WO2014208526A1 - Production system for optical display device - Google Patents

Production system for optical display device Download PDF

Info

Publication number
WO2014208526A1
WO2014208526A1 PCT/JP2014/066639 JP2014066639W WO2014208526A1 WO 2014208526 A1 WO2014208526 A1 WO 2014208526A1 JP 2014066639 W JP2014066639 W JP 2014066639W WO 2014208526 A1 WO2014208526 A1 WO 2014208526A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
liquid crystal
crystal panel
bonding
cutting
Prior art date
Application number
PCT/JP2014/066639
Other languages
French (fr)
Japanese (ja)
Inventor
幹士 藤井
盛旭 蔡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201480026480.7A priority Critical patent/CN105209965B/en
Priority to KR1020157032331A priority patent/KR102159417B1/en
Publication of WO2014208526A1 publication Critical patent/WO2014208526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to an optical display device production system.
  • This application claims priority based on the Japan patent application 2013-131945 for which it applied on June 24, 2013, and uses the content here.
  • a mother panel is created by sandwiching a liquid crystal layer between two mother glasses, and then the mother panel is divided into a plurality of liquid crystal panels (optical display components).
  • a method of dividing into two is employed.
  • the mother panel can be divided into a plurality of liquid crystal panels by, for example, imprinting a scribe line on the mother glass, then pressurizing and dividing along the scribe line (see, for example, Patent Document 1).
  • optical members such as a polarizing film, a retardation film, and a brightness enhancement film are formed on a sheet piece having a size including a surplus part that protrudes not only to the display area of the liquid crystal panel but also to the peripheral part (frame part) of the display area. It is pasted after being cut out. Thereby, the surplus part is arrange
  • optical display components have been studied to reduce the peripheral portion of the display area on the display surface to increase the display area and reduce the size of the device (hereinafter, the frame portion of the optical display component is reduced). This is sometimes referred to as “narrowing the frame”).
  • the optical member is cut into a sheet piece having a size that matches the shape of the liquid crystal panel in plan view, and the edge of the sheet piece is bonded to the outer periphery of the liquid crystal panel.
  • the outer periphery shape of a liquid crystal panel is detected, and the operation which cuts out a sheet piece in the magnitude
  • a method for detecting the outer peripheral shape a method of detecting the four corners (corner portions) of the liquid crystal panel in a plan view and making a rectangle connecting the four corners into the outer peripheral shape of the liquid crystal panel can be considered.
  • the liquid crystal panel manufactured by multi-chamfering is easily affected by burrs and chips when detecting the outer peripheral shape of the liquid crystal panel, and is larger or smaller than the outer peripheral shape of the liquid crystal panel, and is likely to be defective.
  • the aspect of the present invention has been made in view of such circumstances, and detects the outer peripheral shape of a liquid crystal panel that eliminates the influence of burrs and chips on the peripheral edge, and processes the optical member according to the outer peripheral shape.
  • An object of the present invention is to provide an optical display device production system that enables the above.
  • the optical display device production system employs the following configuration.
  • the optical display device production system is an optical display device production system formed by bonding an optical member to an optical display component, the optical display component having An imaging device that captures an image including the substrate in a plan view of a laminate formed by laminating an optical member sheet wider than the surface on the surface of the substrate, the optical member sheet, and the optical display component An approximate contour approximating a contour line in plan view of the substrate based on the image, the cutting device for cutting off the optical member that is a portion facing the display area of the optical member, a surplus portion outside the optical member, and the image And a control device that controls the cutting device so as to cut the optical member sheet based on the approximate contour, and the control device is imaged by the imaging device.
  • a first portion that does not satisfy a predetermined criterion is determined from the contour lines obtained based on the image, and a second portion of the contour lines excluding the first portion overlaps the contour lines. Detecting the coordinates of a plurality of points, approximating a line corresponding to the contour line from the coordinates of the plurality of points, obtaining a figure obtained by the approximated line as the approximate contour line, based on the approximate contour line. The cutting device is controlled to cut the optical member sheet.
  • the “opposite part of the display area” is an area that is not less than the size of the display area and not more than the size of the outer peripheral shape of the optical display component, and that avoids a functional part such as an electrical component mounting portion. That is, the optical member may be formed by being separated from the surplus portion along the outer peripheral edge of the optical display component, and is formed by being separated from the surplus portion at the frame portion that is the peripheral portion of the display area. It may be a thing.
  • cutting the optical member sheet based on the approximate contour line means that the optical member sheet is along the approximate contour to be calculated or in a region that is not less than the size of the display region and inside the approximate contour line.
  • disconnects is shown. That is, the cutting position of the optical member sheet may be a position along the approximate contour line, or may be a position overlapping with a frame portion that is a peripheral portion of the display area.
  • the imaging apparatus includes a plurality of imaging elements arranged in a first direction, and a second direction orthogonal to the first direction. It may be a line camera that moves to and picks up the image.
  • the optical display device production system according to (1) or (2) may include an illumination device that illuminates the stacked body from the side opposite to the imaging device with the stacked body interposed therebetween. Good.
  • the first portion is a portion predetermined as a vicinity of a corner of the substrate in plan view.
  • the control device may detect the coordinates of the plurality of points on each of two sides sandwiching the corner portion, excluding the first portion.
  • the optical member sheet is bonded to the surface of the optical display component conveyed on a line.
  • the laminating apparatus which forms the said laminated body may be included.
  • an optical display device production system that detects the outer peripheral shape of a liquid crystal panel that eliminates the influence of burrs and chips on the peripheral edge, and enables processing of optical members in accordance with the outer peripheral shape. Can be provided.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a fragmentary sectional view of an optical member sheet pasted on a liquid crystal panel. It is a figure which shows operation
  • FIG. 1 It is a perspective view which shows an example of the laser beam irradiation apparatus of this embodiment. It is a figure which shows the structure of EBS. It is a perspective view which shows the internal structure of IOR. It is a sectional side view which shows the arrangement configuration of a 1st condensing lens, an aperture member, and a collimating lens.
  • A)-(d) is a figure for demonstrating the effect
  • (A) to (d) are diagrams focusing on one pulse of laser light. It is a figure for demonstrating the effect
  • the film bonding system 1 which is a production system of the optical display device which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
  • the cutting device is comprised by the laser beam irradiation apparatus (refer FIG. 8) mentioned later.
  • Drawing 1 is a figure showing the schematic structure of film pasting system 1 of this embodiment.
  • the film bonding system 1 is a system for bonding a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
  • the transport direction of the liquid crystal panel which is an optical display component
  • the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction.
  • the direction orthogonal to the Z direction is taken as the Z direction.
  • the film bonding system 1 of this embodiment is provided as one process of the production line of liquid crystal panel P. As shown in FIG.
  • Each part of the film bonding system 1 is comprehensively controlled by a control device 40 as an electronic control device.
  • FIG. 2 is a plan view of the liquid crystal panel P viewed from the thickness direction of the liquid crystal layer P3 of the liquid crystal panel P.
  • the liquid crystal panel P includes a first substrate P1 (element substrate) having a rectangular shape in plan view, and a second substrate P2 (counter substrate) having a relatively small rectangular shape disposed to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2.
  • the liquid crystal panel P has a rectangular shape that follows the outer peripheral shape of the first substrate P1 in a plan view, and has a display region P4 that is an area that fits inside the outer periphery of the liquid crystal layer P3 in a plan view.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • a long belt-shaped first optical member sheet F1 and a long belt-shaped second optical member sheet F2 (refer to FIG. 1, hereinafter collectively referred to as an optical member sheet FX).
  • the first optical member F11 and the second optical member F12 (hereinafter sometimes collectively referred to as the optical member F1X) cut out from the above are appropriately bonded together.
  • the first optical member F11 as the polarizing film and the second optical member F12 as the polarizing film are bonded to the backlight side surface of the liquid crystal panel P and the display surface side surface of the liquid crystal panel P, respectively. Is done.
  • a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 of the liquid crystal panel P is provided outside the display area P4.
  • the first optical member F11 and the second optical member F12 are attached to the first sheet piece F1m from a first sheet piece F1m and a second sheet piece F2m (hereinafter sometimes collectively referred to as a sheet piece FXm), which will be described later. It is formed by cutting off the surplus portion outside the mating surface and the surplus portion outside the bonding surface of the second sheet piece F2m. The bonding surface will be described later.
  • FIG. 4 is a partial cross-sectional view of the optical member sheet FX bonded to the liquid crystal panel P.
  • the optical member sheet FX includes a film-shaped optical member main body F1a, an adhesive layer F2a provided on one surface (the upper surface in FIG. 4) of the optical member main body F1a, and one of the optical member main bodies F1a via the adhesive layer F2a.
  • the separator F3a is detachably stacked on the other surface, and the surface protection film F4a is stacked on the other surface (lower surface in FIG. 4) of the optical member body F1a.
  • the optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. For convenience of illustration, hatching of each layer in FIG. 4 is omitted.
  • the optical member main body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface of the optical member main body F1a.
  • seat FX is called the bonding sheet
  • the separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a.
  • the surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a.
  • the surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a.
  • the surface protective film F4a is separated from the optical member main body F1a at a predetermined timing.
  • the optical member sheet FX may not include the surface protective film F4a.
  • separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
  • the optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8.
  • the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
  • the optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other.
  • the optical layer may be a retardation film, a brightness enhancement film, or the like.
  • At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment.
  • the optical member body F1a may not include at least one of the first film F7 and the second film F8.
  • the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
  • the film laminating system 1 includes a liquid crystal panel P on the right side in the transport direction (+ X direction side) from the upstream side in the transport direction (+ X direction side) of the liquid crystal panel P on the left side in the figure ( ⁇ X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
  • the roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary.
  • the liquid crystal panel P On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P ⁇ b> 4 is along the transport direction.
  • the downstream conveyor 7 On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P ⁇ b> 4 along the transport direction.
  • a sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical member sheet FX is bonded to the front and back surfaces of the liquid crystal panel P.
  • the upstream conveyor 6 includes an independent free roller conveyor 24 on the downstream side in the first suction device 11 described later.
  • the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
  • the film bonding system 1 of this embodiment is the 1st adsorption
  • the apparatus 20, the second dust collecting device 16, the second bonding device 17, the second detection device 42, the second cutting device 32, and the control device 40 are provided.
  • the first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
  • the first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P.
  • the panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction.
  • the panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P.
  • the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control device 40, and based on this imaging data, the panel holding unit 11a is operated to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination.
  • the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P.
  • the liquid crystal panel P conveyed on the rail R by the panel holding part 11a is supported by being sandwiched by the pressure roll 23 with the sheet piece FXm in a state of being sucked by the suction pad 26.
  • the 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13.
  • FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption
  • FIG. The 1st bonding apparatus 13 bonds the bonding sheet
  • the 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • FIG. 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • the conveying device 22 conveys the optical member sheet FX along the longitudinal direction of the optical member sheet FX while unwinding the optical member sheet FX from the original roll R1 around which the optical member sheet FX is wound.
  • the conveying apparatus 22 conveys the bonding sheet
  • the conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
  • the roll holding unit 22a holds the original roll R1 around which the belt-shaped optical member sheet FX is wound and feeds the optical member sheet FX along the longitudinal direction of the optical member sheet FX.
  • the plurality of guide rollers 22b wind the optical member sheet FX so as to guide the optical member sheet FX unwound from the original fabric roll R1 along a predetermined conveyance path.
  • the cutting device 22c performs a half cut on the optical member sheet FX on the transport path.
  • the knife edge 22d feeds the bonding sheet F5 to the bonding position while winding the optical member sheet FX subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3a.
  • the winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
  • the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example.
  • the winding part 22e winds up the separator F3a which passed through the knife edge 22d, while the roll holding part 22a feeds the optical member sheet FX in the transport direction of the optical member sheet FX.
  • the upstream side in the transport direction of the optical member sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side
  • the downstream side in the transport direction is referred to as a sheet transport downstream side.
  • Each guide roller 22b changes the traveling direction of the optical member sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b adjusts the tension of the optical member sheet FX being conveyed. Move.
  • a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c.
  • the dancer roller absorbs the feeding amount of the optical member sheet FX conveyed from the roll holding unit 22a while the optical member sheet FX is cut by the cutting device 22c.
  • FIG. 5 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
  • the cutting device 22c when the optical member sheet FX is fed out by a predetermined length, the cutting device 22c extends in the thickness direction of the optical member sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical member sheet FX. Perform half cut to cut a part.
  • the cutting device 22c of the present embodiment is provided so as to be able to advance and retreat toward the optical member sheet FX from the side opposite to the separator F3a with respect to the optical member sheet FX.
  • the cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical member sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical member sheet FX (so that a predetermined thickness remains in the separator F3a). Then, half-cut is performed to the vicinity of the interface between the adhesive layer F2a and the separator F3a. In addition, you may use the laser apparatus replaced with a cutting blade.
  • the optical member sheet FX after half-cutting is cut along the entire width in the width direction of the optical member sheet FX by cutting the optical member body F1a and the surface protection film F4a in the thickness direction of the optical member sheet FX. , CL2 are formed.
  • the cut lines CL1 and CL2 are formed so as to be aligned in the longitudinal direction of the belt-shaped optical member sheet FX.
  • the plurality of cut lines CL1 and CL2 are formed at equal intervals in the longitudinal direction of the optical member sheet FX.
  • the optical member sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines CL1, CL2.
  • a section sandwiched between a pair of cut lines CL1 and CL2 adjacent in the longitudinal direction in the optical member sheet FX is a sheet piece FXm in the bonding sheet F5.
  • the sheet piece FXm is a sheet piece of the optical member sheet FX having a size that protrudes outside the liquid crystal panel P.
  • the knife edge 22d is disposed below the upstream conveyor 6 and extends over at least the entire width in the width direction of the optical member sheet FX.
  • the knife edge 22d is wound so as to be in sliding contact with the separator F3a side of the optical member sheet FX after the half cut.
  • the knife edge 22d is arranged in an inclined position as viewed from the width direction of the optical member sheet FX (the width direction of the upstream conveyor 6) (that is, to have a predetermined angle with respect to the transport direction of the liquid crystal panel P).
  • a first surface above the first surface, a second surface disposed at an acute angle with respect to the first surface when viewed from the width direction of the optical member sheet FX, and a tip portion where the first surface and the second surface intersect Have
  • the knife edge 22d winds the 1st optical member sheet
  • the first optical member sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d.
  • the tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23.
  • the first sheet piece F1m separated from the separator F3a by the knife edge 22d overlaps the lower surface of the liquid crystal panel P in a state of being adsorbed by the first adsorbing device 11, and between the pair of bonding rollers 23a of the pinching roll 23. be introduced.
  • the first sheet piece F1m is a sheet piece of the first optical member sheet F1 having a size that protrudes outside the liquid crystal panel P.
  • the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d.
  • the winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
  • the pinching roll 23 bonds the first sheet piece F1m separated from the first optical member sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
  • the pinching roll 23 bonds the first sheet piece F1m to the lower surface of the liquid crystal panel P conveyed on the line to form a laminate described later.
  • the pinching roll 23 corresponds to a bonding apparatus.
  • the pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a is movable up and down). A predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13.
  • 1st optical member bonding body PA1 is formed by the 1st sheet piece F1m being bonded by the pinching roll 23 to the surface at the side of the backlight of liquid crystal panel P. As shown in FIG. Here, 1st optical member bonding body PA1 is corresponded to a laminated body.
  • the 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13.
  • FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth a 1st bonding surface) of liquid crystal panel P and the 1st sheet piece F1m.
  • FIG. 6 is a plan view showing a process for detecting the edge EG of the first bonding surface SA1.
  • the first detection device 41 detects the edge EG of the first bonding surface SA ⁇ b> 1 in the inspection area CA installed on the transport path of the upstream conveyor 6.
  • region CA is an area
  • the edge EG is detected for each liquid crystal panel P conveyed on the line.
  • the data of the edge EG detected by the first detection device 41 is stored in a storage unit (not shown). The configuration of the first detection device 41 will be described later (see FIG. 21).
  • the cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge EG of the first bonding surface SA1.
  • the control apparatus 40 (refer FIG. 1) acquires the data of the edge EG of 1st bonding surface SA1 memorize
  • the cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side.
  • the first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control device 40.
  • the first cutting device 31 is provided on the downstream side of the panel transport with respect to the first detection device 41.
  • the 1st cutting device 31 performs the laser cut along the edge EG, and is the 1st sheet piece F1m (1st sheet
  • the surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed.
  • the first cutting device 31 corresponds to a cutting device.
  • the “size corresponding to the first bonding surface SA1” indicates the size of the outer peripheral shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer peripheral shape of the liquid crystal panel P and that avoids a functional part such as an electrical component mounting portion.
  • the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. The surplus portion is laser-cut at a position that appropriately enters the display area P4 side from the outer peripheral edge of.
  • the part corresponding to 1st bonding surface SA1 is the bonding surface of a TFT substrate, it shifted
  • it is not restricted to bonding a sheet piece to the area
  • a sheet piece is pasted in a region that avoids the functional part in the liquid crystal panel P in advance, and then surplus along the outer peripheral edge of the liquid crystal panel P on the three sides excluding the functional part in the rectangular liquid crystal panel P in plan view
  • the part may be laser cut.
  • the 1st optical member F11 is bonded to the surface by the side of the backlight of liquid crystal panel P by cutting off the surplus part of the 1st sheet piece F1m from the 1st optical member bonding body PA1 by the 1st cutting device 31.
  • 2 optical member bonding body PA2 is formed.
  • the surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
  • the reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
  • the reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11.
  • the reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
  • the reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control device 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce
  • the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described.
  • suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2.
  • the second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2.
  • maintenance part 11a adsorbs and hold
  • maintenance part 11a moves on the rail R in the state which adsorbed and hold
  • the alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control device 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 at the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
  • the 2nd dust collector 16 is arrange
  • FIG. The second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16.
  • FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position.
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13.
  • 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce
  • the second sheet piece F2m is a sheet piece of the second optical member sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
  • 2nd optical member bonding body PA2 and 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by a pair of bonding roller 23a.
  • it is a 2nd sheet
  • the piece F2m By bonding the piece F2m, the third optical member bonding body PA3 is formed.
  • 3rd optical member bonding body PA3 is corresponded to a laminated body.
  • the 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17.
  • FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m.
  • the edge data detected by the second detection device 42 is stored in a storage unit (not shown).
  • the cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface.
  • the control apparatus 40 (refer FIG. 1) acquires the data of the edge of the 2nd bonding surface memorize
  • the cutting position of the second sheet piece F2m is determined so as not to protrude.
  • the second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control device 40.
  • the second cutting device 32 corresponds to a cutting device.
  • the second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42.
  • the 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude
  • the “size corresponding to the second bonding surface” is not less than the size of the display area P4 of the liquid crystal panel P and not more than the size of the outer peripheral shape (contour shape in plan view) of the liquid crystal panel P. Point to.
  • the surplus portions are laser-cut along the outer peripheral edge of the liquid crystal panel P on the four sides of the liquid crystal panel P having a rectangular shape in plan view. For example, when the portion corresponding to the second bonding surface is the bonding surface of the CF substrate, since there is no portion corresponding to the above-described functional portion, it is cut along the outer peripheral edge of the liquid crystal panel P on the four sides of the liquid crystal panel P.
  • the second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and The 4th optical member bonding body PA4 (optical display device) by which the 1st optical member F11 is bonded to the surface by the side of the backlight of liquid crystal panel P is formed.
  • the surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
  • the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus 100 (refer FIG. 8).
  • the 1st cutting device 31 and the 2nd cutting device 32 cut
  • a bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17.
  • the bonding inspection device is an inspection (not shown whether the position of the optical member F1X is within the tolerance range) by the inspection device (not shown) of the workpiece (liquid crystal panel P) on which the film is bonded. ) Etc.) is performed.
  • the work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
  • the control device 40 as an electronic control device that performs overall control of each part of the film bonding system 1 includes a computer system.
  • This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
  • the control device 40 of the present embodiment includes an interface capable of executing communication with a device external to the computer system.
  • An input device that can input an input signal may be connected to the control device 40.
  • the input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system.
  • the control device 40 may include a display device such as a liquid crystal display that indicates the operation status of each part of the film bonding system 1, or may be connected to the display device.
  • An operating system (OS) that controls the computer system is installed in the storage unit of the control device 40.
  • a program that causes the storage unit of the control device 40 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical member sheet F by causing the arithmetic processing unit to control each unit of the film bonding system 1. Is recorded.
  • Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control device 40.
  • the control device 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each part of the film bonding system 1.
  • the storage unit includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium.
  • the storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
  • a plurality of inspection points CP are set in the width direction of the optical member sheet FX, and the direction of the optical axis of the optical member sheet FX is detected at each inspection point CP.
  • the timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical member sheet FX is unwound from the original fabric roll R1 and half cut.
  • Data in the optical axis direction of the optical member sheet FX is stored in a storage unit (not shown) in association with the position of the optical member sheet FX (position in the longitudinal direction and position in the width direction of the optical member sheet FX).
  • the control device 40 acquires the optical axis data (inspection data of the in-plane distribution of the optical axis) of each inspection point CP from the storage unit, and the optical member sheet FX (by the cut line CL) of the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the sectioned area) is detected.
  • the deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical member sheet FX and the clockwise direction being negative.
  • the direction of the average optical axis of the optical member sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P.
  • the bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specifications, the average optical axis of the optical member sheet FX is set.
  • the sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
  • the first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P with a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer periphery of the bonding surface is detected by capturing an image including the bonding surface. In the present embodiment, laser cutting by the first cutting device 31 and the second cutting device 32 is performed along the outer peripheral edge of the bonding surface.
  • the runout width (tolerance) of the cutting line of the laser processing machine is smaller than the runout width of the cutting blade. Therefore, in this embodiment, compared with the case where the optical member sheet
  • the optical member sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerance of the sheet piece, the dimensional tolerance of the liquid crystal panel P, and the sheet piece and the liquid crystal Since the dimensional tolerance of the relative bonding position with the panel P overlaps, it becomes difficult to narrow the width of the frame part G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
  • the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved.
  • laser cutting is a non-contact cutting method with respect to the liquid crystal panel P, there is little damage to the electrical component mounting portion.
  • FIG. 8 is a perspective view showing an example of a laser beam irradiation device 100 used as a cutting device (first cutting device 31 and second cutting device 32).
  • the laser light irradiation apparatus 100 uses the laminated body (1st optical member bonding body PA1 or 3rd optical member bonding body PA3) containing the sheet piece FXm as the target object 110, cuts off the excess part of the sheet piece FXm, and bonded surface ( The cutting process which forms the optical member F1X of the magnitude
  • a laser beam irradiation apparatus 100 includes a table 101, a laser beam oscillator 102, an acoustooptic device 103 that constitutes an EBS 130 (Electrical Beam Shaping: see FIG. 9), an IOR 104 (Imaging Opticals Rail), and , A scanner 105, a moving device 106, and a control device 107 that performs overall control of these devices.
  • EBS 130 Electronic Beam Shaping: see FIG. 9
  • IOR 104 Imaging Opticals Rail
  • the table 101 has a holding surface 101s that holds an object 110 to be cut.
  • the table 101 is rectangular when viewed from the normal direction of the holding surface 101s.
  • the holding surface 101s is a rectangular first holding surface 101s1 having a length in the first direction (X direction), and a second holding member that is disposed adjacent to the first holding surface 101s1 and has the same shape as the first holding surface 101s1.
  • the laser light oscillator 102 is a member that emits laser light LB.
  • an oscillator such as a CO 2 laser oscillator (carbon dioxide laser oscillator), a UV laser oscillator, a semiconductor laser oscillator, a YAG laser oscillator, or an excimer laser oscillator can be used.
  • the specific configuration is not particularly limited.
  • the CO 2 laser light oscillator can emit a high-power laser beam that can easily cut an optical member such as a polarizing film.
  • FIG. 9 is a diagram illustrating a configuration of the EBS 130.
  • the EBS 130 includes an acoustooptic element 103 disposed on the optical path of laser light emitted from the laser beam oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, a laser And a control device 107 (corresponding to a laser control unit 171 to be described later) that controls the timing at which the light passes through the acousto-optic element 103.
  • the EBS 130 shields the laser light until the output of the laser light is stabilized.
  • Acousto-optic element 103 is an optical element for shielding the laser beam emitted from laser beam oscillator 102.
  • the acoustooptic element 103 is an element formed by adhering a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ).
  • TeO 2 tellurium dioxide
  • PbMoO 4 lead molybdate
  • the acousto-optic element 103 is used as a constituent member of the EBS 130, but the present invention is not limited to this.
  • Other optical elements may be used as long as the laser light emitted from the laser light oscillator 102 can be shielded.
  • the drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
  • the control device 107 controls the timing at which the laser light passes through the acousto-optic device 103 so that, for example, the rising and falling portions of the laser light emitted from the laser light oscillator 102 are removed.
  • the timing control by the control device 107 is not limited to this.
  • the control device 107 may control the timing at which the laser light passes through the acoustooptic device 103 so that the rising portion of the laser light emitted from the laser light oscillator 102 is selectively removed.
  • the width (time) of the falling portion of the laser light emitted from the laser light oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the falling portion of the laser light is removed. The profit is small. Therefore, in such a case, only the rising portion of the laser light emitted from the laser light oscillator 102 may be selectively removed.
  • the EBS 130 emits the laser light emitted from the laser light oscillator 102 in a state where the output is stable based on the control of the control device 107.
  • the IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
  • FIG. 10 is a perspective view showing the internal configuration of the IOR 104.
  • the IOR 104 includes a first condenser lens 141 that condenses the laser light emitted from the EBS 130, a first holding frame 142 that holds the first condenser lens 141, and a first condenser lens.
  • a diaphragm member 143 that squeezes the laser beam condensed by the lens 141, a holding member 144 that holds the diaphragm member 143, a collimator lens 145 that collimates the laser beam focused by the diaphragm member 143, and a collimator lens 145 are held.
  • a second holding frame 146 and a moving mechanism 147 for relatively moving the first holding frame 142, the holding member 144, and the second holding frame 146 are included.
  • FIG. 11 is a side sectional view showing an arrangement configuration of the first condenser lens 141, the diaphragm member 143, and the collimator lens 145.
  • the aperture member 143 is formed with a pinhole 143h for focusing the laser beam condensed by the first condenser lens 141.
  • the centers of the first condenser lens 141, the pinhole 143 h and the collimator lens 145 are arranged at positions overlapping the optical axis C of the laser light emitted from the EBS 130.
  • the diaphragm member 143 can be disposed in the vicinity of the rear focal point of the first condenser lens 141.
  • “near the rear focal point of the first condenser lens 141” means that the arrangement position of the diaphragm member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed.
  • the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed.
  • the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143 is slightly different from the rear focal point of the first conden
  • the ratio K 1 / K 2 is in the range of 0.9 / 1 to 1.1 / 1, it can be said that the diaphragm member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141. . If it is such a range, the laser beam condensed by the 1st condensing lens 141 can be narrowed down effectively.
  • the diaphragm member 143 can be arranged in the vicinity of the rear focal point of the first condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position.
  • the arrangement position of the aperture member 143 may be on the optical path between the first condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the first condenser lens 141.
  • the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
  • the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and at the position of the rear focal point of the first condenser lens 141.
  • the scanner 105 scans the laser beam biaxially in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the table 101 independently in the X direction and the Y direction. Thereby, it is possible to accurately irradiate the laser beam to an arbitrary position of the object 110 held on the table 101.
  • the scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that biaxially scans the laser light emitted from the IOR 104 in a plane parallel to the holding surface 101s.
  • a galvano scanner is used as the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154.
  • the scanning element is not limited to a galvano scanner, and a gimbal can be used.
  • the first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152.
  • the actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
  • the second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155.
  • the actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
  • a second condenser lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
  • an f ⁇ lens is used as the second condenser lens 108.
  • the laser beam emitted in parallel to the second condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110.
  • the second condenser lens 108 may not be disposed on the optical path between the scanner 105 and the table 101.
  • the laser beam LB emitted from the laser beam oscillator 102 is applied to the object 110 held on the table 101 via the acoustooptic device 103, the IOR 104, the mirror 152, the mirror 155, and the second condenser lens.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are configured to irradiate laser light emitted from the laser light oscillator 102 toward the object 110 held on the table 101 based on the control of the control device 107. Adjust the position.
  • a laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s.
  • the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
  • FIG. 12A shows a control signal of laser light emitted from the laser light oscillator 102.
  • FIG. 12B shows the output characteristics of the laser light itself emitted from the laser light oscillator 102, that is, the output characteristics of the laser light before the laser light emitted from the laser light oscillator 102 passes through the acoustooptic device 103.
  • FIG. 12C shows a control signal for the acousto-optic element 103.
  • FIG. 12D shows the output characteristics of the laser light after the laser light emitted from the laser light oscillator 102 passes through the acoustooptic device 103.
  • FIGS. 12A shows a control signal of laser light emitted from the laser light oscillator 102.
  • FIG. 12B shows the output characteristics of the laser light itself emitted from the laser light oscillator 102, that is, the output characteristics of the laser light before the laser light emitted from the laser light oscillator 102 passes through the acoustooptic
  • FIGS. 13A to 13D are diagrams focusing on one pulse of laser light in FIGS. 12A to 12D.
  • the “control signal for laser light emitted from the laser light oscillator 102” is referred to as “control signal for laser light”.
  • “Output characteristics of laser light before the laser light emitted from the laser light oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”.
  • Output characteristics of laser light after the laser light emitted from the laser light oscillator 102 passes through the acoustooptic element 103” is referred to as “output characteristics of laser light after passing through the acoustooptic element 103”.
  • the pulse Ps1 of the laser light control signal is a rectangular pulse.
  • the laser light control signal is a so-called clock pulse that generates a plurality of pulses Ps1 by periodically switching the ON / OFF signal to the laser light oscillator 102.
  • the peak portion of the pulse Ps1 is in a state where an ON signal is sent to the laser light oscillator 102, that is, in an ON state where laser light is emitted from the laser light oscillator 102.
  • the valley portion of the pulse Ps1 is a state in which an OFF signal is sent to the laser light oscillator 102, that is, an OFF state in which laser light is not emitted from the laser light oscillator 102.
  • three collective pulses PL1 are formed by arranging three pulses Ps1 at short intervals.
  • the three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1.
  • the interval between two adjacent pulses Ps1 is 1 ms
  • the interval between two adjacent collective pulses PL1 is 10 ms.
  • one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals, but the present invention is not limited to this.
  • one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
  • the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which a laser beam having a certain intensity from the ON signal to the OFF signal to the laser beam oscillator is emitted for a predetermined time may be employed.
  • the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
  • the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object.
  • the falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light.
  • the intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 13B, 50% of the peak intensity (100%) of the laser beam. % Strength.
  • the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light emitted from the laser light oscillator 102 is longer than the time of the falling portion G2 of the laser light.
  • the width of the rising portion G1 is 45 ⁇ s
  • the width of the falling portion G2 is 25 ⁇ s.
  • the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2
  • the present invention is not limited to this.
  • the width of the rising portion G1 of the pulse Ps2 is substantially equal to the width of the falling portion G2
  • the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. The form is applicable.
  • one collective pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG.
  • the three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
  • the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse.
  • the control signal of the acoustooptic device 103 is a so-called clock pulse.
  • the control signal of the acoustooptic device 103 is a signal for periodically switching the timing at which the laser light passes through the acoustooptic device 103.
  • the plurality of pulses Ps3 in the control signal of the acoustooptic device 103 are generated by periodically switching the control signal to the drive driver 131.
  • the peak portion of the pulse Ps3 is in a state where laser light is transmitted, that is, a light-transmitting state where laser light is transmitted.
  • the valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
  • each pulse Ps3 is arranged so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3
  • the width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is 45 ⁇ s
  • the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 ⁇ s.
  • the EBS 130 has a switch function having a quick response characteristic.
  • the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted.
  • the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 does not have a rising portion G1 and a falling portion G2. It becomes a pulse protruding to
  • the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is set to the width of the falling portion of the pulse Ps2. It can be adjusted as needed, such as making it larger than the width.
  • FIG. 14 is a diagram for explaining the operation of the IOR 104.
  • the diagram on the left side of FIG. 14 is a diagram showing the intensity distribution of the laser light before passing through the pinhole 143h.
  • the upper left diagram in FIG. 14 is a plan view.
  • FIG. 14 is a perspective view of the middle left stage.
  • the horizontal axis indicates the position, and the vertical axis indicates the strength.
  • the diagram on the right side of FIG. 14 shows the intensity distribution of the laser light after passing through the pinhole 143h.
  • the upper right diagram in FIG. 14 is a plan view.
  • the right middle part of FIG. 14 is a perspective view.
  • the horizontal axis indicates the position and the vertical axis indicates the strength.
  • the laser beam irradiation apparatus according to the comparative example is a laser beam irradiation apparatus that uses the laser beam before passing through the pinhole 143 h as it is, that is, a laser beam irradiation apparatus that does not include the IOR 104.
  • FIG. 16 is an enlarged view of a cut surface when a polarizing plate that is an object is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
  • the intensity distribution of the laser light before passing through the pinhole 143h has a strong intensity distribution at the center of the beam and a low intensity distribution at the outer periphery of the beam. .
  • the intensity of the laser beam at the outer periphery of the beam is reduced, the outer periphery of the beam does not contribute to the cutting of the object.
  • the cut surface of the polarizing plate has a tapered shape. This is considered to be due to the fact that when the polarizing plate was cut, the outer peripheral portion of the laser beam diameter affected the portion along the cut line, thereby dissolving the portion other than the polarizing plate cut region. .
  • the intensity distribution of the laser light after passing through the pinhole 143h has a skirt portion that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light.
  • the intensity distribution of the laser light becomes an ideal Gaussian distribution.
  • the half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
  • the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the laser light intensity distribution that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively fused. Conceivable.
  • the moving device 106 moves the table 101 and the scanner 105 relative to each other.
  • the moving device 106 includes a first slider mechanism 161 and a second slider mechanism 162.
  • the first slider mechanism 161 is a mechanism for moving the table 101 in a first direction (X direction) parallel to the holding surface 101s.
  • the second slider mechanism 162 is a mechanism for moving the first slider mechanism 161 in a second direction (Y direction) parallel to the holding surface 101s and perpendicular to the first direction.
  • the moving device 106 includes a linear motor (hereinafter referred to as slider mechanism 161 or 162) incorporated in each of the first slider mechanism 161 and the second slider mechanism 162. It is possible to move the table 101 in each of the X direction and the Y direction by actuating (not shown).
  • slider mechanism 161 or 162 a linear motor
  • the linear motor that is pulse-driven in the slider mechanisms 161 and 162 can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Therefore, each position of the table 101 supported by the slider mechanism 161 in the X direction and the Y direction can be controlled with high accuracy.
  • the position control of the table 101 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
  • the control device 107 includes a laser control unit 171 that controls the laser light oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, and a slider control unit 173 that controls the moving device 106.
  • a laser control unit 171 that controls the laser light oscillator 102 and the acoustooptic device 103 (drive driver 131)
  • a scanner control unit 172 that controls the scanner 105
  • a slider control unit 173 that controls the moving device 106.
  • the laser controller 171 turns the laser light oscillator 102 on / off, the output of the laser light emitted from the laser light oscillator 102, and the laser light LB emitted from the laser light oscillator 102 causes the acoustooptic device 103 to The timing of passing and the control of the drive driver 131 are performed.
  • the scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
  • the slider control unit 173 controls the operation of the linear motor built in each of the slider mechanisms 161 and 162.
  • FIG. 17 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
  • an input device 109 capable of inputting an input signal is connected to the control device 107.
  • the input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device.
  • the control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
  • the laser light is emitted from the laser light oscillator 102 based on the control of the laser control unit 171 of the control device 107.
  • rotation driving of the mirrors constituting the scanner 105 is started.
  • the rotational speed of a drive shaft such as a motor provided in the slider mechanisms 161 and 162 is detected by a sensor such as a rotary encoder.
  • the control device 107 corrects each coordinate value in real time so that the laser beam is emitted to the coordinate that matches the machining data, that is, the laser beam draws a desired locus on the object 110 (see FIG. 8).
  • the moving device 106 and the scanner 105 are controlled.
  • the scanning of the laser light is mainly performed by the moving device 106, and an area where the irradiation position of the laser light cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105.
  • FIG. 18 is a diagram for explaining the operation of the table 101 by the moving device 106.
  • the table 101 is moved in the second direction (Y by the second slider mechanism 162 between the standby position WP1 and the cutting position WP2 where the laser beam is cut by the control of the scanner 105.
  • the standby position WP1 refers to a loading standby position when the object 110 to be cut from the outside is carried onto the holding surface 101s of the table 101, or a holding surface for the object 110 that has been subjected to the cutting process. Also serves as an unloading standby position for unloading from the top of 101s.
  • the cutting position WP2 refers to at least a part of the object 110 held on the holding surface 101s and at least a part of the scan region 105s (see FIG. 8) by the scanner 105 when viewed in plan from the Z direction.
  • the two objects 110 are carried into the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) at the standby position WP1, as shown in FIG.
  • the two objects 110 held on the holding surface 101s are moved to the cutting position WP2.
  • the table 101 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP2 to the standby position WP1, and then carries the object 110 to the outside at the standby position WP1.
  • the cutting process using the table 101 includes a carry-in step for carrying the object 110 at the standby position WP1, a forward movement step for moving the object 110 carried at the standby position WP1 to the cutting position WP2, and a cutting position WP2.
  • a cutting step for performing a predetermined cutting process a return path moving step for moving the object 110 from the cutting position WP2 to the standby position WP1 after the cutting step, and an unloading for discharging the object 110 from the standby position WP1 after the return path moving step Steps.
  • FIG. 19 is a diagram showing an operation flow of a cutting process using the table 101 as a cutting process by the laser beam irradiation apparatus 100.
  • FIG. 20 is a diagram conceptually showing the operation of the cutting process using the table 101.
  • the table 101 carries the object 110 from the carry-in device 115 (see FIGS. 18 and 20) at the standby position WP1 (carry-in step S1 shown in FIG. 19).
  • the carry-in device 115 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
  • an alignment process is performed in which the relative position of the object 110 with respect to the cutting position WP2 is detected and the relative position is corrected based on the detection result. (Alignment step S2 shown in FIG. 19).
  • the table 101 moves the object 110 carried in at the standby position WP1 to the cutting position WP2 (cutting position movement step (outward movement step) S3 shown in FIG. 19). After the movement to the cutting position WP2, a predetermined cutting process as described later is performed on the object 110 on the holding surface 101s (cutting step S4 shown in FIG. 19). After the cutting process, the table 101 moves to the standby position WP1 where the object 110 that has been subjected to the cutting process is carried out by the carrying-out device 116 (see FIGS. 18 and 20) (the carrying-out position moving step (return path moving step shown in FIG. 19)). ) S5).
  • the carry-out device 116 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
  • the object 110 is unloaded from the holding surface 101s of the table 101 by the unloading device 116 (unloading step S6 shown in FIG. 19).
  • the carry-in device 115 carries the object 110 onto the holding surface 101s of the table 101 at the standby position WP1.
  • the carry-in device 115 includes a carry-in conveyor unit 115b and a holding unit 115a that sucks and holds the object 110 on the carry-in conveyor unit 115b.
  • the holding part 115a can be transferred to the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) while holding the two objects 110 at the same time.
  • the carry-in conveyor unit 115b is configured by, for example, a belt conveyor.
  • the object detection device 117 detects the object 110 before the table 101 moves from the standby position WP1 to the cutting position WP2. To do.
  • the object detection device 117 includes a detection camera 117a that images the object 110, and detects the relative position of the object 110 with respect to the cutting position WP2 by using the detection camera 117a.
  • the alignment step S2 is not always necessary and may be omitted, for example, when the carry-in device 115 has a very high carry-in accuracy to the holding surface 101s. In this case, since the object detection device 117 is not required, the device configuration can be simplified and the cost can be reduced.
  • the detection camera 117a detects the object 110 held on the first holding surface 101s1 on the cutting position WP2 side of the holding surface 101s.
  • the object detection device 117 transmits the detection result of the detection camera 117a to the control device 107 (see FIG. 17).
  • the control device 107 Based on the detection result from the detection camera 117a, the control device 107 performs alignment processing for correcting the position of the target object 110 when the target object 110 is displaced from the cutting position WP2 (scanner 105).
  • the control device 107 drives the position correction unit to correct the position of the object 110 held on the holding surface 101s.
  • the position correction unit corrects the position of the object 110 held on the holding surface 101s by bringing a plurality of pins into contact with at least three side surfaces of the object 110, for example. Note that when the position of the object 110 is corrected, the table 101 stops moving.
  • the table 101 moves to the cutting position WP2 side.
  • the detection camera 117a detects the object 110 held on the second holding surface 101s2 opposite to the cutting position WP2, and transmits the detection result to the control device 107.
  • the control device 107 Based on the detection result from the detection camera 117a, the control device 107 performs an alignment process for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP2 (scanner 105).
  • the control device 107 drives a position correction unit (not shown) to correct the position of the object 110 held on the holding surface 101s.
  • the alignment step S2 is performed when the table 101 is positioned at the standby position WP1 has been described as an example.
  • the present invention is not limited to this, and the alignment step S2 is performed when the table 101 is disconnected from the standby position WP1. You may make it perform in the middle before moving to position WP2.
  • the table 101 moves to the cutting position WP2 as shown in FIG. 20 (c). Thereafter, in a cutting step S4, a predetermined cutting process as described later is performed on the object 110 on the holding surface 101s by irradiating the laser beam through the scanner 105. In the cutting step S4, the table 101 moves so that the cutting process is performed in the order of the object 110 held on the first holding surface 101s1 and the object 110 held on the second holding surface 101s2.
  • the carry-out device 116 includes a holding unit 116a that sucks, holds, and conveys the object 110, and a receiving unit 116b that receives the object 110 carried out from the holding surface 101s by the holding unit 116a.
  • the holding unit 116a can carry out the two objects 110 from the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) while holding the two objects 110 at the same time.
  • the receiving unit 116b is configured by a belt conveyor or the like, for example, and can transport the object 110 received from the holding unit 116a in a predetermined direction.
  • FIG. 21 is a schematic diagram of the first detection device 41.
  • the first detection device 41 includes an imaging device 43 that captures an image of the object 110 and an illumination device 44 that illuminates the object 110 from the opposite side of the imaging device 43 with the object 110 interposed therebetween. And.
  • FIGS. 22A and 22B are schematic diagrams illustrating a state in which the object 110 is imaged using the imaging device 43.
  • FIG. 22A First, as shown in FIG. 22A, the periphery of the liquid crystal panel P in the object 110 is imaged using the imaging device 43.
  • the scanner 105 (cutting device) separates the sheet piece FXm included in the object 110 into an optical member F1X that is a portion facing the display area included in the liquid crystal panel P and an extra portion outside the optical member F1X.
  • the control device 107 controls the scanner 105 based on the image captured by the imaging device 43.
  • the object 110 has a liquid crystal panel P and a sheet piece FXm bonded to the liquid crystal panel P.
  • the liquid crystal panel P has a liquid crystal layer P3 (see FIG. 2) sandwiched and supported by the second substrate P2 and the first substrate P1. Further, in the liquid crystal panel P, the second substrate P2 has a smaller area in plan view than the first substrate P1, and one end side of the first substrate P1 is exposed in plan view when the two are overlapped.
  • a terminal portion P6 is provided in the exposed region P5 of the first substrate P1.
  • FIG. 22B is a partial plan view of the liquid crystal panel P.
  • the side EA is shown among the four sides EA, EB, EC, ED of the second substrate P2.
  • the liquid crystal panel P of this embodiment is manufactured by multi-chamfering. Therefore, as shown in FIG. 22B, burrs and chips are generated in the vicinity of the corners (for example, corners C1 and C2 at both ends of the side EA) EA1 and EA2 of the second substrate P2 as compared to the center EA3 of the side EA. It is not straight.
  • the lengths of the neighborhoods EA1 and EA2 are empirically about 5 mm in a liquid crystal panel for a 4-inch display, for example. Note that the lengths of the neighborhoods EA1 and EA2 are not limited to this.
  • the sheet piece FXm is bonded to the surface of the second substrate P2.
  • the sheet piece FXm has a rectangular shape in plan view, and has a larger area than the second substrate P2 in plan view.
  • the imaging device 43 is used to image the imaging area AR including the second substrate P2.
  • the imaging device 43 has a plurality of arrays arranged in a direction (first direction) parallel to the side EC (or side EA) along the terminal portion P6 among the four sides EA, EB, EC, ED of the second substrate P2.
  • a line camera including an image sensor is a CCD (Charge Coupled Device).
  • the imaging device 43 moves in a direction (second direction) parallel to the side EB (or side ED) adjacent to the side EC and includes an image including the second substrate P2 in plan view (hereinafter referred to as a counter substrate image). ).
  • the moving direction of the imaging device 43 is not limited to this.
  • the imaging device 43 includes a plurality of imaging elements arranged in a direction parallel to the side EB (or side ED), and moves and faces in a direction parallel to the side EC (or side EA) adjacent to the side EB.
  • a substrate image may be taken. That is, the imaging device 43 includes a plurality of imaging elements arranged in the second direction when viewed from the normal direction of the surface of the second substrate P2, and moves in the first direction orthogonal to the second direction. It is sufficient that the counter substrate image is captured.
  • the illumination device 44 shown in FIG. 21 is used to illuminate the object 110 by irradiating light L from the opposite side of the imaging device 43 with the object 110 interposed therebetween.
  • the halation caused by the reflected light generated in the sheet piece FXm can be suppressed, and an image suitable for analysis described later can be captured.
  • the image data of the image captured by the imaging device 43 is input to the control device 40, and the next processing (image processing, calculation) is performed.
  • the region where the second substrate P2 and the sheet piece FXm overlap (first region) and the region of only the sheet piece FXm protruding from the second substrate P2 (second region)
  • the second region is brighter than the first region. Therefore, when the captured image is binarized, the first area becomes a bright area (white), the second area becomes a dark area (black), and the outline of the second substrate P2 becomes clear as a light / dark boundary.
  • the threshold value of the gradation value for binarization varies depending on the type of sheet piece FXm to be bonded, the structure of the liquid crystal panel P at the position to be imaged, etc. To set.
  • FIG. 23 is a schematic diagram illustrating the vicinity of a corner portion of the image captured by the imaging device 43 in FIG. 22A.
  • the vicinity of the corner including the side EA and the side EB is shown.
  • the first area is indicated by a symbol AR1
  • the second area is indicated by a symbol AR2.
  • the second processing as shown in FIG. 23, based on the image data binarized in the first image processing (hereinafter referred to as binarized data), the outline (side) of the second substrate P2 and The coordinates of a plurality of overlapping points D are detected.
  • a first portion that does not satisfy a predetermined criterion is excluded (determined) from the outline of the second substrate P2 obtained from the counter substrate image captured by the imaging device 43.
  • the second substrate P2 is burred or chipped, and each side (sides EA and EB in FIG. 23) is linear. is not. Therefore, when the point D is detected, the vicinity EA1, EB1 (a range predetermined as the vicinity of the corner) is set not to be included in the detection range.
  • the ranges of the neighborhoods EA1 and EB1 to be excluded from the detection range can be appropriately set according to values obtained empirically or experimentally.
  • the second substrate is used for the central portions EA3 and EB3 (second portion) excluding the vicinity EA1 and EB1 in the outline of the second substrate P2.
  • the coordinates of a plurality of points D overlapping the contour line of P2 are detected.
  • the X axis is set with the upper left corner of the binarized data as the origin, the right direction of the image as the + direction, and the Y direction with the down direction of the image as the + direction.
  • a process triming process that appropriately cuts out an arbitrary area suitable for analysis from image data (or binarized data) may be performed, and the second process may be performed on the processed image.
  • the white (first The coordinates (x1, y1) of the point D can be obtained from the position (y1) in the Y direction of the position changing from black (second area) to black (second area).
  • Such processing is performed on each of the four sides EA, EB, EC, and ED of the second substrate P2, and the coordinates of a plurality of points D that overlap the sides are detected on each side.
  • the number of points D to be detected be large, but it is preferable to set the number so that the processing load of the arithmetic processing described later is not excessive.
  • 100 points D may be detected in each of four sides EA, EB, EC, and ED. Note that the number of points D to be detected is not limited to this.
  • a straight line corresponding to the side overlapping the point D is approximated from the coordinates of the plurality of points D detected in the second process.
  • a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given.
  • the point D1 plotted on the + y side and the point D2 plotted on the ⁇ y side have a larger separation distance from the approximate line L1 than the other points D, and are large in the calculation result of the approximate line L1. It is thought to have influenced. In such a case, the approximate straight line may be obtained again using the remaining points excluding the points D1 and D2.
  • the number of points D to be excluded is not limited to two as shown in FIG.
  • a threshold is determined for the distance between the approximate line L1 and the point D (the absolute value of the Y coordinate of the point D in FIG. 24), and the approximate line is obtained again by excluding the point D whose absolute value of the Y coordinate is greater than the threshold. It does not matter.
  • About a threshold value it can set suitably according to the value calculated
  • the approximate straight line thus obtained is performed for each of the four sides EA, EB, EC, and ED included in the captured image.
  • the approximate straight line obtained at the side EA may be referred to as L1
  • the approximate straight line obtained at the side EB as L2
  • the approximate straight line obtained at the side EC as L3
  • the approximate straight line obtained at the side ED as L4.
  • the approximate straight lines L1, L2, L3, and L4 are obtained by connecting the approximate straight lines L1, L2, L3, and L4 obtained for the four sides included in the counter substrate image captured by the imaging device 43, respectively.
  • the figure to be obtained is obtained as an outline (approximate outline) of the second substrate P2.
  • FIG. 25 is a schematic diagram showing the approximate contour OL. As shown in FIG. 25, the approximate contour OL can be obtained by connecting the approximate straight lines L1, L2, L3, and L4 obtained in the third process.
  • FIG. 26 is a schematic diagram showing a state in which the sheet piece FXm of the object 110 is cut using the scanner 105.
  • the control device 40 controls the scanner 105, emits the laser beam LB based on the approximate contour OL obtained as described above, cuts the sheet piece FXm, and separates the optical member F1X and the surplus portion FY.
  • the size of the surplus portion FY of the sheet piece FXm (the size of the portion protruding outside the liquid crystal panel P) is appropriately set according to the size of the liquid crystal panel P.
  • the distance between one side of the sheet piece FXm and one side of the liquid crystal panel P is 2 mm on each side of the sheet piece FXm.
  • the interval between one side of the sheet piece FXm and one side of the liquid crystal panel P is not limited to this.
  • FIG. 27 is a diagram showing an operation flow of a cutting process using the scanner 105 and the table 101 as a cutting process.
  • the operation flow shown in FIG. 27 is a specific operation flow of the cutting step S4 in the operation flow shown in FIG.
  • the object 110 is fixed to the holding surface 101s (step S41 shown in FIG. 27).
  • a counter substrate image is taken for the object 110 on the holding surface 101s (step S42 shown in FIG. 27).
  • an approximate contour OL is created based on the captured counter substrate image (step S43 shown in FIG. 27).
  • cutting processing is performed based on the approximate contour OL (step S44 shown in FIG. 27).
  • the cutting process is performed in conjunction with the scanner 105 and the table 101. That is, while controlling the scanner 105 (step S441 shown in FIG. 27) and controlling the table 101 (step S442 shown in FIG. 27), the cutting process of the sheet piece FXm in the object 110 is performed.
  • FIG. 28 is a diagram illustrating a control method for scanning a laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 as a cutting device. It is.
  • symbol Tr is a target laser beam movement locus (desired locus; hereinafter referred to as laser beam movement locus), and symbol Tr1 is a movement locus caused by relative movement between the table 101 and the scanner 105.
  • a trajectory projected on the sheet piece FXm (hereinafter, also referred to as a light source movement trajectory).
  • the light source movement trajectory Tr1 has a shape in which four corners of the laser light movement trajectory Tr having a rectangular shape are curved, the symbol K1 is a straight section other than the corner, and the symbol K2 is a bent section of the corner.
  • Reference numeral Tr2 indicates that the irradiation position of the laser beam is perpendicular to the light source movement locus Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement locus Tr1. It is a curve (hereinafter also referred to as an adjustment curve) indicating how much is shifted (adjusted). The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
  • the light source movement locus Tr1 is a substantially rectangular movement locus with curved corners.
  • the light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. Therefore, in FIG. 28, the corners of the light source movement locus Tr1 are curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
  • the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is.
  • the scanner 105 is moving in the bending section K2
  • the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so that the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light.
  • the irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1.
  • the distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1.
  • the light source movement trajectory Tr1 is displaced inward from the laser light movement trajectory Tr, and the irradiation position of the laser light is set to the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 so as to cancel out the deviation. Therefore, the irradiation position of the laser beam is arranged on the laser beam movement track Tr.
  • FIGS. 29A and 29B are explanatory diagrams of the cutting process according to the comparative example.
  • FIGS. 30A and 30B are explanatory diagrams of the cutting process according to the present embodiment. 29 (a), (b) and FIGS. 30 (a), (b), for convenience, the illustration of the sheet piece FXm constituting the object 110 is omitted, and only the liquid crystal panel P is illustrated. .
  • each of the areas CA1, CA2, CA3, CA4 including the four corners (corner portions) of the liquid crystal panel P in plan view is used. Take an image.
  • the four corners of the liquid crystal panel P are obtained based on the imaging result, and the rectangle OLx connecting the obtained four corners is set as the outer peripheral shape of the liquid crystal panel P. Therefore, if burrs or chips are generated at the corners of the liquid crystal panel P, the liquid crystal panel P is easily affected by burrs or chips when detecting the outer peripheral shape of the liquid crystal panel P. As a result, as shown in FIG.
  • the cut line (rectangular OLx) is greatly deviated from the actual outline of the substrate P.
  • the burrs may be recognized as corners of the liquid crystal panel P in the areas CA1 and CA3.
  • the trapezoid (rectangular OLx) connecting the obtained four corners becomes the outer peripheral shape of the liquid crystal panel P.
  • a line camera is used as the imaging device 43, and the imaging device 43 is moved in the direction V to capture the counter substrate image.
  • a first portion corner where burrs or chips are generated
  • a preset criterion is excluded from the outline of the second substrate P2 obtained from the counter substrate image imaged by the imaging device 43 ( decide).
  • the coordinates of a plurality of points overlapping the outline of the second substrate P2 are detected for the second portion (the central portion where no burr or chipping occurs).
  • approximate straight lines L1, L2, L3, and L4 are obtained from the detected coordinates of the plurality of points. Then, as shown in FIG.
  • the approximate contour OL is obtained by connecting the approximate straight lines L1, L2, L3, and L4. Therefore, even if burrs or chips are generated at the corners of the liquid crystal panel P, the liquid crystal panel P is not easily affected by the burrs or chips when detecting the outer peripheral shape of the liquid crystal panel P. As a result, as shown in FIG. 30B, the cut line (approximate contour line OL) can be prevented from greatly deviating from the actual contour line.
  • the cut line (approximate contour) is based on the portion of the contour line of the second substrate P2 excluding the portion that does not satisfy the standard in advance. Since the line OL) is created, it is possible to suppress the shift of the cut line from the actual contour line. As a result, it is possible to detect the outer peripheral shape of the liquid crystal panel P excluding the influence of burrs and chips on the peripheral edge, and to process the optical member F1X in accordance with the outer peripheral shape. Further, it is possible to easily produce a narrow frame optical display device.
  • the sheet piece FXm (1st sheet piece F1m, 2nd sheet piece F2m) can be cut
  • the moving device 106 and the scanner 105 are controlled so as to draw a desired laser beam movement trajectory Tr in the sheet piece FXm.
  • the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only a narrow bending section K2.
  • the laser beam is scanned on the sheet piece FXm by the movement of the table 101 by the moving device 106.
  • the scanning of the laser beam is mainly performed by the moving device 106, and only the region where the moving position of the laser beam irradiation position cannot be accurately controlled by the moving device 106 is adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. is doing. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
  • the optical member of the size corresponding to the bonding surface is cut off by separating the excess part of sheet piece FXm.
  • F1X (F11, F12) can be formed on the surface of the liquid crystal panel P.
  • the optical axis direction of the sheet piece FXm changes according to the position of the sheet piece FXm by bonding the sheet piece FXm (F1m, F2m) of a size that protrudes outside the liquid crystal panel P to the liquid crystal panel P.
  • the liquid crystal panel P can be aligned and bonded in accordance with the optical axis direction of the sheet piece FXm.
  • the cutting devices 31 and 32 laser cut the sheet pieces FXm (F1m, F2m), so that the force is not exerted on the liquid crystal panel P as compared with the case where the sheet pieces FXm are cut with a blade, and there is no crack or chipping. It becomes difficult to occur, and the stable durability of the liquid crystal panel P can be obtained.
  • the sheet piece FXm can be cut substantially along the edge of the second substrate P2, and the optical member F1X can be suitably bonded to the liquid crystal panel P having a narrow frame. Furthermore, if necessary, a plurality of types of optical members can be bonded to the liquid crystal panel P using the apparatus described above, and an optical display device formed by bonding the optical members to the liquid crystal panel P can be obtained.
  • the plurality of objects 110 can be sequentially supplied to the cutting position WP2. Thereby, the cutting process with respect to the target object 110 can be performed efficiently, and a processing amount can be increased.
  • the sheet piece FXm is cut along the approximate contour line OL.
  • the present invention is not limited to this, and is, for example, a region inside the approximate contour OL and the frame of the liquid crystal panel P.
  • the sheet piece FXm may be cut at a position overlapping the portion.
  • the control device 40 calculates, based on the calculated approximate contour, a shape that is smaller than the shape drawn by the approximate contour as a true cut portion,
  • the scanner 105 may be controlled so as to cut the sheet piece FXm along.
  • the shape showing the true cut portion may be a similar shape obtained by reducing the shape drawn by the approximate contour OL at a predetermined scale, and only a predetermined width from the shape drawn by the approximate contour OL.
  • the shape shrunk inward may be sufficient.
  • the imaging device 43 is used to illustrate and explain that the liquid crystal panel P included in the object 110 is taken as a plan view from the second substrate P2 side.
  • the present invention is not limited thereto. Absent.
  • the position of the end portion may be shifted between the upper and lower substrates constituting the liquid crystal panel P.
  • the liquid crystal panel P shown in FIG. 3 has such a shift and the edge of the first substrate P1 farther from the image pickup device 43 than the edge of the second substrate P2 close to the image pickup device 43 is arranged outside.
  • the edge of the first substrate P1 is mistaken as the edge of the second substrate P2, and it is difficult to obtain an approximate contour line along the contour line of the second substrate P2. It becomes.
  • the imaging device 43 may be inclined to the inside of the second substrate P2 with respect to the normal line of the second substrate P2, and an image of the second substrate P2 may be taken from the inside of the second substrate P2. .
  • the first substrate P1 is imaged in a state of being hidden by the second substrate P2, so that the edge of the first substrate P1 is not mistaken as the edge of the second substrate P2, and the second substrate P2 An image can be reliably captured.
  • the inclination angle of the imaging device 43 may be changed each time according to the amount of deviation between the second substrate P2 and the first substrate P1 in each liquid crystal panel P.
  • the maximum value of the deviation amount is empirically known, an inclination angle that can hide the first substrate P1 by the second substrate P2 is obtained even if the maximum deviation occurs, and the obtained inclination angle is obtained. It is preferable that the image pickup device 43 be tilted to take an image.
  • disconnects a sheet piece as a structure which irradiates a target object with a laser beam and performs a predetermined process it is not restricted to this.
  • it in addition to dividing the sheet piece into at least two parts, it also includes making a cut through the sheet piece and forming a groove (cut) of a predetermined depth in the sheet piece. To do. More specifically, for example, cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
  • the optical member sheet FX is pulled out from the roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is pasted from the sheet piece FXm.
  • a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is pasted from the sheet piece FXm.
  • size corresponding to a mating surface was mentioned and demonstrated was demonstrated, it is not restricted to this.
  • the embodiment of the present invention can be applied to the case where a single-wafer optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
  • the drawing locus of the laser light emitted from the laser light irradiation device is a rectangular shape (square shape) in plan view
  • the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape of pentagon or more in plan view.
  • the shape is not limited to this, and may be a star shape in a plan view and a geometric shape in a plan view.
  • the shape containing curves, such as circular and an ellipse may be sufficient by planar view.
  • the embodiment of the present invention can also be applied to such a drawing trajectory.
  • the present invention is not limited to this.
  • maintain the one target object 110 may be sufficient as a table, and the structure which can hold
  • SYMBOLS 1 Film bonding system (production system of an optical display device), 23 ... Cinch roll (bonding device), 31 ... 1st cutting device (cutting device), 32 ... 2nd cutting device (cutting device), 43 ... Imaging device 44 ... illumination device 100 ... laser light irradiation device (cutting device) 107 ... control device 110 ... object (laminated body) D ... point overlapping outline, EA1, EB1 ... near (first) Part), EA3, EB3 ... center part (second part), P ... liquid crystal panel (optical display component), P1 ... first substrate (substrate), P2 ... second substrate (substrate), P4 ... display region, FX ...
  • Optical member sheet FXm ... Sheet piece, F1X ... Optical member, FY ... Surplus part, OL ... Approximate contour line, PA1 ... First optical member bonding body (laminate), PA3 ... Third optical member bonding body (laminate) ), PA4 ... fourth optical member bonded body (optical table) Device).

