonia slip (ppm) 175 16 below 10 50 or more 200 21 below 10 50 or more 225 30 below 10 50 or more 250 38 below 10 50 or more 300 65 below 10 38 350 86 below 10 15 400 90 below 10 8 450 83 below 10 5 475 70 below 10 4 500 56 below 10 4 525 40 below 10 3
  • duct 3a first duct part
  • measuring unit 50 reducing agent supply unit
  • first backflow prevention unit 53 ammonia-based reducing agent supply unit
  • branch pipe 60 control unit
  • baffle 555 inlet
  • the exhaust gas of the combined cycle power plant can be effectively treated by the combined cycle power plant flue gas processing apparatus of the present invention. Accordingly, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명의 복합화력발전소 배가스 처리장치는 분사노즐; 환원제 공급 유니트; 및 제어부를 포함하며, 환원제 공급 유니트는 탄화수소계 환원제 공급부, 암모니아계 환원제 공급부, 및 혼합기를 포함하고, 혼합기는 분사노즐에 일단이 연결되고, 암모니아계 환원제 공급부와 분사노즐 사이에 위치하고, 탄화수소계 환원제 공급부와 분사노즐 사이에 위치하며, 열교환부는 하나의 열교환모듈과 다른 하나의 열교환모듈을 포함하고, 하나의 열교환모듈과 다른 하나의 열교환모듈 사이에 탈질촉매가 위치하고, 제어부는 가스터빈과 열교환부 사이의 질소산화물 함유 배가스 온도 300℃ 내지 500℃에서 환원제 공급 유니트가 탄화수소계 환원제 및 암모니아계 환원제를 상기 분사노즐로 공급하도록 제어한다. 본 발명에 의해 복합화력발전소의 배가스를 매우 효과적으로 처리할 수 있다.

Description

복합화력발전소 배가스 처리장치
본 발명은 배가스 처리장치에 관한 것으로서, 더욱 상세하게는 복합화력발전소의 배가스 처리장치에 관한 것이다.
전력은 일반적으로 대규모 발전시설에서 생산되고 있다. 발전소에서는 주로 연료를 연소시켜 발전하는 화력발전방식이나, 원자력에너지를 이용한 원자력발전방식, 유체의 낙차를 이용하는 수력발전방식 등으로 발전하며, 그 밖의 발전시설 등에서는 태양열, 조력, 풍력 등을 이용한 발전방식도 사용된다.
이 중 화력발전방식은 현재까지도 매우 활발하게 사용되고 있는 발전방식으로서 연료를 연소하여 터빈을 구동하는 방식이다. 화력발전으로 전력을 얻기 위해서는 지속적으로 연료를 소비해야 하며 연료는 가스터빈 내에서 연소되며 다량의 배가스(배기가스)를 생성하게 된다. 이러한 배가스는 연료의 연소반응 및 고온 열반응 등에 의해 생성된 오염물질들을 함유하고 있어 각별한 처리가 요구된다.
따라서 화력발전소에 다양한 형태의 처리설비가 적용되고 있으나(예, 대한민국 등록특허공보 10-1563079 등), 종래의 처리설비로 배가스가 만족스럽게 처리되지는 못하고 있다. 특히, 복합화력발전소는 터빈의 운전 상태가 수시로 변동되고 그에 따라 배가스의 유량, 속도, 온도 등의 조건도 바뀔 수 있으며, 특히, 기동 초기 배가스에 포함되는 질소산화물 중 이산화질소가 고함량을 나타내어, 이에 대한 대응이 필요하나 만족스러운 처리 기술의 개발은 아직 미진한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허공보 제10-1563079호(2015. 10. 30), 명세서
본 발명의 기술적 과제는, 이러한 문제를 해결하기 위한 것으로서, 복합화력발전소의 배가스 처리장치를 제공하고자 하는 것이며, 특히 복합화력발전소의 가스터빈 기동 시 발생하는 고농도 이산화질소 함유 배가스도 효과적으로 처리할 수 있는 화력발전소의 배가스 처리장치를 제공하는 것이다.
본 발명의 기술적 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 복합화력발전소 배가스 처리장치는 복합화력발전소의 가스터빈과 열교환부 사이의 덕트 내부에 말단이 위치하는 분사노즐; 상기 분사노즐로 환원제를 공급하기 위한 환원제 공급 유니트; 및 상기 환원제 공급 유니트를 제어하는 제어부를 포함하며, 상기 환원제 공급 유니트는 탄화수소계 환원제 공급부, 암모니아계 환원제 공급부, 및 상기 탄화수소계 환원제 공급부로부터 유입된 탄화수소계 환원제와 상기 암모니아계 환원제 공급부로부터 유입된 암모니아계 환원제를 혼합하기 위한 혼합기를 포함하고, 상기 혼합기는 상기 분사노즐에 일단이 연결되고, 상기 암모니아계 환원제 공급부와 상기 분사노즐 사이에 위치하고, 상기 탄화수소계 환원제 공급부와 상기 분사노즐 사이에 위치하며, 상기 열교환부는 하나의 열교환모듈과 다른 하나의 열교환모듈을 포함하고, 상기 하나의 열교환모듈과 상기 다른 하나의 열교환모듈 사이에 탈질촉매가 위치하고, 상기 제어부는 상기 가스터빈과 상기 열교환부 사이의 질소산화물 함유 배가스 온도 300℃ 내지 500℃에서 상기 환원제 공급 유니트가 상기 탄화수소계 환원제 및 상기 암모니아계 환원제를 상기 분사노즐로 공급하도록 제어한다.
상기 탄화수소계 환원제 공급부와 상기 암모니아계 환원제 공급부는 연결관에 의해 연결되고, 상기 연결관에는 역류방지부가 배치될 수 있다.
상기 연결관에는 분지관이 형성되어, 상기 분지관이 상기 혼합기의 타단에 연결될 수 있다.
상기 역류방지부는 제1역류방지부 및 제2역류방지부를 포함하고, 상기 제1역류방지부는 상기 분지관과 상기 탄화수소계 환원제 공급부 사이에 배치되고, 상기 제2역류방지부는 상기 분지관과 상기 암모니아계 환원제 공급부 사이에 배치될 수 있다.
상기 제어부는 상기 가스터빈과 상기 열교환부 사이에서 질소산화물 함유 배가스의 질소산화물 농도가 30 내지 100ppm에서 상기 환원제 공급 유니트가 상기 탄화수소계 환원제 및 상기 암모니아계 환원제를 상기 분사노즐로 공급하도록 제어할 수 있다.
상기 탄화소소계 환원제는 상기 질소산화물 함유 배가스 중 포함되는 이산화질소를 일산화질소로 환원시키기 위한 것일 수 있다.
상기 제어부는 상기 질소산화물 함유 배가스 중 포함되는 이산화질소의 0.5 당량에 해당하는 양을 최대량으로 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어할 수 있다.
상기 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율은 1을 초과할 수 있다.
상기 제어부는 상기 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율이 2.33 이하가 되도록 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어할 수 있다.
상기 처리장치는 상기 질소산화물 함유 배가스의 온도, 상기 질소산화물 함유 배가스 성분 중 하나 이상의 농도, 및 상기 가스터빈 출력 중에서 선택된 하나 이상을 측정하는 측정부를 더 포함하고, 상기 배가스 성분은 일산화질소 또는 이산화질소 중 하나 이상을 포함할 수 있다.
상기 제어부는 상기 측정부에서 측정한 이산화질소농도 측정값에 연동하여 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어할 수 있다.
상기 제어부는 상기 가스터빈으로부터 유출되는 배가스 중 질소산화물 농도가 5~25ppm이거나, 상기 가스터빈이 최대출력의 40~100% 출력에 도달할 때, 상기 탄화수소계 환원제가 상기 분사노즐로 공급되는 것을 중단하도록 상기 환원제 공급 유니트를 제어할 수 있다.
상기 분사노즐의 상기 환원제 분사방향은 상기 덕트 내벽으로부터 덕트 중심을 향하는 방향일 수 있다.
상기 가스터빈과 상기 분사노즐 사이에 배가스 흐름을 조절하여 상기 덕트의 내벽 측으로 유도하는 확산모듈부 및 상기 분사노즐에 의해 환원제가 분사되어 도달할 수 있는 최소한의 위치인 최소분사위치를 더 포함하고, 상기 확산모듈부는 내부로 배가스가 통과되는 외측 실린더부 및 상기 외측 실린더부의 중심부에 삽입되어 배가스를 원심 방향으로 유도하는 허브(hub)를 포함하며, 상기 최소분사위치는 상기 허브의 외주면에서 상기 허브의 길이방향으로 평행하게 연장된 연장선에서 상기 덕트의 내벽으로 내린 수선 a를 따라 상기 덕트의 내벽으로부터 상기 수선 a의 길이의 1/2 길이에 해당하는 위치일 수 있다.
상기 탈질촉매는 복수개의 탈질촉매케이싱에 수용되고, 상기 탈질촉매케이싱 각각의 일 측에는 링이 형성되고, 일단에 링고정부가 형성된 와이어 로프가 상기 각각의 탈질촉매케이싱에 형성된 링을 관통하여 상기 각각의 탈질촉매케이싱을 연결하고, 상기 탈질촉매케이싱 각각의 타 측에는 바퀴가 형성되고, 상기 와이어 로프의 타단은 와이어 로프견인기에 연결되어 상기 하나의 열교환모듈과 상기 다른 하나의 열교환모듈 사이에 배치된 한쌍의 가이드레일 사이로 상기 복수개의 탈질촉매케이싱을 이동시킬 수 있다.
상기 탈질촉매는 질소산화물 함유 배가스 온도가 200℃ 내지 500℃에 도달하는 구간에 배치될 수 있다.
상기 열교환부는 유입측열교환모듈을 더 포함하고, 상기 다른 하나의 열교환모듈 전단에 상기 하나의 열교환모듈이 배치되고, 상기 하나의 열교환모듈 전단에 상기 유입측열교환모듈이 배치될 수 있다.
상기 탈질촉매는 산화촉매 기능이 추가된 이중기능촉매일 수 있다.
상기 이중기능촉매는 하나의 촉매지지체 위에 탈질기능을 담당하는 촉매성분과 산화기능을 담당하는 촉매성분이 함께 존재하는 것일 수 있다.
상기 탈질촉매 후단에 추가탈질촉매가 배치될 수 있다.
상기 다른 하나의 열교환모듈 전단에 상기 하나의 열교환모듈이 배치되고, 상기 다른 하나의 열교환모듈 후단에 상기 추가탈질촉매가 배치될 수 있다.
상기 추가탈질촉매는 질소산화물 함유 배가스 온도가 200℃ 내지 400℃에 도달하는 구간에 배치될 수 있다.
상기 추가탈질촉매 후단에 산화촉매가 배치될 수 있다.
상기 열교환부는 유출측열교환모듈을 더 포함하고, 상기 다른 하나의 열교환모듈 후단에 상기 유출측열교환모듈이 배치되고, 상기 다른 하나의 열교환모듈 전단에 상기 하나의 열교환모듈이 배치되며, 상기 추가탈질촉매는 상기 유출측열교환모듈 전단에 배치되고, 상기 산화촉매는 상기 유출측열교환모듈 후단에 배치될 수 있다.
