WO2014125993A1 - Cutting device, cutting method, and method of manufacturing laminate optical member - Google Patents

Cutting device, cutting method, and method of manufacturing laminate optical member Download PDF

Info

Publication number
WO2014125993A1
WO2014125993A1 PCT/JP2014/052764 JP2014052764W WO2014125993A1 WO 2014125993 A1 WO2014125993 A1 WO 2014125993A1 JP 2014052764 W JP2014052764 W JP 2014052764W WO 2014125993 A1 WO2014125993 A1 WO 2014125993A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
bonding
moving
liquid crystal
optical member
Prior art date
Application number
PCT/JP2014/052764
Other languages
French (fr)
Japanese (ja)
Inventor
幹士 藤井
盛旭 蔡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2014125993A1 publication Critical patent/WO2014125993A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/007Control means comprising cameras, vision or image processing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/06Arrangements for feeding or delivering work of other than sheet, web, or filamentary form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/32Means for performing other operations combined with cutting for conveying or stacking cut product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • B26D5/34Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier scanning being effected by a photosensitive device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/18Means for removing cut-out material or waste
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a cutting device for cutting an optical member sheet bonded to an optical display device such as a liquid crystal display, a cutting method, and an apparatus for manufacturing an optical member bonded body.
  • an optical member such as a polarizing plate to be bonded to a liquid crystal panel (optical display component) is formed from a long film into a sheet piece having a size matching the display area of the liquid crystal panel After being cut out, packed and transported to another line, it may be bonded to a liquid crystal panel (see, for example, Patent Document 1).
  • a sheet piece slightly larger than the display area is cut out in consideration of variation in dimensions of the liquid crystal panel and the sheet piece, and bonding variation (positional deviation) of the sheet piece to the liquid crystal panel. . Therefore, there is a problem that an extra area (frame part) is formed around the display area, and downsizing of the device is hindered. Therefore, in order to reduce the size of the device, a sheet piece slightly larger than the display area is pasted on the liquid crystal panel, and a cutting process for cutting an extra area (frame part) around the display area may be separately performed. Conceivable. However, if such a cutting process is performed, the work time (tact time) of the entire system increases, which may reduce the production efficiency. It has been clarified by the inventor that shortening the time of the cutting process leads to a reduction in tact time.
  • the aspect of the present invention has been made in view of the above circumstances, and provides a cutting apparatus, a cutting method, and an optical member bonded body manufacturing apparatus that can improve productivity by reducing tact time.
  • the cutting device includes a cutting unit that performs a predetermined cutting process on a processing target, a first position, and a cutting position where the cutting unit performs the cutting process.
  • the processing object can be moved between a first table that can move the processing object between, a second position opposite to the first position with respect to the cutting position, and the cutting position.
  • a second table, and the first position and the second position carry the processing object from the outside into the first table or the second table before the cutting process is performed.
  • a carry-in position where the processing target is carried out from the first table or the second table after the cutting process is performed.
  • the first table and the second table may be configured to hold a plurality of the processing targets.
  • the cutting portion is at least one between the first position and the cutting position and between the second position and the cutting position.
  • the structure provided with the detection part which detects the relative position of the said process target may be sufficient.
  • a configuration may further include a position correction unit that corrects a relative position of the processing target with respect to the cutting unit based on a detection result of the detection unit.
  • each of the first position, the second position, and the cutting position is set on a straight line. Also good.
  • the cutting unit may be configured to perform the cutting process with a laser beam.
  • the processing object carried in at the first position is moved to the cutting position to perform a predetermined cutting process, and then the processing object is carried out from the first position.
  • the first cutting step includes a first carry-in step for carrying in the processing object at the first position, and a first moving step for moving the processing object carried in at the first position to the cutting position.
  • the second return path moving step for moving the processing target from the cutting position to the second position, and after the second return path moving step, the processing target is moved to the second position.
  • a second unloading step for unloading the first cutting step and the second cutting step so that the first cutting step and the second cutting step are alternately performed at the cutting position. Is performed with a portion of each of the steps have been overlapped.
  • At least one of the first cutting step and the second cutting step is performed at the cutting position in the middle of at least one of the first outward movement step and the second outward movement step.
  • the structure which further has the detection step which detects the relative position of the said process target with respect to may be sufficient.
  • the first carry-in step and the first carry-out step are executed synchronously at the first position
  • the second The cutting process may be configured such that the second carry-in step and the second carry-out step are executed in synchronization at the second position.
  • the processing target in the first forward movement step, the first backward movement step, the second forward movement step, and the second backward movement step, the processing target is The structure which each moves on the same straight line may be sufficient.
  • the manufacturing apparatus of the optical member bonding body according to the third aspect of the present invention is an apparatus for manufacturing an optical member bonding body formed by bonding an optical member to an optical display component.
  • a bonding device that forms a sheet piece bonded body by bonding a sheet piece of a size protruding to the outside to the optical display component, and a bonding surface of the optical display component and the sheet piece in the sheet piece bonded body.
  • a cutting device that cuts off the sheet piece of the portion protruding outside the bonding surface from the sheet piece bonding body along the edge, and forms the optical member having a size corresponding to the bonding surface.
  • the cutting device includes the cutting device according to any one of the above (1) to (7).
  • FIG. 5 it is the figure which paid its attention to one pulse of a laser beam. It is a figure for demonstrating the effect
  • FIG. 1 It is a figure which shows the structure which concerns on the modification of a carrying-in apparatus and a carrying-out apparatus. It is a figure which shows schematic structure of the film bonding system of this embodiment. It is a top view of a liquid crystal panel. It is AA sectional drawing of FIG. It is a fragmentary sectional view of the optical sheet bonded to a liquid crystal panel. It is a figure which shows operation
  • FIG. 1 is a perspective view showing an example of a laser beam irradiation apparatus 100 used as a cutting apparatus.
  • the first direction parallel to the holding surface that holds the object is defined as the X direction
  • the direction orthogonal to the X direction in the plane of the holding surface is orthogonal to the Y direction, the X direction, and the Y direction.
  • the direction is the Z direction.
  • the laser beam irradiation apparatus 100 includes two tables (first table and second table) 111 and 112, a laser beam oscillator 102, and an EBS 130 (Electrical Beam Shaping: see FIG. 2).
  • acousto-optic element 103 an acousto-optic element 103
  • IOR 104 Imaging / Optics / Rail
  • scanner 105 a moving device 106
  • control device 107 that performs overall control of these devices.
  • the table 111 has a holding surface 111s for holding an object (processing object) 110 to be cut.
  • the table 111 is rectangular when viewed from the normal direction of the holding surface 111s.
  • the holding surface 111 s is a rectangular first holding surface 111 s 1 having a length in the first direction (X direction), and a second holding having the same shape as the first holding surface 111 s 1 disposed adjacent to the first holding surface 111 s 1.
  • the table 112 has the same configuration as the table 111, and has a holding surface 112s that is rectangular when viewed from the normal direction.
  • the holding surface 112s is a rectangular first holding surface 112s1 having a length in the first direction (X direction), and a second holding having the same shape as the first holding surface 112s1 is disposed adjacent to the first holding surface 112s1.
  • the laser beam oscillator 102 is a member that oscillates the laser beam L.
  • a CO 2 laser beam oscillator carbon dioxide laser beam oscillator
  • a UV laser beam oscillator a UV laser beam oscillator
  • a semiconductor laser beam oscillator a YAG laser beam oscillator
  • an excimer laser beam oscillator etc.
  • a specific configuration is not particularly limited.
  • a CO 2 laser light oscillator is more preferable because it can oscillate laser light at a high output suitable for cutting an optical member such as a polarizing film.
  • FIG. 2 is a diagram illustrating the configuration of the EBS 130.
  • the EBS 130 includes an acoustooptic element 103 disposed on the optical path of the laser beam oscillated from the laser beam oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, And a control device 107 (corresponding to a laser control unit 171 described later) for controlling the timing at which the laser light passes through the acoustooptic device 103.
  • the EBS 130 shields the laser light until the output of the laser light is stabilized.
  • Acousto-optic element 103 is an optical element for shielding laser light oscillated from laser light oscillator 102.
  • the acoustooptic element 103 is obtained by bonding a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ).
  • TeO 2 tellurium dioxide
  • PbMoO 4 lead molybdate
  • the acousto-optic element 103 is used as a constituent member of the EBS 130, but is not limited thereto.
  • Other optical elements may be used as long as the laser light oscillated from the laser light oscillator 102 can be shielded.
  • the drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
  • the control device 107 controls the timing at which the laser light passes through the acousto-optic device 103 so that, for example, the rising and falling portions of the laser light oscillated from the laser light oscillator 102 are removed.
  • the timing control by the control device 107 is not limited to this.
  • the control device 107 may control the timing at which the laser light passes through the acousto-optic element 103 so that the rising portion of the laser light oscillated from the laser light oscillator 102 is selectively removed.
  • the width (time) of the falling portion of the laser light oscillated from the laser light oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the falling portion of the laser light is removed. The profit to do is small. Therefore, in such a case, only the rising portion of the laser beam oscillated from the laser beam oscillator 102 may be selectively removed.
  • the EBS 130 emits the laser light oscillated from the laser light oscillator 102 in a state where the output is stable based on the control of the control device 107.
  • the IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
  • FIG. 3 is a perspective view showing the internal configuration of the IOR 104.
  • the IOR 104 includes a first condenser lens 141 that condenses the laser light emitted from the EBS 130, a first holding frame 142 that holds the first condenser lens 141, and a first condenser lens.
  • a diaphragm member 143 that squeezes the laser light condensed by the lens 141, a holding member 144 that holds the diaphragm member 143, a collimator lens 145 that collimates the laser light squeezed by the diaphragm member 143, and a collimator lens 145 are held. It has the 2nd holding frame 146 and the moving mechanism 147 which moves the 1st holding frame 142, the holding member 144, and the 2nd holding frame 146 relatively.
  • FIG. 4 is a side sectional view showing an arrangement configuration of the first condenser lens 141, the diaphragm member 143, and the collimator lens 145.
  • the aperture member 143 is formed with a pinhole 143h for condensing the laser beam condensed by the first condenser lens 141.
  • the centers of the first condenser lens 141, the pinhole 143 h and the collimator lens 145 are arranged at positions overlapping the optical axis C of the laser light emitted from the EBS 130.
  • the diaphragm member 143 is preferably disposed in the vicinity of the rear focal point of the first condenser lens 141.
  • “near the rear focal point of the first condenser lens 141” means that the arrangement position of the diaphragm member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed.
  • the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed.
  • the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143 is slightly different from the rear focal point of the first conden
  • the ratio K 1 / K 2 is in the range of 0.9 / 1 to 1.1 / 1, it can be said that the diaphragm member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141. . If it is such a range, the laser beam condensed by the 1st condensing lens 141 can be narrowed down effectively.
  • the diaphragm member 143 is preferably disposed in the vicinity of the rear focal point of the first condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position.
  • the arrangement position of the aperture member 143 may be on the optical path between the first condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the first condenser lens 141.
  • the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
  • the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and at the position of the rear focal point of the first condenser lens 141.
  • the scanner 105 scans the laser beam two-dimensionally in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the tables 111 and 112 independently in the X direction and the Y direction. Thereby, it is possible to irradiate the laser beam with high accuracy to any position of the object 110 held on the tables 111 and 112.
  • the scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that two-dimensionally scans the laser light emitted from the IOR 104 within a plane parallel to the holding surface 101s.
  • a galvano scanner is used as the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154.
  • the scanning element is not limited to a galvano scanner, and a gimbal can be used.
  • the first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152.
  • the actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
  • the second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155.
  • the actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
  • a second condensing lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
  • an f ⁇ lens is used as the second condenser lens 108.
  • the laser beam emitted in parallel to the second condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110.
  • the scanner 105 and the second condenser lens 108 correspond to a cutting unit described in the claims.
  • the second condenser lens 108 may not be disposed on the optical path between the scanner 105 and the table 111 or the table 112.
  • the scanner 105 corresponds to the cutting unit described in the claims.
  • the laser light L oscillated from the laser light oscillator 102 passes through the acousto-optic device 103, the IOR 104, the mirror 152, the mirror 155, and the second condenser lens 108, and is applied to the object 110 held on the table 111 or the table 112. Irradiated.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are irradiated from the laser light oscillator 102 toward the object 110 held on the table 111 or the table 112 based on the control of the control device 107. Adjust the laser beam irradiation position.
  • a laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s.
  • the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
  • FIG. 5A to 5D are diagrams for explaining the operation of the EBS 130.
  • FIG. FIG. 5A shows a control signal for laser light oscillated from the laser light oscillator 102.
  • FIG. 5B shows the output characteristics of the laser light itself oscillated from the laser light oscillator 102, that is, the output characteristics of the laser light before the laser light oscillated from the laser light oscillator 102 passes through the acoustooptic device 103. Is shown.
  • FIG. 5C shows a control signal for the acousto-optic element 103.
  • FIG. 5D shows the output characteristics of the laser light after the laser light oscillated from the laser light oscillator 102 passes through the acoustooptic device 103. In each of FIGS.
  • FIGS. 6A to 6D are diagrams focusing on one pulse of laser light in FIGS. 5A to 5D.
  • the “control signal for laser light oscillated from the laser light oscillator 102” is referred to as “control signal for laser light”.
  • “Output characteristics of laser light before the laser light oscillated from the laser light oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”.
  • Output characteristics of laser light after the laser light oscillated from the laser light oscillator 102 passes through the acousto-optic element 103 is referred to as “output characteristics of laser light after passing through the acousto-optic element 103”.
  • the pulse Ps1 of the laser light control signal is a rectangular pulse.
  • the laser light control signal is a so-called clock pulse that generates a plurality of pulses Ps1 by periodically switching the ON / OFF signal to the laser light oscillator 102.
  • the peak portion of the pulse Ps1 is a state where an ON signal is sent to the laser light oscillator 102, that is, an ON state where laser light is oscillated from the laser light oscillator 102. It is.
  • the valley portion of the pulse Ps1 is a state where an OFF signal is sent to the laser beam oscillator 102, that is, an OFF state where no laser beam is oscillated from the laser beam oscillator 102.
  • one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals.
  • the three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1.
  • the interval between two adjacent pulses Ps1 is 1 ms
  • the interval between two adjacent collective pulses PL1 is 10 ms.
  • one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals, but the present invention is not limited to this.
  • one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
  • the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which laser light having a certain intensity from an ON signal to an OFF signal to the laser light oscillator is oscillated for a predetermined time may be employed.
  • the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
  • the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object.
  • the falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light.
  • the intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 6B, 50% of the peak intensity (100%) of the laser beam. % Strength.
  • the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light oscillated from the laser light oscillator 102 is longer than the time of the falling portion G2 of the laser light.
  • the width of the rising portion G1 is 45 ⁇ s
  • the width of the falling portion G2 is 25 ⁇ s.
  • the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2, but this is not limitative.
  • the present invention can be applied even when the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. is there.
  • one set pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG. 6 (a).
  • the three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
  • the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse.
  • the control signal for the acousto-optic element 103 is periodically switched so that the timing at which the laser beam passes through the acousto-optic element 103 is periodically switched. This is a so-called clock pulse that generates a plurality of pulses Ps3.
  • the peak portion of the pulse Ps3 is in a state where the laser beam is transmitted, that is, a light transmitting state where the laser beam is transmitted.
  • the valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
  • the valley portions of the respective pulses Ps3 are arranged so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3.
  • the width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is 45 ⁇ s
  • the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 ⁇ s.
  • the EBS 130 has a switch function having a quick response characteristic.
  • the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted.
  • the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 has no rising portion G1 and no falling portion G2, and is sharp. It becomes a pulse protruding to
  • the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2.
  • the present invention is not limited to this.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is made substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is made larger than the width of the falling portion of the pulse Ps2. It can be appropriately adjusted as necessary, for example, by increasing the size.
  • FIG. 7 is a diagram for explaining the operation of the IOR 104.
  • the diagram on the left side of FIG. 7 shows the intensity distribution of the laser light before passing through the pinhole 143h.
  • the upper left diagram in FIG. 7 is a plan view
  • the middle left diagram in FIG. 7 is a perspective view
  • the lower left diagram in FIG. 7 is a diagram in which the horizontal axis indicates the position and the vertical axis indicates the strength.
  • the diagram on the right side of FIG. 7 shows the intensity distribution of the laser light after passing through the pinhole 143h.
  • the upper right diagram in FIG. 7 is a plan view
  • the middle diagram in the right diagram in FIG. 7 is a perspective view
  • the lower right diagram in FIG. 7 is a diagram in which the horizontal axis indicates the position and the vertical axis indicates the strength.
  • FIG. 8 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using a laser beam irradiation apparatus according to a comparative example.
  • the laser beam irradiation apparatus according to the comparative example is a laser beam irradiation apparatus that uses the laser beam before passing through the pinhole 143 h as it is, that is, a laser beam irradiation apparatus that does not include the IOR 104.
  • FIG. 9 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
  • the intensity distribution of the laser light before passing through the pinhole 143h is an intensity distribution having a high intensity at the center of the beam and a low intensity at the outer periphery of the beam.
  • the intensity of the laser beam at the outer periphery of the beam is reduced, the outer periphery of the beam does not contribute to the cutting of the object.
  • the cut surface of the polarizing plate has a tapered shape. This is considered to be due to the fact that when the polarizing plate was cut, the outer peripheral portion of the laser beam diameter affected the portion along the cut line, thereby dissolving the portion other than the polarizing plate cut region. .
  • the intensity distribution of the laser light after passing through the pinhole 143h is removed from the tail part that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light.
  • the intensity distribution of the laser light becomes an ideal Gaussian distribution.
  • the half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
  • the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the laser light intensity distribution that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively fused. Conceivable.
  • the moving device 106 moves the tables 111 and 112 and the scanner 105 relatively.
  • the moving device 106 includes a first slider mechanism 161, a second slider mechanism 162, and a third slider mechanism 163.
  • the first slider mechanism 161 is for moving the table 111 in a first direction (X direction) parallel to the holding surface 111s.
  • the second slider mechanism 162 is for moving the table 112 in a first direction (X direction) parallel to the holding surface 112s.
  • the third slider mechanism 163 is for moving the first slider mechanism 161 and the second slider mechanism 162 in a second direction (Y direction) parallel to the holding surfaces 111 s and 112 s and perpendicular to the first direction. .
  • the moving device 106 includes a first slider mechanism 161, a second slider mechanism 162, and a third slider mechanism 163 (hereinafter, these may be collectively referred to as slider mechanisms 161, 162, and 163). It is possible to move the tables 111 and 112 in each direction of XY by operating a linear motor (not shown) incorporated in each of the above.
  • the linear motor that is pulse-driven in the slider mechanisms 161, 162, and 163 can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Accordingly, the positions of the tables 111 and 112 supported by the slider mechanisms 161, 162, and 163 in the XY directions can be controlled with high accuracy.
  • the position control of the tables 111 and 112 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
  • the control device 107 includes a laser control unit 171 that controls the laser light oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, and a slider control unit 173 that controls the moving device 106. And having.
  • the laser controller 171 turns on / off the laser beam oscillator 102, the output of the laser beam oscillated from the laser beam oscillator 102, and the laser beam L oscillated from the laser beam oscillator 102 is acousto-optic.
  • the timing of passing through the element 103 and the drive driver 131 are controlled.
  • the scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
  • the slider control unit 173 controls the operation of the linear motor incorporated in each of the slider mechanisms 161, 162, and 163.
  • FIG. 10 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
  • an input device 109 capable of inputting an input signal is connected to the control device 107.
  • the input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device.
  • the control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
  • the control device 107 corrects each coordinate value in real time so that the laser light is emitted at coordinates that match the machining data, that is, the laser light draws a desired locus on the object 110 (see FIG. 1).
  • the moving device 106 and the scanner 105 are controlled.
  • the scanning of the laser light is mainly performed by the moving device 106, and an area where the irradiation position of the laser light cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105.
  • FIG. 11 is a diagram for explaining the operation of the tables 111 and 112 by the moving device 106.
  • the table 111 includes a third slider mechanism between a first standby position (first position) WP1 and a cutting position WP3 where laser beam cutting is performed under the control of the scanner 105. 163 moves along the second direction (Y direction).
  • the first standby position WP1 refers to the carry-in standby position when carrying the object 110 to be cut from the outside onto the holding surface 111s of the table 111, or the object 110 to which the cutting process has been applied. It also serves as an unloading standby position for unloading from the holding surface 111s.
  • the table 112 is moved along the second direction (Y direction) by the third slider mechanism 163 between the second standby position (second position) WP2 and the cutting position WP3.
  • the second standby position WP2 refers to the carry-in standby position when carrying the object 110 to be cut from the outside onto the holding surface 112s of the table 112, or the object 110 to which the cutting process has been performed. It also serves as an unloading standby position for unloading from the holding surface 112s.
  • the cutting position WP3 is a state in which at least a part of the object 110 held on the holding surfaces 111s and 112s and at least a part of the scan area 105s by the scanner 105 overlap when viewed in plan from the Z direction.
  • the table 111 has two objects 110 carried into the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) at the first standby position WP1 as shown in FIG. Thereafter, the two objects 110 held on the holding surface 111s are moved to the cutting position WP3.
  • the table 111 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP3 to the first standby position WP1, and then carries the object 110 to the outside at the first standby position WP1.
  • the table 112 holds the holding surface.
  • the two objects 110 held at 112s are moved to the cutting position WP3.
  • the table 112 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP3 to the second standby position WP2, and then carries the object 110 to the outside at the second standby position WP2.
  • the first standby position WP1, the second standby position WP2, and the cutting position WP3 are arranged on the same straight line in the second direction (Y direction).
  • the second standby position WP2 and the first standby position WP1 are in a relationship in which they face each other via the cutting position WP3 in the second direction (Y direction). Therefore, the movement directions of the tables 111 and 112 toward the cutting position WP3 are opposite to each other. As shown in FIG. 11, the operating range A1 of the table 111 and the operating range A2 of the table 112 are equal at the cutting position WP3. The parts are overlapped (overlapped).
  • the cutting process by the laser beam irradiation apparatus 100 includes a first cutting process and a second cutting process.
  • the first cutting step is a step of moving the object 110 carried in at the first standby position WP1 to the cutting position WP3 and carrying it out from the first standby position WP1 after a predetermined cutting process.
  • the second cutting step is a step of moving the object 110 carried in at the second standby position WP2 to the cutting position WP3 and carrying it out from the second standby position WP2 after the cutting process.
  • the cutting process (first cutting process) using the table 111 includes a first carry-in step for carrying the object 110 at the first standby position WP1, and the object 110 carried at the first standby position WP1 at the cutting position.
  • a first forward movement step of moving to WP3, a first cutting step of performing a predetermined cutting process at the cutting position WP3, and after the first cutting processing step the object 110 is moved from the cutting position WP3 to the first cutting step.
  • the cutting process (second cutting process) using the table 112 includes a second carry-in step of carrying in the object 110 at the second standby position WP2, and an object 110 carried in at the second standby position WP2.
  • the object 110 is moved from the cutting position WP3.
  • FIG. 12 is a diagram showing an operation flow of a cutting process using the table 111 as a cutting process by the laser beam irradiation apparatus 100.
  • FIG. 13 is a diagram conceptually showing the operation of the cutting process using the table 111. 12 and 13, since the basic operation of the cutting process using the table 112 is the same, the cutting process using the table 111 will be described as an example, and the details of the operation of the table 112 will be omitted. .
  • the table 111 carries the object 110 from the carry-in device 115 (see FIGS. 11 and 13) at the first standby position WP1 (carry-in step (first carry-in step or second carry-in step) S1 shown in FIG. 12).
  • the carry-in device 115 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
  • the relative position of the object 110 with respect to the cutting position WP3 is detected, and the relative position is corrected based on the detection result. Is performed (alignment step (detection step) S2 shown in FIG. 12).
  • the table 111 moves the object 110 carried in at the first standby position WP1 to the cutting position WP3 (cutting position moving step (first outward moving step or second outward moving step) S3 shown in FIG. 12). .
  • a predetermined cutting process as described later is performed on the object 110 on the holding surface 111s (cutting step (first cutting step or second cutting step) S4 shown in FIG. 12).
  • the table 111 moves to the first standby position WP1 where the object 110 subjected to the cutting process is carried out by the carry-out device 116 (see FIGS. 11 and 13) (unloading position moving step (first step shown in FIG. 12). 1 return path moving step or 2nd return path moving step) S5).
  • the carry-out device 116 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
  • the object 110 After moving to the first standby position WP1, the object 110 is unloaded from the holding surface 111s of the table 111 by the unloading device 116 (unloading step (first unloading step or second unloading step) S6 shown in FIG. 12).
  • the carry-in device 115 carries the object 110 onto the holding surface 111s of the table 111 at the first standby position WP1.
  • the carry-in device 115 includes a carry-in conveyor unit 115b and a holding unit 115a that sucks and holds the object 110 on the carry-in conveyor unit 115b.
  • the holding part 115a can be transferred to the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) while holding the two objects 110 at the same time.
  • the carry-in conveyor unit 115b is configured by, for example, a belt conveyor.
  • the object detection device (detection unit) 117 is operated by the object 110. Is detected.
  • the object detection device 117 includes a detection camera 117a that images the object 110, and detects the relative position of the object 110 with respect to the cutting position WP3 using the detection camera 117a.
  • the alignment step S2 is not necessarily required, for example, when the accuracy of carrying in the holding surface 111s by the carry-in device 115 is extremely high, and may be omitted. According to this, the object detection device 117 is not necessary. As a result, simplification of the device configuration and cost reduction can be realized. Further, the alignment step S2 may be provided only in one of the first cutting step by the table 111 and the second cutting step by the table 112.
  • the detection camera 117a detects the object 110 held on the first holding surface 111s1 on the cutting position WP3 side in the holding surface 111s.
  • the object detection device 117 transmits the detection result of the detection camera 117a to the control device 107 (see FIG. 10).
  • the control device 107 Based on the detection result from the detection camera 117a, the control device 107 performs an alignment process for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP3 (scanner 105).
  • the control device 107 drives the position correction unit to correct the position of the object 110 held on the holding surface 111s.
  • the position correction unit corrects the position of the object 110 held on the holding surface 111s by bringing a plurality of pins into contact with at least three side surfaces of the object 110, for example.
  • the table 111 stops moving.
  • the table 111 After the alignment of the object 110 held on the first holding surface 111s1 on the cutting position WP3 side is completed, the table 111 is moved to the cutting position WP3 side.
  • the detection camera 117a detects the object 110 held on the second holding surface 111s2 opposite to the cutting position WP3, and transmits the detection result to the control device 107.
  • the control device 107 performs alignment processing for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP3 (scanner 105) based on the detection result from the detection camera 117a. Similarly, the control device 107 drives a position correction unit (not shown) to correct the position of the object 110 held on the second holding surface 111s2.
  • the alignment step S2 is performed when the table 111 is located at the first standby position WP1 is described as an example, but the present invention is not limited to this.
  • the alignment step S2 may be performed halfway until the table 111 moves from the first standby position WP1 to the cutting position WP3.
  • the table 111 After the alignment step S2, in the cutting position moving step S3, the table 111 is moved to the cutting position WP3 as shown in FIG. Thereafter, in the cutting step S4, a predetermined cutting process as described later is performed on the object 110 on the holding surface 111s by irradiating the laser beam through the scanner 105. In the cutting step S4, the table 111 moves so that the cutting process is performed in the order of the object 110 held on the first holding surface 111s1 and the object 110 held on the second holding surface 111s2.
  • the table 111 moves to the first standby position WP1 as shown in FIG. 13 (d).
  • the unloading device 116 unloads the object 110 from the holding surface 111s of the table 111 at the first standby position WP1.
  • the carry-out device 116 includes a holding unit 116a that sucks, holds, and conveys the object 110, and a receiving unit 116b that receives the object 110 carried out from the holding surface 111s by the holding unit 116a.
  • the holding unit 116a can be carried out from the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) while holding the two objects 110 at the same time.
  • the receiving unit 116b is configured by a belt conveyor or the like, for example, and can transport the object 110 received from the holding unit 116a in a predetermined direction.
  • FIG. 14 is a diagram showing an outline of the entire operation in the cutting process of the laser beam irradiation apparatus 100.
  • numbers (# 1, # 2, # 3, # 4) given to the object 110 mean an example of the order in which the cutting process is performed.
  • the object 110 to be subjected to the first cutting process is the object 110a
  • the object 110 to be subjected to the second cutting process is the object 110b
  • the third cutting process is performed.
  • the target object 110 to be processed is the target object 110c
  • the target object 110 to be subjected to the fourth cutting process is the target object 110d.
  • the laser beam irradiation apparatus 100 cuts the objects 110a and 110b carried into the holding surface 111s of the table 111 from the carry-in device 115 at the first standby position WP1 according to the procedure described in FIGS.
  • a predetermined cutting process is performed at the position WP3.
  • the material is unloaded from the holding surface 111s to the unloading device 116 at the first standby position WP1.
  • a series of cutting processes by moving the table 111 between the first standby position WP1 and the cutting position WP3 is completed.
  • the laser beam irradiation apparatus 100 carries in the loading step S1, the alignment step S2, the cutting position moving step S3, the cutting step S4, and the unloading position moving step. S5 and carry-out step S6 are performed in this order.
  • the laser beam irradiation apparatus 100 moves the objects 110c and 110d carried into the holding surface 112s of the table 112 from the carry-in device 115 to the cutting position WP3 at the second standby position WP2. Then, a predetermined cutting process is performed. Then, it is carried out from the holding surface 112s to the carry-out device 116 at the second standby position WP2. Thereby, a series of cutting steps (second cutting step) by the table 112 moving between the first standby position WP1 and the cutting position WP3 is completed.
  • the laser beam irradiation apparatus 100 carries in the loading step S1, the alignment step S2, the cutting position moving step S3, the cutting step S4, and the unloading position moving step. S5 and carry-out step S6 are performed in this order.
  • the laser beam irradiation apparatus 100 performs the first cutting step by the table 111 and the second cutting step by the table 112 at the cutting position WP3, the first cutting step (cutting step S4 by the table 111) and the first The two cutting steps (cutting step S4 based on the table 112) are performed in a state in which a part of each process is overlapped so as to be alternately performed.
  • FIG. 15 is a diagram showing a flow of operations in each of the tables 111 and 112.
  • the second cutting step by the table 112 is started while the first cutting step by the table 111 is being performed.
  • the conveyance of the object 110 from the carry-in device 115 to the table 112 in the second cutting process is started.
  • the cutting position movement step (second forward movement step S3 by the table 112) of the second cutting process is started at the timing when the unloading step S6 is performed at the first standby position WP1 in the first cutting process.
  • the timing of starting the first cutting step by the table 111 and the second cutting step by the table 112 is the timing at which one of the table 111 and the table 112 is performing the cutting step S4 at the cutting position WP3, and the other table is cutting. Any timing may be used as long as it does not move to the position WP3.
  • the table 112 may be moved to the cutting position WP3 in the second cutting step at the timing when the table 111 starts moving from the cutting position WP3 in the first cutting step. That is, the timing for carrying in the object 110 with respect to the table 111 and the timing for carrying out the object 110 from the table 112 may be synchronized. In this way, since the tables 111 and 112 are sequentially moved to the cutting position WP3, the cutting process can be efficiently performed on the object 110 on the holding surfaces 111s and 112s of the tables 111 and 112. .
  • a common holding unit 118 may be provided between the carry-in device 115 and the carry-out device 116.
  • the holding unit 118 sucks and holds the object 110 from the carry-in conveyor unit 115b of the carry-in device 115, and holds the holding surface 111s of the table 111 at the first standby position WP1, or the table 112 at the second standby position WP2.
  • the object 110 is sucked and held from the holding surface 112s.
  • the holding unit 118 moves in the first direction (X direction) while holding the object 110 to carry the object 110 held by the carry-in conveyor unit 115b into the table 111 or the table 112.
  • the object 110 that has been subjected to the cutting process can be carried out from the holding surface 111 s of the table 111 or the holding surface 112 s of the table 112 to the receiving unit 116 b of the carry-out device 116.
  • the first cutting step is executed in synchronization with the first carry-in step and the first carry-out step at the first standby position WP1
  • the second cutting step is carried out at the second standby position WP2
  • the second carry-out step will be executed synchronously. That is, it is possible to simultaneously carry in and carry out the object 110 with respect to the tables 111 and 112.
  • the target object 110 can be efficiently supplied to the cutting position WP3, the time (tact time) required for a series of cutting processes of the laser light irradiation apparatus 100 can be shortened, and the production amount can be increased. Can do.
  • the object 110 can be sequentially conveyed to the cutting position WP3. Since the first standby position WP1 and the second standby position WP2 which are the starting points of the movement of the tables 111 and 112 serve as both the carry-in position where the object 110 is carried in and the carry-out position where the object 110 is carried out, the table 111 , 112 can be reduced. Thereby, the laser beam irradiation apparatus 100 can perform the cutting process with respect to the target object 110 efficiently, and can increase a processing amount.
  • the tables 111 and 112 employ a configuration in which a plurality of (two in this embodiment) objects 110 are held on the holding surfaces 111s and 112s, respectively. Therefore, a plurality of objects 110 can be sequentially supplied to the cutting position WP3. Therefore, the cutting process with respect to the target object 110 can be performed efficiently, and the amount of processing can be increased.
  • the first standby position WP1, the second standby position WP2, and the cutting position WP3 to which the table 111 or the table 112 moves are arranged on the same straight line. Further, the first standby position WP1 and the second standby position WP2 are respectively arranged on the opposite sides with respect to the cutting position WP3 (see FIG. 11). Therefore, the operation range A1 of the table 111 and the operation range A2 of the table 112 can be partially overlapped (overlapped) at the cutting position WP3.
  • the moving stroke between the cutting position WP3 and the standby positions WP1 and WP2 in the tables 111 and 112 is shortened, the object 110 is transported to the cutting position WP3 in a short time, and the cutting process for the object 110 is performed.
  • the amount of processing can be increased by efficiently performing the above.
  • the target object detection apparatus 117 which detects the relative position of the target object 110 with respect to the cutting position WP3 is provided. Therefore, the object 110 can be accurately conveyed with respect to the cutting position WP3. Therefore, the cutting process can be performed with high accuracy.
  • the first cutting step (cutting step S4 by the table 111) and the second cutting step (cutting step S4 by the table 112) are alternately performed at the cutting position WP3. Since the process is executed in a state where the parts overlap, the object 110 can be efficiently supplied to the cutting position WP3.
  • the target object 110 can be cut
  • the optical path of a laser beam becomes long when the cutting range is widened. If it does so, the beam diameter of a laser beam will change, Thereby, the outer peripheral part of a beam diameter will be distorted, and cut quality will change.
  • the laser beam irradiation apparatus 100 according to the present embodiment, the laser beam incident by the first condenser lens 141 is collected and the outer peripheral portion of the beam diameter of the laser beam collected by the pinhole 143h. And the collimating lens 145 can collimate the laser light from which the outer periphery of the beam diameter has been removed. Therefore, even if the optical path of the laser beam becomes long, the cut quality can be maintained.
  • the aperture member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141, the laser beam passes through the pinhole 143h in a sufficiently condensed state. Therefore, the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light can be removed with high accuracy.
  • the second condenser lens 108 is disposed on the optical path between the scanner 105 and the tables 111 and 112. Therefore, it is possible to collect the laser light that has passed through the scanner 105 in parallel with the object 110. Therefore, the object 110 can be cut with high accuracy.
  • the scanning of the laser beam is mainly performed by the moving device 106, and an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
  • the laser beam irradiation apparatus 100 includes the tables 111 and 112, the laser beam oscillator 102, the first condenser lens 141, the aperture member 143, the collimator lens 145, and the scanner 105.
  • the present invention is not limited to this.
  • the laser beam irradiation apparatus may include a laser beam oscillator, a condenser lens, a diaphragm member, and a collimator lens. That is, the laser light irradiation device may be configured not to include a table, a scanner, and a moving device.
  • the film bonding system 1 which is a manufacturing apparatus of the optical member bonding body which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
  • the film bonding system 1 which concerns on this embodiment is comprised by the laser beam irradiation apparatus 100 which the cutting device mentioned above.
  • FIG. 17 is a diagram illustrating a schematic configuration of the film bonding system 1 of the present embodiment.
  • the film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, and a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
  • the transport direction of the liquid crystal panel which is an optical display component
  • the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction.
  • the direction orthogonal to the Z direction is taken as the Z direction.
  • the film bonding system 1 of this embodiment is provided as one process of the manufacturing line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
  • FIG. 18 is a plan view of the liquid crystal panel P as viewed from the thickness direction of the liquid crystal layer P3.
  • the liquid crystal panel P includes a first substrate P1 that has a rectangular shape in plan view, a second substrate P2 that has a relatively small rectangular shape that is disposed to face the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2.
  • the liquid crystal panel P has a rectangular shape that follows the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
  • FIG. 19 is a cross-sectional view taken along the line AA in FIG.
  • a first optical member cut out from the first optical sheet F1 and the second optical sheet F2 having a long strip shape (see FIG. 17, hereinafter may be collectively referred to as an optical sheet FX).
  • F11 and the second optical member F12 (hereinafter may be collectively referred to as an optical member F1X) are appropriately bonded.
  • the first optical member F11 and the second optical member F12 as polarizing films are bonded to both the backlight side and the display surface side of the liquid crystal panel P, respectively.
  • a frame portion G having a predetermined width for arranging a sealant or the like for joining the first and second substrates of the liquid crystal panel P is provided outside the display area P4.
  • the 1st optical member F11 and the 2nd optical member F12 are the 1st sheet piece F1m and 2nd sheet piece F2m (henceforth a sheet piece FXm hereafter) mentioned later, respectively. It is formed by cutting off the excess part on the outside. The bonding surface will be described later.
  • FIG. 20 is a partial cross-sectional view of the optical sheet FX bonded to the liquid crystal panel P.
  • the optical sheet FX includes a film-like optical member main body F1a, an adhesive layer F2a provided on one surface (upper surface in FIG. 20) of the optical member main body F1a, and one optical member main body F1a via the adhesive layer F2a.
  • the optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and its peripheral area. For convenience of illustration, hatching of each layer in FIG. 20 is omitted.
  • the optical member body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface thereof.
  • excluding the separator F3a from the optical sheet FX is called the bonding sheet
  • the separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a.
  • the surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a.
  • the surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a.
  • the surface protective film F4a is separated from the optical member main body F1a at a predetermined timing.
  • the optical sheet FX may be configured not to include the surface protective film F4a, or the surface protective film F4a may be configured not to be separated from the optical member body F1a.
  • the optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8.
  • the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
  • the optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other.
  • the optical layer may be a retardation film, a brightness enhancement film, or the like.
  • At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment.
  • the optical member body F1a may not include at least one of the first film F7 and the second film F8.
  • the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
  • the film bonding system 1 of this embodiment is demonstrated in detail.
  • the film laminating system 1 of the present embodiment is arranged such that the right side of the liquid crystal panel P in the drawing direction (+ X direction side) to the left side of the drawing in the drawing direction of the liquid crystal panel P ( ⁇ X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
  • the roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary.
  • the liquid crystal panel P On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P ⁇ b> 4 is along the transport direction.
  • the downstream conveyor 7 On the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P ⁇ b> 4 along the transport direction.
  • a sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet FX is bonded.
  • the upstream conveyor 6 includes an independent free roller conveyor 24 on the downstream side in the first suction device 11 described later.
  • the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
  • the film bonding system 1 of this embodiment is the 1st adsorption
  • the dust device 16, the 2nd bonding apparatus 17, the 2nd detection apparatus 42, the 2nd cutting device 32, and the control part 40 are provided.
  • the first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
  • the first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P.
  • the panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction.
  • the panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P.
  • the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state.
  • Image data obtained by the alignment camera 11b is transmitted to the control unit 40.
  • the panel holding unit 11a is operated to align the liquid crystal panel P with the free roller conveyor 24 as a transport destination.
  • the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P.
  • the liquid crystal panel P conveyed on the rail R by the panel holding unit 11a is nipped by the pressure roll 23 together with the sheet piece FXm while being adsorbed by the adsorption pad 26.
  • the 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13.
  • FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption
  • FIG. The 1st bonding apparatus 13 bonds the bonding sheet
  • the 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • FIG. 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • the conveying device 22 conveys the optical sheet FX along the longitudinal direction while unwinding the optical sheet FX from the original roll R1 around which the optical sheet FX is wound.
  • the conveying apparatus 22 conveys the bonding sheet
  • the conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
  • the roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet FX is wound and feeds the optical sheet FX along the longitudinal direction thereof.
  • the plurality of guide rollers 22b wind the optical sheet FX so as to guide the optical sheet FX unwound from the original roll R1 along a predetermined conveyance path.
  • the cutting device 22c performs a half cut on the optical sheet FX on the conveyance path.
  • the knife edge 22d supplies the bonding sheet F5 to the bonding position while separating the bonding sheet F5 from the separator F3a by winding the optical sheet FX subjected to the half cut at an acute angle.
  • the winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
  • the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example.
  • the winding unit 22e winds the separator F3a having passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet FX in the transport direction.
  • the upstream side in the transport direction of the optical sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side
  • the downstream side in the transport direction is referred to as a sheet transport downstream side.
  • Each guide roller 22b changes the traveling direction of the optical sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet FX being conveyed.
  • a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c.
  • the dancer roller absorbs the feeding amount of the optical sheet FX conveyed from the roll holding unit 22a while the optical sheet FX is cut by the cutting device 22c.
  • FIG. 21 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
  • the cutting device 22c applies a part in the thickness direction of the optical sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet FX. Make a half-cut to cut.
  • the cutting device 22c of the present embodiment is provided so as to be able to advance and retreat from the side opposite to the separator F3a with respect to the optical sheet FX toward the optical sheet FX.
  • the cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical sheet FX (so that a predetermined thickness remains in the separator F3a), Half-cut to the vicinity of the interface between the adhesive layer F2a and the separator F3a.
  • the optical member main body F1a and the surface protection film F4a are cut in the thickness direction, thereby forming cut lines L1 and L2 extending over the entire width in the width direction of the optical sheet FX.
  • the cut lines L1 and L2 are formed so as to be aligned in the longitudinal direction of the belt-shaped optical sheet FX.
  • the plurality of cut lines L1 and L2 are formed at equal intervals in the longitudinal direction of the optical sheet FX.
  • the optical sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines L1, L2.
  • a section sandwiched between a pair of cutting lines L1 and L2 adjacent in the longitudinal direction in the optical sheet FX is a sheet piece FXm in the bonding sheet F5.
  • the sheet piece FXm is a sheet piece of the optical sheet FX having a size that protrudes outside the liquid crystal panel P.
  • the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over its entire width in the width direction of the optical sheet FX.
  • the knife edge 22d is wound so as to be in sliding contact with the separator F3a side of the optical sheet FX after the half cut.
  • the knife edge 22d is seen from the width direction of the optical sheet FX above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet FX (width direction of the upstream conveyor 6). It has the 2nd surface arrange
  • the knife edge 22d winds the 1st optical sheet F1 to an acute angle at the front-end
  • the first optical sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d.
  • the tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23.
  • the first sheet piece F1m separated from the separator F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping the lower surface of the liquid crystal panel P in a state of being sucked by the first suction device 11. Is done.
  • the first sheet piece F1m is a sheet piece of the first optical sheet F1 having a size that protrudes outside the liquid crystal panel P.
  • the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d.
  • the winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
  • the pinching roll 23 bonds the first sheet piece F1m separated from the first optical sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
  • the pinching roll 23 is equivalent to the bonding apparatus as described in a claim.
  • the pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a moves up and down).
  • a predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13.
  • liquid crystal panel P and the first sheet piece F1m are overlapped and introduced. These liquid crystal panel P and the 1st sheet piece F1m are sent out to the panel conveyance downstream of the upstream conveyor 6, being clamped by each bonding roller 23a.
  • 1st optical member bonding body PA1 sheet piece bonding body
  • PA1 sheet piece bonding body
  • the 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13.
  • FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth a 1st bonding surface) of liquid crystal panel P and the 1st sheet piece F1m.
  • FIG. 22 is a plan view showing a step of detecting the edge ED of the first bonding surface SA1.
  • the first detection device 41 detects the edge ED of the first bonding surface SA ⁇ b> 1 in the four inspection areas CA installed on the transport path of the upstream conveyor 6.
  • region CA is arrange
  • the edge ED is detected for each liquid crystal panel P conveyed on the line.
  • the data of the edge ED detected by the first detection device 41 is stored in a storage unit (not shown).
  • region CA may be arrange
  • FIG. 23 is a schematic diagram of the first detection device 41.
  • the configuration of the first detection device 41 is shown upside down with the side on which the first sheet piece F1m of the first optical member bonding body PA1 is bonded as the upper side.
  • the 1st detection apparatus 41 is the illumination light source 44 which illuminates edge ED, and 1st bonding surface SA1 rather than edge ED with respect to the normal line direction of 1st bonding surface SA1.
  • the image pickup device 43 is disposed at a position inclined inward and picks up an image of the edge ED from the side where the first sheet piece F1m of the first optical member bonding body PA1 is bonded.
  • the illumination light source 44 and the imaging device 43 are respectively arranged in the four inspection areas CA (positions corresponding to the four corners of the first bonding surface SA1) shown in FIG.
  • An angle ⁇ between the normal line of the first bonding surface SA1 and the normal line of the image pickup surface 43a of the image pickup device 43 (hereinafter referred to as an inclination angle ⁇ of the image pickup device 43) is divided into panels within the image pickup field of the image pickup device 43. It is preferable to set so that time lag, burrs and the like do not enter. For example, when the end surface of the second substrate P2 is shifted outward from the end surface of the first substrate P1, the inclination angle ⁇ of the imaging device 43 is such that the edge of the second substrate P2 enters the imaging field of the imaging device 43. Set to not.
  • the inclination angle ⁇ of the imaging device 43 is set to match the distance H (hereinafter referred to as the height H of the imaging device 43) between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43. It is preferred that For example, when the height H of the imaging device 43 is 50 mm or more and 100 mm or less, the inclination angle ⁇ of the imaging device 43 is preferably set to an angle in the range of 5 ° or more and 20 ° or less. However, when the deviation amount is empirically known, the height H of the imaging device 43 and the inclination angle ⁇ of the imaging device 43 can be obtained based on the deviation amount. In the present embodiment, the height H of the imaging device 43 is set to 78 mm, and the inclination angle ⁇ of the imaging device 43 is set to 10 °.
  • the illumination light source 44 and the imaging device 43 are fixedly arranged in each inspection area CA.
  • the illumination light source 44 and the imaging device 43 may be arrange
  • the illumination light source 44 and the imaging device 43 should each be provided one each. Thereby, the illumination light source 44 and the imaging device 43 can be moved to a position where the edge ED of the first bonding surface SA1 can be easily imaged.
  • the illumination light source 44 is arrange
  • the illumination light source 44 is arrange
  • the optical axis of the illumination light source 44 and the normal line of the imaging surface 43a of the imaging device 43 are parallel.
  • the illumination light source may be arrange
  • optical axis of the illumination light source 44 and the normal line of the image pickup surface 43a of the image pickup device 43 may slightly cross each other.
  • the cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge ED of the first bonding surface SA1.
  • the control part 40 acquires the data of the edge ED of 1st bonding surface SA1 memorize
  • the cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side.
  • the first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control unit 40.
  • the first cutting device 31 is provided on the downstream side of the panel conveyance from the first detection device 41.
  • the 1st cutting device 31 performs the laser cut along edge ED, and is the 1st sheet piece F1m (1st sheet
  • the surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed.
  • the 1st cutting device 31 is corresponded to the cutting device as described in a claim.
  • the 1st cutting device 31 makes the 1st sheet piece F1m the target object 110, cuts off the excess part of this 1st sheet piece F1m, and the optical member (1st optical) of the magnitude
  • a cutting process for forming the member F11) is performed.
  • the size corresponding to the first bonding surface SA1 indicates the size of the outer shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer shape of the liquid crystal panel P, and that avoids a functional part such as an electrical component mounting portion.
  • the first optical member F11 is bonded to the surface on the backlight side of the liquid crystal panel P by cutting off the excess portion of the first sheet piece F1m from the first optical member bonding body PA1 by the first cutting device 31.
  • Optical member bonding body PA2 is formed.
  • the surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
  • the reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
  • the reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11.
  • the reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
  • the reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control unit 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce
  • the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described.
  • suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2.
  • the second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2.
  • maintenance part 11a adsorbs and hold
  • maintenance part 11a moves on the rail R in the state which adsorbed and hold
  • the alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 as the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
  • the second dust collecting device 16 is arranged on the upstream side in the transport direction of the liquid crystal panel P with respect to the pinching roll 23 which is the bonding position of the second bonding device 17.
  • the second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16.
  • FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position.
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13.
  • 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce
  • the second sheet piece F2m is a sheet piece of the second optical sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
  • These 2nd optical member bonding body PA2 and the 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by each bonding roller 23a.
  • it is a 2nd sheet
  • the piece F2m By bonding the piece F2m, the third optical member bonding body PA3 is formed.
  • the 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17.
  • FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m.
  • the edge data detected by the second detection device 42 is stored in a storage unit (not shown).
  • the cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface.
  • the control part 40 acquires the data of the edge of the 2nd bonding surface memorize
  • the cutting position of the second sheet piece F2m is determined so as not to protrude.
  • the second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control unit 40.
  • the 2nd cutting device 32 is corresponded to the cutting device as described in a claim.
  • the second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42.
  • the 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude
  • the 2nd cutting device 32 makes 2nd sheet piece F2m the target object 110, cuts off the excess part of this 2nd sheet piece F2m, and the optical member (2nd optical member) of the magnitude
  • a cutting process for forming F12) is performed.
  • the second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and
  • the first optical member F11 is bonded to the backlight side surface of the liquid crystal panel P to form a fourth optical member bonded body PA4 (optical member bonded body).
  • the surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
  • the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus 100 mentioned above.
  • the 1st cutting device 31 and the 2nd cutting device 32 cut
  • a bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17.
  • the bonding inspection apparatus is an inspection (not shown whether the position of the optical member F1X is appropriate (whether the position deviation is within the tolerance range)) by the inspection apparatus (not shown) of the workpiece (liquid crystal panel P) on which the film is bonded. Etc.).
  • the work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
  • control part 40 as an electronic control apparatus which performs overall control of each part of the film bonding system 1 is comprised including the computer system.
  • This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
  • the control unit 40 of the present embodiment includes an interface capable of executing communication with an external device of the computer system.
  • An input device that can input an input signal may be connected to the control unit 40.
  • the input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system.
  • the control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
  • the storage unit of the control unit 40 includes a program that causes the arithmetic processing unit to control each unit of the film bonding system 1 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical sheet F. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40.
  • the control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
  • the storage unit is a concept including a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium.
  • the storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
  • a plurality of inspection points CP are set in the width direction of the optical sheet FX, and the direction of the optical axis of the optical sheet FX is detected at each inspection point CP.
  • the timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical sheet FX is unwound from the original fabric roll R1 and half cut.
  • Data in the optical axis direction of the optical sheet FX is stored in a storage device (not shown) in association with the position of the optical sheet FX (position in the longitudinal direction and position in the width direction of the optical sheet FX).
  • the control unit 40 acquires the optical axis data (inspection data on the in-plane distribution of the optical axis) of each inspection point CP from the storage device, and partitions the optical sheet FX (cut line CL) into the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the region to be detected is detected.
  • an angle (deviation angle) formed between the direction of the optical axis and the edge line EL of the optical sheet FX is detected for each inspection point CP, and the largest of the deviation angles (maximum)
  • the direction that forms the average deviation angle ⁇ mid with respect to the edge line EL of the optical sheet FX is detected as the direction of the average optical axis of the optical sheet FX.
  • the deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical sheet FX and the clockwise direction being negative.
  • the direction of the average optical axis of the optical sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P.
  • the bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specification, the average optical axis of the optical sheet FX is set.
  • the sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
  • the first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P with a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer peripheral edge of the bonding surface is detected by imaging the edge of the bonding surface. In this embodiment, the laser cutting by each cutting device 31 and 32 is made along the outer periphery of the bonding surface.
  • the runout width (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in this embodiment, compared with the case of cutting the optical sheet FX using the cutting blade, the outer peripheral edge of the bonding surface
  • the liquid crystal panel P can be reduced in size and / or the display area P4 can be increased in size. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
  • the optical sheet FX is cut into a sheet piece that matches the display region P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the sheet piece and the liquid crystal panel P, and the relative bonding positions thereof Dimensional tolerances overlap. Therefore, it becomes difficult to narrow the width of the frame portion G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
  • the sheet piece FXm of the optical sheet FX of a size protruding from the optical sheet FX to the outside of the liquid crystal panel P, and pasting the cut sheet piece FXm on the liquid crystal panel P the sheet piece FXm is cut according to the bonding surface. Only the run-out tolerance of the cutting line needs to be considered, and the tolerance of the width of the frame G can be reduced ( ⁇ 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
  • the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion.
  • FIG. 25 shows a control for scanning the laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 shown in FIG. 1 as a cutting device. It is a figure which shows a method.
  • reference numeral Tr denotes a target laser beam movement locus (desired locus; hereinafter referred to as laser light movement locus).
  • Reference numeral Tr1 is a trajectory (hereinafter sometimes referred to as a light source movement trajectory) obtained by projecting a movement trajectory due to relative movement between the table 111 and the scanner 105 onto the sheet piece FXm.
  • the light source movement locus Tr1 has a shape in which four corners of the laser light movement locus Tr having a rectangular shape are curved.
  • Reference sign K1 is a straight section other than the corner, and reference sign K2 is a bent section of the corner.
  • Reference numeral Tr2 indicates that the irradiation position of the laser beam is orthogonal to the light source movement trajectory Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement trajectory Tr1. It is a curve (hereinafter, sometimes referred to as an adjustment curve) indicating how much it is shifted (adjusted) in the direction of movement.
  • the deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
  • the light source movement locus Tr1 is a substantially rectangular movement locus having a curved corner.
  • the light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. For this reason, in FIG. 25, the corner of the light source movement locus Tr1 is curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
  • the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is.
  • the scanner 105 is moving in the bending section K2
  • the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so that the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light.
  • the irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1.
  • the distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1.
  • the light source movement trajectory Tr1 is arranged inside the laser light movement trajectory Tr, but the irradiation position of the laser light is outside the laser light movement trajectory Tr by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. Therefore, these deviations cancel out, and the irradiation position of the laser beam is arranged on the laser beam movement locus Tr.
  • the first cutting device 31 and the second cutting device 32 are configured by the laser light irradiation device described above. Therefore, productivity can be improved by reducing the tact time by efficiently performing the cutting process on the sheet pieces F1m and F2m. Moreover, the sheet pieces F1m and F2m can be cut sharply, and the deterioration of the cut quality can be suppressed.
  • the moving device 106 and the scanner 105 are controlled so as to draw a desired laser beam movement trajectory Tr in the sheet piece FXm.
  • the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only a narrow bending section K2.
  • the laser beam is scanned on the sheet piece FXm by the movement of the table 111 by the moving device 106.
  • the scanning of the laser beam is mainly performed by the moving device 106, and only the region where the moving position of the laser beam irradiation position cannot be accurately controlled by the moving device 106 is adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. is doing. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
  • the imaging direction of the imaging device 43 crosses diagonally with respect to the normal direction of the first bonding surface SA1. That is, the imaging direction of the imaging device 43 is set so that the edge of the second substrate P2 does not enter the imaging field of view of the imaging device 43. Therefore, when the edge ED of the first bonding surface SA1 is detected over the first sheet piece F1m, the edge of the second substrate P2 is not erroneously detected, and the first bonding surface SA1 is not detected. Only the edge ED can be detected. Therefore, the edge ED of the first bonding surface SA1 can be detected with high accuracy.
  • the excess part of the sheet pieces F1m and F2m is cut off, whereby the optical member F11 having a size corresponding to the bonding surface.
  • F12 can be formed on the surface of the liquid crystal panel P.
  • the optical axis direction of the sheet pieces F1m and F2m changes depending on the position of the sheet pieces F1m and F2m by bonding the sheet pieces F1m and F2m of a size protruding outside the liquid crystal panel P to the liquid crystal panel P.
  • the liquid crystal panel P can be aligned and bonded in accordance with the direction. Thereby, the precision of the optical axis direction of the optical members F11 and F12 with respect to the liquid crystal panel P can be improved, and the color and contrast of the optical display device can be increased.
  • the cutting devices 31 and 32 laser cut the sheet pieces F1m and F2m, so that the force is not exerted on the liquid crystal panel P as compared with the case where the sheet pieces F1m and F2m are cut with a blade, and cracks and chips occur. It becomes difficult, and the stable durability of the liquid crystal panel P can be obtained.
  • the configuration in which the sheet piece is cut is described as an example of the configuration in which the object is irradiated with the laser beam and the predetermined processing is performed, but the configuration is not limited thereto.
  • it in addition to dividing the sheet piece into at least two parts, it also includes making a cut through the sheet piece and forming a groove (cut) of a predetermined depth in the sheet piece. To do. More specifically, for example, cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
  • the drawing locus of the laser beam emitted from the laser beam irradiation device is a rectangular shape (square shape) in plan view
  • the present invention is not limited thereto.
  • the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape that is a pentagon or more in plan view.
  • a planar-view star shape and planar-view geometric shape may be sufficient.
  • the present invention can also be applied to such a drawing trajectory.
  • the optical sheet FX is pulled out from the original roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is bonded from the sheet piece FXm.
  • a sheet-like optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
  • SYMBOLS 1 Film bonding system (manufacturing apparatus of an optical member bonding body), 23 ... Nipping roll (bonding apparatus), 31 ... 1st cutting device, 32 ... 2nd cutting device, 100 ... Laser beam irradiation apparatus, 101 ... Table: 101s ... Holding surface, 102 ... Laser oscillator, 105 ... Scanner, 106 ... Moving device, 108 ... Second condenser lens, 110 ... Object (target), 141 ... First condenser lens, 143 ... Diaphragm member, 145 ... collimating lens, P ... liquid crystal panel (optical display component), P1 ... first substrate, P2 ... second substrate, FX ...
  • optical sheet FXm ... sheet piece, F1X ... optical member, PA1 ... first optical Member bonding body (sheet piece bonding body), PA4 ... 4th optical member bonding body (optical member bonding body), SA1 ... 1st bonding surface, ED ... Edge

Abstract

This cutting device is provided with a cutting unit which cuts a processing target, a first table which can move the processing target between a first position and a cutting position, and a second table which can move the processing target between the cutting position and a second position, which is opposite of the first position with respect to the cutting position, wherein the first position and the second position double as a loading position where, before cutting processing, the processing target is loaded from outside onto the first table or second table, and an unloading position where, after completing the cutting processing, the processing target is unloaded from the first table or the second table to the outside.