Abstract

A production system for an optical display device comprises: an image capturing device which captures an image of a laminate of an optical display component and an optical member sheet, the image including a substrate in plan view; a cutting device which cuts the optical member sheet into an optical member and a surplus portion; and a control device which acquires an approximate contour line on the basis of the image and controls the cutting device. The control device determines a first portion that does not meet a preset standard in a contour line acquired on the basis of the image captured by the image capturing device, detects the coordinates of a plurality of points overlapping the contour line in a second portion other than the first portion in the contour line, approximates a line corresponding to the contour line from the coordinates of the plurality of points, and controls the cutting device such that the cutting device cuts the optical member sheet on the basis of the approximate contour line acquired from the approximated line.

Description

光学表示デバイスの生産システムOptical display device production system
 本発明は、光学表示デバイスの生産システムに関する。
 本願は、2013年6月24日に出願された日本国特許出願2013-131945号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical display device production system.
This application claims priority based on the Japan patent application 2013-131945 for which it applied on June 24, 2013, and uses the content here.
 従来、液晶ディスプレイ等の光学表示デバイスの生産システムにおいては、2枚のマザーガラスの間に液晶層を挟んで張り合わせ、マザーパネルを作成した後に、マザーパネルを複数枚の液晶パネル(光学表示部品)に分割する方法(いわゆる、多面取り)が採用されている。マザーパネルは、例えば、マザーガラスにスクライブラインを刻印し、次いで加圧してスクライブラインに沿って割ることで、複数枚の液晶パネルに分割することができる(例えば、特許文献1参照)。 Conventionally, in a production system for an optical display device such as a liquid crystal display, a mother panel is created by sandwiching a liquid crystal layer between two mother glasses, and then the mother panel is divided into a plurality of liquid crystal panels (optical display components). A method of dividing into two (so-called multiple chamfering) is employed. The mother panel can be divided into a plurality of liquid crystal panels by, for example, imprinting a scribe line on the mother glass, then pressurizing and dividing along the scribe line (see, for example, Patent Document 1).
日本国特開平11-90900号公報Japanese Unexamined Patent Publication No. 11-90900
 液晶パネルには、偏光フィルム、位相差フィルム、輝度上昇フィルム等の光学部材が、液晶パネルの表示領域のみならず表示領域の周辺部(額縁部)にはみ出る余剰部分を含む大きさのシート片に切り出された後に貼合されている。これにより、シート片は、表示領域を確実に覆いながら、余剰部分が額縁部に配置される。従来は、光学部材の縁が、液晶パネルの額縁部に配置されるように貼合されていた。 In a liquid crystal panel, optical members such as a polarizing film, a retardation film, and a brightness enhancement film are formed on a sheet piece having a size including a surplus part that protrudes not only to the display area of the liquid crystal panel but also to the peripheral part (frame part) of the display area. It is pasted after being cut out. Thereby, the surplus part is arrange | positioned in a frame part, covering the display area reliably. Conventionally, the edges of the optical member are bonded so as to be arranged in the frame portion of the liquid crystal panel.
 しかし近年では、光学表示部品は、表示面における表示領域の周辺部を縮小して、表示領域の拡大および機器の小型化を図る検討がなされている(以下、光学表示部品において額縁部を縮小することを「狭額縁化」と称することがある)。狭額縁化された液晶パネルに対して、光学部材は、液晶パネルの平面視形状に合わせた大きさのシート片に切り出され、シート片の縁を液晶パネルの外周に合わせて貼合される。 In recent years, however, optical display components have been studied to reduce the peripheral portion of the display area on the display surface to increase the display area and reduce the size of the device (hereinafter, the frame portion of the optical display component is reduced). This is sometimes referred to as “narrowing the frame”). The optical member is cut into a sheet piece having a size that matches the shape of the liquid crystal panel in plan view, and the edge of the sheet piece is bonded to the outer periphery of the liquid crystal panel.
 このように、光学部材のシート片を貼合する場合には、液晶パネルの外周形状を検出し、この外周形状に合わせた大きさや形状にシート片を切り出す操作を行う。外周形状の検出の方法としては、平面視において液晶パネルの四隅(角部)を検出した上で、四隅をつないだ矩形を液晶パネルの外周形状とする方法が考えられる。 Thus, when bonding the sheet piece of an optical member, the outer periphery shape of a liquid crystal panel is detected, and the operation which cuts out a sheet piece in the magnitude | size and shape match | combined with this outer periphery shape is performed. As a method for detecting the outer peripheral shape, a method of detecting the four corners (corner portions) of the liquid crystal panel in a plan view and making a rectangle connecting the four corners into the outer peripheral shape of the liquid crystal panel can be considered.
 しかし、液晶パネルを上述のような方法で多面取りにより製造する場合、通常は矩形を有する液晶パネルにおいて、角部にバリや欠けが生じやすい。そのため、多面取りにより製造された液晶パネルは、液晶パネルの外周形状の検出時に、バリや欠けによる影響を受けやすく、液晶パネルの外周形状よりも大きいまたは小さいものとなり、不良品が生じやすい。 However, when the liquid crystal panel is manufactured by multi-chamfering by the above-described method, a burr or a chip is likely to occur at the corners in a liquid crystal panel having a rectangular shape. Therefore, the liquid crystal panel manufactured by multi-chamfering is easily affected by burrs and chips when detecting the outer peripheral shape of the liquid crystal panel, and is larger or smaller than the outer peripheral shape of the liquid crystal panel, and is likely to be defective.
 本発明の態様はこのような事情に鑑みてなされたものであって、周縁部のバリや欠けによる影響を排除した液晶パネルの外周形状の検出を行い、この外周形状に合わせた光学部材の加工を可能とする光学表示デバイスの生産システムを提供することを目的とする。 The aspect of the present invention has been made in view of such circumstances, and detects the outer peripheral shape of a liquid crystal panel that eliminates the influence of burrs and chips on the peripheral edge, and processes the optical member according to the outer peripheral shape. An object of the present invention is to provide an optical display device production system that enables the above.
 上記の目的を達成するために、本発明の態様に係る光学表示デバイスの生産システムは以下の構成を採用した。
 (1)本発明の第一の態様に係る光学表示デバイスの生産システムは、光学表示部品に光学部材を貼合して形成される光学表示デバイスの生産システムであって、前記光学表示部品が有する基板の表面に、前記表面よりも広い光学部材シートが貼合されて形成される積層体について、平面視で前記基板を含む画像を撮像する撮像装置と、前記光学部材シートを、前記光学表示部品が有する表示領域との対向部分である前記光学部材と、前記光学部材の外側の余剰部分と、に切り離す切断装置と、前記画像に基づいて、前記基板の平面視における輪郭線を近似した近似輪郭線を求め、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する制御装置と、を含み、前記制御装置は、前記撮像装置によって撮像された前記画像に基づいて求められる前記輪郭線のうち予め設定した基準を満たさない第1の部分を決定し、前記輪郭線のうち前記第1の部分を除いた第2の部分について前記輪郭線に重なる複数点の座標を検出し、前記複数点の座標から前記輪郭線に対応する線を近似し、近似された線により得られる図形を前記近似輪郭線として求めて、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する。
In order to achieve the above object, the optical display device production system according to an aspect of the present invention employs the following configuration.
(1) The optical display device production system according to the first aspect of the present invention is an optical display device production system formed by bonding an optical member to an optical display component, the optical display component having An imaging device that captures an image including the substrate in a plan view of a laminate formed by laminating an optical member sheet wider than the surface on the surface of the substrate, the optical member sheet, and the optical display component An approximate contour approximating a contour line in plan view of the substrate based on the image, the cutting device for cutting off the optical member that is a portion facing the display area of the optical member, a surplus portion outside the optical member, and the image And a control device that controls the cutting device so as to cut the optical member sheet based on the approximate contour, and the control device is imaged by the imaging device. A first portion that does not satisfy a predetermined criterion is determined from the contour lines obtained based on the image, and a second portion of the contour lines excluding the first portion overlaps the contour lines. Detecting the coordinates of a plurality of points, approximating a line corresponding to the contour line from the coordinates of the plurality of points, obtaining a figure obtained by the approximated line as the approximate contour line, based on the approximate contour line The cutting device is controlled to cut the optical member sheet.
 なお、「表示領域との対向部分」とは、表示領域の大きさ以上、光学表示部品の外周形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を示す。すなわち、光学部材は、光学表示部品の外周縁に沿って余剰部分と切り離されて形成されるものであってもよく、表示領域の周辺部である額縁部において余剰部分と切り離されて形成されるものであってもよい。 The “opposite part of the display area” is an area that is not less than the size of the display area and not more than the size of the outer peripheral shape of the optical display component, and that avoids a functional part such as an electrical component mounting portion. That is, the optical member may be formed by being separated from the surplus portion along the outer peripheral edge of the optical display component, and is formed by being separated from the surplus portion at the frame portion that is the peripheral portion of the display area. It may be a thing.
 また、「近似輪郭線に基づいて前記光学部材シートを切断する」とは、算出する近似輪郭線に沿って、または表示領域の大きさ以上であって近似輪郭線の内側の領域において光学部材シートを切断する態様を示す。すなわち、光学部材シートの切断位置は、近似輪郭線に沿った位置であってもよく、表示領域の周縁部である額縁部と重なる位置であってもよい。 Further, “cutting the optical member sheet based on the approximate contour line” means that the optical member sheet is along the approximate contour to be calculated or in a region that is not less than the size of the display region and inside the approximate contour line. The aspect which cut | disconnects is shown. That is, the cutting position of the optical member sheet may be a position along the approximate contour line, or may be a position overlapping with a frame portion that is a peripheral portion of the display area.
 (2)上記(1)に記載の光学表示デバイスの生産システムでは、前記撮像装置は、第1の方向に配列された複数の撮像素子を含み、前記第1の方向と直交する第2の方向に移動して前記画像を撮像するラインカメラであってもよい。 (2) In the production system for an optical display device according to (1), the imaging apparatus includes a plurality of imaging elements arranged in a first direction, and a second direction orthogonal to the first direction. It may be a line camera that moves to and picks up the image.
 (3)上記(1)又は(2)に記載の光学表示デバイスの生産システムでは、前記積層体を挟んで前記撮像装置とは反対側から、前記積層体を照明する照明装置を含んでいてもよい。 (3) The optical display device production system according to (1) or (2) may include an illumination device that illuminates the stacked body from the side opposite to the imaging device with the stacked body interposed therebetween. Good.
 (4)上記(1)から(3)までのいずれか一項に記載の光学表示デバイスの生産システムでは、前記第1の部分は、平面視で前記基板の角部の近傍として予め定めた部分であり、前記制御装置は、前記角部を挟む2つの辺のそれぞれにおいて、前記第1の部分を除いて前記複数点の座標を検出してもよい。 (4) In the optical display device production system according to any one of (1) to (3), the first portion is a portion predetermined as a vicinity of a corner of the substrate in plan view. And the control device may detect the coordinates of the plurality of points on each of two sides sandwiching the corner portion, excluding the first portion.
 (5)上記(1)から(4)までのいずれか一項に記載の光学表示デバイスの生産システムでは、ライン上を搬送される前記光学表示部品の表面に前記光学部材シートを貼合して前記積層体を形成する貼合装置を含んでいてもよい。 (5) In the production system for an optical display device according to any one of (1) to (4) above, the optical member sheet is bonded to the surface of the optical display component conveyed on a line. The laminating apparatus which forms the said laminated body may be included.
 本発明の態様によれば、周縁部のバリや欠けによる影響を排除した液晶パネルの外周形状の検出を行い、この外周形状に合わせた光学部材の加工を可能とする光学表示デバイスの生産システムを提供することができる。 According to an aspect of the present invention, there is provided an optical display device production system that detects the outer peripheral shape of a liquid crystal panel that eliminates the influence of burrs and chips on the peripheral edge, and enables processing of optical members in accordance with the outer peripheral shape. Can be provided.
本実施形態のフィルム貼合システムの概略構成を示す図である。It is a figure which shows schematic structure of the film bonding system of this embodiment. 液晶パネルの平面図である。It is a top view of a liquid crystal panel. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 液晶パネルに貼合される光学部材シートの部分断面図である。It is a fragmentary sectional view of an optical member sheet pasted on a liquid crystal panel. 切断装置の動作を示す図である。It is a figure which shows operation | movement of a cutting device. 貼合面の検出工程を示す平面図である。It is a top view which shows the detection process of a bonding surface. 液晶パネルに対するシート片の貼合位置の決定方法の一例を示す図である。It is a figure which shows an example of the determination method of the bonding position of the sheet piece with respect to a liquid crystal panel. 液晶パネルに対するシート片の貼合位置の決定方法の一例を示す図である。It is a figure which shows an example of the determination method of the bonding position of the sheet piece with respect to a liquid crystal panel. 本実施形態のレーザー光照射装置の一例を示す斜視図である。It is a perspective view which shows an example of the laser beam irradiation apparatus of this embodiment. EBSの構成を示す図である。It is a figure which shows the structure of EBS. IORの内部構成を示す斜視図である。It is a perspective view which shows the internal structure of IOR. 第1集光レンズ、絞り部材及びコリメートレンズの配置構成を示す側断面図である。It is a sectional side view which shows the arrangement configuration of a 1st condensing lens, an aperture member, and a collimating lens. (a)~(d)は、EBSの作用を説明するための図である。(A)-(d) is a figure for demonstrating the effect | action of EBS. (a)~(d)は、レーザー光の1つのパルスに着目した図である。(A) to (d) are diagrams focusing on one pulse of laser light. IORの作用を説明するための図である。It is a figure for demonstrating the effect | action of IOR. 比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut | disconnected using the laser beam irradiation apparatus which concerns on a comparative example. 本実施形態のレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut | disconnected using the laser beam irradiation apparatus of this embodiment. 制御システムの構成を示す図である。It is a figure which shows the structure of a control system. テーブルの動作を説明するための図である。It is a figure for demonstrating operation | movement of a table. レーザー光照射装置による切断処理の動作フローを示す図である。It is a figure which shows the operation | movement flow of the cutting process by a laser beam irradiation apparatus. 切断工程の動作を概念的に示した図である。It is the figure which showed notionally the operation | movement of the cutting process. 検出装置の模式図である。It is a schematic diagram of a detection apparatus. 撮像装置を用いて対象物を撮像する様子を示す模式図である。It is a schematic diagram which shows a mode that a target object is imaged using an imaging device. 撮像装置を用いて対象物を撮像する様子を示す模式図である。It is a schematic diagram which shows a mode that a target object is imaged using an imaging device. 撮像装置で撮像した画像のうち角部の近傍を示す模式図である。It is a schematic diagram which shows the vicinity of a corner | angular part among the images imaged with the imaging device. 輪郭線上の複数点から求めた近似直線を示すグラフである。It is a graph which shows the approximate straight line calculated | required from several points on an outline. 近似輪郭線を求めた模式図である。It is the schematic diagram which calculated | required the approximate outline. 切断装置を用いて積層体のシート片を切断する様子を示す模式図である。It is a schematic diagram which shows a mode that the sheet piece of a laminated body is cut | disconnected using a cutting device. 切断処理の動作フローを示す図である。It is a figure which shows the operation | movement flow of a cutting process. レーザー光が所望の軌跡を描くための制御方法を示す図である。It is a figure which shows the control method for a laser beam to draw a desired locus | trajectory. (a)、(b)は、比較例に係る切断処理の説明図である。(A), (b) is explanatory drawing of the cutting process which concerns on a comparative example. (a)、(b)は、本実施形態に係る切断処理の説明図である。(A), (b) is explanatory drawing of the cutting process which concerns on this embodiment.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。尚、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the dimensions and ratios of the respective constituent elements are appropriately changed in order to make the drawings easy to see. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
(光学表示デバイスの生産システム)
 以下、本発明の一実施形態に係る光学表示デバイスの生産システムであるフィルム貼合システム1について図面を参照して説明する。本実施形態に係るフィルム貼合システム1は、切断装置が、後述するレーザー光照射装置(図8参照)によって構成されている。
(Optical display device production system)
Hereinafter, the film bonding system 1 which is a production system of the optical display device which concerns on one Embodiment of this invention is demonstrated with reference to drawings. As for the film bonding system 1 which concerns on this embodiment, the cutting device is comprised by the laser beam irradiation apparatus (refer FIG. 8) mentioned later.
 図1は、本実施形態のフィルム貼合システム1の概略構成を示す図である。
 フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムといったフィルム状の光学部材を貼合するシステムである。
Drawing 1 is a figure showing the schematic structure of film pasting system 1 of this embodiment.
The film bonding system 1 is a system for bonding a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、光学表示部品である液晶パネルの搬送方向をX方向としており、液晶パネルの面内においてX方向に直交する方向(液晶パネルの幅方向)をY方向、X方向及びY方向に直交する方向をZ方向としている。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the transport direction of the liquid crystal panel, which is an optical display component, is the X direction, and the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction. The direction orthogonal to the Z direction is taken as the Z direction.
 図1に示すように、本実施形態のフィルム貼合システム1は、液晶パネルPの製造ラインの一工程として設けられている。フィルム貼合システム1の各部は、電子制御装置としての制御装置40により統括制御される。 As shown in FIG. 1, the film bonding system 1 of this embodiment is provided as one process of the production line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by a control device 40 as an electronic control device.
 図2は、液晶パネルPを液晶パネルPの液晶層P3の厚さ方向から見た平面図である。液晶パネルPは、平面視で長方形状を有する第1基板P1(素子基板)と、第1基板P1に対向して配置される比較的小形の長方形状を有する第2基板P2(対向基板)と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1基板P1の外周形状に沿う長方形状を有し、平面視で液晶層P3の外周の内側に収まる領域である表示領域P4を有する。 FIG. 2 is a plan view of the liquid crystal panel P viewed from the thickness direction of the liquid crystal layer P3 of the liquid crystal panel P. The liquid crystal panel P includes a first substrate P1 (element substrate) having a rectangular shape in plan view, and a second substrate P2 (counter substrate) having a relatively small rectangular shape disposed to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2. The liquid crystal panel P has a rectangular shape that follows the outer peripheral shape of the first substrate P1 in a plan view, and has a display region P4 that is an area that fits inside the outer periphery of the liquid crystal layer P3 in a plan view.
 図3は図2のA-A断面図である。液晶パネルPの表面及び液晶パネルPの裏面には、長尺帯状の第1光学部材シートF1及び長尺帯状の第2光学部材シートF2(図1参照、以下、光学部材シートFXと総称することがある。)からそれぞれ切り出した第1光学部材F11及び第2光学部材F12(以下、光学部材F1Xと総称することがある。)が適宜貼合される。本実施形態では、液晶パネルPのバックライト側の面及び液晶パネルPの表示面側の面には、偏光フィルムとしての第1光学部材F11及び偏光フィルムとしての第2光学部材F12がそれぞれ貼合される。 FIG. 3 is a cross-sectional view taken along the line AA in FIG. On the front surface of the liquid crystal panel P and the back surface of the liquid crystal panel P, a long belt-shaped first optical member sheet F1 and a long belt-shaped second optical member sheet F2 (refer to FIG. 1, hereinafter collectively referred to as an optical member sheet FX). The first optical member F11 and the second optical member F12 (hereinafter sometimes collectively referred to as the optical member F1X) cut out from the above are appropriately bonded together. In the present embodiment, the first optical member F11 as the polarizing film and the second optical member F12 as the polarizing film are bonded to the backlight side surface of the liquid crystal panel P and the display surface side surface of the liquid crystal panel P, respectively. Is done.
 表示領域P4の外側には、液晶パネルPの第1基板P1及び第2基板P2を接合するシール剤等を配置する所定幅の額縁部Gが設けられている。 Outside the display area P4, a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 of the liquid crystal panel P is provided.
 第1光学部材F11及び第2光学部材F12は、後述する第1シート片F1m及び第2シート片F2m(以下、シート片FXmと総称することがある。)から、それぞれ第1シート片F1mの貼合面の外側の余剰部分及び第2シート片F2mの貼合面の外側の余剰部分を切り離すことにより形成される。貼合面については後述する。 The first optical member F11 and the second optical member F12 are attached to the first sheet piece F1m from a first sheet piece F1m and a second sheet piece F2m (hereinafter sometimes collectively referred to as a sheet piece FXm), which will be described later. It is formed by cutting off the surplus portion outside the mating surface and the surplus portion outside the bonding surface of the second sheet piece F2m. The bonding surface will be described later.
 図4は液晶パネルPに貼合される光学部材シートFXの部分断面図である。光学部材シートFXは、フィルム状の光学部材本体F1aと、光学部材本体F1aの一方の面(図4では上面)に設けられた粘着層F2aと、粘着層F2aを介して光学部材本体F1aの一方の面に分離可能に積層されたセパレータF3aと、光学部材本体F1aの他方の面(図4では下面)に積層された表面保護フィルムF4aとを有する。光学部材本体F1aは偏光板として機能し、液晶パネルPの表示領域P4の全域と表示領域P4の周辺領域とにわたって貼合される。尚、図示都合上、図4の各層のハッチングは省略する。 FIG. 4 is a partial cross-sectional view of the optical member sheet FX bonded to the liquid crystal panel P. The optical member sheet FX includes a film-shaped optical member main body F1a, an adhesive layer F2a provided on one surface (the upper surface in FIG. 4) of the optical member main body F1a, and one of the optical member main bodies F1a via the adhesive layer F2a. The separator F3a is detachably stacked on the other surface, and the surface protection film F4a is stacked on the other surface (lower surface in FIG. 4) of the optical member body F1a. The optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. For convenience of illustration, hatching of each layer in FIG. 4 is omitted.
 光学部材本体F1aは、光学部材本体F1aの一方の面に粘着層F2aを残しつつセパレータF3aを分離させた状態で、液晶パネルPに粘着層F2aを介して貼合される。以下、光学部材シートFXからセパレータF3aを除いた部分を貼合シートF5という。 The optical member main body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface of the optical member main body F1a. Hereinafter, the part remove | excluding the separator F3a from the optical member sheet | seat FX is called the bonding sheet | seat F5.
 セパレータF3aは、粘着層F2aから分離されるまでの間に粘着層F2a及び光学部材本体F1aを保護する。表面保護フィルムF4aは、光学部材本体F1aと共に液晶パネルPに貼合される。表面保護フィルムF4aは、光学部材本体F1aに対して液晶パネルPと反対側に配置されて光学部材本体F1aを保護する。表面保護フィルムF4aは、所定のタイミングで光学部材本体F1aから分離される。尚、光学部材シートFXが表面保護フィルムF4aを含まない構成であってもよい。また、表面保護フィルムF4aが光学部材本体F1aから分離されない構成であってもよい。 The separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a. The surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a. The surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a. The surface protective film F4a is separated from the optical member main body F1a at a predetermined timing. The optical member sheet FX may not include the surface protective film F4a. Moreover, the structure which is not isolate | separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
 光学部材本体F1aは、シート状の偏光子F6と、偏光子F6の一方の面に接着剤等で接合される第1フィルムF7と、偏光子F6の他方の面に接着剤等で接合される第2フィルムF8とを有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。 The optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8. The first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
 光学部材本体F1aは、一層の光学層からなる単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等でもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理やアンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材本体F1aは、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータF3aを光学部材本体F1aの一方の面に粘着層F2aを介して貼り合わせてもよい。 The optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other. In addition to the polarizer F6, the optical layer may be a retardation film, a brightness enhancement film, or the like. At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment. The optical member body F1a may not include at least one of the first film F7 and the second film F8. For example, when the first film F7 is omitted, the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
 次に、本実施形態のフィルム貼合システム1について、詳しく説明する。
 図1に示すように、本実施形態のフィルム貼合システム1は、図中右側の液晶パネルPの搬送方向上流側(+X方向側)から図中左側の液晶パネルPの搬送方向下流側(-X方向側)に至り、液晶パネルPを水平状態で搬送する駆動式のローラコンベア5を備えている。
Next, the film bonding system 1 of this embodiment is demonstrated in detail.
As shown in FIG. 1, the film laminating system 1 according to the present embodiment includes a liquid crystal panel P on the right side in the transport direction (+ X direction side) from the upstream side in the transport direction (+ X direction side) of the liquid crystal panel P on the left side in the figure (− X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
 ローラコンベア5は、後述する反転装置15を境に、上流側コンベア6と下流側コンベア7とに分かれる。上流側コンベア6では、液晶パネルPは表示領域P4の短辺を搬送方向に沿うようにして搬送される。一方、下流側コンベア7では、液晶パネルPは表示領域P4の長辺を搬送方向に沿うようにして搬送される。液晶パネルPの表面及び裏面に対して、帯状の光学部材シートFXから所定長さに切り出された貼合シートF5のシート片FXm(光学部材F1Xに相当)が貼合される。 The roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary. On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P <b> 4 is along the transport direction. On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P <b> 4 along the transport direction. A sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical member sheet FX is bonded to the front and back surfaces of the liquid crystal panel P.
 上流側コンベア6は、後述する第1吸着装置11では、下流側に独立したフリーローラコンベア24を備えている。一方、下流側コンベア7は、後述する第2吸着装置20では、下流側に独立したフリーローラコンベア24を備えている。 The upstream conveyor 6 includes an independent free roller conveyor 24 on the downstream side in the first suction device 11 described later. On the other hand, the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
 本実施形態のフィルム貼合システム1は、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2吸着装置20、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32、及び制御装置40を備えている。 The film bonding system 1 of this embodiment is the 1st adsorption | suction apparatus 11, the 1st dust collector 12, the 1st bonding apparatus 13, the 1st detection apparatus 41, the 1st cutting device 31, the inversion apparatus 15, and 2nd adsorption | suction. The apparatus 20, the second dust collecting device 16, the second bonding device 17, the second detection device 42, the second cutting device 32, and the control device 40 are provided.
 第1吸着装置11は、液晶パネルPを吸着して上流側コンベア6に搬送すると共に液晶パネルPのアライメント(位置決め)を行う。第1吸着装置11は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 The first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P. The first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、上流側コンベア6により下流側のストッパSに当接した液晶パネルPを上下方向及び水平方向に移動可能に保持すると共に液晶パネルPのアライメントを行う。パネル保持部11aは、ストッパSに当接した液晶パネルPの上面を真空吸着によって吸着保持する。パネル保持部11aは、液晶パネルPを吸着保持した状態でレールR上を移動して液晶パネルPを搬送する。パネル保持部11aは、搬送が終わると吸着保持を解除して液晶パネルPをフリーローラコンベア24に受け渡す。 The panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P. The panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction. The panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P. When the conveyance is finished, the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した液晶パネルPをパネル保持部11aが保持し、上昇した状態で液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御装置40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する液晶パネルPのアライメントが行われる。つまり、液晶パネルPは、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び液晶パネルPの垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。
 パネル保持部11aによりレールR上を搬送された液晶パネルPは吸着パッド26に吸着された状態でシート片FXmと共に先端部を挟圧ロール23に挟まれ支持される。
In the alignment camera 11b, the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state. Imaging data from the alignment camera 11b is transmitted to the control device 40, and based on this imaging data, the panel holding unit 11a is operated to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination. In other words, the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P. .
The liquid crystal panel P conveyed on the rail R by the panel holding part 11a is supported by being sandwiched by the pressure roll 23 with the sheet piece FXm in a state of being sucked by the suction pad 26.
 第1集塵装置12は、第1貼合装置13の貼合位置である挟圧ロール23の、液晶パネルPの搬送上流側に設けられている。第1集塵装置12は、貼合位置に導入される前の液晶パネルPの周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13. FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
 第1貼合装置13は、第1吸着装置11よりもパネル搬送下流側に設けられている。第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5(第1シート片F1mに相当)の貼合を行う。 The 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption | suction apparatus 11. FIG. The 1st bonding apparatus 13 bonds the bonding sheet | seat F5 (equivalent to 1st sheet piece F1m) cut into the predetermined size with respect to the lower surface of liquid crystal panel P introduced into the bonding position.
 第1貼合装置13は、搬送装置22と、挟圧ロール23とを備えている。 The 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23. FIG.
 搬送装置22は、光学部材シートFXが巻回された原反ロールR1から光学部材シートFXを巻き出しつつ光学部材シートFXの長手方向に沿って光学部材シートFXを搬送する。搬送装置22は、セパレータF3aをキャリアとして貼合シートF5を搬送する。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、切断装置22cと、ナイフエッジ22dと、巻き取り部22eと、を有する。 The conveying device 22 conveys the optical member sheet FX along the longitudinal direction of the optical member sheet FX while unwinding the optical member sheet FX from the original roll R1 around which the optical member sheet FX is wound. The conveying apparatus 22 conveys the bonding sheet | seat F5 by using separator F3a as a carrier. The conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
 ロール保持部22aは、帯状の光学部材シートFXを巻回した原反ロールR1を保持すると共に光学部材シートFXの長手方向に沿って光学部材シートFXを繰り出す。
 複数のガイドローラ22bは、原反ロールR1から巻き出した光学部材シートFXを所定の搬送経路に沿って案内するように光学部材シートFXを巻きかける。
 切断装置22cは、搬送経路上の光学部材シートFXにハーフカットを施す。
 ナイフエッジ22dは、ハーフカットを施した光学部材シートFXを鋭角に巻きかけてセパレータF3aから貼合シートF5を分離させつつ貼合シートF5を貼合位置に供給する。
 巻き取り部22eは、ナイフエッジ22dを経て単独となったセパレータF3aを巻き取るセパレータロールR2を保持する。
The roll holding unit 22a holds the original roll R1 around which the belt-shaped optical member sheet FX is wound and feeds the optical member sheet FX along the longitudinal direction of the optical member sheet FX.
The plurality of guide rollers 22b wind the optical member sheet FX so as to guide the optical member sheet FX unwound from the original fabric roll R1 along a predetermined conveyance path.