본 발명에 의해, 복합화력발전소의 배가스를 매우 효과적, 효율적으로 처리할 수 있다. 이러한 본 발명은 특히 복합화력발전소의 기동 시점에 발생하는 배가스에 대해서도 탁월한 처리효과를 발휘할 수 있다.
도 1은 본 발명의 일 실시예에 의한 복합화력발전소 배가스 처리장치를 설명하기 위한 도면이다.
도 2는 도 1의 배가스 처리장치에 적용 가능한 제어부를 설명하기 위한 도면이다.
도 3은 도 1의 배가스 처리장치에 적용 가능한 혼합기를 설명하기 위한 도면이다.
도 4는 도 1의 배가스 처리장치의 분사노즐이 설치되는 덕트 부분의 A-A'단면도이다.
도 5는 도 4의 분사노즐이 덕트에 설치된 상태를 나타낸 확대도이다.
도 6은 도 4의 분사노즐이 덕트에서 분리되는 상태를 나타낸 확대도이다.
도 7은 도 1의 배가스 처리장치 중 일부를 확대하여 도시한 부분확대도이다.
도 8은 도 1의 배가스 처리장치에 적용 가능한 탈질촉매의 상태를 나타낸 도면이다.
도 9는 도 1의 배가스 처리장치에 적용 가능한 탈질촉매를 수용할 수 있는 탈질촉매케이싱을 나타낸 사시도이다.
도 10은 도 9의 탈질촉매케이싱의 저면을 나타낸 사시도이다.
도 11은 도 9의 탈질촉매케이싱의 사용상태를 나타낸 도면이다.
도 12는 도 1의 배가스 처리장치의 일 변형례를 설명하기 위한 도면이다.
본 발명의 이점 및 특징 그리고 그것들을 달성하기 위한 방법들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 단지 청구항에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조부호는 동일 구성요소를 지칭한다.
본 명세서에서 '전단'과 '후단'은 상대적 개념으로, 배가스 유동방향을 기준으로 할 때, 배가스 유입측을 전단이라 하고 배가스 유출측을 후단이라 지칭한다.
이하, 도 1 내지 도 11을 참조하여 본 발명의 일 실시예에 의한 복합화력발전소 배가스 처리장치(이하, 배가스 처리장치)에 대해 상세히 설명한다.
도 1은 본 발명의 일 실시예에 의한 복합화력발전소 배가스 처리장치를 설명하기 위한 도면이고, 도 2는 도 1의 배가스 처리장치에 적용 가능한 제어부를 설명하기 위한 도면이고, 도 3은 도 1의 배가스 처리장치에 적용 가능한 혼합기를 설명하기 위한 도면이고, 도 4는 도 1의 배가스 처리장치의 분사노즐이 설치되는 덕트 부분의 A-A'단면도이고, 도 5는 도 4의 분사노즐이 덕트에 설치된 상태를 나타낸 확대도이고, 도 6은 도 4의 분사노즐이 덕트에서 분리되는 상태를 나타낸 확대도이고, 도 7은 도 1의 배가스 처리장치 중 일부를 확대하여 도시한 부분확대도이고, 도 8은 도 1의 배가스 처리장치에 적용 가능한 탈질촉매의 상태를 나타낸 도면이고, 도 9는 도 1의 배가스 처리장치에 적용 가능한 탈질촉매를 수용할 수 있는 탈질촉매케이싱을 나타낸 사시도이고, 도 10은 도 9의 탈질촉매케이싱의 저면을 나타낸 사시도이며, 도 11은 도 9의 탈질촉매케이싱의 사용상태를 나타낸 도면이다.
본 발명의 일 실시예에 의한 배가스 처리장치(10)는 분사노즐(11), 환원제 공급 유니트(50), 및 제어부(60)를 포함하며(도 1, 도 2 참조), 특정 공간 및 온도 조건에서 서로 다른 계열인 2종의 환원제가 함께 질소산화물함유배가스와 충분히 접촉하여 반응한 이후 탈질촉매에 의한 반응이 진행되도록 함으로써, 이산화질소 함량이 높은 배가스도 효과적으로 처리할 수 있다.
분사노즐(11)은 복합화력발전소의 가스터빈(1)과 열교환부(8) 사이의 덕트 내부에 말단이 위치하고, 환원제 공급 유니트(50)는 분사노즐(11)로 환원제를 공급하며, 제어부(60)는 환원제 공급 유니트(50)를 제어한다.
분사노즐(11)은 말단이 가스터빈(1)과 열교환부(8) 사이의 덕트 내부에 위치하므로, 환원제를 가스터빈(1)과 열교환부(8) 사이 공간에 선택적으로 분사할 수 있다. 이 때, 분사노즐(11)에는 탄화수소계 환원제와 암모니아계 환원제라는 서로 다른 계열인 2종의 환원제가 함께 혼합된 상태로 환원제 공급 유니트(50)로부터 공급될 수 있다.
환원제 공급 유니트(50)는 탄화수소계 환원제 공급부(51), 암모니아계 환원제 공급부(53), 및 탄화수소계 환원제 공급부(51)로부터 유입된 탄화수소계 환원제와 암모니아계 환원제 공급부(53)로부터 유입된 암모니아계 환원제를 혼합하기 위한 혼합기(55)를 포함하여, 충분히 혼합된 상태의 탄화수소계 환원제와 암모니아계 환원제를 효과적으로 분사노즐(11)로 공급할 수 있다. 혼합기(55)는 분사노즐(11)에 일단이 연결되고, 암모니아계 환원제 공급부(51)와 분사노즐(11) 사이에 위치하고, 탄화수소계 환원제 공급부(53)와 분사노즐(11) 사이에 위치한다. 이와 같은 구성에 의해, 탄화수소계 환원제와 암모니아계 환원제를 함께 충분히 혼합된 상태로 가스터빈과 열교환부 사이 공간에 선택적으로 분사하여 주입할 수 있고, 그와 같은 공간에서 서로 다른 계열인 2종의 환원제가 배가스와 충분히 접촉한 이후, 그와 분리된 별도 공간에서 탈질촉매와 접촉하게 되는 과정을 거칠 수 있다. 그 결과, 보다 효과적인 탈질이 가능한 것으로 보인다.
제어부(60)는 환원제 공급 유니트(50)를 제어하며, 구체적으로 가스터빈(1)과 열교환부(8) 사이의 질소산화물 함유 배가스 온도 300℃ 내지 500℃, 바람직하게는 300℃ 초과 500℃ 이하, 보다 바람직하게는 320℃ 내지 480℃에서 환원제 공급 유니트(50)가 탄화수소계환원제 및 암모니아계 환원제를 분사노즐(11)로 공급하도록 환원제 공급 유니트(50)를 제어한다. 이와 같은 구성에 의해, 서로 다른 계열인 2종의 환원제를 탈질촉매와 분리된 특정 공간에 주입할 뿐만 아니라 특정 온도범위의 배가스에 선택적으로 주입하는 것이 가능하다. 그 결과 보다 더 효과적인 탈질이 가능한 것으로 보인다.
후술하는 실험결과로부터도 확인되는 바와 같이, 이와 같은 온도범위에서 환원제에 의해 이산화질소가 일산화질소로 환원되고, 결과적으로 효과적인 탈질이 일어나는 것으로 보인다. 이와 같은 온도범위에서는, 촉매에 의하지 않고, 주로 탄화수소계 환원제에 의해 이산화질소가 일산화질소로 환원되는 반응(Selective Non-Catalytic Reduction; SNCR)이 진행되는 것으로 보인다. 결국, 이와 같은 온도범위에서 이산화질소를 일산화질소로 효과적으로 환원시킬 수 있어 바람직하며, 이와 같은 온도범위 미만 또는 이하에서는 이산화질소를 일산화질소로 환원시키는 것이 어려울 염려가 있고, 이와 같은 온도범위 초과에서는 일산화질소가 오히려 이산화질소로 산화될 염려가 있다.
주로 탄화수소계 환원제에 의해, 질소산화물 함유 배가스에 포함되는 이산화질소가 일산화질소로 환원됨에 따라, 배가스 중 이산화질소 함량이 감소하게 되고, 암모니아계 환원제는 탄화수소계 환원제와 함께 적용되어 탈질촉매에 의한 탈질이 보다 효과적으로 진행되는 것으로 보인다. 이는 주로 촉매와 접촉함으로써 촉매반응에 참여하여 질소산화물을 환원시키는 암모니아계 환원제가 탈질촉매와 접촉하기 전에 이미 질소산화물(특히, 이산화질소와 일산화질소 함량이 촉매반응에 유리하게 조절된 상태의 질소산화물)과 충분히 접촉된 상태가 되기 때문으로 보이며, 후술하는 실험례를 통해서도 그와 같은 효과가 확인된다.
특히, 화력발전소의 가스터빈 구동 초기 발생하는 배가스 중 이산화질소 함량이 높아 처리가 어려운 경우라도, 이와 같은 구성에 의해 효과적으로 처리 가능하게 된다. 가스터빈은 연료를 연소시켜 터빈을 회전시키며 연소 시 발생하는 배가스를 후단으로 배출한다. 가스터빈은 고온/고압의 연소가스로 터빈을 기동시키는 회전형 열기관으로, 일반적으로 압축기, 연소기, 및 터빈을 포함한다. 이와 같은 가스터빈 초기 기동시 고함량의 이산화질소가 질소산화물 함유 배가스에 포함되어 처리가 용이하지 않으나, 이와 같은 구성에 의해 효과적으로 처리가 가능한 것이다. 즉, 질소산화물 함유 배가스에 고함량의 이산화질소가 포함되어 이산화질소/일산화질소 비율이 높은 값을 나타내더라도, 환원제에 의해 이산화질소가 일산화질소로 환원된 결과 이산화질소/일산화질소 비율이 감소한 상태로 탈질촉매와 접촉함에 따라, 촉매반응에 의해 효과적으로 탈질반응이 일어나는 것으로 보인다. 이는 아래 반응식으로도 설명할 수 있다. 즉, 반응식 (1A)에서와 같이, 이산화질소가 에탄올과 같은 탄화수소계 환원제에 의해 일산화질소로 환원되고, 일산화질소는 탈질촉매와 접촉함으로써 반응식 (1B)에서 정반응이 일어날 수 있도록 하는 것이다.