Description

切断装置、切断方法、および光学部材貼合体の製造装置CUTTING DEVICE, CUTTING METHOD, AND OPTICAL MEMBER BONDING MANUFACTURING DEVICE
 本発明は、液晶ディスプレイ等の光学表示デバイスに貼合された光学部材シートの切断を行う切断装置、切断方法、および光学部材貼合体の製造装置に関する。
 本願は、2013年2月14日に出願された日本国特願2013-026951号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cutting device for cutting an optical member sheet bonded to an optical display device such as a liquid crystal display, a cutting method, and an apparatus for manufacturing an optical member bonded body.
This application claims priority based on Japanese Patent Application No. 2013-026951 filed on Feb. 14, 2013, the contents of which are incorporated herein by reference.
 従来、液晶ディスプレイ等の光学表示デバイスの生産システムにおいて、液晶パネル(光学表示部品)に貼合する偏光板等の光学部材は、長尺フィルムから液晶パネルの表示領域に合わせたサイズのシート片に切り出され、梱包されて別ラインに搬送された後、液晶パネルに貼合されることがある(例えば、特許文献1参照)。 Conventionally, in a production system for an optical display device such as a liquid crystal display, an optical member such as a polarizing plate to be bonded to a liquid crystal panel (optical display component) is formed from a long film into a sheet piece having a size matching the display area of the liquid crystal panel After being cut out, packed and transported to another line, it may be bonded to a liquid crystal panel (see, for example, Patent Document 1).
日本国特開2003-255132号Japanese Unexamined Patent Publication No. 2003-255132
 しかし、上記従来の構成では、液晶パネル及びシート片の各寸法バラツキ、並びに液晶パネルに対するシート片の貼合バラツキ(位置ズレ)を考慮して、表示領域よりも若干大きめのシート片を切り出している。そのため、表示領域の周辺部に余分な領域(額縁部)が形成され、機器の小型化が阻害されるという問題がある。そこで、機器の小型化を図るべく、表示領域よりも若干大きめのシート片を液晶パネルに貼合し、表示領域の周辺部の余分な領域(額縁部)を切断する切断処理を別途行うことが考えられる。しかしながら、このような切断処理を行うと、システム全体の作業時間(タクトタイム)が増加してしまい、生産効率が低下する可能性があった。この切断工程の時間を短縮することがタクトタイムの低減につながることが本発明者の検討において明らかになっている。 However, in the conventional configuration described above, a sheet piece slightly larger than the display area is cut out in consideration of variation in dimensions of the liquid crystal panel and the sheet piece, and bonding variation (positional deviation) of the sheet piece to the liquid crystal panel. . Therefore, there is a problem that an extra area (frame part) is formed around the display area, and downsizing of the device is hindered. Therefore, in order to reduce the size of the device, a sheet piece slightly larger than the display area is pasted on the liquid crystal panel, and a cutting process for cutting an extra area (frame part) around the display area may be separately performed. Conceivable. However, if such a cutting process is performed, the work time (tact time) of the entire system increases, which may reduce the production efficiency. It has been clarified by the inventor that shortening the time of the cutting process leads to a reduction in tact time.
 本発明の態様は上記事情に鑑みてなされたもので、タクトタイムを低減することで生産性を向上させることができる切断装置、切断方法、および光学部材貼合体の製造装置を提供する。 The aspect of the present invention has been made in view of the above circumstances, and provides a cutting apparatus, a cutting method, and an optical member bonded body manufacturing apparatus that can improve productivity by reducing tact time.
 上記の目的を達成するために、本発明は以下の手段を採用した。
 (1)本発明の第一態様に係る切断装置は、処理対象に対して所定の切断処理を行う切断部と、第1の位置と、前記切断部が前記切断処理を行う切断位置と、の間で前記処理対象を移動可能な第1のテーブルと、前記切断位置に対して前記第1の位置と反対側の第2の位置と、前記切断位置と、の間で前記処理対象を移動可能な第2のテーブルと、を備え、前記第1の位置および前記第2の位置は、前記切断処理が行われる前に前記処理対象を外部から前記第1のテーブルまたは前記第2のテーブルに搬入する搬入位置と、前記切断処理が行われた後に前記処理対象を前記第1のテーブルまたは前記第2のテーブルから外部に搬出する搬出位置と、を兼ねる。
In order to achieve the above object, the present invention employs the following means.
(1) The cutting device according to the first aspect of the present invention includes a cutting unit that performs a predetermined cutting process on a processing target, a first position, and a cutting position where the cutting unit performs the cutting process. The processing object can be moved between a first table that can move the processing object between, a second position opposite to the first position with respect to the cutting position, and the cutting position. A second table, and the first position and the second position carry the processing object from the outside into the first table or the second table before the cutting process is performed. And a carry-in position where the processing target is carried out from the first table or the second table after the cutting process is performed.
 (2)上記(1)の態様において、前記第1のテーブル及び前記第2のテーブルは、複数の前記処理対象を保持する構成であってもよい。 (2) In the above aspect (1), the first table and the second table may be configured to hold a plurality of the processing targets.
 (3)上記(1)又は(2)の態様において、前記第1の位置と前記切断位置との間、及び前記第2の位置と前記切断位置との間の少なくとも一方に、前記切断部に対する前記処理対象の相対位置を検出する検出部が設けられる構成であってもよい。 (3) In the aspect of the above (1) or (2), the cutting portion is at least one between the first position and the cutting position and between the second position and the cutting position. The structure provided with the detection part which detects the relative position of the said process target may be sufficient.
 (4)上記(3)の態様において、前記検出部の検出結果に基づいて、前記切断部に対する前記処理対象の相対位置を補正する位置補正部をさらに備える構成であってもよい。 (4) In the above aspect (3), a configuration may further include a position correction unit that corrects a relative position of the processing target with respect to the cutting unit based on a detection result of the detection unit.
 (5)上記(1)から(4)のいずれか一項の態様において、前記第1のテーブルに対する前記処理対象の搬入タイミングと、前記第2のテーブルからの前記処理対象の搬出タイミングとが同期して行われる構成であってもよい。 (5) In the aspect according to any one of (1) to (4) above, the carry-in timing of the processing target with respect to the first table and the carry-out timing of the processing target from the second table are synchronized. The structure performed by doing may be sufficient.
 (6)上記(1)から(5)のいずれか一項の態様において、前記第1の位置、前記第2の位置、および前記切断位置は、それぞれが直線上に設定される構成であってもよい。 (6) In the aspect according to any one of (1) to (5), each of the first position, the second position, and the cutting position is set on a straight line. Also good.
 (7)上記(1)から(6)のいずれか一項の態様において、前記切断部は、レーザー光によって前記切断処理を行う構成であってもよい。 (7) In the aspect according to any one of (1) to (6), the cutting unit may be configured to perform the cutting process with a laser beam.
 (8)本発明の第二態様に係る切断方法は、第1の位置において搬入した処理対象を切断位置に移動させて所定の切断処理を施した後に前記第1の位置から前記処理対象を搬出する第1切断工程と、第2の位置において搬入した前記処理対象を前記切断位置に移動させて前記所定の切断処理を施した後に前記第2の位置から前記処理対象を搬出する第2切断工程と、を備え、前記第1切断工程は、前記第1の位置において前記処理対象を搬入する第1搬入ステップと、前記第1の位置において搬入された前記処理対象を前記切断位置に移動させる第1往路移動ステップと、前記切断位置にて前記切断処理を行う第1切断ステップと、前記第1切断ステップ後、前記処理対象を前記切断位置から前記第1の位置まで移動させる第1復路移動ステップと、前記第1復路移動ステップの後、前記処理対象を前記第1の位置から搬出する第1搬出ステップと、を有し、前記第2切断工程は、前記第2の位置において前記処理対象を搬入する第2搬入ステップと、前記第2の位置において搬入された前記処理対象を前記切断位置に移動させる第2往路移動ステップと、前記切断位置にて前記切断処理を行う第2切断ステップと、前記第2切断ステップ後、前記処理対象を前記切断位置から前記第2の位置まで移動させる第2復路移動ステップと、前記第2復路移動ステップの後、前記処理対象を前記第2の位置から搬出する第2搬出ステップと、を有し、前記第1切断工程および前記第2切断工程は、前記切断位置にて前記第1切断ステップ及び前記第2切断ステップが交互に行われるように、各々の工程の一部がオーバーラップした状態で実行される。 (8) In the cutting method according to the second aspect of the present invention, the processing object carried in at the first position is moved to the cutting position to perform a predetermined cutting process, and then the processing object is carried out from the first position. A first cutting step to perform, and a second cutting step to move the processing object carried in at the second position to the cutting position and perform the predetermined cutting process, and then to carry out the processing object from the second position. The first cutting step includes a first carry-in step for carrying in the processing object at the first position, and a first moving step for moving the processing object carried in at the first position to the cutting position. A first forward moving step, a first cutting step for performing the cutting process at the cutting position, and a first backward moving step for moving the processing object from the cutting position to the first position after the first cutting step. And a first unloading step for unloading the object to be processed from the first position after the first return path moving step, and the second cutting step performs the process at the second position. A second carry-in step for carrying in the object; a second forward movement step for moving the processing object carried in at the second position to the cutting position; and a second cutting step for carrying out the cutting process at the cutting position. And after the second cutting step, the second return path moving step for moving the processing target from the cutting position to the second position, and after the second return path moving step, the processing target is moved to the second position. A second unloading step for unloading the first cutting step and the second cutting step so that the first cutting step and the second cutting step are alternately performed at the cutting position. Is performed with a portion of each of the steps have been overlapped.
 (9)上記(8)の態様において、前記第1切断工程および前記第2切断工程の少なくとも一方は、前記第1往路移動ステップ及び前記第2往路移動ステップの少なくとも一方の途中に、前記切断位置に対する前記処理対象の相対位置を検出する検出ステップをさらに有する構成であってもよい。 (9) In the aspect of the above (8), at least one of the first cutting step and the second cutting step is performed at the cutting position in the middle of at least one of the first outward movement step and the second outward movement step. The structure which further has the detection step which detects the relative position of the said process target with respect to may be sufficient.
 (10)上記(8)又は(9)の態様において、前記第1切断工程は、前記第1の位置において、前記第1搬入ステップおよび前記第1搬出ステップが同期して実行され、前記第2切断工程は、前記第2の位置において、前記第2搬入ステップおよび前記第2搬出ステップが同期して実行される構成であってもよい。 (10) In the above aspect (8) or (9), in the first cutting step, the first carry-in step and the first carry-out step are executed synchronously at the first position, and the second The cutting process may be configured such that the second carry-in step and the second carry-out step are executed in synchronization at the second position.
 (11)上記(8)から(10)のいずれか一項の態様において、第1往路移動ステップ、第1復路移動ステップ、第2往路移動ステップ、および第2復路移動ステップにおいて、前記処理対象がそれぞれ同一直線上を移動する構成であってもよい。 (11) In the aspect according to any one of (8) to (10), in the first forward movement step, the first backward movement step, the second forward movement step, and the second backward movement step, the processing target is The structure which each moves on the same straight line may be sufficient.
 (12)本発明の第三態様に係る光学部材貼合体の製造装置は、光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造装置であって、前記光学表示部品の外側にはみ出るサイズのシート片を前記光学表示部品に貼合することによりシート片貼合体を形成する貼合装置と、前記シート片貼合体における前記光学表示部品と前記シート片との貼合面の端縁に沿って、前記貼合面の外側にはみ出た部分の前記シート片を前記シート片貼合体から切り離し、前記貼合面に対応する大きさの前記光学部材を形成する切断装置と、を含み、前記切断装置は、上記(1)から(7)のいずれかの態様の切断装置によって構成される。 (12) The manufacturing apparatus of the optical member bonding body according to the third aspect of the present invention is an apparatus for manufacturing an optical member bonding body formed by bonding an optical member to an optical display component. A bonding device that forms a sheet piece bonded body by bonding a sheet piece of a size protruding to the outside to the optical display component, and a bonding surface of the optical display component and the sheet piece in the sheet piece bonded body. A cutting device that cuts off the sheet piece of the portion protruding outside the bonding surface from the sheet piece bonding body along the edge, and forms the optical member having a size corresponding to the bonding surface. The cutting device includes the cutting device according to any one of the above (1) to (7).
 本発明の態様によれば、タクトタイムを低減することで生産性を向上させることができる切断装置、切断方法、および光学部材貼合体の製造装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a cutting apparatus, a cutting method, and an optical member bonded body manufacturing apparatus that can improve productivity by reducing the tact time.
本実施形態のレーザー光照射装置の一例を示す斜視図である。It is a perspective view which shows an example of the laser beam irradiation apparatus of this embodiment. EBSの構成を示す図である。It is a figure which shows the structure of EBS. IORの内部構成を示す斜視図である。It is a perspective view which shows the internal structure of IOR. 第1集光レンズ、絞り部材及びコリメートレンズの配置構成を示す側断面図である。It is a sectional side view which shows the arrangement configuration of a 1st condensing lens, an aperture member, and a collimating lens. EBSの作用を説明するための図である。It is a figure for demonstrating the effect | action of EBS. 図5において、レーザー光の1つのパルスに着目した図である。In FIG. 5, it is the figure which paid its attention to one pulse of a laser beam. IORの作用を説明するための図である。It is a figure for demonstrating the effect | action of IOR. 比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut | disconnected using the laser beam irradiation apparatus which concerns on a comparative example. 本実施形態のレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut | disconnected using the laser beam irradiation apparatus of this embodiment. 制御システムの構成を示す図である。It is a figure which shows the structure of a control system. テーブルの動作を説明するための図である。It is a figure for demonstrating operation | movement of a table. レーザー光照射装置による切断処理の動作フローを示す図である。It is a figure which shows the operation | movement flow of the cutting process by a laser beam irradiation apparatus. 切断工程の動作を概念的に示した図である。It is the figure which showed notionally the operation | movement of the cutting process. レーザー光照射装置の切断処理における全体動作の概要を示す図である。It is a figure which shows the outline | summary of the whole operation | movement in the cutting process of a laser beam irradiation apparatus. 切断工程の動作の流れを示す図である。It is a figure which shows the flow of operation | movement of a cutting process. 搬入装置および搬出装置の変形例に係る構成を示す図である。It is a figure which shows the structure which concerns on the modification of a carrying-in apparatus and a carrying-out apparatus. 本実施形態のフィルム貼合システムの概略構成を示す図である。It is a figure which shows schematic structure of the film bonding system of this embodiment. 液晶パネルの平面図である。It is a top view of a liquid crystal panel. 図18のA-A断面図である。It is AA sectional drawing of FIG. 液晶パネルに貼合する光学シートの部分断面図である。It is a fragmentary sectional view of the optical sheet bonded to a liquid crystal panel. 切断装置の動作を示す図である。It is a figure which shows operation | movement of a cutting device. 貼合面の端縁の検出工程を示す平面図である。It is a top view which shows the detection process of the edge of a bonding surface. 検出装置の模式図である。It is a schematic diagram of a detection apparatus. 液晶パネルに対するシート片の貼合位置の決定方法の一例を示す図である。It is a figure which shows an example of the determination method of the bonding position of the sheet piece with respect to a liquid crystal panel. レーザー光が所望の軌跡を描くための制御方法を示す図である。It is a figure which shows the control method for a laser beam to draw a desired locus | trajectory.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 (切断装置)
 図1は、切断装置として用いられるレーザー光照射装置100の一例を示す斜視図である。
(Cutting device)
FIG. 1 is a perspective view showing an example of a laser beam irradiation apparatus 100 used as a cutting apparatus.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、対象物を保持する保持面に平行な第1の方向をX方向としており、保持面の面内においてX方向に直交する方向をY方向、X方向及びY方向に直交する方向をZ方向としている。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the first direction parallel to the holding surface that holds the object is defined as the X direction, and the direction orthogonal to the X direction in the plane of the holding surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction.
 図1に示すように、レーザー光照射装置100は、2つのテーブル(第1のテーブルおよび第2のテーブル)111,112と、レーザー光発振機102と、EBS130(Electrical Beam Shaping:図2参照)を構成する音響光学素子103と、IOR104(Imaging Optics Rail)と、スキャナー105と、移動装置106と、これらの装置を統括制御する制御装置107と、を備えている。 As shown in FIG. 1, the laser beam irradiation apparatus 100 includes two tables (first table and second table) 111 and 112, a laser beam oscillator 102, and an EBS 130 (Electrical Beam Shaping: see FIG. 2). Are provided with an acousto-optic element 103, an IOR 104 (Imaging / Optics / Rail), a scanner 105, a moving device 106, and a control device 107 that performs overall control of these devices.
 テーブル111は、切断処理が施される対象物(処理対象)110を保持する保持面111sを有する。テーブル111は、保持面111sの法線方向から見て矩形である。保持面111sは、第1の方向(X方向)に長手を有する長方形の第1保持面111s1と、第1保持面111s1に隣接して配置され且つ第1保持面111s1と同一形状の第2保持面111s2と、を有する。すなわち、テーブル111は、第1保持面111s1および第2保持面111s2を有することで、2つの対象物110を同時に保持することが可能である。 The table 111 has a holding surface 111s for holding an object (processing object) 110 to be cut. The table 111 is rectangular when viewed from the normal direction of the holding surface 111s. The holding surface 111 s is a rectangular first holding surface 111 s 1 having a length in the first direction (X direction), and a second holding having the same shape as the first holding surface 111 s 1 disposed adjacent to the first holding surface 111 s 1. And a surface 111s2. That is, the table 111 has the first holding surface 111s1 and the second holding surface 111s2, so that the two objects 110 can be simultaneously held.
 テーブル112は、テーブル111と同一の構成を有し、法線方向から見て矩形状の保持面112sを有する。保持面112sは、第1の方向(X方向)に長手を有する長方形の第1保持面112s1と、第1保持面112s1に隣接して配置され且つ第1保持面112s1と同一形状の第2保持面112s2と、を有する。すなわち、テーブル112は、第1保持面112s1および第2保持面112s2を有することで、2つの対象物110を同時に保持することが可能である。 The table 112 has the same configuration as the table 111, and has a holding surface 112s that is rectangular when viewed from the normal direction. The holding surface 112s is a rectangular first holding surface 112s1 having a length in the first direction (X direction), and a second holding having the same shape as the first holding surface 112s1 is disposed adjacent to the first holding surface 112s1. Surface 112s2. That is, the table 112 has the first holding surface 112s1 and the second holding surface 112s2, and thus can hold the two objects 110 at the same time.
 レーザー光発振機102は、レーザー光Lを発振する部材である。例えば、レーザー光発振機102としては、COレーザー光発振機(二酸化炭素レーザー光発振機)、UVレーザー光発振機、半導体レーザー光発振機、YAGレーザー光発振機、エキシマレーザー光発振機等の発振機を用いることができるが、具体的な構成は特に限定されるものではない。前記例示の発振機の中でもCOレーザー光発振機は、例えば偏光フィルム等の光学部材の切断加工に好適な高出力でレーザー光を発振することができるので、より好ましい。 The laser beam oscillator 102 is a member that oscillates the laser beam L. For example, as the laser beam oscillator 102, a CO 2 laser beam oscillator (carbon dioxide laser beam oscillator), a UV laser beam oscillator, a semiconductor laser beam oscillator, a YAG laser beam oscillator, an excimer laser beam oscillator, etc. Although an oscillator can be used, a specific configuration is not particularly limited. Among the above-described oscillators, a CO 2 laser light oscillator is more preferable because it can oscillate laser light at a high output suitable for cutting an optical member such as a polarizing film.
 図2は、EBS130の構成を示す図である。
 図2に示すように、EBS130は、レーザー光発振機102から発振されるレーザー光の光路上に配置された音響光学素子103と、音響光学素子103と電気的に接続された駆動ドライバ131と、レーザー光が音響光学素子103を通過するタイミングを制御する制御装置107(後述するレーザー制御部171に相当)と、を有する。
 EBS130は、レーザー光の出力が安定するまでレーザー光を遮蔽する。
FIG. 2 is a diagram illustrating the configuration of the EBS 130.
As shown in FIG. 2, the EBS 130 includes an acoustooptic element 103 disposed on the optical path of the laser beam oscillated from the laser beam oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, And a control device 107 (corresponding to a laser control unit 171 described later) for controlling the timing at which the laser light passes through the acoustooptic device 103.
The EBS 130 shields the laser light until the output of the laser light is stabilized.
 音響光学素子103は、レーザー光発振機102から発振されたレーザー光を遮蔽するための光学素子である。 Acousto-optic element 103 is an optical element for shielding laser light oscillated from laser light oscillator 102.
 音響光学素子103は、例えば、二酸化テルル(TeO)やモリブデン酸鉛(PbMoO)などの単結晶またはガラスからなる音響光学媒体に圧電素子を接着したものである。圧電素子に電気信号を加えて超音波を発生させ、この超音波を音響光学媒体中に伝搬させることで、レーザー光の通過と非通過(遮蔽)を制御することができる。 The acoustooptic element 103 is obtained by bonding a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ). By applying an electrical signal to the piezoelectric element to generate an ultrasonic wave and propagating the ultrasonic wave into the acousto-optic medium, the passage and non-passing (shielding) of the laser light can be controlled.
 なお、本実施形態では、EBS130の構成部材として音響光学素子103を用いているが、これに限らない。レーザー光発振機102から発振されたレーザー光を遮蔽することができれば、他の光学素子を用いてもよい。 In this embodiment, the acousto-optic element 103 is used as a constituent member of the EBS 130, but is not limited thereto. Other optical elements may be used as long as the laser light oscillated from the laser light oscillator 102 can be shielded.
 駆動ドライバ131は、制御装置107の制御に基づいて、音響光学素子103に超音波を発生させるための電気信号(制御信号)を供給し、音響光学素子103によるレーザー光の遮蔽時間を調整する。 The drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
 制御装置107は、例えば、レーザー光発振機102から発振されるレーザー光の立ち上がり部分及び立ち下がり部分が除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御する。 The control device 107 controls the timing at which the laser light passes through the acousto-optic device 103 so that, for example, the rising and falling portions of the laser light oscillated from the laser light oscillator 102 are removed.
 なお、制御装置107によるタイミング制御はこれに限らない。例えば、制御装置107が、レーザー光発振機102から発振されるレーザー光の立ち上がり部分が選択的に除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御してもよい。特に、レーザー光発振機102から発振されるレーザー光の立ち下がり部分の幅(時間)がレーザー光の立ち上がり部分の幅(時間)よりも十分に短い場合には、レーザー光の立ち下がり部分を除去する実益が小さい。そのため、このような場合には、レーザー光発振機102から発振されるレーザー光の立ち上がり部分のみを選択的に除去してもよい。 Note that the timing control by the control device 107 is not limited to this. For example, the control device 107 may control the timing at which the laser light passes through the acousto-optic element 103 so that the rising portion of the laser light oscillated from the laser light oscillator 102 is selectively removed. In particular, when the width (time) of the falling portion of the laser light oscillated from the laser light oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the falling portion of the laser light is removed. The profit to do is small. Therefore, in such a case, only the rising portion of the laser beam oscillated from the laser beam oscillator 102 may be selectively removed.
 このような構成により、EBS130は、制御装置107の制御に基づいて、レーザー光発振機102から発振されたレーザー光を、出力が安定した状態で射出する。 With such a configuration, the EBS 130 emits the laser light oscillated from the laser light oscillator 102 in a state where the output is stable based on the control of the control device 107.
 IOR104は、レーザー光の強度分布のうち対象物110の切断には寄与しない裾の部分を除去する。 The IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
 図3は、IOR104の内部構成を示す斜視図である。
 図3に示すように、IOR104は、EBS130から射出されたレーザー光を集光する第1集光レンズ141と、第1集光レンズ141を保持する第1保持枠142と、第1集光レンズ141によって集光されたレーザー光を絞る絞り部材143と、絞り部材143を保持する保持部材144と、絞り部材143によって絞られたレーザー光を平行化するコリメートレンズ145と、コリメートレンズ145を保持する第2保持枠146と、第1保持枠142、保持部材144及び第2保持枠146を相対的に移動させる移動機構147と、を有する。
FIG. 3 is a perspective view showing the internal configuration of the IOR 104.
As shown in FIG. 3, the IOR 104 includes a first condenser lens 141 that condenses the laser light emitted from the EBS 130, a first holding frame 142 that holds the first condenser lens 141, and a first condenser lens. A diaphragm member 143 that squeezes the laser light condensed by the lens 141, a holding member 144 that holds the diaphragm member 143, a collimator lens 145 that collimates the laser light squeezed by the diaphragm member 143, and a collimator lens 145 are held. It has the 2nd holding frame 146 and the moving mechanism 147 which moves the 1st holding frame 142, the holding member 144, and the 2nd holding frame 146 relatively.
 図4は、第1集光レンズ141、絞り部材143及びコリメートレンズ145の配置構成を示す側断面図である。 FIG. 4 is a side sectional view showing an arrangement configuration of the first condenser lens 141, the diaphragm member 143, and the collimator lens 145.
 図4に示すように、絞り部材143には、第1集光レンズ141によって集光されたレーザー光を絞るためのピンホール143hが形成されている。第1集光レンズ141、ピンホール143h及びコリメートレンズ145の各々の中心は、EBS130から射出されたレーザー光の光軸Cと重なる位置に配置されている。 As shown in FIG. 4, the aperture member 143 is formed with a pinhole 143h for condensing the laser beam condensed by the first condenser lens 141. The centers of the first condenser lens 141, the pinhole 143 h and the collimator lens 145 are arranged at positions overlapping the optical axis C of the laser light emitted from the EBS 130.
 絞り部材143は、第1集光レンズ141の後側焦点の近傍に配置されていることが好ましい。 The diaphragm member 143 is preferably disposed in the vicinity of the rear focal point of the first condenser lens 141.
 ここで、「第1集光レンズ141の後側焦点の近傍」とは、絞り部材143の配置位置が第1集光レンズ141の後側焦点から大きく位置ズレしない範囲で、配置位置を若干異ならせてもよいことを意味する。例えば、第1集光レンズ141の中心から第1集光レンズ141の後側焦点までの距離Kと第1集光レンズ141の中心から絞り部材143のピンホール143hの中心までの距離Kとの比K/Kが0.9/1以上1.1/1以下の範囲であれば、絞り部材143が第1集光レンズ141の後側焦点の近傍に配置されているといえる。このような範囲であれば、第1集光レンズ141によって集光されたレーザー光を効果的に絞ることができる。 Here, “near the rear focal point of the first condenser lens 141” means that the arrangement position of the diaphragm member 143 is slightly different from the rear focal point of the first condenser lens 141 so that the arrangement position is slightly different. It means that it may be allowed. For example, the distance K 1 from the center of the first condenser lens 141 to the rear focal point of the first condenser lens 141 and the distance K 2 from the center of the first condenser lens 141 to the center of the pinhole 143 h of the aperture member 143. If the ratio K 1 / K 2 is in the range of 0.9 / 1 to 1.1 / 1, it can be said that the diaphragm member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141. . If it is such a range, the laser beam condensed by the 1st condensing lens 141 can be narrowed down effectively.
 なお、絞り部材143は、第1集光レンズ141の後側焦点の近傍に配置されていることが好ましいが、絞り部材143の配置位置は、必ずしもこの位置に限定されない。絞り部材143の配置位置は、第1集光レンズ141とコリメートレンズ145との間の光路上であればよく、第1集光レンズ141の後側焦点の近傍に限らない。 The diaphragm member 143 is preferably disposed in the vicinity of the rear focal point of the first condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position. The arrangement position of the aperture member 143 may be on the optical path between the first condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the first condenser lens 141.
 図3に戻り、移動機構147は、第1保持枠142、保持部材144及び第2保持枠146の各々を、レーザー光の進行方向と平行な方向に移動させるスライダ機構148と、スライダ機構148を保持する保持台149と、を有する。 Returning to FIG. 3, the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
 例えば、保持部材144を定位置に配置した状態で、第1保持枠142及び第2保持枠146をレーザー光の進行方向と平行な方向に移動させることにより、第1保持枠142、保持部材144及び第2保持枠146の相互の位置決めが行われる。具体的には、絞り部材143をコリメートレンズ145の前側焦点の位置で且つ第1集光レンズ141の後側焦点の位置に配置する。 For example, the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and at the position of the rear focal point of the first condenser lens 141.
 図1に戻り、スキャナー105は、レーザー光を保持面101sと平行な平面内(XY平面内)で二次元に走査する。すなわち、スキャナー105は、テーブル111、112に対してレーザー光をX方向とY方向に独立して相対的に移動させる。これにより、テーブル111、112に保持された対象物110の任意の位置に精度よくレーザー光を照射することが可能となっている。 Referring back to FIG. 1, the scanner 105 scans the laser beam two-dimensionally in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the tables 111 and 112 independently in the X direction and the Y direction. Thereby, it is possible to irradiate the laser beam with high accuracy to any position of the object 110 held on the tables 111 and 112.
 スキャナー105は、第1照射位置調整装置151と、第2照射位置調整装置154と、を備えている。 The scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
 第1照射位置調整装置151及び第2照射位置調整装置154は、IOR104から射出されたレーザー光を保持面101sと平行な平面内で二次元に走査する走査素子を構成している。第1照射位置調整装置151及び第2照射位置調整装置154としては、例えば、ガルバノスキャナーを用いる。なお、走査素子としては、ガルバノスキャナーに限らず、ジンバルを用いることもできる。 The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that two-dimensionally scans the laser light emitted from the IOR 104 within a plane parallel to the holding surface 101s. As the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154, for example, a galvano scanner is used. The scanning element is not limited to a galvano scanner, and a gimbal can be used.
 第1照射位置調整装置151は、ミラー152と、ミラー152の設置角度を調整するアクチュエータ153と、を備えている。アクチュエータ153は、Z方向に平行な回転軸を有する。アクチュエータ153は、制御装置107の制御に基づいて、ミラー152をZ軸回りに回転させる。 The first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152. The actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
 第2照射位置調整装置154は、ミラー155と、ミラー155の設置角度を調整するアクチュエータ156と、を備えている。アクチュエータ156は、Y方向に平行な回転軸を有する。アクチュエータ156は、制御装置107の制御に基づいて、ミラー155をY軸回りに回転させる。 The second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155. The actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
 スキャナー105とテーブル111またはテーブル112との間の光路上には、スキャナー105を経由したレーザー光を保持面101sに向けて集光する第2集光レンズ108が配置されている。 On the optical path between the scanner 105 and the table 111 or 112, a second condensing lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
 例えば、第2集光レンズ108としては、fθレンズを用いる。これにより、ミラー155から第2集光レンズ108に平行に射出されたレーザー光を対象物110に平行に集光させることができる。ここで、スキャナー105および第2集光レンズ108は、特許請求の範囲に記載の切断部に相当する。 For example, an fθ lens is used as the second condenser lens 108. Thereby, the laser beam emitted in parallel to the second condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110. Here, the scanner 105 and the second condenser lens 108 correspond to a cutting unit described in the claims.
