WO2014208743A1 - 三次元造形体およびサポート形成方法 - Google Patents
三次元造形体およびサポート形成方法 Download PDFInfo
- Publication number
- WO2014208743A1 WO2014208743A1 PCT/JP2014/067225 JP2014067225W WO2014208743A1 WO 2014208743 A1 WO2014208743 A1 WO 2014208743A1 JP 2014067225 W JP2014067225 W JP 2014067225W WO 2014208743 A1 WO2014208743 A1 WO 2014208743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support
- modeling
- powder
- dimensional structure
- modeled object
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/40—Structures for supporting workpieces or articles during manufacture and removed afterwards
- B22F10/47—Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/68—Cleaning or washing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the embodiments referred to in this specification relate to a three-dimensional structure and a support forming method.
- an optical modeling method for example, a computer-controlled light (for example, an ultraviolet laser) so that a desired pattern is obtained on the liquid surface of a liquid photocurable resin (fluid material) placed in a modeling bath. ) Is selectively irradiated to cure the photocurable resin. Furthermore, one layer of photo-curable resin is supplied onto the photo-cured layer, light is irradiated again to cure the photo-curable resin, and the same processing is repeated to form a desired shaped object. To do.
- a computer-controlled light for example, an ultraviolet laser
- a support for supporting an overhang portion cured by light irradiation is indispensable. Furthermore, a support is required to avoid the inconvenience that the modeled object adheres to the model table.
- a support is indispensable in a three-dimensional additive manufacturing apparatus to which an optical modeling method is applied, but since this support is essentially an obstacle, it is smaller and more easily modeled. Is preferred.
- the three-dimensional additive manufacturing apparatus to which the FDM method is applied for example, melts a thread-like thermoplastic resin with a heater in the modeling head, controls the injection of the melted thermoplastic resin, and stacks by raising and lowering the modeling table. It is to be shaped.
- the support is dissolved and removed using an alkaline solution, but this not only complicates the operation but also involves a risk of treating the alkaline solution.
- the three-dimensional additive manufacturing apparatus to which the optical modeling method using the photocurable resin in the non-flowable state is applied for example, when forming a model using a liquid photocurable resin having a predetermined melting temperature
- the photo-curable resin of the same layer cured by light irradiation is kept in a solidified state at a temperature lower than its melting temperature, and light irradiation is performed by supplying one layer of the photo-curable resin on the surface. In this way, deformation such as sagging in the modeled object is prevented.
- the solidified state is a non-fluid state, and includes, for example, a wax shape, a jelly shape, and a gel shape.
- such a three-dimensional layered modeling apparatus uses, for example, a non-flowable state with a photocurable resin as a temperature lower than its melting temperature, for example, the shape of the modeled object is large and heavy, There is a possibility that a problem may occur when a modeled object sinks even with a non-flowable photocurable resin, or when deformation such as warping due to internal stress generated during modeling occurs.
- the model when the post-processing of the model is automated, the model is in an unstable shape, or a plurality of models are in the height direction. In the case where the layers are stacked in the (Z direction), various problems may occur.
- a powder forming method for example, powder sintering, powder melting, or three-dimensional additive manufacturing apparatus using powder inkjet (Powder Bed and Inkjet Head 3D Printing)
- powder inkjet Powder Bed and Inkjet Head 3D Printing
- the powder for example, sand or metal
- the powder for example, sand or metal
- the worker who removes the powder must handle the model while avoiding damage. It will be a big burden.
- the shape of the modeled object is large and heavy, the modeled object may sink due to non-flowable powder, and deformation such as warpage due to internal stress generated during modeling occurs. There is also a fear.
- This embodiment is intended to provide a three-dimensional structure and a support forming method capable of appropriately supporting a three-dimensional object in the three-dimensional additive manufacturing technique.
- a three-dimensional model is formed by applying a powder modeling method, for example, a model, a support, and a combination formed in a modeling tank of a three-dimensional additive manufacturing apparatus The whole is shown including the powder that has not been applied or left unsintered or melted by a laser or thermal head.
- the target modeled object is obtained, for example, by removing the support and the powder from the three-dimensional modeled body formed in the modeling tank.
- the three-dimensional structure is, for example, a three-dimensional object when a formed object is formed using a non-flowable material such as a photo-curing resin whose temperature is lower than the melting temperature.
- a non-flowable modeling material (and, in some cases, a fluid modeling material), such as a modeled object, a support, and a photocurable resin that remains without being photocured, formed in the modeling tank of the additive manufacturing apparatus. The whole including is shown.
- the target modeled object can be obtained, for example, by removing the support and non-fluid (and fluid) modeling material from the three-dimensional modeled body formed in the modeling tank.
- stacked on the modeling table, the modeling object formed in the said modeling material, formed in the said modeling material, and predetermined with respect to the said modeling object A three-dimensional structure having a support provided through the gap is provided.
- the process which coats the modeling material for one layer on a modeling table, and the coated modeling material is processed, and the one layer of modeling object is formed
- a support forming method in a three-dimensional additive manufacturing apparatus that repeats the processing to form a support through a predetermined gap when forming one layer of the modeled object.
- the disclosed three-dimensional structure and the support forming method have an effect that the formed object can be appropriately supported and formed. Moreover, according to the disclosed three-dimensional structure and the support forming method, for example, when post-processing of a model is automated, when the model is an unstable shape, or a plurality of models are stacked in the height direction. It is possible to reduce the damage of the modeled object when it is formed, and even if the post-processing is not automated, it is possible to reduce the burden on the operator who takes out the modeled object and removes the non-fluid material. become.
- FIG. 1 is a perspective view schematically showing an example of a three-dimensional additive manufacturing apparatus.
- FIG. 2 is a diagram for explaining an example of a three-dimensional structure.
- FIG. 3 is a view for explaining the first embodiment of the three-dimensional structure according to the present invention.
- FIG. 4 is a view showing a modification of the three-dimensional structure shown in FIG.
- FIG. 5 is a diagram showing still another modification of the three-dimensional structure shown in FIG.
- FIG. 6 is a diagram showing an example of a support shape applied to the present invention.
- FIG. 7 is a view for explaining a second embodiment of the three-dimensional structure according to the present invention in comparison with the conventional example.
- FIG. 8 is a view showing a modification of the support shape when forming the shaped article shown in FIG. 7.
- FIG. 8 is a view showing a modification of the support shape when forming the shaped article shown in FIG. 7.
- FIG. 9 is a diagram for explaining another example of a shaped article applied to the present invention.
- FIG. 10 is a diagram for explaining a three-dimensional structure including the structure shown in FIG. 9 in comparison with the conventional example and this example.
- FIG. 11 is a diagram for explaining a three-dimensional structure including still another object to be applied to the present invention in comparison with the conventional example and this example.
- FIG. 12 is a diagram for explaining another example of the relationship between the modeled object and the support.
- FIG. 13 is a diagram for explaining still another example of the relationship between the modeled object and the support.
- FIG. 1 is a perspective view schematically showing an example of a three-dimensional additive manufacturing apparatus, and shows an example of a three-dimensional additive manufacturing apparatus 100 to which a powder forming method is applied.
- a three-dimensional additive manufacturing apparatus 100 includes a control computer 101, a printer head unit 102, a recoater unit 103, a modeling tank 104, a lifting device 105, a powder supply hopper unit 106, a cleaning unit 107, and A chemical unit 108.
- the modeling tank 104 is provided with a modeling table 141 in which control in the Z-axis direction (height direction) is performed by the lifting device 105.
- the control computer 101 receives three-dimensional data (for example, STL data: Standard Triangulated Language Data) and performs slice processing, offset processing, bitmap conversion processing, and the like to control the three-dimensional additive manufacturing apparatus 100. Do.
- STL data Standard Triangulated Language Data
- the printer head unit 102 applies (discharges) a binder (binder) to the powder surface on the modeling table 141 based on the bitmapped data, and performs modeling for one layer.
- a binder binder
- the printer head unit 102 includes, for example, a plurality of inkjet heads provided with a plurality of ejection nozzles.
- the printer head unit 102 applies the binder to the powder surface on the modeling table 141 while moving the printer head 121 in the X axis direction (left and right direction when viewed from the front of the apparatus).
- the printer head 121 is moved in the Y-axis direction (front-rear direction when viewed from the front of the apparatus), and the printer head 121 is moved again in the X-axis direction to apply the binder. I do. By repeating such processing, one layer of modeling processing is performed.
- the printer head 121 may be configured as a line head having the entire length of the modeling table 141 in the X-axis direction, for example. In this case, only by moving the printer head 121 in the Y-axis direction, it is possible to apply the binder to the entire powder on the modeling table 141, that is, to perform one layer of modeling processing.
- the lifting table 105 lowers the modeling table 141 in the Z-axis direction (height direction), and the recoater unit 103 is moved to the Y-axis. While moving in the direction, coat one layer of powder.
- the recoater unit 103 includes a recoater hopper 131 and a vibrating blade 132, for example.
- the recoater hopper 131 stores the powder supplied from the powder supply hopper unit 106.
- the vibrating blade 132 operates when the recoater unit 103 is moving in the Y-axis direction. During the movement of the recoater unit 103, the powder is densely and horizontally (XY plane) on the modeling table 141. Supply to become. Note that the amount (height) by which the modeling table 141 is lowered by the lifting device 105 and the thickness (stacking pitch) of the powder coated by the recoater unit 103 are controlled to coincide.
- the final modeled object is completed in the model tank 104. That is, in the modeling tank 104, for example, a three-dimensional modeled body including a target modeled object, a support, and a powder remaining without being applied with a binder is formed.
- the modeling tank 104 is moved to the outside of the three-dimensional layered modeling apparatus 100 by, for example, a modeling tank transfer unit, and removes unnecessary support and powder from the three-dimensional modeled body formed inside automatically or manually, The target model is taken out.
- the cleaning unit 107 is for removing excess binder and powder from the printer head 121.
- the chemical unit 108 stores chemicals (binding agent and cleaning agent) used for the modeling process.
- the binding agent is supplied to the printer head 121 and the cleaning agent is supplied to the cleaning unit 107.
- the cleaning agent is used, for example, to clean the inside of the printer head and the discharge port, or is filled so that the printer head does not dry and deteriorate when not in use.
- the three-dimensional additive manufacturing apparatus 100 is also provided with a waste liquid tank (not shown) for collecting waste liquid by the cleaning unit 107, an air pressure control unit used for discharging a binder and a cleaning agent, and the like.
- FIG. 1 shows a mere example of a three-dimensional additive manufacturing apparatus to which the powder modeling method is applied, and the application of the present embodiment is not limited to that shown in FIG.
- the present invention is applied to a three-dimensional structure and a support forming method using the applied three-dimensional additive manufacturing apparatus.