The cutting device 22c performs a half cut on the optical member sheet FX on the transport path.
The knife edge 22d feeds the bonding sheet F5 to the bonding position while winding the optical member sheet FX subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3a.
The winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
 搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが光学部材シートFXの搬送方向へ光学部材シートFXを繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータF3aを巻き取る。以下、搬送装置22における光学部材シートFX(セパレータF3a)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。 The roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example. Thereby, the winding part 22e winds up the separator F3a which passed through the knife edge 22d, while the roll holding part 22a feeds the optical member sheet FX in the transport direction of the optical member sheet FX. Hereinafter, the upstream side in the transport direction of the optical member sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side, and the downstream side in the transport direction is referred to as a sheet transport downstream side.
 各ガイドローラ22bは、搬送中の光学部材シートFXの進行方向を搬送経路に沿って変化させると共に、複数のガイドローラ22bの少なくとも一部が搬送中の光学部材シートFXのテンションを調整するように可動する。 Each guide roller 22b changes the traveling direction of the optical member sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b adjusts the tension of the optical member sheet FX being conveyed. Move.
 尚、ロール保持部22aと切断装置22cとの間には、図示しないダンサローラが配置されていてもよい。ダンサローラは、光学部材シートFXが切断装置22cで切断される間に、ロール保持部22aから搬送される光学部材シートFXの繰り出し量を吸収する。 A dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c. The dancer roller absorbs the feeding amount of the optical member sheet FX conveyed from the roll holding unit 22a while the optical member sheet FX is cut by the cutting device 22c.
 図5は、本実施形態の切断装置22cの動作を示す図である。
 図5に示すように、切断装置22cは、光学部材シートFXが所定長さ繰り出された際、光学部材シートFXの長手方向と直交する幅方向の全幅にわたって、光学部材シートFXの厚さ方向の一部を切断するハーフカットを行う。本実施形態の切断装置22cは、光学部材シートFXに対してセパレータF3aとは反対側から光学部材シートFXに向かって進退可能に設けられている。
FIG. 5 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
As shown in FIG. 5, when the optical member sheet FX is fed out by a predetermined length, the cutting device 22c extends in the thickness direction of the optical member sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical member sheet FX. Perform half cut to cut a part. The cutting device 22c of the present embodiment is provided so as to be able to advance and retreat toward the optical member sheet FX from the side opposite to the separator F3a with respect to the optical member sheet FX.
 切断装置22cは、光学部材シートFXの搬送中に働くテンションによって光学部材シートFX(セパレータF3a)が破断しないように(所定の厚さがセパレータF3aに残るように)、切断刃の進退位置を調整し、粘着層F2aとセパレータF3aとの界面の近傍までハーフカットを施す。尚、切断刃に代わるレーザー装置を用いてもよい。 The cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical member sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical member sheet FX (so that a predetermined thickness remains in the separator F3a). Then, half-cut is performed to the vicinity of the interface between the adhesive layer F2a and the separator F3a. In addition, you may use the laser apparatus replaced with a cutting blade.
 ハーフカット後の光学部材シートFXには、光学部材シートFXの厚さ方向で光学部材本体F1a及び表面保護フィルムF4aが切断されることにより、光学部材シートFXの幅方向の全幅にわたる切込線CL1,CL2が形成される。切込線CL1,CL2は、帯状の光学部材シートFXの長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切込線CL1,CL2は光学部材シートFXの長手方向で等間隔に形成される。光学部材シートFXは、複数の切込線CL1,CL2によって長手方向で複数の区画に分けられる。光学部材シートFXにおける長手方向で隣り合う一対の切込線CL1,CL2に挟まれる区画は、それぞれ貼合シートF5における一つのシート片FXmとされる。シート片FXmは、液晶パネルPの外側にはみ出るサイズの光学部材シートFXのシート片である。 The optical member sheet FX after half-cutting is cut along the entire width in the width direction of the optical member sheet FX by cutting the optical member body F1a and the surface protection film F4a in the thickness direction of the optical member sheet FX. , CL2 are formed. The cut lines CL1 and CL2 are formed so as to be aligned in the longitudinal direction of the belt-shaped optical member sheet FX. For example, in the case of the bonding process which conveys the liquid crystal panel P of the same size, the plurality of cut lines CL1 and CL2 are formed at equal intervals in the longitudinal direction of the optical member sheet FX. The optical member sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines CL1, CL2. A section sandwiched between a pair of cut lines CL1 and CL2 adjacent in the longitudinal direction in the optical member sheet FX is a sheet piece FXm in the bonding sheet F5. The sheet piece FXm is a sheet piece of the optical member sheet FX having a size that protrudes outside the liquid crystal panel P.
 図1に戻り、ナイフエッジ22dは、上流側コンベア6の下方に配置されて光学部材シートFXの幅方向で少なくともその全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の光学部材シートFXのセパレータF3a側に摺接するようにこれを巻きかける。 1, the knife edge 22d is disposed below the upstream conveyor 6 and extends over at least the entire width in the width direction of the optical member sheet FX. The knife edge 22d is wound so as to be in sliding contact with the separator F3a side of the optical member sheet FX after the half cut.
 ナイフエッジ22dは、光学部材シートFXの幅方向(上流側コンベア6の幅方向)から見て伏せた姿勢に(すなわち、液晶パネルPの搬送方向に対して所定の角度を有するように)配置される第1面と、第1面の上方で光学部材シートFXの幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部とを有する。 The knife edge 22d is arranged in an inclined position as viewed from the width direction of the optical member sheet FX (the width direction of the upstream conveyor 6) (that is, to have a predetermined angle with respect to the transport direction of the liquid crystal panel P). A first surface above the first surface, a second surface disposed at an acute angle with respect to the first surface when viewed from the width direction of the optical member sheet FX, and a tip portion where the first surface and the second surface intersect Have
 第1貼合装置13において、ナイフエッジ22dは、ナイフエッジ22dの先端部に第1光学部材シートF1を鋭角に巻きかける。第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータF3aから貼合シートF5のシート片(第1シート片F1m)を分離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送下流側に近接して配置される。ナイフエッジ22dによりセパレータF3aから分離された第1シート片F1mは、第1吸着装置11に吸着された状態の液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。第1シート片F1mは、液晶パネルPの外側にはみ出るサイズの第1光学部材シートF1のシート片である。 In the 1st bonding apparatus 13, the knife edge 22d winds the 1st optical member sheet | seat F1 at an acute angle around the front-end | tip part of the knife edge 22d. The first optical member sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d. The tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23. The first sheet piece F1m separated from the separator F3a by the knife edge 22d overlaps the lower surface of the liquid crystal panel P in a state of being adsorbed by the first adsorbing device 11, and between the pair of bonding rollers 23a of the pinching roll 23. be introduced. The first sheet piece F1m is a sheet piece of the first optical member sheet F1 having a size that protrudes outside the liquid crystal panel P.
 一方、ナイフエッジ22dにより、貼合シートF5と分離されたセパレータF3aは巻き取り部22eに向かう。巻き取り部22eは、貼合シートF5と分離されたセパレータF3aを巻き取り、回収する。 On the other hand, the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d. The winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
 挟圧ロール23は、搬送装置22が第1光学部材シートF1から分離させた第1シート片F1mを上流側コンベア6により搬送される液晶パネルPの下面に貼合する。挟圧ロール23は、ライン上を搬送される液晶パネルPの下面に第1シート片F1mを貼合して後述する積層体を形成する。ここで、挟圧ロール23は、貼合装置に相当する。 The pinching roll 23 bonds the first sheet piece F1m separated from the first optical member sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6. The pinching roll 23 bonds the first sheet piece F1m to the lower surface of the liquid crystal panel P conveyed on the line to form a laminate described later. Here, the pinching roll 23 corresponds to a bonding apparatus.
 挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23a,23aを有する(上部の貼合ローラ23aは上下に移動可能である)。一対の貼合ローラ23a,23a間には所定の間隙が形成され、この間隙内が第1貼合装置13の貼合位置となる。 The pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a is movable up and down). A predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13.
 間隙内には、液晶パネルP及び第1シート片F1mが重なり合って導入される。液晶パネルP及び第1シート片F1mが、一対の貼合ローラ23aに挟圧されつつ上流側コンベア6のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPのバックライト側の面に第1シート片F1mが貼合されることにより、第1光学部材貼合体PA1が形成される。ここで、第1光学部材貼合体PA1は、積層体に相当する。 In the gap, the liquid crystal panel P and the first sheet piece F1m are overlapped and introduced. Liquid crystal panel P and the 1st sheet piece F1m are sent out to the panel conveyance downstream of the upstream conveyor 6, being pinched by a pair of bonding roller 23a. In this embodiment, 1st optical member bonding body PA1 is formed by the 1st sheet piece F1m being bonded by the pinching roll 23 to the surface at the side of the backlight of liquid crystal panel P. As shown in FIG. Here, 1st optical member bonding body PA1 is corresponded to a laminated body.
 第1検出装置41は、第1貼合装置13よりもパネル搬送下流側に設けられている。第1検出装置41は、液晶パネルPと第1シート片F1mとの貼合面(以下、第1貼合面と称することがある。)の端縁を検出する。 The 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13. FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth a 1st bonding surface) of liquid crystal panel P and the 1st sheet piece F1m.
 図6は、第1貼合面SA1の端縁EGの検出工程を示す平面図である。
 第1検出装置41は、例えば図6に示すように、上流側コンベア6の搬送経路上に設置された検査領域CAにおいて第1貼合面SA1の端縁EGを検出する。検査領域CAは、矩形形状を有する第1貼合面SA1を含む領域である。端縁EGは、ライン上を搬送される液晶パネルPごとに検出される。第1検出装置41によって検出された端縁EGのデータは、図示しない記憶部に記憶される。尚、第1検出装置41の構成については後述する(図21参照)。
FIG. 6 is a plan view showing a process for detecting the edge EG of the first bonding surface SA1.
For example, as illustrated in FIG. 6, the first detection device 41 detects the edge EG of the first bonding surface SA <b> 1 in the inspection area CA installed on the transport path of the upstream conveyor 6. Inspection area | region CA is an area | region containing 1st bonding surface SA1 which has a rectangular shape. The edge EG is detected for each liquid crystal panel P conveyed on the line. The data of the edge EG detected by the first detection device 41 is stored in a storage unit (not shown). The configuration of the first detection device 41 will be described later (see FIG. 21).
 第1シート片F1mのカット位置は、第1貼合面SA1の端縁EGの検出結果に基づいて調整される。制御装置40(図1参照)は、記憶部に記憶された第1貼合面SA1の端縁EGのデータを取得し、第1光学部材F11が液晶パネルPの外側(第1貼合面SA1の外側)にはみ出さない大きさとなるように第1シート片F1mのカット位置を決定する。第1切断装置31は、制御装置40によって決定されたカット位置において第1シート片F1mを切断する。 The cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge EG of the first bonding surface SA1. The control apparatus 40 (refer FIG. 1) acquires the data of the edge EG of 1st bonding surface SA1 memorize | stored in the memory | storage part, and the 1st optical member F11 is outside the liquid crystal panel P (1st bonding surface SA1). The cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side. The first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control device 40.
 図1に戻り、第1切断装置31は、第1検出装置41よりもパネル搬送下流側に設けられている。第1切断装置31は、端縁EGに沿ってレーザーカットを行うことにより、第1光学部材貼合体PA1から第1貼合面SA1の外側にはみ出た部分の第1シート片F1m(第1シート片F1mの余剰部分)を切り離し、第1貼合面SA1に対応する大きさの光学部材(第1光学部材F11)を形成する。ここで、第1切断装置31は、切断装置に相当する。 1, the first cutting device 31 is provided on the downstream side of the panel transport with respect to the first detection device 41. The 1st cutting device 31 performs the laser cut along the edge EG, and is the 1st sheet piece F1m (1st sheet | seat) of the part which protruded from the 1st optical member bonding body PA1 to the outer side of 1st bonding surface SA1. The surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed. Here, the first cutting device 31 corresponds to a cutting device.
 ここで、「第1貼合面SA1に対応する大きさ」とは、第1基板P1の外周形状の大きさを示す。ただし、表示領域P4の大きさ以上、液晶パネルPの外周形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を含む。本実施形態では、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分をレーザーカットし、機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分をレーザーカットしている。
 例えば、第一貼合面SA1に対応する部分がTFT基板の貼合面の場合、機能部分に相当する一辺では機能部分を除くよう液晶パネルPの外周縁から表示領域P4側に所定量ずれた位置でカットされる。
 尚、液晶パネルPにおける機能部分を含む領域(例えば液晶パネルP全体)にシート片を貼合することに限らない。例えば、予め液晶パネルPにおける機能部分を避けた領域にシート片を貼合し、その後、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺において液晶パネルPの外周縁に沿って余剰部分をレーザーカットしてもよい。
Here, the “size corresponding to the first bonding surface SA1” indicates the size of the outer peripheral shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer peripheral shape of the liquid crystal panel P and that avoids a functional part such as an electrical component mounting portion. In the present embodiment, the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. The surplus portion is laser-cut at a position that appropriately enters the display area P4 side from the outer peripheral edge of.
For example, when the part corresponding to 1st bonding surface SA1 is the bonding surface of a TFT substrate, it shifted | deviated predetermined amount from the outer periphery of liquid crystal panel P to the display area P4 side so that a functional part may be excluded in one side corresponding to a functional part. Cut at position.
In addition, it is not restricted to bonding a sheet piece to the area | region (for example, the whole liquid crystal panel P) including the functional part in liquid crystal panel P. For example, a sheet piece is pasted in a region that avoids the functional part in the liquid crystal panel P in advance, and then surplus along the outer peripheral edge of the liquid crystal panel P on the three sides excluding the functional part in the rectangular liquid crystal panel P in plan view The part may be laser cut.
 第1切断装置31により第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されてなる第2光学部材貼合体PA2が形成される。第1シート片F1mから切り離された余剰部分は、不図示の剥離装置によって液晶パネルPから剥離され回収される。 The 1st optical member F11 is bonded to the surface by the side of the backlight of liquid crystal panel P by cutting off the surplus part of the 1st sheet piece F1m from the 1st optical member bonding body PA1 by the 1st cutting device 31. 2 optical member bonding body PA2 is formed. The surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
 反転装置15は、液晶パネルPの表示面側を上面にした第2光学部材貼合体PA2を表裏反転させて液晶パネルPのバックライト側を上面にすると共に、第2貼合装置17に対する液晶パネルPのアライメントを行う。 The reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
 反転装置15は、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。反転装置15には、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられている。 The reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11. The reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
 反転装置15は、制御装置40に記憶された光学軸方向の検査データ及びアライメントカメラ15cの撮像データに基づき、第2貼合装置17に対する第2光学部材貼合体PA2の部品幅方向での位置決め及び回転方向での位置決めを行う。この状態で、第2光学部材貼合体PA2が第2貼合装置17の貼合位置に導入される。 The reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control device 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce | transduced into the bonding position of the 2nd bonding apparatus 17. FIG.
 第2吸着装置20は、第1吸着装置11と同様の構成を備えているため同一部分に同一符号を付して説明する。第2吸着装置20は、第2光学部材貼合体PA2を吸着して下流側コンベア7に搬送すると共に第2光学部材貼合体PA2のアライメント(位置決め)を行う。第2吸着装置20は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 Since the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described. The 2nd adsorption | suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2. The second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、下流側コンベア7により下流側のストッパSに当接した第2光学部材貼合体PA2を上下方向及び水平方向に移動可能に保持すると共に第2光学部材貼合体PA2のアライメントを行う。パネル保持部11aは、ストッパSに当接した第2光学部材貼合体PA2の上面を真空吸着によって吸着保持する。パネル保持部11aは、第2光学部材貼合体PA2を吸着保持した状態でレールR上を移動して第2光学部材貼合体PA2を搬送する。パネル保持部11aは、搬送が終わると吸着保持を解除して第2光学部材貼合体PA2をフリーローラコンベア24に受け渡す。 The panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2. Do. The panel holding | maintenance part 11a adsorbs and hold | maintains the upper surface of 2nd optical member bonding body PA2 contact | abutted to the stopper S by vacuum suction. The panel holding | maintenance part 11a moves on the rail R in the state which adsorbed and hold | maintained 2nd optical member bonding body PA2, and conveys 2nd optical member bonding body PA2. When the conveyance is finished, the panel holding unit 11a releases the suction holding and transfers the second optical member bonding body PA2 to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した第2光学部材貼合体PA2をパネル保持部11aが保持し、上昇した状態で第2光学部材貼合体PA2のアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御装置40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する第2光学部材貼合体PA2のアライメントが行われる。つまり、第2光学部材貼合体PA2は、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び第2光学部材貼合体PA2の垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。 The alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state. Imaging data from the alignment camera 11b is transmitted to the control device 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 at the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
 第2集塵装置16は、第2貼合装置17の貼合位置である挟圧ロール23の、液晶パネルPの搬送方向上流側に配置されている。第2集塵装置16は、貼合位置に導入される前の第2光学部材貼合体PA2の周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 2nd dust collector 16 is arrange | positioned in the conveyance direction upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 2nd bonding apparatus 17. FIG. The second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
 第2貼合装置17は、第2集塵装置16よりもパネル搬送下流側に設けられている。第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットした貼合シートF5(第2シート片F2mに相当)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。 The 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16. FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position. Do. The 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13. FIG.
 挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、第2光学部材貼合体PA2及び第2シート片F2mが重なり合って導入される。第2シート片F2mは、液晶パネルPの表示領域P4よりも大きいサイズの第2光学部材シートF2のシート片である。 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce | transduced in the clearance gap (bonding position of the 2nd bonding apparatus 17) between a pair of bonding rollers 23a of the pinching roll 23. FIG. The second sheet piece F2m is a sheet piece of the second optical member sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
 第2光学部材貼合体PA2及び第2シート片F2mが、一対の貼合ローラ23aに挟圧されつつ下流側コンベア7のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPの表示面側の面(第2光学部材貼合体PA2の第1光学部材F11が貼合された面とは反対側の面)に第2シート片F2mが貼合されることにより、第3光学部材貼合体PA3が形成される。ここで、第3光学部材貼合体PA3は、積層体に相当する。 2nd optical member bonding body PA2 and 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by a pair of bonding roller 23a. In this embodiment, it is a 2nd sheet | seat on the surface (surface on the opposite side to the surface where the 1st optical member F11 of 2nd optical member bonding body PA2 was bonded) of the liquid crystal panel P by the pinching roll 23. By bonding the piece F2m, the third optical member bonding body PA3 is formed. Here, 3rd optical member bonding body PA3 is corresponded to a laminated body.
 第2検出装置42は、第2貼合装置17よりもパネル搬送下流側に設けられている。第2検出装置42は、液晶パネルPと第2シート片F2mとの貼合面(以下、第2貼合面と称する)の端縁を検出する。第2検出装置42によって検出された端縁のデータは、図示しない記憶部に記憶される。 The 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17. FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m. The edge data detected by the second detection device 42 is stored in a storage unit (not shown).
 第2シート片F2mのカット位置は、第2貼合面の端縁の検出結果に基づいて調整される。制御装置40(図1参照)は、記憶部に記憶された第2貼合面の端縁のデータを取得し、第2光学部材F12が液晶パネルPの外側(第2貼合面の外側)にはみ出さない大きさとなるように第2シート片F2mのカット位置を決定する。第2切断装置32は、制御装置40によって決定されたカット位置において第2シート片F2mを切断する。ここで、第2切断装置32は、切断装置に相当する。 The cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface. The control apparatus 40 (refer FIG. 1) acquires the data of the edge of the 2nd bonding surface memorize | stored in the memory | storage part, and the 2nd optical member F12 is the outer side of the liquid crystal panel P (outside of a 2nd bonding surface). The cutting position of the second sheet piece F2m is determined so as not to protrude. The second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control device 40. Here, the second cutting device 32 corresponds to a cutting device.
 第2切断装置32は、第2検出装置42よりもパネル搬送下流側に設けられている。第2切断装置32は、第2貼合面の端縁に沿ってレーザーカットを行うことにより、第3光学部材貼合体PA3から第2貼合面の外側にはみ出た部分の第2シート片F2m(第2シート片F2mの余剰部分)を切り離し、第2貼合面に対応する大きさの光学部材(第2光学部材F12)を形成する。 The second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42. The 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude | size corresponding to a 2nd bonding surface is formed.
 ここで、「第2貼合面に対応する大きさ」とは、液晶パネルPの表示領域P4の大きさ以上、液晶パネルPの外周形状(平面視における輪郭形状)の大きさ以下の大きさを指す。
 本実施形態では、平面視矩形状の液晶パネルPにおける四辺において、液晶パネルPの外周縁に沿って余剰部分をレーザーカットしている。例えば、第2貼合面に対応する部分がCF基板の貼合面の場合、上記の機能部分に相当する部分がないため、液晶パネルPの四辺において液晶パネルPの外周縁に沿ってカットされる。
Here, the “size corresponding to the second bonding surface” is not less than the size of the display area P4 of the liquid crystal panel P and not more than the size of the outer peripheral shape (contour shape in plan view) of the liquid crystal panel P. Point to.
In the present embodiment, the surplus portions are laser-cut along the outer peripheral edge of the liquid crystal panel P on the four sides of the liquid crystal panel P having a rectangular shape in plan view. For example, when the portion corresponding to the second bonding surface is the bonding surface of the CF substrate, since there is no portion corresponding to the above-described functional portion, it is cut along the outer peripheral edge of the liquid crystal panel P on the four sides of the liquid crystal panel P. The
 第2切断装置32により第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの表示面側の面に第2光学部材F12が貼合され、かつ、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されてなる第4光学部材貼合体PA4(光学表示デバイス)が形成される。第2シート片F2mから切り離された余剰部分は、不図示の剥離装置によって液晶パネルPから剥離され回収される。 The second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and The 4th optical member bonding body PA4 (optical display device) by which the 1st optical member F11 is bonded to the surface by the side of the backlight of liquid crystal panel P is formed. The surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
 第1切断装置31および第2切断装置32は、レーザー光照射装置100(図8参照)によって構成されている。第1切断装置31および第2切断装置32は、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。 The 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus 100 (refer FIG. 8). The 1st cutting device 31 and the 2nd cutting device 32 cut | disconnect endlessly the sheet piece FXm bonded by liquid crystal panel P along the outer periphery of the bonding surface.
 第2貼合装置17よりもパネル搬送下流側には、不図示の貼合検査装置が設けられている。貼合検査装置は、フィルムが貼合されたワーク(液晶パネルP)の、不図示の検査装置による検査(光学部材F1Xの位置が適正か否か(位置ズレが公差範囲内にあるか否か)等の検査)が行われる。液晶パネルPに対する光学部材F1Xの位置が適正ではないと判定されたワークは、不図示の払い出し手段によりシステム外に排出される。 A bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17. The bonding inspection device is an inspection (not shown whether the position of the optical member F1X is within the tolerance range) by the inspection device (not shown) of the workpiece (liquid crystal panel P) on which the film is bonded. ) Etc.) is performed. The work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
 本実施形態においてフィルム貼合システム1の各部を統括制御する電子制御装置としての制御装置40は、コンピュータシステムを含んで構成されている。このコンピュータシステムは、CPU等の演算処理部と、メモリやハードディスク等の記憶部とを備える。本実施形態の制御装置40は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御装置40には、入力信号を入力可能な入力装置が接続されていてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置等を含む。制御装置40は、フィルム貼合システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。 In the present embodiment, the control device 40 as an electronic control device that performs overall control of each part of the film bonding system 1 includes a computer system. This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk. The control device 40 of the present embodiment includes an interface capable of executing communication with a device external to the computer system. An input device that can input an input signal may be connected to the control device 40. The input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system. The control device 40 may include a display device such as a liquid crystal display that indicates the operation status of each part of the film bonding system 1, or may be connected to the display device.
 制御装置40の記憶部には、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされている。制御装置40の記憶部には、演算処理部にフィルム貼合システム1の各部を制御させることによって、フィルム貼合システム1の各部に光学部材シートFを精度よく搬送させるための処理を実行させるプログラムが記録されている。記憶部に記録されているプログラムを含む各種情報は、制御装置40の演算処理部が読み取り可能である。制御装置40は、フィルム貼合システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよい。 An operating system (OS) that controls the computer system is installed in the storage unit of the control device 40. A program that causes the storage unit of the control device 40 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical member sheet F by causing the arithmetic processing unit to control each unit of the film bonding system 1. Is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control device 40. The control device 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each part of the film bonding system 1.
 記憶部は、RAM(Random Access Memory)、ROM(Read Only Memory)などといった半導体メモリや、ハードディスク、CD-ROM読取り装置、ディスク型記憶媒体などといった外部記憶装置などを含む。記憶部は、機能的には、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2吸着装置20、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域、その他各種の記憶領域が設定される。 The storage unit includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium. The storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
 以下、図7A、7Bを参照して、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)の決定方法の一例を説明する。 Hereinafter, an example of a method for determining the bonding position (relative bonding position) of the sheet piece FXm with respect to the liquid crystal panel P will be described with reference to FIGS. 7A and 7B.
 まず、図7Aに示すように、光学部材シートFXの幅方向に複数の検査ポイントCPを設定し、各検査ポイントCPにおいて光学部材シートFXの光学軸の方向を検出する。光学軸を検出するタイミングは、原反ロールR1の製造時でもよく、原反ロールR1から光学部材シートFXを巻き出してハーフカットするまでの間でもよい。光学部材シートFXの光学軸方向のデータは、光学部材シートFXの位置(光学部材シートFXの長手方向の位置および幅方向の位置)と関連付けられて不図示の記憶部に記憶される。 First, as shown in FIG. 7A, a plurality of inspection points CP are set in the width direction of the optical member sheet FX, and the direction of the optical axis of the optical member sheet FX is detected at each inspection point CP. The timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical member sheet FX is unwound from the original fabric roll R1 and half cut. Data in the optical axis direction of the optical member sheet FX is stored in a storage unit (not shown) in association with the position of the optical member sheet FX (position in the longitudinal direction and position in the width direction of the optical member sheet FX).
 制御装置40は、記憶部から各検査ポイントCPの光学軸のデータ(光学軸の面内分布の検査データ)を取得し、シート片FXmが切り出される部分の光学部材シートFX(切込線CLによって区画される領域)の平均的な光学軸の方向を検出する。 The control device 40 acquires the optical axis data (inspection data of the in-plane distribution of the optical axis) of each inspection point CP from the storage unit, and the optical member sheet FX (by the cut line CL) of the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the sectioned area) is detected.
 例えば、図7Bに示すように、光学軸の方向と光学部材シートFXのエッジラインELとのなす角度(ずれ角)を検査ポイントCP毎に検出し、ずれ角のうち最も大きな角度(最大ずれ角)をθmaxとし、最も小さな角度(最小ずれ角)をθminとしたときに、最大ずれ角θmaxと最小ずれ角θminとの平均値θmid(=(θmax+θmin)/2)を平均ずれ角として検出する。そして、光学部材シートFXのエッジラインELに対して平均ずれ角θmidをなす方向を光学部材シートFXの平均的な光学軸の方向として検出する。尚、ずれ角は、例えば、光学部材シートFXのエッジラインELに対して左回りの方向を正とし、右回りの方向を負として算出される。 For example, as shown in FIG. 7B, the angle (deviation angle) formed between the direction of the optical axis and the edge line EL of the optical member sheet FX is detected for each inspection point CP, and the largest of the deviation angles (maximum deviation angle). ) Is θmax, and the smallest angle (minimum deviation angle) is θmin, the average value θmid (= (θmax + θmin) / 2) of the maximum deviation angle θmax and the minimum deviation angle θmin is detected as the average deviation angle. Then, the direction that forms the average deviation angle θmid with respect to the edge line EL of the optical member sheet FX is detected as the average direction of the optical axis of the optical member sheet FX. The deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical member sheet FX and the clockwise direction being negative.
 そして、上記の方法で検出された光学部材シートFXの平均的な光学軸の方向が、液晶パネルPの表示領域P4の長辺または短辺に対して所望の角度をなすように、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)が決定される。例えば、設計仕様によって光学部材F1Xの光学軸の方向が表示領域P4の長辺または短辺に対して90°をなす方向に設定されている場合には、光学部材シートFXの平均的な光学軸の方向が表示領域P4の長辺又は短辺に対して90°をなすように、シート片FXmが液晶パネルPに貼合される。 Then, the direction of the average optical axis of the optical member sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P. The bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specifications, the average optical axis of the optical member sheet FX is set. The sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
 前述した第1切断装置31および第2切断装置32は、液晶パネルPの表示領域P4の外周縁をカメラ等の検出手段で検出し、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。貼合面の外周縁は、貼合面を含む画像を撮像することによって検出される。本実施形態では、貼合面の外周縁に沿って第1切断装置31,第2切断装置32によるレーザーカットが行われる。 The first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P with a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer periphery of the bonding surface is detected by capturing an image including the bonding surface. In the present embodiment, laser cutting by the first cutting device 31 and the second cutting device 32 is performed along the outer peripheral edge of the bonding surface.
 レーザー加工機の切断線の振れ幅(公差)は切断刃の振れ幅よりも小さい。したがって本実施形態では、切断刃を用いて光学部材シートFXを切断する場合と比べて、貼合面の外周縁に沿って容易に切断することが可能であり、液晶パネルPの小型化及び(又は)表示領域P4の大型化が可能である。これは、近年のスマートフォンやタブレット端末のように、筐体のサイズが制限される中で表示画面の拡大が要求される高機能モバイル機器への適用に有効である。 ¡The runout width (tolerance) of the cutting line of the laser processing machine is smaller than the runout width of the cutting blade. Therefore, in this embodiment, compared with the case where the optical member sheet | seat FX is cut | disconnected using a cutting blade, it can cut | disconnect easily along the outer periphery of the bonding surface, and size reduction of liquid crystal panel P and ( Or) The display area P4 can be enlarged. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
 また、光学部材シートFXを液晶パネルPの表示領域P4に整合するシート片にカットした後に液晶パネルPに貼合する場合、シート片の寸法公差、液晶パネルPの寸法公差、及びシート片と液晶パネルPとの相対貼合位置の寸法公差が重なるため、液晶パネルPの額縁部Gの幅を狭めることが困難になる(表示エリアの拡大が困難になる)。 Further, when the optical member sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerance of the sheet piece, the dimensional tolerance of the liquid crystal panel P, and the sheet piece and the liquid crystal Since the dimensional tolerance of the relative bonding position with the panel P overlaps, it becomes difficult to narrow the width of the frame part G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
 一方、光学部材シートFXから液晶パネルPの外側にはみ出るサイズの光学部材シートFXのシート片FXmを切り出し、切り出したシート片FXmを液晶パネルPに貼合した後に貼合面に合わせてカットする場合、切断線の振れ公差のみを考慮すればよく、額縁部Gの幅の公差を小さくすることができる(±0.1mm以下)。この点においても、液晶パネルPの額縁部Gの幅を狭めることができる(表示エリアの拡大が可能となる)。 On the other hand, when cutting out the sheet piece FXm of the optical member sheet FX of a size that protrudes from the optical member sheet FX to the outside of the liquid crystal panel P, and bonding the cut sheet piece FXm to the liquid crystal panel P and then cutting it according to the bonding surface Only the run-out tolerance of the cutting line needs to be considered, and the tolerance of the width of the frame G can be reduced (± 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
 さらに、シート片FXmを刃物ではなくレーザーでカットすることで、切断時の力が液晶パネルPに入力されず、液晶パネルPの基板の端縁にクラックや欠けが生じ難くなり、ヒートサイクル等に対する耐久性が向上する。同様に、レーザーカットは液晶パネルPに非接触な切断方法であるため、電気部品取り付け部に対するダメージも少ない。 Further, by cutting the sheet piece FXm with a laser instead of a blade, the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved. Similarly, since laser cutting is a non-contact cutting method with respect to the liquid crystal panel P, there is little damage to the electrical component mounting portion.
(切断装置)
 図8は、切断装置(第1切断装置31及び第2切断装置32)として用いられるレーザー光照射装置100の一例を示す斜視図である。レーザー光照射装置100は、シート片FXmを含む積層体(第1光学部材貼合体PA1又は第3光学部材貼合体PA3)を対象物110とし、シート片FXmの余剰部分を切り離し、貼合面(第1貼合面又は第2貼合面)に対応する大きさの光学部材F1Xを形成する切断処理を行う。
(Cutting device)
FIG. 8 is a perspective view showing an example of a laser beam irradiation device 100 used as a cutting device (first cutting device 31 and second cutting device 32). The laser light irradiation apparatus 100 uses the laminated body (1st optical member bonding body PA1 or 3rd optical member bonding body PA3) containing the sheet piece FXm as the target object 110, cuts off the excess part of the sheet piece FXm, and bonded surface ( The cutting process which forms the optical member F1X of the magnitude | size corresponding to a 1st bonding surface or a 2nd bonding surface) is performed.
 図8に示すように、レーザー光照射装置100は、テーブル101と、レーザー光発振器102と、EBS130(Electrical Beam Shaping:図9参照)を構成する音響光学素子103と、IOR104(Imaging Optics Rail)と、スキャナー105と、移動装置106と、これらの装置を統括制御する制御装置107と、を備えている。 As shown in FIG. 8, a laser beam irradiation apparatus 100 includes a table 101, a laser beam oscillator 102, an acoustooptic device 103 that constitutes an EBS 130 (Electrical Beam Shaping: see FIG. 9), an IOR 104 (Imaging Opticals Rail), and , A scanner 105, a moving device 106, and a control device 107 that performs overall control of these devices.
 テーブル101は、切断処理が施される対象物110を保持する保持面101sを有する。テーブル101は、保持面101sの法線方向から見て矩形である。保持面101sは、第1の方向(X方向)に長手を有する長方形の第1保持面101s1と、第1保持面101s1に隣接して配置され且つ第1保持面101s1と同一形状の第2保持面101s2と、を有する。すなわち、テーブル101は、第1保持面101s1および第2保持面101s2を有することで、2つの対象物110を同時に保持できるように構成されている。 The table 101 has a holding surface 101s that holds an object 110 to be cut. The table 101 is rectangular when viewed from the normal direction of the holding surface 101s. The holding surface 101s is a rectangular first holding surface 101s1 having a length in the first direction (X direction), and a second holding member that is disposed adjacent to the first holding surface 101s1 and has the same shape as the first holding surface 101s1. Surface 101s2. That is, the table 101 includes the first holding surface 101s1 and the second holding surface 101s2, and is configured to be able to hold the two objects 110 at the same time.
 レーザー光発振器102は、レーザー光LBを放射する部材である。例えば、レーザー光発振器102としては、COレーザー光発振器(二酸化炭素レーザー光発振器)、UVレーザー光発振器、半導体レーザー光発振器、YAGレーザー光発振器、エキシマレーザー光発振器等の発振器を用いることができるが、具体的な構成は特に限定されるものではない。例示の発振器の中でもCOレーザー光発振器は、例えば偏光フィルム等の光学部材の切断加工が容易に可能な高出力レーザー光を放射することができる。 The laser light oscillator 102 is a member that emits laser light LB. For example, as the laser oscillator 102, an oscillator such as a CO 2 laser oscillator (carbon dioxide laser oscillator), a UV laser oscillator, a semiconductor laser oscillator, a YAG laser oscillator, or an excimer laser oscillator can be used. The specific configuration is not particularly limited. Among the exemplified oscillators, the CO 2 laser light oscillator can emit a high-power laser beam that can easily cut an optical member such as a polarizing film.
 図9は、EBS130の構成を示す図である。
 図9に示すように、EBS130は、レーザー光発振器102から放射されるレーザー光の光路上に配置された音響光学素子103と、音響光学素子103と電気的に接続された駆動ドライバ131と、レーザー光が音響光学素子103を通過するタイミングを制御する制御装置107(後述するレーザー制御部171に相当)と、を有する。
 EBS130は、レーザー光の出力が安定するまでレーザー光を遮蔽する。
FIG. 9 is a diagram illustrating a configuration of the EBS 130.
As shown in FIG. 9, the EBS 130 includes an acoustooptic element 103 disposed on the optical path of laser light emitted from the laser beam oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, a laser And a control device 107 (corresponding to a laser control unit 171 to be described later) that controls the timing at which the light passes through the acousto-optic element 103.
The EBS 130 shields the laser light until the output of the laser light is stabilized.
 音響光学素子103は、レーザー光発振器102から放射されたレーザー光を遮蔽するための光学素子である。 Acousto-optic element 103 is an optical element for shielding the laser beam emitted from laser beam oscillator 102.
 音響光学素子103は、例えば、二酸化テルル(TeO)やモリブデン酸鉛(PbMoO)などの単結晶またはガラスからなる音響光学媒体に圧電素子を接着して形成される素子である。圧電素子に電気信号を加えて超音波を発生させ、この超音波を音響光学媒体中に伝搬させることで、レーザー光の通過と非通過(遮蔽)を制御することができる。 The acoustooptic element 103 is an element formed by adhering a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ). By applying an electrical signal to the piezoelectric element to generate an ultrasonic wave and propagating the ultrasonic wave into the acousto-optic medium, the passage and non-passing (shielding) of the laser light can be controlled.
 尚、本実施形態では、EBS130の構成部材として音響光学素子103を用いているが、これに限らない。レーザー光発振器102から放射されたレーザー光を遮蔽することができれば、他の光学素子を用いてもよい。 In this embodiment, the acousto-optic element 103 is used as a constituent member of the EBS 130, but the present invention is not limited to this. Other optical elements may be used as long as the laser light emitted from the laser light oscillator 102 can be shielded.
 駆動ドライバ131は、制御装置107の制御に基づいて、音響光学素子103に超音波を発生させるための電気信号(制御信号)を供給し、音響光学素子103によるレーザー光の遮蔽時間を調整する。 The drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
 制御装置107は、例えば、レーザー光発振器102から放射されるレーザー光の立ち上がり部分及び立ち下がり部分が除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御する。 The control device 107 controls the timing at which the laser light passes through the acousto-optic device 103 so that, for example, the rising and falling portions of the laser light emitted from the laser light oscillator 102 are removed.
 尚、制御装置107によるタイミング制御はこれに限らない。例えば、制御装置107が、レーザー光発振器102から放射されるレーザー光の立ち上がり部分が選択的に除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御してもよい。
 特に、レーザー光発振器102から放射されるレーザー光の立ち下がり部分の幅(時間)がレーザー光の立ち上がり部分の幅(時間)よりも十分に短い場合には、レーザー光の立ち下がり部分を除去する実益が小さい。そのため、このような場合には、レーザー光発振器102から放射されるレーザー光の立ち上がり部分のみを選択的に除去してもよい。
The timing control by the control device 107 is not limited to this. For example, the control device 107 may control the timing at which the laser light passes through the acoustooptic device 103 so that the rising portion of the laser light emitted from the laser light oscillator 102 is selectively removed.
In particular, when the width (time) of the falling portion of the laser light emitted from the laser light oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the falling portion of the laser light is removed. The profit is small. Therefore, in such a case, only the rising portion of the laser light emitted from the laser light oscillator 102 may be selectively removed.
 このような構成により、EBS130は、制御装置107の制御に基づいて、レーザー光発振器102から放射されたレーザー光を、出力が安定した状態で射出する。 With such a configuration, the EBS 130 emits the laser light emitted from the laser light oscillator 102 in a state where the output is stable based on the control of the control device 107.
 IOR104は、レーザー光の強度分布のうち対象物110の切断には寄与しない裾の部分を除去する。 The IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
 図10は、IOR104の内部構成を示す斜視図である。
 図10に示すように、IOR104は、EBS130から射出されたレーザー光を集光する第1集光レンズ141と、第1集光レンズ141を保持する第1保持枠142と、第1集光レンズ141によって集光されたレーザー光を絞る絞り部材143と、絞り部材143を保持する保持部材144と、絞り部材143によって絞られたレーザー光を平行化するコリメートレンズ145と、コリメートレンズ145を保持する第2保持枠146と、第1保持枠142、保持部材144及び第2保持枠146を相対移動させる移動機構147と、を有する。
FIG. 10 is a perspective view showing the internal configuration of the IOR 104.
As shown in FIG. 10, the IOR 104 includes a first condenser lens 141 that condenses the laser light emitted from the EBS 130, a first holding frame 142 that holds the first condenser lens 141, and a first condenser lens. A diaphragm member 143 that squeezes the laser beam condensed by the lens 141, a holding member 144 that holds the diaphragm member 143, a collimator lens 145 that collimates the laser beam focused by the diaphragm member 143, and a collimator lens 145 are held. A second holding frame 146 and a moving mechanism 147 for relatively moving the first holding frame 142, the holding member 144, and the second holding frame 146 are included.
 図11は、第1集光レンズ141、絞り部材143及びコリメートレンズ145の配置構成を示す側断面図である。 FIG. 11 is a side sectional view showing an arrangement configuration of the first condenser lens 141, the diaphragm member 143, and the collimator lens 145.
 図11に示すように、絞り部材143には、第1集光レンズ141によって集光されたレーザー光を絞るためのピンホール143hが形成されている。第1集光レンズ141、ピンホール143h及びコリメートレンズ145の各々の中心は、EBS130から射出されたレーザー光の光軸Cと重なる位置に配置されている。 As shown in FIG. 11, the aperture member 143 is formed with a pinhole 143h for focusing the laser beam condensed by the first condenser lens 141. The centers of the first condenser lens 141, the pinhole 143 h and the collimator lens 145 are arranged at positions overlapping the optical axis C of the laser light emitted from the EBS 130.
 絞り部材143は、第1集光レンズ141の後側焦点の近傍に配置できる。 The diaphragm member 143 can be disposed in the vicinity of the rear focal point of the first condenser lens 141.
 ここで、「第1集光レンズ141の後側焦点の近傍」とは、絞り部材143の配置位置が第1集光レンズ141の後側焦点から大きく位置ズレしない範囲で、配置位置を若干異ならせてもよいことを意味する。例えば、第1集光レンズ141の中心から第1集光レンズ141の後側焦点までの距離Kと第1集光レンズ141の中心から絞り部材143のピンホール143hの中心までの距離Kとの比K/Kが0.9/1以上1.1/1以下の範囲であれば、絞り部材143が第1集光レンズ141の後側焦点の近傍に配置されているといえる。このような範囲であれば、第1集光レンズ141によって集光されたレーザー光を効果的に絞ることができる。 Here, “near the rear focal point of the first condenser lens 141” means that the arrangement position of the diaphragm member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed. For example, the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143. If the ratio K 1 / K 2 is in the range of 0.9 / 1 to 1.1 / 1, it can be said that the diaphragm member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141. . If it is such a range, the laser beam condensed by the 1st condensing lens 141 can be narrowed down effectively.
 尚、絞り部材143は、第1集光レンズ141の後側焦点の近傍に配置できるが、絞り部材143の配置位置は、必ずしもこの位置に限定されない。絞り部材143の配置位置は、第1集光レンズ141とコリメートレンズ145との間の光路上であればよく、第1集光レンズ141の後側焦点の近傍に限らない。 The diaphragm member 143 can be arranged in the vicinity of the rear focal point of the first condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position. The arrangement position of the aperture member 143 may be on the optical path between the first condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the first condenser lens 141.
 図10に戻り、移動機構147は、第1保持枠142、保持部材144及び第2保持枠146の各々を、レーザー光の進行方向と平行な方向に移動させるスライダ機構148と、スライダ機構148を保持する保持台149と、を有する。 Returning to FIG. 10, the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
 例えば、保持部材144を定位置に配置した状態で、第1保持枠142及び第2保持枠146をレーザー光の進行方向と平行な方向に移動させることにより、第1保持枠142、保持部材144及び第2保持枠146の相互の位置決めが行われる。具体的には、絞り部材143をコリメートレンズ145の前側焦点の位置で且つ第1集光レンズ141の後側焦点の位置に配置する。 For example, the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and at the position of the rear focal point of the first condenser lens 141.
 図8に戻り、スキャナー105は、レーザー光を保持面101sと平行な平面内(XY平面内)で2軸走査する。すなわち、スキャナー105は、テーブル101に対してレーザー光をX方向とY方向に独立に相対移動させる。これにより、テーブル101に保持された対象物110の任意の位置に精度よくレーザー光を照射することが可能となっている。 Referring back to FIG. 8, the scanner 105 scans the laser beam biaxially in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the table 101 independently in the X direction and the Y direction. Thereby, it is possible to accurately irradiate the laser beam to an arbitrary position of the object 110 held on the table 101.
 スキャナー105は、第1照射位置調整装置151と、第2照射位置調整装置154と、を備えている。 The scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
 第1照射位置調整装置151及び第2照射位置調整装置154は、IOR104から射出されたレーザー光を保持面101sと平行な平面内で2軸走査する走査素子を構成している。第1照射位置調整装置151及び第2照射位置調整装置154としては、例えば、ガルバノスキャナーを用いる。尚、走査素子としては、ガルバノスキャナーに限らず、ジンバルを用いることもできる。 The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that biaxially scans the laser light emitted from the IOR 104 in a plane parallel to the holding surface 101s. As the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154, for example, a galvano scanner is used. The scanning element is not limited to a galvano scanner, and a gimbal can be used.
 第1照射位置調整装置151は、ミラー152と、ミラー152の設置角度を調整するアクチュエータ153と、を備えている。アクチュエータ153は、Z方向に平行な回転軸を有する。アクチュエータ153は、制御装置107の制御に基づいて、ミラー152をZ軸回りに回転させる。 The first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152. The actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
 第2照射位置調整装置154は、ミラー155と、ミラー155の設置角度を調整するアクチュエータ156と、を備えている。アクチュエータ156は、Y方向に平行な回転軸を有する。アクチュエータ156は、制御装置107の制御に基づいて、ミラー155をY軸回りに回転させる。 The second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155. The actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
 スキャナー105とテーブル101との間の光路上には、スキャナー105を経由したレーザー光を保持面101sに向けて集光する第2集光レンズ108が配置されている。 On the optical path between the scanner 105 and the table 101, a second condenser lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
 例えば、第2集光レンズ108としては、fθレンズを用いる。これにより、ミラー155から第2集光レンズ108に平行に射出されたレーザー光を対象物110に平行に集光させることができる。 For example, an fθ lens is used as the second condenser lens 108. Thereby, the laser beam emitted in parallel to the second condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110.
 尚、スキャナー105とテーブル101との間の光路上に、第2集光レンズ108が配置されていない構成であってもよい。 Note that the second condenser lens 108 may not be disposed on the optical path between the scanner 105 and the table 101.
 レーザー光発振器102から放射されたレーザー光LBは、音響光学素子103、IOR104、ミラー152、ミラー155、第2集光レンズ108を経由してテーブル101に保持された対象物110に照射される。第1照射位置調整装置151、第2照射位置調整装置154は、制御装置107の制御に基づいて、レーザー光発振器102からテーブル101に保持された対象物110に向けて照射されるレーザー光の照射位置を調整する。 The laser beam LB emitted from the laser beam oscillator 102 is applied to the object 110 held on the table 101 via the acoustooptic device 103, the IOR 104, the mirror 152, the mirror 155, and the second condenser lens. The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are configured to irradiate laser light emitted from the laser light oscillator 102 toward the object 110 held on the table 101 based on the control of the control device 107. Adjust the position.
 スキャナー105の制御によるレーザー光の加工領域105s(以下、スキャン領域と称する)は、保持面101sの法線方向から見て矩形である。本実施形態では、スキャン領域105sの面積は、第1保持面101s1及び第2保持面101s2の各々の面積よりも小さい。 A laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s. In the present embodiment, the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
 図12(a)~(d)は、EBS130の作用を説明するための図である。
 図12(a)は、レーザー光発振器102から放射されるレーザー光の制御信号を示している。
 図12(b)は、レーザー光発振器102から放射されたレーザー光そのものの出力特性、即ちレーザー光発振器102から放射されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性を示している。
 図12(c)は、音響光学素子103の制御信号を示している。
 図12(d)は、レーザー光発振器102から放射されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性を示している。
 図12(b)、(d)の各々において、横軸は時間、縦軸はレーザー光の強度である。
 図13(a)~(d)は、図12(a)~(d)において、レーザー光の1つのパルスに着目した図である。
 尚、以下の説明では、「レーザー光発振器102から放射されるレーザー光の制御信号」を「レーザー光の制御信号」と称する。「レーザー光発振器102から放射されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性」を「音響光学素子103通過前のレーザー光の出力特性」と称する。「レーザー光発振器102から放射されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性」を「音響光学素子103通過後のレーザー光の出力特性」と称する。
12 (a) to 12 (d) are diagrams for explaining the operation of the EBS 130. FIG.
FIG. 12A shows a control signal of laser light emitted from the laser light oscillator 102.
FIG. 12B shows the output characteristics of the laser light itself emitted from the laser light oscillator 102, that is, the output characteristics of the laser light before the laser light emitted from the laser light oscillator 102 passes through the acoustooptic device 103. ing.
FIG. 12C shows a control signal for the acousto-optic element 103.
FIG. 12D shows the output characteristics of the laser light after the laser light emitted from the laser light oscillator 102 passes through the acoustooptic device 103.
In each of FIGS. 12B and 12D, the horizontal axis represents time, and the vertical axis represents laser light intensity.
FIGS. 13A to 13D are diagrams focusing on one pulse of laser light in FIGS. 12A to 12D.
In the following description, the “control signal for laser light emitted from the laser light oscillator 102” is referred to as “control signal for laser light”. “Output characteristics of laser light before the laser light emitted from the laser light oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”. “Output characteristics of laser light after the laser light emitted from the laser light oscillator 102 passes through the acoustooptic element 103” is referred to as “output characteristics of laser light after passing through the acoustooptic element 103”.
 図12(a)、図13(a)に示すように、レーザー光の制御信号のパルスPs1は矩形パルスである。図12(a)に示すように、レーザー光の制御信号は、レーザー光発振器102へのON/OFF信号が周期的に切り替えられることにより複数のパルスPs1を発生させる、いわゆるクロックパルスである。 As shown in FIGS. 12A and 13A, the pulse Ps1 of the laser light control signal is a rectangular pulse. As shown in FIG. 12A, the laser light control signal is a so-called clock pulse that generates a plurality of pulses Ps1 by periodically switching the ON / OFF signal to the laser light oscillator 102.
 図12(a)、図13(a)において、パルスPs1の山の部分は、レーザー光発振器102へON信号が送られた状態、即ちレーザー光発振器102からレーザー光が放射されるON状態である。パルスPs1の谷の部分は、レーザー光発振器102へOFF信号が送られた状態、即ちレーザー光発振器102からレーザー光が放射されないOFF状態である。 12A and 13A, the peak portion of the pulse Ps1 is in a state where an ON signal is sent to the laser light oscillator 102, that is, in an ON state where laser light is emitted from the laser light oscillator 102. . The valley portion of the pulse Ps1 is a state in which an OFF signal is sent to the laser light oscillator 102, that is, an OFF state in which laser light is not emitted from the laser light oscillator 102.
 図12(a)に示すように、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成されている。3つの集合パルスPL1は、3つのパルスPs1の配置間隔よりも長い間隔で配置されている。例えば、隣り合う2つのパルスPs1の間の間隔は1msであり、隣り合う2つの集合パルスPL1の間の間隔は10msである。 As shown in FIG. 12A, three collective pulses PL1 are formed by arranging three pulses Ps1 at short intervals. The three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1. For example, the interval between two adjacent pulses Ps1 is 1 ms, and the interval between two adjacent collective pulses PL1 is 10 ms.
 尚、本実施形態では、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成される例を挙げて説明しているが、これに限らない。例えば、2つ又は4つ以上の複数のパルスが短い間隔で配置されることにより1つの集合パルスが形成されていてもよい。
 また、複数のパルスが周期的に形成されることに限らず、1つのパルスが長い幅で形成される構成であってもよい。即ち、レーザー光発振器へのON信号からOFF信号まで一定の強度のレーザー光が所定の時間だけ放射される構成であってもよい。
In the present embodiment, an example in which one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals is described, but the present invention is not limited to this. For example, one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
Further, the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which a laser beam having a certain intensity from the ON signal to the OFF signal to the laser beam oscillator is emitted for a predetermined time may be employed.
 図12(b)、図13(b)に示すように、音響光学素子103通過前のレーザー光の出力特性のパルスPs2は、立ち上がり部分G1と立ち下がり部分G2とを有する波形パルスである。 As shown in FIGS. 12B and 13B, the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
 ここで、立ち上がり部分G1とは、パルスPs2のうちレーザー光の強度がゼロから対象物の切断に寄与する強度に達するまでの期間における部分を意味する。立ち下がり部分G2とは、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する強度からゼロに至るまでの期間における部分を意味する。対象物の切断に寄与する強度は、対象物の材質や厚み、レーザー光の出力値によって異なるが、一例として、図13(b)に示すように、レーザー光のピーク強度(100%)の50%の強度とする。 Here, the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object. The falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light. The intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 13B, 50% of the peak intensity (100%) of the laser beam. % Strength.
 図12(b)、図13(b)に示すように、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い。つまり、レーザー光発振器102から放射されるレーザー光の立ち上がり部分G1の時間がレーザー光の立ち下がり部分G2の時間よりも長い。例えば、立ち上がり部分G1の幅は45μsであり、立ち下がり部分G2の幅は25μsである。 As shown in FIGS. 12B and 13B, the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light emitted from the laser light oscillator 102 is longer than the time of the falling portion G2 of the laser light. For example, the width of the rising portion G1 is 45 μs, and the width of the falling portion G2 is 25 μs.
 尚、本実施形態では、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い例を挙げて説明しているが、これに限らない。例えば、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅と実質的に等しい場合、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも短い場合、においても本発明の実施形態を適用可能である。 In this embodiment, the example in which the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2 is described, but the present invention is not limited to this. For example, when the width of the rising portion G1 of the pulse Ps2 is substantially equal to the width of the falling portion G2, the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. The form is applicable.
 図12(b)に示すように、3つのパルスPs2が図13(a)に示す3つのパルスPs1に対応する位置に配置されることにより1つの集合パルスPL2が形成されている。
 3つの集合パルスPL2は、図12(a)に示す3つの集合パルスPL1に対応する位置に配置されている。
As shown in FIG. 12B, one collective pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG.
The three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
 図12(c)、図13(c)に示すように、音響光学素子103の制御信号のパルスPs3は矩形パルスである。図12(c)に示すように、音響光学素子103の制御信号は、いわゆるクロックパルスである。音響光学素子103の制御信号は、レーザー光が音響光学素子103を通過するタイミングを周期的に切り替えるための信号である。音響光学素子103の制御信号における複数のパルスPs3は、駆動ドライバ131への制御信号を周期的に切り替えることにより発生する。 As shown in FIGS. 12C and 13C, the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse. As shown in FIG. 12C, the control signal of the acoustooptic device 103 is a so-called clock pulse. The control signal of the acoustooptic device 103 is a signal for periodically switching the timing at which the laser light passes through the acoustooptic device 103. The plurality of pulses Ps3 in the control signal of the acoustooptic device 103 are generated by periodically switching the control signal to the drive driver 131.
 図12(c)、図13(c)において、パルスPs3の山の部分は、レーザー光を通過させる状態、即ちレーザー光を透過させる透光状態である。パルスPs3の谷の部分は、レーザー光を通過させない状態、即ちレーザー光を遮蔽する遮光状態である。 12 (c) and 13 (c), the peak portion of the pulse Ps3 is in a state where laser light is transmitted, that is, a light-transmitting state where laser light is transmitted. The valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
 図13(c)に示すように、各パルスPs3の谷の部分が図13(b)に示す各パルスPs2の立ち上がり部分G1及び立ち下がり部分G2の双方に重なるように配置されている。 As shown in FIG. 13C, the valley portion of each pulse Ps3 is arranged so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG.
 図13(c)に示すように、1つのパルスPs3に着目すると、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と実質的に等しい。例えば、パルスPs3の前側の谷の部分V1の幅は45μs、パルスPs3の後側の谷の部分V2の幅は25μsである。このように、EBS130は、早い応答特性を持つスイッチ機能を有する。 As shown in FIG. 13C, when focusing on one pulse Ps3, the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3 The width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2. For example, the width of the valley portion V1 on the front side of the pulse Ps3 is 45 μs, and the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 μs. As described above, the EBS 130 has a switch function having a quick response characteristic.
 これにより、レーザー光の立ち上がり部分G1と立ち下がり部分G2とを除去し、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する部分を選択的に取り出すことができる。 As a result, the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted. .
 その結果、図12(d)、図13(d)に示すように、音響光学素子103通過後のレーザー光の出力特性のパルスPs4は、立ち上がり部分G1と立ち下がり部分G2とを有しない、シャープに突出したパルスとなる。 As a result, as shown in FIGS. 12D and 13D, the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 does not have a rising portion G1 and a falling portion G2. It becomes a pulse protruding to
 尚、本実施形態では、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と実質的に等しい例を挙げて説明しているが、これに限らない。
 例えば、パルスPs3の前側の谷の部分V1の幅をパルスPs2の立ち上がり部分G1の幅と実質的に等しくしたり、パルスPs3の後側の谷の部分V2の幅をパルスPs2の立ち下がり部分の幅よりも大きくしたりする等、必要に応じて適宜調整することができる。
In the present embodiment, the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2. Although an example that is substantially equal to the width of the falling portion is described, the present invention is not limited to this.
For example, the width of the valley portion V1 on the front side of the pulse Ps3 is substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is set to the width of the falling portion of the pulse Ps2. It can be adjusted as needed, such as making it larger than the width.
 図14は、IOR104の作用を説明するための図である。
 図14の左段の図はピンホール143hを通過する前のレーザー光の強度分布を示す図である。図14の左段上段の図は平面図である。図14の左段中段の図は斜視図である。図14の左段下段の図は横軸を位置、縦軸を強度として示す図である。
 図14の右段の図はピンホール143hを通過した後のレーザー光の強度分布を示す図である。図14の右段上段の図は平面図である。図14の右段中段の図は斜視図である。図14の右段下段の図は横軸を位置、縦軸を強度として示す図である。
 図15は、比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。
 ここで、比較例に係るレーザー光照射装置は、ピンホール143hを通過する前のレーザー光をそのまま用いたレーザー光照射装置、即ちIOR104を備えていないレーザー光照射装置である。
 図16は、本実施形態に係るレーザー光照射装置100を用いて、対象物である偏光板を切断したときの切断面の拡大図である。
FIG. 14 is a diagram for explaining the operation of the IOR 104.
The diagram on the left side of FIG. 14 is a diagram showing the intensity distribution of the laser light before passing through the pinhole 143h. The upper left diagram in FIG. 14 is a plan view. FIG. 14 is a perspective view of the middle left stage. In the lower left diagram of FIG. 14, the horizontal axis indicates the position, and the vertical axis indicates the strength.
The diagram on the right side of FIG. 14 shows the intensity distribution of the laser light after passing through the pinhole 143h. The upper right diagram in FIG. 14 is a plan view. The right middle part of FIG. 14 is a perspective view. In the lower right diagram of FIG. 14, the horizontal axis indicates the position and the vertical axis indicates the strength.
FIG. 15 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using the laser light irradiation apparatus according to the comparative example.
Here, the laser beam irradiation apparatus according to the comparative example is a laser beam irradiation apparatus that uses the laser beam before passing through the pinhole 143 h as it is, that is, a laser beam irradiation apparatus that does not include the IOR 104.
FIG. 16 is an enlarged view of a cut surface when a polarizing plate that is an object is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
 図14の左段の図に示すように、ピンホール143hを通過する前のレーザー光の強度分布は、ビームの中心部において強度が強く、ビームの外周部において強度の弱い強度分布となっている。ビームの外周部のレーザー光の強度が小さくなると、ビームの外周部は対象物の切断に寄与しなくなる。 As shown in the diagram on the left side of FIG. 14, the intensity distribution of the laser light before passing through the pinhole 143h has a strong intensity distribution at the center of the beam and a low intensity distribution at the outer periphery of the beam. . When the intensity of the laser beam at the outer periphery of the beam is reduced, the outer periphery of the beam does not contribute to the cutting of the object.
 この場合、図15に示すように、比較例に係るレーザー光照射装置では、偏光板の切断面がテーパ形状となっていることが確認される。これは、偏光板をカットする際、レーザー光のビーム径の外周部がカットラインに沿う部分に熱影響を与えたことにより、偏光板のカット領域以外の部分が溶解したことが原因と考えられる。 In this case, as shown in FIG. 15, in the laser light irradiation apparatus according to the comparative example, it is confirmed that the cut surface of the polarizing plate has a tapered shape. This is considered to be due to the fact that when the polarizing plate was cut, the outer peripheral portion of the laser beam diameter affected the portion along the cut line, thereby dissolving the portion other than the polarizing plate cut region. .
 これに対し、図14の右段の図に示すように、ピンホール143hを通過した後のレーザー光の強度分布は、レーザー光の強度分布のうち偏光板の切断には寄与しない裾の部分が除去されることにより、レーザー光の強度分布が理想的なガウシアン分布となる。ピンホール143hを通過した後のレーザー光の強度分布の半値幅は、ピンホール143hを通過する前のレーザー光の強度分布の半値幅よりも狭くなっている。 On the other hand, as shown in the diagram on the right side of FIG. 14, the intensity distribution of the laser light after passing through the pinhole 143h has a skirt portion that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light. By being removed, the intensity distribution of the laser light becomes an ideal Gaussian distribution. The half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
 この場合、図16に示すように、本実施形態に係るIOR104を備えたレーザー光照射装置100では、偏光板の切断面が保持面に垂直になっていることが確認される。これは、偏光板をカットする際、レーザー光の強度分布のうち偏光板の切断に寄与する部分が偏光板に照射されることにより、偏光板のカット領域を選択的に溶断できたことによると考えられる。 In this case, as shown in FIG. 16, in the laser beam irradiation apparatus 100 including the IOR 104 according to this embodiment, it is confirmed that the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the laser light intensity distribution that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively fused. Conceivable.
 図8に戻り、移動装置106は、テーブル101とスキャナー105とを相対移動させる。移動装置106は、第1スライダ機構161と、第2スライダ機構162と、を含む。第1スライダ機構161は、テーブル101を保持面101sに平行な第1の方向(X方向)に移動させるための機構である。第2スライダ機構162は、第1スライダ機構161を保持面101sに平行かつ第1の方向と直交する第2の方向(Y方向)に移動させるための機構である。 8, the moving device 106 moves the table 101 and the scanner 105 relative to each other. The moving device 106 includes a first slider mechanism 161 and a second slider mechanism 162. The first slider mechanism 161 is a mechanism for moving the table 101 in a first direction (X direction) parallel to the holding surface 101s. The second slider mechanism 162 is a mechanism for moving the first slider mechanism 161 in a second direction (Y direction) parallel to the holding surface 101s and perpendicular to the first direction.
 このような構成に基づき、移動装置106は、第1スライダ機構161及び第2スライダ機構162(以下、これらを総称してスライダ機構161、162と称する場合もある)の各々が内蔵するリニアモータ(不図示)を作動させてテーブル101を、X方向、Y方向の各々へ移動させることが可能とされている。 Based on such a configuration, the moving device 106 includes a linear motor (hereinafter referred to as slider mechanism 161 or 162) incorporated in each of the first slider mechanism 161 and the second slider mechanism 162. It is possible to move the table 101 in each of the X direction and the Y direction by actuating (not shown).
 上記スライダ機構161,162内においてパルス駆動されるリニアモータは、そのリニアモータに供給されるパルス信号によって出力軸の回転角度制御を精細に行うことができる。従って、スライダ機構161に支持されたテーブル101のX方向、Y方向の各々の位置を高精度に制御できる。尚、テーブル101の位置制御はパルスモータを用いた位置制御に限られず、サーボモータを用いたフィードバック制御や、その他任意の制御方法によって実現することもできる。 The linear motor that is pulse-driven in the slider mechanisms 161 and 162 can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Therefore, each position of the table 101 supported by the slider mechanism 161 in the X direction and the Y direction can be controlled with high accuracy. Note that the position control of the table 101 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
 制御装置107は、レーザー光発振器102及び音響光学素子103(駆動ドライバ131)を制御するレーザー制御部171と、スキャナー105を制御するスキャナー制御部172と、移動装置106を制御するスライダ制御部173と、を有する。 The control device 107 includes a laser control unit 171 that controls the laser light oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, and a slider control unit 173 that controls the moving device 106. Have.
 具体的には、レーザー制御部171は、レーザー光発振器102のON/OFF、レーザー光発振器102から放射されるレーザー光の出力、レーザー光発振器102から放射されたレーザー光LBが音響光学素子103を通過するタイミング、及び駆動ドライバ131の制御を行う。
 スキャナー制御部172は、第1照射位置調整装置151のアクチュエータ153、第2照射位置調整装置154のアクチュエータ156の各々の駆動の制御を行う。
 スライダ制御部173は、スライダ機構161,162の各々が内蔵するリニアモータの作動の制御を行う。
Specifically, the laser controller 171 turns the laser light oscillator 102 on / off, the output of the laser light emitted from the laser light oscillator 102, and the laser light LB emitted from the laser light oscillator 102 causes the acoustooptic device 103 to The timing of passing and the control of the drive driver 131 are performed.
The scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
The slider control unit 173 controls the operation of the linear motor built in each of the slider mechanisms 161 and 162.
 図17は、レーザー光照射装置100の制御システムの構成を示す図である。
 図17に示すように、制御装置107には入力信号を入力可能な入力装置109が接続されている。入力装置109は、キーボード、マウス等の入力機器、あるいは外部の装置からのデータを入力可能な通信装置等を有する。制御装置107は、レーザー光照射装置100の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。
FIG. 17 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
As shown in FIG. 17, an input device 109 capable of inputting an input signal is connected to the control device 107. The input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device. The control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
 ユーザーが入力装置109に加工データを入力することにより初期設定が完了すると、制御装置107のレーザー制御部171の制御に基づいて、レーザー光発振器102からレーザー光が放射される。この際、制御装置107のスキャナー制御部172の制御に基づいて、スキャナー105を構成するミラーの回転駆動が開始される。これと同時に、制御装置107のスライダ制御部173の制御に基づいて、スライダ機構161,162に設けられたモーターなどの駆動軸の回転数がロータリーエンコーダなどのセンサーにより検出される。 When the user inputs the processing data to the input device 109 and the initial setting is completed, the laser light is emitted from the laser light oscillator 102 based on the control of the laser control unit 171 of the control device 107. At this time, based on the control of the scanner control unit 172 of the control device 107, rotation driving of the mirrors constituting the scanner 105 is started. At the same time, based on the control of the slider control unit 173 of the control device 107, the rotational speed of a drive shaft such as a motor provided in the slider mechanisms 161 and 162 is detected by a sensor such as a rotary encoder.
 制御装置107は、各々の座標値をリアルタイムで補正して加工データと一致する座標にレーザー光が射出されるように、即ち、レーザー光が対象物110(図8参照)において所望の軌跡を描くように、移動装置106とスキャナー105とを制御する。例えば、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域をスキャナー105で調整する。 The control device 107 corrects each coordinate value in real time so that the laser beam is emitted to the coordinate that matches the machining data, that is, the laser beam draws a desired locus on the object 110 (see FIG. 8). Thus, the moving device 106 and the scanner 105 are controlled. For example, the scanning of the laser light is mainly performed by the moving device 106, and an area where the irradiation position of the laser light cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105.
 図18は、移動装置106によるテーブル101の動作を説明するための図である。
 図18に示すように、テーブル101は、待機位置WP1と、スキャナー105の制御によるレーザー光の切断加工が行われる切断位置WP2と、の間において、第2スライダ機構162により第2の方向(Y方向)に沿って移動する。ここで、待機位置WP1とは、テーブル101の保持面101s上に外部から切断処理が施される対象物110を搬入する際の搬入待機位置、または切断処理が施された対象物110を保持面101s上から外部に搬出するための搬出待機位置を兼ねる。
FIG. 18 is a diagram for explaining the operation of the table 101 by the moving device 106.
As shown in FIG. 18, the table 101 is moved in the second direction (Y by the second slider mechanism 162 between the standby position WP1 and the cutting position WP2 where the laser beam is cut by the control of the scanner 105. Direction). Here, the standby position WP1 refers to a loading standby position when the object 110 to be cut from the outside is carried onto the holding surface 101s of the table 101, or a holding surface for the object 110 that has been subjected to the cutting process. Also serves as an unloading standby position for unloading from the top of 101s.
 尚、切断位置WP2とは、Z方向から平面視した場合において、保持面101sに保持された対象物110の少なくとも一部と、スキャナー105によるスキャン領域105s(図8参照)の少なくとも一部とが重なる状態となる、テーブル101の第2の方向(Y方向)における位置をいう。 Note that the cutting position WP2 refers to at least a part of the object 110 held on the holding surface 101s and at least a part of the scan region 105s (see FIG. 8) by the scanner 105 when viewed in plan from the Z direction. A position in the second direction (Y direction) of the table 101 that is in an overlapping state.
 このような構成に基づき、テーブル101は、図18に示したように待機位置WP1において保持面101s(第1保持面101s1および第2保持面101s2)に2つの対象物110が搬入された後、保持面101sに保持した2つの対象物110を切断位置WP2に移動させる。テーブル101は、切断位置WP2において所定の切断処理が施された対象物110を待機位置WP1に移動させた後、待機位置WP1において対象物110を外部へと搬出させる。 Based on such a configuration, after the two objects 110 are carried into the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) at the standby position WP1, as shown in FIG. The two objects 110 held on the holding surface 101s are moved to the cutting position WP2. The table 101 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP2 to the standby position WP1, and then carries the object 110 to the outside at the standby position WP1.
 テーブル101を用いた切断工程は、待機位置WP1において対象物110を搬入する搬入ステップと、待機位置WP1において搬入された対象物110を切断位置WP2に移動する往路移動ステップと、切断位置WP2にて所定の切断処理を行う切断ステップと、切断ステップ後、対象物110を切断位置WP2から待機位置WP1まで移動させる復路移動ステップと、復路移動ステップの後、対象物110を待機位置WP1から搬出させる搬出ステップと、を含む。 The cutting process using the table 101 includes a carry-in step for carrying the object 110 at the standby position WP1, a forward movement step for moving the object 110 carried at the standby position WP1 to the cutting position WP2, and a cutting position WP2. A cutting step for performing a predetermined cutting process, a return path moving step for moving the object 110 from the cutting position WP2 to the standby position WP1 after the cutting step, and an unloading for discharging the object 110 from the standby position WP1 after the return path moving step Steps.
 図19は、レーザー光照射装置100による切断処理としてテーブル101を用いた切断工程の動作フローを示す図である。図20は、テーブル101を用いた切断工程の動作を概念的に示した図である。 FIG. 19 is a diagram showing an operation flow of a cutting process using the table 101 as a cutting process by the laser beam irradiation apparatus 100. FIG. 20 is a diagram conceptually showing the operation of the cutting process using the table 101.
 まず、テーブル101は、待機位置WP1において対象物110を搬入装置115(図18,20参照)から搬入する(図19に示す搬入ステップS1)。尚、搬入装置115は、レーザー光照射装置100の構成要素の一部であってもよいし、レーザー光照射装置100以外の装置の構成要素の一部であってもよい。 First, the table 101 carries the object 110 from the carry-in device 115 (see FIGS. 18 and 20) at the standby position WP1 (carry-in step S1 shown in FIG. 19). Note that the carry-in device 115 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
 本実施形態においては、テーブル101が待機位置WP1から切断位置WP2に移動する前に、切断位置WP2に対する対象物110の相対位置を検出し、検出結果に基づいて相対位置を補正するアライメント処理が行われる(図19に示すアライメントステップS2)。 In the present embodiment, before the table 101 moves from the standby position WP1 to the cutting position WP2, an alignment process is performed in which the relative position of the object 110 with respect to the cutting position WP2 is detected and the relative position is corrected based on the detection result. (Alignment step S2 shown in FIG. 19).
 アライメント後、テーブル101は、待機位置WP1において搬入された対象物110を切断位置WP2に移動する(図19に示す切断位置移動ステップ(往路移動ステップ)S3)。
 切断位置WP2への移動後、保持面101sの対象物110に後述するような所定の切断処理を行う(図19に示す切断ステップS4)。切断処理後、テーブル101は、切断処理が施された対象物110を搬出装置116(図18,20参照)に搬出させる待機位置WP1まで移動する(図19に示す搬出位置移動ステップ(復路移動ステップ)S5)。尚、搬出装置116は、レーザー光照射装置100の構成要素の一部であってもよいし、レーザー光照射装置100以外の装置の構成要素の一部であってもよい。
After the alignment, the table 101 moves the object 110 carried in at the standby position WP1 to the cutting position WP2 (cutting position movement step (outward movement step) S3 shown in FIG. 19).
After the movement to the cutting position WP2, a predetermined cutting process as described later is performed on the object 110 on the holding surface 101s (cutting step S4 shown in FIG. 19). After the cutting process, the table 101 moves to the standby position WP1 where the object 110 that has been subjected to the cutting process is carried out by the carrying-out device 116 (see FIGS. 18 and 20) (the carrying-out position moving step (return path moving step shown in FIG. 19)). ) S5). The carry-out device 116 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
 待機位置WP1に移動した後、テーブル101の保持面101sから対象物110が搬出装置116により搬出される(図19に示す搬出ステップS6)。 After moving to the standby position WP1, the object 110 is unloaded from the holding surface 101s of the table 101 by the unloading device 116 (unloading step S6 shown in FIG. 19).
 搬入ステップS1においては、図20(a)に示すように、搬入装置115が待機位置WP1にあるテーブル101の保持面101sに対象物110を搬入する。搬入装置115は、搬入コンベア部115bと、搬入コンベア部115b上の対象物110を吸着保持して搬送する保持部115aを含む。保持部115aは、2つの対象物110を同時に保持した状態で保持面101s(第1保持面101s1および第2保持面101s2)に受け渡し可能である。搬入コンベア部115bは、例えばベルトコンベア等から構成される。 In the carry-in step S1, as shown in FIG. 20 (a), the carry-in device 115 carries the object 110 onto the holding surface 101s of the table 101 at the standby position WP1. The carry-in device 115 includes a carry-in conveyor unit 115b and a holding unit 115a that sucks and holds the object 110 on the carry-in conveyor unit 115b. The holding part 115a can be transferred to the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) while holding the two objects 110 at the same time. The carry-in conveyor unit 115b is configured by, for example, a belt conveyor.
 搬入ステップS1の後、アライメントステップS2においては、図20(b)に示すように、テーブル101が待機位置WP1から切断位置WP2に移動するに先立ち、対象物検出装置117は、対象物110を検出する。対象物検出装置117は、対象物110を撮像する検出カメラ117aを含み、検出カメラ117aを用いて切断位置WP2に対する対象物110の相対位置を検出する。尚、アライメントステップS2は、例えば、搬入装置115による保持面101sへの搬入精度が極めて高い場合においては、必ずしも必要ではなく、省略しても良い。この場合、対象物検出装置117が不要となるので装置構成の簡略化及び低コスト化を実現できる。 After the carry-in step S1, in the alignment step S2, as shown in FIG. 20B, the object detection device 117 detects the object 110 before the table 101 moves from the standby position WP1 to the cutting position WP2. To do. The object detection device 117 includes a detection camera 117a that images the object 110, and detects the relative position of the object 110 with respect to the cutting position WP2 by using the detection camera 117a. The alignment step S2 is not always necessary and may be omitted, for example, when the carry-in device 115 has a very high carry-in accuracy to the holding surface 101s. In this case, since the object detection device 117 is not required, the device configuration can be simplified and the cost can be reduced.
 検出カメラ117aは、保持面101sのうち、切断位置WP2側の第1保持面101s1に保持された対象物110を検出する。対象物検出装置117は、検出カメラ117aの検出結果を制御装置107(図17参照)に送信する。制御装置107は、検出カメラ117aからの検出結果に基づいて、切断位置WP2(スキャナー105)に対する対象物110にズレが生じている場合、対象物110の位置を補正するアライメント処理を行う。制御装置107は、位置補正部を駆動し、保持面101sに保持される対象物110の位置を補正する。位置補正部は、例えば、複数のピンを対象物110の少なくとも3つの側面に当接させることで保持面101sに保持される対象物110の位置を補正する。尚、対象物110の位置を補正する際、テーブル101は移動を停止している。 The detection camera 117a detects the object 110 held on the first holding surface 101s1 on the cutting position WP2 side of the holding surface 101s. The object detection device 117 transmits the detection result of the detection camera 117a to the control device 107 (see FIG. 17). Based on the detection result from the detection camera 117a, the control device 107 performs alignment processing for correcting the position of the target object 110 when the target object 110 is displaced from the cutting position WP2 (scanner 105). The control device 107 drives the position correction unit to correct the position of the object 110 held on the holding surface 101s. The position correction unit corrects the position of the object 110 held on the holding surface 101s by bringing a plurality of pins into contact with at least three side surfaces of the object 110, for example. Note that when the position of the object 110 is corrected, the table 101 stops moving.
 切断位置WP2側の第1保持面101s1に保持された対象物110のアライメントが終了した後、テーブル101は切断位置WP2側に移動する。検出カメラ117aは、切断位置WP2と反対側の第2保持面101s2に保持された対象物110を検出し、制御装置107に検出結果を送信する。制御装置107は、検出カメラ117aからの検出結果に基づいて、切断位置WP2(スキャナー105)に対する対象物110にズレが生じている場合、対象物110の位置を補正するアライメント処理を行う。同様に、制御装置107は、不図示の位置補正部を駆動し、保持面101sに保持される対象物110の位置を補正する。 After the alignment of the object 110 held on the first holding surface 101s1 on the cutting position WP2 side is completed, the table 101 moves to the cutting position WP2 side. The detection camera 117a detects the object 110 held on the second holding surface 101s2 opposite to the cutting position WP2, and transmits the detection result to the control device 107. Based on the detection result from the detection camera 117a, the control device 107 performs an alignment process for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP2 (scanner 105). Similarly, the control device 107 drives a position correction unit (not shown) to correct the position of the object 110 held on the holding surface 101s.
 尚、本実施形態では、待機位置WP1にテーブル101が位置する場合に、アライメントステップS2を行う場合を例に挙げたが、これに限定されず、アライメントステップS2はテーブル101が待機位置WP1から切断位置WP2に移動するまでの途中に行うようにしてもよい。 In the present embodiment, the case where the alignment step S2 is performed when the table 101 is positioned at the standby position WP1 has been described as an example. However, the present invention is not limited to this, and the alignment step S2 is performed when the table 101 is disconnected from the standby position WP1. You may make it perform in the middle before moving to position WP2.
 アライメントステップS2の後、切断位置移動ステップS3においては、図20(c)に示すように、テーブル101が切断位置WP2に移動する。その後、切断ステップS4において、スキャナー105を介してレーザー光を照射することで保持面101sの対象物110に後述するような所定の切断処理が行われる。切断ステップS4において、テーブル101は、第1保持面101s1に保持された対象物110、および第2保持面101s2に保持された対象物110の順に切断処理が行われるように移動する。 After the alignment step S2, in the cutting position moving step S3, the table 101 moves to the cutting position WP2 as shown in FIG. 20 (c). Thereafter, in a cutting step S4, a predetermined cutting process as described later is performed on the object 110 on the holding surface 101s by irradiating the laser beam through the scanner 105. In the cutting step S4, the table 101 moves so that the cutting process is performed in the order of the object 110 held on the first holding surface 101s1 and the object 110 held on the second holding surface 101s2.
 切断ステップS4の後、搬出位置移動ステップS5においては、図20(d)に示すように、テーブル101が待機位置WP1に移動する。その後、搬出ステップS6においては、図20(e)に示すように、搬出装置116が待機位置WP1にあるテーブル101の保持面101sから対象物110を搬出する。搬出装置116は、対象物110を吸着保持して搬送する保持部116aと、保持部116aにより保持面101sから搬出された対象物110を受け取る受取部116bとを含む。保持部116aは、2つの対象物110を同時に保持した状態で保持面101s(第1保持面101s1および第2保持面101s2)から2つの対象物110を搬出可能である。受取部116bは、例えばベルトコンベア等から構成され、保持部116aから受け取った対象物110を所定方向に搬送可能である。 After the cutting step S4, in the unloading position moving step S5, the table 101 moves to the standby position WP1 as shown in FIG. 20 (d). Thereafter, in the unloading step S6, as shown in FIG. 20 (e), the unloading device 116 unloads the object 110 from the holding surface 101s of the table 101 at the standby position WP1. The carry-out device 116 includes a holding unit 116a that sucks, holds, and conveys the object 110, and a receiving unit 116b that receives the object 110 carried out from the holding surface 101s by the holding unit 116a. The holding unit 116a can carry out the two objects 110 from the holding surface 101s (the first holding surface 101s1 and the second holding surface 101s2) while holding the two objects 110 at the same time. The receiving unit 116b is configured by a belt conveyor or the like, for example, and can transport the object 110 received from the holding unit 116a in a predetermined direction.
 図21は、第1検出装置41の模式図である。
 図21に示すように、第1検出装置41は、対象物110の画像を撮像する撮像装置43と、対象物110を挟んで撮像装置43とは反対側から対象物110を照明する照明装置44と、を備えている。
FIG. 21 is a schematic diagram of the first detection device 41.
As illustrated in FIG. 21, the first detection device 41 includes an imaging device 43 that captures an image of the object 110 and an illumination device 44 that illuminates the object 110 from the opposite side of the imaging device 43 with the object 110 interposed therebetween. And.
 図22A、22Bは、撮像装置43を用いて対象物110を撮像する様子を示す模式図である。まず、図22Aに示すように、撮像装置43を用いて、対象物110における液晶パネルPの周辺を撮像する。 FIGS. 22A and 22B are schematic diagrams illustrating a state in which the object 110 is imaged using the imaging device 43. FIG. First, as shown in FIG. 22A, the periphery of the liquid crystal panel P in the object 110 is imaged using the imaging device 43.
 スキャナー105(切断装置)は、対象物110が有するシート片FXmを、液晶パネルPが有する表示領域との対向部分である光学部材F1Xと、光学部材F1Xの外側の余剰部分と、に切り離す。制御装置107(図17参照)は、撮像装置43で撮像した画像に基づいてスキャナー105を制御する。 The scanner 105 (cutting device) separates the sheet piece FXm included in the object 110 into an optical member F1X that is a portion facing the display area included in the liquid crystal panel P and an extra portion outside the optical member F1X. The control device 107 (see FIG. 17) controls the scanner 105 based on the image captured by the imaging device 43.
 対象物110は、液晶パネルPと液晶パネルPに貼合されたシート片FXmとを有している。液晶パネルPは、第2基板P2および第1基板P1で挟まれ支持された液晶層P3(図2参照)を有している。また、液晶パネルPは、第2基板P2が第1基板P1よりも平面視で面積が小さく、両者を重ね合せたときに第1基板P1の一端側が平面視で露出している。
 第1基板P1の露出する領域P5には端子部P6が設けられている。
The object 110 has a liquid crystal panel P and a sheet piece FXm bonded to the liquid crystal panel P. The liquid crystal panel P has a liquid crystal layer P3 (see FIG. 2) sandwiched and supported by the second substrate P2 and the first substrate P1. Further, in the liquid crystal panel P, the second substrate P2 has a smaller area in plan view than the first substrate P1, and one end side of the first substrate P1 is exposed in plan view when the two are overlapped.
A terminal portion P6 is provided in the exposed region P5 of the first substrate P1.
 図22Bは、液晶パネルPの一部平面図である。図22Bにおいては、便宜上、第2基板P2の4つの辺EA,EB,EC,EDのうち辺EAを示す。本実施形態の液晶パネルPは、多面取りで製造されている。そのため、図22Bに示すように第2基板P2の角部(例えば、辺EAの両端の角部C1,C2)近傍EA1,EA2は、辺EAの中央部EA3と比べて、バリや欠けが生じ直線状になっていない。近傍EA1、EA2の長さは、例えば4インチディスプレイ用の液晶パネルにおいては、経験的に5mm程度である。なお、近傍EA1、EA2の長さは、これに限定されない。 FIG. 22B is a partial plan view of the liquid crystal panel P. In FIG. 22B, for convenience, the side EA is shown among the four sides EA, EB, EC, ED of the second substrate P2. The liquid crystal panel P of this embodiment is manufactured by multi-chamfering. Therefore, as shown in FIG. 22B, burrs and chips are generated in the vicinity of the corners (for example, corners C1 and C2 at both ends of the side EA) EA1 and EA2 of the second substrate P2 as compared to the center EA3 of the side EA. It is not straight. The lengths of the neighborhoods EA1 and EA2 are empirically about 5 mm in a liquid crystal panel for a 4-inch display, for example. Note that the lengths of the neighborhoods EA1 and EA2 are not limited to this.
 シート片FXmは、第2基板P2の表面に貼合されている。図に示す対象物110においては、シート片FXmは平面視で矩形を有し、平面視で第2基板P2よりも広い面積を有している。 The sheet piece FXm is bonded to the surface of the second substrate P2. In the object 110 shown in the drawing, the sheet piece FXm has a rectangular shape in plan view, and has a larger area than the second substrate P2 in plan view.
 このような対象物110について、撮像装置43を用い、第2基板P2を含む撮像領域ARを撮像する。撮像装置43は、第2基板P2の4つの辺EA,EB,EC,EDのうち端子部P6に沿う辺EC(又は辺EA)と平行な方向(第1の方向)に配列された複数の撮像素子を含むラインカメラである。例えば、撮像素子はCCD(Charge Coupled Device)である。撮像装置43は、辺ECに隣接する辺EB(又は辺ED)と平行な方向(第2の方向)に移動して、平面視で第2基板P2を含む画像(以下、対向基板画像と称することがある。)を撮像する。 For such an object 110, the imaging device 43 is used to image the imaging area AR including the second substrate P2. The imaging device 43 has a plurality of arrays arranged in a direction (first direction) parallel to the side EC (or side EA) along the terminal portion P6 among the four sides EA, EB, EC, ED of the second substrate P2. A line camera including an image sensor. For example, the image sensor is a CCD (Charge Coupled Device). The imaging device 43 moves in a direction (second direction) parallel to the side EB (or side ED) adjacent to the side EC and includes an image including the second substrate P2 in plan view (hereinafter referred to as a counter substrate image). ).
 尚、撮像装置43の移動方向はこれに限らない。例えば、撮像装置43は、辺EB(又は辺ED)と平行な方向に配列された複数の撮像素子を含み、辺EBに隣接する辺EC(又は辺EA)と平行な方向に移動して対向基板画像を撮像してもよい。すなわち、撮像装置43は、第2基板P2の表面の法線方向から見て、第2の方向に配列された複数の撮像素子を含み、第2の方向と直交する第1の方向に移動して対向基板画像を撮像するように構成されていればよい。 In addition, the moving direction of the imaging device 43 is not limited to this. For example, the imaging device 43 includes a plurality of imaging elements arranged in a direction parallel to the side EB (or side ED), and moves and faces in a direction parallel to the side EC (or side EA) adjacent to the side EB. A substrate image may be taken. That is, the imaging device 43 includes a plurality of imaging elements arranged in the second direction when viewed from the normal direction of the surface of the second substrate P2, and moves in the first direction orthogonal to the second direction. It is sufficient that the counter substrate image is captured.
 その際、図21に示す照明装置44を用い、対象物110を挟んで撮像装置43とは反対側から光Lを照射し、対象物110を照明する。これにより、撮像装置43と同じ側から対象物110を照明した場合と比べ、シート片FXmで生じる反射光によるハレーションを抑制することができ、後述する解析に適した画像を撮像することができる。 At that time, the illumination device 44 shown in FIG. 21 is used to illuminate the object 110 by irradiating light L from the opposite side of the imaging device 43 with the object 110 interposed therebetween. Thereby, compared with the case where the target object 110 is illuminated from the same side as the imaging device 43, the halation caused by the reflected light generated in the sheet piece FXm can be suppressed, and an image suitable for analysis described later can be captured.
 撮像装置43で撮像した画像の画像データは、制御装置40に入力され、次の処理(画像処理、演算)が行われる。 The image data of the image captured by the imaging device 43 is input to the control device 40, and the next processing (image processing, calculation) is performed.
(第1の処理)
 まず、第1の処理として、図22Aに示す第2基板P2側から平面視で対象物110が有する液晶パネルPを観察して得られた画像データに対して、第2基板P2の輪郭線を強調する処理を行う。
(First process)
First, as a first process, an outline of the second substrate P2 is applied to image data obtained by observing the liquid crystal panel P of the object 110 in a plan view from the second substrate P2 side shown in FIG. 22A. Perform emphasis processing.
 例えば、対象物110を平面視で観察したとき第2基板P2とシート片FXmとが重なっている領域(第1の領域)と、第2基板P2からはみ出たシート片FXmのみの領域(第2の領域)と、では光の透過率が異なるため、撮像した画像においては第1の領域よりも第2の領域の方が明るい像となる。そのため、撮像した画像を二値化すると、第1の領域が明領域(白)、第2の領域が暗領域(黒)となり、明暗の境界として第2基板P2の輪郭線が明らかとなる。 For example, when the object 110 is observed in plan view, the region where the second substrate P2 and the sheet piece FXm overlap (first region) and the region of only the sheet piece FXm protruding from the second substrate P2 (second region) In the captured image, the second region is brighter than the first region. Therefore, when the captured image is binarized, the first area becomes a bright area (white), the second area becomes a dark area (black), and the outline of the second substrate P2 becomes clear as a light / dark boundary.
 尚、二値化する際の階調値の閾値は、貼合するシート片FXmの種類や、撮像する位置の液晶パネルPの構造等に応じて適切な値が異なるため、適宜予備実験をして設定するとよい。 Note that the threshold value of the gradation value for binarization varies depending on the type of sheet piece FXm to be bonded, the structure of the liquid crystal panel P at the position to be imaged, etc. To set.
(第2の処理)
 図23は、図22Aにおける撮像装置43で撮像した画像のうち角部の近傍を示す模式図である。図23においては、便宜上、辺EAと辺EBとを含む角部の近傍を示す。図23では、第1の領域を符号AR1、第2の領域を符号AR2として示している。第2の処理として、図23に示すように、第1の画像処理において二値化した画像データ(以下、二値化データと称する)に基づいて、第2基板P2の輪郭線(辺)と重なる複数の点Dの座標を検出する。
(Second process)
FIG. 23 is a schematic diagram illustrating the vicinity of a corner portion of the image captured by the imaging device 43 in FIG. 22A. In FIG. 23, for the sake of convenience, the vicinity of the corner including the side EA and the side EB is shown. In FIG. 23, the first area is indicated by a symbol AR1, and the second area is indicated by a symbol AR2. As the second processing, as shown in FIG. 23, based on the image data binarized in the first image processing (hereinafter referred to as binarized data), the outline (side) of the second substrate P2 and The coordinates of a plurality of overlapping points D are detected.
 まず、撮像装置43によって撮像された対向基板画像によって求められる第2基板P2の輪郭線のうち予め設定した基準を満たさない第1の部分を除く(決定する)。具体的に、図23に示す角部の近傍EA1,EB1(第1の部分)では第2基板P2にバリや欠けが生じ、各辺(図23では辺EA,EB)のそれぞれが直線状となっていない。そのため、点Dの検出の際には、近傍EA1,EB1(角部の近傍として予め定めた範囲)を検出範囲に含まないように設定する。検出範囲から除外する近傍EA1,EB1の範囲は、経験的または実験的に求められる値にしたがって、適宜設定することができる。 First, a first portion that does not satisfy a predetermined criterion is excluded (determined) from the outline of the second substrate P2 obtained from the counter substrate image captured by the imaging device 43. Specifically, near the corners EA1 and EB1 (first portion) shown in FIG. 23, the second substrate P2 is burred or chipped, and each side (sides EA and EB in FIG. 23) is linear. is not. Therefore, when the point D is detected, the vicinity EA1, EB1 (a range predetermined as the vicinity of the corner) is set not to be included in the detection range. The ranges of the neighborhoods EA1 and EB1 to be excluded from the detection range can be appropriately set according to values obtained empirically or experimentally.
 次に、各辺(図23では辺EA,EB)のそれぞれにおいて、第2基板P2の輪郭線のうち近傍EA1,EB1を除いた中央部EA3,EB3(第2の部分)について、第2基板P2の輪郭線に重なる複数の点Dの座標を検出する。 Next, in each of the sides (sides EA and EB in FIG. 23), the second substrate is used for the central portions EA3 and EB3 (second portion) excluding the vicinity EA1 and EB1 in the outline of the second substrate P2. The coordinates of a plurality of points D overlapping the contour line of P2 are detected.
 検出する座標の座標軸として、例えば、二値化データの左上端を原点とし、画像の右方向を+方向とするX軸、画像の下方向を+方向とするY軸を設定する。尚、撮像装置43で撮像した画像において、第2基板P2の角部を挟む2つの辺(輪郭線)が、撮像される画像の外周の辺と実質的に平行になっていない場合には、適宜画像データ(または二値化データ)から解析に適した任意の領域を切り出す処理(トリミング処理)を行い、処理後の画像について第2の処理を行っても構わない。 As the coordinate axes of the coordinates to be detected, for example, the X axis is set with the upper left corner of the binarized data as the origin, the right direction of the image as the + direction, and the Y direction with the down direction of the image as the + direction. In the image captured by the imaging device 43, when two sides (contour lines) sandwiching the corner of the second substrate P2 are not substantially parallel to the outer peripheral side of the image to be captured, A process (trimming process) that appropriately cuts out an arbitrary area suitable for analysis from image data (or binarized data) may be performed, and the second process may be performed on the processed image.
 点Dの座標を検出する際には、例えば、二値化データに基づく画像のX軸方向の任意の位置(x1)において、上端から+Y方向に階調を検出したときに、白(第1の領域)から黒(第2の領域)に変化する位置のY方向の位置(y1)から、点Dの座標(x1,y1)を求めることができる。このような処理を、第2基板P2の4つの辺EA,EB,EC,EDのそれぞれにおいて行い、各辺において辺に重なる複数の点Dの座標を検出する。 When detecting the coordinates of the point D, for example, when the gradation is detected in the + Y direction from the upper end at an arbitrary position (x1) in the X-axis direction of the image based on the binarized data, the white (first The coordinates (x1, y1) of the point D can be obtained from the position (y1) in the Y direction of the position changing from black (second area) to black (second area). Such processing is performed on each of the four sides EA, EB, EC, and ED of the second substrate P2, and the coordinates of a plurality of points D that overlap the sides are detected on each side.