 なお、スキャナー105とテーブル111またはテーブル112との間の光路上に、第2集光レンズ108が配置されていない構成であってもよい。この場合、スキャナー105が特許請求の範囲に記載の切断部に相当する。 Note that the second condenser lens 108 may not be disposed on the optical path between the scanner 105 and the table 111 or the table 112. In this case, the scanner 105 corresponds to the cutting unit described in the claims.
 レーザー光発振機102から発振されたレーザー光Lは、音響光学素子103、IOR104、ミラー152、ミラー155、第2集光レンズ108を経由してテーブル111またはテーブル112に保持された対象物110に照射される。第1照射位置調整装置151、第2照射位置調整装置154は、制御装置107の制御に基づいて、レーザー光発振機102からテーブル111またはテーブル112に保持された対象物110に向けて照射されるレーザー光の照射位置を調整する。 The laser light L oscillated from the laser light oscillator 102 passes through the acousto-optic device 103, the IOR 104, the mirror 152, the mirror 155, and the second condenser lens 108, and is applied to the object 110 held on the table 111 or the table 112. Irradiated. The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are irradiated from the laser light oscillator 102 toward the object 110 held on the table 111 or the table 112 based on the control of the control device 107. Adjust the laser beam irradiation position.
 スキャナー105の制御によるレーザー光の加工領域105s(以下、スキャン領域と称する)は、保持面101sの法線方向から見て矩形である。本実施形態では、スキャン領域105sの面積は、第1保持面101s1及び第2保持面101s2の各々の面積よりも小さい。 A laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s. In the present embodiment, the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
  図5(a)~(d)は、EBS130の作用を説明するための図である。
 図5(a)は、レーザー光発振機102から発振されるレーザー光の制御信号を示している。
 図5(b)は、レーザー光発振機102から発振されたレーザー光そのものの出力特性、即ちレーザー光発振機102から発振されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性を示している。
 図5(c)は、音響光学素子103の制御信号を示している。
 図5(d)は、レーザー光発振機102から発振されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性を示している。
 図5(b)、(d)の各々において、横軸は時間、縦軸はレーザー光の強度である。
 図6(a)~(d)は、図5(a)~(d)において、レーザー光の1つのパルスに着目した図である。
 なお、以下の説明では、「レーザー光発振機102から発振されるレーザー光の制御信号」を「レーザー光の制御信号」と称する。「レーザー光発振機102から発振されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性」を「音響光学素子103通過前のレーザー光の出力特性」と称する。「レーザー光発振機102から発振されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性」を「音響光学素子103通過後のレーザー光の出力特性」と称する。
5A to 5D are diagrams for explaining the operation of the EBS 130. FIG.
FIG. 5A shows a control signal for laser light oscillated from the laser light oscillator 102.
FIG. 5B shows the output characteristics of the laser light itself oscillated from the laser light oscillator 102, that is, the output characteristics of the laser light before the laser light oscillated from the laser light oscillator 102 passes through the acoustooptic device 103. Is shown.
FIG. 5C shows a control signal for the acousto-optic element 103.
FIG. 5D shows the output characteristics of the laser light after the laser light oscillated from the laser light oscillator 102 passes through the acoustooptic device 103.
In each of FIGS. 5B and 5D, the horizontal axis represents time, and the vertical axis represents the intensity of laser light.
FIGS. 6A to 6D are diagrams focusing on one pulse of laser light in FIGS. 5A to 5D.
In the following description, the “control signal for laser light oscillated from the laser light oscillator 102” is referred to as “control signal for laser light”. “Output characteristics of laser light before the laser light oscillated from the laser light oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”. “Output characteristics of laser light after the laser light oscillated from the laser light oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light after passing through the acousto-optic element 103”.
 図5(a)、図6(a)に示すように、レーザー光の制御信号のパルスPs1は矩形パルスである。図5(a)に示すように、レーザー光の制御信号は、レーザー光発振機102へのON/OFF信号が周期的に切り替えられることにより複数のパルスPs1を発生させる、いわゆるクロックパルスである。 As shown in FIG. 5A and FIG. 6A, the pulse Ps1 of the laser light control signal is a rectangular pulse. As shown in FIG. 5A, the laser light control signal is a so-called clock pulse that generates a plurality of pulses Ps1 by periodically switching the ON / OFF signal to the laser light oscillator 102.
 図5(a)、図6(a)において、パルスPs1の山の部分は、レーザー光発振機102へON信号が送られた状態、即ちレーザー光発振機102からレーザー光が発振されるON状態である。パルスPs1の谷の部分は、レーザー光発振機102へOFF信号が送られた状態、即ちレーザー光発振機102からレーザー光が発振されないOFF状態である。 In FIG. 5A and FIG. 6A, the peak portion of the pulse Ps1 is a state where an ON signal is sent to the laser light oscillator 102, that is, an ON state where laser light is oscillated from the laser light oscillator 102. It is. The valley portion of the pulse Ps1 is a state where an OFF signal is sent to the laser beam oscillator 102, that is, an OFF state where no laser beam is oscillated from the laser beam oscillator 102.
 図5(a)に示すように、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成されている。3つの集合パルスPL1は、3つのパルスPs1の配置間隔よりも長い間隔で配置されている。例えば、隣り合う2つのパルスPs1の間の間隔は1msであり、隣り合う2つの集合パルスPL1の間の間隔は10msである。 As shown in FIG. 5A, one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals. The three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1. For example, the interval between two adjacent pulses Ps1 is 1 ms, and the interval between two adjacent collective pulses PL1 is 10 ms.
 なお、本実施形態では、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成される例を挙げて説明しているが、これに限らない。例えば、2つ又は4つ以上の複数のパルスが短い間隔で配置されることにより1つの集合パルスが形成されていてもよい。
 また、複数のパルスが周期的に形成されることに限らず、1つのパルスが長い幅で形成される構成であってもよい。即ち、レーザー光発振機へのON信号からOFF信号まで一定の強度のレーザー光が所定の時間だけ発振される構成であってもよい。
In the present embodiment, an example in which one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals is described, but the present invention is not limited to this. For example, one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
Further, the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which laser light having a certain intensity from an ON signal to an OFF signal to the laser light oscillator is oscillated for a predetermined time may be employed.
 図5(b)、図6(b)に示すように、音響光学素子103通過前のレーザー光の出力特性のパルスPs2は、立ち上がり部分G1と立ち下がり部分G2とを有する波形パルスである。 As shown in FIG. 5B and FIG. 6B, the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
 ここで、立ち上がり部分G1とは、パルスPs2のうちレーザー光の強度がゼロから対象物の切断に寄与する強度に達するまでの期間における部分を意味する。立ち下がり部分G2とは、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する強度からゼロに至るまでの期間における部分を意味する。対象物の切断に寄与する強度は、対象物の材質や厚み、レーザー光の出力値によって異なるが、一例として、図6(b)に示すように、レーザー光のピーク強度(100%)の50%の強度とする。 Here, the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object. The falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light. The intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 6B, 50% of the peak intensity (100%) of the laser beam. % Strength.
 図5(b)、図6(b)に示すように、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い。つまり、レーザー光発振機102から発振されるレーザー光の立ち上がり部分G1の時間がレーザー光の立ち下がり部分G2の時間よりも長い。
例えば、立ち上がり部分G1の幅は45μsであり、立ち下がり部分G2の幅は25μsである。
As shown in FIGS. 5B and 6B, the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light oscillated from the laser light oscillator 102 is longer than the time of the falling portion G2 of the laser light.
For example, the width of the rising portion G1 is 45 μs, and the width of the falling portion G2 is 25 μs.
 なお、本実施形態では、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い例を挙げて説明しているが、これに限らない。例えば、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅と概ね等しい場合、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも短い場合、においても本発明を適用可能である。 In the present embodiment, an example is described in which the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2, but this is not limitative. For example, when the width of the rising portion G1 of the pulse Ps2 is substantially equal to the width of the falling portion G2, the present invention can be applied even when the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. is there.
 図5(b)に示すように、3つのパルスPs2が図6(a)に示す3つのパルスPs1に対応する位置に配置されることにより1つの集合パルスPL2が形成されている。3つの集合パルスPL2は、図5(a)に示す3つの集合パルスPL1に対応する位置に配置されている。 As shown in FIG. 5 (b), one set pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG. 6 (a). The three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
 図5(c)、図6(c)に示すように、音響光学素子103の制御信号のパルスPs3は矩形パルスである。図5(c)に示すように、音響光学素子103の制御信号は、レーザー光が音響光学素子103を通過するタイミングが周期的に切り替えられるように駆動ドライバ131への制御信号が周期的に切り替えられることにより複数のパルスPs3を発生させる、いわゆるクロックパルスである。 As shown in FIGS. 5 (c) and 6 (c), the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse. As shown in FIG. 5C, the control signal for the acousto-optic element 103 is periodically switched so that the timing at which the laser beam passes through the acousto-optic element 103 is periodically switched. This is a so-called clock pulse that generates a plurality of pulses Ps3.
 図5(c)、図6(c)において、パルスPs3の山の部分は、レーザー光を通過させる状態、即ちレーザー光を透過させる透光状態である。パルスPs3の谷の部分は、レーザー光を通過させない状態、即ちレーザー光を遮蔽する遮光状態である。 5 (c) and 6 (c), the peak portion of the pulse Ps3 is in a state where the laser beam is transmitted, that is, a light transmitting state where the laser beam is transmitted. The valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
 図5(c)に示すように、各パルスPs3の谷の部分が図5(b)に示す各パルスPs2の立ち上がり部分G1及び立ち下がり部分G2の双方に重なるように配置されている。 As shown in FIG. 5C, the valley portions of the respective pulses Ps3 are arranged so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG.
 図6(c)に示すように、1つのパルスPs3に着目すると、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と概ね等しい。例えば、パルスPs3の前側の谷の部分V1の幅は45μs、パルスPs3の後側の谷の部分V2の幅は25μsである。このように、EBS130は、早い応答特性を持つスイッチ機能を有する。 As shown in FIG. 6C, when focusing on one pulse Ps3, the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3. The width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2. For example, the width of the valley portion V1 on the front side of the pulse Ps3 is 45 μs, and the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 μs. As described above, the EBS 130 has a switch function having a quick response characteristic.
 これにより、レーザー光の立ち上がり部分G1と立ち下がり部分G2とを除去し、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する部分を選択的に取り出すことができる。 As a result, the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted. .
 その結果、図5(d)、図6(d)に示すように、音響光学素子103通過後のレーザー光の出力特性のパルスPs4は、立ち上がり部分G1と立ち下がり部分G2とを有しない、シャープに突出したパルスとなる。 As a result, as shown in FIGS. 5D and 6D, the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 has no rising portion G1 and no falling portion G2, and is sharp. It becomes a pulse protruding to
 なお、本実施形態では、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と概ね等しい例を挙げて説明しているが、これに限らない。例えば、パルスPs3の前側の谷の部分V1の幅をパルスPs2の立ち上がり部分G1の幅と概ね等しくしたり、パルスPs3の後側の谷の部分V2の幅をパルスPs2の立ち下がり部分の幅よりも大きくしたりする等、必要に応じて適宜調整することができる。 In this embodiment, the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2. Although an example that is substantially equal to the width of the falling portion is described, the present invention is not limited to this. For example, the width of the valley portion V1 on the front side of the pulse Ps3 is made substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is made larger than the width of the falling portion of the pulse Ps2. It can be appropriately adjusted as necessary, for example, by increasing the size.
 図7は、IOR104の作用を説明するための図である。
 図7の左側の図はピンホール143hを通過する前のレーザー光の強度分布を示す図である。図7の左側上段の図は平面図であり、図7の左側中段の図は斜視図であり、図7の左側下段の図は横軸を位置、縦軸を強度として示す図である。
 図7の右側の図はピンホール143hを通過した後のレーザー光の強度分布を示す図である。図7の右側上段の図は平面図であり、図7の右側中段の図は斜視図であり、図7の右側下段の図は横軸を位置、縦軸を強度として示す図である。
FIG. 7 is a diagram for explaining the operation of the IOR 104.
The diagram on the left side of FIG. 7 shows the intensity distribution of the laser light before passing through the pinhole 143h. The upper left diagram in FIG. 7 is a plan view, the middle left diagram in FIG. 7 is a perspective view, and the lower left diagram in FIG. 7 is a diagram in which the horizontal axis indicates the position and the vertical axis indicates the strength.
The diagram on the right side of FIG. 7 shows the intensity distribution of the laser light after passing through the pinhole 143h. The upper right diagram in FIG. 7 is a plan view, the middle diagram in the right diagram in FIG. 7 is a perspective view, and the lower right diagram in FIG. 7 is a diagram in which the horizontal axis indicates the position and the vertical axis indicates the strength.
 図8は、比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。
 ここで、比較例に係るレーザー光照射装置は、ピンホール143hを通過する前のレーザー光をそのまま用いたレーザー光照射装置、即ちIOR104を備えていないレーザー光照射装置である。
FIG. 8 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using a laser beam irradiation apparatus according to a comparative example.
Here, the laser beam irradiation apparatus according to the comparative example is a laser beam irradiation apparatus that uses the laser beam before passing through the pinhole 143 h as it is, that is, a laser beam irradiation apparatus that does not include the IOR 104.
 図9は、本実施形態に係るレーザー光照射装置100を用いて、対象物である偏光板を切断したときの切断面の拡大図である。 FIG. 9 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
 図7の左側の図に示すように、ピンホール143hを通過する前のレーザー光の強度分布は、ビームの中心部において強度が強く、ビームの外周部において強度の弱い強度分布となっている。ビームの外周部のレーザー光の強度が小さくなると、ビームの外周部は対象物の切断に寄与しなくなる。 As shown on the left side of FIG. 7, the intensity distribution of the laser light before passing through the pinhole 143h is an intensity distribution having a high intensity at the center of the beam and a low intensity at the outer periphery of the beam. When the intensity of the laser beam at the outer periphery of the beam is reduced, the outer periphery of the beam does not contribute to the cutting of the object.
 この場合、図8に示すように、比較例に係るレーザー光照射装置では、偏光板の切断面がテーパ形状となっていることが確認される。これは、偏光板をカットする際、レーザー光のビーム径の外周部がカットラインに沿う部分に熱影響を与えたことにより、偏光板のカット領域以外の部分が溶解したことが原因と考えられる。 In this case, as shown in FIG. 8, in the laser beam irradiation apparatus according to the comparative example, it is confirmed that the cut surface of the polarizing plate has a tapered shape. This is considered to be due to the fact that when the polarizing plate was cut, the outer peripheral portion of the laser beam diameter affected the portion along the cut line, thereby dissolving the portion other than the polarizing plate cut region. .
 これに対し、図7の右側の図に示すように、ピンホール143hを通過した後のレーザー光の強度分布は、レーザー光の強度分布のうち偏光板の切断には寄与しない裾の部分が除去されることにより、レーザー光の強度分布が理想的なガウシアン分布となる。ピンホール143hを通過した後のレーザー光の強度分布の半値幅は、ピンホール143hを通過する前のレーザー光の強度分布の半値幅よりも狭くなっている。 On the other hand, as shown in the diagram on the right side of FIG. 7, the intensity distribution of the laser light after passing through the pinhole 143h is removed from the tail part that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light. As a result, the intensity distribution of the laser light becomes an ideal Gaussian distribution. The half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
 この場合、図9に示すように、本実施形態に係るIOR104を備えたレーザー光照射装置100では、偏光板の切断面が保持面に垂直になっていることが確認される。これは、偏光板をカットする際、レーザー光の強度分布のうち偏光板の切断に寄与する部分が偏光板に照射されることにより、偏光板のカット領域を選択的に溶断できたことによると考えられる。 In this case, as shown in FIG. 9, in the laser beam irradiation apparatus 100 including the IOR 104 according to this embodiment, it is confirmed that the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the laser light intensity distribution that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively fused. Conceivable.
 図1に戻り、移動装置106は、テーブル111、112とスキャナー105とを相対的に移動させる。移動装置106は、第1スライダ機構161と、第2スライダ機構162と、第3スライダ機構163とを含む。第1スライダ機構161は、テーブル111を保持面111sに平行な第1の方向(X方向)に移動させるためのものである。第2スライダ機構162は、テーブル112を保持面112sに平行な第1の方向(X方向)に移動させるためのものである。第3スライダ機構163は、第1スライダ機構161および第2スライダ機構162を保持面111s,112sに平行かつ第1の方向と直交する第2の方向(Y方向)に移動させるためのものである。 Referring back to FIG. 1, the moving device 106 moves the tables 111 and 112 and the scanner 105 relatively. The moving device 106 includes a first slider mechanism 161, a second slider mechanism 162, and a third slider mechanism 163. The first slider mechanism 161 is for moving the table 111 in a first direction (X direction) parallel to the holding surface 111s. The second slider mechanism 162 is for moving the table 112 in a first direction (X direction) parallel to the holding surface 112s. The third slider mechanism 163 is for moving the first slider mechanism 161 and the second slider mechanism 162 in a second direction (Y direction) parallel to the holding surfaces 111 s and 112 s and perpendicular to the first direction. .
 このような構成に基づき、移動装置106は、第1スライダ機構161、第2スライダ機構162および第3スライダ機構163(以下、これらを総称してスライダ機構161、162,163と称す場合もある)の各々が内蔵するリニアモータ(不図示)を作動させてテーブル111,112を、XYの各方向へ移動させることが可能である。 Based on such a configuration, the moving device 106 includes a first slider mechanism 161, a second slider mechanism 162, and a third slider mechanism 163 (hereinafter, these may be collectively referred to as slider mechanisms 161, 162, and 163). It is possible to move the tables 111 and 112 in each direction of XY by operating a linear motor (not shown) incorporated in each of the above.
 上記スライダ機構161,162,163内においてパルス駆動されるリニアモータは、前記リニアモータに供給されるパルス信号によって出力軸の回転角度制御を精細に行うことができる。従って、スライダ機構161,162,163に支持されたテーブル111,112のXYの各方向上の位置を高精度に制御できる。なお、テーブル111,112の位置制御はパルスモータを用いた位置制御に限られず、サーボモータを用いたフィードバック制御や、その他任意の制御方法によって実現することもできる。 The linear motor that is pulse-driven in the slider mechanisms 161, 162, and 163 can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Accordingly, the positions of the tables 111 and 112 supported by the slider mechanisms 161, 162, and 163 in the XY directions can be controlled with high accuracy. The position control of the tables 111 and 112 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
 制御装置107は、レーザー光発振機102及び音響光学素子103(駆動ドライバ131)を制御するレーザー制御部171と、スキャナー105を制御するスキャナー制御部172と、移動装置106を制御するスライダ制御部173と、を有する。 The control device 107 includes a laser control unit 171 that controls the laser light oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, and a slider control unit 173 that controls the moving device 106. And having.
 具体的には、レーザー制御部171は、レーザー光発振機102のON/OFF、レーザー光発振機102から発振されるレーザー光の出力、レーザー光発振機102から発振されたレーザー光Lが音響光学素子103を通過するタイミング、駆動ドライバ131の制御を行う。
 スキャナー制御部172は、第1照射位置調整装置151のアクチュエータ153、第2照射位置調整装置154のアクチュエータ156の各々駆動の制御を行う。
 スライダ制御部173は、スライダ機構161,162,163の各々が内蔵するリニアモータの作動の制御を行う。
Specifically, the laser controller 171 turns on / off the laser beam oscillator 102, the output of the laser beam oscillated from the laser beam oscillator 102, and the laser beam L oscillated from the laser beam oscillator 102 is acousto-optic. The timing of passing through the element 103 and the drive driver 131 are controlled.
The scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
The slider control unit 173 controls the operation of the linear motor incorporated in each of the slider mechanisms 161, 162, and 163.
 図10は、レーザー光照射装置100の制御システムの構成を示す図である。
 図10に示すように、制御装置107には入力信号を入力可能な入力装置109が接続されている。入力装置109は、キーボード、マウス等の入力機器、あるいは外部の装置からのデータを入力可能な通信装置等を有する。制御装置107は、レーザー光照射装置100の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。
FIG. 10 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
As shown in FIG. 10, an input device 109 capable of inputting an input signal is connected to the control device 107. The input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device. The control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
 ユーザーが入力装置109に加工データを入力することにより初期設定が完了すると、制御装置107のレーザー制御部171の制御に基づいて、レーザー光発振機102からレーザー光が発振される。この際、制御装置107のスキャナー制御部172の制御に基づいて、スキャナー105を構成するミラーの回転駆動が開始される。これと同時に、制御装置107のスライダ制御部173の制御に基づいて、スライダ機構161,162,163に設けられたモーターなどの駆動軸の回転数がロータリーエンコーダなどのセンサーにより検出される。 When the initial setting is completed by the user inputting processing data to the input device 109, laser light is oscillated from the laser light oscillator 102 based on the control of the laser control unit 171 of the control device 107. At this time, based on the control of the scanner control unit 172 of the control device 107, rotation driving of the mirrors constituting the scanner 105 is started. At the same time, based on the control of the slider control unit 173 of the control device 107, the rotational speed of a drive shaft such as a motor provided in the slider mechanisms 161, 162, and 163 is detected by a sensor such as a rotary encoder.
 制御装置107は、各々の座標値をリアルタイムで補正して加工データと一致する座標にレーザー光が射出されるように、即ち、レーザー光が対象物110(図1参照)において所望の軌跡を描くように、移動装置106とスキャナー105とを制御する。例えば、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域をスキャナー105で調整する。 The control device 107 corrects each coordinate value in real time so that the laser light is emitted at coordinates that match the machining data, that is, the laser light draws a desired locus on the object 110 (see FIG. 1). Thus, the moving device 106 and the scanner 105 are controlled. For example, the scanning of the laser light is mainly performed by the moving device 106, and an area where the irradiation position of the laser light cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105.
 図11は、移動装置106によるテーブル111,112の動作を説明するための図である。
 図11に示すように、テーブル111は、第1待機位置(第1の位置)WP1と、スキャナー105の制御によるレーザー光の切断加工が行われる切断位置WP3と、の間において、第3スライダ機構163により第2の方向(Y方向)に沿って移動する。ここで、第1待機位置WP1とは、テーブル111の保持面111s上に外部から切断処理が施される対象物110を搬入する際の搬入待機位置、または切断処理が施された対象物110を保持面111s上から外部に搬出するための搬出待機位置を兼ねる。
FIG. 11 is a diagram for explaining the operation of the tables 111 and 112 by the moving device 106.
As shown in FIG. 11, the table 111 includes a third slider mechanism between a first standby position (first position) WP1 and a cutting position WP3 where laser beam cutting is performed under the control of the scanner 105. 163 moves along the second direction (Y direction). Here, the first standby position WP1 refers to the carry-in standby position when carrying the object 110 to be cut from the outside onto the holding surface 111s of the table 111, or the object 110 to which the cutting process has been applied. It also serves as an unloading standby position for unloading from the holding surface 111s.
 また、テーブル112は、第2待機位置(第2の位置)WP2と、前記切断位置WP3と、の間において、第3スライダ機構163により第2の方向(Y方向)に沿って移動する。ここで、第2待機位置WP2とは、テーブル112の保持面112s上に外部から切断処理が施される対象物110を搬入する際の搬入待機位置、または切断処理が施された対象物110を保持面112s上から外部に搬出するための搬出待機位置を兼ねる。 Further, the table 112 is moved along the second direction (Y direction) by the third slider mechanism 163 between the second standby position (second position) WP2 and the cutting position WP3. Here, the second standby position WP2 refers to the carry-in standby position when carrying the object 110 to be cut from the outside onto the holding surface 112s of the table 112, or the object 110 to which the cutting process has been performed. It also serves as an unloading standby position for unloading from the holding surface 112s.
 なお、切断位置WP3とは、Z方向から平面視した場合において、保持面111s、112sに保持された対象物110の少なくとも一部と、スキャナー105によるスキャン領域105sの少なくとも一部とが重なる状態となるテーブル111、112の第2の方向(Y方向)における位置をいう。 The cutting position WP3 is a state in which at least a part of the object 110 held on the holding surfaces 111s and 112s and at least a part of the scan area 105s by the scanner 105 overlap when viewed in plan from the Z direction. The positions of the tables 111 and 112 in the second direction (Y direction).
 このような構成に基づき、テーブル111は、図11に示したように第1待機位置WP1において保持面111s(第1保持面111s1および第2保持面111s2)に2つの対象物110が搬入された後、保持面111sに保持した2枚の対象物110を切断位置WP3に移動させる。 Based on such a configuration, the table 111 has two objects 110 carried into the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) at the first standby position WP1 as shown in FIG. Thereafter, the two objects 110 held on the holding surface 111s are moved to the cutting position WP3.
 テーブル111は、切断位置WP3において所定の切断処理が施された対象物110を第1待機位置WP1に移動させた後、第1待機位置WP1において対象物110を外部へと搬出させる。 The table 111 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP3 to the first standby position WP1, and then carries the object 110 to the outside at the first standby position WP1.
 同様に、テーブル112は、図11に示したように第2待機位置WP2において保持面112s(第1保持面112s1および第2保持面112s2)に2つの対象物110が搬入された後、保持面112sに保持した2枚の対象物110を切断位置WP3に移動させる。 Similarly, as shown in FIG. 11, after the two objects 110 are carried into the holding surface 112s (the first holding surface 112s1 and the second holding surface 112s2) at the second standby position WP2, the table 112 holds the holding surface. The two objects 110 held at 112s are moved to the cutting position WP3.
 テーブル112は、切断位置WP3において所定の切断処理が施された対象物110を第2待機位置WP2に移動させた後、第2待機位置WP2において対象物110を外部へと搬出させる。 The table 112 moves the object 110 that has been subjected to the predetermined cutting process at the cutting position WP3 to the second standby position WP2, and then carries the object 110 to the outside at the second standby position WP2.
 本実施形態において、第1待機位置WP1、第2待機位置WP2、及び切断位置WP3は、第2の方向(Y方向)において同一直線上に配置されている。 In the present embodiment, the first standby position WP1, the second standby position WP2, and the cutting position WP3 are arranged on the same straight line in the second direction (Y direction).
 本実施形態において、第2待機位置WP2及び第1待機位置WP1は、第2の方向(Y方向)において、切断位置WP3を介して互いが対向する関係である。そのため、テーブル111、112は、切断位置WP3に向かう移動方向が逆方向とされており、図11に示すように、テーブル111の動作範囲A1とテーブル112の動作範囲A2とは切断位置WP3において一部が重なった(オーバーラップ)状態とされている。 In the present embodiment, the second standby position WP2 and the first standby position WP1 are in a relationship in which they face each other via the cutting position WP3 in the second direction (Y direction). Therefore, the movement directions of the tables 111 and 112 toward the cutting position WP3 are opposite to each other. As shown in FIG. 11, the operating range A1 of the table 111 and the operating range A2 of the table 112 are equal at the cutting position WP3. The parts are overlapped (overlapped).
 本実施形態において、レーザー光照射装置100による切断工程は、第1切断工程と、第2切断工程と、を備えている。前記第1切断工程は、第1待機位置WP1において搬入された対象物110を切断位置WP3に移動して所定の切断処理の後に前記第1待機位置WP1から搬出させる工程である。前記第2切断工程は、第2待機位置WP2において搬入された前記対象物110を前記切断位置WP3に移動して切断処理後に前記第2待機位置WP2から搬出させる工程である。 In this embodiment, the cutting process by the laser beam irradiation apparatus 100 includes a first cutting process and a second cutting process. The first cutting step is a step of moving the object 110 carried in at the first standby position WP1 to the cutting position WP3 and carrying it out from the first standby position WP1 after a predetermined cutting process. The second cutting step is a step of moving the object 110 carried in at the second standby position WP2 to the cutting position WP3 and carrying it out from the second standby position WP2 after the cutting process.
 テーブル111を用いた切断工程(第1切断工程)は、第1待機位置WP1において対象物110を搬入する第1搬入ステップと、前記第1待機位置WP1において搬入された対象物110を前記切断位置WP3に移動する第1往路移動ステップと、前記切断位置WP3にて所定の切断処理を行う第1切断ステップと、前記第1切断処理ステップ後、前記対象物110を前記切断位置WP3から前記第1待機位置WP1まで移動させる第1復路移動ステップと、前記第1復路移動ステップの後、前記対象物110を前記第1待機位置WP1から搬出させる第1搬出ステップと、を含む。 The cutting process (first cutting process) using the table 111 includes a first carry-in step for carrying the object 110 at the first standby position WP1, and the object 110 carried at the first standby position WP1 at the cutting position. A first forward movement step of moving to WP3, a first cutting step of performing a predetermined cutting process at the cutting position WP3, and after the first cutting processing step, the object 110 is moved from the cutting position WP3 to the first cutting step. A first return movement step of moving to the standby position WP1, and a first unloading step of unloading the object 110 from the first standby position WP1 after the first return path movement step.
 同様に、テーブル112を用いた切断工程(第2切断工程)は、第2待機位置WP2において対象物110を搬入する第2搬入ステップと、前記第2待機位置WP2において搬入された対象物110を前記切断位置WP3に移動する第2往路移動ステップと、前記切断位置WP3にて所定の切断処理を行う第2切断ステップと、前記第2切断処理ステップ後、前記対象物110を前記切断位置WP3から前記第2待機位置WP2まで移動させる第2復路移動ステップと、前記第2復路移動ステップの後、前記対象物110を前記第2待機位置WP2から搬出させる第2搬出ステップと、を含む。 Similarly, the cutting process (second cutting process) using the table 112 includes a second carry-in step of carrying in the object 110 at the second standby position WP2, and an object 110 carried in at the second standby position WP2. After the second forward movement step of moving to the cutting position WP3, the second cutting step of performing a predetermined cutting process at the cutting position WP3, and the second cutting process step, the object 110 is moved from the cutting position WP3. A second return path movement step of moving to the second standby position WP2, and a second unloading step of unloading the object 110 from the second standby position WP2 after the second return path movement step.
 図12は、レーザー光照射装置100による切断処理としてテーブル111を用いた切断工程の動作フローを示す図である。図13は、テーブル111を用いた切断工程の動作を概念的に示した図である。なお、図12,13においては、テーブル112を用いた切断工程の基本動作は同一であるため、テーブル111を用いた切断工程を例に挙げて説明し、テーブル112の動作の詳細については省略する。 FIG. 12 is a diagram showing an operation flow of a cutting process using the table 111 as a cutting process by the laser beam irradiation apparatus 100. FIG. 13 is a diagram conceptually showing the operation of the cutting process using the table 111. 12 and 13, since the basic operation of the cutting process using the table 112 is the same, the cutting process using the table 111 will be described as an example, and the details of the operation of the table 112 will be omitted. .