C2H5OH + NO2 +4O2 → NO + 2CO2 + 3H2O + 1.5O2 (1A)
2NH3 + NO2 + NO → 2N2 + 3H2O (1B)
이와 같은 반응식과 후술하는 실험결과 등을 고려할 때, 탄화수소계 환원제는 질소산화물 함유 배가스 중 이산화질소를 일산화질소로 환원시키기 위한 것일 수 있으며, 탄화수소계 환원제는 질소산화물 함유 배가스에 포함되는 이산화질소의 0.5당량에 해당하는 양을 최대량으로 환원제에 포함되는 것이 바람직하다. 보다 바람직하게는, 탄화수소계 환원제는 질소산화물 함유 배가스에 포함되는 이산화질소의 0.3 내지 0.5당량에 해당하는 양으로 환원제에 포함될 수 있다. 예를 들어, 질소산화물 함유 배가스 중 이산화질소의 0.5당량에 해당하는 탄화수소계 환원제가 이산화질소와 반응하면, 이산화질소의 40% 내지 50%에 해당하는 이산화질소는 일산화질소로 환원되고, 환원된 일산화질소는 잔존하는 이산화질소와 약 1:1당량이 되므로, 반응식 (1B)에 의해 질소로 환원되어 처리될 것으로 보이기 때문이다. 또한, 질소산화물 함유 배가스에 이산화질소로부터 환원된 일산화질소 이외의 일산화질소가 이미 포함될 경우는 질소산화물 함유 배가스 중 이산화질소의 0.5당량에 해당하는 양 보다 적은 양의 탄화수소계 환원제에 의해서도 일산화질소:이산화질소의 비율이 약 1:1이 될 수 있어, 반응식 (1B)에 의한 처리가 가능할 것으로 보인다. 따라서, 본 발명의 일 실시예에서, 제어부(60)는 바람직하게는 질소산화물 함유 배가스 중 포함되는 이산화질소의 0.5 당량, 보다 바람직하게는 0.3 내지 0.5당량에 해당하는 양을 최대량으로 탄화수소계 환원제를 분사노즐에 공급하도록 환원제 공급 유니트(50)를 제어함으로써, 과량으로 탄화수소계 환원제를 사용하지 않더라도 질소산화물을 효과적으로 처리할 수 있다. 이 때, 분사노즐에 공급되는 탄화수소계 환원제의 양이 배가스 중 이산화질소의 양에 연동되도록 하여 배가스를 처리할 수 있으며, 이는 후술하는 센서 등으로 이산화질소의 농도를 측정하고 그에 따라 탄화수소계 환원제의 주입량을 조절하는 방식에 의할 수 있다. 본 발명의 일 실시예에서, 제어부(60)가 탈질촉매 전단(예, 가스터빈과 열교환부 사이의 덕트 내부)에서 측정한 질소산화물 함유 배가스 중 이산화질소농도 측정값에 연동하여 탄화수소계 환원제를 분사노즐(11)에 공급하도록 환원제공급유니트(50)를 제어하여 배가스를 처리할 수 있다. 이와 같은 측정은 측정부(40)에 의할 수도 있다(도 2 참조).
한편, 연소조건에 따라, 배가스에 포함되는 질소산화물 중 이산화질소의 비율이 늘어나면, 이산화질소가 탈질촉매와 접촉함으로써 반응식 (2A), (2B)와 같이 속도가 느린 반응에 의해 질소로 환원될 수 있다.
2NO2 + 4NH3 + O2 → 3N2 + 6H2O (2A)
6NO2 + 8NH3 → 7N2 + 12H2O (2B)
그러나, 본 발명에 의할 때, 배가스에 포함되는 질소산화물 중 이산화질소의 비율이 늘어나더라도, 촉매와 접촉하기 전에 탄화수소계환원제에 의해 배가스 중 이산화질소의 함량은 줄이고 일산화질소의 함량은 증가시킴으로써, 반응식 (2A), (2B)가 아닌 반응식 (1B)에 의한 반응을 유도할 수 있으므로, 보다 빠른 탈질반응이 일어나도록 할 수 있다. 또한, 본 발명에 의할 때, 탈질반응이 보다 넓은 온도범위에서도 가능하다. 즉, 탈질촉매와 배가스가 섭씨 200도 내지 500도에서 접촉이 이루어져도 촉매반응에 의한 탈질이 가능하다. 본 발명에 의할 때, 이와 같이 넓은 반응온도범위에서 효과적으로 탈질이 가능함은 후술하는 실험결과로부터도 확인된다. 결국, 본 발명에 의할 때, 이와 같이 넓은 반응온도범위에서 효과적인 탈질이 가능하며, 이와 같은 범위 미만이나 초과에서는 탈질촉매에 의한 선택적촉매환원반응이 효율적으로 일어나기에 불충분할 염려가 있다.
본 발명에 의할 때, 이와 같이 상대적으로 넓은 온도범위에서 탈질촉매의 적용이 가능하므로, 본 발명의 일 실시예는 탈질촉매가 하나의 열교환모듈과 다른 하나의 열교환모듈 사이에 위치하는 한, 상대적으로 고온인 위치에도 배치될 수 있다. 예를 들어, 하나의 열교환모듈은 다른 하나의 열교환모듈 전단에 위치하고, 탈질촉매가 위치하는 하나의 열교환모듈 후단은 바람직하게는 배가스온도가 가스터빈 80% 이상 부하(예, 80% 내지 100% 부하)에서 평균 450±60℃범위가 유지되는 구간일 수 있다.
종래의 선택적촉매환원법에 의할 때, 상대적으로 고온인 열교환모듈 후단에 탈질촉매를 위치시킬 경우, 반응식 (2A), (2B)와 같은 느린 반응에 의해 탈질이 주로 이루어지므로 촉매량을 증가시키지 않고는 원하는 정도의 탈질이 일어나기 어려우므로, 상대적으로 저온인 열교환모듈 후단에 탈질촉매를 위치시키는 것이 일반적이었다. 이때, 상대적으로 저온인 열교환모듈 후단은 바람직하게는 배가스온도가 가스터빈 80% 이상 부하(예, 80% 내지 100% 부하)에서 평균 350±60℃범위가 유지되는 구간일 수 있다.
그러나, 본 발명에 의할 때 상대적으로 고온인 열교환모듈 후단에서도 반응식 (1B)와 같은 빠른 반응에 의해 탈질이 주로 이루어질 수 있으므로 촉매량을 거의 증가시키지 않고도 원하는 탈질성능을 발휘할 수 있게 된다. 또한, 촉매량을 증가시키지 않을 수 있으므로, 촉매량 증가에 따른 압력손실 증가를 피할 수 있게 된다. 이와 같이 종래에 비해 탈질촉매를 적용할 수 있는 위치에 대한 선택의 폭이 넓어진다는 점에서도 본 발명의 우수성을 확인할 수 있다. 예를 들어, 냉간기동(cold start)과 같이 선택적촉매환원반응에 필요한 온도에 이르기까지 상대적으로 긴 시간이 필요한 경우, 종래의 탈질촉매 설치 위치에 비해 온도 상승이 보다 빠른 위치(예, 종래보다 가스터빈에 더 가까운 위치)에 탈질촉매가 위치하도록 하여 본 발명에 의해 효과적인 탈질이 가능하다.
결국, 앞서 살펴본 바와 같이, 본 발명에 의할 때, 가스터빈 기동시와 같이 저부하 운전 중 배가스 온도가 낮은 환경에서 처리가 불가능한 것으로 알려진 이산화질소고함량 배가스도 효과적으로 처리할 수 있게 됨을 알 수 있다.
본 발명의 일 실시예에 있어, 질소산화물을 보다 효과적으로 처리하기 위해, 처리대상이 되는 질소산화물 함유 배가스는 이산화질소를 고함량으로 포함하는 것이 오히려 바람직할 수 있다. 예를 들어, 처리대상은 가스터빈 기동 초기(예, 가스터빈이 최대출력의 40% 내지 80%에 이르기 전까지)에 발생하는 질소산화물 함유 배가스가 바람직하며, 이와 같은 질소산화물 함유 배가스의 질소산화물 농도는 30 내지 100ppm이고, 질소산화물 함유 배가스에 포함되는 질소산화물 중 이산화질소 함량은 40~90부피%일 수 있다. 또한, 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율(예, 몰비)은 1을 초과할 수 있으며, 바람직하게는 1 초과 내지 100 이하, 보다 바람직하게는 1 초과 내지 9 이하, 보다 더 바람직하게는 2.4 내지 9일 수 있다. 이와 같은 비율에서, 배가스 중 이산화질소를 일산화질소로 보다 용이하게 전환시켜, 결과적으로 탈질이 보다 효과적으로 일어나도록 할 수 있는 것으로 보인다. 이와 같은 점을 반영하여, 제어부(60)는 가스터빈 기동 초기(예, 가스터빈이 최대출력의 40% 내지 80%에 이르기 전까지), 질소산화물 함유 배가스의 질소산화물 농도 30 내지 100ppm, 및/또는 질소산화물 함유 배가스의 질소산화물 중 이산화질소 함량 40~90부피%에서 환원제 공급 유니트(50)가 탄화수소계 환원제 및 암모니아계 환원제를 분사노즐(11)로 공급하도록 제어할 수 있다. 또한, 제어부(60)는 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율(예, 몰비)이 1 초과, 바람직하게는 1 초과 내지 100 이하, 보다 바람직하게는 1 초과 내지 9 이하, 보다 더 바람직하게는 2.4 내지 9에서 환원제 공급 유니트(50)가 탄화수소계 환원제 및 암모니아계 환원제를 분사노즐(11)로 공급하도록 제어할 수 있다.
또한, 이와 같은 질소산화물 함유 배가스에 포함되는 이산화질소는 탄화수소계 환원제에 의해 환원된 결과, 이산화질소/일산화질소의 비율(예, 몰비)은 2.49 미만, 예를 들어, 2.33 이하(예, 0 내지 2.33)를 유지하는 것이 바람직하고, 0.43 내지 2.33을 유지하는 것이 더 바람직하며, 0.67 내지 1.5를 유지하는 것이 보다 더 바람직하다. 실험례로부터도 확인되는 바와 같이, 이와 같은 비율에서 비교적 용이하게 탈질이 일어나기 때문이다. 이는 이와 같은 비율에서 반응식 (1B) 및/또는 반응식 (1C)에 의한 반응이 보다 용이하게 일어나기 때문으로 생각되며, 반응식 (1B)에 의해 반응하지 않고 남은 일산화질소라도 반응식 (1C)와 같은 반응에 의해 비교적 용이하게 질소로 환원되기 때문으로 생각된다. 따라서, 제어부(60)는 배가스 중 이산화질소/일산화질소의 비율(예, 몰비)이 바람직하게는 2.49 미만, 예를 들어 2.33이하(예, 0 내지 2.33), 보다 바람직하게는 0.43 내지 2.33, 보다 더 바람직하게는 0.67 내지 1.5가 되도록 탄화수소계 환원제를 분사노즐(11)에 공급하도록 환원제 공급 유니트(50)를 제어할 수 있다.
4NO + 4NH3 + O2 → 4N2 + 6H2O (1C)
질소산화물 함유 배가스에 포함되는 질소산화물 함량이 감소하는 경우는 이산화질소도 감소하게 되어, 암모니아계환원제만으로도 질소산화물 처리가 가능하게 되므로, 그와 같은 경우 탄화수소계환원제가 분사노즐(11)로 공급되는 것을 중단하도록 제어부(60)가 환원제 공급 유니트(50)를 제어할 수 있다.
예를 들어, 질소산화물 함유 배가스 중 질소산화물 농도가 5~25ppm에서 탄화수소계환원제가 분사노즐(11)로 공급되는 것을 중단하도록 제어부(60)가 환원제 공급 유니트(50)를 제어할 수 있다. 이와 같은 범위의 농도는 주로 가스터빈이 안정적인 운전이 이루어지는 상태에서의 것으로, 배가스 중 이산화질소의 함량도 높지 않아 반응식 (1C)에 의한 탈질에 의해서도 충분히 처리가 가능하다. 따라서, 그와 같은 중단은 가스터빈의 운전상태에 따라서도 실시할 수 있으며, 예를 들어, 가스터빈이 최대출력의 바람직하게는 40% 이상(예, 40% 내지 100%), 보다 바람직하게는 80% 이상(예, 80% 내지 100%)을 나타낼 때 실시할 수 있다. 이와 같은 출력을 나타낼 때, 배가스 중 질소산화물이 저농도(예, 5~25ppm)를 나타낼 것으로 기대할 수 있기 때문이다. 이 때, 가스터빈이 바람직하게는 최대출력의 40~100% 출력, 보다 바람직하게는 80~100% 출력에 도달할 때, 탄화수소계 환원제가 분사노즐(11)로 공급되는 것을 중단하도록 제어부(60)가 환원제 공급 유니트(50)를 제어할 수 있다.