- the present embodiment can be applied as a three-dimensional structure and a support forming method using a three-dimensional additive manufacturing apparatus to which various powder modeling methods such as powder sintering, powder melting, or powder inkjet are applied.
- various powder modeling methods such as powder sintering, powder melting, or powder inkjet are applied.
- the present embodiment is not limited to the three-dimensional additive manufacturing apparatus to which the powder forming method is applied.
- the three-dimensional additive manufacturing apparatus to which an optical forming method using a photocurable resin in a non-fluid state is applied This is applied to the three-dimensional structure and the support forming method. That is, in this practical example, a three-dimensional modeling body and a support formation by a three-dimensional additive manufacturing apparatus that forms a model using a non-flowable material including powder, wax, jelly, and sol as a modeling material. It can be widely applied to the method.
- the modeled object has an unstable shape
- the shaped object will be prevented from being overturned or damaged due to the contact of multiple shaped objects. It is preferable to use a support in order to prevent deformation such as warping due to internal stress generated in the material or to reduce the burden on the operator who removes the non-flowable material.
- FIG. 2 is a view for explaining an example of a three-dimensional structure
- FIG. 2 (a) is a perspective view showing a three-dimensional structure and a support in the three-dimensional structure
- FIG. 2 (b) is a tertiary view. The front view of an original model is shown.
- reference numerals 11a to 11c are modeling objects (models)
- 21 and 22 are supports (support members)
- 21a to 21c and the support 22 are connecting portions of the supports 21 and 22, respectively.
- 4 shows a modeling table.
- reference numeral 3 indicates, for example, a powder that remains without being applied with a binder, that is, a powder that is not used as a shaped article and a support.
- FIG. 2A and FIG. 2B show a case where, for example, the target three rectangular shaped objects 11a to 11c are formed by the three-dimensional additive manufacturing apparatus 100 shown in FIG. Yes.
- each of the molded objects 11a to 11c is supported via connection portions 21a to 21c and 22a to 22c, respectively.
- 21 and 22 are formed integrally.
- FIG. 2B for example, the three-dimensional structure formed in the modeling tank 104 of the three-dimensional additive manufacturing apparatus 100 illustrated in FIG. To 11c and supports 21, 22 (21a to 21c, 22a to 22c) and powder 3 therebetween.
- modeling objects 11a to 11c and the supports 21 and 22 are integrally modeled, it is necessary to separate the modeling objects 11a to 11c from the support. Therefore, for example, in a three-dimensional additive manufacturing apparatus by melting metal powder, the metal between the modeled object and the support must be cut.
- models there are various models (models).
- sand, metal powder, gypsum, starch, artificial bone, plastic powder or the like can be used as a powder, and a mold can be formed as a modeled object.
- FIG. 3 is a view for explaining a first embodiment of the three-dimensional structure according to the present invention
- FIG. 3 (a) is a perspective view showing a three-dimensional structure and a support in the three-dimensional structure.
- 3 (b) shows a front view of the three-dimensional structure.
- FIG.3 (c) has shown a mode that most powder was removed using the powder suction apparatus, for example in the three-dimensional structure shown in FIG.3 (b).
- reference numerals 11a to 11c are rectangular parallelepiped shaped objects
- 23a and 23b are plate-shaped supports
- 24a, 24b, 25a and 25b are columnar supports
- 4 is a modeling table. Indicates.
- reference numeral 3 indicates, for example, a powder that remains without being applied with a binder, that is, a powder that is not used as a shaped article and a support.
- the columnar supports 24a, 25a, 24b, and 25b are provided at the four corners so as to support the plate-like supports 23a and 23b.
- a shelf shape is formed by 24b, 25a, and 25b.
- a gap (d0, d1) is provided between each plate-like support 23a, 23b, and the shaped objects 11a-11c and the columnar supports 24a, 24b, 25a, 25b.
- the three-dimensional structure formed in the modeling tank 104 of the three-dimensional additive manufacturing apparatus 100 shown in FIG. 1 is between the modeling table 4 and the plate-like support 23 a.
- the modeled object 11a and the columnar supports 24a and 25a are formed, and the modeled object 11b and the columnar supports 24b and 25b are formed between the plate-shaped support 23a and the plate-shaped support 23b.
- the molded article 11c is formed above the plate-like support 23b.
- a gap d0 corresponding to one to several layers (for example, 1 mm or less) of the powder layer coated by the recoater unit 103 described with reference to FIG. 1 is provided.
- the bond does not occur only in one layer of the powder layer to be coated. Sometimes it happens. Furthermore, even when the powder is sintered or melted to form a shaped article, the sintering or melting does not occur only in one layer but may occur in several layers.
- an offset process is performed in the height direction (Z-axis direction) between the upper surface of the modeling table 4 and the lower surface of the modeled object 11a, or between the upper surface of the plate-like support 23a and the lower surface of the modeled object 11b.
- an offset layer can be provided, and the gaps for several powder layers can be minimized.
- a gap d0 is also provided between the upper surface of the modeled object 11a, the upper surfaces of the columnar supports 24a and 25a, and the lower surface of the plate support 23b, and between the upper surfaces of the columnar supports 24b and 25b and the lower surface of the plate support 23b. It has been.
- a gap d1 larger than the gap d0 is provided between the upper surface of the molded article 11b and the lower surface of the plate-like support 23b. Therefore, for example, powders to which no binder is applied are stacked in the gaps d0 and d1.
- the gaps d0 and d1 described above can be variously changed depending on the shape and size of the modeled object. For example, if the gap d0 is about 1 mm or less, the modeled object and the support may drop or fall. There is no.
- FIG. 3 (c) when most of the powder is removed from the three-dimensional structure shown in FIG. 3 (b) using, for example, a powder suction device, the result is as shown in FIG. 3 (c). That is, in FIG.3 (c), between the upper surface of the modeling table 4 and the lower surface of the molded article 11a, between the upper surface of the plate-shaped support 23a and the lower surface of the molded article 11b, and the upper surface of the plate-shaped support 23b and the molded article 11c. The powder in the portion of the gap d0 between the lower surfaces of the other portions remains, but the powder in the other portions is removed.
- the three shaped objects 11a to 11c do not come into contact with each other and are not damaged. That is, in order from the top, after removing the modeled object 11a, the plate-shaped support 23b and the columnar supports 24b and 25b are removed to extract the modeled object 11b, and the plate-shaped support 23a and the columnar supports 24a and 25a are further removed. The molded object 11a is taken out.
- the shaped object falls or a plurality of shaped objects It becomes possible to prevent the damage due to the contact.
- the model is separated by the powder layer between the model table and the plate-like support, it is possible to reduce the burden on the operator who takes out the model and removes the powder.
- powder is provided between the modeled object and the support, so that it is not necessary to perform an operation such as metal cutting.
- FIG. 4 is a diagram showing a modification of the three-dimensional structure shown in FIG. 3, and FIGS. 4 (a) to 4 (d) each show a modification of FIG. 3 (b).
- FIGS. 4 (a) to 4 (d) each show a modification of FIG. 3 (b).
- the columnar supports 24b and 25b are integrally formed with the upper plate-like support 23b.
- the supports 24a and 25a are also formed integrally with the upper plate-like support 23a.
- a gap d0 is provided between the upper surface of the modeling table 4 and the lower surfaces of the columnar supports 24a and 25a.
- the columnar supports 24b and 25b are formed integrally with the lower plate-like support 23a.
- the plate-like supports 23a and 23b are provided without providing the supports 24a, 24b, 25a and 25b.
- a gap d0 is provided between the modeling table 4 and the plate-like supports 23a and 23b and the modeled objects 11a to 11c.
- FIG. 5 is a view showing still another modified example of the three-dimensional structure shown in FIG. 3, and shows a case where the shapes of the shaped objects 11a to 11c are different. As shown in FIG. 5, the shaped objects 11a to 11c do not have to have the same shape, and may all have different shapes.
- the modeled objects 11a to 11c can be variously changed between the modeled table 4 and the plate-like supports 23a and 23b.
- powder can be used between the upper surface of the modeled table 4 and the lower surface of the modeled object 11a.
- An offset layer of the gap d11 is provided, and an offset layer of the gap d13 by powder is provided between the upper surface of the plate-like support 23a and the lower surface of the modeled object 11b.
- the upper surface of the plate-like support 23b and the lower surface of the modeled object 11c are provided.
- an offset layer with a gap d15 of powder is provided.
- the thicknesses d11, d13, and d15 of these offset layers may be set to the same value of 1 mm or less, for example, taking into account differences in sinking into the powder layer due to the shape and weight of the modeled object. Can be set to different values. Normally, the excessive curing of the modeled object occurs downward in the Z-axis direction (height direction).
- the gap d12 between the upper surface of the modeled object 11a and the lower surface of the plate-like support 23a and the gap d14 between the upper surface of the modeled object 11b and the lower surface of the plate-shaped support 23b are more than the offset layers (d11, d13, d15). It is set large enough.
- a plurality of shaped objects formed on the same three-dimensional shaped object may have the same shape, but may have different shapes, and a gap between each shaped object and the support is also necessary.
- Various values can be set accordingly.
- FIGS. 6A and 6B are diagrams showing examples of support shapes applied to the present invention.
- FIGS. 6A and 6B show deformations of the shape of the columnar support, and FIG. The modification of the shape of the connection part of a columnar support and a columnar support is shown.
- the columnar supports 24a, 24b, 25a, and 25b are not formed in a cylindrical shape, for example, when the powder is removed, It can be set as the shape where the lower surface which becomes stable with respect to the table 4 or the plate-shaped support 23a becomes wide.
- tapered portions are formed so that the lower and upper columnar supports 24a, 24b and the plate-like support 23a are properly engaged with each other.
- the columnar support does not need to be a columnar shape, and may be a rod shape based on a square or a polygon, or may be a plate shape.
- the number of columnar supports can be provided in a necessary place instead of the four corners of the plate-like support.
- the shape and number of supports can be changed variously.
- the use of the support is not limited to the case where the above-described plurality of modeled objects are formed to overlap each other.
- the post-processing of the modeled object is automated, or the modeled object has an unstable shape. Even in a case, an appropriate shape is used in consideration of reduction of damage to the modeled object and reduction of the burden on the operator.
- the use of the support is not limited to a three-dimensional additive manufacturing apparatus using an inkjet, for example, by applying a binder to the powder surface to form a three-dimensional object. It is also applied to various three-dimensional additive manufacturing apparatuses. Furthermore, the use of the support should be widely applied not only to the 3D additive manufacturing apparatus using the powder modeling method, but also to the 3D additive manufacturing apparatus that uses a non-fluid material as a forming material to form the object. Can do.
- the metal powder is melted at a higher density, so even if a support is used to prevent deformation caused by its weight (sag). Good.
- the support can be used to prevent deformation (warping) that occurs in a thin portion of the shaped object.
- FIG. 7 is a view for explaining a second embodiment of the three-dimensional structure according to the present invention in comparison with the conventional example.
- FIG. 7 (a) shows a state in which sagging occurs
- FIG. b) shows a support corresponding to that described with reference to FIGS. 2 (a) and 2 (b).
- FIG. 7C shows a second embodiment of the three-dimensional structure according to the present invention.
- reference numeral 3 is powder
- 4 is a modeling table
- 10 is a modeled object having a large overhang portion
- 20 and 26 are supports.
- FIG. 7 (a) shows a state where sagging has occurred
- FIG. 7 (b) shows the shaped object as described with reference to FIGS. 2 (a) and 2 (b). The case where the support is integrally formed is shown.
- the joint portion 20a with the molded article 10 is made small (thin).
- a plurality of supports 20 can be applied. Even in this case, in order to take out the completed molded article 10, it is necessary to remove the support 20 (20 a).
- the support 26 is formed via the gap d below (vertically) the overhang portion of the structure 10. To do.
- a gap d is also provided between the shaped article 10 and the support 26 in the lateral direction. That is, in the three-dimensional structure, the three-dimensional object 10 comes into contact with the support 26 through the powder layer in the gap d.
- the gap d between the overhang portion of the molded article 10 and the support 26 is, for example, one to several layers (for example, 1 mm or less) of the powder layers to be sequentially coated. Will not occur. Furthermore, since there is a powder layer with a gap d between the modeled object 10 and the support 26, the completed modeled object 10 can be easily taken out.
- the vertical gap between the overhang portion of the molded article 10 and the support 26 and the horizontal gap between the molded article 10 and the support 26 are not necessarily equal, and the gap d is also limited to 1 mm or less. Instead, an appropriate thickness is selected depending on the shape and material of the modeled object 10 or the material and method of the powder used by the three-dimensional layered modeling apparatus.
- FIG. 8 is a view showing a modification of the support shape when forming the shaped article shown in FIG. 7, and FIGS. 8 (a) to 8 (c) show a modification of the support 26 shown in FIG. 7 (c). Is shown.
- the support 26a shown in FIG. 8 (a) is an overload of the model 10 while the support 26 of FIG. 7 (c) is provided entirely from the bottom surface (modeling table 4) of the model 10.
- a predetermined thickness is provided below the hung portion.
- the supports 26b and 26c shown in FIGS. 8B and 8C are provided with hollow portions inside the support 26 shown in FIG. 7C.
- the powder in the portion is collected and reused. It is supposed to be possible.
- the support 26 shown in FIG. 7C can be variously modified.
- FIG. 9 is a diagram for explaining another example of a model applied to the present invention
- FIG. 9A is a perspective view showing a model 12
- FIG. 9B is a model. It is a figure which shows the thing 12 and the support 27.
- FIG. 9A is a perspective view showing a model 12
- FIG. 9B is a model. It is a figure which shows the thing 12 and the support 27.
- the support 27 has a shape with respect to the columnar modeled object 12 with a predetermined gap d. Formed as.
- FIG. 10 is a diagram for explaining the three-dimensional structure including the structure shown in FIG. 9 in comparison with the conventional example and this example.
- FIG. 10 (a) shows an ideal case
- FIG. 10 (b) shows an actual case
- FIG. 10 (c) shows a case where this embodiment is applied.
- FIGS. 10 (a) and 10 (b) for example, when forming (modeling) a cylindrical shaped article 12 in the powder 3, in actuality, that is, without using a support, A sagging 12a occurs in the lower part of the object 12. Therefore, in the three-dimensional structure of the present embodiment, as shown in FIG. 10 (c), a support 27 having a shape corresponding to the structure 12 is provided below the columnar structure 12 with a predetermined gap d. Is supposed to form.
- FIG. 11 is a diagram for explaining a three-dimensional structure including other objects to be applied to the present invention in comparison with the prior art and the present invention.
- FIG. 11 (a) shows an ideal case
- FIG. 11 (b) shows an actual case
- FIG. 11 (c) shows a case where this embodiment is applied.
- 11 (a) to 11 (c) the cylindrical shaped object 12 in FIGS. 10 (a) to 10 (c) is changed to a cylindrical (tube) shaped object 13 with a hollow center. Shows the case.
- a predetermined shape is formed below the outer surface of the cylindrical pillar-shaped object 12.
- a support 27 having a shape corresponding to the outer surface of the shaped article 12 is formed via the gap d.
- a support 28 having a shape corresponding to the inner surface of the cylindrical shaped article 12 is formed below the inner surface of the cylindrical shaped article 12 via a predetermined gap d.
- interval d will intervene between a support and a modeled object, when taking out a completed modeled object, for example, a support can be removed easily, and also in a modeled object There is no trace of support, and post-processing such as polishing is unnecessary.
- interval of the powder layer mentioned above can be acquired similarly in another Example.
- FIG. 12 is a diagram for explaining another example of the relationship between the modeled object and the support. As shown in FIG. 12, for example, in the case where the lower end of the modeled object 14 has an acute angle and an unstable shape, the support 29 can be applied to hold the modeled object 14 having such a shape. it can.
- a support 29 can be provided.
- the shape of the support 29 can be, for example, the above-described FIGS. 6A and 6B or other various shapes.
- FIG. 13 is a diagram for explaining still another example of the relationship between the modeled object and the support. As shown in FIG. 13, for example, when the molded article 15 has a thin plate-like portion 15a in the horizontal direction (XY axis plane), if the support is not provided, the plate-like portion 15a may warp upward. There is.
- a support 30 is provided above the plate-like portion 15a via a predetermined gap d.
- the weight of the support 30 becomes a problem, even when the powder is removed, the weight of the support 30 is not added to the thin plate-like portion 15a of the molded article 15 by another support. You can also.
- the present invention includes a three-dimensional additive manufacturing apparatus that forms a model by applying a binder to a powder surface, a three-dimensional additive manufacturing apparatus that melts metal powder, and other various powders. It can be applied to the original additive manufacturing apparatus. Furthermore, the present invention is not limited to the three-dimensional additive manufacturing apparatus to which the powder modeling method is applied. For example, modeling is performed using a non-flowable material including powder, wax, jelly, and sol as a modeling material. The present invention can be widely applied to three-dimensional additive manufacturing apparatuses that form objects.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
三次元積層造形技術において、造形物を適切に支持することができるように、造形テーブル(4)上に積層された造形材料(3)と、前記造形材料内に形成された造形物(11a,11b,11c)と、前記造形材料内に形成され、前記造形物に対して所定の間隙(d0)を介して設けられたサポート(23a、23b、24a、24b、25a、25b)と、を有するように三次元造形体を構成することにより、完成した造形物を取り出す際、サポートを簡単に除去することができる。
Description
本明細書で言及する実施例は、三次元造形体およびサポート形成方法に関する。
近年、光造形法や粉末造形法、或いは、FDM法(Fused Deposition Modeling:熱溶解積層法)などを適用した三次元積層造形装置(いわゆる、3Dプリンター)が注目されている。
このような三次元積層造形装置では、造形物(モデル)を作成する際、その造形物が変形しないよう、造形物を支持するサポート(支持部材)も同時に造形する手法が知られている。なお、サポートは、造形終了後に取り外して処分される。
具体的に、光造形法としては、例えば、造形浴に入れた液状の光硬化性樹脂(流動性材料)の液面に所望のパターンが得られるようにコンピュータ制御された光(例えば、紫外線レーザー)を選択的に照射して、光硬化性樹脂を硬化させる。さらに、その光硬化した層の上に1層分の光硬化性樹脂を供給して、再び光を照射して光硬化性樹脂を硬化させ、同様の処理を繰り返して目的とする造形物を形成する。
このような液状の光硬化性樹脂を用いる光造形法において、例えば、造形物のオーバーハング部などでは、光照射により硬化した部分を未硬化の樹脂で支えることができないため、ダレや変形が生じる虞がある。
そこで、例えば、光造形法を適用した三次元積層造形装置では、通常、流動性材料を使用するため、光照射により硬化したオーバーハング部などを支持するサポートは不可欠なものとなっている。さらに、造形物が造形テーブルに固着するといった不都合を避けるためにもサポートが必要とされている。
このように、例えば、光造形法を適用した三次元積層造形装置において、サポートは不可欠なものであるが、このサポートは、本質的に邪魔なものであるため、より小さく、より取り外しやすく造形するのが好ましい。
また、FDM法を適用した三次元積層造形装置は、例えば、糸状の熱可塑性樹脂を造形ヘッド内のヒータで溶融し、その溶融された熱可塑性樹脂を射出制御すると共に、造形テーブルの昇降により積層造形するものである。
このFDM法を適用した三次元積層造形装置でも、造形物の形状によっては、その形状物の自重に勝てずに撓んでしまうため、例えば、造形物の材料(モデル材)とは別にサポートを形成するための材料(サポート材)が必要となる。
FDM法を適用した三次元積層造形装置では、通常、複数の樹脂(糸状の樹脂)を使用することができるため樹脂の取り外しは容易になるが、例えば、加工が困難な個所にサポートを設ける場合などでは、サポートの取り外しに困難を来すこともある。
さらに、例えば、アルカリ溶液を利用してサポートを溶解させて除去することが行われているが、これは、操作が煩雑になるだけでなく、アルカリ溶液の処理といった危険を伴うことにもなる。
ところで、従来、三次元積層造形装置により造形物を形成するときのサポート形成技術としては、様々な提案がなされている。
上述したように、一般的な光造形法を適用した三次元積層造形装置において、サポートの使用は不可欠である。これに対して、非流動性状態とされた光硬化性樹脂を利用する光造形法を適用した三次元積層造形装置が提案されている。
この非流動性状態とされた光硬化性樹脂を利用する光造形法を適用した三次元積層造形装置は、例えば、所定の融解温度の液状の光硬化性樹脂を用いて造形物を形成するとき、光照射により硬化されたのと同じ層の光硬化性樹脂をその融解温度未満の温度として固化状態に保ち、その表面上に、1層分の光硬化性樹脂を供給して光照射を行うことで、造形物におけるダレなどの変形を防止せんとするものである。なお、固化状態とは、非流動性の状態のことであり、例えば、ワックス状、ゼリー状およびゲル状なども含む。
しかしながら、このような三次元積層造形装置は、例えば、光硬化性樹脂をその融解温度未満の温度として非流動性の状態を利用するものであるが、例えば、造形物の形状が大きくて重く、非流動性の光硬化性樹脂によっても造形物が沈み込んでしまう場合、或いは、造形中に発生する内部応力による反りなどの変形が生じる場合などでは問題を生じる虞がある。
さらに、以下に述べる粉末造形法を適用した三次元積層造形装置と同様に、造形物の後処理を自動化する場合、造形物が不安定な形状の場合、或いは、複数の造形物を高さ方向(Z方向)に重ねて形成する場合などでは、様々な問題を生じる虞がある。
すなわち、粉末造形法を適用した三次元積層造形装置、例えば、粉末焼結や粉末溶融、或いは、粉末インクジェット(Powder Bed and Inkjet Head 3D Printing)による三次元積層造形装置では、粉末が造形物の沈み込みや移動に抵抗するため、サポートは原理的には不要である。
しかしながら、例えば、造形物の後処理を自動化する場合、造形物が不安定な形状の場合、或いは、複数の造形物を高さ方向に重ねて形成する場合などでは、粉末(例えば、砂や金属粉末、石膏、澱粉、人工骨、プラスチック粉末など)を除去したとき、造形物が転倒し、或いは、複数の造形物が接触して破損するといった虞がある。
さらに、後処理を自動化しない場合でも、例えば、造形物の形状が大きくて重く、または、複数の造形物がある場合などでは、粉末を除去する作業者は、破損を避けながら造形物を扱わなければならず、大きな負担を受けることになる。さらに、例えば、造形物の形状が大きくて重い場合には、非流動性の粉末によっても造形物が沈み込んでしまう虞があり、また、造形中に発生する内部応力による反りなどの変形が生じる虞もある。
本実施形態は、三次元積層造形技術において、造形物を適切に支持することのできる三次元造形体およびサポート形成方法の提供を目的とする。
なお、本明細書において、三次元造形体とは、粉末造形法を適用して造形物を形成するとき、例えば、三次元積層造形装置の造形タンク内に形成される、造形物,サポートおよび結合剤が塗布されないか、レーザーもしくはサーマルヘッドにより焼結または溶融されずに残った粉末を含む全体を示す。この場合、目的とする造形物は、例えば、造形タンク内に形成された三次元造形体からサポートおよび粉末を取り除くことによって得られる。
さらに、本明細書において、三次元造形体とは、例えば、融解温度未満の温度とされた光硬化性樹脂のような非流動性材料を使用して造形物を形成するとき、例えば、三次元積層造形装置の造形タンク内に形成される、造形物,サポートおよび光硬化されずに残った光硬化性樹脂のような非流動性の造形材料(および、場合によっては、流動性の造形材料)を含む全体を示す。この場合、目的とする造形物は、例えば、造形タンク内に形成された三次元造形体からサポートおよび非流動性(および、流動性)の造形材料を取り除くことによって得られる。
本発明に係る第1実施形態によれば、造形テーブル上に積層された造形材料と、前記造形材料内に形成された造形物と、前記造形材料内に形成され、前記造形物に対して所定の間隙を介して設けられたサポートと、を有する三次元造形体が提供される。
また、本発明に係る第2実施形態によれば、造形テーブル上に、1層分の造形材料をコーティングする処理、および、該コーティングされた造形材料を処理して造形物の1層分を形成する処理を繰り返す三次元積層造形装置におけるサポート形成方法であって、前記造形物の1層分を形成するときに、該造形物と所定の間隙を介してサポートを形成するサポート形成方法が提供される。
開示の三次元造形体およびサポート形成方法は、造形物を適切に支持して形成することができるという効果を奏する。また、開示の三次元造形体およびサポート形成方法によれば、例えば、造形物の後処理を自動化する場合、造形物が不安定な形状の場合、或いは、複数の造形物を高さ方向に重ねて形成する場合などにおいて、造形物の破損を低減することができ、さらに、後処理を自動化しない場合でも、造形物の取り出しや非流動性材料を除去する作業者の負担を低減することが可能になる。
まず、本発明に係る三次元造形体およびサポート形成方法の実施例を詳述する前に、図1および図2を参照して、粉末造形法を適用した三次元積層造形装置の一例、および、三次元積層造形装置により形成される三次元造形体、並びに、その問題点を説明する。
図1は、三次元積層造形装置の一例を概略的に示す斜視図であり、粉末造形法を適用した三次元積層造形装置100の一例を示すものである。
図1に示されるように、三次元積層造形装置100は、制御用コンピュータ101、プリンタヘッドユニット102、リコータユニット103、造形タンク104、昇降装置105、粉末供給ホッパーユニット106、クリーニングユニット107、および、薬品ユニット108を含む。ここで、造形タンク104には、昇降装置105によりZ軸方向(高さ方向)の制御が行われる造形テーブル141が設けられている。
制御用コンピュータ101は、三次元データ(例えば、STLデータ:Standard Triangulated Language Data)を入力とし、スライス処理やオフセット処理、および、ビットマップ変換処理などを行って、三次元積層造形装置100の制御を行う。
プリンタヘッドユニット102は、例えば、ビットマップ化されたデータに基づいて結合剤(バインダー)を造形テーブル141上の粉末面に塗布(吐出)して一層分の造形を行う。なお、プリンタヘッドユニット102には、例えば、複数の吐出ノズルが設けられた複数のインクジェットヘッドが搭載されている。
ここで、プリンタヘッドユニット102は、例えば、造形テーブル141上の粉末面に対して、プリンタヘッド121をX軸方向(装置正面から見て左右方向)に移動させながら結合剤の塗布を行う。
さらに、1行のX軸の塗布作業が終わったら、プリンタヘッド121をY軸方向(装置正面から見て前後方向)に移動させ、再びプリンタヘッド121をX軸方向に移動させて結合剤の塗布を行う。このような処理を繰り返すことで、一層分の造形処理を行う。
なお、プリンタヘッド121は、例えば、造形テーブル141のX軸方向全体の長さを有するラインヘッドとして構成してもよい。この場合、プリンタヘッド121をY軸方向に移動させるだけで、造形テーブル141上の粉末全面に対する結合剤の塗布、すなわち、一層分の造形処理を行うことが可能になる。
そして、造形テーブル141上の粉末全面に対する一層分の造形処理が終了したら、例えば、昇降装置105により造形テーブル141をZ軸方向(高さ方向)に降下させ、さらに、リコータユニット103をY軸方向に移動させながら、一層分の粉末をコーティングする。
ここで、リコータユニット103は、例えば、リコータ内ホッパー131および振動ブレード132を含む。リコータ内ホッパー131は、粉末供給ホッパーユニット106から供給された粉末を貯蔵する。
振動ブレード132は、リコータユニット103がY軸方向に移動しているときに動作し、リコータユニット103が移動中に造形テーブル141上に粉末を密に、かつ、水平(X-Y平面)となるように供給する。なお、昇降装置105により造形テーブル141を降下させる量(高さ)と、リコータユニット103によりコーティングする粉末の厚さ(積層ピッチ)は一致するように制御される。
以上の処理を繰り返し行うことで、造形タンク104内において、最終的な造形物が完成する。すなわち、造形タンク104内には、例えば、目的とする造形物,サポート,および,結合剤が塗布されずに残った粉末を含む三次元造形体が形成されることになる。
ここで、造形タンク104は、例えば、造形タンク移送ユニットにより三次元積層造形装置100の外部へ移動し、自動または手作業によって内部に形成された三次元造形体から不要なサポートおよび粉末を取り除き、目的とする造形物を取り出すことになる。
クリーニングユニット107は、プリンタヘッド121の余分な結合剤や粉末などを取り除くためのものである。また、薬品ユニット108は、造形処理に使用する薬品(結合剤や洗浄剤)を貯蔵するものであり、結合剤はプリンタヘッド121に供給され、洗浄剤はクリーニングユニット107に供給される。なお、洗浄剤は、例えば、プリンタヘッドの内部や吐出口を洗浄するために使用され、或いは、未使用時にプリンタヘッドが乾いて劣化しないように充填される。
なお、三次元積層造形装置100には、図示しない、クリーニングユニット107による廃液を回収する廃液タンク、結合剤や洗浄剤の吐出に使用するエアー圧コントロールユニットなども設けられている。
ここで、図1は、粉末造形法を適用した三次元積層造形装置の単なる例を示すものであり、本実施例の適用は、図1に示すものに限定されず、例えば、粉末造形法を適用した三次元積層造形装置による三次元造形体およびサポート形成方法に対して適用される。
すなわち、本実施例は、例えば、粉末焼結や粉末溶融、或いは、粉末インクジェットなどによる様々な粉末造形法を適用した三次元積層造形装置による三次元造形体およびサポート形成方法として適用することができる。なお、造形物(モデル)としても様々なものがあり得るが、例えば、粉末として砂を使用し、造形物として鋳型を造型することもできるのはいうまでもない。
さらに、本実施例は、粉末造形法を適用した三次元積層造形装置に限定されず、例えば、非流動性状態とされた光硬化性樹脂を利用する光造形法を適用した三次元積層造形装置による三次元造形体およびサポート形成方法に対して適用される。すなわち、本実地例は、造形材料として、粉末状,ワックス状,ゼリー状およびゾル状を含む非流動性材料を使用して造形物を形成する三次元積層造形装置による三次元造形体およびサポート形成方法に対して幅広く適用され得るものである。
ところで、前述したように、造形材料として非流動性材料を使用して造形物を形成する三次元積層造形装置においても、造形物の後処理を自動化する場合、造形物が不安定な形状の場合、または、複数の造形物を高さ方向に重ねて形成する場合などでは、非流動性材料を除去したときに造形物の転倒や複数の造形物の接触による破損を防止し、さらに、造形中に発生する内部応力による反りなどの変形を防止し、或いは、非流動性材料を除去する作業者の負担を低減するためにサポートを使用するのが好ましい。
図2は、三次元造形体の一例を説明するための図であり、図2(a)は、三次元造形体における造形物およびサポートを示す斜視図であり、図2(b)は、三次元造形体の正面図を示す。
図2(a)および図2(b)において、参照符号11a~11cは造形物(モデル)、21および22はサポート(支持部材)、21a~21cおよびサポート22はそれぞれサポート21および22の接続部、並びに、4は造形テーブルを示す。
なお、参照符号3は、例えば、結合剤が塗布されずに残った粉末、すなわち、造形物およびサポートとして使用しない粉末を示す。ここで、図2(a)および図2(b)は、例えば、図1に示す三次元積層造形装置100により、目的とする3つの直方体形状の造形物11a~11cを形成する場合を示している。
図2(a)に示されるように、例えば、3つの直方体形状の造形物11a~11cを形成する場合、各造形物11a~11cは、それぞれ接続部21a~21cおよび22a~22cを介してサポート21および22と一体的に形成される。
すなわち、図2(b)に示されるように、例えば、図1に示す三次元積層造形装置100の造形タンク104内に形成される三次元造形体は、図2(a)に示す造形物11a~11cおよびサポート21,22(21a~21c,22a~22c)と、それらの間の粉末3を含む。
これにより、例えば、図2(b)に示す三次元造形体から粉末3を取り除いた場合でも、高さ方向に形成した3つの造形物11a~11cが互いに接触して破損などを生じることがないようにすることができる。
しかしながら、造形物11a~11cとサポート21,22(21a~21c,22a~22c)を一体的に造形した場合、それぞれの造形物11a~11cをサポートから切り離す必要がある。従って、例えば、金属粉末の溶融による三次元積層造形装置では、造形物とサポート間の金属を切断しなければならない。
以下、本発明に係る三次元造形体およびサポート形成方法の実施例を、添付図面を参照して詳述する。以下の説明では、主として粉末造形法を適用した三次元積層造形装置による三次元造形体およびサポート形成方法を説明するが、本発明の適用は、これに限定されるものではない。すなわち、本発明は、例えば、造形材料として非流動性材料を使用して造形物を形成する三次元積層造形装置による三次元造形体およびサポート形成方法として、幅広く適用され得るものである。
なお、粉末焼結や粉末溶融、或いは、粉末インクジェットなどによる様々な粉末造形法を適用した三次元積層造形装置による三次元造形体およびサポート形成方法において、造形物(モデル)としても様々なものがあり得るが、例えば、粉末として砂や金属粉末、石膏、澱粉、人工骨、プラスチック粉末などを使用し、造形物として鋳型を造型することもできるのはいうまでもない。
図3は、本発明に係る三次元造形体の第1実施例を説明するための図であり、図3(a)は、三次元造形体における造形物およびサポートを示す斜視図を示し、図3(b)は、三次元造形体の正面図を示す。なお、図3(c)は、図3(b)に示す三次元造形体において、例えば、粉末吸引装置を使用して粉末の大部分を除いた様子を示している。
図3(a)~図3(c)において、参照符号11a~11cは直方体形状の造形物、23a,23bは板状サポート、24a,24b,25a,25bは柱状サポート、並びに、4は造形テーブルを示す。
なお、参照符号3は、例えば、結合剤が塗布されずに残った粉末、すなわち、造形物およびサポートとして使用しない粉末を示す。また、柱状サポート24a,25a,24b,25bは、板状サポート23a,23bを支持するように四隅に設けられている。
図3(a)に示されるように、第1実施例の三次元造形体では、例えば、3つの直方体形状の造形物11a~11cを形成する場合、板状サポート23a,23bおよび柱状サポート24a,24b,25a,25bにより棚形状としている。なお、各板状サポート23a,23bと、造形物11a~11cおよび柱状サポート24a,24b,25a,25bの間には間隙(d0,d1)を持たせるようになっている。
すなわち、図3(b)に示されるように、例えば、図1に示す三次元積層造形装置100の造形タンク104内に形成される三次元造形体は、造形テーブル4と板状サポート23aの間に造形物11aおよび柱状サポート24a,25aを形成し、板状サポート23aと板状サポート23bの間に造形物11bおよび柱状サポート24b,25bを形成する。さらに、板状サポート23bの上方に造形物11cを形成する。
ここで、造形テーブル4の上面と造形物11aの下面の間、板状サポート23aの上面と造形物11bの下面の間、および、板状サポート23bの上面と造形物11cの下面の間には、例えば、図1を参照して説明したリコータユニット103によりコーティングされる粉末層の1層~数層分(例えば、1mm以下)の間隙d0が設けられている。
ところで、例えば、インクジェットヘッドにより結合剤(バインダー)を吐出する場合、コーティングされる粉末層の1層にのみ結合が生じるわけではなく、粉末や結合剤の種類などによっては、数層分にわたって結合が生じることもある。さらに、粉末を焼結や溶融して造形物を形成する場合でも、その焼結や溶融が1層にのみ生じるわけではなく、数層にわたって生じることもある。
そのため、造形テーブル4の上面と造形物11aの下面の間、或いは、板状サポート23aの上面と造形物11bの下面の間などに対して、高さ方向(Z軸方向)にオフセット処理を行ってオフセット層を設け、粉末層の数層分の間隙を最小限に押さえることもできる。
また、造形物11aの上面および柱状サポート24a,25aの上面と板状サポート23bの下面の間、並びに、柱状サポート24b,25bの上面と板状サポート23bの下面の間にも、間隙d0が設けられている。
さらに、造形物11bの上面と板状サポート23bの下面の間には、例えば、間隙d0よりも大きい間隙d1が設けられている。従って、各間隙d0,d1には、例えば、結合剤が塗布されていない粉末が積層されることになる。
なお、上述した間隙d0,d1は、造形物の形状や大きさなどにより様々に変更することができるが、例えば、間隙d0が1mm程度以下であれば、造形物やサポートが落下或いは転倒することはない。
そして、図3(b)に示される三次元造形体から、例えば、粉末吸引装置などを使用して粉末の大部分を除くと、図3(c)のようになる。すなわち、図3(c)では、造形テーブル4の上面と造形物11aの下面の間、板状サポート23aの上面と造形物11bの下面の間、および、板状サポート23bの上面と造形物11cの下面の間における間隙d0の部分の粉末は残っているが、他の部分の粉末は取り除かれている。
従って、図3(c)に示されるように、3つの造形物11a~11cは、相互に接触して破損することがない。すなわち、上方から順に、造形物11aを取り出した後、板状サポート23bおよび柱状サポート24b,25bを除去して造形物11bを取り出し、さらに、板状サポート23aおよび柱状サポート24a,25aを除去して造形物11aを取り出す。
このように、第1実施例の三次元造形体によれば、例えば、複数の造形物を高さ方向に重ねて形成する場合でも、粉末を除去したときに造形物の転倒や複数の造形物の接触による破損を防止することが可能になる。
さらに、造形物は、造形テーブルや板状サポートとの間の粉末層により分離されるため、造形物の取り出しや粉末を除去する作業者の負担を低減することができる。例えば、金属粉末の溶融による三次元積層造形装置に適用した場合、造形物とサポートの間には、粉末が設けられることになるため、金属の切断といった作業を行う必要はない。
図4は、図3に示す三次元造形体の変形例を示す図であり、図4(a)~図4(d)は、それぞれ図3(b)の変形を示すものである。以下、図3(b)に示す三次元造形体との相違個所を説明する。
図4(a)に示す三次元造形体では、柱状サポート24b,25bが上方の板状サポート23bと一体的に形成されており、図4(b)に示す三次元造形体では、さらに、柱状サポート24a,25aも上方の板状サポート23aと一体的に形成されている。なお、図4(b)の三次元造形体では、造形テーブル4の上面と柱状サポート24a,25aの下面の間に間隙d0が設けられている。
また、図4(c)に示す三次元造形体では、柱状サポート24b,25bが下方の板状サポート23aと一体的に形成されており、図4(d)に示す三次元造形体では、柱状サポート24a,24b,25a,25bを設けずに、板状サポート23a,23bだけが設けられている。なお、造形テーブル4および板状サポート23a,23bと、造形物11a~11cの間には、それぞれ間隙d0が設けられている。
図5は、図3に示す三次元造形体のさらに他の変形例を示す図であり、造形物11a~11cの形状が異なる場合を示すものである。図5に示されるように、造形物11a~11cは、同じ形状のものである必要はなく、全て異なった形状のものであってもよい。
また、各造形物11a~11cと、造形テーブル4および板状サポート23a,23bの間も様々に変更することができ、例えば、造形テーブル4の上面と造形物11aの下面の間に、粉末による間隙d11のオフセット層を設け、また、板状サポート23aの上面と造形物11bの下面の間に、粉末による間隙d13のオフセット層を設け、さらに、板状サポート23bの上面と造形物11cの下面の間に、粉末による間隙d15のオフセット層を設ける。
これらオフセット層の厚さd11,d13,d15は、例えば、1mm以下の同じ値に設定してもよいが、例えば、造形物の形状や重さによる粉末層への沈み込みの相違などを考慮して、異なる値に設定することもできる。なお、通常、造形物の余剰硬化は、Z軸方向(高さ方向)の下向きに生じる。
ここで、図5に示す例では、各造形物11a~11cのオフセット層の厚さd11,d13,d15は、各柱状サポート24a,25aおよび,24b,25bの上面と板状サポート23aおよび23bの下面の間の間隙d20と同じまたは少し大きくに設定(d11=d13=d15≧d20)され、各柱状サポート24b,25bの下面と板状サポート23aの上面の間の間隙d10は、間隙d20よりも少し大きくに設定(d10>d20)されている。
なお、造形物11aの上面と板状サポート23aの下面の間の間隙d12および造形物11bの上面と板状サポート23bの下面の間の間隙d14は、オフセット層(d11,d13,d15)よりも十分大きく設定されている。
このように、例えば、同じ三次元造形体に形成する複数の造形物は、同じ形状のものでもよいが、異なった形状とすることもでき、また、各造形物およびサポート間の間隙も必要に応じて様々な値に設定することができる。
図6は、本発明に適用されるサポート形状の例を示す図であり、図6(a)および図6(b)は、柱状サポートの形状の変形を示し、図6(c)は、板状サポートと柱状サポートの結合部分の形状の変形例を示すものである。
すなわち、図6(a)および図6(b)に示されるように、各柱状サポート24a,24b,25a,25bは、円柱形状とはせずに、例えば、粉末を取り除いたときに下方の造形テーブル4や板状サポート23aに対して安定するような下面が広くなる形状とすることができる。
さらに、例えば、粉末を取り除いたとき、下方および上方の柱状サポート24a,24bと板状サポート23aが適切にかみあうように、それぞれテーパー部が形成されるようになっている。
なお、柱状サポートは、円柱形状である必要はなく、四角や多角形に基づく棒状のものでもよく、また、板状であってもよい。さらに、柱状サポートの数も板状サポートの四隅ではなく、必要な数を必要な個所に設けることができる。このように、サポートの形状や数は様々に変更することができる。
以上において、サポートの使用は、上述した複数の造形物を重ねて形成する場合に限定されるものではなく、例えば、造形物の後処理を自動化する場合、或いは、造形物が不安定な形状の場合などでも、造形物の破損低減や作業者の負担軽減を考慮して、適切な形状のものが使用されることになる。
また、サポートの使用は、粉末面に結合剤を塗布して造形物を形成する、例えば、インクジェットによる三次元積層造形装置に限定されず、例えば、金属粉末の溶融による三次元積層造形装置を始めとする様々な三次元積層造形装置に対しても適用される。さらに、サポートの使用は、粉末造形法を適用した三次元積層造形装置だけでなく、造形材料として非流動性材料を使用して造形物を形成する三次元積層造形装置に対して幅広く適用することができる。
例えば、金属粉末の溶融による三次元積層造形装置では、金属粉末が溶融したところの方が高密度になるため、その重量に負けて生じる変形(ダレ)を防止するのにサポートを使用してもよい。或いは、造形物の薄い部分で生じる変形(反り)を防止するのにサポートを使用することもできる。
図7は、本発明に係る三次元造形体の第2実施例を、従来と比較して説明するための図であり、図7(a)は、ダレが生じた状態を示し、図7(b)は、図2(a)および図2(b)を参照して説明したものに相当するサポートを示す。
また、図7(c)は、本発明に係る三次元造形体の第2実施例を示す。なお、図7(a)~図7(c)において、参照符号3は粉末、4は造形テーブル、10は上部が大きくオーバーハング部を有する造形物、20および26はサポートを示す。
上述したように、例えば、金属粉末の溶融による三次元積層造形装置では、ダレが生じる虞がある。すなわち、図7(a)に示されるように、ダレが生じた状態を示し、図7(b)は、図2(a)および図2(b)を参照して説明したような造形物とサポートが一体的に形成された場合を示す。
図7(b)に示されるように、図7(a)に示すダレ10aが生じないように造形物10を形成するには、例えば、造形物10との接合個所20aを小さく(薄く)した複数のサポート20を適用することができるが、この場合でも、完成した造形物10を取り出すには、サポート20(20a)を取り除く作業が必要になる。
これに対して、第2実施例の三次元造形体では、図7(c)に示されるように、造形物10のオーバーハング部分の下方(縦方向)に間隙dを介してサポート26を形成する。なお、横方向における造形物10とサポート26の間にも間隙dが設けられる。すなわち、三次元造形体において、造形物10は、サポート26に対して間隙dの粉末層を介して接することになる。
ここで、造形物10のオーバーハング部分とサポート26の間の間隙dは、例えば、順次コーティングされる粉末層の1層~数層分(例えば、1mm以下)であるため、造形物10のダレが生じることはない。さらに、造形物10とサポート26の間には、間隙dの粉末層が存在するため、完成した造形物10を容易に取り出すことが可能になる。
なお、造形物10のオーバーハング部分とサポート26の間の縦方向の間隙と、造形物10とサポート26の横方向の間隙は、必ずしも等しくする必要はなく、また、間隙dも1mm以下に限定されず、造形物10の形状や材質、或いは、三次元積層造形装置が使用する粉末の材料や方式などにより適切な厚さが選択される。
図8は、図7に示す造形物を形成するときのサポート形状の変形例を示す図であり、図8(a)~図8(c)は、図7(c)に示すサポート26の変形を示すものである。
すなわち、図8(a)に示すサポート26aは、図7(c)のサポート26が造形物10の底面(造形テーブル4)から全体的に設けられていたのに対して、造形物10のオーバーハング部分の下方における所定の厚さだけ設けるようになっている。
また、図8(b)および図8(c)に示すサポート26bおよび26cは、図7(c)のサポート26の内部に中空個所を設け、例えば、その部分の粉末を回収して再使用を可能とするようになっている。このように、図7(c)に示すサポート26も、様々に変形することができる。
以上の説明では、造形物11a~11c,10を矩形(直方体,オーバーハング部分を有する直方体の組み合わせ)として説明したが、造形物としては、様々な形状があり得る。図9は、本発明に適用される造形物の他の例を説明するための図であり、図9(a)は、造形物12を示す斜視図であり、図9(b)は、造形物12およびサポート27を示す図である。
図9(a)および図9(b)に示されるように、例えば、造形物12が円柱形状の場合、サポート27は、円柱形状の造形物12に対して、所定の間隙dを介した形状として形成される。
図10は、図9に示す造形物を含む三次元造形体を、従来および本実施例と比較して説明するための図である。ここで、図10(a)は理想的な場合を示し、図10(b)は実際の場合を示し、図10(c)は本実施例を適用した場合を示す。
図10(a)および図10(b)に示されるように、例えば、円柱形状の造形物12を粉末3中に形成(造形)する場合、実際には、すなわち、サポートを使用しないと、造形物12の下部分にはダレ12aが生じてしまう。そこで、本実施例の三次元造形体では、図10(c)に示されるように、円柱形状の造形物12の下方に、所定の間隙dを介して造形物12に対応する形状のサポート27を形成するようになっている。
図11は、本発明に適用される造形物のさらに他を含む三次元造形体を、従来および本発明を比較して説明するための図である。ここで、図11(a)は理想的な場合を示し、図11(b)は実際の場合を示し、図11(c)は本実施例を適用した場合を示す。すなわち、図11(a)~図11(c)は、図10(a)~図10(c)における円柱形状の造形物12を、中心をくり抜いた筒(チューブ)形状の造形物13に変更した場合を示す。
図11(a)および図11(b)に示されるように、例えば、筒形状の造形物13を粉末3中に形成する場合、サポートを使用しないと、造形物13の内面の下部分にダレ13aが生じ、また、造形物13の外面の下部分にダレ13bが生じてしまう。
そこで、本実施例の三次元造形体では、図11(c)に示されるように、まず、前述した図10(c)と同様に、筒柱形状の造形物12の外面下方に、所定の間隙dを介して造形物12の外面に対応する形状のサポート27を形成する。さらに、筒柱形状の造形物12の内面下方に、所定の間隙dを介して筒形状の造形物12の内面に対応する形状のサポート28を形成するようになっている。
このように、本実施例に係る三次元造形体によれば、様々な形状の造形物に対して、例えば、ダレが生じる虞がある部分の下方に、所定の間隙dを介して対応する形状のサポートを形成することで、造形物におけるダレの発生を防止することが可能になる。
なお、サポートと造形物との間には、間隙dの粉末層が介在することになるため、例えば、完成した造形物を取り出す際、サポートを簡単に除去することがで、さらに、造形物にサポートの跡が残ることもなく、例えば、磨き処理などの後加工も不要とすることができる。なお、上述した粉末層の間隙が介在することによる利点は、他の実施例でも同様に得ることができる。
図12は、造形物とサポートの関係の他の例を説明するための図である。図12に示されるように、例えば、造形物14の下端が鋭角状になっていて不安定な形状の場合、そのような形状の造形物14を保持するためにもサポート29を適用することができる。
すなわち、例えば、三次元造形体から粉末3を除去すると、造形物14が転倒して破損する虞があるような場合、粉末3を除去しても造形物14が転倒することがないように、サポート29を設けることができる。なお、サポート29の形状は、例えば、前述した図6(a)および図6(b)、或いは、他の様々な形状とすることができるのは言うまでもない。
図13は、造形物とサポートの関係のさらに他の例を説明するための図である。図13に示されるように、例えば、造形物15が水平方向(X-Y軸面)に薄い板状部分15aを有するとき、サポートを設けないと、その板状部分15aが上方向に反り返る虞がある。
図13では、このような板状部分15aの反りを防止するために、板状部分15aの上方に所定の間隙dを介してサポート30を設けるようになっている。なお、例えば、サポート30の重さが問題になる場合には、粉末を除去したときでも、他のサポートによりサポート30の重さが造形物15の薄い板状部分15aに加わらないようにすることもできる。
上述したように、本発明は、粉末面に結合剤を塗布して造形物を形成する三次元積層造形装置を始めとして、金属粉末の溶融による三次元積層造形装置や他の様々な粉末による三次元積層造形装置に対して適用することができる。さらに、本発明は、粉末造形法を適用した三次元積層造形装置に限定されず、例えば、造形材料として、粉末状,ワックス状,ゼリー状およびゾル状を含む非流動性材料を使用して造形物を形成する三次元積層造形装置に対して幅広く適用され得るものである。
以上、実施形態を説明したが、ここに記載したすべての例や条件は、発明および技術に適用する発明の概念の理解を助ける目的で記載されたものであり、特に記載された例や条件は発明の範囲を制限することを意図するものではない。また、明細書のそのような記載は、発明の利点および欠点を示すものでもない。発明の実施形態を詳細に記載したが、各種の変更、置き換え、変形が発明の精神および範囲を逸脱することなく行えることが理解されるべきである。
3 粉末
4,141 造形テーブル
21,21a~21c,22,22a~22c,23a,23b,24a,24b,25a,25b,26a~26c,27~29 サポート
10,11a~11c,12~15 造形物
100 三次元積層造形装置
101 制御用コンピュータ
102 プリンタヘッドユニット
103 リコータユニット
104 造形タンク
105 昇降装置
106 粉末供給ホッパーユニット
107 クリーニングユニット
108 薬品ユニット
131 リコータ内ホッパー
132 振動ブレード
4,141 造形テーブル
21,21a~21c,22,22a~22c,23a,23b,24a,24b,25a,25b,26a~26c,27~29 サポート
10,11a~11c,12~15 造形物
100 三次元積層造形装置
101 制御用コンピュータ
102 プリンタヘッドユニット
103 リコータユニット
104 造形タンク
105 昇降装置
106 粉末供給ホッパーユニット
107 クリーニングユニット
108 薬品ユニット
131 リコータ内ホッパー
132 振動ブレード
Claims (15)
- 造形テーブル上に積層された造形材料と、
前記造形材料内に形成された造形物と、
前記造形材料内に形成され、前記造形物に対して所定の間隙を介して設けられたサポートと、を有する、
ことを特徴とする三次元造形体。 - 前記造形物は、高さ方向に複数個形成され、
前記サポートは、高さ方向に隣接する2つの前記造形物の間に設けられた板状の板状サポートを含む、
ことを特徴とする請求項1に記載の三次元造形体。 - 前記サポートは、隣接する前記造形テーブルまたは前記板状サポートの間に形成される前記造形物よりも高い柱状の柱状サポートを含む、
ことを特徴とする請求項2に記載の三次元造形体。 - 前記柱状サポートは、上方または下方に設けられた前記板状サポートの一方と一体的に形成されている、
ことを特徴とする請求項3に記載の三次元造形体。 - 前記サポートは、前記造形物の形状に対応した形状を有する、
ことを特徴とする請求項1に記載の三次元造形体。 - 前記サポートは、内部に中空個所を有する、
ことを特徴とする請求項1に記載の三次元造形体。 - さらに、
前記造形テーブルと、前記造形テーブル上に形成される造形物との間に設けられた前記造形材料によるオフセット層を、有する、
ことを特徴とする請求項1乃至請求項6のいずれか1項に記載の三次元造形体。 - 前記サポートは、前記造形物と同じ組成を有する、
ことを特徴とする請求項1乃至請求項7のいずれか1項に記載の三次元造形体。 - 前記造形材料は、粉末状,ワックス状,ゼリー状およびゾル状を含む非流動性材料である、
ことを特徴とする請求項1乃至請求項8のいずれか1項に記載の三次元造形体。 - 前記造形材料は、前記粉末状の非流動性材料であり、
前記三次元造形体は、粉末焼結,粉末溶融および粉末インクジェットを含む粉末造形法を適用した三次元積層造形装置により形成される、
ことを特徴とする請求項9に記載の三次元造形体。 - 造形テーブル上に、1層分の造形材料をコーティングする処理、および、該コーティングされた造形材料を処理して造形物の1層分を形成する処理を繰り返す三次元積層造形装置におけるサポート形成方法であって、
前記造形物の1層分を形成するときに、該造形物と所定の間隙を介してサポートを形成する、
ことを特徴とするサポート形成方法。 - さらに、
前記造形テーブルと、前記造形テーブル上に形成される造形物との間に前記造形材料によるオフセット層を形成する、
ことを特徴とする請求項11に記載のサポート形成方法。 - 前記サポートは、前記造形物と同じ組成を有する、
ことを特徴とする請求項11または請求項12に記載のサポート形成方法。 - 前記造形材料は、粉末状,ワックス状,ゼリー状およびゾル状を含む非流動性材料である、
ことを特徴とする請求項11乃至請求項13のいずれか1項に記載のサポート形成方法。 - 前記造形材料は、前記粉末状の非流動性材料であり、
前記サポート形成方法は、粉末焼結,粉末溶融および粉末インクジェットを含む粉末造形法を適用した三次元積層造形装置に適用される、
ことを特徴とする請求項14に記載のサポート形成方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/901,487 US10124540B2 (en) | 2013-06-28 | 2014-06-27 | Three-dimensional modeled object and support forming method |
EP14816566.5A EP3015251B1 (en) | 2013-06-28 | 2014-06-27 | Three-dimensional shaped body and support formation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013137173A JP6270353B2 (ja) | 2013-06-28 | 2013-06-28 | 三次元造形体およびサポート形成方法 |
JP2013-137173 | 2013-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208743A1 true WO2014208743A1 (ja) | 2014-12-31 |
Family
ID=52142066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067225 WO2014208743A1 (ja) | 2013-06-28 | 2014-06-27 | 三次元造形体およびサポート形成方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10124540B2 (ja) |
EP (1) | EP3015251B1 (ja) |
JP (1) | JP6270353B2 (ja) |
WO (1) | WO2014208743A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016079193A1 (en) * | 2014-11-19 | 2016-05-26 | Digital Metal Ab | Manufacturing method, manufacturing apparatus, data processing method, data processing apparatus, data carrier |
WO2016113213A1 (en) * | 2015-01-14 | 2016-07-21 | Digital Metal Ab | Sintering method, manufacturing method, object data processing method, data carrier and object data processor |
EP3053720A1 (de) * | 2015-02-09 | 2016-08-10 | Werkzeugbau Siegfried Hofmann GmbH | Verfahren zum herstellen eines dreidimensionalen objekts durch aufeinander folgendes verfestigen von schichten |
EP3056301A1 (en) * | 2015-02-12 | 2016-08-17 | United Technologies Corporation | Object with a non-contacting support made by additive manufacturing method |
EP3205421A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Methods and surrounding supports for additive manufacturing |
EP3205424A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Method and connecting upports for additive manufacturing |
EP3205426A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Method and conformal supports for additive manufacturing |
CN107552788A (zh) * | 2017-09-11 | 2018-01-09 | 北京航信增材科技有限公司 | 用于激光选区熔化金属增材制造的假烧结方法 |
WO2018106371A3 (en) * | 2016-12-07 | 2018-07-26 | General Electric Company | Methods and table supports for additive manufacturing |
JP2019521007A (ja) * | 2016-07-21 | 2019-07-25 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 3d印刷 |
JPWO2019064834A1 (ja) * | 2017-09-28 | 2020-04-02 | 株式会社日立製作所 | 粉末積層造形用入力データ作成装置 |
US11285540B2 (en) | 2020-03-06 | 2022-03-29 | Warsaw Orthopedic, Inc. | Method for manufacturing parts or devices and forming transition layers facilitating removal of parts and devices from build-plates |
US11964438B1 (en) * | 2022-10-25 | 2024-04-23 | Matsuura Machinery Corporation | Three-dimensional molding method |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BG111711A (bg) * | 2014-02-28 | 2015-08-31 | "Принт Каст" Оод | Машина за послойно изграждане на тримерни модели от прахообразен материал |
EP3174651B1 (de) * | 2014-08-02 | 2020-06-17 | voxeljet AG | Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren |
CN107073820A (zh) * | 2014-10-15 | 2017-08-18 | 艾克斯温有限责任公司 | 用于控制三维打印制品的空腔在热处理期间的翘曲的方法 |
JP6524719B2 (ja) * | 2015-03-05 | 2019-06-05 | 株式会社リコー | 情報処理装置、プログラムおよび記録媒体 |
JP2016172893A (ja) * | 2015-03-17 | 2016-09-29 | セイコーエプソン株式会社 | 3次元形成装置および3次元形成方法 |
JP6536199B2 (ja) | 2015-06-16 | 2019-07-03 | セイコーエプソン株式会社 | 3次元形成装置 |
WO2017061603A1 (ja) | 2015-10-08 | 2017-04-13 | 株式会社ミマキエンジニアリング | 立体物の製造方法及び造形装置 |
JP6751251B2 (ja) * | 2015-10-15 | 2020-09-02 | セイコーエプソン株式会社 | 三次元造形物の製造方法及び三次元造形物の製造装置 |
JP2017077707A (ja) * | 2015-10-22 | 2017-04-27 | ローランドディー.ジー.株式会社 | 3次元造形データ生成装置およびこれを備えた3次元造形システム |
JP6618763B2 (ja) * | 2015-10-23 | 2019-12-11 | ローランドディー.ジー.株式会社 | 3次元造形データ生成装置およびこれを備えた3次元造形システム |
JP6504064B2 (ja) * | 2016-01-21 | 2019-04-24 | トヨタ自動車株式会社 | 金属部材の製造方法 |
US10357828B2 (en) * | 2016-02-11 | 2019-07-23 | General Electric Company | Methods and leading edge supports for additive manufacturing |
US10391753B2 (en) * | 2016-02-11 | 2019-08-27 | General Electric Company | Methods and keyway supports for additive manufacturing |
FR3049439B1 (fr) | 2016-03-31 | 2019-04-12 | L'oreal | Dispositif d’application d’une composition sous forme d’emulsion comprenant un filmogene et des huiles non volatiles |
DE102016210356A1 (de) * | 2016-06-10 | 2017-12-14 | Eos Gmbh Electro Optical Systems | Verfahren und Vorrichtung zum Bereitstellen einer Anzahl drei-dimensionaler Objekte |
JP6350605B2 (ja) * | 2016-07-26 | 2018-07-04 | マツダ株式会社 | 作動媒体制御機構の製造方法 |
EP3323530A1 (en) * | 2016-11-16 | 2018-05-23 | Montfort Watches SA | 3d printed watch dial |
TWI690846B (zh) * | 2017-01-05 | 2020-04-11 | 三緯國際立體列印科技股份有限公司 | 立體列印方法與立體列印系統 |
US10022794B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Additive manufacturing using a mobile build volume |
US10478893B1 (en) | 2017-01-13 | 2019-11-19 | General Electric Company | Additive manufacturing using a selective recoater |
US10022795B1 (en) | 2017-01-13 | 2018-07-17 | General Electric Company | Large scale additive machine |
US9956612B1 (en) * | 2017-01-13 | 2018-05-01 | General Electric Company | Additive manufacturing using a mobile scan area |
US20180200962A1 (en) | 2017-01-13 | 2018-07-19 | General Electric Company | Additive manufacturing using a dynamically grown build envelope |
US10406751B2 (en) | 2017-04-14 | 2019-09-10 | Desktop Metal, Inc. | Automated de-powdering with level based nesting |
US20180311732A1 (en) * | 2017-04-28 | 2018-11-01 | Divergent Technologies, Inc. | Support structures in additive manufacturing |
DE102017208520A1 (de) * | 2017-05-19 | 2018-11-22 | Premium Aerotec Gmbh | Verfahren zur Herstellung eines Objekts mittels generativer Fertigung, Bauteil, insbesondere für ein Luft- oder Raumfahrzeug, und computerlesbares Medium |
JP6890057B2 (ja) * | 2017-07-13 | 2021-06-18 | 株式会社アドバンテスト | 製造装置、製造方法、およびプログラム |
US11396135B2 (en) | 2017-11-10 | 2022-07-26 | General Electric Company | Powder reclamation and cleaning system for an additive manufacturing machine |
US10899088B2 (en) * | 2017-11-17 | 2021-01-26 | Matsuura Machinery Corporation | Support and method of shaping workpiece and support |
FR3074800B1 (fr) * | 2017-12-11 | 2019-11-01 | S.A.S 3Dceram-Sinto | Procede de fabrication de pieces en materiau ceramique par la technique des procedes additifs |
JP7109914B2 (ja) * | 2017-12-26 | 2022-08-01 | 太平洋セメント株式会社 | 三次元造形装置による立体物作製方法 |
US10906249B2 (en) * | 2018-01-05 | 2021-02-02 | Desktop Metal, Inc. | Method for reducing layer shifting and smearing during 3D printing |
DE102018201415A1 (de) * | 2018-01-30 | 2019-08-01 | MTU Aero Engines AG | Stützvorrichtung zum Abstützen von mehreren additiv gefertigten Bauteilen |
EP3749602A4 (en) * | 2018-02-06 | 2021-10-13 | Assembrix Ltd. | MULTI-SHELF THREE-DIMENSIONAL PRINTING |
WO2019157127A1 (en) | 2018-02-07 | 2019-08-15 | Desktop Metal, Inc. | Apparatus and method for additive manufacturing |
US11117329B2 (en) | 2018-06-26 | 2021-09-14 | General Electric Company | Additively manufactured build assemblies having reduced distortion and residual stress |
US11440097B2 (en) | 2019-02-12 | 2022-09-13 | General Electric Company | Methods for additively manufacturing components using lattice support structures |
JP7207020B2 (ja) * | 2019-03-06 | 2023-01-18 | 株式会社Ihi | 三次元的な構造を有する金属物品を製造する方法 |
JP7328024B2 (ja) * | 2019-06-26 | 2023-08-16 | キヤノン株式会社 | 3次元造形装置、立体物の造形方法、プログラムおよびコンピュータ読み取り可能な記憶媒体 |
JP7497564B2 (ja) * | 2019-07-25 | 2024-06-11 | セイコーエプソン株式会社 | ループヒートパイプ型熱伝導装置 |
US11951515B2 (en) | 2019-08-05 | 2024-04-09 | Desktop Metal, Inc. | Techniques for depowdering additively fabricated parts via gas flow and related systems and methods |
US11833585B2 (en) | 2019-08-12 | 2023-12-05 | Desktop Metal, Inc. | Techniques for depowdering additively fabricated parts through vibratory motion and related systems and methods |
US11759859B2 (en) | 2019-08-23 | 2023-09-19 | Desktop Metal, Inc. | Techniques for depowdering additively fabricated parts through fluid immersion and related systems and methods |
EP3797905A1 (en) * | 2019-09-30 | 2021-03-31 | Siemens Aktiengesellschaft | Modular additive manufacturing method |
US11865615B2 (en) | 2019-12-11 | 2024-01-09 | Desktop Metal, Inc. | Techniques for depowdering additively fabricated parts and related systems and methods |
JP7484006B1 (ja) | 2023-12-13 | 2024-05-15 | 前澤化成工業株式会社 | 造形物製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0825487A (ja) | 1994-07-19 | 1996-01-30 | Teijin Seiki Co Ltd | 光造形法におけるサポート形成方法 |
JP2000309057A (ja) | 1999-04-27 | 2000-11-07 | Teijin Seiki Co Ltd | 光学的立体造形方法および装置 |
JP2004358968A (ja) * | 2003-06-02 | 2004-12-24 | Hewlett-Packard Development Co Lp | 固体自由形状組立によって物体を製造するための方法および固体自由形状組立装置 |
WO2009136047A1 (fr) | 2008-04-17 | 2009-11-12 | Alcatel Lucent | Procede de vote electronique, decodeur pour la mise en oeuvre de ce procede et reseau comprenant un serveur de vote pour la mise en oeuvre du procede |
US20120113439A1 (en) * | 2007-07-18 | 2012-05-10 | Voxeljet Technology | Method for producing three-dimensional components |
JP2013184405A (ja) * | 2012-03-08 | 2013-09-19 | Casio Computer Co Ltd | 3次元造形方法及び造形物複合体並びに3次元造形装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020171177A1 (en) | 2001-03-21 | 2002-11-21 | Kritchman Elisha M. | System and method for printing and supporting three dimensional objects |
-
2013
- 2013-06-28 JP JP2013137173A patent/JP6270353B2/ja active Active
-
2014
- 2014-06-27 WO PCT/JP2014/067225 patent/WO2014208743A1/ja active Application Filing
- 2014-06-27 US US14/901,487 patent/US10124540B2/en active Active
- 2014-06-27 EP EP14816566.5A patent/EP3015251B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0825487A (ja) | 1994-07-19 | 1996-01-30 | Teijin Seiki Co Ltd | 光造形法におけるサポート形成方法 |
JP2000309057A (ja) | 1999-04-27 | 2000-11-07 | Teijin Seiki Co Ltd | 光学的立体造形方法および装置 |
JP2004358968A (ja) * | 2003-06-02 | 2004-12-24 | Hewlett-Packard Development Co Lp | 固体自由形状組立によって物体を製造するための方法および固体自由形状組立装置 |
US20120113439A1 (en) * | 2007-07-18 | 2012-05-10 | Voxeljet Technology | Method for producing three-dimensional components |
WO2009136047A1 (fr) | 2008-04-17 | 2009-11-12 | Alcatel Lucent | Procede de vote electronique, decodeur pour la mise en oeuvre de ce procede et reseau comprenant un serveur de vote pour la mise en oeuvre du procede |
JP2013184405A (ja) * | 2012-03-08 | 2013-09-19 | Casio Computer Co Ltd | 3次元造形方法及び造形物複合体並びに3次元造形装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3015251A4 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10926458B2 (en) | 2014-11-19 | 2021-02-23 | Digital Metal Ab | Manufacturing method, manufacturing apparatus, data processing method, data processing apparatus, data carrier |
WO2016079193A1 (en) * | 2014-11-19 | 2016-05-26 | Digital Metal Ab | Manufacturing method, manufacturing apparatus, data processing method, data processing apparatus, data carrier |
WO2016113213A1 (en) * | 2015-01-14 | 2016-07-21 | Digital Metal Ab | Sintering method, manufacturing method, object data processing method, data carrier and object data processor |
TWI719008B (zh) * | 2015-01-14 | 2021-02-21 | 瑞典商數位金屬公司 | 製造物件的方法 |
US12036611B2 (en) | 2015-01-14 | 2024-07-16 | Digital Metal Ab | Sintering method, manufacturing method, object data processing method, data carrier and object data processor |
JP7256601B2 (ja) | 2015-01-14 | 2023-04-12 | ディジタル メタル アーベー | 焼結方法、製造装置、オブジェクトデータ処理方法、データキャリア及びオブジェクトデータ処理装置 |
JP2018505309A (ja) * | 2015-01-14 | 2018-02-22 | ディジタル メタル アーベー | 焼結方法、製造装置、オブジェクトデータ処理方法、データキャリア及びオブジェクトデータ処理装置 |
KR102367043B1 (ko) * | 2015-01-14 | 2022-02-24 | 디지털 메탈 아베 | 소결 방법, 제조 방법, 대상물 데이터 처리 방법, 데이터 캐리어 및 대상물 데이터 프로세서 |
CN107257719A (zh) * | 2015-01-14 | 2017-10-17 | 数字金属公司 | 烧结方法、制造方法、对象数据处理方法、数据载体和对象数据处理器 |
CN107257719B (zh) * | 2015-01-14 | 2021-04-13 | 数字金属公司 | 制造对象的方法 |
KR20170134325A (ko) * | 2015-01-14 | 2017-12-06 | 디지털 메탈 아베 | 소결 방법, 제조 방법, 대상물 데이터 처리 방법, 데이터 캐리어 및 대상물 데이터 프로세서 |
EP3053720A1 (de) * | 2015-02-09 | 2016-08-10 | Werkzeugbau Siegfried Hofmann GmbH | Verfahren zum herstellen eines dreidimensionalen objekts durch aufeinander folgendes verfestigen von schichten |
EP3056301A1 (en) * | 2015-02-12 | 2016-08-17 | United Technologies Corporation | Object with a non-contacting support made by additive manufacturing method |
US11565326B2 (en) | 2015-02-12 | 2023-01-31 | Raytheon Technologies Corporation | Additively manufactured non-contact support |
US10668532B2 (en) | 2015-02-12 | 2020-06-02 | Raytheon Technologies Corporation | Additively manufactured non-contact support |
CN107052333A (zh) * | 2016-02-11 | 2017-08-18 | 通用电气公司 | 用于加性制造的方法和连接支承 |
EP3205424A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Method and connecting upports for additive manufacturing |
CN107414077B (zh) * | 2016-02-11 | 2019-12-10 | 通用电气公司 | 用于加性制造的方法及共形支撑 |
US10549478B2 (en) | 2016-02-11 | 2020-02-04 | General Electric Company | Methods and surrounding supports for additive manufacturing |
EP3205421A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Methods and surrounding supports for additive manufacturing |
US10486362B2 (en) | 2016-02-11 | 2019-11-26 | General Electric Company | Method and connecting supports for additive manufacturing |
US10799951B2 (en) | 2016-02-11 | 2020-10-13 | General Electric Company | Method and conformal supports for additive manufacturing |
EP3205426A1 (en) * | 2016-02-11 | 2017-08-16 | General Electric Company | Method and conformal supports for additive manufacturing |
JP2017140830A (ja) * | 2016-02-11 | 2017-08-17 | ゼネラル・エレクトリック・カンパニイ | 積層造形法のための方法及びその周囲の支持体 |
CN107414077A (zh) * | 2016-02-11 | 2017-12-01 | 通用电气公司 | 用于加性制造的方法及共形支撑 |
JP2019521007A (ja) * | 2016-07-21 | 2019-07-25 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 3d印刷 |
WO2018106371A3 (en) * | 2016-12-07 | 2018-07-26 | General Electric Company | Methods and table supports for additive manufacturing |
CN107552788A (zh) * | 2017-09-11 | 2018-01-09 | 北京航信增材科技有限公司 | 用于激光选区熔化金属增材制造的假烧结方法 |
US11772329B2 (en) | 2017-09-28 | 2023-10-03 | Hitachi, Ltd. | Input data creation device for powder additive manufacturing |
JPWO2019064834A1 (ja) * | 2017-09-28 | 2020-04-02 | 株式会社日立製作所 | 粉末積層造形用入力データ作成装置 |
US11285540B2 (en) | 2020-03-06 | 2022-03-29 | Warsaw Orthopedic, Inc. | Method for manufacturing parts or devices and forming transition layers facilitating removal of parts and devices from build-plates |
US11964438B1 (en) * | 2022-10-25 | 2024-04-23 | Matsuura Machinery Corporation | Three-dimensional molding method |
Also Published As
Publication number | Publication date |
---|---|
JP2015009495A (ja) | 2015-01-19 |
JP6270353B2 (ja) | 2018-01-31 |
EP3015251B1 (en) | 2019-05-22 |
US20160368224A1 (en) | 2016-12-22 |
EP3015251A4 (en) | 2017-01-11 |
US10124540B2 (en) | 2018-11-13 |
EP3015251A1 (en) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6270353B2 (ja) | 三次元造形体およびサポート形成方法 | |
JP6384826B2 (ja) | 三次元積層造形装置、三次元積層造形方法および三次元積層造形プログラム | |
JP6500047B2 (ja) | 積層造形法のための方法及び接続支持体 | |
US10357828B2 (en) | Methods and leading edge supports for additive manufacturing | |
KR102021406B1 (ko) | 성형체를 제조하기 위한 방법 및 장치 | |
JP5431576B2 (ja) | 選択的堆積造形のための組成物および方法 | |
CN106061717B (zh) | 三维形状造型物的制造方法 | |
US9555582B2 (en) | Method and assembly for additive manufacturing | |
US7435072B2 (en) | Methods and systems for producing an object through solid freeform fabrication | |
WO2015141779A1 (ja) | リコーターユニット、三次元積層造形装置、三次元積層造形方法および造形物 | |
JP6836097B2 (ja) | 三次元造形物の製造方法及び三次元造形物の製造装置 | |
US9114571B2 (en) | Method for reducing stress in three dimensional model | |
JP6482006B2 (ja) | 三次元造形装置 | |
US20190054529A1 (en) | Method and machines for manufacturing at least one piece made of at least one ceramic and/or metallic material by the technique of additive manufacturing | |
JP7254169B2 (ja) | 容易な除去のための犠牲構造を有する付加製造のための方法及びシステム | |
KR101722979B1 (ko) | 3차원 형상의 제작방법 | |
WO2017025956A1 (en) | 3d printing using preformed reuseable support structure | |
US20180243987A1 (en) | System and method for additively manufacturing an article incorporating materials with a low tear strength | |
JP7328024B2 (ja) | 3次元造形装置、立体物の造形方法、プログラムおよびコンピュータ読み取り可能な記憶媒体 | |
KR102142507B1 (ko) | 적층 가공 기술에 의해 세라믹 또는 금속 소재로 만든 피스를 제조하는 방법 및 머신 | |
JPH09168840A (ja) | 積層法による砂鋳型の造形方法 | |
EP3238864B1 (en) | Apparatus and method for fabricating three-dimensional objects | |
JP2019023327A (ja) | 積層造形物の製造方法及びその製造装置 | |
JPH09141386A (ja) | 砂鋳型の積層造形方法及びこれを用いた鋳物製造方法 | |
JP2018053300A (ja) | 積層造形物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14816566 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14901487 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014816566 Country of ref document: EP |