 まず、テーブル111は、第1待機位置WP1において対象物110を搬入装置115(図11,13参照)から搬入する(図12に示す搬入ステップ(第1搬入ステップ又は第2搬入ステップ)S1)。なお、搬入装置115は、レーザー光照射装置100の構成要素の一部であってもよいし、レーザー光照射装置100以外の装置の構成要素の一部であってもよい。 First, the table 111 carries the object 110 from the carry-in device 115 (see FIGS. 11 and 13) at the first standby position WP1 (carry-in step (first carry-in step or second carry-in step) S1 shown in FIG. 12). Note that the carry-in device 115 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
 本実施形態においては、テーブル111が第1待機位置WP1から切断位置WP3に移動する前に、切断位置WP3に対する対象物110の相対位置を検出し、検出結果に基づいて相対位置を補正するアライメント処理が行われる(図12に示すアライメントステップ(検出ステップ)S2)。 In the present embodiment, before the table 111 moves from the first standby position WP1 to the cutting position WP3, the relative position of the object 110 with respect to the cutting position WP3 is detected, and the relative position is corrected based on the detection result. Is performed (alignment step (detection step) S2 shown in FIG. 12).
 アライメント後、テーブル111は、第1待機位置WP1において搬入された対象物110を切断位置WP3に移動する(図12に示す切断位置移動ステップ(第1往路移動ステップ又は第2往路移動ステップ)S3)。 After the alignment, the table 111 moves the object 110 carried in at the first standby position WP1 to the cutting position WP3 (cutting position moving step (first outward moving step or second outward moving step) S3 shown in FIG. 12). .
 切断位置WP3への移動後、保持面111sの対象物110に後述するような所定の切断処理を行う(図12に示す切断ステップ(第1切断ステップ又は第2切断ステップ)S4)。 After the movement to the cutting position WP3, a predetermined cutting process as described later is performed on the object 110 on the holding surface 111s (cutting step (first cutting step or second cutting step) S4 shown in FIG. 12).
 切断処理後、テーブル111は、切断処理が施された対象物110を搬出装置116(図11、13参照)に搬出させる第1待機位置WP1まで移動する(図12に示す搬出位置移動ステップ(第1復路移動ステップ又は第2復路移動ステップ)S5)。なお、搬出装置116は、レーザー光照射装置100の構成要素の一部であってもよいし、レーザー光照射装置100以外の装置の構成要素の一部であってもよい。 After the cutting process, the table 111 moves to the first standby position WP1 where the object 110 subjected to the cutting process is carried out by the carry-out device 116 (see FIGS. 11 and 13) (unloading position moving step (first step shown in FIG. 12). 1 return path moving step or 2nd return path moving step) S5). The carry-out device 116 may be a part of the constituent elements of the laser light irradiation apparatus 100 or may be a part of the constituent elements of the apparatus other than the laser light irradiation apparatus 100.
 第1待機位置WP1に移動した後、テーブル111の保持面111sから対象物110が搬出装置116により搬出される(図12に示す搬出ステップ(第1搬出ステップ又は第2搬出ステップ)S6)。 After moving to the first standby position WP1, the object 110 is unloaded from the holding surface 111s of the table 111 by the unloading device 116 (unloading step (first unloading step or second unloading step) S6 shown in FIG. 12).
 搬入ステップS1においては、図13(a)に示すように、搬入装置115が第1待機位置WP1にあるテーブル111の保持面111sに対象物110を搬入する。搬入装置115は、搬入コンベア部115bと、搬入コンベア部115b上の対象物110を吸着保持して搬送する保持部115aを含む。保持部115aは、2つの対象物110を同時に保持した状態で保持面111s(第1保持面111s1および第2保持面111s2)に受け渡し可能である。搬入コンベア部115bは、例えばベルトコンベア等から構成される。 In the carry-in step S1, as shown in FIG. 13A, the carry-in device 115 carries the object 110 onto the holding surface 111s of the table 111 at the first standby position WP1. The carry-in device 115 includes a carry-in conveyor unit 115b and a holding unit 115a that sucks and holds the object 110 on the carry-in conveyor unit 115b. The holding part 115a can be transferred to the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) while holding the two objects 110 at the same time. The carry-in conveyor unit 115b is configured by, for example, a belt conveyor.
 搬入ステップS1の後、アライメントステップS2においては、図13(b)に示すように、第1待機位置WP1から切断位置WP3に移動するに先立ち、対象物検出装置(検出部)117が対象物110を検出する。対象物検出装置117は、対象物110を撮像する検出カメラ117aを含み、検出カメラ117aを用いて切断位置WP3に対する対象物110の相対位置を検出する。 After the carry-in step S1, in the alignment step S2, as shown in FIG. 13B, prior to moving from the first standby position WP1 to the cutting position WP3, the object detection device (detection unit) 117 is operated by the object 110. Is detected. The object detection device 117 includes a detection camera 117a that images the object 110, and detects the relative position of the object 110 with respect to the cutting position WP3 using the detection camera 117a.
 なお、アライメントステップS2は、例えば、搬入装置115による保持面111sへの搬入精度が極めて高い場合においては、必ずしも必要ではなく、省略しても良く、これによれば対象物検出装置117が不要となるので装置構成の簡略化及び低コスト化を実現できる。また、アライメントステップS2は、テーブル111による第1切断工程およびテーブル112による第2切断工程のいずれか一方のみに設けるようにしてもよい。 Note that the alignment step S2 is not necessarily required, for example, when the accuracy of carrying in the holding surface 111s by the carry-in device 115 is extremely high, and may be omitted. According to this, the object detection device 117 is not necessary. As a result, simplification of the device configuration and cost reduction can be realized. Further, the alignment step S2 may be provided only in one of the first cutting step by the table 111 and the second cutting step by the table 112.
 まず、検出カメラ117aは、保持面111sのうち、切断位置WP3側の第1保持面111s1に保持された対象物110を検出する。対象物検出装置117は、検出カメラ117aの検出結果を制御装置107(図10参照)に送信する。制御装置107は、検出カメラ117aからの検出結果に基づいて、切断位置WP3(スキャナー105)に対する対象物110にズレが生じている場合、対象物110の位置を補正するアライメント処理を行う。 First, the detection camera 117a detects the object 110 held on the first holding surface 111s1 on the cutting position WP3 side in the holding surface 111s. The object detection device 117 transmits the detection result of the detection camera 117a to the control device 107 (see FIG. 10). Based on the detection result from the detection camera 117a, the control device 107 performs an alignment process for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP3 (scanner 105).
 制御装置107は、位置補正部を駆動し、保持面111sに保持される対象物110の位置を補正する。位置補正部は、例えば、複数のピンを対象物110の少なくとも3つの側面に当接させることで保持面111sに保持される対象物110の位置を補正する。なお、対象物110の位置を補正する際、テーブル111は移動を停止している。 The control device 107 drives the position correction unit to correct the position of the object 110 held on the holding surface 111s. The position correction unit corrects the position of the object 110 held on the holding surface 111s by bringing a plurality of pins into contact with at least three side surfaces of the object 110, for example. When correcting the position of the object 110, the table 111 stops moving.
 切断位置WP3側の第1保持面111s1に保持された対象物110のアライメントが終了した後、テーブル111は切断位置WP3側に移動される。検出カメラ117aは、切断位置WP3と反対側の第2保持面111s2に保持された対象物110を検出し、制御装置107に検出結果を送信する。 After the alignment of the object 110 held on the first holding surface 111s1 on the cutting position WP3 side is completed, the table 111 is moved to the cutting position WP3 side. The detection camera 117a detects the object 110 held on the second holding surface 111s2 opposite to the cutting position WP3, and transmits the detection result to the control device 107.
 制御装置107は、検出カメラ117aからの検出結果に基づいて、切断位置WP3(スキャナー105)に対する対象物110にズレが生じている場合、対象物110の位置を補正するアライメント処理を行う。同様に、制御装置107は、不図示の位置補正部を駆動し、第2保持面111s2に保持される対象物110の位置を補正する。 The control device 107 performs alignment processing for correcting the position of the object 110 when the object 110 is displaced from the cutting position WP3 (scanner 105) based on the detection result from the detection camera 117a. Similarly, the control device 107 drives a position correction unit (not shown) to correct the position of the object 110 held on the second holding surface 111s2.
 なお、本実施形態では、第1待機位置WP1にテーブル111が位置する場合に、アライメントステップS2を行う場合を例に挙げたが、これに限定されない。
アライメントステップS2は、テーブル111が第1待機位置WP1から切断位置WP3に移動するまでの途中に行うようにしてもよい。
In the present embodiment, the case where the alignment step S2 is performed when the table 111 is located at the first standby position WP1 is described as an example, but the present invention is not limited to this.
The alignment step S2 may be performed halfway until the table 111 moves from the first standby position WP1 to the cutting position WP3.
 アライメントステップS2の後、切断位置移動ステップS3においては、図13(c)に示すように、テーブル111が切断位置WP3に移動する。その後、切断ステップS4において、スキャナー105を介してレーザー光を照射することで保持面111sの対象物110に後述するような所定の切断処理が行われる。切断ステップS4において、テーブル111は、第1保持面111s1に保持された対象物110、および第2保持面111s2に保持された対象物110の順に切断処理が行われるように移動する。 After the alignment step S2, in the cutting position moving step S3, the table 111 is moved to the cutting position WP3 as shown in FIG. Thereafter, in the cutting step S4, a predetermined cutting process as described later is performed on the object 110 on the holding surface 111s by irradiating the laser beam through the scanner 105. In the cutting step S4, the table 111 moves so that the cutting process is performed in the order of the object 110 held on the first holding surface 111s1 and the object 110 held on the second holding surface 111s2.
 切断ステップS4の後、搬出位置移動ステップS5においては、図13(d)に示すように、テーブル111が第1待機位置WP1に移動する。 After the cutting step S4, in the unloading position moving step S5, the table 111 moves to the first standby position WP1 as shown in FIG. 13 (d).
 その後、搬出ステップS6においては、図13(e)に示すように、搬出装置116が第1待機位置WP1にあるテーブル111の保持面111sから対象物110を搬出する。搬出装置116は、対象物110を吸着保持して搬送する保持部116aと、保持部116aにより保持面111sから搬出された対象物110を受け取る受取部116bとを含む。保持部116aは、2つの対象物110を同時に保持した状態で保持面111s(第1保持面111s1および第2保持面111s2)から搬出可能である。受取部116bは、例えばベルトコンベア等から構成され、保持部116aから受け取った対象物110を所定方向に搬送可能である。 Thereafter, in the unloading step S6, as shown in FIG. 13 (e), the unloading device 116 unloads the object 110 from the holding surface 111s of the table 111 at the first standby position WP1. The carry-out device 116 includes a holding unit 116a that sucks, holds, and conveys the object 110, and a receiving unit 116b that receives the object 110 carried out from the holding surface 111s by the holding unit 116a. The holding unit 116a can be carried out from the holding surface 111s (the first holding surface 111s1 and the second holding surface 111s2) while holding the two objects 110 at the same time. The receiving unit 116b is configured by a belt conveyor or the like, for example, and can transport the object 110 received from the holding unit 116a in a predetermined direction.
 図14は、レーザー光照射装置100の切断処理における全体動作の概要を示す図である。なお、図14において、対象物110に付される数字(♯1、♯2、♯3、♯4)は、切断処理が施される順番の一例を意味する。また、図14において、1番目に切断処理が施される対象物110を対象物110aとし、2番目に切断処理が施される対象物110を対象物110bとし、3番目に切断処理が施される対象物110を対象物110cとし、4番目に切断処理が施される対象物110を対象物110dとした。 FIG. 14 is a diagram showing an outline of the entire operation in the cutting process of the laser beam irradiation apparatus 100. In FIG. 14, numbers (# 1, # 2, # 3, # 4) given to the object 110 mean an example of the order in which the cutting process is performed. Further, in FIG. 14, the object 110 to be subjected to the first cutting process is the object 110a, the object 110 to be subjected to the second cutting process is the object 110b, and the third cutting process is performed. The target object 110 to be processed is the target object 110c, and the target object 110 to be subjected to the fourth cutting process is the target object 110d.
 図14に示すように、レーザー光照射装置100は、図12,13に説明した手順に従い、第1待機位置WP1において搬入装置115からテーブル111の保持面111sに搬入した対象物110a,110bを切断位置WP3にて所定の切断処理を施す。その後、第1待機位置WP1において保持面111sから搬出装置116に搬出する。これにより、テーブル111が第1待機位置WP1と切断位置WP3との間を移動することによる一連の切断工程(第1切断工程)が完結する。すなわち、レーザー光照射装置100は、テーブル111を第1待機位置WP1および切断位置WP3間で移動させる間に、搬入ステップS1、アライメントステップS2、切断位置移動ステップS3、切断ステップS4、搬出位置移動ステップS5、および搬出ステップS6をこの順に行う。 As shown in FIG. 14, the laser beam irradiation apparatus 100 cuts the objects 110a and 110b carried into the holding surface 111s of the table 111 from the carry-in device 115 at the first standby position WP1 according to the procedure described in FIGS. A predetermined cutting process is performed at the position WP3. Thereafter, the material is unloaded from the holding surface 111s to the unloading device 116 at the first standby position WP1. Thereby, a series of cutting processes (first cutting process) by moving the table 111 between the first standby position WP1 and the cutting position WP3 is completed. That is, while moving the table 111 between the first standby position WP1 and the cutting position WP3, the laser beam irradiation apparatus 100 carries in the loading step S1, the alignment step S2, the cutting position moving step S3, the cutting step S4, and the unloading position moving step. S5 and carry-out step S6 are performed in this order.
 続いて、レーザー光照射装置100は、図12,13に説明した手順と同様、第2待機位置WP2において搬入装置115からテーブル112の保持面112sに搬入した対象物110c,110dを切断位置WP3にて所定の切断処理を施す。その後、第2待機位置WP2において保持面112sから搬出装置116に搬出する。これにより、テーブル112が第1待機位置WP1と切断位置WP3との間を移動することによる一連の切断工程(第2切断工程)が完結する。すなわち、レーザー光照射装置100は、テーブル112を第2待機位置WP2および切断位置WP3間で移動させる間に、搬入ステップS1、アライメントステップS2、切断位置移動ステップS3、切断ステップS4、搬出位置移動ステップS5、および搬出ステップS6をこの順に行う。 Subsequently, similarly to the procedure described in FIGS. 12 and 13, the laser beam irradiation apparatus 100 moves the objects 110c and 110d carried into the holding surface 112s of the table 112 from the carry-in device 115 to the cutting position WP3 at the second standby position WP2. Then, a predetermined cutting process is performed. Then, it is carried out from the holding surface 112s to the carry-out device 116 at the second standby position WP2. Thereby, a series of cutting steps (second cutting step) by the table 112 moving between the first standby position WP1 and the cutting position WP3 is completed. That is, while moving the table 112 between the second standby position WP2 and the cutting position WP3, the laser beam irradiation apparatus 100 carries in the loading step S1, the alignment step S2, the cutting position moving step S3, the cutting step S4, and the unloading position moving step. S5 and carry-out step S6 are performed in this order.
 本実施形態において、レーザー光照射装置100は、テーブル111による第1切断工程およびテーブル112による第2切断工程が、切断位置WP3にて前記第1切断ステップ(テーブル111による切断ステップS4)及び前記第2切断ステップ(テーブル112による切断ステップS4)が交互に行われるように、各々の工程の一部がオーバーラップした状態で実行されている。 In this embodiment, the laser beam irradiation apparatus 100 performs the first cutting step by the table 111 and the second cutting step by the table 112 at the cutting position WP3, the first cutting step (cutting step S4 by the table 111) and the first The two cutting steps (cutting step S4 based on the table 112) are performed in a state in which a part of each process is overlapped so as to be alternately performed.
 図15は、テーブル111、112のそれぞれにおける動作の流れを示す図である。
 本実施形態においては、図15に示すように、テーブル111による第1切断工程が行われている途中で、テーブル112による第2切断工程を開始する。これにより、例えば、第1切断工程において切断位置WP3で切断ステップS4が行われているタイミングで、第2切断工程における搬入装置115からのテーブル112への対象物110の搬送が開始される。また、第2切断工程の切断位置移動ステップ(テーブル112による第2往路移動ステップS3)は、第1切断工程において第1待機位置WP1で搬出ステップS6が行われているタイミングで開始される。
FIG. 15 is a diagram showing a flow of operations in each of the tables 111 and 112.
In the present embodiment, as shown in FIG. 15, the second cutting step by the table 112 is started while the first cutting step by the table 111 is being performed. Thereby, for example, at the timing when the cutting step S4 is performed at the cutting position WP3 in the first cutting process, the conveyance of the object 110 from the carry-in device 115 to the table 112 in the second cutting process is started. Further, the cutting position movement step (second forward movement step S3 by the table 112) of the second cutting process is started at the timing when the unloading step S6 is performed at the first standby position WP1 in the first cutting process.
 テーブル111による第1切断工程及びテーブル112による第2切断工程を開始するタイミングは、切断位置WP3においてテーブル111およびテーブル112のいずれか一方が切断ステップS4を行っているタイミングで、他方のテーブルが切断位置WP3に移動しないタイミングであれば、いずれのタイミングであってもよい。
 例えば、第1切断工程においてテーブル111が切断位置WP3から移動を開始したタイミングで、第2切断工程においてテーブル112が切断位置WP3に移動するようにしてもよい。すなわち、テーブル111に対する対象物110の搬入タイミングと、テーブル112からの対象物110の搬出タイミングとが同期して行われてもよい。このようにすれば、切断位置WP3にテーブル111、112が順次移動してくるため、各テーブル111,112の保持面111s,112sの対象物110に対して効率的に切断処理を行うことができる。
The timing of starting the first cutting step by the table 111 and the second cutting step by the table 112 is the timing at which one of the table 111 and the table 112 is performing the cutting step S4 at the cutting position WP3, and the other table is cutting. Any timing may be used as long as it does not move to the position WP3.
For example, the table 112 may be moved to the cutting position WP3 in the second cutting step at the timing when the table 111 starts moving from the cutting position WP3 in the first cutting step. That is, the timing for carrying in the object 110 with respect to the table 111 and the timing for carrying out the object 110 from the table 112 may be synchronized. In this way, since the tables 111 and 112 are sequentially moved to the cutting position WP3, the cutting process can be efficiently performed on the object 110 on the holding surfaces 111s and 112s of the tables 111 and 112. .
 なお、上記説明では、搬入装置115および搬出装置116がそれぞれ保持部115a、116aを有している場合を例に挙げたが、これに限定されない。 In the above description, the case where the carry-in device 115 and the carry-out device 116 each have the holding units 115a and 116a is taken as an example, but the present invention is not limited to this.
 例えば、図16に示すように、搬入装置115および搬出装置116間で共通の保持部118を有していてもよい。この場合、保持部118は、搬入装置115の搬入コンベア部115bから対象物110を吸着保持するとともに、第1待機位置WP1にあるテーブル111の保持面111s、または第2待機位置WP2にあるテーブル112の保持面112sから対象物110を吸着保持する。 For example, as shown in FIG. 16, a common holding unit 118 may be provided between the carry-in device 115 and the carry-out device 116. In this case, the holding unit 118 sucks and holds the object 110 from the carry-in conveyor unit 115b of the carry-in device 115, and holds the holding surface 111s of the table 111 at the first standby position WP1, or the table 112 at the second standby position WP2. The object 110 is sucked and held from the holding surface 112s.
 保持部118は、対象物110を保持した状態で第1の方向(X方向)に移動することで、搬入コンベア部115bに保持されていた対象物110をテーブル111、またはテーブル112に搬入するとともに、切断処理が施された対象物110を、テーブル111の保持面111sまたはテーブル112の保持面112sから搬出装置116の受取部116bに搬出させることができる。これにより、第1切断工程は、第1待機位置WP1において、第1搬入ステップおよび第1搬出ステップが同期して実行され、第2切断工程は、第2待機位置WP2において、第2搬入ステップおよび第2搬出ステップが同期して実行されることとなる。すなわち、テーブル111、112に対する対象物110の搬入と搬出とを同時に行うことができる。 The holding unit 118 moves in the first direction (X direction) while holding the object 110 to carry the object 110 held by the carry-in conveyor unit 115b into the table 111 or the table 112. The object 110 that has been subjected to the cutting process can be carried out from the holding surface 111 s of the table 111 or the holding surface 112 s of the table 112 to the receiving unit 116 b of the carry-out device 116. Thus, the first cutting step is executed in synchronization with the first carry-in step and the first carry-out step at the first standby position WP1, and the second cutting step is carried out at the second standby position WP2 The second carry-out step will be executed synchronously. That is, it is possible to simultaneously carry in and carry out the object 110 with respect to the tables 111 and 112.
 これにより、切断位置WP3に対象物110が効率的に供給可能となるため、レーザー光照射装置100の一連の切断処理に要する時間(タクトタイム)を短縮することができ、生産量を増加させることができる。 Thereby, since the target object 110 can be efficiently supplied to the cutting position WP3, the time (tact time) required for a series of cutting processes of the laser light irradiation apparatus 100 can be shortened, and the production amount can be increased. Can do.
 以上説明したように、本実施形態に係るレーザー光照射装置100によれば、2つのテーブル111、112を備えるので、切断位置WP3に対象物110を順次搬送することができる。テーブル111、112の移動の起点となる第1待機位置WP1および第2待機位置WP2は、それぞれ、対象物110の搬入を行う搬入位置および対象物110の搬出を行う搬出位置を兼ねるので、テーブル111,112の移動量を少なくすることができる。これにより、レーザー光照射装置100は、対象物110に対する切断処理を効率的に行うことができ、処理量を増大させることができる。 As described above, according to the laser beam irradiation apparatus 100 according to the present embodiment, since the two tables 111 and 112 are provided, the object 110 can be sequentially conveyed to the cutting position WP3. Since the first standby position WP1 and the second standby position WP2 which are the starting points of the movement of the tables 111 and 112 serve as both the carry-in position where the object 110 is carried in and the carry-out position where the object 110 is carried out, the table 111 , 112 can be reduced. Thereby, the laser beam irradiation apparatus 100 can perform the cutting process with respect to the target object 110 efficiently, and can increase a processing amount.
 本実施形態においては、テーブル111、112は、それぞれの保持面111s,112sに複数(本実施形態では、2つ)の対象物110を保持する構成を採用している。そのため、切断位置WP3に複数の対象物110を順次供給することができる。よって、対象物110に対する切断処理を効率的に行うことができ、処理量を増大させることができる。 In the present embodiment, the tables 111 and 112 employ a configuration in which a plurality of (two in this embodiment) objects 110 are held on the holding surfaces 111s and 112s, respectively. Therefore, a plurality of objects 110 can be sequentially supplied to the cutting position WP3. Therefore, the cutting process with respect to the target object 110 can be performed efficiently, and the amount of processing can be increased.
 本実施形態においては、テーブル111若しくはテーブル112が移動する第1待機位置WP1、第2待機位置WP2、および切断位置WP3が同一直線上に配置されている。さらに、第1待機位置WP1および第2待機位置WP2が、それぞれ切断位置WP3に対して反対側に配置されている(図11参照)。そのため、テーブル111の動作範囲A1とテーブル112の動作範囲A2とは、切断位置WP3において一部が重なった(オーバーラップ)状態とすることができる。よって、テーブル111、112における切断位置WP3と各待機位置WP1,WP2との間における移動ストロークが短くなるので、切断位置WP3に対して対象物110が短時間で搬送され、対象物110に対する切断処理を効率的に行うことで処理量を増大させることができる。 In the present embodiment, the first standby position WP1, the second standby position WP2, and the cutting position WP3 to which the table 111 or the table 112 moves are arranged on the same straight line. Further, the first standby position WP1 and the second standby position WP2 are respectively arranged on the opposite sides with respect to the cutting position WP3 (see FIG. 11). Therefore, the operation range A1 of the table 111 and the operation range A2 of the table 112 can be partially overlapped (overlapped) at the cutting position WP3. Therefore, since the moving stroke between the cutting position WP3 and the standby positions WP1 and WP2 in the tables 111 and 112 is shortened, the object 110 is transported to the cutting position WP3 in a short time, and the cutting process for the object 110 is performed. The amount of processing can be increased by efficiently performing the above.
 また、本実施形態では、切断位置WP3に対する対象物110の相対位置を検出する対象物検出装置117を備えている。そのため、切断位置WP3に対して対象物110を精度良く搬送することができる。よって、切断処理を精度良く行うことができる。 Moreover, in this embodiment, the target object detection apparatus 117 which detects the relative position of the target object 110 with respect to the cutting position WP3 is provided. Therefore, the object 110 can be accurately conveyed with respect to the cutting position WP3. Therefore, the cutting process can be performed with high accuracy.
 また、本実施形態では、切断位置WP3にて第1切断ステップ(テーブル111による切断ステップS4)及び第2切断ステップ(テーブル112による切断ステップS4)が交互に行われるように、各々の工程の一部がオーバーラップした状態で実行されるため、切断位置WP3に対して対象物110を効率良く供給することができる。 In the present embodiment, the first cutting step (cutting step S4 by the table 111) and the second cutting step (cutting step S4 by the table 112) are alternately performed at the cutting position WP3. Since the process is executed in a state where the parts overlap, the object 110 can be efficiently supplied to the cutting position WP3.
 また、本実施形態によれば、対象物110をシャープに切断でき、カット品質の低下を抑制することができる。一般に、レーザー光は、カットする範囲を広くしようとすると光路が長くなる。そうすると、レーザー光のビーム径が変わり、これによりビーム径の外周部が歪み、カット品質が変わる。
 これに対し、本実施形態に係るレーザー光照射装置100によれば、第1集光レンズ141によって入射したレーザー光を集光し、ピンホール143hによって集光したレーザー光のうちビーム径の外周部を除去し、ビーム径の外周部を除去されたレーザー光をコリメートレンズ145によって平行化できる。従って、レーザー光の光路が長くなっても、カット品質を維持することができる。
Moreover, according to this embodiment, the target object 110 can be cut | disconnected sharply and the fall of cut quality can be suppressed. In general, the optical path of a laser beam becomes long when the cutting range is widened. If it does so, the beam diameter of a laser beam will change, Thereby, the outer peripheral part of a beam diameter will be distorted, and cut quality will change.
On the other hand, according to the laser beam irradiation apparatus 100 according to the present embodiment, the laser beam incident by the first condenser lens 141 is collected and the outer peripheral portion of the beam diameter of the laser beam collected by the pinhole 143h. And the collimating lens 145 can collimate the laser light from which the outer periphery of the beam diameter has been removed. Therefore, even if the optical path of the laser beam becomes long, the cut quality can be maintained.
 また、絞り部材143が第1集光レンズ141の後側焦点の近傍に配置されているため、レーザー光が十分集光された状態でピンホール143hを通過する。従って、レーザー光の強度分布のうち対象物110の切断には寄与しない裾の部分を精度良く除去することができる。 In addition, since the aperture member 143 is disposed in the vicinity of the rear focal point of the first condenser lens 141, the laser beam passes through the pinhole 143h in a sufficiently condensed state. Therefore, the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light can be removed with high accuracy.
 また、第2集光レンズ108がスキャナー105とテーブル111,112との間の光路上に配置されている。そのため、スキャナー105を経由したレーザー光を対象物110に平行に集光させることができる。従って、対象物110を精度良く切断することができる。 Further, the second condenser lens 108 is disposed on the optical path between the scanner 105 and the tables 111 and 112. Therefore, it is possible to collect the laser light that has passed through the scanner 105 in parallel with the object 110. Therefore, the object 110 can be cut with high accuracy.
 また、本実施形態のレーザー光照射装置100では、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域をスキャナー105で調整する。そのため、移動装置106のみ又はスキャナー105のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。 Further, in the laser beam irradiation apparatus 100 of the present embodiment, the scanning of the laser beam is mainly performed by the moving device 106, and an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
 なお、本実施形態では、一例として、レーザー光照射装置100が、テーブル111,112と、レーザー光発振機102と、第1集光レンズ141と、絞り部材143と、コリメートレンズ145と、スキャナー105と、移動装置106と、を含む構成を挙げて説明したがこれに限らない。例えば、レーザー光照射装置が、レーザー光発振機と、集光レンズと、絞り部材と、コリメートレンズと、を含む構成であってもよい。即ち、レーザー光照射装置が、テーブル、スキャナー及び移動装置を備えていない構成であってもよい。 In the present embodiment, as an example, the laser beam irradiation apparatus 100 includes the tables 111 and 112, the laser beam oscillator 102, the first condenser lens 141, the aperture member 143, the collimator lens 145, and the scanner 105. However, the present invention is not limited to this. For example, the laser beam irradiation apparatus may include a laser beam oscillator, a condenser lens, a diaphragm member, and a collimator lens. That is, the laser light irradiation device may be configured not to include a table, a scanner, and a moving device.
 (光学部材貼合体の製造装置)
 以下、本発明の一実施形態に係る光学部材貼合体の製造装置であるフィルム貼合システム1について図面を参照して説明する。本実施形態に係るフィルム貼合システム1は、切断装置が上述したレーザー光照射装置100によって構成されている。
(Manufacturing device for optical member bonded body)
Hereinafter, the film bonding system 1 which is a manufacturing apparatus of the optical member bonding body which concerns on one Embodiment of this invention is demonstrated with reference to drawings. The film bonding system 1 which concerns on this embodiment is comprised by the laser beam irradiation apparatus 100 which the cutting device mentioned above.
 図17は、本実施形態のフィルム貼合システム1の概略構成を示す図である。
 フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムといったフィルム状の光学部材を貼合するものである。
FIG. 17 is a diagram illustrating a schematic configuration of the film bonding system 1 of the present embodiment.
The film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, and a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、光学表示部品である液晶パネルの搬送方向をX方向としており、液晶パネルの面内においてX方向に直交する方向(液晶パネルの幅方向)をY方向、X方向及びY方向に直交する方向をZ方向としている。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the transport direction of the liquid crystal panel, which is an optical display component, is the X direction, and the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction. The direction orthogonal to the Z direction is taken as the Z direction.
 図17に示すように、本実施形態のフィルム貼合システム1は、液晶パネルPの製造ラインの一工程として設けられている。フィルム貼合システム1の各部は、電子制御装置としての制御部40により統括制御される。 As shown in FIG. 17, the film bonding system 1 of this embodiment is provided as one process of the manufacturing line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
 図18は、液晶パネルPをその液晶層P3の厚さ方向から見た平面図である。液晶パネルPは、平面視で長方形状をなす第1基板P1と、第1基板P1に対向して配置される比較的小形の長方形状をなす第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1基板P1の外形状に沿う長方形状をなし、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。 FIG. 18 is a plan view of the liquid crystal panel P as viewed from the thickness direction of the liquid crystal layer P3. The liquid crystal panel P includes a first substrate P1 that has a rectangular shape in plan view, a second substrate P2 that has a relatively small rectangular shape that is disposed to face the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2. The liquid crystal panel P has a rectangular shape that follows the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