이하에서는, 제어부(60), 환원제공급유니트(50), 및 분사노즐(11) 각각에 대하여 보다 상세하게 살펴본다.
도 2에 도시된 바와 같이, 제어부(60)는 환원제공급유니트(50)를 제어하여, 환원제공급유니트(50)가 탄화수소계환원제 및 암모니아계환원제를 분사노즐(11)로 공급하도록 제어한다. 제어부(60)는 마이크로프로세서와 같이 데이터를 처리할 수있는 중앙처리장치(CPU) 등을 포함하는 제어장치로 이루어질 수 있다. 제어장치는 환원제 공급 유니트(50)를 제어할 수 있는 것인 한 제한되지 않으며, 센서 등의 측정부 및/또는 펌프, 밸브 등의 작동부로 신호를 출력하거나 그로부터 신호를 입력받을 수 있는 입출력부(미도시), 제어과정에서 생성되거나 기입력된 데이터를 저장할 수 있는 데이터 저장부(미도시) 등도 포함하는 시판품 내지 주지 기술에 따른 제작품일 수 있다.
환원제공급유니트(50)는 도 1에 도시된 바와 같이, 탄화수소계 환원제 공급부(51), 암모니아계 환원제 공급부(53), 및 탄화수소계 환원제 공급부(51)로부터 유입된 탄화수소계 환원제와 암모니아계 환원제 공급부(53)로부터 유입된 암모니아계 환원제를 혼합하기 위한 혼합기(55)를 포함한다. 이 때, 혼합기(55)는 환원제공급관(58)에 의해 분사노즐(11)에 일단이 연결되고, 암모니아계 환원제 공급부(53)와 분사노즐(11) 사이에 위치할 뿐만 아니라, 탄화수소계 환원제 공급부(51)와 분사노즐(11) 사이에도 위치한다. 탄화수소계 환원제 공급부(51)와 암모니아계 환원제 공급부(53)는 각각 탱크와 같이 환원제를 일정 시간 저장할 수 있는 구조이거나, 파이프와 같이 실시간으로 공급할 수 있는 구조일 수 있다. 혼합기(55)는 탄화수소계 환원제와 암모니아계 환원제를 혼합할 수 있는 한 특정 구조로 제한되지 않는다. 예를 들어, 도 3에 도시된 바와 같이, 혼합기(55)는 환원제가 이동하는 경로에 배플(553)이 형성되어 이동을 방해하고 난류를 발생시켜 환원제를 혼합시킬 수 있는 구조일 수 있다. 그와 같은 혼합기(55)는 혼합기하우징(551) 내부에 배플(553)이 형성되고 일측과 타측에는 각각 유입구(555)와 유출구(557)가 형성될 수 있다. 유입구(555)는 분지관(59)과 연결되고, 유출구(557)는 환원제공급관(58)과 연결되어 환원제를 용이하게 이동시킬 수 있다. 또한, 탄화수소계 환원제 공급부(51)와 암모니아계 환원제 공급부(53)는 연결관(57)에 의해 연결되고, 연결관(57)에는 역류방지부(52, 54)가 배치될 수 있다. 이와 같은 연결관(57)에는 분지관(59)이 형성되어, 분지관(59)이 혼합기(55)의 타단에 연결될 수 있으며, 역류방지부(52, 54)는 제1역류방지부(52) 및 제2역류방지부(54)를 포함하고, 제1역류방지부(52)는 분지관(59)과 탄화수소계 환원제 공급부(51) 사이에 배치되고, 제2역류방지부(54)는 분지관(59)과 암모니아계 환원제 공급부(53) 사이에 배치될 수 있다. 역류방지부(52, 54)는 체크밸브 등으로 이루어질 수 있다. 이와 같은 구조로 인해, 서로 다른 환원제가 혼합기(55)에서만 선택적으로 혼합되어 분사노즐(11)로 공급되고, 각각의 공급부(51, 53)에 영향을 미치는 것을 피할 수 있게 된다. 또한, 환원제공급유니트(50)는 펌프(51a, 53a), 차단밸브(미도시) 등도 포함하며, 제어부(60)는 구체적으로 이와 같은 펌프(51a, 53a) 및/또는 차단밸브의 작동 또는 작동정지 등에 의해 환원제의 공급을 조절할 수 있다.
제어부(60)는 또한 측정부(40)에서 측정된 데이터를 입력받아, 환원제공급유니트(50)를 보다 효과적으로 제어하여 배가스를 처리할 수 있다. 측정부(40)는 센서 등을 포함하여, 질소산화물 함유 배가스의 온도, 질소산화물 함유 배가스 성분 중 하나 이상의 농도, 및 가스터빈 출력 중에서 선택된 하나 이상을 측정할 수 있다. 이 때 배가스 성분은 일산화질소 또는 이산화질소 중 하나 이상을 포함할 수 있다. 따라서, 제어부(60)가 앞서 살펴 본 온도 조건, 농도 조건, 가스터빈 출력 조건 등에서 보다 효과적으로 환원제 공급 유니트(50)를 제어하여 배가스를 처리할 수 있다.
분사노즐(11)은 도 1 및 도 4 내지 도 7에 도시된 바와 같이, 말단으로부터 환원제가 분사되어 가스터빈(1)과 열교환부(8) 사이의 덕트 내부에 선택적으로 환원제를 분사할 수 있다.
분사노즐(11)은 이와 같이 제한되는 것은 아니나, 도 4에 도시된 바와 같이 덕트(3)를 관통하여 결합되며, 분사노즐(11)의 환원제 분사방향은 덕트(3) 내벽으로부터 덕트(3) 중심을 향하는 방향일 수 있다. 이와 같은 구조로 인해, 덕트(3) 내부에서 배가스 유동을 방해하는 구조물 등의 도움 없이 덕트(3)를 관통하여 매우 간편한 방식으로 환원제를 특정 위치에 공급할 수 있다. 환원제를 분사노즐(11)에 공급하는 환원제공급관(58)은 분사노즐(11)의 덕트(3) 외부로 노출된 일단에 연결될 수 있다.
분사노즐(11)이 결합되는 덕트(3)는 확산모듈부(2)와 열교환부(8) 사이의 배관으로 이루어질 수 있으며, 열교환부(8)와 인접한 덕트확관(4)도 덕트(3)의 일부로 포함될 수 있다. 덕트(3)는 또한 진동을 완충시키는 완충연결부(31)를 포함할 수 있다. 분사노즐(11)은 완충연결부(31)의 후단에 위치할 수 있다. 구체적으로, 덕트(3)는 제1덕트부(3a), 제2덕트부(3b), 및 제1덕트부(3a)와 제2덕트부(3b) 사이의 완충연결부(31)로 이루어진 구조일 수 있으며 완충연결부(31)가 진동을 흡수하여 후단으로의 진동의 전파를 저지하도록 형성된 구조일 수 있다(도 1 참조). 분사노즐(11)이 이러한 완충연결부(31)의 후단에 위치함으로써 분사노즐(11)은 가스터빈(1)의 기계적 진동 등에 의한 영향을 최소화하면서 정상 위치에서 보다 원활하게 배가스에 환원제를 주입할 수 있다. 그러나 반드시 그와 같이 한정될 필요는 없으며 필요한 경우 분사노즐(11)은 완충연결부(31)의 전단 혹은 후단 등에 관계없이 덕트(덕트확관 포함) 어느 위치에도 설치가 가능하다. 다만 본 실시예에서는 완충연결부(31) 후단에 배치된 예를 설명하나 반드시 그와 같이 한정하여 이해할 필요는 없다. 완충연결부(31)는 다양한 형태의 완충장치를 포함하여 형성될 수 있으며 예를 들어, 벨로우즈와 같이 진동을 흡수하는 주름관과 같은 구조물을 포함하여 형성될 수 있다.
이와 같은 덕트에 분사노즐(11)은 도 5 내지 도 6에 도시된 바와 같은 구조로 매우 편리하게 설치될 수 있다. 분사노즐(11)은 예를 들어, 덕트(3)를 관통하며 덕트(3) 외부의 말단에 플랜지가 형성된 플랜지관통관(114)의 내측으로 삽입되고, 적어도 일부가 플랜지에 맞닿아 고정될 수 있다. 예를 들어, 분사노즐(11)의 몸통(111) 둘레에 결합플랜지(112)를 돌출시켜 형성하고 결합플랜지(112)를 플랜지관통관(114)의 플랜지[도 6의 플랜지관통관(114)의 덕트(3)외측 말단에 형성된 절곡부]에 맞닿게 하여 고정시킬 수 있다. 이때 결합플랜지(112)와 플랜지관통관(114)의 플랜지가 직접 맞닿게 하는 대신 그 사이에 개스킷(113)을 삽입하여 틈새를 막고 완충도 가능한 구조로 형성할 수도 있다. 이와 같은 구조를 통해, 도 5와 같이 분사노즐(11)을 플랜지관통관(114)에 삽입하여 매우 편리하게 고정할 수 있으며 또한, 도 6과 같이 플랜지관통관(114)으로부터 인출시켜 매우 편리하게 분리할 수도 있다. 분사노즐(11) 고정 시에는 예를 들어 볼트나 너트와 같은 착탈이 가능한 결합부재(미도시) 등을 사용할 수 있으며 그 밖에도 돌기와 홈과 같은 구조를 형성하여 고정성을 증가시키는 것도 가능하다. 이러한 구조로 분사노즐(11)을 덕트(3)에 매우 편리하게 설치할 수 있다.
또한, 분사노즐(11)과 가스터빈(1) 사이에는 배가스 흐름을 조절하여 덕트(3)의 내벽 측으로 유도하는 확산모듈부(2)가 배치될 수 있으며, 분사노즐(11)에 의해 환원제가 분사되어 도달할 수 있는 최소한의 위치인 최소분사위치(11m)를 본 발명의 일 실시예는 더 포함할 수 있다.
확산모듈부(2)는 가스터빈(1)과 덕트(3) 사이에 위치하고, 내부로 배가스가 통과되는 외측 실린더부(21) 및 외측 실린더부(21)의 중심부에 삽입되어 배가스를 원심 방향으로 유도하는 허브(hub)(22)를 포함한다(도 1, 도 4 참조). 허브(22)는 지지대(23)에 의해 외측실린더부(21)에 고정될 수 있다. 이 때, 최소분사위치(11m)는 허브(22)의 외주면에서 허브의 길이방향으로 평행하게 연장된 연장선(L)에서 덕트(3)의 내벽으로 내린 수선 a를 따라 덕트(3)의 내벽으로부터 수선 a의 길이의 1/2 길이(a/2)에 해당하는 위치일 수 있다(도 7 참조). 이와 같은 최소분사위치(11m) 이상의 위치까지 분사노즐에 의해 환원제가 도달함으로써 보다 효과적으로 작용할 수 있다. 최소분사위치(11m)에 도달하지 못하는 환원제는 배가스와 충분히 접촉하는 것이 어려울 수 있으며, 배가스와 충분히 접촉하지 못한 환원제는 미반응 상태로 배출되어 오히려 새로운 오염물질이 될 염려가 있다.