 検出する点Dの数は、多い方が望ましいが、後述する演算処理の処理負担が過大とならないような数を設定するとよい。例えば、4つの辺EA,EB,EC,EDそれぞれにおいて、100個の点Dを検出するとよい。なお、検出する点Dの数は、これに限定されない。 It is desirable that the number of points D to be detected be large, but it is preferable to set the number so that the processing load of the arithmetic processing described later is not excessive. For example, 100 points D may be detected in each of four sides EA, EB, EC, and ED. Note that the number of points D to be detected is not limited to this.
(第3の処理)
 第3の処理として、第2の処理で検出した複数の点Dの座標から、点Dと重なる辺に対応する直線を近似して求める。近似としては、通常知られた統計学的手法を用いることができ、例えば、最小二乗法を用いた回帰直線(近似直線)を求める近似方法を挙げることができる。
(Third process)
As a third process, a straight line corresponding to the side overlapping the point D is approximated from the coordinates of the plurality of points D detected in the second process. As the approximation, a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given.
 図24は、第3の処理で求めた近似直線L1を示すグラフであり、近似直線L1をY=0として示した図である。図24においては、便宜状、辺EAにおいて求める近似直線L1を示す。 FIG. 24 is a graph showing the approximate straight line L1 obtained in the third process, and shows the approximate straight line L1 as Y = 0. In FIG. 24, for convenience, an approximate straight line L1 obtained at the side EA is shown.
 図24において、+y側にプロットされた点D1や、-y側にプロットされた点D2は、他の点Dと比べて近似直線L1からの離間距離が大きく、近似直線L1の算出結果に大きな影響を与えていると考えられる。このような場合、点D1および点D2を除外した残りの点を用いて、再度近似直線を求めることとしてもよい。 In FIG. 24, the point D1 plotted on the + y side and the point D2 plotted on the −y side have a larger separation distance from the approximate line L1 than the other points D, and are large in the calculation result of the approximate line L1. It is thought to have influenced. In such a case, the approximate straight line may be obtained again using the remaining points excluding the points D1 and D2.
 また、除外する点Dは図24に示すように2つとは限らない。近似直線L1と点Dとの距離(図24における点DのY座標の絶対値)について閾値を定め、Y座標の絶対値が閾値よりも大きい点Dについては除外して再度近似直線を求めることとしても構わない。
 閾値については、経験的または実験的に求められる値にしたがって、適宜設定することができる。
Further, the number of points D to be excluded is not limited to two as shown in FIG. A threshold is determined for the distance between the approximate line L1 and the point D (the absolute value of the Y coordinate of the point D in FIG. 24), and the approximate line is obtained again by excluding the point D whose absolute value of the Y coordinate is greater than the threshold. It does not matter.
About a threshold value, it can set suitably according to the value calculated | required empirically or experimentally.
 このようにして求められる近似直線を、撮像した画像に含まれる4辺EA,EB,EC,EDのそれぞれについて行う。以下の説明では、辺EAにおいて求めた近似直線をL1、辺EBにおいて求めた近似直線をL2、辺ECにおいて求めた近似直線をL3、辺EDにおいて求めた近似直線をL4と称することがある。 The approximate straight line thus obtained is performed for each of the four sides EA, EB, EC, and ED included in the captured image. In the following description, the approximate straight line obtained at the side EA may be referred to as L1, the approximate straight line obtained at the side EB as L2, the approximate straight line obtained at the side EC as L3, and the approximate straight line obtained at the side ED as L4.
(第4の処理)
 第4の処理として、撮像装置43で撮像した対向基板画像に含まれる4辺についてそれぞれ求めた近似直線L1,L2,L3,L4を用いて、近似直線L1,L2,L3,L4を結んで得られる図形を、第2基板P2の輪郭線(近似輪郭線)として求める。
(Fourth process)
As a fourth process, the approximate straight lines L1, L2, L3, and L4 are obtained by connecting the approximate straight lines L1, L2, L3, and L4 obtained for the four sides included in the counter substrate image captured by the imaging device 43, respectively. The figure to be obtained is obtained as an outline (approximate outline) of the second substrate P2.
 図25は、近似輪郭線OLを求めた模式図である。
 図25に示すように、第3の処理で求めた近似直線L1,L2,L3,L4を結ぶことで、近似輪郭線OLを求めることができる。
FIG. 25 is a schematic diagram showing the approximate contour OL.
As shown in FIG. 25, the approximate contour OL can be obtained by connecting the approximate straight lines L1, L2, L3, and L4 obtained in the third process.
 図26は、スキャナー105を用いて対象物110のシート片FXmを切断する様子を示す模式図である。制御装置40は、スキャナー105を制御し、上述のようにして求めた近似輪郭線OLに基づいてレーザー光LBを射出してシート片FXmを切断し、光学部材F1Xと余剰部分FYとを切り離す。 FIG. 26 is a schematic diagram showing a state in which the sheet piece FXm of the object 110 is cut using the scanner 105. The control device 40 controls the scanner 105, emits the laser beam LB based on the approximate contour OL obtained as described above, cuts the sheet piece FXm, and separates the optical member F1X and the surplus portion FY.
 シート片FXmの余剰部分FYの大きさ(液晶パネルPの外側にはみ出る部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、シート片FXmを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、シート片FXmの各辺においてシート片FXmの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。なお、シート片FXmの一辺と液晶パネルPの一辺との間の間隔は、これに限定されない。 The size of the surplus portion FY of the sheet piece FXm (the size of the portion protruding outside the liquid crystal panel P) is appropriately set according to the size of the liquid crystal panel P. For example, when the sheet piece FXm is applied to a medium-sized liquid crystal panel P of 5 to 10 inches, the distance between one side of the sheet piece FXm and one side of the liquid crystal panel P is 2 mm on each side of the sheet piece FXm. Set to a length in the range of ~ 5 mm. The interval between one side of the sheet piece FXm and one side of the liquid crystal panel P is not limited to this.
 図27は、切断処理としてスキャナー105及びテーブル101を用いた切断工程の動作フローを示す図である。図27に示す動作フローは、図19で示した動作フローのうち切断ステップS4の具体的な動作フローである。 FIG. 27 is a diagram showing an operation flow of a cutting process using the scanner 105 and the table 101 as a cutting process. The operation flow shown in FIG. 27 is a specific operation flow of the cutting step S4 in the operation flow shown in FIG.
 まず、保持面101sに対象物110を固定する(図27に示すステップS41)。次に、保持面101sの対象物110について対向基板画像を撮像する(図27に示すステップS42)。次に、撮像した対向基板画像に基づいて、近似輪郭線OLを作成する(図27に示すステップS43)。次に、近似輪郭線OLに基づいて、切断処理を行う(図27に示すステップS44)。切断処理は、スキャナー105とテーブル101とを連動させて行う。すなわち、スキャナー105を制御するとともに(図27に示すステップS441)、テーブル101を制御することにより(図27に示すステップS442)、対象物110におけるシート片FXmの切断処理を行う。 First, the object 110 is fixed to the holding surface 101s (step S41 shown in FIG. 27). Next, a counter substrate image is taken for the object 110 on the holding surface 101s (step S42 shown in FIG. 27). Next, an approximate contour OL is created based on the captured counter substrate image (step S43 shown in FIG. 27). Next, cutting processing is performed based on the approximate contour OL (step S44 shown in FIG. 27). The cutting process is performed in conjunction with the scanner 105 and the table 101. That is, while controlling the scanner 105 (step S441 shown in FIG. 27) and controlling the table 101 (step S442 shown in FIG. 27), the cutting process of the sheet piece FXm in the object 110 is performed.
 図28は、切断装置としてレーザー光照射装置100を用いてシート片FXmを所定サイズの光学部材F1Xに切断する際、レーザー光をシート片FXm上で矩形状に走査するための制御方法を示す図である。 FIG. 28 is a diagram illustrating a control method for scanning a laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 as a cutting device. It is.
 図28において、符号Trは目的とするレーザー光の移動軌跡(所望の軌跡。以下、レーザー光移動軌跡ということがある)であり、符号Tr1はテーブル101とスキャナー105との相対移動による移動軌跡をシート片FXmに投影した軌跡(以下、光源移動軌跡ということがある)である。光源移動軌跡Tr1は矩形形状を有するレーザー光移動軌跡Trの4つの角部を湾曲させた形状であり、符号K1は角部以外の直線区間であり、符号K2は角部の屈曲区間である。符号Tr2はスキャナー105が光源移動軌跡Tr1上を相対移動しているときにレーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154により光源移動軌跡Tr1と直交する方向にどの程度ずらされるか(調整されているか)を示す曲線(以下、調整曲線ということがある)である。
レーザー照射位置のずれ量(調整量)は、光源移動軌跡Tr1と直交する方向における調整曲線Tr2とレーザー光移動軌跡Trとの間の距離で示されている。
In FIG. 28, symbol Tr is a target laser beam movement locus (desired locus; hereinafter referred to as laser beam movement locus), and symbol Tr1 is a movement locus caused by relative movement between the table 101 and the scanner 105. A trajectory projected on the sheet piece FXm (hereinafter, also referred to as a light source movement trajectory). The light source movement trajectory Tr1 has a shape in which four corners of the laser light movement trajectory Tr having a rectangular shape are curved, the symbol K1 is a straight section other than the corner, and the symbol K2 is a bent section of the corner. Reference numeral Tr2 indicates that the irradiation position of the laser beam is perpendicular to the light source movement locus Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement locus Tr1. It is a curve (hereinafter also referred to as an adjustment curve) indicating how much is shifted (adjusted).
The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
 図28に示すように、光源移動軌跡Tr1は、角部が湾曲した実質的に矩形の移動軌跡となっている。光源移動軌跡Tr1とレーザー光移動軌跡Trとは概ね一致しており、角部の狭い領域でのみ両者の形状が異なっている。光源移動軌跡Tr1が矩形形状をしていると、矩形の角部でスキャナー105の移動速度が遅くなり、角部がレーザー光の熱によって膨れたり波打ったりすることがある。そのため、図28では、光源移動軌跡Tr1の角部を湾曲させてスキャナー105の移動速度が光源移動軌跡Tr1全体で概ね一定となるようにしている。 As shown in FIG. 28, the light source movement locus Tr1 is a substantially rectangular movement locus with curved corners. The light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. Therefore, in FIG. 28, the corners of the light source movement locus Tr1 are curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
 制御装置107は、スキャナー105が直線区間K1を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しているので、レーザー光の照射位置を第1照射位置調整装置151および第2照射位置調整装置154により調整せずに、そのままスキャナー105からシート片FXmにレーザー光を照射させる。一方、スキャナー105が屈曲区間K2を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しないので、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置を制御し、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようにする。例えば、スキャナー105が符号M1で示す位置を移動しているときには、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置が光源移動軌跡Tr1と直交する方向N1に距離W1だけずらされる。距離W1は、光源移動軌跡Tr1と直交する方向N1における調整曲線Tr2とレーザー光移動軌跡Trとの距離W2と同じである。光源移動軌跡Tr1はレーザー光移動軌跡Trよりも内側にずれて配置されているが、このずれを相殺するようにレーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154によって光源移動軌跡Tr1よりも外側にずらされるので、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようになる。 Since the light source movement locus Tr1 and the laser beam movement locus Tr coincide with each other when the scanner 105 moves in the straight section K1, the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is. On the other hand, when the scanner 105 is moving in the bending section K2, the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so that the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light. The irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr. For example, when the scanner 105 is moving at the position indicated by the symbol M1, the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1. The distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1. The light source movement trajectory Tr1 is displaced inward from the laser light movement trajectory Tr, and the irradiation position of the laser light is set to the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 so as to cancel out the deviation. Therefore, the irradiation position of the laser beam is arranged on the laser beam movement track Tr.
 以下、本実施形態に係る切断処理の作用効果について、図29(a)、(b)及び図30(a)、(b)を用いて説明する。
 図29(a)、(b)は比較例に係る切断処理の説明図である。図30(a)、(b)は本実施形態に係る切断処理の説明図である。
 尚、図29(a)、(b)及び図30(a)、(b)においては、便宜上、対象物110を構成するシート片FXmの図示を省略し、液晶パネルPのみを図示している。
Hereinafter, the effect of the cutting process according to the present embodiment will be described with reference to FIGS. 29 (a) and 29 (b) and FIGS. 30 (a) and 30 (b).
FIGS. 29A and 29B are explanatory diagrams of the cutting process according to the comparative example. FIGS. 30A and 30B are explanatory diagrams of the cutting process according to the present embodiment.
29 (a), (b) and FIGS. 30 (a), (b), for convenience, the illustration of the sheet piece FXm constituting the object 110 is omitted, and only the liquid crystal panel P is illustrated. .
 図29(a)に示すように、比較例においては、先ず、外周形状の検出の方法として、平面視において液晶パネルPの四隅(角部)を含む領域CA1,CA2,CA3,CA4のそれぞれを撮像する。次に、図29(b)に示すように、撮像結果に基づいて、液晶パネルPの四隅を求め、求めた四隅をつないだ矩形OLxを液晶パネルPの外周形状とする。
 そのため、液晶パネルPにおいて角部にバリや欠けが生じていると、液晶パネルPの外周形状の検出時に、バリや欠けによる影響を受けやすい。その結果、図29(b)に示すように、カットライン(矩形OLx)が基板Pの実際の輪郭線から大きくずれてしまう。例えば、領域CA1,CA3においてバリが顕著に生じていると、領域CA1,CA3ではバリの先端部を液晶パネルPの角部として認識してしまう場合がある。この場合、求めた四隅をつないだ台形(矩形OLx)が液晶パネルPの外周形状とされてしまう。
As shown in FIG. 29 (a), in the comparative example, first, as a method for detecting the outer peripheral shape, each of the areas CA1, CA2, CA3, CA4 including the four corners (corner portions) of the liquid crystal panel P in plan view is used. Take an image. Next, as shown in FIG. 29B, the four corners of the liquid crystal panel P are obtained based on the imaging result, and the rectangle OLx connecting the obtained four corners is set as the outer peripheral shape of the liquid crystal panel P.
Therefore, if burrs or chips are generated at the corners of the liquid crystal panel P, the liquid crystal panel P is easily affected by burrs or chips when detecting the outer peripheral shape of the liquid crystal panel P. As a result, as shown in FIG. 29B, the cut line (rectangular OLx) is greatly deviated from the actual outline of the substrate P. For example, if burrs are remarkably generated in the areas CA1 and CA3, the burrs may be recognized as corners of the liquid crystal panel P in the areas CA1 and CA3. In this case, the trapezoid (rectangular OLx) connecting the obtained four corners becomes the outer peripheral shape of the liquid crystal panel P.
 これに対し、本実施形態においては、図30(a)に示すように、撮像装置43としてラインカメラを用い、撮像装置43を方向Vに移動させて、対向基板画像を撮像する。次に、撮像装置43によって撮像された対向基板画像によって求められる第2基板P2の輪郭線のうち予め設定した基準を満たさない第1の部分(バリや欠けが生じている角部)を除く(決定する)。次に、各辺のそれぞれにおいて、第2の部分(バリや欠けが生じていない中央部)について、第2基板P2の輪郭線に重なる複数点の座標を検出する。次に、検出した複数点の座標から、近似直線L1,L2,L3,L4を求める。そして、図30(b)に示すように、近似直線L1,L2,L3,L4を結ぶことで、近似輪郭線OLを求める。
 そのため、液晶パネルPにおいて角部にバリや欠けが生じていても、液晶パネルPの外周形状の検出時に、バリや欠けによる影響を受けにくい。その結果、図30(b)に示すように、カットライン(近似輪郭線OL)が実際の輪郭線から大きくずれることを抑制することができる。
On the other hand, in this embodiment, as shown in FIG. 30A, a line camera is used as the imaging device 43, and the imaging device 43 is moved in the direction V to capture the counter substrate image. Next, a first portion (corner where burrs or chips are generated) that do not satisfy a preset criterion is excluded from the outline of the second substrate P2 obtained from the counter substrate image imaged by the imaging device 43 ( decide). Next, in each of the sides, the coordinates of a plurality of points overlapping the outline of the second substrate P2 are detected for the second portion (the central portion where no burr or chipping occurs). Next, approximate straight lines L1, L2, L3, and L4 are obtained from the detected coordinates of the plurality of points. Then, as shown in FIG. 30B, the approximate contour OL is obtained by connecting the approximate straight lines L1, L2, L3, and L4.
Therefore, even if burrs or chips are generated at the corners of the liquid crystal panel P, the liquid crystal panel P is not easily affected by the burrs or chips when detecting the outer peripheral shape of the liquid crystal panel P. As a result, as shown in FIG. 30B, the cut line (approximate contour line OL) can be prevented from greatly deviating from the actual contour line.
 以上説明したように、本実施形態の本実施形態のフィルム貼合システム1によれば、第2基板P2の輪郭線のうち予め基準を満たさない部分を除いた部分に基づいてカットライン(近似輪郭線OL)が作成されるため、カットラインが実際の輪郭線から大きくずれることを抑制することができる。これにより、周縁部のバリや欠けによる影響を排除した液晶パネルPの外周形状の検出を行い、この外周形状に合わせた光学部材F1Xの加工が可能となる。
 また、狭額縁化された光学表示デバイスを容易に生産することができる。
As described above, according to the film bonding system 1 of the present embodiment of the present embodiment, the cut line (approximate contour) is based on the portion of the contour line of the second substrate P2 excluding the portion that does not satisfy the standard in advance. Since the line OL) is created, it is possible to suppress the shift of the cut line from the actual contour line. As a result, it is possible to detect the outer peripheral shape of the liquid crystal panel P excluding the influence of burrs and chips on the peripheral edge, and to process the optical member F1X in accordance with the outer peripheral shape.
Further, it is possible to easily produce a narrow frame optical display device.
 また、第1切断装置31および第2切断装置32が上述したレーザー光照射装置によって構成されているため、シート片FXm(第1シート片F1m,第2シート片F2m)をシャープに切断でき、カット品質の低下を抑制することができる。 Moreover, since the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus mentioned above, the sheet piece FXm (1st sheet piece F1m, 2nd sheet piece F2m) can be cut | disconnected sharply, and cut A reduction in quality can be suppressed.
 また、制御装置107の制御により、シート片FXmにおいて所望のレーザー光移動軌跡Trを描くように、移動装置106とスキャナー105とが制御される。この構成においては、第1照射位置調整装置151および第2照射位置調整装置154により調整すべきレーザー光の照射区間は狭い屈曲区間K2のみである。それ以外の広い直線区間K1は、移動装置106によるテーブル101の移動によってレーザー光がシート片FXm上を走査される。本実施形態では、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域のみ第1照射位置調整装置151および第2照射位置調整装置154で調整している。そのため、移動装置106のみ又はスキャナー105のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。 Further, under the control of the control device 107, the moving device 106 and the scanner 105 are controlled so as to draw a desired laser beam movement trajectory Tr in the sheet piece FXm. In this configuration, the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only a narrow bending section K2. In the other wide straight section K1, the laser beam is scanned on the sheet piece FXm by the movement of the table 101 by the moving device 106. In the present embodiment, the scanning of the laser beam is mainly performed by the moving device 106, and only the region where the moving position of the laser beam irradiation position cannot be accurately controlled by the moving device 106 is adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. is doing. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
 また、液晶パネルPの外側にはみ出るサイズのシート片FXm(F1m,F2m)を液晶パネルPに貼合した後に、シート片FXmの余剰部分を切り離すことで、貼合面に対応するサイズの光学部材F1X(F11,F12)を液晶パネルPの面上で形成することができる。これにより、光学部材F1Xを貼合面の際まで精度よく設けることができ、表示領域P4外側の額縁部を狭めて表示エリアの拡大及び機器の小型化を図ることができる。 Moreover, after bonding the sheet piece FXm (F1m, F2m) of the size which protrudes on the outer side of liquid crystal panel P to liquid crystal panel P, the optical member of the size corresponding to the bonding surface is cut off by separating the excess part of sheet piece FXm. F1X (F11, F12) can be formed on the surface of the liquid crystal panel P. Thereby, the optical member F1X can be provided with high accuracy up to the bonding surface, and the frame area outside the display region P4 can be narrowed to enlarge the display area and downsize the device.
 また、液晶パネルPの外側にはみ出るサイズのシート片FXm(F1m,F2m)を液晶パネルPに貼合することで、シート片FXmの位置に応じてシート片FXmの光学軸方向が変化する場合でも、シート片FXmの光学軸方向に合わせて液晶パネルPをアライメントして貼合することができる。これにより、液晶パネルPに対する光学部材F1X(F11,F12)の光学軸方向の精度を向上させることができ、光学表示デバイスの精彩及びコントラストを高めることができる。 Moreover, even when the optical axis direction of the sheet piece FXm changes according to the position of the sheet piece FXm by bonding the sheet piece FXm (F1m, F2m) of a size that protrudes outside the liquid crystal panel P to the liquid crystal panel P. The liquid crystal panel P can be aligned and bonded in accordance with the optical axis direction of the sheet piece FXm. Thereby, the precision of the optical axis direction of the optical member F1X (F11, F12) with respect to the liquid crystal panel P can be improved, and the fineness and contrast of an optical display device can be improved.
 また、切断装置31,32が、シート片FXm(F1m,F2m)をレーザーカットすることで、シート片FXmを刃物でカットする場合と比べて、液晶パネルPに力が及ばず、クラックや欠けが生じ難くなり、液晶パネルPの安定した耐久性を得ることができる。 Further, the cutting devices 31 and 32 laser cut the sheet pieces FXm (F1m, F2m), so that the force is not exerted on the liquid crystal panel P as compared with the case where the sheet pieces FXm are cut with a blade, and there is no crack or chipping. It becomes difficult to occur, and the stable durability of the liquid crystal panel P can be obtained.
 また、シート片FXmを第2基板P2の縁に実質的に沿って切断することができ、狭額縁化された液晶パネルPに対して好適に光学部材F1Xを貼合することができる。さらに、必要に応じて、上述した装置を用いて複数種の光学部材を液晶パネルPに貼合し、液晶パネルPに光学部材が貼合されて形成される光学表示デバイスを得ることができる。 Further, the sheet piece FXm can be cut substantially along the edge of the second substrate P2, and the optical member F1X can be suitably bonded to the liquid crystal panel P having a narrow frame. Furthermore, if necessary, a plurality of types of optical members can be bonded to the liquid crystal panel P using the apparatus described above, and an optical display device formed by bonding the optical members to the liquid crystal panel P can be obtained.
 また、テーブル101の保持面101sに複数(本実施形態では2つ)の対象物110を保持する構成を採用するため、切断位置WP2に複数の対象物110を順次供給することができる。これにより、対象物110に対する切断処理を効率的に行うことができ、処理量を増大させることができる。 In addition, since a configuration in which a plurality of (two in this embodiment) objects 110 are held on the holding surface 101s of the table 101 is adopted, the plurality of objects 110 can be sequentially supplied to the cutting position WP2. Thereby, the cutting process with respect to the target object 110 can be performed efficiently, and a processing amount can be increased.
 尚、本実施形態においては、近似輪郭線OLに沿ってシート片FXmを切断することとしたが、これに限らず、例えば、近似輪郭線OLの内側の領域であって、液晶パネルPの額縁部と重なる位置においてシート片FXmを切断することとしてもよい。その場合は、制御装置40において、算出される近似輪郭線に基づき、近似輪郭線で描かれる形状よりも所定の大きさだけ小さい形状を真の切断部分として算出した後に、この真の切断部分に沿ってシート片FXmを切断するようにスキャナー105を制御するとよい。 In the present embodiment, the sheet piece FXm is cut along the approximate contour line OL. However, the present invention is not limited to this, and is, for example, a region inside the approximate contour OL and the frame of the liquid crystal panel P. The sheet piece FXm may be cut at a position overlapping the portion. In that case, the control device 40 calculates, based on the calculated approximate contour, a shape that is smaller than the shape drawn by the approximate contour as a true cut portion, The scanner 105 may be controlled so as to cut the sheet piece FXm along.
 このような真の切断部分を示す形状としては、近似輪郭線OLで描かれる形状を既定の縮尺率で縮小した相似形状であってもよく、近似輪郭線OLで描かれる形状から既定の幅だけ内側に縮めた形状であってもよい。 The shape showing the true cut portion may be a similar shape obtained by reducing the shape drawn by the approximate contour OL at a predetermined scale, and only a predetermined width from the shape drawn by the approximate contour OL. The shape shrunk inward may be sufficient.
 また、本実施形態においては、撮像装置43を用いて、対象物110が有する液晶パネルPを、第2基板P2側から平面視した画像を撮像することとして図示し、説明したが、これに限らない。 In the present embodiment, the imaging device 43 is used to illustrate and explain that the liquid crystal panel P included in the object 110 is taken as a plan view from the second substrate P2 side. However, the present invention is not limited thereto. Absent.
 液晶パネルPを多面取りで成形した際には、液晶パネルPを構成する上下基板間に、端部の位置のズレが生じることがある。図3に示す液晶パネルPが、このようなズレを有し、撮像装置43に近い第2基板P2の縁よりも撮像装置43から遠い第1基板P1の縁が外側に配置される場合には、撮像装置43を用いて平面視した画像を撮像すると、第1基板P1の縁が第2基板P2の縁として誤認され、第2基板P2の輪郭線に沿った近似輪郭線を求めることが困難となる。 When the liquid crystal panel P is formed by multi-chamfering, the position of the end portion may be shifted between the upper and lower substrates constituting the liquid crystal panel P. When the liquid crystal panel P shown in FIG. 3 has such a shift and the edge of the first substrate P1 farther from the image pickup device 43 than the edge of the second substrate P2 close to the image pickup device 43 is arranged outside. When a plane view image is captured using the imaging device 43, the edge of the first substrate P1 is mistaken as the edge of the second substrate P2, and it is difficult to obtain an approximate contour line along the contour line of the second substrate P2. It becomes.
 このような場合、撮像装置43を、第2基板P2の法線に対して第2基板P2の内側に傾斜させ、第2基板P2の内側から第2基板P2の画像を撮像することとするとよい。このように撮像すると、第1基板P1が、第2基板P2に隠れた状態で撮像されるため、第1基板P1の縁を第2基板P2の縁として誤認することなく、第2基板P2の像を確実に撮像することができる。 In such a case, the imaging device 43 may be inclined to the inside of the second substrate P2 with respect to the normal line of the second substrate P2, and an image of the second substrate P2 may be taken from the inside of the second substrate P2. . When imaging is performed in this way, the first substrate P1 is imaged in a state of being hidden by the second substrate P2, so that the edge of the first substrate P1 is not mistaken as the edge of the second substrate P2, and the second substrate P2 An image can be reliably captured.
 撮像装置43の傾斜角度は、各液晶パネルPにおける第2基板P2と第1基板P1とのズレ量に応じて都度変更してもよい。また、経験的にズレ量の最大値が分かっている場合には、最大のズレが生じたとしても第2基板P2によって第1基板P1を隠すことができる傾斜角度を求め、得られた傾斜角度だけ撮像装置43を傾斜させて撮像することとするとよい。 The inclination angle of the imaging device 43 may be changed each time according to the amount of deviation between the second substrate P2 and the first substrate P1 in each liquid crystal panel P. In addition, when the maximum value of the deviation amount is empirically known, an inclination angle that can hide the first substrate P1 by the second substrate P2 is obtained even if the maximum deviation occurs, and the obtained inclination angle is obtained. It is preferable that the image pickup device 43 be tilted to take an image.
 また、本実施形態においては、対象物にレーザー光を照射して所定の加工を行う構成として、シート片を切断する構成を例に挙げて説明したが、これに限らない。例えば、シート片を少なくとも二つに分割することの他に、シート片に貫通する切れ目を入れることやシート片に所定の深さの溝(切れ込み)を形成すること等も包含されていることとする。
 より具体的には、例えば、シート片の端部の切断(切り落とし)、ハーフカット、マーキング加工等も含まれることとする。
Moreover, in this embodiment, although demonstrated as an example the structure which cut | disconnects a sheet piece as a structure which irradiates a target object with a laser beam and performs a predetermined process, it is not restricted to this. For example, in addition to dividing the sheet piece into at least two parts, it also includes making a cut through the sheet piece and forming a groove (cut) of a predetermined depth in the sheet piece. To do.
More specifically, for example, cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
 また、本実施形態においては、光学部材シートFXをロール原反から引き出し、液晶パネルPに液晶パネルPの外側にはみ出るサイズのシート片FXmを貼合した後、シート片FXmから液晶パネルPの貼合面に対応する大きさの光学部材F1Xに切り出す場合を挙げて説明したが、これに限らない。例えば、ロール原反を用いずに、液晶パネルPの外側にはみ出るサイズに切り出された枚葉状の光学フィルムチップを液晶パネルに貼合する場合においても本発明の実施形態を適用することができる。 In the present embodiment, the optical member sheet FX is pulled out from the roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is pasted from the sheet piece FXm. Although the case where it cut out to the optical member F1X of the magnitude | size corresponding to a mating surface was mentioned and demonstrated was demonstrated, it is not restricted to this. For example, the embodiment of the present invention can be applied to the case where a single-wafer optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
 また、本実施形態においては、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視で矩形形状(正方形形状)である場合を例に挙げて説明したが、これに限らない。例えば、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視で三角形形状であってもよいし、平面視で五角形以上の多角形形状であってもよい。また、これに限らず、平面視で星型形状、平面視で幾何学的形状であってもよい。また、平面視で円形や楕円形等の曲線を含む形状であってもよい。このような描画軌跡においても本発明の実施形態を適用することが可能である。 Further, in the present embodiment, the case where the drawing locus of the laser light emitted from the laser light irradiation device is a rectangular shape (square shape) in plan view has been described as an example, but the present invention is not limited thereto. For example, the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape of pentagon or more in plan view. The shape is not limited to this, and may be a star shape in a plan view and a geometric shape in a plan view. Moreover, the shape containing curves, such as circular and an ellipse, may be sufficient by planar view. The embodiment of the present invention can also be applied to such a drawing trajectory.
 また、本実施形態においては、テーブル101が2つの対象物110を保持する例を挙げて説明したが、これに限らない。例えば、テーブルが1の対象物110を保持可能な構成であってもよいし、3つ以上の対象物110を保持可能な構成であってもよい。 In the present embodiment, the example in which the table 101 holds the two objects 110 has been described. However, the present invention is not limited to this. For example, the structure which can hold | maintain the one target object 110 may be sufficient as a table, and the structure which can hold | maintain the three or more target objects 110 may be sufficient.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to these examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 1…フィルム貼合システム(光学表示デバイスの生産システム)、23…挟圧ロール(貼合装置)、31…第1切断装置(切断装置)、32…第2切断装置(切断装置)、43…撮像装置、44…照明装置、100…レーザー光照射装置(切断装置)、107…制御装置、110…対象物(積層体)、D…輪郭線に重なる点、EA1,EB1…近傍(第1の部分)、EA3,EB3…中央部(第2の部分)、P…液晶パネル(光学表示部品)、P1…第1基板(基板)、P2…第2基板(基板)、P4…表示領域、FX…光学部材シート、FXm…シート片、F1X…光学部材、FY…余剰部分、OL…近似輪郭線、PA1…第1光学部材貼合体(積層体)、PA3…第3光学部材貼合体(積層体)、PA4…第4光学部材貼合体(光学表示デバイス)。 DESCRIPTION OF SYMBOLS 1 ... Film bonding system (production system of an optical display device), 23 ... Cinch roll (bonding device), 31 ... 1st cutting device (cutting device), 32 ... 2nd cutting device (cutting device), 43 ... Imaging device 44 ... illumination device 100 ... laser light irradiation device (cutting device) 107 ... control device 110 ... object (laminated body) D ... point overlapping outline, EA1, EB1 ... near (first) Part), EA3, EB3 ... center part (second part), P ... liquid crystal panel (optical display component), P1 ... first substrate (substrate), P2 ... second substrate (substrate), P4 ... display region, FX ... Optical member sheet, FXm ... Sheet piece, F1X ... Optical member, FY ... Surplus part, OL ... Approximate contour line, PA1 ... First optical member bonding body (laminate), PA3 ... Third optical member bonding body (laminate) ), PA4 ... fourth optical member bonded body (optical table) Device).

Claims (5)

  1.  光学表示部品に光学部材を貼合して形成される光学表示デバイスの生産システムであって、
     前記光学表示部品が有する基板の表面に、前記表面よりも広い光学部材シートが貼合されて形成される積層体について、平面視で前記基板を含む画像を撮像する撮像装置と、
     前記光学部材シートを、前記光学表示部品が有する表示領域との対向部分である前記光学部材と、前記光学部材の外側の余剰部分と、に切り離す切断装置と、
     前記画像に基づいて、前記基板の平面視における輪郭線を近似した近似輪郭線を求め、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する制御装置と、を含み、
     前記制御装置は、前記撮像装置によって撮像された前記画像に基づいて求められる前記輪郭線のうち予め設定した基準を満たさない第1の部分を決定し、前記輪郭線のうち前記第1の部分を除いた第2の部分について前記輪郭線に重なる複数点の座標を検出し、前記複数点の座標から前記輪郭線に対応する線を近似し、近似された線により得られる図形を前記近似輪郭線として求めて、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する光学表示デバイスの生産システム。
    An optical display device production system formed by bonding an optical member to an optical display component,
    An imaging device that captures an image including the substrate in a plan view of a laminate formed by laminating an optical member sheet wider than the surface on the surface of the substrate included in the optical display component;
    A cutting device for separating the optical member sheet into the optical member that is a portion facing the display area of the optical display component, and an excess portion outside the optical member;
    A control device that obtains an approximate contour line that approximates a contour line in plan view of the substrate based on the image and controls the cutting device to cut the optical member sheet based on the approximate contour line; Including
    The control device determines a first portion that does not satisfy a preset criterion from among the contour lines obtained based on the image captured by the imaging device, and determines the first portion of the contour lines. The coordinates of a plurality of points overlapping the contour line are detected for the removed second portion, the line corresponding to the contour line is approximated from the coordinates of the plurality of points, and the figure obtained by the approximated line is represented by the approximate contour line And a production system for an optical display device that controls the cutting device to cut the optical member sheet based on the approximate contour line.
  2.  前記撮像装置は、第1の方向に配列された複数の撮像素子を含み、前記第1の方向と直交する第2の方向に移動して前記画像を撮像するラインカメラである請求項1に記載の光学表示デバイスの生産システム。 2. The line imaging apparatus according to claim 1, wherein the imaging device is a line camera that includes a plurality of imaging elements arranged in a first direction and moves in a second direction orthogonal to the first direction to capture the image. Optical display device production system.
  3.  前記積層体を挟んで前記撮像装置とは反対側から、前記積層体を照明する照明装置を含む請求項1又は2に記載の光学表示デバイスの生産システム。 3. The optical display device production system according to claim 1, further comprising an illuminating device that illuminates the multilayer body from a side opposite to the imaging device across the multilayer body.
  4.  前記第1の部分は、平面視で前記基板の角部の近傍として予め定めた部分であり、前記制御装置は、前記角部を挟む2つの辺のそれぞれにおいて、前記第1の部分を除いて前記複数点の座標を検出する請求項1から3までのいずれか一項に記載の光学表示デバイスの生産システム。 The first portion is a predetermined portion as a vicinity of a corner portion of the substrate in a plan view, and the control device excludes the first portion in each of two sides sandwiching the corner portion. The optical display device production system according to claim 1, wherein coordinates of the plurality of points are detected.
  5.  ライン上を搬送される前記光学表示部品の表面に前記光学部材シートを貼合して前記積層体を形成する貼合装置を含む請求項1から4までのいずれか一項に記載の光学表示デバイスの生産システム。 The optical display device as described in any one of Claim 1 to 4 including the bonding apparatus which bonds the said optical member sheet | seat on the surface of the said optical display component conveyed on a line, and forms the said laminated body. Production system.
PCT/JP2014/066639 2013-06-24 2014-06-24 Production system for optical display device WO2014208526A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480026480.7A CN105209965B (en) 2013-06-24 2014-06-24 The production system of optical display means
KR1020157032331A KR102159417B1 (en) 2013-06-24 2014-06-24 Production system for optical display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013131945A JP6037564B2 (en) 2013-06-24 2013-06-24 Optical display device production system
JP2013-131945 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014208526A1 true WO2014208526A1 (en) 2014-12-31

Family

ID=52141860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066639 WO2014208526A1 (en) 2013-06-24 2014-06-24 Production system for optical display device

Country Status (4)

Country Link
JP (1) JP6037564B2 (en)
KR (1) KR102159417B1 (en)
CN (1) CN105209965B (en)
WO (1) WO2014208526A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003577A1 (en) * 2016-06-30 2018-01-04 日本電産サンキョー株式会社 Alignment device
JP2018072688A (en) * 2016-11-01 2018-05-10 日東電工株式会社 Laminate of optical display device, method for manufacturing the same and manufacturing system
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026079A1 (en) * 2015-08-07 2017-02-16 住友化学株式会社 Polarizing plate and image display device
DE102015014297A1 (en) * 2015-11-06 2017-05-11 Saurer Germany Gmbh & Co. Kg Method and device for cutting a running thread
JP6834134B2 (en) * 2016-01-21 2021-02-24 オムロン株式会社 Imaging device and information code reader
JP6560464B2 (en) 2016-05-03 2019-08-14 プレシジョン バルブ アンド オートメーション インコーポレイテッド Determination of automatic joining sequences for optical carving
JP6619784B2 (en) * 2017-09-28 2019-12-11 日東電工株式会社 Method for manufacturing laminated body of optical display device
JP6619785B2 (en) * 2017-09-28 2019-12-11 日東電工株式会社 Method for manufacturing laminated body of optical display device
KR102267731B1 (en) * 2019-05-03 2021-06-22 주식회사 탑 엔지니어링 Apparatus and method for cutting film
CN116177298B (en) * 2023-04-28 2023-07-28 山东瑞邦智能装备股份有限公司 Board film pasting defect detection and film cutting adjustment system and method based on machine vision

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2006259542A (en) * 2005-03-18 2006-09-28 Sharp Corp Method for manufacturing liquid crystal display panel
WO2010026768A1 (en) * 2008-09-04 2010-03-11 芝浦メカトロニクス株式会社 Bonding apparatus and method for controlling same
JP2012053049A (en) * 2006-10-11 2012-03-15 Nitto Denko Corp Inspection data processor of sheet-like product with optical film, and cutting device
WO2013151035A1 (en) * 2012-04-03 2013-10-10 住友化学株式会社 Optical display device production system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190900A (en) 1997-09-26 1999-04-06 Matsushita Electric Ind Co Ltd Liquid crystal display panel dividing method and device
KR100642500B1 (en) * 2005-03-02 2006-11-06 (주)쎄미시스코 Apparatus for edge defect and discolor testing of glass board
JP4774123B1 (en) * 2010-03-18 2011-09-14 住友化学株式会社 Method for inspecting bonding accuracy of polarizing plate and apparatus for inspecting bonding accuracy
JP4981944B2 (en) * 2010-03-26 2012-07-25 三星ダイヤモンド工業株式会社 Method for manufacturing liquid crystal display cell
US8482713B2 (en) * 2011-02-04 2013-07-09 Apple Inc. Laser processing of display components for electronic devices
JP5695466B2 (en) * 2011-03-29 2015-04-08 リンテック株式会社 Sheet sticking device and sticking method
KR101313074B1 (en) * 2011-10-20 2013-09-30 주식회사 엘지화학 Apparatus for inspecting faulty of optical film
KR101477453B1 (en) * 2011-11-21 2014-12-29 수미토모 케미칼 컴퍼니 리미티드 Optical member laminate manufacturing system, manufacturing method, and recording medium
CN104854502B (en) * 2013-01-10 2017-08-15 住友化学株式会社 The manufacture device of optical display means and the production system of optical display means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2006259542A (en) * 2005-03-18 2006-09-28 Sharp Corp Method for manufacturing liquid crystal display panel
JP2012053049A (en) * 2006-10-11 2012-03-15 Nitto Denko Corp Inspection data processor of sheet-like product with optical film, and cutting device
WO2010026768A1 (en) * 2008-09-04 2010-03-11 芝浦メカトロニクス株式会社 Bonding apparatus and method for controlling same
WO2013151035A1 (en) * 2012-04-03 2013-10-10 住友化学株式会社 Optical display device production system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003577A1 (en) * 2016-06-30 2018-01-04 日本電産サンキョー株式会社 Alignment device
JP2018072688A (en) * 2016-11-01 2018-05-10 日東電工株式会社 Laminate of optical display device, method for manufacturing the same and manufacturing system
WO2018084043A1 (en) * 2016-11-01 2018-05-11 日東電工株式会社 Laminate for optical display device and production method and production system therefor
KR20190070933A (en) * 2016-11-01 2019-06-21 닛토덴코 가부시키가이샤 Laminate of optical display device, manufacturing method thereof, and manufacturing system
KR102154006B1 (en) 2016-11-01 2020-09-09 닛토덴코 가부시키가이샤 Stacked body of optical display device, manufacturing method and manufacturing system thereof
CN111948849A (en) * 2016-11-01 2020-11-17 日东电工株式会社 Method and system for manufacturing laminated body of optical display device
CN111948849B (en) * 2016-11-01 2023-10-03 日东电工株式会社 Method and system for manufacturing laminated body of optical display device
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device

Also Published As

Publication number Publication date
CN105209965B (en) 2017-12-12
JP6037564B2 (en) 2016-12-07
JP2015006699A (en) 2015-01-15
CN105209965A (en) 2015-12-30
KR20160022297A (en) 2016-02-29
KR102159417B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6037564B2 (en) Optical display device production system
WO2014126140A1 (en) Laser irradiation device and manufacturing method of laminate optical member
KR101572402B1 (en) Laser irradiation device, optical member bonded body manufacturing device, laser irradiation method, and optical member bonded body manufacturing method
WO2014097885A1 (en) Manufacturing method for optical display device and manufacturing system for optical display device
WO2015083715A1 (en) Device for manufacturing laminated optical member
TWI640804B (en) Device for manufacturing optical member bonded body
JP5840322B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
JP6521859B2 (en) Laser light irradiation apparatus and manufacturing apparatus for optical member bonding body
JP5828972B2 (en) Optical display device manufacturing apparatus and optical display device production system
KR20150048757A (en) Device for producing optical member pasted body
KR102207122B1 (en) Apparatus and method for manufacturing optical member-bonded body
WO2014125993A1 (en) Cutting device, cutting method, and method of manufacturing laminate optical member
WO2015012254A1 (en) Optical display device manufacturing system
JP6199585B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
WO2015022850A1 (en) Apparatus for manufacturing optical member-bonded body
JP5793821B2 (en) Detecting device, optical member bonded body manufacturing apparatus, and optical member bonded body manufacturing method
JPWO2014024803A1 (en) Optical display device production system and optical display device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032331

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817064

Country of ref document: EP

Kind code of ref document: A1