 図19は図18のA-A断面図である。液晶パネルPの表裏面には、長尺帯状の第1光学シートF1及び第2光学シートF2(図17参照、以下、光学シートFXと総称することがある。)からそれぞれ切り出した第1光学部材F11及び第2光学部材F12(以下、光学部材F1Xと総称することがある。)が適宜貼合される。本実施形態では、液晶パネルPのバックライト側及び表示面側の両面には、偏光フィルムとしての第1光学部材F11及び第2光学部材F12がそれぞれ貼合される。 FIG. 19 is a cross-sectional view taken along the line AA in FIG. On the front and back surfaces of the liquid crystal panel P, a first optical member cut out from the first optical sheet F1 and the second optical sheet F2 having a long strip shape (see FIG. 17, hereinafter may be collectively referred to as an optical sheet FX). F11 and the second optical member F12 (hereinafter may be collectively referred to as an optical member F1X) are appropriately bonded. In the present embodiment, the first optical member F11 and the second optical member F12 as polarizing films are bonded to both the backlight side and the display surface side of the liquid crystal panel P, respectively.
 表示領域P4の外側には、液晶パネルPの第1及び第2基板を接合するシール剤等を配置する所定幅の額縁部Gが設けられている。 Outside the display area P4, a frame portion G having a predetermined width for arranging a sealant or the like for joining the first and second substrates of the liquid crystal panel P is provided.
 なお、第1光学部材F11及び第2光学部材F12は、後述する第1シート片F1m及び第2シート片F2m(以下、シート片FXmと総称することがある。)から、それぞれその貼合面の外側の余剰部分を切り離すことにより形成されたものである。貼合面については後述する。 In addition, the 1st optical member F11 and the 2nd optical member F12 are the 1st sheet piece F1m and 2nd sheet piece F2m (henceforth a sheet piece FXm hereafter) mentioned later, respectively. It is formed by cutting off the excess part on the outside. The bonding surface will be described later.
 図20は、液晶パネルPに貼合する光学シートFXの部分断面図である。光学シートFXは、フィルム状の光学部材本体F1aと、光学部材本体F1aの一方の面(図20では上面)に設けられた粘着層F2aと、粘着層F2aを介して光学部材本体F1aの一方の面に分離可能に積層されたセパレータF3aと、光学部材本体F1aの他方の面(図20では下面)に積層された表面保護フィルムF4aとを有する。光学部材本体F1aは偏光板として機能し、液晶パネルPの表示領域P4の全域とその周辺領域とにわたって貼合される。なお、図示都合上、図20の各層のハッチングは略す。 FIG. 20 is a partial cross-sectional view of the optical sheet FX bonded to the liquid crystal panel P. The optical sheet FX includes a film-like optical member main body F1a, an adhesive layer F2a provided on one surface (upper surface in FIG. 20) of the optical member main body F1a, and one optical member main body F1a via the adhesive layer F2a. Separator F3a laminated | stacked on the surface so that isolation | separation was possible, and the surface protection film F4a laminated | stacked on the other surface (FIG. 20 lower surface) of the optical member main body F1a. The optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and its peripheral area. For convenience of illustration, hatching of each layer in FIG. 20 is omitted.
 光学部材本体F1aは、その一方の面に粘着層F2aを残しつつセパレータF3aを分離させた状態で、液晶パネルPに粘着層F2aを介して貼合される。以下、光学シートFXからセパレータF3aを除いた部分を貼合シートF5という。 The optical member body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface thereof. Hereinafter, the part remove | excluding the separator F3a from the optical sheet FX is called the bonding sheet | seat F5.
 セパレータF3aは、粘着層F2aから分離されるまでの間に粘着層F2a及び光学部材本体F1aを保護する。表面保護フィルムF4aは、光学部材本体F1aと共に液晶パネルPに貼合される。表面保護フィルムF4aは、光学部材本体F1aに対して液晶パネルPと反対側に配置されて光学部材本体F1aを保護する。表面保護フィルムF4aは、所定のタイミングで光学部材本体F1aから分離される。なお、光学シートFXが表面保護フィルムF4aを含まない構成であったり、表面保護フィルムF4aが光学部材本体F1aから分離されない構成であったりしてもよい。 The separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a. The surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a. The surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a. The surface protective film F4a is separated from the optical member main body F1a at a predetermined timing. The optical sheet FX may be configured not to include the surface protective film F4a, or the surface protective film F4a may be configured not to be separated from the optical member body F1a.
 光学部材本体F1aは、シート状の偏光子F6と、偏光子F6の一方の面に接着剤等で接合される第1フィルムF7と、偏光子F6の他方の面に接着剤等で接合される第2フィルムF8とを有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。 The optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8. The first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
 なお、光学部材本体F1aは、一層の光学層からなる単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等でもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理やアンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材本体F1aは、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータF3aを光学部材本体F1aの一方の面に粘着層F2aを介して貼り合わせてもよい。 The optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other. In addition to the polarizer F6, the optical layer may be a retardation film, a brightness enhancement film, or the like. At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment. The optical member body F1a may not include at least one of the first film F7 and the second film F8. For example, when the first film F7 is omitted, the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
 次に、本実施形態のフィルム貼合システム1について、詳しく説明する。
 図17に示すように、本実施形態のフィルム貼合システム1は、図中右側の液晶パネルPの搬送方向上流側(+X方向側)から図中左側の液晶パネルPの搬送方向下流側(-X方向側)に至り、液晶パネルPを水平状態で搬送する駆動式のローラコンベア5を備えている。
Next, the film bonding system 1 of this embodiment is demonstrated in detail.
As shown in FIG. 17, the film laminating system 1 of the present embodiment is arranged such that the right side of the liquid crystal panel P in the drawing direction (+ X direction side) to the left side of the drawing in the drawing direction of the liquid crystal panel P (− X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
 ローラコンベア5は、後述する反転装置15を境に、上流側コンベア6と下流側コンベア7とに分かれる。上流側コンベア6では、液晶パネルPは表示領域P4の短辺を搬送方向に沿うようにして搬送される。一方、下流側コンベア7では、液晶パネルPは表示領域P4の長辺を搬送方向に沿うようにして搬送される。この液晶パネルPの表裏面に対して、帯状の光学シートFXから所定長さに切り出した貼合シートF5のシート片FXm(光学部材F1Xに相当)が貼合される。 The roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary. On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P <b> 4 is along the transport direction. On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P <b> 4 along the transport direction. On the front and back surfaces of the liquid crystal panel P, a sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet FX is bonded.
 なお、上流側コンベア6は、後述する第1吸着装置11において、下流側に独立したフリーローラコンベア24を備えている。一方、下流側コンベア7は、後述する第2吸着装置20において、下流側に独立したフリーローラコンベア24を備えている。 The upstream conveyor 6 includes an independent free roller conveyor 24 on the downstream side in the first suction device 11 described later. On the other hand, the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
 本実施形態のフィルム貼合システム1は、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32、及び制御部40を備えている。 The film bonding system 1 of this embodiment is the 1st adsorption | suction apparatus 11, the 1st dust collector 12, the 1st bonding apparatus 13, the 1st detection apparatus 41, the 1st cutting device 31, the inversion apparatus 15, and 2nd collection. The dust device 16, the 2nd bonding apparatus 17, the 2nd detection apparatus 42, the 2nd cutting device 32, and the control part 40 are provided.
 第1吸着装置11は、液晶パネルPを吸着して上流側コンベア6に搬送すると共に液晶パネルPのアライメント(位置決め)を行う。第1吸着装置11は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 The first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P. The first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、上流側コンベア6により下流側のストッパSに当接した液晶パネルPを上下方向及び水平方向に移動可能に保持すると共に液晶パネルPのアライメントを行う。パネル保持部11aは、ストッパSに当接した液晶パネルPの上面を真空吸着によって吸着保持する。パネル保持部11aは、液晶パネルPを吸着保持した状態でレールR上を移動して液晶パネルPを搬送する。パネル保持部11aは、搬送が終わると吸着保持を解除して液晶パネルPをフリーローラコンベア24に受け渡す。 The panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P. The panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction. The panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P. When the conveyance is finished, the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した液晶パネルPをパネル保持部11aが保持し、上昇した状態で液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する液晶パネルPのアライメントがなされる。つまり、液晶パネルPは、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び液晶パネルPの垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。
 ここで、パネル保持部11aによりレールR上を搬送された液晶パネルPは吸着パッド26に吸着された状態でシート片FXmと共に先端部を挟圧ロール23に挟持される。
In the alignment camera 11b, the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state. Image data obtained by the alignment camera 11b is transmitted to the control unit 40. Based on the image data, the panel holding unit 11a is operated to align the liquid crystal panel P with the free roller conveyor 24 as a transport destination. In other words, the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P. .
Here, the liquid crystal panel P conveyed on the rail R by the panel holding unit 11a is nipped by the pressure roll 23 together with the sheet piece FXm while being adsorbed by the adsorption pad 26.
 第1集塵装置12は、第1貼合装置13の貼合位置である挟圧ロール23の、液晶パネルPの搬送上流側に設けられている。第1集塵装置12は、貼合位置に導入される前の液晶パネルPの周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13. FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
 第1貼合装置13は、第1吸着装置11よりもパネル搬送下流側に設けられている。第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5(第1シート片F1mに相当)の貼合を行う。 The 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption | suction apparatus 11. FIG. The 1st bonding apparatus 13 bonds the bonding sheet | seat F5 (equivalent to 1st sheet piece F1m) cut into the predetermined size with respect to the lower surface of liquid crystal panel P introduced into the bonding position.
 第1貼合装置13は、搬送装置22と、挟圧ロール23とを備えている。 The 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23. FIG.
 搬送装置22は、光学シートFXが巻回された原反ロールR1から光学シートFXを巻き出しつつ光学シートFXをその長手方向に沿って搬送する。搬送装置22は、セパレータF3aをキャリアとして貼合シートF5を搬送する。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、切断装置22cと、ナイフエッジ22dと、巻き取り部22eと、を有する。 The conveying device 22 conveys the optical sheet FX along the longitudinal direction while unwinding the optical sheet FX from the original roll R1 around which the optical sheet FX is wound. The conveying apparatus 22 conveys the bonding sheet | seat F5 by using separator F3a as a carrier. The conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
 ロール保持部22aは、帯状の光学シートFXを巻回した原反ロールR1を保持すると共に光学シートFXをその長手方向に沿って繰り出す。
 複数のガイドローラ22bは、原反ロールR1から巻き出した光学シートFXを所定の搬送経路に沿って案内するべく光学シートFXを巻きかける。
 切断装置22cは、搬送経路上の光学シートFXにハーフカットを施す。
 ナイフエッジ22dは、ハーフカットを施した光学シートFXを鋭角に巻きかけてセパレータF3aから貼合シートF5を分離させつつこの貼合シートF5を貼合位置に供給する。
 巻き取り部22eは、ナイフエッジ22dを経て単独となったセパレータF3aを巻き取るセパレータロールR2を保持する。
The roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet FX is wound and feeds the optical sheet FX along the longitudinal direction thereof.
The plurality of guide rollers 22b wind the optical sheet FX so as to guide the optical sheet FX unwound from the original roll R1 along a predetermined conveyance path.
The cutting device 22c performs a half cut on the optical sheet FX on the conveyance path.
The knife edge 22d supplies the bonding sheet F5 to the bonding position while separating the bonding sheet F5 from the separator F3a by winding the optical sheet FX subjected to the half cut at an acute angle.
The winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
 搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが光学シートFXをその搬送方向へ繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータF3aを巻き取る。以下、搬送装置22における光学シートFX(セパレータF3a)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。 The roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example. Thereby, the winding unit 22e winds the separator F3a having passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet FX in the transport direction. Hereinafter, the upstream side in the transport direction of the optical sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side, and the downstream side in the transport direction is referred to as a sheet transport downstream side.
 各ガイドローラ22bは、搬送中の光学シートFXの進行方向を搬送経路に沿って変化させると共に、複数のガイドローラ22bの少なくとも一部が搬送中の光学シートFXのテンションを調整するべく可動する。 Each guide roller 22b changes the traveling direction of the optical sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet FX being conveyed.
 なお、ロール保持部22aと切断装置22cとの間には、図示しないダンサローラが配置されていてもよい。ダンサローラは、光学シートFXが切断装置22cで切断される間に、ロール保持部22aから搬送される光学シートFXの繰り出し量を吸収する。 It should be noted that a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c. The dancer roller absorbs the feeding amount of the optical sheet FX conveyed from the roll holding unit 22a while the optical sheet FX is cut by the cutting device 22c.
 図21は、本実施形態の切断装置22cの動作を示す図である。
 図21に示すように、切断装置22cは、光学シートFXが所定長さ繰り出された際、光学シートFXの長手方向と直交する幅方向の全幅にわたって、光学シートFXの厚さ方向の一部を切断するハーフカットを行う。本実施形態の切断装置22cは、光学シートFXに対してセパレータF3aとは反対側から光学シートFXに向かって進退可能に設けられている。
FIG. 21 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
As shown in FIG. 21, when the optical sheet FX is fed out by a predetermined length, the cutting device 22c applies a part in the thickness direction of the optical sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet FX. Make a half-cut to cut. The cutting device 22c of the present embodiment is provided so as to be able to advance and retreat from the side opposite to the separator F3a with respect to the optical sheet FX toward the optical sheet FX.
 切断装置22cは、光学シートFXの搬送中に働くテンションによって光学シートFX(セパレータF3a)が破断しないように(所定の厚さがセパレータF3aに残るように)、切断刃の進退位置を調整し、粘着層F2aとセパレータF3aとの界面の近傍までハーフカットを施す。なお、切断刃に代わるレーザー装置を用いてもよい。 The cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical sheet FX (so that a predetermined thickness remains in the separator F3a), Half-cut to the vicinity of the interface between the adhesive layer F2a and the separator F3a. In addition, you may use the laser apparatus replaced with a cutting blade.
 ハーフカット後の光学シートFXには、その厚さ方向で光学部材本体F1a及び表面保護フィルムF4aが切断されることにより、光学シートFXの幅方向の全幅にわたる切込線L1,L2が形成される。切込線L1,L2は、帯状の光学シートFXの長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切込線L1,L2は光学シートFXの長手方向で等間隔に形成される。光学シートFXは、複数の切込線L1,L2によって長手方向で複数の区画に分けられる。光学シートFXにおける長手方向で隣り合う一対の切込線L1,L2に挟まれる区画は、それぞれ貼合シートF5における一つのシート片FXmとされる。シート片FXmは、液晶パネルPの外側にはみ出るサイズの光学シートFXのシート片である。 In the optical sheet FX after the half cut, the optical member main body F1a and the surface protection film F4a are cut in the thickness direction, thereby forming cut lines L1 and L2 extending over the entire width in the width direction of the optical sheet FX. . The cut lines L1 and L2 are formed so as to be aligned in the longitudinal direction of the belt-shaped optical sheet FX. For example, in the case of the bonding process which conveys the liquid crystal panel P of the same size, the plurality of cut lines L1 and L2 are formed at equal intervals in the longitudinal direction of the optical sheet FX. The optical sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines L1, L2. A section sandwiched between a pair of cutting lines L1 and L2 adjacent in the longitudinal direction in the optical sheet FX is a sheet piece FXm in the bonding sheet F5. The sheet piece FXm is a sheet piece of the optical sheet FX having a size that protrudes outside the liquid crystal panel P.
 図17に戻り、ナイフエッジ22dは、上流側コンベア6の下方に配置されて光学シートFXの幅方向で少なくともその全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の光学シートFXのセパレータF3a側に摺接するようにこれを巻きかける。 Referring back to FIG. 17, the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over its entire width in the width direction of the optical sheet FX. The knife edge 22d is wound so as to be in sliding contact with the separator F3a side of the optical sheet FX after the half cut.
 ナイフエッジ22dは、光学シートFXの幅方向(上流側コンベア6の幅方向)から見て伏せた姿勢に配置される第1面と、第1面の上方で光学シートFXの幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部とを有する。 The knife edge 22d is seen from the width direction of the optical sheet FX above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet FX (width direction of the upstream conveyor 6). It has the 2nd surface arrange | positioned at an acute angle with respect to a 1st surface, and the front-end | tip part where a 1st surface and a 2nd surface cross.
 第1貼合装置13において、ナイフエッジ22dは、その先端部に第1光学シートF1を鋭角に巻きかける。第1光学シートF1は、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータF3aから貼合シートF5のシート片(第1シート片F1m)を分離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送下流側に近接して配置される。ナイフエッジ22dによりセパレータF3aから分離した第1シート片F1mは、第1吸着装置11に吸着された状態の液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。第1シート片F1mは、液晶パネルPの外側にはみ出るサイズの第1光学シートF1のシート片である。 In the 1st bonding apparatus 13, the knife edge 22d winds the 1st optical sheet F1 to an acute angle at the front-end | tip part. The first optical sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d. The tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23. The first sheet piece F1m separated from the separator F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping the lower surface of the liquid crystal panel P in a state of being sucked by the first suction device 11. Is done. The first sheet piece F1m is a sheet piece of the first optical sheet F1 having a size that protrudes outside the liquid crystal panel P.
 一方、ナイフエッジ22dにより、貼合シートF5と分離されたセパレータF3aは巻き取り部22eに向かう。巻き取り部22eは、貼合シートF5と分離されたセパレータF3aを巻き取り、回収する。 On the other hand, the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d. The winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
 挟圧ロール23は、搬送装置22が第1光学シートF1から分離させた第1シート片F1mを上流側コンベア6により搬送される液晶パネルPの下面に貼合する。ここで、挟圧ロール23は、特許請求の範囲に記載の貼合装置に相当する。 The pinching roll 23 bonds the first sheet piece F1m separated from the first optical sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6. Here, the pinching roll 23 is equivalent to the bonding apparatus as described in a claim.
 挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23a,23aを有する(上の貼合ローラ23aは上下する)。一対の貼合ローラ23a,23a間には所定の間隙が形成され、この間隙内が第1貼合装置13の貼合位置となる。 The pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a moves up and down). A predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13.
 間隙内には、液晶パネルP及び第1シート片F1mが重なり合って導入される。これら液晶パネルP及び第1シート片F1mが、各貼合ローラ23aに挟圧されつつ上流側コンベア6のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPのバックライト側の面に第1シート片F1mが貼合されることにより、第1光学部材貼合体PA1(シート片貼合体)が形成される。 In the gap, the liquid crystal panel P and the first sheet piece F1m are overlapped and introduced. These liquid crystal panel P and the 1st sheet piece F1m are sent out to the panel conveyance downstream of the upstream conveyor 6, being clamped by each bonding roller 23a. In this embodiment, 1st optical member bonding body PA1 (sheet piece bonding body) is formed by the 1st sheet piece F1m being bonded by the pinching roll 23 to the surface at the side of the backlight of liquid crystal panel P. As shown in FIG. .
 第1検出装置41は、第1貼合装置13よりもパネル搬送下流側に設けられている。第1検出装置41は、液晶パネルPと第1シート片F1mとの貼合面(以下、第1貼合面と称する)の端縁を検出する。 The 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13. FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth a 1st bonding surface) of liquid crystal panel P and the 1st sheet piece F1m.
 図22は、第1貼合面SA1の端縁EDの検出工程を示す平面図である。
 第1検出装置41は、例えば図22に示すように、上流側コンベア6の搬送経路上に設置された4箇所の検査領域CAにおいて第1貼合面SA1の端縁EDを検出する。各検査領域CAは、矩形形状を有する第1貼合面SA1の4つの角部に対応する位置に配置されている。端縁EDは、ライン上を搬送される液晶パネルPごとに検出される。第1検出装置41によって検出された端縁EDのデータは、図示しない記憶部に記憶される。
FIG. 22 is a plan view showing a step of detecting the edge ED of the first bonding surface SA1.
For example, as illustrated in FIG. 22, the first detection device 41 detects the edge ED of the first bonding surface SA <b> 1 in the four inspection areas CA installed on the transport path of the upstream conveyor 6. Each inspection area | region CA is arrange | positioned in the position corresponding to four corner | angular parts of 1st bonding surface SA1 which has a rectangular shape. The edge ED is detected for each liquid crystal panel P conveyed on the line. The data of the edge ED detected by the first detection device 41 is stored in a storage unit (not shown).
 なお、検査領域CAの配置位置はこれに限らない。例えば、各検査領域CAが、第1貼合面SA1の各辺の一部(例えば各辺の中央部)に対応する位置に配置されていてもよい。 Note that the arrangement position of the inspection area CA is not limited to this. For example, each inspection area | region CA may be arrange | positioned in the position corresponding to a part (for example, center part of each side) of each edge | side of 1st bonding surface SA1.
 図23は、第1検出装置41の模式図である。
 図23においては、便宜上、第1光学部材貼合体PA1の第1シート片F1mが貼合された側を上側とし、第1検出装置41の構成を上下反転して示している。
FIG. 23 is a schematic diagram of the first detection device 41.
In FIG. 23, for the sake of convenience, the configuration of the first detection device 41 is shown upside down with the side on which the first sheet piece F1m of the first optical member bonding body PA1 is bonded as the upper side.
 図23に示すように、第1検出装置41は、端縁EDを照明する照明光源44と、第1貼合面SA1の法線方向に対して端縁EDよりも第1貼合面SA1の内側に傾斜した位置に配置され、第1光学部材貼合体PA1の第1シート片F1mが貼合された側から端縁EDの画像を撮像する撮像装置43と、を備えている。 As shown in FIG. 23, the 1st detection apparatus 41 is the illumination light source 44 which illuminates edge ED, and 1st bonding surface SA1 rather than edge ED with respect to the normal line direction of 1st bonding surface SA1. The image pickup device 43 is disposed at a position inclined inward and picks up an image of the edge ED from the side where the first sheet piece F1m of the first optical member bonding body PA1 is bonded.
 照明光源44と撮像装置43とは、図22で示した4箇所の検査領域CA(第1貼合面SA1の4つの角部に対応する位置)にそれぞれ配置されている。 The illumination light source 44 and the imaging device 43 are respectively arranged in the four inspection areas CA (positions corresponding to the four corners of the first bonding surface SA1) shown in FIG.
 第1貼合面SA1の法線と撮像装置43の撮像面43aの法線とのなす角度θ(以下、撮像装置43の傾斜角度θと称する)は、撮像装置43の撮像視野内にパネル分断時のずれやバリ等が入り込まないように設定することが好ましい。例えば、第2基板P2の端面が第1基板P1の端面よりも外側にずれている場合、撮像装置43の傾斜角度θは、撮像装置43の撮像視野内に第2基板P2の端縁が入り込まないように設定する。 An angle θ between the normal line of the first bonding surface SA1 and the normal line of the image pickup surface 43a of the image pickup device 43 (hereinafter referred to as an inclination angle θ of the image pickup device 43) is divided into panels within the image pickup field of the image pickup device 43. It is preferable to set so that time lag, burrs and the like do not enter. For example, when the end surface of the second substrate P2 is shifted outward from the end surface of the first substrate P1, the inclination angle θ of the imaging device 43 is such that the edge of the second substrate P2 enters the imaging field of the imaging device 43. Set to not.
 撮像装置43の傾斜角度θは、第1貼合面SA1と撮像装置43の撮像面43aの中心との間の距離H(以下、撮像装置43の高さHと称する)に適合するように設定されることが好ましい。例えば、撮像装置43の高さHが50mm以上100mm以下の場合、撮像装置43の傾斜角度θは、5°以上20°以下の範囲の角度に設定されることが好ましい。ただし、経験的にずれ量が分かっている場合には、そのずれ量に基づいて撮像装置43の高さH及び撮像装置43の傾斜角度θを求めることができる。本実施形態では、撮像装置43の高さHが78mm、撮像装置43の傾斜角度θが10°に設定されている。 The inclination angle θ of the imaging device 43 is set to match the distance H (hereinafter referred to as the height H of the imaging device 43) between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43. It is preferred that For example, when the height H of the imaging device 43 is 50 mm or more and 100 mm or less, the inclination angle θ of the imaging device 43 is preferably set to an angle in the range of 5 ° or more and 20 ° or less. However, when the deviation amount is empirically known, the height H of the imaging device 43 and the inclination angle θ of the imaging device 43 can be obtained based on the deviation amount. In the present embodiment, the height H of the imaging device 43 is set to 78 mm, and the inclination angle θ of the imaging device 43 is set to 10 °.
 照明光源44と撮像装置43とは、各検査領域CAに固定して配置されている。 The illumination light source 44 and the imaging device 43 are fixedly arranged in each inspection area CA.
 なお、照明光源44と撮像装置43とは、第1貼合面SA1の端縁EDに沿って移動可能に配置されていてもよい。この場合、照明光源44と撮像装置43とがそれぞれ1つずつ設けられていればよい。また、これにより、照明光源44と撮像装置43とを、第1貼合面SA1の端縁EDを撮像しやすい位置に移動させることができる。 In addition, the illumination light source 44 and the imaging device 43 may be arrange | positioned so that a movement is possible along the edge ED of 1st bonding surface SA1. In this case, the illumination light source 44 and the imaging device 43 should each be provided one each. Thereby, the illumination light source 44 and the imaging device 43 can be moved to a position where the edge ED of the first bonding surface SA1 can be easily imaged.
 照明光源44は、第1光学部材貼合体PA1の第1シート片F1mが貼合された側とは反対側に配置されている。照明光源44は、第1貼合面SA1の法線方向に対して端縁EDよりも第1貼合面SA1の外側に傾斜した位置に配置されている。本実施形態では、照明光源44の光軸と撮像装置43の撮像面43aの法線とが平行になっている。 The illumination light source 44 is arrange | positioned on the opposite side to the side by which the 1st sheet piece F1m of 1st optical member bonding body PA1 was bonded. The illumination light source 44 is arrange | positioned in the position which inclined outside the 1st bonding surface SA1 rather than the edge ED with respect to the normal line direction of 1st bonding surface SA1. In the present embodiment, the optical axis of the illumination light source 44 and the normal line of the imaging surface 43a of the imaging device 43 are parallel.
 なお、照明光源は、第1光学部材貼合体PA1の第1シート片F1mが貼合された側に配置されていてもよい。 In addition, the illumination light source may be arrange | positioned at the side by which the 1st sheet piece F1m of 1st optical member bonding body PA1 was bonded.
 また、照明光源44の光軸と撮像装置43の撮像面43aの法線とが若干斜めに交差していてもよい。 Further, the optical axis of the illumination light source 44 and the normal line of the image pickup surface 43a of the image pickup device 43 may slightly cross each other.
 第1シート片F1mのカット位置は、第1貼合面SA1の端縁EDの検出結果に基づいて調整される。制御部40(図17参照)は、記憶部に記憶された第1貼合面SA1の端縁EDのデータを取得し、第1光学部材F11が液晶パネルPの外側(第1貼合面SA1の外側)にはみ出さない大きさとなるように第1シート片F1mのカット位置を決定する。第1切断装置31は、制御部40によって決定されたカット位置において第1シート片F1mを切断する。 The cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge ED of the first bonding surface SA1. The control part 40 (refer FIG. 17) acquires the data of the edge ED of 1st bonding surface SA1 memorize | stored in the memory | storage part, and the 1st optical member F11 is outside the liquid crystal panel P (1st bonding surface SA1). The cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side. The first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control unit 40.
 図17に戻り、第1切断装置31は、第1検出装置41よりもパネル搬送下流側に設けられている。第1切断装置31は、端縁EDに沿ってレーザーカットを行うことにより、第1光学部材貼合体PA1から第1貼合面SA1の外側にはみ出た部分の第1シート片F1m(第1シート片F1mの余剰部分)を切り離し、第1貼合面SA1に対応する大きさの光学部材(第1光学部材F11)を形成する。ここで、第1切断装置31は、特許請求の範囲に記載の切断装置に相当する。すなわち、第1切断装置31は、第1シート片F1mを対象物110とし、該第1シート片F1mの余剰部分を切り離し、第1貼合面SA1に対応する大きさの光学部材(第1光学部材F11)を形成する切断処理を行う。 Returning to FIG. 17, the first cutting device 31 is provided on the downstream side of the panel conveyance from the first detection device 41. The 1st cutting device 31 performs the laser cut along edge ED, and is the 1st sheet piece F1m (1st sheet | seat) of the part which protruded outside 1st bonding surface SA1 from 1st optical member bonding body PA1. The surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed. Here, the 1st cutting device 31 is corresponded to the cutting device as described in a claim. That is, the 1st cutting device 31 makes the 1st sheet piece F1m the target object 110, cuts off the excess part of this 1st sheet piece F1m, and the optical member (1st optical) of the magnitude | size corresponding to 1st bonding surface SA1. A cutting process for forming the member F11) is performed.
 ここで、「第1貼合面SA1に対応する大きさ」とは、第1基板P1の外形状の大きさを示す。ただし、表示領域P4の大きさ以上、液晶パネルPの外形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を含む。 Here, “the size corresponding to the first bonding surface SA1” indicates the size of the outer shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer shape of the liquid crystal panel P, and that avoids a functional part such as an electrical component mounting portion.
 第1切断装置31により第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されて第2光学部材貼合体PA2が形成される。第1シート片F1mから切り離された余剰部分は、図示略の剥離装置によって液晶パネルPから剥離され回収される。 The first optical member F11 is bonded to the surface on the backlight side of the liquid crystal panel P by cutting off the excess portion of the first sheet piece F1m from the first optical member bonding body PA1 by the first cutting device 31. Optical member bonding body PA2 is formed. The surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
 反転装置15は、液晶パネルPの表示面側を上面にした第2光学部材貼合体PA2を表裏反転させて液晶パネルPのバックライト側を上面にすると共に、第2貼合装置17に対する液晶パネルPのアライメントを行う。 The reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
 反転装置15は、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。反転装置15には、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられている。 The reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11. The reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