탈질촉매(7)는 도 1에 도시된 바와 같이, 열교환부(8)에 포함되는 하나의 열교환모듈(83)과 다른 하나의 열교환모듈(85) 사이에 위치한다. 이와 같은 위치에 탈질촉매가 위치하므로, 2종의 환원제가 혼합되어 배가스와 접촉하여 반응하는 공간과 분리된 공간에서 탈질촉매에 의한 반응이 진행되도록 할 수 있다. 또한, 열교환모듈에 의해 온도가 조절된 상태의 배가스가 탈질촉매에 접촉하게 되므로 촉매 보호 측면에서도 보다 바람직하다. 다만, 열교환모듈 사이의 협소한 공간에 탈질촉매를 설치하는 것이 용이하지 않을 수 있으므로, 탈질촉매케이싱(700)에 수용하여 보다 용이하게 탈질촉매(7)를 설치할 수 있다. 예를 들어, 도 8에 도시된 상태의 탈질촉매를 도 9에 도시된 복수개의 탈질촉매케이싱(700)에 수용할 수 있다. 도 8은 탈질촉매가 담체(71)에 담지되고, 담체(71)가 일측과 타측이 개방된 촉매하우징(73)에 수용된 상태로, 이와 같은 상태의 촉매를 탈질촉매케이싱(700)에 수용하여 협소한 공간에도 보다 용이하게 설치할 수 있다. 각각의 탈질촉매케이싱(700)에는 담체(71)가 수용된 촉매하우징(73)을 하나 이상 수용할 수 있다. 탈질촉매케이싱(700) 역시 일측과 타측이 개방되되, 각각에는 격자(710, 750)가 형성되어 내부에 수용되는 촉매하우징(73)이 이탈되는 것을 막을 수 있다. 또한, 격자(710)는 볼트(701) 및 너트(703)와 같은 구성에 의해 케이싱 본체(730)에 탈부착할 수 있다. 격자(710)를 케이싱본체(730)에 탈부착함으로써 탈질촉매케이싱(700)에 촉매하우징(73)의 입출을 보다 용이하게 할 수 있다. 또한, 복수개의 탈질촉매케이싱(700)은 한쌍의 가이드레일(740a, 740b) 사이에 배치되어 그 사이로 이동할 수 있으며, 한쌍의 가이드레일은 하나의 열교환모듈(83)과 다른 하나의 열교환모듈(85) 사이에 배치될 수 있다. 이와 같은 구조에 의해, 복수개의 탈질촉매케이싱을 안정적으로 열교환모듈 사이로 이동시킬 수 있다. 도 10 내지 도 11에 도시된 바와 같이, 탈질촉매케이싱(700) 각각의 일 측에는 링(790)이 형성되고, 일단에 링고정부(775)가 형성된 와이어로프(770)가 각각의 탈질촉매케이싱(700)에 형성된 링(790)을 관통하여 각각의 탈질촉매케이싱(700)을 연결할 수 있다. 또한, 탈질촉매케이싱(700) 각각의 타측에는 바퀴(780)가 형성되어 있으며, 와이어로프(770)의 타단은 와이어로프견인기(760)에 연결될 수 있다. 이와 같은 구조로 인해, 탈질촉매를 복수개의 탈질촉매케이싱(700)에 수용한 상태에서도 용이하게 열교환 모듈(83, 85) 사이로 이동시킬 수 있다. 즉, 와이어로프(770) 일단에는 링고정부(775)가 형성되고 타단은 와이어로프견인기(760)에 연결되며, 와이어로프 일단과 타단 사이에는 와이어로프(770)에 의해 연결된 탈질촉매케이싱(700)이 위치하므로, 와이어로프 타단을 견인하면, 와이어로프 일단에 형성된 링고정부(775)가 링(790)을 가압하게 되고, 가압된 링이 형성된 탈질촉매케이싱(700) 역시 가압되어 견인방향으로 이동하게 되며, 이동에 의해 그와 인접한 탈질촉매케이싱 역시 가압하게 되는 결과, 복수개의 탈질촉매케이싱이 모두 견인방향으로 이동하게 된다. 보다 구체적으로, 도 11에 도시된 바와 같이, 열교환부의 일 측 벽(310)에 개폐가능한 문(320)을 형성하고, 타측의 벽(330)에 와이어로프(770)가 관통하는 관통공(340)을 설치하고, 관통공(340)을 와이어로프 타단이 관통하여 열교환부 외부에 설치된 와이어로프견인기(760)에 연결되도록 한 후 화살표 방향으로 와이어로프 견인기를 작동시켜, 한쌍의 가이드레일(740a, 740b) 사이로 탈질촉매케이싱(700)을 이동시키는 등의 방식으로(도 11 화살표 참조), 열교환모듈 사이와 같이 협소한 공간에도 용이하게 탈질촉매를 설치할 수 있다.
링(790)은 일측과 타측이 개방되어 와이어로프(770)를 통과시킬 수 있는 것인 한 도시된 형상으로 제한되지 않으며, 도넛형, 원통형 등 다양한 형상일 수 있다. 또한, 링고정부(775)는 와이어로프(770)의 일단이 링(790)에 고정되도록 하는 것인 한 도시된 형상으로 제한되지 않으며, 와이어로프의 끝을 지지물에 고정하거나 와이어로프의 끝을 지지물의 형상으로 성형하는 등의 방식으로 이루어질 수 있다. 지지물은 와이어로프 클립, 와이어로프 클램프(예, 와이어로프 엔드 스탑 클램프 링) 등일 수 있다. 링고정부(775)는 바람직하게는 와이어로프에 나사결합 등으로 탈부착이 가능한 것일 수 있다. 문(320)의 개폐를 위해, 경첩과 같은 개폐부(325)가 문의 일측에 형성될 수 있다. 와이어로프견인기(760)는 와이어로프를 견인하기 위한 장치로, 예를 들어 모터가 장착된 와이어로프윈치 등일 수 있다.
또한, 열교환부(8)는 폐열회수용 보일러의 일부일 수 있으며, 하나의 열교환모듈(83) 및 다른 하나의 열교환모듈(85) 외에 유입측열교환모듈(81), 유출측열교환모듈(87), 연돌측열교환모듈(89)과 같은 열교화모듈을 더 포함할 수 있다. 이 때, 연돌측열교환모듈(89)은 연돌(6)과 인접한 위치의 열교환모듈이다. 도시되지 않았지만, 각 열교환모듈(81, 83, 85, 87, 89)의 상단 및 하단은 서로 연결되어 있을 수 있고 연결부위에는 고압증기나 열회수용 유체를 저장하고 순환시키는 탱크 등이 설치되어 있을 수 있다. 열교환모듈(81, 83, 85, 87, 89)은 후단의 모듈(89)으로부터 순차적으로 맨 앞단의 모듈(81)을 향해 차례로 유체를 순환시키며 고압증기 등을 생성할 수 있다. 열교환모듈(81, 83, 85, 87, 89)의 온도는 맨 앞단의 모듈(81)로부터 후단의 모듈(89)을 향해서 차례로 낮아질 수 있다.
이와 같은 열교환모듈 사이의 공간에 촉매를 추가로 설치할 수 있으며, 이에 대해서는 도 12를 참조하여 보다 상세히 설명한다. 도 12는 도 1의 배가스 처리장치의 일 변형례를 설명하기 위한 도면이다.
도 12에 도시된 바와 같이, 일 변형례인 배가스 처리장치(10-1)는 탈질촉매(7) 후단에 추가탈질촉매(7-1), 추가탈질촉매(7-1) 후단에 산화촉매(9)가 배치될 수 있다.
도 12에 도시된 배가스 처리장치(10-1)는 도 1에 도시된 배가스 처리장치(10)와 나머지는 동일하되, 단지 추가탈질촉매(7-1) 및 산화촉매(9)를 추가로 포함된 것을 나타낸다. 따라서, 반복을 피하기 위해 도 1에 도시된 배가스 처리장치(10)와 중복된 내용은 제외하고, 도 12에 도시된 장치(10-1)에 추가된 구성을 중심으로 설명한다. 추가탈질촉매(7-1)는 다른 하나의 열교환모듈(85)과 유출측열교환모듈(87) 사이에 배치되고, 섭씨 200도 내지 400도인 온도조건에서 배가스가 추가탈질촉매와 접촉하여 추가탈질촉매 반응이 수행되도록 할 수 있다. 이 후 유출측열교환모듈(87)과 연돌측열교환모듈(89) 사이에 배치된 산화촉매(9)와 접촉하여 배가스 중 존재하는 일산화탄소, 휘발성유기화합물 등을 촉매상에서 산화반응에 의해 제거할 수 있게 된다.
산화촉매(9)는 알데히드와 같은 탄화수소류나 일산화탄소 같은 불완전연소산물, 미반응 암모니아와 같이 반응되지 않고 남은 환원제와 같이 산화방식 또는 분해방식에 의해 처리 가능한 물질을 처리할 수 있는 것이다. 이와 같은 산화촉매에 의해, 배가스 중 포함될 수 있는 휘발성유기화합물, 미반응 환원제 등도 제거할 수 있다. 이와 같은 휘발성유기화합물 등은 질소산화물 함유 배가스 중 포함되는 것이거나 환원제로부터 유래되는 것일 수도 있다. 따라서, 이와 같은 구성에 의해, 질소산화물 함유 배가스에 포함되는 것이거나 환원제로부터 유래되는 일산화탄소, 휘발성유기화합물 등도 처리하여, 배가스를 보다 효과적으로 처리할 수 있게 된다.
한편, 본 발명의 일 실시예에 적용될 수 있는 탈질촉매 또는 추가탈질촉매는 선택적촉매환원(SCR; Selective Catalytic Reduction)에 의해 질소산화물을 질소로 환원시킬 수 있는 것인 한 제한되지 않는다. 예를 들어, 암모니아-SCR 반응촉매(예, 바나듐 포함 금속산화물촉매 등)를 포함하며, 이온교환법, 건식함침법 등 공지의 방법에 의해 제조하거나 시판되는 것일 수 있다. 또한, 탈질촉매 또는 추가탈질촉매는 산화촉매 기능이 추가된 이중기능촉매일 수 있다. 이 때, 산화촉매 기능이 추가된 이중기능촉매는 탈질촉매 기능 외에 산화촉매 기능이 추가된 촉매를 의미하며, 촉매의 형태나 형식에 제한되지 않으나, 예를 들어, 이중기능촉매는 하나의 촉매지지체 위에 탈질기능을 담당하는 촉매성분과 산화기능을 담당하는 촉매성분이 함께 존재하는 것일 수 있다. 바람직하게는 탈질기능을 담당하는 촉매성분이 산화기능을 담당하는 촉매성분의 전단에 위치할 수 있다. 이 때, 탈질기능을 담당하는 촉매성분은 환원능을 갖는 바나듐산화물 촉매성분일 수 있고, 산화기능을 담당하는 촉매성분은 귀금속계 촉매성분일 수 있다. 이 때, 귀금속은 백금, 팔라듐, 은 등일 수 있다. 이와 같은 이중기능촉매에 의해, 실험예에서 확인할 수 있는 바와 같이, THC나 암모니아슬립도 억제할 수 있으며, 차압면에서, 보다 효과적인 배가스 처리가 가능함을 알 수 있다.
또한, 본 발명의 일 실시예에 적용될 수 있는 탄화수소계 환원제는 한 분자 내에 수산(OH)기를 하나 이상 포함하는 탄화수소 및 설탕과 같은 당류 중에서 선택된 하나 이상일 수 있다. 보다 바람직한 탄화수소계환원제는 예를 들어 에탄올(Ethanol), 에틸렌글리콜(Ethylene glycol), 글리세린(Glycerin), 설탕, 및 과당 중에서 선택된 하나 이상일 수 있다.
또한, 본 발명의 일 실시예에 적용될 수 있는 암모니아계 환원제는 암모니아, 요소 또는 그 전구체 중에서 선택된 하나 이상일 수 있다.
또한, 본 발명의 일 실시예에 적용될 수 있는 산화촉매 역시 산화방식이나 분해방식에 의해 처리가능한 물질에 적용할 수 있는 촉매인 한 제한되지 않으며, 예를 들어 백금, 팔라듐, 및/또는 은 등을 포함하는 산화촉매 등일 수 있다. 산화촉매 역시 공지된 방법에 의해 제조되거나 시판되는 것일 수 있다.
이하, 실험례를 통해서 본 발명의 효과를 좀 더 상세히 설명한다.
<실험례 1> 탈질효과확인실험
정량주입장치(MFC)를 이용하여, O2 15%, NO 20ppm, NO2 80ppm(Balance gas N2)의 모사 배가스를 만들어 촉매실험장치를 통과하도록 장치를 구성하였다. 이 때, 모사 배가스를 만들기 위한 NO와 NO2는 1%농도(Balance gas N2)를 갖는 혼합가스를 사용하였다. 촉매실험장치에는 SCR촉매(아이비머티리얼즈)를 배치하였으며, 전기히터와 냉각기를 설치하여 반응온도를 조절할 수 있도록 하였다. SCR촉매의 공간속도는 23,000±3,000hr-1이었다. 암모니아와 에틸렌글리콜이 모사 배가스와 혼합된 상태로 촉매실험장치를 통과하도록, 혼합기를 적용하였다. 혼합기에도 전기히터와 냉각기를 설치하여 400±4℃에서 환원제와 배가스가 접촉하여 혼합 되도록 하였다. 암모니아는 혼합기 전단에서 NH3/NOx 몰비 1.26으로 조정한 후 혼합기로 주입하였다. 이 때, 암모니아는 1%농도(Balance gas N2)의 암모니아 가스를 사용하였으며, 주입 유량을 MFC로 조절하였다. 또한, 에틸렌글리콜은 정량펌프를 이용하여 주입량을 조절하였다. 에틸렌글리콜은 NO2대비 주입몰비(에틸렌글리콜/NO2)를 조절하여 주입하면서 온도별 탈질율을 측정하였다. SCR 촉매의 반응 온도를 175℃ 내지 550℃로 변화시키며, 탈질에 미치는 영향을 확인하였다. 이 때, 500℃이하의 반응온도 범위는 환원제와 배가스가 300℃ 내지 500℃에서 접촉할 때, 도달할 수 있는 반응온도범위를 고려하여 선택한 것이며, 500℃초과인 반응온도범위는 촉매반응 온도에 따른 영향을 파악하기 위하여 임의로 촉매실험장치온도를 550℃까지 상승시켜 실험을 진행한 것이다. 각각의 조건에서 탈질율을 계산하였으며, 그 결과는 아래 표와 같다.
탈질율(%)

반응온도
(℃)
에틸렌글리콜 주입비(에틸렌글리콜/NO2)
0 0.1 0.2 0.3 0.4 0.5
175 18 30 44 58 60 62
200 22 37 50 70 73 75
225 29 45 58 77 80 83
250 40 54 68 83 86 89
300 67 75 83 92 95 96
350 88 91 93 96 98 99
400 90 92 92 93 93 95
450 83 83 83 84 86 88
475 72 72 73 77 80 82
500 56 58 60 65 71 73
525 42 43 43 44 44 45
550 23 23 23 24 24 25
표 1에서와 같이, 배가스 중 NO2 농도가 약 80ppm인 경우(NO2/NOx=0.8), 환원제로 암모니아만 사용시(에틸렌글리콜 주입비가 0인 경우) 반응온도가 약 350℃이상이어야 70%이상의 탈질율이 나타났다. 그러나, 에틸렌글리콜이 환원제에 포함될 경우, 반응온도가 300℃이하일 때에도, 70%이상의 탈질율이 나타났으며, 에틸렌글리콜 함량 증가에 따라 탈질율이 증가하는 경향을 나타내었다. 예들 들어, 에틸렌글리콜/NO2 비가 0.3이상인 경우는 반응온도가 200℃일 때에도 70%이상의 탈질율이 나타났다. 다만, 반응온도가 200℃ 미만이거나 반응온도가 500℃ 초과일 때에는 에틸렌글리콜 함량을 증가시켜도 탈질율이 70%에 이르지 못하였다. 따라서, 반응온도 200℃ 내지 500℃에서 특히 이산화질소 함량이 높은 배가스도 용이하게 처리할 수 있음을 알 수 있다. 이와 같은 결과로부터 본 발명에 의할 때, 보다 넓은 반응온도범위에서, 고농도의 이산화질소를 함유하는 배가스도 촉매와 접촉하여 용이하게 처리됨을 알 수 있다.
<실험례 2> 환원제가 공급되는 배가스 온도가 탈질에 미치는 효과 확인 실험
이하에서는 실험례 1의 결과를 활용하여, 서로 다른 계열인 2종의 환원제가 함께 공급되는 배가스의 온도가 배가스 탈질에 미치는 영향을 파악하고자 하였다. 촉매반응온도는 300℃로 고정하되, 환원제가 공급되는 배가스의 온도는 변경하며, 탈질율의 변화를 파악하였다. 촉매반응온도 300℃는 실험례 1에서 탈질율 90% 이상을 나타낼 수 있는 반응온도 중 상대적으로 낮은 온도인 점을 고려하여 설정한 것이다. 구체적으로, 배가스에 환원제 공급은 제1챔버에서 이루어지고, 촉매반응은 제1챔버 후단의 제2챔버에서 이루어질 수 있도록, 제1챔버와 제2챔버를 배치하고, 제2챔버에는 SCR촉매(아이비머티리얼즈)를 설치하였다. 제1챔버와 제2챔버의 전단에는 각각 전기히터를 설치하고, 제2챔버의 전단에는 공랭식 냉각기를 설치하여 반응온도를 조절하였다. 모사배가스{O2 15%, NO 14ppm, NO2 60ppm}를 제1챔버에 주입하고, 표 2에 기재된 배가스온도까지 승온시킨 후, 에틸렌글리콜(에틸렌글리콜/NO2 몰비: 0.4)과 암모니아(NH3/NOx 몰비 1.27)를 주입하여 혼합되도록 한 후 충분한 체류시간(약 0.8초)동안 제1챔버에 체류시킨 후, 이산화질소의 일산화질소로의 전환정도를 측정하고, 전환율을 산정하여 그 결과를 표 2에 기재하였다. 제1챔버에서 유출된 배가스는 전기히터와 공랭식 냉각기를 이용하여, 제2챔버에서 반응온도 300℃가 되도록 조정하여 촉매에 의한 탈질반응을 유도하였다. 이때 SCR촉매의 공간속도는 45000hr-1이었다. 촉매반응에 의한 탈질율을 산정하여, 그 결과를 표 2에 나타내었다. 또한, 환원제가 공급되는 배가스온도와 촉매반응온도가 상이해짐에 따라, 배가스온도에서 전환된 이산화질소가 촉매반응온도에서 유지되는지 확인하기 위해, 제2챔버의 촉매 전단에서도 NO2/NOx 함량을 측정하였다. 그 결과 제1챔버에서 측정된 NO2/NOx 함량과 큰 차이가 없어, 표 2에 기재된 배가스온도에서 NO2 전환율이 촉매반응온도에서도 유지됨을 확인하였다.
또한, 표 2에는 배가스 중 이산화질소/일산화질소의 비율을 나타내었다. 배가스 중 이산화질소/일산화질소의 비율은 전환후 배가스 중 잔존하는 NO2농도를 전환후 배가스 중 존재하는 NO농도(전환전 존재하던 NO농도+전환에 의해 새롭게 생성된 NO농도)로 나누는 방식으로 산정하였다.
배가스온도(℃) NO2 전환율(%) 배가스 중 NO2/NO 촉매반응탈질율(%)
260 8 2.94 34
280 12 2.49 48
300 25 1.55 71
320 36 1.08 85
340 47 0.75 90
360 49 0.71 99
380 50 0.68 99
400 53 0.62 94
420 50 0.68 96
440 48 0.73 95
460 48 0.73 91
480 41 0.92 87
500 19 1.91 64
520 4 3.51 44
540 -9 7.60 25
표 2의 결과를 보면, 배가스 온도 300℃ 내지 500℃에서, 보다 바람직하게는 320℃ 내지 480℃에서 환원제를 공급시 이산화질소가 일산화질소로 매우 효과적으로 전환됨을 알 수 있으며, 이와 같은 전환에 의해 탈질도 효과적으로 일어남을 알 수 있다. 이 때, 배가스 중 이산화질소/일산화질소의 비율은 바람직하게는 2.49 미만으로 파악되었다. 이와 같은 결과로부터, 본 발명의 일 실시예에서, 제어부는 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율이 2.49 미만이 되도록 환원제(예, 탄화수소계 환원제)를 분사노즐에 공급하도록 환원제 공급 유니트를 제어하는 것이 보다 바람직함을 알 수 있다.
<실험례 3> 배가스 중 NO2/NO 비율 변화가 탈질에 미치는 영향 파악
이하에서는 실험례 2의 결과를 활용하여, 배가스 중 이산화질소/일산화질소의 비율변화가 탈질율에 미치는 영향을 보다 상세하게 파악하고자 하였다.
촉매반응온도는 실험례 2와 동일하게 300℃로 고정하되, 배가스 중 이산화질소/일산화질소의 비율을 변화시키며, 실험을 실시하였다. 이 때, SCR촉매의 공간속도는 실험례 2와는 달리하였으며, 이는 배가스 중 이산화질소/일산화질소의 비율 차이에 따른 탈질효과 차이를 보다 더 잘 알아보기 위함이었다. 이산화질소/일산화질소의 비율이 조정된 접촉배가스를 모사하기 위하여, 질소를 Balance gas로 하여, O2 15%로 조절한 후, NO와 NO2 농도를 아래 표에 기재된 비율이 되도록 조절하였다. 촉매실험장치에는 SCR촉매(아이비머티리얼즈)를 배치하였으며, 전기히터와 냉각기를 설치하여 반응온도를 조절할 수 있도록 하였다. SCR촉매의 공간속도는 30,000±2000hr-1이었다. 암모니아가 모사 배가스와 혼합된 상태로 촉매실험장치를 통과하도록, 혼합기를 적용하였다. 혼합기에도 전기히터와 냉각기를 설치하여 혼합 온도를 조절하였다. 암모니아는 혼합기 전단에서 NH3/NOx 몰비 1.2로 조정한 후 혼합기로 주입하였다. 이 때, 암모니아는 1%농도(Balance gas N2)의 암모니아 가스를 사용하였으며, 주입 유량을 MFC로 조절하였다. 각각의 조건에서 탈질율을 계산하였으며, 그 결과는 아래 표와 같다.
접촉배가스 중 NO2/NO 촉매반응탈질율(%)
2.49 77
2.33 81
1.50 90
0.67 94
0.43 86
0.40 78
표 3에서와 같이, 배가스 중 NO2/NO 비율이 2.33 이하일 때, 바람직하게는 0.43 내지 2.33일 때 보다 효과적으로 탈질이 가능하며, 0.67 내지 1.5일 때 보다 더 효과적으로 탈질이 가능함을 알 수 있다.
이와 같은 결과로부터, 접촉배가스 중 NO2/NO 비율은 바람직하게는 2.33이하, 보다 바람직하게는 0.43 내지 2.33, 보다 더 바람직하게는 0.67 내지 1.5임을 알 수 있다. 따라서, 환원제(예, 탄화수소계 환원제)는 이와 같은 비율을 유지하기 위한 것일 수 있다.
이와 같은 점을 고려할 때, 본 발명의 일 실시예에서, 제어부는 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율이 바람직하게는 2.33이하, 보다 바람직하게는 0.43 내지 2.33, 보다 더 바람직하게는 0.67 내지 1.5가 되도록 환원제(예, 탄화수소계 환원제)를 분사노즐에 공급하도록 환원제 공급 유니트를 제어하는 것이 보다 바람직함을 알 수 있다.
<실험례 4> 탈질 및 산화효과 확인 실험
실험례 1에서 사용된 탈질촉매에 산화촉매를 추가하여, 모사배가스{O2 15%, NO 20ppm, NO2 80ppm, 프로판(C3H8) 15ppm (Balance gas N2)}에 대한 탈질 및 산화효과 확인 실험을 실시하였다. 모사배가스 중 프로판은 THC제거효과를 객관적으로 판단하기 위해 추가한 것으로, 프로판가스(1% 프로판, Balance gas N2)를 MFC로 주입하여 농도를 조절하였다. 한편, 탈질촉매에 산화촉매를 추가하기 위해, 산화촉매를 별도의 지지체에 적용하는 방식과 탈질촉매와 동일한 지지체에 산화촉매를 적용하는 방식을 사용하였다. 산화촉매를 별도의 지지체에 적용하는 방식을 위해서는 실험예 1에서와 같은 SCR촉매와 별도의 백금계산화촉매(아이비머티리얼즈)를 구입하여 사용하였다. 이 때, 백금계산화촉매의 공간속도는 60,000hr-1이었다. 산화촉매를 탈질촉매와 동일한 지지체에 적용하기 위해서는 Platinum Nitrate를 DI water에 희석한 후, 실험예 1에서와 같은 SCR촉매의 40% 부분을 코팅하여, 촉매 무게 대비 Pt의 함량을 0.05wt% 가 되도록 하고, 120℃에서 4시간 건조후 500℃에서 5시간 소성하여 이중기능촉매를 준비하였다.
이 때, 촉매실험장치와 혼합기는 실험례 1과 동일한 것을 사용하여, 환원제와 배가스 접촉온도(환원제가 공급되는 배가스 온도) 400℃ 조건에서, 에틸렌글리콜의 유무, 산화촉매적용방식 변화에 따른 실험을 실시하였다. 촉매반응온도는 표에 기재된 바와 같다. 실험에 사용한 암모니아의 주입량은 NH3/NOx의 비 = 1.2 이었고, 에틸렌글리콜의 주입량은 에틸렌글리콜/NO2 몰비 = 0.4이었다. 실험결과는 탈질율뿐만 아니라 THC(Total Hydrocarbon) 제거율, 암모니아 Slip농도, 차압의 변화에 대하여도 함께 구하였다. 그 결과를 표 4 내지 표 7에 나타내었다. 표 4는 환원제로 암모니아만을 적용하고 SCR촉매를 적용한 경우의 실험결과를 나타내고, 표 5와 표 6은 환원제로 암모니아와 에틸렌글리콜을 적용하고 탈질촉매에 산화촉매를 추가로 적용한 경우의 실험결과를 나타낸다. 그 중 표 5는 산화촉매를 별도의 지지체에 적용한 경우의 실험결과를 나타내며, 표 6은 이중기능촉매를 적용한 경우의 실험결과를 나타낸다. 또한, 표 7은 반응온도 380℃에서 각각의 경우에 대한 차압 변화 실험결과를 나타낸다. 이 때, 표에서 ND는 불검출(not detected)을 나타낸다.
반응온도
(℃)
탈질율(%) THC제거율(%) 암모니아슬립(ppm)
175 16 10이하 50이상
200 21 10이하 50이상
225 30 10이하 50이상
250 38 10이하 50이상
300 65 10이하 38
350 86 10이하 15
400 90 10이하 8
450 83 10이하 5
475 70 10이하 4
500 56 10이하 4
525 40 10이하 3
반응온도
(℃)
탈질율(%) THC제거율(%) 암모니아슬립(ppm)
175 39 77 5
200 73 82 3
225 81 89 1
250 86 97 ND
300 94 99이상 ND
350 97 99이상 ND
400 93 99이상 ND
450 84 99이상 ND
475 78 99이상 ND
500 70 99이상 ND
525 42 99이상 ND
반응온도
(℃)
탈질율(%) THC제거율(%) 암모니아슬립(ppm)
175 38 78 2
200 72 86 1
225 82 93 ND
250 87 96 ND
300 95 99이상 ND
350 96 99이상 ND
400 95 99이상 ND
450 83 99이상 ND
475 75 99이상 ND
500 68 99이상 ND
525 41 99이상 ND
구분 SCR촉매와
암모니아만 적용
에틸렌글리콜과 산화촉매 적용 에틸렌글리콜과 이중기능촉매 적용
차압
(mmH2O)
24 50 28
표 4 내지 표 7의 실험결과로부터, 탄화수소계 환원제와 암모니아계환원제를 함께 환원제로 적용함으로써, 보다 넓은 온도범위에서 효과적으로 탈질이 이루어짐을 알 수 있다. 또한, 산화촉매를 탈질촉매와 함께 적용하여 산화시 THC발생이나 암모니아슬립도 효과적으로 억제할 수 있음을 알 수 있다. 더욱이, 산화촉매를 이중기능촉매의 형태로 적용함으로써, 차압면에서, 보다 효과적인 배가스 처리가 가능함을 알 수 있다.
이상의 실험결과로부터도, 본 발명에 의할 경우, 복합화력발전소의 기동 시점과 같이 이산화질소의 함량이 높은 배가스에 대해서도 탁월한 처리효과를 발휘할 수 있음을 알 수 있다.
이상 첨부된 도면과 실험예를 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
1: 가스터빈 2: 확산모듈부
3: 덕트 3a: 제1덕트부
3b: 제2덕트부 4: 덕트확관
6: 연돌 7: 탈질촉매
7-1: 추가탈질촉매 8: 열교환부
9: 산화촉매 10, 10-1: 배가스 처리장치
11: 분사노즐 11m: 최소분사위치
21: 외측 실린더부 22: 허브
23: 지지대 31: 완충연결부
40: 측정부 50: 환원제공급유니트
51: 탄화수소계 환원제 공급부 51a, 53a: 펌프
52: 제1역류방지부 53: 암모니아계 환원제 공급부
54: 제2역류방지부 55: 혼합기
57: 연결관 58: 환원제 공급관
59: 분지관 60: 제어부
71: 담체 73: 촉매하우징
111: 몸통 112: 결합플랜지
113: 개스킷 114: 플랜지관통관
310, 330: 벽 320: 문
325: 개폐부 551: 혼합기 하우징
553: 배플 555: 유입구
557: 유출구 700: 탈질촉매케이싱
710, 750: 격자 701: 볼트
703: 너트 730: 케이싱 본체
740a, 740b: 가이드레일 760: 와이어로프 견인기
770: 와이어로프 775: 링고정부
780: 바퀴 790: 링
L: 연장선
본 발명의 복합화력발전소 배가스 처리장치에 의해 복합화력발전소의 배가스를 효과적으로 처리할 수 있다. 따라서, 본 발명은 산업상 이용가능성이 있다.

Claims (17)

  1. 복합화력발전소의 가스터빈과 열교환부 사이의 덕트 내부에 말단이 위치하는 분사노즐;
    상기 분사노즐로 환원제를 공급하기 위한 환원제 공급 유니트; 및
    상기 환원제 공급 유니트를 제어하는 제어부를 포함하며,
    상기 환원제 공급 유니트는 탄화수소계 환원제 공급부, 암모니아계 환원제 공급부, 및 상기 탄화수소계 환원제 공급부로부터 유입된 탄화수소계 환원제와 상기 암모니아계 환원제 공급부로부터 유입된 암모니아계 환원제를 혼합하기 위한 혼합기를 포함하고,
    상기 혼합기는 상기 분사노즐에 일단이 연결되고, 상기 암모니아계 환원제 공급부와 상기 분사노즐 사이에 위치하고, 상기 탄화수소계 환원제 공급부와 상기 분사노즐 사이에 위치하며,
    상기 열교환부는 하나의 열교환모듈과 다른 하나의 열교환모듈을 포함하고, 상기 하나의 열교환모듈과 상기 다른 하나의 열교환모듈 사이에 탈질촉매가 위치하고,
    상기 제어부는 상기 가스터빈과 상기 열교환부 사이의 질소산화물 함유 배가스 온도 300℃ 내지 500℃에서 상기 환원제 공급 유니트가 상기 탄화수소계 환원제 및 상기 암모니아계 환원제를 상기 분사노즐로 공급하도록 제어하는 복합화력발전소 배가스 처리장치.
  2. 제1항에 있어서, 상기 탄화수소계 환원제 공급부와 상기 암모니아계 환원제 공급부는 연결관에 의해 연결되고, 상기 연결관에는 역류방지부가 배치되는 복합화력발전소 배가스 처리장치.
  3. 제2항에 있어서, 상기 연결관에는 분지관이 형성되어, 상기 분지관이 상기 혼합기의 타단에 연결되는 복합화력발전소 배가스 처리장치.
  4. 제3항에 있어서, 상기 역류방지부는 제1역류방지부 및 제2역류방지부를 포함하고, 상기 제1역류방지부는 상기 분지관과 상기 탄화수소계 환원제 공급부 사이에 배치되고, 상기 제2역류방지부는 상기 분지관과 상기 암모니아계 환원제 공급부 사이에 배치되는 복합화력발전소 배가스 처리장치.
  5. 제1항에 있어서, 상기 제어부는 상기 가스터빈과 상기 열교환부 사이에서 질소산화물 함유 배가스의 질소산화물 농도가 30 내지 100ppm에서 상기 환원제 공급 유니트가 상기 탄화수소계 환원제 및 상기 암모니아계 환원제를 상기 분사노즐로 공급하도록 제어하는 복합화력발전소 배가스 처리장치.
  6. 제1항에 있어서, 상기 제어부는 상기 질소산화물 함유 배가스 중 포함되는 이산화질소의 0.5 당량에 해당하는 양을 최대량으로 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어하는 복합화력발전소 배가스 처리장치.
  7. 제1항에 있어서, 상기 제어부는 상기 질소산화물 함유 배가스 중 이산화질소/일산화질소의 비율이 2.33 이하가 되도록 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어하는 복합화력발전소 배가스 처리장치.
  8. 제1항에 있어서, 상기 질소산화물 함유 배가스의 온도, 상기 질소산화물 함유 배가스 성분 중 하나 이상의 농도, 및 상기 가스터빈 출력 중에서 선택된 하나 이상을 측정하는 측정부를 더 포함하고, 상기 배가스 성분은 일산화질소 또는 이산화질소 중 하나 이상을 포함하는 복합화력발전소 배가스 처리장치.
  9. 제8항에 있어서, 상기 제어부는 상기 측정부에서 측정한 이산화질소농도 측정값에 연동하여 상기 탄화수소계 환원제를 상기 분사노즐에 공급하도록 상기 환원제 공급 유니트를 제어하는 복합화력발전소 배가스 처리장치.
  10. 제1항에 있어서, 상기 제어부는 상기 가스터빈으로부터 유출되는 배가스 중 질소산화물 농도가 5~25ppm이거나, 상기 가스터빈이 최대출력의 40~100% 출력에 도달할 때, 상기 탄화수소계 환원제가 상기 분사노즐로 공급되는 것을 중단하도록 상기 환원제 공급 유니트를 제어하는 복합화력발전소 배가스 처리장치.
  11. 제1항에 있어서, 상기 분사노즐의 상기 환원제 분사방향은 상기 덕트 내벽으로부터 덕트 중심을 향하는 방향인 복합화력발전소 배가스 처리장치.
  12. 제11항에 있어서, 상기 가스터빈과 상기 분사노즐 사이에 배가스 흐름을 조절하여 상기 덕트의 내벽 측으로 유도하는 확산모듈부 및 상기 분사노즐에 의해 환원제가 분사되어 도달할 수 있는 최소한의 위치인 최소분사위치를 더 포함하고, 상기 확산모듈부는 내부로 배가스가 통과되는 외측 실린더부 및 상기 외측 실린더부의 중심부에 삽입되어 배가스를 원심 방향으로 유도하는 허브(hub)를 포함하며, 상기 최소분사위치는 상기 허브의 외주면에서 상기 허브의 길이방향으로 평행하게 연장된 연장선에서 상기 덕트의 내벽으로 내린 수선을 따라 상기 덕트의 내벽으로부터 상기 수선의 길이의 1/2길이에 해당하는 위치인 복합화력발전소 배가스 처리장치.
  13. 제1항에 있어서, 상기 탈질촉매는 복수개의 탈질촉매케이싱에 수용되고, 상기 탈질촉매케이싱 각각의 일 측에는 링이 형성되고, 일단에 링고정부가 형성된 와이어 로프가 상기 각각의 탈질촉매케이싱에 형성된 링을 관통하여 상기 각각의 탈질촉매케이싱을 연결하고, 상기 탈질촉매케이싱 각각의 타 측에는 바퀴가 형성되고, 상기 와이어 로프의 타단은 와이어 로프 견인기에 연결되어 상기 하나의 열교환모듈과 상기 다른 하나의 열교환모듈 사이에 배치된 한쌍의 가이드레일 사이로 상기 복수개의 탈질촉매케이싱을 이동시키는 복합화력발전소 배가스 처리장치.
  14. 제1항에 있어서, 상기 탈질촉매는 산화촉매 기능이 추가된 이중기능촉매인 복합화력발전소 배가스 처리장치.
  15. 제1항에 있어서, 상기 탈질촉매 후단에 추가탈질촉매가 배치되는 복합화력발전소 배가스 처리장치.
  16. 제15항에 있어서, 상기 추가탈질촉매 후단에 산화촉매가 배치되는 복합화력발전소 배가스 처리장치.
  17. 제16항에 있어서, 상기 열교환부는 유출측열교환모듈을 더 포함하고, 상기 다른 하나의 열교환모듈 후단에 상기 유출측열교환모듈이 배치되고, 상기 다른 하나의 열교환모듈 전단에 상기 하나의 열교환모듈이 배치되며, 상기 추가탈질촉매는 상기 유출측열교환모듈 전단에 배치되고, 상기 산화촉매는 상기 유출측열교환모듈 후단에 배치되는 복합화력발전소 배가스 처리장치.
PCT/KR2021/005867 2020-06-09 2021-05-11 복합화력발전소 배가스 처리장치 WO2021251630A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200069863A KR102159083B1 (ko) 2020-06-09 2020-06-09 복합화력발전소 배가스 처리장치
KR10-2020-0069863 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251630A1 true WO2021251630A1 (ko) 2021-12-16

Family

ID=72708930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005867 WO2021251630A1 (ko) 2020-06-09 2021-05-11 복합화력발전소 배가스 처리장치

Country Status (3)

Country Link
KR (1) KR102159083B1 (ko)
TW (1) TWI781625B (ko)
WO (1) WO2021251630A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159083B1 (ko) * 2020-06-09 2020-09-23 주식회사 이엠코 복합화력발전소 배가스 처리장치
CN113842740A (zh) * 2021-11-08 2021-12-28 抚顺新钢铁有限责任公司 一种烧结机脱硝烟气加热系统
TWI796206B (zh) * 2022-04-18 2023-03-11 凱德利斯特國際有限公司 智慧型多功能環保裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092497A (ko) * 2003-04-24 2004-11-04 주식회사 코캣 고정원에서 발생되는 이산화질소 가시매연 저감방법
KR101277518B1 (ko) * 2013-04-09 2013-06-21 포항공과대학교 산학협력단 황연 및 질소산화물을 저감하기 위한 선택적 촉매환원/선택적 무촉매환원 복합 탈질설비
KR101807996B1 (ko) * 2017-07-17 2017-12-12 블루버드환경 주식회사 황연 및 질소산화물 저감을 위하여 이종 환원제를 사용하는 복합 탈질설비
KR20190128447A (ko) * 2018-05-08 2019-11-18 에스케이가스 주식회사 올레핀 제조 공정 중에 발생하는 배가스 내 이산화질소를 저감하는 방법
KR102070771B1 (ko) * 2018-10-10 2020-01-29 한국서부발전 주식회사 화력발전소의 배가스 처리장치
KR102159083B1 (ko) * 2020-06-09 2020-09-23 주식회사 이엠코 복합화력발전소 배가스 처리장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475944B1 (en) * 2000-03-27 2002-11-05 Hyundai Heavy Industries Co., Ltd. Vanadia catalyst impregnated on titania-pillared clay for the removal of nitrogen oxide
CN100464122C (zh) * 2007-02-28 2009-02-25 哈尔滨工业大学 降低煤粉锅炉氮氧化物排放的方法及其使用的煤粉锅炉
JP2009090239A (ja) * 2007-10-10 2009-04-30 Hitachi Ltd NOx還元触媒、その製造方法、並びにその触媒の使用方法
CN102168852A (zh) * 2010-12-23 2011-08-31 北京机电院高技术股份有限公司 一种降低垃圾焚烧烟气中氮氧化物排放限值的方法及装置
KR101563079B1 (ko) 2014-02-04 2015-10-30 한국남부발전 주식회사 화력발전소 배연 탈황설비
CN105485664B (zh) * 2015-12-07 2018-04-24 山西大学 一种复合脱硝的方法及装置
CN206391846U (zh) * 2017-01-09 2017-08-11 山东晴阳环保科技有限公司 基于高效氨基还原剂的脱硝系统协同scr联合脱硝系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092497A (ko) * 2003-04-24 2004-11-04 주식회사 코캣 고정원에서 발생되는 이산화질소 가시매연 저감방법
KR101277518B1 (ko) * 2013-04-09 2013-06-21 포항공과대학교 산학협력단 황연 및 질소산화물을 저감하기 위한 선택적 촉매환원/선택적 무촉매환원 복합 탈질설비
KR101807996B1 (ko) * 2017-07-17 2017-12-12 블루버드환경 주식회사 황연 및 질소산화물 저감을 위하여 이종 환원제를 사용하는 복합 탈질설비
KR20190128447A (ko) * 2018-05-08 2019-11-18 에스케이가스 주식회사 올레핀 제조 공정 중에 발생하는 배가스 내 이산화질소를 저감하는 방법
KR102070771B1 (ko) * 2018-10-10 2020-01-29 한국서부발전 주식회사 화력발전소의 배가스 처리장치
KR102159083B1 (ko) * 2020-06-09 2020-09-23 주식회사 이엠코 복합화력발전소 배가스 처리장치

Also Published As

Publication number Publication date
TW202204029A (zh) 2022-02-01
TWI781625B (zh) 2022-10-21
KR102159083B1 (ko) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2021251630A1 (ko) 복합화력발전소 배가스 처리장치
WO2021141243A1 (ko) 화력발전소 배가스 처리방법
WO2020242013A1 (en) Apparatus for treating exhaust gas of thermal plant
KR100713262B1 (ko) 배기가스에 응집물을 주입하기 위한 장치
WO2020122619A1 (ko) 농도 정밀제어 가능한 다공성 구조체 삽입형 희석 요소수 분무장치
KR101910874B1 (ko) 화력발전소의 질소산화물처리장치
WO2012118331A4 (ko) 소음감쇄 구조를 갖는 배기가스 탈질시스템
ES2276878T3 (es) Procedimiento de tratamiento por combustion de gas y aparatos para el mismo.
ES475656A1 (es) Mejoras en un procedimiento y un aparato para controlar los oxidos de nitrogeno en los gases de escape de un equipo de combustion
US5120516A (en) Process for removing nox emissions from combustion effluents
WO2014030971A1 (en) Exhaust gas treatment apparatus
KR100597961B1 (ko) 고정원에서 발생되는 이산화질소 가시매연 저감방법
WO2020050598A1 (ko) 화력발전소의 배가스 처리장치
WO2015182812A1 (ko) 선택적 촉매 환원 시스템을 포함한 동력 장치
WO2018080179A1 (ko) 배기가스 후처리 시스템
KR102481132B1 (ko) 버너장치 및 이를 포함하는 선택적 촉매 환원 시스템
KR102474846B1 (ko) Sncr 기반 선박용 플라즈마 질소산화물 저감 장치
KR20030081231A (ko) 요소를 환원제로 사용하는 선택적 촉매 환원법을 통한질소산화물의 저감시스템
JP2010065702A (ja) 内燃機関の排気ガスに含まれる汚染物質の処理プラントおよびそれを使用した方法
KR102464835B1 (ko) 소각로 내부열을 이용한 요소수 분사장치 및 요소수 분사방법
KR100739124B1 (ko) 선택적 촉매 환원법을 이용하는 질소산화물의 저감시스템
KR102359124B1 (ko) Scr 촉매를 가진 패브릭 필터 백을 사용하여 연도 가스로부터 유해 화합물을 제거하기 위한 방법 및 시스템
JPH01127028A (ja) 燃焼排ガスの脱硝装置
KR20210120195A (ko) 오존산화방식의 질소산화물(NOx) 제거공법에 효율적인 개량된 덕트구조
WO2014084536A1 (ko) 배기가스 탈질용 환원제공급 제어장치 및 이를 이용하는 배기가스 탈질시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822078

Country of ref document: EP

Kind code of ref document: A1