 反転装置15は、制御部40に記憶された光学軸方向の検査データ及びアライメントカメラ15cの撮像データに基づき、第2貼合装置17に対する第2光学部材貼合体PA2の部品幅方向での位置決め及び回転方向での位置決めを行う。この状態で、第2光学部材貼合体PA2が第2貼合装置17の貼合位置に導入される。 The reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control unit 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce | transduced into the bonding position of the 2nd bonding apparatus 17. FIG.
 第2吸着装置20は、第1吸着装置11と同様の構成を備えているため同一部分に同一符号を付して説明する。第2吸着装置20は、第2光学部材貼合体PA2を吸着して下流側コンベア7に搬送すると共に第2光学部材貼合体PA2のアライメント(位置決め)を行う。第2吸着装置20は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 Since the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described. The 2nd adsorption | suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2. The second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、下流側コンベア7により下流側のストッパSに当接した第2光学部材貼合体PA2を上下方向及び水平方向に移動可能に保持すると共に第2光学部材貼合体PA2のアライメントを行う。パネル保持部11aは、ストッパSに当接した第2光学部材貼合体PA2の上面を真空吸着によって吸着保持する。パネル保持部11aは、第2光学部材貼合体PA2を吸着保持した状態でレールR上を移動して第2光学部材貼合体PA2を搬送する。パネル保持部11aは、前記搬送が終わると前記吸着保持を解除して第2光学部材貼合体PA2をフリーローラコンベア24に受け渡す。 The panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2. Do. The panel holding | maintenance part 11a adsorbs and hold | maintains the upper surface of 2nd optical member bonding body PA2 contact | abutted to the stopper S by vacuum suction. The panel holding | maintenance part 11a moves on the rail R in the state which adsorbed and hold | maintained 2nd optical member bonding body PA2, and conveys 2nd optical member bonding body PA2. When the conveyance is finished, the panel holding unit 11a releases the suction holding and transfers the second optical member bonding body PA2 to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した第2光学部材貼合体PA2をパネル保持部11aが保持し、上昇した状態で第2光学部材貼合体PA2のアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する第2光学部材貼合体PA2のアライメントがなされる。つまり、第2光学部材貼合体PA2は、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び第2光学部材貼合体PA2の垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。 The alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state. Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 as the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
 第2集塵装置16は、第2貼合装置17の貼合位置である挟圧ロール23に対して、液晶パネルPの搬送方向上流側に配置されている。第2集塵装置16は、貼合位置に導入される前の第2光学部材貼合体PA2の周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The second dust collecting device 16 is arranged on the upstream side in the transport direction of the liquid crystal panel P with respect to the pinching roll 23 which is the bonding position of the second bonding device 17. The second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
 第2貼合装置17は、第2集塵装置16よりもパネル搬送下流側に設けられている。第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットした貼合シートF5(第2シート片F2mに相当)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。 The 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16. FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position. Do. The 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13. FIG.
 挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、第2光学部材貼合体PA2及び第2シート片F2mが重なり合って導入される。第2シート片F2mは、液晶パネルPの表示領域P4よりも大きいサイズの第2光学シートF2のシート片である。 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce | transduced in the clearance gap (bonding position of the 2nd bonding apparatus 17) between a pair of bonding rollers 23a of the pinching roll 23. FIG. The second sheet piece F2m is a sheet piece of the second optical sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
 これら第2光学部材貼合体PA2及び第2シート片F2mが、各貼合ローラ23aに挟圧されつつ下流側コンベア7のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPの表示面側の面(第2光学部材貼合体PA2の第1光学部材F11が貼合された面とは反対側の面)に第2シート片F2mが貼合されることにより、第3光学部材貼合体PA3が形成される。 These 2nd optical member bonding body PA2 and the 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by each bonding roller 23a. In this embodiment, it is a 2nd sheet | seat on the surface (surface on the opposite side to the surface where the 1st optical member F11 of 2nd optical member bonding body PA2 was bonded) of the liquid crystal panel P by the pinching roll 23. By bonding the piece F2m, the third optical member bonding body PA3 is formed.
 第2検出装置42は、第2貼合装置17よりもパネル搬送下流側に設けられている。第2検出装置42は、液晶パネルPと第2シート片F2mとの貼合面(以下、第2貼合面と称する)の端縁を検出する。第2検出装置42によって検出された端縁のデータは、図示しない記憶部に記憶される。 The 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17. FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m. The edge data detected by the second detection device 42 is stored in a storage unit (not shown).
 第2シート片F2mのカット位置は、第2貼合面の端縁の検出結果に基づいて調整される。制御部40(図17参照)は、記憶部に記憶された第2貼合面の端縁のデータを取得し、第2光学部材F12が液晶パネルPの外側(第2貼合面の外側)にはみ出さない大きさとなるように第2シート片F2mのカット位置を決定する。第2切断装置32は、制御部40によって決定されたカット位置において第2シート片F2mを切断する。ここで、第2切断装置32は、特許請求の範囲に記載の切断装置に相当する。 The cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface. The control part 40 (refer FIG. 17) acquires the data of the edge of the 2nd bonding surface memorize | stored in the memory | storage part, and the 2nd optical member F12 is the outer side of the liquid crystal panel P (outside of a 2nd bonding surface). The cutting position of the second sheet piece F2m is determined so as not to protrude. The second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control unit 40. Here, the 2nd cutting device 32 is corresponded to the cutting device as described in a claim.
 第2切断装置32は、第2検出装置42よりもパネル搬送下流側に設けられている。第2切断装置32は、第2貼合面の端縁に沿ってレーザーカットを行うことにより、第3光学部材貼合体PA3から第2貼合面の外側にはみ出た部分の第2シート片F2m(第2シート片F2mの余剰部分)を切り離し、第2貼合面に対応する大きさの光学部材(第2光学部材F12)を形成する。すなわち、第2切断装置32は、第2シート片F2mを対象物110とし、該第2シート片F2mの余剰部分を切り離し、第2貼合面に対応する大きさの光学部材(第2光学部材F12)を形成する切断処理を行う。 The second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42. The 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude | size corresponding to a 2nd bonding surface is formed. That is, the 2nd cutting device 32 makes 2nd sheet piece F2m the target object 110, cuts off the excess part of this 2nd sheet piece F2m, and the optical member (2nd optical member) of the magnitude | size corresponding to a 2nd bonding surface. A cutting process for forming F12) is performed.
 第2切断装置32により第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの表示面側の面に第2光学部材F12が貼合され、かつ、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されて第4光学部材貼合体PA4(光学部材貼合体)が形成される。第2シート片F2mから切り離された余剰部分は、図示略の剥離装置によって液晶パネルPから剥離され回収される。 The second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and The first optical member F11 is bonded to the backlight side surface of the liquid crystal panel P to form a fourth optical member bonded body PA4 (optical member bonded body). The surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
 ここで、第1切断装置31および第2切断装置32は、上述したレーザー光照射装置100によって構成されている。第1切断装置31および第2切断装置32は、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。 Here, the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus 100 mentioned above. The 1st cutting device 31 and the 2nd cutting device 32 cut | disconnect endlessly the sheet piece FXm bonded by liquid crystal panel P along the outer periphery of the bonding surface.
 第2貼合装置17よりもパネル搬送下流側には、図示略の貼合検査装置が設けられている。貼合検査装置は、フィルム貼合がなされたワーク(液晶パネルP)の図示略の検査装置による検査(光学部材F1Xの位置が適正か否か(位置ズレが公差範囲内にあるか否か)等の検査)がなされる。液晶パネルPに対する光学部材F1Xの位置が適正ではないと判定されたワークは、不図示の払い出し手段によりシステム外に排出される。 A bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17. The bonding inspection apparatus is an inspection (not shown whether the position of the optical member F1X is appropriate (whether the position deviation is within the tolerance range)) by the inspection apparatus (not shown) of the workpiece (liquid crystal panel P) on which the film is bonded. Etc.). The work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
 なお、本実施形態においてフィルム貼合システム1の各部を統括制御する電子制御装置としての制御部40は、コンピュータシステムを含んで構成されている。このコンピュータシステムは、CPU等の演算処理部と、メモリやハードディスク等の記憶部とを備える。 In addition, in this embodiment, the control part 40 as an electronic control apparatus which performs overall control of each part of the film bonding system 1 is comprised including the computer system. This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
 本実施形態の制御部40は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御部40には、入力信号を入力可能な入力装置が接続されていてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置等を含む。制御部40は、フィルム貼合システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。 The control unit 40 of the present embodiment includes an interface capable of executing communication with an external device of the computer system. An input device that can input an input signal may be connected to the control unit 40. The input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system. The control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
 制御部40の記憶部には、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされている。制御部40の記憶部には、演算処理部にフィルム貼合システム1の各部を制御させることによって、フィルム貼合システム1の各部に光学シートFを精度よく搬送させるための処理を実行させるプログラムが記録されている。記憶部に記録されているプログラムを含む各種情報は、制御部40の演算処理部が読み取り可能である。制御部40は、フィルム貼合システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよい。 An operating system (OS) that controls the computer system is installed in the storage unit of the control unit 40. The storage unit of the control unit 40 includes a program that causes the arithmetic processing unit to control each unit of the film bonding system 1 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical sheet F. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40. The control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
 記憶部は、RAM(Random Access Memory)、ROM(Read Only Memory)などといった半導体メモリや、ハードディスク、CD-ROM読取り装置、ディスク型記憶媒体などといった外部記憶装置などを含む概念である。記憶部は、機能的には、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2吸着装置20、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域、その他各種の記憶領域が設定される。 The storage unit is a concept including a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium. The storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
 以下、図24を参照して、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)の決定方法の一例を説明する。 Hereinafter, an example of a method for determining the bonding position (relative bonding position) of the sheet piece FXm with respect to the liquid crystal panel P will be described with reference to FIG.
 まず、図24(a)に示すように、光学シートFXの幅方向に複数の検査ポイントCPを設定し、各検査ポイントCPにおいて光学シートFXの光学軸の方向を検出する。光学軸を検出するタイミングは、原反ロールR1の製造時でもよく、原反ロールR1から光学シートFXを巻き出してハーフカットするまでの間でもよい。光学シートFXの光学軸方向のデータは、光学シートFXの位置(光学シートFXの長手方向の位置および幅方向の位置)と関連付けられて図示略の記憶装置に記憶される。 First, as shown in FIG. 24A, a plurality of inspection points CP are set in the width direction of the optical sheet FX, and the direction of the optical axis of the optical sheet FX is detected at each inspection point CP. The timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical sheet FX is unwound from the original fabric roll R1 and half cut. Data in the optical axis direction of the optical sheet FX is stored in a storage device (not shown) in association with the position of the optical sheet FX (position in the longitudinal direction and position in the width direction of the optical sheet FX).
 制御部40は、記憶装置から各検査ポイントCPの光学軸のデータ(光学軸の面内分布の検査データ)を取得し、シート片FXmが切り出される部分の光学シートFX(切込線CLによって区画される領域)の平均的な光学軸の方向を検出する。 The control unit 40 acquires the optical axis data (inspection data on the in-plane distribution of the optical axis) of each inspection point CP from the storage device, and partitions the optical sheet FX (cut line CL) into the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the region to be detected is detected.
 例えば、図24(b)に示すように、光学軸の方向と光学シートFXのエッジラインELとのなす角度(ずれ角)を検査ポイントCP毎に検出し、ずれ角のうち最も大きな角度(最大ずれ角)をθmaxとし、最も小さな角度(最小ずれ角)をθminとしたときに、最大ずれ角θmaxと最小ずれ角θminとの平均値θmid(=(θmax+θmin)/2)を平均ずれ角として検出する。そして、光学シートFXのエッジラインELに対して平均ずれ角θmidをなす方向を光学シートFXの平均的な光学軸の方向として検出する。なお、ずれ角は、例えば、光学シートFXのエッジラインELに対して左回りの方向を正とし、右回りの方向を負として算出される。 For example, as shown in FIG. 24B, an angle (deviation angle) formed between the direction of the optical axis and the edge line EL of the optical sheet FX is detected for each inspection point CP, and the largest of the deviation angles (maximum) When the deviation angle is θmax and the smallest angle (minimum deviation angle) is θmin, the average value θmid (= (θmax + θmin) / 2) of the maximum deviation angle θmax and the minimum deviation angle θmin is detected as the average deviation angle. To do. Then, the direction that forms the average deviation angle θmid with respect to the edge line EL of the optical sheet FX is detected as the direction of the average optical axis of the optical sheet FX. The deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical sheet FX and the clockwise direction being negative.
 そして、上記の方法で検出された光学シートFXの平均的な光学軸の方向が、液晶パネルPの表示領域P4の長辺または短辺に対して所望の角度をなすように、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)が決定される。例えば、設計仕様によって光学部材F1Xの光学軸の方向が表示領域P4の長辺または短辺に対して90°をなす方向に設定されている場合には、光学シートFXの平均的な光学軸の方向が表示領域P4の長辺又は短辺に対して90°をなすように、シート片FXmが液晶パネルPに貼合される。 And the direction of the average optical axis of the optical sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P. The bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specification, the average optical axis of the optical sheet FX is set. The sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
 前述した第1切断装置31および第2切断装置32は、液晶パネルPの表示領域P4の外周縁をカメラ等の検出手段で検出し、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。貼合面の外周縁は、貼合面の端縁を撮像することによって検出される。
 本実施形態では、貼合面の外周縁に沿って各切断装置31,32によるレーザーカットがなされる。
The first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P with a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer peripheral edge of the bonding surface is detected by imaging the edge of the bonding surface.
In this embodiment, the laser cutting by each cutting device 31 and 32 is made along the outer periphery of the bonding surface.
 レーザー加工機の切断線の振れ幅(公差)は切断刃のそれよりも小さく、したがって本実施形態では、切断刃を用いて光学シートFXを切断する場合と比べて、貼合面の外周縁に沿って容易に切断することが可能であり、液晶パネルPの小型化及び(又は)表示領域P4の大型化が可能である。これは、近年のスマートフォンやタブレット端末のように、筐体のサイズが制限される中で表示画面の拡大が要求される高機能モバイルへの適用に有効である。 The runout width (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in this embodiment, compared with the case of cutting the optical sheet FX using the cutting blade, the outer peripheral edge of the bonding surface The liquid crystal panel P can be reduced in size and / or the display area P4 can be increased in size. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
 また、光学シートFXを液晶パネルPの表示領域P4に整合するシート片にカットした後に液晶パネルPに貼合する場合、シート片及び液晶パネルPそれぞれの寸法公差、並びにこれらの相対貼合位置の寸法公差が重なる。そのため、液晶パネルPの額縁部Gの幅を狭めることが困難になる(表示エリアの拡大が困難になる)。 In addition, when the optical sheet FX is cut into a sheet piece that matches the display region P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the sheet piece and the liquid crystal panel P, and the relative bonding positions thereof Dimensional tolerances overlap. Therefore, it becomes difficult to narrow the width of the frame portion G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
 一方、光学シートFXから液晶パネルPの外側にはみ出るサイズの光学シートFXのシート片FXmを切り出し、この切り出したシート片FXmを液晶パネルPに貼合した後に貼合面に合わせてカットする場合、切断線の振れ公差のみを考慮すればよく、額縁部Gの幅の公差を小さくすることができる(±0.1mm以下)。この点においても、液晶パネルPの額縁部Gの幅を狭めることができる(表示エリアの拡大が可能となる)。 On the other hand, when cutting out the sheet piece FXm of the optical sheet FX of a size protruding from the optical sheet FX to the outside of the liquid crystal panel P, and pasting the cut sheet piece FXm on the liquid crystal panel P, the sheet piece FXm is cut according to the bonding surface. Only the run-out tolerance of the cutting line needs to be considered, and the tolerance of the width of the frame G can be reduced (± 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
 さらに、シート片FXmを刃物ではなくレーザーでカットすることで、切断時の力が液晶パネルPに入力されず、液晶パネルPの基板の端縁にクラックや欠けが生じ難くなり、ヒートサイクル等に対する耐久性が向上する。同様に、液晶パネルPに非接触であるため、電気部品取り付け部に対するダメージも少ない。 Further, by cutting the sheet piece FXm with a laser instead of a blade, the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion.
 図25は、切断装置として図1に示すレーザー光照射装置100を用いてシート片FXmを所定サイズの光学部材F1Xに切断する際、レーザー光をシート片FXm上で矩形状に走査するための制御方法を示す図である。 FIG. 25 shows a control for scanning the laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 shown in FIG. 1 as a cutting device. It is a figure which shows a method.
 なお、図25において、符号Trは、目的とするレーザー光の移動軌跡(所望の軌跡。以下、レーザー光移動軌跡ということがある)である。符号Tr1は、テーブル111とスキャナー105との相対的な移動による移動軌跡をシート片FXmに投影した軌跡(以下、光源移動軌跡ということがある)である。光源移動軌跡Tr1は、矩形形状を有するレーザー光移動軌跡Trの4つの角部を湾曲させた形状である。符号K1は角部以外の直線区間であり、符号K2は角部の屈曲区間である。符号Tr2は、スキャナー105が光源移動軌跡Tr1上を相対的に移動しているときにレーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154により光源移動軌跡Tr1と直交する方向にどの程度ずらされるか(調整されているか)を示す曲線(以下、調整曲線ということがある)である。レーザー照射位置のずれ量(調整量)は、光源移動軌跡Tr1と直交する方向における調整曲線Tr2とレーザー光移動軌跡Trとの間の距離で示されている。 In FIG. 25, reference numeral Tr denotes a target laser beam movement locus (desired locus; hereinafter referred to as laser light movement locus). Reference numeral Tr1 is a trajectory (hereinafter sometimes referred to as a light source movement trajectory) obtained by projecting a movement trajectory due to relative movement between the table 111 and the scanner 105 onto the sheet piece FXm. The light source movement locus Tr1 has a shape in which four corners of the laser light movement locus Tr having a rectangular shape are curved. Reference sign K1 is a straight section other than the corner, and reference sign K2 is a bent section of the corner. Reference numeral Tr2 indicates that the irradiation position of the laser beam is orthogonal to the light source movement trajectory Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement trajectory Tr1. It is a curve (hereinafter, sometimes referred to as an adjustment curve) indicating how much it is shifted (adjusted) in the direction of movement. The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
 図25に示すように、光源移動軌跡Tr1は、角部が湾曲した略矩形の移動軌跡となっている。光源移動軌跡Tr1とレーザー光移動軌跡Trとは概ね一致しており、角部の狭い領域でのみ両者の形状が異なっている。光源移動軌跡Tr1が矩形形状をしていると、矩形の角部でスキャナー105の移動速度が遅くなり、角部がレーザー光の熱によって膨れたり波打ったりすることがある。そのため、図25では、光源移動軌跡Tr1の角部を湾曲させてスキャナー105の移動速度が光源移動軌跡Tr1全体で概ね一定となるようにしている。 As shown in FIG. 25, the light source movement locus Tr1 is a substantially rectangular movement locus having a curved corner. The light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. For this reason, in FIG. 25, the corner of the light source movement locus Tr1 is curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
 制御装置107は、スキャナー105が直線区間K1を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しているので、レーザー光の照射位置を第1照射位置調整装置151および第2照射位置調整装置154により調整せずに、そのままスキャナー105からシート片FXmにレーザー光を照射させる。一方、スキャナー105が屈曲区間K2を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しないので、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置を制御し、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようにする。例えば、スキャナー105が符号M1で示す位置を移動しているときには、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置が光源移動軌跡Tr1と直交する方向N1に距離W1だけずらされる。距離W1は、光源移動軌跡Tr1と直交する方向N1における調整曲線Tr2とレーザー光移動軌跡Trとの距離W2と同じである。光源移動軌跡Tr1はレーザー光移動軌跡Trよりも内側に配置されているが、レーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154によってレーザー光移動軌跡Trよりも外側にずらされるので、それらのずれが相殺してレーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようになる。 Since the light source movement locus Tr1 and the laser beam movement locus Tr coincide with each other when the scanner 105 moves in the straight section K1, the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is. On the other hand, when the scanner 105 is moving in the bending section K2, the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so that the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light. The irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr. For example, when the scanner 105 is moving at the position indicated by the symbol M1, the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1. The distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1. The light source movement trajectory Tr1 is arranged inside the laser light movement trajectory Tr, but the irradiation position of the laser light is outside the laser light movement trajectory Tr by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. Therefore, these deviations cancel out, and the irradiation position of the laser beam is arranged on the laser beam movement locus Tr.
 以上説明したように、本実施形態の本実施形態のフィルム貼合システム1によれば、第1切断装置31および第2切断装置32が上述したレーザー光照射装置によって構成されている。そのため、シート片F1m,F2mに対する切断処理を効率よく行うことでタクトタイムを低減することで生産性を向上させることができる。また、シート片F1m,F2mをシャープに切断でき、カット品質の低下を抑制することができる。 As described above, according to the film bonding system 1 of the present embodiment of the present embodiment, the first cutting device 31 and the second cutting device 32 are configured by the laser light irradiation device described above. Therefore, productivity can be improved by reducing the tact time by efficiently performing the cutting process on the sheet pieces F1m and F2m. Moreover, the sheet pieces F1m and F2m can be cut sharply, and the deterioration of the cut quality can be suppressed.
 また、制御装置107の制御により、シート片FXmにおいて所望のレーザー光移動軌跡Trを描くように、移動装置106とスキャナー105とが制御される。この構成においては、第1照射位置調整装置151および第2照射位置調整装置154により調整すべきレーザー光の照射区間は狭い屈曲区間K2のみである。それ以外の広い直線区間K1は、移動装置106によるテーブル111の移動によってレーザー光がシート片FXm上を走査される。本実施形態では、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域のみ第1照射位置調整装置151および第2照射位置調整装置154で調整している。そのため、移動装置106のみ又はスキャナー105のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。 Further, under the control of the control device 107, the moving device 106 and the scanner 105 are controlled so as to draw a desired laser beam movement trajectory Tr in the sheet piece FXm. In this configuration, the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only a narrow bending section K2. In the other wide linear section K1, the laser beam is scanned on the sheet piece FXm by the movement of the table 111 by the moving device 106. In the present embodiment, the scanning of the laser beam is mainly performed by the moving device 106, and only the region where the moving position of the laser beam irradiation position cannot be accurately controlled by the moving device 106 is adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154. is doing. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
 また、撮像装置43の撮像方向が第1貼合面SA1の法線方向に対して斜めに交差している。すなわち、撮像装置43の撮像方向が、撮像装置43の撮像視野内に第2基板P2の端縁が入り込まないように設定されている。そのため、第1シート片F1m越しに、第1貼合面SA1の端縁EDを検出する際に、第2基板P2の端縁を誤検出してしまうことはなく、第1貼合面SA1の端縁EDのみを検出することができる。よって、第1貼合面SA1の端縁EDを精度良く検出することができる。 Moreover, the imaging direction of the imaging device 43 crosses diagonally with respect to the normal direction of the first bonding surface SA1. That is, the imaging direction of the imaging device 43 is set so that the edge of the second substrate P2 does not enter the imaging field of view of the imaging device 43. Therefore, when the edge ED of the first bonding surface SA1 is detected over the first sheet piece F1m, the edge of the second substrate P2 is not erroneously detected, and the first bonding surface SA1 is not detected. Only the edge ED can be detected. Therefore, the edge ED of the first bonding surface SA1 can be detected with high accuracy.
 また、液晶パネルPの外側にはみ出るサイズのシート片F1m,F2mを液晶パネルPに貼合した後に、シート片F1m,F2mの余剰部分を切り離すことで、貼合面に対応するサイズの光学部材F11,F12を液晶パネルPの面上で形成することができる。これにより、光学部材F11,F12を貼合面の際まで精度よく設けることができ、表示領域P4外側の額縁部を狭めて表示エリアの拡大及び機器の小型化を図ることができる。 Moreover, after bonding the sheet pieces F1m and F2m of a size that protrudes outside the liquid crystal panel P to the liquid crystal panel P, the excess part of the sheet pieces F1m and F2m is cut off, whereby the optical member F11 having a size corresponding to the bonding surface. , F12 can be formed on the surface of the liquid crystal panel P. Thereby, the optical members F11 and F12 can be accurately provided up to the bonding surface, and the frame area outside the display area P4 can be narrowed to enlarge the display area and downsize the device.
 また、液晶パネルPの外側にはみ出るサイズのシート片F1m,F2mを液晶パネルPに貼合することで、シート片F1m,F2mの位置に応じてその光学軸方向が変化する場合でも、この光学軸方向に合わせて液晶パネルPをアライメントして貼合することができる。これにより、液晶パネルPに対する光学部材F11,F12の光学軸方向の精度を向上させることができ、光学表示デバイスの精彩及びコントラストを高めることができる。 Even if the optical axis direction of the sheet pieces F1m and F2m changes depending on the position of the sheet pieces F1m and F2m by bonding the sheet pieces F1m and F2m of a size protruding outside the liquid crystal panel P to the liquid crystal panel P. The liquid crystal panel P can be aligned and bonded in accordance with the direction. Thereby, the precision of the optical axis direction of the optical members F11 and F12 with respect to the liquid crystal panel P can be improved, and the color and contrast of the optical display device can be increased.
 また、切断装置31,32が、シート片F1m,F2mをレーザーカットすることで、シート片F1m,F2mを刃物でカットする場合と比べて、液晶パネルPに力が及ばず、クラックや欠けが生じ難くなり、液晶パネルPの安定した耐久性を得ることができる。 In addition, the cutting devices 31 and 32 laser cut the sheet pieces F1m and F2m, so that the force is not exerted on the liquid crystal panel P as compared with the case where the sheet pieces F1m and F2m are cut with a blade, and cracks and chips occur. It becomes difficult, and the stable durability of the liquid crystal panel P can be obtained.
 なお、本実施形態においては、対象物にレーザー光を照射して所定の加工を行う構成として、シート片を切断する構成を例に挙げて説明したが、これに限らない。例えば、シート片を少なくとも二つに分割することの他に、シート片に貫通する切れ目を入れることやシート片に所定の深さの溝(切れ込み)を形成すること等も包含されていることとする。
より具体的には、例えば、シート片の端部の切断(切り落とし)、ハーフカット、マーキング加工等も含まれることとする。
In the present embodiment, the configuration in which the sheet piece is cut is described as an example of the configuration in which the object is irradiated with the laser beam and the predetermined processing is performed, but the configuration is not limited thereto. For example, in addition to dividing the sheet piece into at least two parts, it also includes making a cut through the sheet piece and forming a groove (cut) of a predetermined depth in the sheet piece. To do.
More specifically, for example, cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
 また、本実施形態においては、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視矩形形状(正方形形状)である場合を例に挙げて説明したが、これに限らない。例えば、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視三角形形状であってもよいし、平面視五角形以上の多角形形状であってもよい。また、これに限らず、平面視星型形状、平面視幾何学的形状であってもよい。このような描画軌跡においても本発明を適用することが可能である。 In the present embodiment, the case where the drawing locus of the laser beam emitted from the laser beam irradiation device is a rectangular shape (square shape) in plan view has been described as an example, but the present invention is not limited thereto. For example, the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape that is a pentagon or more in plan view. Moreover, not only this but a planar-view star shape and planar-view geometric shape may be sufficient. The present invention can also be applied to such a drawing trajectory.
 また、本実施形態においては、光学シートFXをロール原反から引き出し、液晶パネルPに液晶パネルPの外側にはみ出るサイズのシート片FXmを貼合した後、シート片FXmから液晶パネルPの貼合面に対応する大きさの光学部材F1Xに切り出す場合を挙げて説明したが、これに限らない。例えば、ロール原反を用いずに、液晶パネルPの外側にはみ出るサイズに切り出された枚葉状の光学フィルムチップを液晶パネルに貼合する場合においても本発明を適用することができる。 In the present embodiment, the optical sheet FX is pulled out from the original roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is bonded from the sheet piece FXm. Although the case where it cut out to the optical member F1X of the magnitude | size corresponding to a surface was mentioned and demonstrated was demonstrated, it is not restricted to this. For example, the present invention can also be applied to the case where a sheet-like optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
 以上、添付図面を参照しながら本実施形態に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiment according to the present embodiment has been described with reference to the accompanying drawings, but the present invention is not limited to the example. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
1…フィルム貼合システム(光学部材貼合体の製造装置)、23…挟圧ロール(貼合装置)、31…第1切断装置、32…第2切断装置、100…レーザー光照射装置、101…テーブル、101s…保持面、102…レーザー光発振機、105…スキャナー、106…移動装置、108…第2集光レンズ、110…対象物(処理対象)、141…第1集光レンズ、143…絞り部材、145…コリメートレンズ、P…液晶パネル(光学表示部品)、P1…第1基板、P2…第2基板、FX…光学シート、FXm…シート片、F1X…光学部材、PA1…第1光学部材貼合体(シート片貼合体)、PA4…第4光学部材貼合体(光学部材貼合体)、SA1…第1貼合面、ED…端縁 DESCRIPTION OF SYMBOLS 1 ... Film bonding system (manufacturing apparatus of an optical member bonding body), 23 ... Nipping roll (bonding apparatus), 31 ... 1st cutting device, 32 ... 2nd cutting device, 100 ... Laser beam irradiation apparatus, 101 ... Table: 101s ... Holding surface, 102 ... Laser oscillator, 105 ... Scanner, 106 ... Moving device, 108 ... Second condenser lens, 110 ... Object (target), 141 ... First condenser lens, 143 ... Diaphragm member, 145 ... collimating lens, P ... liquid crystal panel (optical display component), P1 ... first substrate, P2 ... second substrate, FX ... optical sheet, FXm ... sheet piece, F1X ... optical member, PA1 ... first optical Member bonding body (sheet piece bonding body), PA4 ... 4th optical member bonding body (optical member bonding body), SA1 ... 1st bonding surface, ED ... Edge

Claims (12)

  1.  処理対象に対して所定の切断処理を行う切断部と、
     第1の位置と、前記切断部が前記切断処理を行う切断位置と、の間で前記処理対象を移動可能な第1のテーブルと、
     前記切断位置に対して前記第1の位置と反対側の第2の位置と、前記切断位置と、の間で前記処理対象を移動可能な第2のテーブルと、を備え、
     前記第1の位置および前記第2の位置は、前記切断処理が行われる前に前記処理対象を外部から前記第1のテーブルまたは前記第2のテーブルに搬入する搬入位置と、前記切断処理が行われた後に前記処理対象を前記第1のテーブルまたは前記第2のテーブルから外部に搬出する搬出位置と、を兼ねる切断装置。
    A cutting unit that performs a predetermined cutting process on the processing target;
    A first table capable of moving the processing object between a first position and a cutting position at which the cutting unit performs the cutting process;
    A second table that is movable with respect to the cutting position between the second position opposite to the first position and the cutting position; and
    The first position and the second position are a carry-in position where the processing target is carried into the first table or the second table from the outside before the cutting process is performed, and the cutting process is performed. A cutting apparatus that also serves as an unloading position for unloading the processing target from the first table or the second table after being broken.
  2.  前記第1のテーブル及び前記第2のテーブルは、複数の前記処理対象を保持可能である
     請求項1に記載の切断装置。
    The cutting apparatus according to claim 1, wherein the first table and the second table can hold a plurality of the processing objects.
  3.  前記第1の位置と前記切断位置との間、及び前記第2の位置と前記切断位置との間の少なくとも一方に、前記切断部に対する前記処理対象の相対位置を検出する検出部が設けられている
     請求項1に記載の切断装置。
    A detection unit that detects a relative position of the processing object with respect to the cutting unit is provided between the first position and the cutting position and at least one of the second position and the cutting position. The cutting device according to claim 1.
  4.  前記検出部の検出結果に基づいて、前記切断部に対する前記処理対象の相対位置を補正する位置補正部をさらに備えている
     請求項3に記載の切断装置。
    The cutting apparatus according to claim 3, further comprising a position correction unit that corrects a relative position of the processing target with respect to the cutting unit based on a detection result of the detection unit.
  5.  前記第1のテーブルに対する前記処理対象の搬入タイミングと、前記第2のテーブルからの前記処理対象の搬出タイミングとが同期して行われる
     請求項1に記載の切断装置。
    The cutting apparatus according to claim 1, wherein the processing target carry-in timing with respect to the first table and the processing target carry-out timing from the second table are performed in synchronization.
  6.  前記第1の位置、前記第2の位置、および前記切断位置は、それぞれが直線上に設定されている
     請求項1に記載の切断装置。
    The cutting device according to claim 1, wherein the first position, the second position, and the cutting position are each set on a straight line.
  7.  前記切断部は、レーザー光によって前記切断処理を行う
     請求項1に記載の切断装置。
    The cutting apparatus according to claim 1, wherein the cutting unit performs the cutting process with a laser beam.
  8.  第1の位置において搬入した処理対象を切断位置に移動させて所定の切断処理を施した後に前記第1の位置から前記処理対象を搬出する第1切断工程と、
     第2の位置において搬入した前記処理対象を前記切断位置に移動させて前記所定の切断処理を施した後に前記第2の位置から前記処理対象を搬出する第2切断工程と、を備え、
     前記第1切断工程は、
     前記第1の位置において前記処理対象を搬入する第1搬入ステップと、
     前記第1の位置において搬入された前記処理対象を前記切断位置に移動させる第1往路移動ステップと、
     前記切断位置にて前記切断処理を行う第1切断ステップと、
     前記第1切断ステップ後、前記処理対象を前記切断位置から前記第1の位置まで移動させる第1復路移動ステップと、
     前記第1復路移動ステップの後、前記処理対象を前記第1の位置から搬出する第1搬出ステップと、を有し、
     前記第2切断工程は、
     前記第2の位置において前記処理対象を搬入する第2搬入ステップと、
     前記第2の位置において搬入された前記処理対象を前記切断位置に移動させる第2往路移動ステップと、
     前記切断位置にて前記切断処理を行う第2切断ステップと、
     前記第2切断ステップ後、前記処理対象を前記切断位置から前記第2の位置まで移動させる第2復路移動ステップと、
     前記第2復路移動ステップの後、前記処理対象を前記第2の位置から搬出する第2搬出ステップと、を有し、
     前記第1切断工程および前記第2切断工程は、前記切断位置にて前記第1切断ステップ及び前記第2切断ステップが交互に行われるように、各々の工程の一部がオーバーラップした状態で実行される切断方法。
    A first cutting step of carrying out the processing object from the first position after moving the processing object carried in at the first position to the cutting position and performing a predetermined cutting process;
    A second cutting step of carrying out the predetermined cutting process after moving the processing object carried in at a second position to the cutting position, and carrying out the processing object from the second position;
    The first cutting step includes
    A first carry-in step of carrying in the processing object at the first position;
    A first forward movement step of moving the processing object carried in at the first position to the cutting position;
    A first cutting step of performing the cutting process at the cutting position;
    After the first cutting step, a first return path moving step for moving the processing object from the cutting position to the first position;
    A first unloading step of unloading the processing object from the first position after the first return path moving step;
    The second cutting step includes
    A second carry-in step of carrying in the processing object at the second position;
    A second forward movement step of moving the processing object carried in at the second position to the cutting position;
    A second cutting step for performing the cutting process at the cutting position;
    After the second cutting step, a second return path moving step for moving the processing object from the cutting position to the second position;
    A second unloading step of unloading the processing object from the second position after the second return path moving step;
    The first cutting step and the second cutting step are executed in a state where a part of each step overlaps so that the first cutting step and the second cutting step are alternately performed at the cutting position. Cutting method.
  9.  前記第1切断工程および前記第2切断工程の少なくとも一方は、前記第1往路移動ステップ及び前記第2往路移動ステップの少なくとも一方の途中に、前記切断位置に対する前記処理対象の相対位置を検出する検出ステップをさらに有する
     請求項8に記載の切断方法。
    At least one of the first cutting step and the second cutting step is detection of detecting a relative position of the processing object with respect to the cutting position in the middle of at least one of the first forward movement step and the second forward movement step. The cutting method according to claim 8, further comprising a step.
  10.  前記第1切断工程は、前記第1の位置において、前記第1搬入ステップおよび前記第1搬出ステップが同期して実行され、
     前記第2切断工程は、前記第2の位置において、前記第2搬入ステップおよび前記第2搬出ステップが同期して実行される
     請求項8に記載の切断方法。
    In the first cutting step, the first carry-in step and the first carry-out step are executed synchronously at the first position,
    The cutting method according to claim 8, wherein in the second cutting step, at the second position, the second carry-in step and the second carry-out step are executed in synchronization.
  11.  第1往路移動ステップ、第1復路移動ステップ、第2往路移動ステップ、および第2復路移動ステップにおいて、前記処理対象がそれぞれ同一直線上を移動する
     請求項8に記載の切断方法。
    The cutting method according to claim 8, wherein in the first outward movement step, the first backward movement step, the second outward movement step, and the second backward movement step, the processing objects move on the same straight line.
  12.  光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造装置であって、
     前記光学表示部品の外側にはみ出るサイズのシート片を前記光学表示部品に貼合することによりシート片貼合体を形成する貼合装置と、
     前記シート片貼合体における前記光学表示部品と前記シート片との貼合面の端縁に沿って、前記貼合面の外側にはみ出た部分の前記シート片を前記シート片貼合体から切り離し、前記貼合面に対応する大きさの前記光学部材を形成する切断装置と、を含み、
     前記切断装置は、請求項1に記載の切断装置によって構成されている光学部材貼合体の製造装置。
    An apparatus for manufacturing an optical member bonded body formed by bonding an optical member to an optical display component,
    A bonding apparatus that forms a sheet piece bonded body by bonding a sheet piece of a size protruding outside the optical display component to the optical display component;
    Along the edge of the bonding surface between the optical display component and the sheet piece in the sheet piece bonded body, the sheet piece of the portion protruding outside the bonding surface is cut off from the sheet piece bonded body, A cutting device for forming the optical member having a size corresponding to the bonding surface,
    The said cutting device is a manufacturing apparatus of the optical member bonding body comprised by the cutting device of Claim 1.
PCT/JP2014/052764 2013-02-14 2014-02-06 Cutting device, cutting method, and method of manufacturing laminate optical member WO2014125993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-026951 2013-02-14
JP2013026951 2013-02-14

Publications (1)

Publication Number Publication Date
WO2014125993A1 true WO2014125993A1 (en) 2014-08-21

Family

ID=51353999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052764 WO2014125993A1 (en) 2013-02-14 2014-02-06 Cutting device, cutting method, and method of manufacturing laminate optical member

Country Status (2)

Country Link
TW (1) TW201440941A (en)
WO (1) WO2014125993A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414312A (en) * 2017-06-08 2017-12-01 深圳市海目星激光科技有限公司 Electrode slice cutter device and method
EP3257618A1 (en) * 2016-06-01 2017-12-20 Tyco Electronics (Shanghai) Co., Ltd. Welding system & welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872312B2 (en) * 2015-09-30 2021-05-19 日東電工株式会社 Method for manufacturing polarizing plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199285U (en) * 1986-06-05 1987-12-18
JPH06315785A (en) * 1993-05-10 1994-11-15 Komatsu Ltd Device for positioning work in heat-cutting machine
JPH1076330A (en) * 1996-08-30 1998-03-24 Amada Co Ltd Table device in plate working machine
JPH1099985A (en) * 1996-09-30 1998-04-21 Komatsu Ltd Work cutting and collecting method of heat cutting machine, and cutting table device
JPH11221634A (en) * 1998-02-05 1999-08-17 Amada Metrecs Co Ltd Stock positioning device
JPH11267938A (en) * 1998-03-20 1999-10-05 Sanyo Mach Works Ltd Shuttle table device
JP2001047280A (en) * 1999-08-03 2001-02-20 Niigata Eng Co Ltd Device and method for conveying work for metal plate finishing machine
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2005125339A (en) * 2003-10-21 2005-05-19 Hitachi Via Mechanics Ltd Laser beam machining device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199285U (en) * 1986-06-05 1987-12-18
JPH06315785A (en) * 1993-05-10 1994-11-15 Komatsu Ltd Device for positioning work in heat-cutting machine
JPH1076330A (en) * 1996-08-30 1998-03-24 Amada Co Ltd Table device in plate working machine
JPH1099985A (en) * 1996-09-30 1998-04-21 Komatsu Ltd Work cutting and collecting method of heat cutting machine, and cutting table device
JPH11221634A (en) * 1998-02-05 1999-08-17 Amada Metrecs Co Ltd Stock positioning device
JPH11267938A (en) * 1998-03-20 1999-10-05 Sanyo Mach Works Ltd Shuttle table device
JP2001047280A (en) * 1999-08-03 2001-02-20 Niigata Eng Co Ltd Device and method for conveying work for metal plate finishing machine
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2005125339A (en) * 2003-10-21 2005-05-19 Hitachi Via Mechanics Ltd Laser beam machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257618A1 (en) * 2016-06-01 2017-12-20 Tyco Electronics (Shanghai) Co., Ltd. Welding system & welding method
CN107414312A (en) * 2017-06-08 2017-12-01 深圳市海目星激光科技有限公司 Electrode slice cutter device and method

Also Published As

Publication number Publication date
TW201440941A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
JP6037564B2 (en) Optical display device production system
WO2014126140A1 (en) Laser irradiation device and manufacturing method of laminate optical member
JP5821155B2 (en) Optical display device production method and optical display device production system
KR101572402B1 (en) Laser irradiation device, optical member bonded body manufacturing device, laser irradiation method, and optical member bonded body manufacturing method
JP5840322B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
JP6521859B2 (en) Laser light irradiation apparatus and manufacturing apparatus for optical member bonding body
WO2014038433A1 (en) Device for producing optical member pasted body
KR102207122B1 (en) Apparatus and method for manufacturing optical member-bonded body
WO2014125993A1 (en) Cutting device, cutting method, and method of manufacturing laminate optical member
JP6223439B2 (en) Optical display device production system
JP6199585B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
WO2015022850A1 (en) Apparatus for manufacturing optical member-bonded body
JP5793821B2 (en) Detecting device, optical member bonded body manufacturing apparatus, and optical member bonded body manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP