WO2014126140A1 - Laser irradiation device and manufacturing method of laminate optical member - Google Patents

Laser irradiation device and manufacturing method of laminate optical member Download PDF

Info

Publication number
WO2014126140A1
WO2014126140A1 PCT/JP2014/053304 JP2014053304W WO2014126140A1 WO 2014126140 A1 WO2014126140 A1 WO 2014126140A1 JP 2014053304 W JP2014053304 W JP 2014053304W WO 2014126140 A1 WO2014126140 A1 WO 2014126140A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
laser light
laser
laser beam
optical member
Prior art date
Application number
PCT/JP2014/053304
Other languages
French (fr)
Japanese (ja)
Inventor
幹士 藤井
ソンウク ミン
チヨン ソン
Original Assignee
住友化学株式会社
ハードラム カンパニーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, ハードラム カンパニーリミテッド filed Critical 住友化学株式会社
Publication of WO2014126140A1 publication Critical patent/WO2014126140A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present invention relates to a laser beam irradiation apparatus and an apparatus for manufacturing an optical member bonded body.
  • the intensity of the laser beam is different before and after switching the ON / OFF signal to the laser oscillator, and is small until the output of the laser beam is stabilized. A certain time is required until the output of the laser beam is stabilized. If the intensity of the laser beam is low during that period, the laser beam does not contribute to the cutting of the object. Therefore, when such a laser beam is used, the object cannot be cut sharply, and the cut quality may deteriorate.
  • the aspect of the present invention has been made in view of such circumstances, and a laser beam irradiation apparatus and an optical member bonded body manufacturing apparatus capable of sharply cutting an object and suppressing a reduction in cut quality.
  • the purpose is to provide.
  • the laser beam irradiation apparatus and the optical member bonding apparatus employ the following configurations.
  • the laser beam irradiation apparatus according to the first aspect of the present invention includes a laser oscillator that emits laser beam and a shielding unit that blocks the laser beam until the output of the laser beam is stabilized.
  • the shielding unit may include an acousto-optic element and a control device that controls a timing at which the laser beam passes through the acousto-optic element. Good.
  • control device may control the timing so that a rising portion of the laser beam is removed.
  • control unit may control the timing so that a falling portion of the laser beam is removed.
  • the laser beam irradiation apparatus includes a table having a holding surface for holding an object, a laser oscillator for emitting laser light, and the laser in a plane parallel to the holding surface.
  • a scanner that performs biaxial scanning of light, a moving device that relatively moves the table and the scanner, and a shielding unit that shields the laser light until the output of the laser light is stabilized may be included.
  • the shielding unit may include an acoustooptic device and a control device that controls the timing at which the laser beam passes through the acoustooptic device. Good.
  • the laser light irradiation apparatus may include a condensing lens that condenses the laser light emitted from the scanner toward the holding surface.
  • the manufacturing apparatus of the optical member bonding body which concerns on the 3rd aspect of this invention is a manufacturing apparatus of the optical member bonding body comprised by bonding an optical member to an optical display component, Comprising: The said optical display component A bonding device that forms a sheet piece bonded body by bonding a sheet piece of a size that protrudes outside the optical display component, and a bonding surface between the optical display component and the sheet piece of the sheet piece bonded body A cutting device that cuts off the sheet piece of the portion that protrudes outside the bonding surface from the sheet piece bonding body along the edge of the sheet, and forms the optical member having a size corresponding to the bonding surface; The cutting device is configured by the laser light irradiation device according to any one of (1) to (7), and is the object by the laser light emitted from the laser light irradiation device. The sheet piece is cut That.
  • FIG. 7 is a diagram focusing on one pulse of laser light.
  • FIG. 13 is a cross-sectional view taken along line AA in FIG. 12. It is sectional drawing of an optical sheet. It is a figure which shows operation
  • FIG. 1 is a perspective view showing an example of a laser beam irradiation apparatus 100 used as an object cutting apparatus.
  • the first direction parallel to the holding surface that holds the object is defined as the X direction
  • the direction orthogonal to the X direction in the plane of the holding surface is orthogonal to the Y direction, the X direction, and the Y direction.
  • the direction is the Z direction.
  • a laser beam irradiation apparatus 100 includes a table 101, a laser oscillator 102, an acoustooptic device 103 that constitutes an EBS 130 (Electrical Beam Shaping: see FIG. 2), an IOR 104 (Imaging Optics Rail), A scanner 105, a moving device 106, and a control device 107 that performs overall control of these devices are provided.
  • the EBS 130 corresponds to a shielding means (shielding portion).
  • the table 101 has a holding surface 101s for holding the object 110.
  • the table 101 is rectangular when viewed from the normal direction of the holding surface 101s.
  • the holding surface 101s is a rectangular first holding surface 101s1 having a long side in the first direction (X direction), and a second shape that is disposed adjacent to the first holding surface 101s1 and has the same shape as the first holding surface 101s1. Holding surface 101s2.
  • the laser oscillator 102 is a member that emits laser light L.
  • an oscillator such as a CO 2 laser oscillator (carbon dioxide laser oscillator), a UV laser oscillator, a semiconductor laser oscillator, a YAG laser oscillator, or an excimer laser oscillator can be used. It is not limited.
  • the CO 2 laser oscillator can emit a high-power laser beam capable of cutting an optical member such as a polarizing film.
  • FIG. 2 is a diagram illustrating the configuration of the EBS 130.
  • the EBS 130 includes an acoustooptic element 103 disposed on the optical path of laser light emitted from the laser oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, and laser light.
  • Has a control device 107 (corresponding to a laser control unit 171 to be described later) for controlling the timing of passing through the acousto-optic element 103.
  • the EBS 130 shields the laser light until the output of the laser light is stabilized.
  • Acousto-optic element 103 is an optical element for shielding laser light emitted from laser oscillator 102.
  • the acoustooptic element 103 is obtained by bonding a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ).
  • TeO 2 tellurium dioxide
  • PbMoO 4 lead molybdate
  • the acousto-optic element 103 is used as a constituent member of the EBS 130, but the present invention is not limited to this.
  • Other optical elements may be used as long as the laser light emitted from the laser oscillator 102 can be shielded.
  • a high-speed shutter may be used as a shielding means (shielding portion) that shields the laser light.
  • the drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
  • the control device 107 controls the timing at which the laser light passes through the acousto-optic element 103 so that, for example, the rising and falling portions of the laser light emitted from the laser oscillator 102 are removed.
  • the timing control by the control device 107 is not limited to this.
  • the control device 107 may control the timing at which the laser light passes through the acoustooptic device 103 so that the rising portion of the laser light emitted from the laser oscillator 102 is selectively removed.
  • the width (time) of the falling portion of the laser light emitted from the laser oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the benefit of removing the falling portion of the laser light. Is small. Therefore, in such a case, only the rising portion of the laser light emitted from the laser oscillator 102 may be selectively removed.
  • the EBS 130 emits the laser light emitted from the laser oscillator 102 with a stable output based on the control of the control device 107.
  • the IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
  • FIG. 3 is a perspective view showing the internal configuration of the IOR 104.
  • the IOR 104 is condensed by the condenser lens 141 that condenses the laser light emitted from the EBS 130, the first holding frame 142 that holds the condenser lens 141, and the condenser lens 141.
  • FIG. 4 is a side sectional view showing an arrangement configuration of the condenser lens 141, the diaphragm member 143, and the collimator lens 145.
  • the aperture member 143 is formed with a pinhole 143h for focusing the laser beam condensed by the condenser lens 141.
  • the centers of the condensing lens 141, the pinhole 143 h and the collimating lens 145 are arranged at positions overlapping the optical axis CL of the laser light emitted from the EBS 130.
  • the diaphragm member 143 can be disposed in the vicinity of the rear focal point of the condenser lens 141.
  • “in the vicinity of the rear focal point of the condensing lens 141” may be slightly different from the arrangement position of the diaphragm member 143 within a range in which the arrangement position of the diaphragm member 143 is not greatly displaced from the rear focal point of the condensing lens 141.
  • the ratio K1 / K2 between the distance K1 from the center of the condenser lens 141 to the rear focal point of the condenser lens 141 and the distance K2 from the center of the condenser lens 141 to the center of the pinhole 143h of the aperture member 143 is 0.
  • the diaphragm member 143 is disposed in the vicinity of the rear focal point of the condenser lens 141. If it is such a range, the laser beam condensed by the condensing lens 141 can be narrowed down effectively.
  • the diaphragm member 143 can be arranged in the vicinity of the rear focal point of the condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position.
  • the arrangement position of the diaphragm member 143 may be on the optical path between the condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the condenser lens 141.
  • the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
  • the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and the position of the rear focal point of the condenser lens 141.
  • the scanner 105 scans the laser beam biaxially in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the table 101 independently in the X direction and the Y direction. Thereby, it is possible to accurately irradiate the laser beam to an arbitrary position of the object 110 held on the table 101.
  • the scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that biaxially scans the laser light emitted from the IOR 104 in a plane parallel to the holding surface 101s.
  • a galvano scanner is used as the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154.
  • the scanning element is not limited to a galvano scanner, and a gimbal can be used.
  • the first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152.
  • the actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
  • the second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155.
  • the actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
  • a condenser lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
  • an f ⁇ lens is used as the condensing lens 108.
  • the laser beam emitted in parallel to the condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110.
  • the condensing lens 108 may not be disposed on the optical path between the scanner 105 and the table 101.
  • the laser beam L emitted from the laser oscillator 102 is applied to the object 110 held on the table 101 via the acoustooptic device 103, the IOR 104, the mirror 152, the mirror 155, and the condenser lens.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are the irradiation positions of the laser beams irradiated from the laser oscillator 102 toward the object 110 held on the table 101 based on the control of the control device 107. Adjust.
  • a laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s.
  • the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
  • the moving device 106 moves the table 101 and the scanner 105 relative to each other.
  • the moving device 106 moves the table 101 in a first direction (X direction) parallel to the holding surface 101s, and the first slider mechanism 161 is parallel to the holding surface 101s and orthogonal to the first direction.
  • a second slider mechanism 162 that moves in the second direction (Y direction).
  • the moving device 106 operates the linear motor built in each of the first slider mechanism 161 and the second slider mechanism 162 to move the table 101 in each direction of XY.
  • the linear motor that is pulse-driven in the slider mechanism can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Therefore, the position of the table 101 supported by the slider mechanism in each direction of XY can be controlled with high accuracy.
  • the position control of the table 101 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
  • the control device 107 includes a laser control unit 171 that controls the laser oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, a slider control unit 173 that controls the moving device 106, Have
  • the laser control unit 171 turns on / off the laser oscillator 102, the output of the laser light emitted from the laser oscillator 102, and the timing at which the laser light L emitted from the laser oscillator 102 passes through the acoustooptic device 103.
  • the drive driver 131 is controlled.
  • the scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
  • the slider control unit 173 controls the operation of the linear motor built in each of the first slider mechanism 161 and the second slider mechanism 162.
  • FIG. 5 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
  • an input device 109 capable of inputting an input signal is connected to the control device 107.
  • the input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device.
  • the control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
  • the laser light is emitted from the laser oscillator 102 based on the control of the laser control unit 171 of the control device 107.
  • rotation driving of the mirrors constituting the scanner 105 is started.
  • the number of rotations of a drive shaft such as a motor provided in the first slider mechanism 161 and the second slider mechanism 162 is detected by a sensor such as a rotary encoder.
  • the control device 107 corrects each coordinate value in real time so that the laser light is emitted at coordinates that match the machining data, that is, the laser light draws a desired locus on the object 110 (see FIG. 1).
  • the moving device 106 and the scanner 105 are controlled.
  • the control device 107 scans the laser beam mainly by the moving device 106, and adjusts the region where the laser device irradiation position cannot be controlled with the moving device 106 with the scanner 105.
  • FIG. 6 is a diagram for explaining the operation of the IOR 104.
  • the diagram on the left side of FIG. 6 is a diagram showing the intensity distribution of the laser light before passing through the pinhole 143h.
  • the diagram on the right side of FIG. 6 shows the intensity distribution of the laser light after passing through the pinhole 143h.
  • the intensity distribution of the laser beam before passing through the pinhole 143h is an intensity distribution having a high intensity at the center of the beam and a low intensity at the outer periphery of the beam. .
  • the intensity distribution of the laser light after passing through the pinhole 143h has a tail portion that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light.
  • the intensity distribution of the laser light becomes an ideal Gaussian distribution.
  • the half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
  • FIGS. 7A to 7D are diagrams for explaining the operation of the EBS 130.
  • FIG. FIG. 7A shows a control signal of laser light emitted from the laser oscillator 102.
  • FIG. 7B shows the output characteristics of the laser light itself emitted from the laser oscillator 102, that is, the output characteristics of the laser light before the laser light emitted from the laser oscillator 102 passes through the acoustooptic device 103.
  • FIG. 7C shows a control signal of the acoustooptic device 103.
  • FIG. 7D shows the output characteristics of the laser light after the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103.
  • FIGS. 7A shows a control signal of laser light emitted from the laser oscillator 102.
  • FIG. 7B shows the output characteristics of the laser light itself emitted from the laser oscillator 102, that is, the output characteristics of the laser light before the laser light emitted
  • FIGS. 8A to 8D are diagrams focusing on one pulse of laser light in FIGS. 7A to 7D.
  • the “control signal for laser light emitted from the laser oscillator 102” is referred to as “control signal for laser light”.
  • “Output characteristics of laser light before the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”.
  • Output characteristics of laser light after the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103 is referred to as “output characteristics of laser light after passing through the acousto-optic element 103”.
  • the pulse Ps1 of the laser light control signal is a rectangular pulse.
  • the control signal of the laser beam is a so-called clock pulse that generates a plurality of pulses Ps1 when the ON / OFF signal to the laser oscillator 102 is periodically switched.
  • the peak portion of the pulse Ps1 is a state where an ON signal is sent to the laser oscillator 102, that is, an ON state where laser light is emitted from the laser oscillator 102.
  • the valley portion of the pulse Ps1 is a state in which an OFF signal is sent to the laser oscillator 102, that is, an OFF state in which laser light is not emitted from the laser oscillator 102.
  • one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals.
  • the three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1. For example, the interval between two adjacent pulses Ps1 is 1 millisecond, and the interval between two adjacent collective pulses PL1 is 10 milliseconds.
  • one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals, but the present invention is not limited to this.
  • one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
  • the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which laser light having a certain intensity from the ON signal to the OFF signal to the laser oscillator is emitted for a predetermined time may be employed.
  • the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
  • the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object.
  • the falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light.
  • the intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 8B, 50% of the peak intensity (100%) of the laser beam. % Strength.
  • the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light emitted from the laser oscillator 102 is longer than the time of the falling portion G2 of the laser light.
  • the width of the rising portion G1 is 45 microseconds
  • the width of the falling portion G2 is 25 microseconds.
  • the present invention is not limited to this.
  • the present invention can be applied even when the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. is there.
  • one set pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG. 7A.
  • the three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
  • the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse.
  • the control signal for the acoustooptic device 103 is periodically switched so that the timing at which the laser beam passes through the acoustooptic device 103 is periodically switched. This is a so-called clock pulse that generates a plurality of pulses Ps3.
  • the peak portion of the pulse Ps3 is in a state where the laser light is transmitted, that is, a light transmitting state where the laser light is transmitted.
  • the valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
  • each pulse Ps3 is disposed so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG. 7B.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3.
  • the width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is 45 microseconds
  • the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 microseconds.
  • the EBS 130 has a switch function having a quick response characteristic.
  • the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted.
  • the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 does not have a rising portion G1 and a falling portion G2. It becomes a pulse protruding to
  • the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2.
  • the present invention is not limited to this.
  • the width of the valley portion V1 on the front side of the pulse Ps3 is made substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is made larger than the width of the falling portion of the pulse Ps2. It can be appropriately adjusted as necessary, for example, by increasing the size.
  • FIG. 9 is an enlarged view of a cut surface when a polarizing plate which is an object is cut using the laser beam irradiation apparatus according to the comparative example.
  • the laser light irradiation apparatus according to the comparative example is a laser light irradiation apparatus that uses the laser light before passing through the acousto-optic element 103 as it is, that is, a laser light irradiation apparatus that does not include the EBS 130.
  • FIG. 10 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
  • the intensity of the laser light differs before and after switching the ON / OFF signal to the laser oscillator 102, and is small until the output of the laser light is stabilized. A certain time is required until the output of the laser beam is stabilized. If the intensity of the laser beam is low during that time, the laser beam does not contribute to the cutting of the polarizing plate.
  • the cut surface of the polarizing plate has a tapered shape. This is considered to be because when the polarizing plate was cut, the rising portion of the laser beam thermally affected the portion along the cut line, so that the portion other than the cut region of the polarizing plate was dissolved.
  • the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 is the rising part G1 and the falling part of the laser light. By removing G2, a sharply protruding pulse is obtained.
  • the full width of the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 is narrower than the full width of the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103.
  • the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the output characteristics of the laser light that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively blown. Conceivable.
  • the object 110 can be cut sharply, and a reduction in cut quality can be suppressed.
  • the EBS 130 using the acoustooptic device 103 has a switching function having a quick response characteristic, even when the laser light is emitted from the laser oscillator 102 with a short period, the rising portion G1 of the laser light. In addition, the falling portion G2 can be selectively removed.
  • the condensing lens 108 is disposed on the optical path between the scanner 105 and the table 101, the laser light passing through the scanner 105 can be condensed in parallel with the object 110. Therefore, the object 110 can be cut with high accuracy.
  • the scanning of the laser beam is mainly performed by the moving device 106, and an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
  • the laser light irradiation apparatus 100 includes a table 101, a laser oscillator 102, an EBS 130 as a shielding unit (shielding unit), a scanner 105, and a moving device 106.
  • the laser beam irradiation apparatus may be configured to include a laser oscillator and EBS. That is, the laser light irradiation device may be configured not to include a table, a scanner, and a moving device.
  • the film bonding system 1 which is a manufacturing apparatus of the optical member bonding body which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
  • the film bonding system 1 which concerns on this embodiment is comprised by the laser beam irradiation apparatus 100 which the cutting device mentioned above.
  • FIG. 11 is a diagram illustrating a schematic configuration of the film bonding system 1 of the present embodiment.
  • the film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, and a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
  • the transport direction of the liquid crystal panel which is an optical display component
  • the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction.
  • the direction orthogonal to the Z direction is taken as the Z direction.
  • the film bonding system 1 of this embodiment is provided as one process of the manufacturing line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
  • FIG. 12 is a plan view of the liquid crystal panel P viewed from the thickness direction of the liquid crystal layer P3 of the liquid crystal panel P.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, a second substrate P2 having a relatively small rectangular shape disposed opposite to the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2.
  • the liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in plan view is defined as a display region P4.
  • FIG. 13 is a cross-sectional view taken along the line AA in FIG.
  • a first optical member cut out from each of a long strip-shaped first optical sheet F1 and second optical sheet F2 (see FIG. 11, hereinafter may be collectively referred to as an optical sheet FX).
  • F11 and the second optical member F12 (hereinafter may be collectively referred to as an optical member F1X) are appropriately bonded.
  • polarizing films are bonded to both surfaces of the liquid crystal panel P, respectively.
  • the first optical member F11 is bonded to the surface of the liquid crystal panel P on the backlight side as a polarizing film.
  • the second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P as a polarizing film.
  • a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 of the liquid crystal panel P is provided outside the display area P4.
  • the 1st optical member F11 and the 2nd optical member F12 are respectively the bonding surface from the 1st sheet piece F1m and the 2nd sheet piece F2m (henceforth a sheet piece FXm) mentioned later. It is formed by cutting off the excess part on the outside. The bonding surface will be described later.
  • FIG. 14 is a partial cross-sectional view of the optical sheet FX to be bonded to the liquid crystal panel P.
  • the optical sheet FX includes a film-like optical member main body F1a, an adhesive layer F2a provided on one surface (upper surface in FIG. 14) of the optical member main body F1a, and one of the optical member main bodies F1a via the adhesive layer F2a.
  • the optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. For convenience of illustration, hatching of each layer in FIG. 14 is omitted.
  • the optical member main body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface of the optical member main body F1a.
  • excluding the separator F3a from the optical sheet FX is called the bonding sheet
  • the separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a.
  • the surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a.
  • the surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a.
  • the surface protective film F4a is separated from the optical member main body F1a at a predetermined timing.
  • the optical sheet FX may be configured not to include the surface protective film F4a.
  • separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
  • the optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8.
  • the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
  • the optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other.
  • the optical layer may be a retardation film, a brightness enhancement film, or the like.
  • At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment.
  • the optical member body F1a may not include at least one of the first film F7 and the second film F8.
  • the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
  • the film laminating system 1 is configured such that the liquid crystal panel P on the right side in the drawing direction (+ X direction side) to the downstream side in the carrying direction of the liquid crystal panel P on the left side in FIG. X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
  • the roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary.
  • the liquid crystal panel P On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P ⁇ b> 4 is along the transport direction.
  • the downstream conveyor 7 On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P ⁇ b> 4 along the transport direction.
  • a sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet FX is bonded to the front and back surfaces of the liquid crystal panel P.
  • the upstream conveyor 6 is provided with the independent free roller conveyor 24 in the downstream in the 1st adsorption
  • the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
  • the film bonding system 1 of this embodiment is the 1st adsorption
  • the dust device 16, the 2nd bonding apparatus 17, the 2nd detection apparatus 42, the 2nd cutting device 32, and the control part 40 are provided.
  • the first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
  • the first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P.
  • the panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction.
  • the panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P.
  • the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a operates to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination.
  • the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P. .
  • the liquid crystal panel P conveyed on the rail R by the panel holding portion 11a is nipped by the pinching roll 23 with the sheet piece FXm while being adsorbed by the suction pad 26.
  • the 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13.
  • FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption
  • FIG. The 1st bonding apparatus 13 bonds the bonding sheet
  • the 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • FIG. 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23.
  • the conveying device 22 conveys the optical sheet FX along the longitudinal direction of the optical sheet FX while unwinding the optical sheet FX from the original roll R1 around which the optical sheet FX is wound.
  • the conveying apparatus 22 conveys the bonding sheet
  • the conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
  • the roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet FX is wound and feeds the optical sheet FX along the longitudinal direction of the optical sheet FX.
  • the plurality of guide rollers 22b wind the optical sheet FX so as to guide the optical sheet FX unwound from the original roll R1 along a predetermined conveyance path.
  • the cutting device 22c performs a half cut on the optical sheet FX on the conveyance path.
  • the knife edge 22d feeds the bonding sheet F5 to the bonding position while winding the optical sheet FX subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3a.
  • the winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
  • the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example.
  • the winding unit 22e winds up the separator F3a that has passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet FX in the conveyance direction of the optical sheet FX.
  • the upstream side in the transport direction of the optical sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side
  • the downstream side in the transport direction is referred to as a sheet transport downstream side.
  • Each guide roller 22b changes the traveling direction of the optical sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet FX being conveyed. .
  • a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c.
  • the dancer roller absorbs the feeding amount of the optical sheet FX conveyed from the roll holding unit 22a while the optical sheet FX is cut by the cutting device 22c.
  • FIG. 15 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
  • the cutting device 22c applies a part in the thickness direction of the optical sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet FX. Make a half-cut to cut.
  • the cutting device 22c of the present embodiment is provided so as to be able to advance and retreat from the side opposite to the separator F3a with respect to the optical sheet FX toward the optical sheet FX.
  • the cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical sheet FX (so that a predetermined thickness remains in the separator F3a), Half-cut to the vicinity of the interface between the adhesive layer F2a and the separator F3a.
  • the optical member main body F1a and the surface protective film F4a are cut in the thickness direction of the optical sheet FX, so that the cut lines L1 and the cuts extend over the entire width in the width direction of the optical sheet FX.
  • a line L2 is formed.
  • a plurality of the cut lines L1 and the cut lines L2 are formed so as to be arranged in the longitudinal direction of the belt-shaped optical sheet FX. For example, in the case of the bonding process which conveys the liquid crystal panel P of the same size, the plurality of cut lines L1 and the plurality of cut lines L2 are formed at equal intervals in the longitudinal direction of the optical sheet FX.
  • the optical sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines L1 and a plurality of cut lines L2.
  • a section sandwiched between a pair of cut lines L1 and L2 adjacent in the longitudinal direction in the optical sheet FX is a sheet piece FXm in the bonding sheet F5.
  • the sheet piece FXm is a sheet piece of the optical sheet FX having a size that protrudes outside the liquid crystal panel P.
  • the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over the entire width of the optical sheet FX in the width direction of the optical sheet FX.
  • the knife edge 22d winds the optical sheet FX so as to be in sliding contact with the separator F3a side of the optical sheet FX after the half cut.
  • the knife edge 22d is seen from the width direction of the optical sheet FX above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet FX (width direction of the upstream conveyor 6). It has the 2nd surface arrange
  • the knife edge 22d winds the 1st optical sheet F1 at an acute angle around the front-end
  • the first optical sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d.
  • the tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23.
  • the first sheet piece F1m separated from the separator F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping the lower surface of the liquid crystal panel P in a state of being sucked by the first suction device 11. Is done.
  • the first sheet piece F1m is a sheet piece of the first optical sheet F1 having a size that protrudes outside the liquid crystal panel P.
  • the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d.
  • the winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
  • the pinching roll 23 bonds the first sheet piece F1m separated from the first optical sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
  • the pinching roll 23 corresponds to a bonding apparatus.
  • the pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction. Of the pair of bonding rollers 23a, the upper bonding roller is movable up and down. A predetermined gap is formed between the pair of bonding rollers 23a. The inside of this gap becomes the bonding position of the first bonding apparatus 13.
  • liquid crystal panel P and the first sheet piece F1m are overlapped and introduced.
  • Liquid crystal panel P and the 1st sheet piece F1m are sent out to the panel conveyance downstream of the upstream conveyor 6, being pinched by a pair of bonding roller 23a.
  • 1st optical member bonding body PA1 is formed by the 1st sheet piece F1m being bonded by the pinching roll 23 to the surface at the side of the backlight of liquid crystal panel P. As shown in FIG.
  • the 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13.
  • FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth 1st bonding surface SA1) of liquid crystal panel P and 1st sheet piece F1m.
  • FIG. 16 is a plan view showing a step of detecting the edge ED of the first bonding surface SA1.
  • the first detection device 41 detects the edge ED of the first bonding surface SA ⁇ b> 1 in the four inspection areas CA installed on the transport path of the upstream conveyor 6.
  • region CA is arrange
  • the edge ED is detected for each liquid crystal panel P conveyed on the line.
  • the data of the edge ED detected by the first detection device 41 is stored in a storage unit (not shown).
  • region CA may be arrange
  • FIG. 17 is a schematic diagram of the first detection device 41.
  • the configuration of the first detection device 41 is shown upside down with the side on which the first sheet piece F1m of the first optical member bonding body PA1 is bonded as the upper side.
  • the first detection device 41 includes an illumination light source 44 that illuminates the edge ED, and the first bonding surface SA1 rather than the edge ED with respect to the normal direction of the first bonding surface SA1.
  • the image pickup device 43 is disposed at a position inclined inward and picks up an image of the edge ED from the side where the first sheet piece F1m of the first optical member bonding body PA1 is bonded.
  • the illumination light source 44 and the imaging device 43 are respectively arranged in the four inspection areas CA (positions corresponding to the four corners of the first bonding surface SA1) shown in FIG.
  • An angle ⁇ between the normal line of the first bonding surface SA1 and the normal line of the image pickup surface 43a of the image pickup device 43 (hereinafter referred to as an inclination angle ⁇ of the image pickup device 43) is divided into panels within the image pickup field of the image pickup device 43. It can be set so that time lag and burrs do not enter. For example, when the end surface of the second substrate P2 is shifted outward from the end surface of the first substrate P1, the inclination angle ⁇ of the imaging device 43 is such that the edge of the second substrate P2 enters the imaging field of the imaging device 43. Set to not.
  • the inclination angle ⁇ of the imaging device 43 is set to match the distance H (hereinafter referred to as the height H of the imaging device 43) between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43. it can.
  • the height H of the imaging device 43 is 50 mm or more and 100 mm or less
  • the inclination angle ⁇ of the imaging device 43 can be set to an angle in the range of 5 ° or more and 20 ° or less.
  • the height H of the imaging device 43 and the inclination angle ⁇ of the imaging device 43 can be obtained based on the deviation amount.
  • the height H of the imaging device 43 is set to 78 mm
  • the inclination angle ⁇ of the imaging device 43 is set to 10 °.
  • the illumination light source 44 and the imaging device 43 are fixedly arranged in each inspection area CA.
  • the illumination light source 44 and the imaging device 43 may be arrange
  • the illumination light source 44 and the imaging device 43 should each be provided one each. Thereby, the illumination light source 44 and the imaging device 43 can be moved to the position where the edge ED of 1st bonding surface SA1 is easy to image.
  • the illumination light source 44 is arrange
  • the illumination light source 44 is arrange
  • the optical axis of the illumination light source 44 and the normal line of the imaging surface 43a of the imaging device 43 are parallel.
  • the illumination light source may be arrange
  • optical axis of the illumination light source 44 and the normal line of the image pickup surface 43a of the image pickup device 43 may slightly cross each other.
  • the cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge ED of the first bonding surface SA1.
  • the control part 40 acquires the data of the edge ED of 1st bonding surface SA1 memorize
  • the cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side.
  • the first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control unit 40.
  • the first cutting device 31 is provided on the downstream side of the panel conveyance from the first detection device 41.
  • the 1st cutting device 31 performs the laser cut along edge ED, and is the 1st sheet piece F1m (1st sheet
  • the surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed.
  • the first cutting device 31 corresponds to a cutting device.
  • the size corresponding to the first bonding surface SA1 indicates the size of the outer shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer shape of the liquid crystal panel P, and that avoids a functional part such as an electrical component mounting portion.
  • the 1st optical member F11 is bonded by the surface of the backlight side of liquid crystal panel P, and the 1st optical member bonding body PA1 is cut
  • the surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
  • the reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
  • the reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11.
  • the reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
  • the reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control unit 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce
  • the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described.
  • suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2.
  • the second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2.
  • maintenance part 11a adsorbs and hold
  • maintenance part 11a moves on the rail R in the state which adsorbed and hold
  • the alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 at the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
  • the 2nd dust collector 16 is arrange
  • FIG. The second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16.
  • FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position.
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13.
  • 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce
  • the second sheet piece F2m is a sheet piece of the second optical sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
  • 2nd optical member bonding body PA2 and 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by a pair of bonding roller 23a.
  • it is a 2nd sheet
  • the piece F2m By bonding the piece F2m, the third optical member bonding body PA3 is formed.
  • the 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17.
  • FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m.
  • the edge data detected by the second detection device 42 is stored in a storage unit (not shown).
  • the cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface.
  • the control part 40 acquires the data of the edge of the 2nd bonding surface memorize
  • the cutting position of the second sheet piece F2m is determined so as not to protrude.
  • the second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control unit 40.
  • the second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42.
  • the 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude
  • the second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and
  • the 4th optical member bonding body PA4 optical member bonding body comprised by bonding the 1st optical member F11 to the surface at the side of the backlight of liquid crystal panel P is formed.
  • the surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
  • the first cutting device 31 and the second cutting device 32 are constituted by the laser beam irradiation device 100 described above.
  • the 1st cutting device 31 and the 2nd cutting device 32 cut
  • a bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17.
  • the bonding inspection device is an inspection (not shown whether the position of the optical member F1X is within the tolerance range) by the inspection device (not shown) of the workpiece (liquid crystal panel P) on which the film bonding is performed. ) Etc.) is performed.
  • the work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
  • control part 40 as an electronic control apparatus which carries out overall control of each part of the film bonding system 1 is comprised including the computer system.
  • This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
  • the control unit 40 of the present embodiment includes an interface that can execute communication with an external device of the computer system.
  • An input device that can input an input signal may be connected to the control unit 40.
  • the input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system.
  • the control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
  • the storage unit of the control unit 40 includes a program that causes each unit of the film bonding system 1 to execute processing for accurately conveying the optical sheet FX by causing the arithmetic processing unit to control each unit of the film bonding system 1. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40.
  • the control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
  • the storage unit includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium.
  • the storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
  • a plurality of inspection points CP are set in the width direction of the optical sheet FX, and the direction of the optical axis of the optical sheet FX is detected at each inspection point CP.
  • the timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical sheet FX is unwound from the original fabric roll R1 and half cut.
  • Data in the optical axis direction of the optical sheet FX is stored in a storage device (not shown) in association with the position of the optical sheet FX (position in the longitudinal direction and position in the width direction of the optical sheet FX).
  • the control unit 40 acquires the optical axis data (inspection data on the in-plane distribution of the optical axis) of each inspection point CP from the storage device, and partitions the optical sheet FX (cut line CL) into the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the region to be detected is detected.
  • the deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical sheet FX and the clockwise direction being negative.
  • the direction of the average optical axis of the optical sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P.
  • the bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specification, the average optical axis of the optical sheet FX is set.
  • the sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
  • the first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P by a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer peripheral edge of the bonding surface is detected by imaging the edge of the bonding surface. In this embodiment, the laser cutting by each of the 1st cutting device 31 and the 2nd cutting device 32 is performed along the outer periphery of the bonding surface.
  • the deflection width (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in this embodiment, compared with the case where the optical sheet FX is cut using a cutting blade, it can be easily cut along the outer peripheral edge of the bonding surface, and the liquid crystal panel P can be downsized and / or ) The display area P4 can be enlarged. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
  • the optical sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the sheet piece and the liquid crystal panel P, and the sheet piece and the liquid crystal panel P Therefore, it becomes difficult to reduce the width of the frame portion G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
  • the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion.
  • FIG. 19 shows a control for scanning a laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 shown in FIG. 1 as a cutting device. It is a figure which shows a method.
  • reference numeral Tr denotes a target laser beam movement locus (desired locus; hereinafter referred to as laser light movement locus), and reference numeral Tr ⁇ b> 1 denotes movement due to relative movement between the table 101 and the scanner 105.
  • This is a trajectory obtained by projecting the trajectory onto the sheet piece FXm (hereinafter also referred to as a light source movement trajectory).
  • the light source movement trajectory Tr1 has a shape in which four corners of the laser light movement trajectory Tr having a rectangular shape are curved, the symbol SL1 is a straight section other than the corner, and the symbol SL2 is a bent section of the corner.
  • Reference numeral Tr2 indicates that the irradiation position of the laser beam is perpendicular to the light source movement locus Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement locus Tr1. It is a curve (hereinafter also referred to as an adjustment curve) indicating how much is shifted (adjusted). The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
  • the light source movement locus Tr1 is a substantially rectangular movement locus with curved corners.
  • the light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. For this reason, in FIG. 19, the corners of the light source movement locus Tr1 are curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
  • the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is.
  • the scanner 105 is moving in the bending section SL2
  • the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light.
  • the irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr.
  • the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1.
  • the distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1.
  • the light source movement trajectory Tr1 is displaced inward from the laser light movement trajectory Tr, and the irradiation position of the laser light is set to the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 so as to cancel out the deviation. Therefore, the irradiation position of the laser beam is arranged on the laser beam movement track Tr.
  • the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus mentioned above, 1st sheet piece F1m, The 2nd sheet piece F2m can be cut
  • the moving device 106 and the scanner 105 are controlled so as to draw a desired trajectory Tr in the sheet piece FXm.
  • the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only the narrow bending section SL2.
  • the laser beam is scanned on the sheet piece FXm by the movement of the table 101 by the moving device 106.
  • laser beam scanning is mainly performed by the moving device 106, and the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser only in an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106.
  • the light irradiation position is adjusted. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
  • the imaging direction of the imaging device 43 crosses diagonally with respect to the normal direction of the first bonding surface SA1. That is, the imaging direction of the imaging device 43 is set so that the edge of the second substrate P2 does not enter the imaging field of view of the imaging device 43. Therefore, when the edge ED of the first bonding surface SA1 is detected over the first sheet piece F1m, the edge of the second substrate P2 is not erroneously detected, and the first bonding surface SA1 is not detected. Only the edge ED can be detected. Therefore, the edge ED of the first bonding surface SA1 can be detected with high accuracy.
  • the excess part of the 1st sheet piece F1m and the 2nd sheet piece F2m is cut off.
  • the first optical member F11 and the second optical member F12 having a size corresponding to the bonding surface can be formed on the surface of the liquid crystal panel P.
  • the first sheet piece F1m and the second sheet piece F2m are arranged in accordance with the positions of the first sheet piece F1m and the second sheet piece F2m. Even when the optical axis direction of the 1 sheet piece F1m and the 2nd sheet piece F2m changes, the liquid crystal panel P can be aligned and bonded according to the optical axis direction. Thereby, the precision of the optical axis direction of the 1st optical member F11 and the 2nd optical member F12 with respect to liquid crystal panel P can be improved, and the clarity and contrast of an optical display device can be improved.
  • the 1st cutting device 31 and the 2nd cutting device 32 cut the 1st sheet piece F1m and the 2nd sheet piece F2m with a blade by laser-cutting the 1st sheet piece F1m and the 2nd sheet piece F2m.
  • the liquid crystal panel P is not exerted with force, cracks and chips are less likely to occur, and the liquid crystal panel P can have a stable durability.
  • disconnects a sheet piece as a structure which irradiates a target object with a laser beam and performs a predetermined process
  • cutting a sheet penetrating the sheet piece and forming a groove (cut) with a predetermined depth in the sheet piece are also included.
  • cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
  • the drawing locus of the laser beam emitted from the laser beam irradiation device is a rectangular shape (square shape) in plan view
  • the present invention is not limited thereto.
  • the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape that is a pentagon or more in plan view.
  • a planar-view star shape and planar-view geometric shape may be sufficient.
  • the present invention can also be applied to such a drawing trajectory.
  • the optical sheet FX is pulled out from the original roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is bonded from the sheet piece FXm.
  • a sheet-like optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
  • SYMBOLS 1 Film bonding system (manufacturing apparatus of an optical member bonding body), 23 ... Nipping roll (bonding apparatus), 31 ... 1st cutting device, 32 ... 2nd cutting device, 100 ... Laser beam irradiation apparatus, 101 ... Table, 101s ... holding surface, 102 ... laser oscillator, 103 ... acousto-optic element, 105 ... scanner, 106 ... moving device, 107 ... control device, 108 ... condensing lens, 130 ... EBS (shielding means, shielding unit), 171 DESCRIPTION OF SYMBOLS Laser control part, P ... Liquid crystal panel (optical display component), P1 ...

Abstract

Laser intensity is different before and after switching an ON/OFF signal to the laser oscillator, and is low until the output of the laser has stabilized: a fixed time is required until the output of the laser stabilizes, and if the laser intensity is low during that interval, the laser no longer contributes to cutting. When using such a laser, it is in some cases not possible to cut sharply, reducing cutting quality. In order to solve this problem, a laser irradiation device is provided which has a shielding unit which shields the laser until output of the laser has stabilized; also provided is a manufacturing method of laminate optical member which uses said laser irradiation device as a cutting device.

Description

レーザー光照射装置及び光学部材貼合体の製造装置Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
 本発明は、レーザー光照射装置及び光学部材貼合体の製造装置に関する。
 本願は、2013年2月13日に出願された日本国特許出願2013-26097号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a laser beam irradiation apparatus and an apparatus for manufacturing an optical member bonded body.
This application claims priority based on Japanese Patent Application No. 2013-26097 filed on Feb. 13, 2013, the contents of which are incorporated herein by reference.
 従来、対象物にレーザー光を照射して所定の加工を行うレーザー光照射装置が知られている。レーザー光照射装置はフィルムの切断加工などに利用することが検討されており、例えば、特許文献1に記載されるような偏光フィルムの製造方法などにも応用が期待されている。 Conventionally, there has been known a laser light irradiation apparatus that performs predetermined processing by irradiating a target with laser light. Utilization of the laser beam irradiation apparatus for film cutting and the like has been studied. For example, application to a method for producing a polarizing film as described in Patent Document 1 is expected.
日本国特開2003-255132号公報Japanese Unexamined Patent Publication No. 2003-255132
 レーザー光の強度は、レーザー発振器へのON/OFF信号の切替前後で異なり、レーザー光の出力が安定するまで小さい。レーザー光の出力が安定するまでには一定の時間を要し、その間レーザー光の強度が小さいと、レーザー光が対象物の切断に寄与しなくなる。そのため、このようなレーザー光を用いると、対象物をシャープに切断できず、カット品質が低下する場合がある。 The intensity of the laser beam is different before and after switching the ON / OFF signal to the laser oscillator, and is small until the output of the laser beam is stabilized. A certain time is required until the output of the laser beam is stabilized. If the intensity of the laser beam is low during that period, the laser beam does not contribute to the cutting of the object. Therefore, when such a laser beam is used, the object cannot be cut sharply, and the cut quality may deteriorate.
 本発明の態様はこのような事情に鑑みてなされたものであって、対象物をシャープに切断でき、カット品質の低下を抑制することが可能なレーザー光照射装置及び光学部材貼合体の製造装置を提供することを目的とする。 The aspect of the present invention has been made in view of such circumstances, and a laser beam irradiation apparatus and an optical member bonded body manufacturing apparatus capable of sharply cutting an object and suppressing a reduction in cut quality. The purpose is to provide.
 上記の目的を達成するために、本発明の態様に係るレーザー光照射装置及び光学部材貼合体の製造装置は以下の構成を採用した。
 (1)本発明の第一の態様に係るレーザー光照射装置は、レーザー光を放射するレーザー発振器と、前記レーザー光の出力が安定するまで前記レーザー光を遮蔽する遮蔽部と、を含む。
In order to achieve the above object, the laser beam irradiation apparatus and the optical member bonding apparatus according to the aspect of the present invention employ the following configurations.
(1) The laser beam irradiation apparatus according to the first aspect of the present invention includes a laser oscillator that emits laser beam and a shielding unit that blocks the laser beam until the output of the laser beam is stabilized.
 (2)上記(1)に記載のレーザー光照射装置では、前記遮蔽部は、音響光学素子と、前記レーザー光が前記音響光学素子を通過するタイミングを制御する制御装置と、を含んでいてもよい。 (2) In the laser beam irradiation apparatus according to (1), the shielding unit may include an acousto-optic element and a control device that controls a timing at which the laser beam passes through the acousto-optic element. Good.
 (3)上記(2)に記載のレーザー光照射装置では、前記制御装置は、前記レーザー光の立ち上がり部分が除去されるよう前記タイミングを制御してもよい。 (3) In the laser beam irradiation apparatus described in (2) above, the control device may control the timing so that a rising portion of the laser beam is removed.
 (4)上記(2)又は(3)に記載のレーザー光照射装置では、前記制御装置は、前記レーザー光の立ち下がり部分が除去されるよう前記タイミングを制御してもよい。 (4) In the laser beam irradiation apparatus according to (2) or (3), the control unit may control the timing so that a falling portion of the laser beam is removed.
 (5)本発明の第二の態様に係るレーザー光照射装置は、対象物を保持する保持面を有するテーブルと、レーザー光を放射するレーザー発振器と、前記保持面と平行な平面内で前記レーザー光を2軸走査するスキャナーと、前記テーブルと前記スキャナーとを相対移動する移動装置と、前記レーザー光の出力が安定するまで前記レーザー光を遮蔽する遮蔽部と、を含んでいてもよい。 (5) The laser beam irradiation apparatus according to the second aspect of the present invention includes a table having a holding surface for holding an object, a laser oscillator for emitting laser light, and the laser in a plane parallel to the holding surface. A scanner that performs biaxial scanning of light, a moving device that relatively moves the table and the scanner, and a shielding unit that shields the laser light until the output of the laser light is stabilized may be included.
 (6)上記(5)に記載のレーザー光照射装置では、前記遮蔽部は、音響光学素子と、前記レーザー光が前記音響光学素子を通過するタイミングを制御する制御装置と、を含んでいてもよい。 (6) In the laser beam irradiation apparatus according to (5), the shielding unit may include an acoustooptic device and a control device that controls the timing at which the laser beam passes through the acoustooptic device. Good.
 (7)上記(5)又は(6)に記載のレーザー光照射装置では、前記スキャナーから射出されたレーザー光を前記保持面に向けて集光する集光レンズを含んでいてもよい。 (7) The laser light irradiation apparatus according to (5) or (6) may include a condensing lens that condenses the laser light emitted from the scanner toward the holding surface.
 (8)本発明の第三の態様に係る光学部材貼合体の製造装置は、光学表示部品に光学部材を貼合して構成される光学部材貼合体の製造装置であって、前記光学表示部品に前記光学表示部品の外側にはみ出るサイズのシート片を貼合することによりシート片貼合体を形成する貼合装置と、前記シート片貼合体の前記光学表示部品と前記シート片との貼合面の端縁に沿って、前記シート片貼合体から前記貼合面の外側にはみ出た部分の前記シート片を切り離し、前記貼合面に対応する大きさの前記光学部材を形成する切断装置と、を含み、前記切断装置は、上記(1)から(7)までのいずれか一項に記載のレーザー光照射装置によって構成され、前記レーザー光照射装置から照射されたレーザー光によって対象物である前記シート片が切断される。 (8) The manufacturing apparatus of the optical member bonding body which concerns on the 3rd aspect of this invention is a manufacturing apparatus of the optical member bonding body comprised by bonding an optical member to an optical display component, Comprising: The said optical display component A bonding device that forms a sheet piece bonded body by bonding a sheet piece of a size that protrudes outside the optical display component, and a bonding surface between the optical display component and the sheet piece of the sheet piece bonded body A cutting device that cuts off the sheet piece of the portion that protrudes outside the bonding surface from the sheet piece bonding body along the edge of the sheet, and forms the optical member having a size corresponding to the bonding surface; The cutting device is configured by the laser light irradiation device according to any one of (1) to (7), and is the object by the laser light emitted from the laser light irradiation device. The sheet piece is cut That.
 本発明の態様によれば、対象物をシャープに切断でき、カット品質の低下を抑制することが可能なレーザー光照射装置及び光学部材貼合体の製造装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a laser beam irradiation apparatus and an optical member bonded body manufacturing apparatus capable of cutting an object sharply and suppressing a reduction in cut quality.
本発明の一実施形態に係るレーザー光照射装置を示す斜視図である。It is a perspective view which shows the laser beam irradiation apparatus which concerns on one Embodiment of this invention. EBSの構成を示す図である。It is a figure which shows the structure of EBS. IORの内部構成を示す斜視図である。It is a perspective view which shows the internal structure of IOR. 集光レンズ、絞り部材及びコリメートレンズの配置構成を示す側断面図である。It is a sectional side view which shows the arrangement configuration of a condensing lens, a diaphragm member, and a collimating lens. レーザー光照射装置の制御システムの構成を示す図である。It is a figure which shows the structure of the control system of a laser beam irradiation apparatus. IORの作用を説明するための図である。It is a figure for demonstrating the effect | action of IOR. (a)~(d)EBSの作用を説明するための図である。(A)-(d) It is a figure for demonstrating the effect | action of EBS. (a)~(d)図7において、レーザー光の1つのパルスに着目した図である。(A) to (d) FIG. 7 is a diagram focusing on one pulse of laser light. 比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut | disconnected using the laser beam irradiation apparatus which concerns on a comparative example. 本実施形態に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。It is an enlarged view of a cut surface when the polarizing plate which is a target object is cut using the laser beam irradiation apparatus concerning this embodiment. 本発明の一実施形態に係る光学部材貼合体の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the optical member bonding body which concerns on one Embodiment of this invention. 液晶パネルの平面図である。It is a top view of a liquid crystal panel. 図12のA-A断面図である。FIG. 13 is a cross-sectional view taken along line AA in FIG. 12. 光学シートの断面図である。It is sectional drawing of an optical sheet. 切断装置の動作を示す図である。It is a figure which shows operation | movement of a cutting device. 貼合面の端縁の検出工程を示す平面図である。It is a top view which shows the detection process of the edge of a bonding surface. 検出装置の模式図である。It is a schematic diagram of a detection apparatus. 液晶パネルに対するシート片の貼合位置の決定方法の一例を示す図である。It is a figure which shows an example of the determination method of the bonding position of the sheet piece with respect to a liquid crystal panel. 液晶パネルに対するシート片の貼合位置の決定方法の一例を示す図である。It is a figure which shows an example of the determination method of the bonding position of the sheet piece with respect to a liquid crystal panel. レーザー光が所望の軌跡を描くための制御方法を示す図である。It is a figure which shows the control method for a laser beam to draw a desired locus | trajectory.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
 尚、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 In all of the following drawings, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
(レーザー光照射装置)
 図1は、対象物の切断装置として用いられるレーザー光照射装置100の一例を示す斜視図である。
(Laser beam irradiation device)
FIG. 1 is a perspective view showing an example of a laser beam irradiation apparatus 100 used as an object cutting apparatus.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、対象物を保持する保持面に平行な第1の方向をX方向としており、保持面の面内においてX方向に直交する方向をY方向、X方向及びY方向に直交する方向をZ方向としている。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the first direction parallel to the holding surface that holds the object is defined as the X direction, and the direction orthogonal to the X direction in the plane of the holding surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction.
 図1に示すように、レーザー光照射装置100は、テーブル101と、レーザー発振器102と、EBS130(Electrical Beam Shaping:図2参照)を構成する音響光学素子103と、IOR104(Imaging Optics Rail)と、スキャナー105と、移動装置106と、これらの装置を統括制御する制御装置107と、を備えている。
 ここで、EBS130は、遮蔽手段(遮蔽部)に相当する。
As shown in FIG. 1, a laser beam irradiation apparatus 100 includes a table 101, a laser oscillator 102, an acoustooptic device 103 that constitutes an EBS 130 (Electrical Beam Shaping: see FIG. 2), an IOR 104 (Imaging Optics Rail), A scanner 105, a moving device 106, and a control device 107 that performs overall control of these devices are provided.
Here, the EBS 130 corresponds to a shielding means (shielding portion).
 テーブル101は、対象物110を保持する保持面101sを有する。テーブル101は、保持面101sの法線方向から見て矩形である。保持面101sは、第1の方向(X方向)に長辺を有する長方形の第1保持面101s1と、第1保持面101s1に隣接して配置され且つ第1保持面101s1と同一形状の第2保持面101s2と、を有する。 The table 101 has a holding surface 101s for holding the object 110. The table 101 is rectangular when viewed from the normal direction of the holding surface 101s. The holding surface 101s is a rectangular first holding surface 101s1 having a long side in the first direction (X direction), and a second shape that is disposed adjacent to the first holding surface 101s1 and has the same shape as the first holding surface 101s1. Holding surface 101s2.
 レーザー発振器102は、レーザー光Lを放射する部材である。例えば、レーザー発振器102としては、COレーザー発振器(二酸化炭素レーザー発振器)、UVレーザー発振器、半導体レーザー発振器、YAGレーザー発振器、エキシマレーザー発振器等の発振器を用いることができるが、具体的な構成は特に限定されない。上記の発振器の中でもCOレーザー発振器は、例えば偏光フィルム等の光学部材の切断加工が可能な高出力レーザー光を放射することができる。 The laser oscillator 102 is a member that emits laser light L. For example, as the laser oscillator 102, an oscillator such as a CO 2 laser oscillator (carbon dioxide laser oscillator), a UV laser oscillator, a semiconductor laser oscillator, a YAG laser oscillator, or an excimer laser oscillator can be used. It is not limited. Among the above oscillators, the CO 2 laser oscillator can emit a high-power laser beam capable of cutting an optical member such as a polarizing film.
 図2は、EBS130の構成を示す図である。
 図2に示すように、EBS130は、レーザー発振器102から放射されるレーザー光の光路上に配置された音響光学素子103と、音響光学素子103と電気的に接続された駆動ドライバ131と、レーザー光が音響光学素子103を通過するタイミングを制御する制御装置107(後述するレーザー制御部171に相当)と、を有する。
 EBS130は、レーザー光の出力が安定するまでレーザー光を遮蔽する。
FIG. 2 is a diagram illustrating the configuration of the EBS 130.
As shown in FIG. 2, the EBS 130 includes an acoustooptic element 103 disposed on the optical path of laser light emitted from the laser oscillator 102, a drive driver 131 electrically connected to the acoustooptic element 103, and laser light. Has a control device 107 (corresponding to a laser control unit 171 to be described later) for controlling the timing of passing through the acousto-optic element 103.
The EBS 130 shields the laser light until the output of the laser light is stabilized.
 音響光学素子103は、レーザー発振器102から放射されたレーザー光を遮蔽するための光学素子である。 Acousto-optic element 103 is an optical element for shielding laser light emitted from laser oscillator 102.
 音響光学素子103は、例えば、二酸化テルル(TeO)やモリブデン酸鉛(PbMoO)などの単結晶またはガラスから構成される音響光学媒体に圧電素子を接着したものである。圧電素子に電気信号を加えて超音波を発生させ、この超音波を音響光学媒体中に伝搬させることで、レーザー光の通過と非通過(遮蔽)を制御することができる。 The acoustooptic element 103 is obtained by bonding a piezoelectric element to an acoustooptic medium made of single crystal or glass such as tellurium dioxide (TeO 2 ) or lead molybdate (PbMoO 4 ). By applying an electrical signal to the piezoelectric element to generate an ultrasonic wave and propagating the ultrasonic wave into the acousto-optic medium, the passage and non-passing (shielding) of the laser light can be controlled.
 尚、本実施形態では、EBS130の構成部材として音響光学素子103を用いているが、これに限らない。レーザー発振器102から放射されたレーザー光を遮蔽することができれば、他の光学素子を用いてもよい。尚、レーザー光を遮蔽する遮蔽手段(遮蔽部)として、高速シャッターを用いてもよい。 In this embodiment, the acousto-optic element 103 is used as a constituent member of the EBS 130, but the present invention is not limited to this. Other optical elements may be used as long as the laser light emitted from the laser oscillator 102 can be shielded. A high-speed shutter may be used as a shielding means (shielding portion) that shields the laser light.
 駆動ドライバ131は、制御装置107の制御に基づいて、音響光学素子103に超音波を発生させるための電気信号(制御信号)を供給し、音響光学素子103によるレーザー光の遮蔽時間を調整する。 The drive driver 131 supplies an electrical signal (control signal) for generating an ultrasonic wave to the acoustooptic device 103 based on the control of the control device 107, and adjusts the shielding time of the laser beam by the acoustooptic device 103.
 制御装置107は、例えば、レーザー発振器102から放射されるレーザー光の立ち上がり部分及び立ち下がり部分が除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御する。 The control device 107 controls the timing at which the laser light passes through the acousto-optic element 103 so that, for example, the rising and falling portions of the laser light emitted from the laser oscillator 102 are removed.
 尚、制御装置107によるタイミング制御はこれに限らない。例えば、制御装置107が、レーザー発振器102から放射されるレーザー光の立ち上がり部分が選択的に除去されるよう、レーザー光が音響光学素子103を通過するタイミングを制御してもよい。
 特に、レーザー発振器102から放射されるレーザー光の立ち下がり部分の幅(時間)がレーザー光の立ち上がり部分の幅(時間)よりも十分に短い場合には、レーザー光の立ち下がり部分を除去する実益が小さい。そのため、このような場合には、レーザー発振器102から放射されるレーザー光の立ち上がり部分のみを選択的に除去してもよい。
The timing control by the control device 107 is not limited to this. For example, the control device 107 may control the timing at which the laser light passes through the acoustooptic device 103 so that the rising portion of the laser light emitted from the laser oscillator 102 is selectively removed.
In particular, when the width (time) of the falling portion of the laser light emitted from the laser oscillator 102 is sufficiently shorter than the width (time) of the rising portion of the laser light, the benefit of removing the falling portion of the laser light. Is small. Therefore, in such a case, only the rising portion of the laser light emitted from the laser oscillator 102 may be selectively removed.
 このような構成により、EBS130は、制御装置107の制御に基づいて、レーザー発振器102から放射されたレーザー光を、出力が安定した状態で射出する。 With such a configuration, the EBS 130 emits the laser light emitted from the laser oscillator 102 with a stable output based on the control of the control device 107.
 IOR104は、レーザー光の強度分布のうち対象物110の切断には寄与しない裾の部分を除去する。 The IOR 104 removes the skirt portion that does not contribute to the cutting of the object 110 in the intensity distribution of the laser light.
 図3は、IOR104の内部構成を示す斜視図である。
 図3に示すように、IOR104は、EBS130から射出されたレーザー光を集光する集光レンズ141と、集光レンズ141を保持する第1保持枠142と、集光レンズ141によって集光されたレーザー光を絞る絞り部材143と、絞り部材143を保持する保持部材144と、絞り部材143によって絞られたレーザー光を平行化するコリメートレンズ145と、コリメートレンズ145を保持する第2保持枠146と、第1保持枠142、保持部材144及び第2保持枠146を相対移動させる移動機構147と、を有する。
FIG. 3 is a perspective view showing the internal configuration of the IOR 104.
As shown in FIG. 3, the IOR 104 is condensed by the condenser lens 141 that condenses the laser light emitted from the EBS 130, the first holding frame 142 that holds the condenser lens 141, and the condenser lens 141. A diaphragm member 143 that squeezes the laser light, a holding member 144 that holds the diaphragm member 143, a collimator lens 145 that collimates the laser light squeezed by the diaphragm member 143, and a second holding frame 146 that holds the collimator lens 145 A moving mechanism 147 for relatively moving the first holding frame 142, the holding member 144, and the second holding frame 146.
 図4は、集光レンズ141、絞り部材143及びコリメートレンズ145の配置構成を示す側断面図である。 FIG. 4 is a side sectional view showing an arrangement configuration of the condenser lens 141, the diaphragm member 143, and the collimator lens 145.
 図4に示すように、絞り部材143には、集光レンズ141によって集光されたレーザー光を絞るためのピンホール143hが形成されている。集光レンズ141、ピンホール143h及びコリメートレンズ145の各々の中心は、EBS130から射出されたレーザー光の光軸CLと重なる位置に配置されている。 As shown in FIG. 4, the aperture member 143 is formed with a pinhole 143h for focusing the laser beam condensed by the condenser lens 141. The centers of the condensing lens 141, the pinhole 143 h and the collimating lens 145 are arranged at positions overlapping the optical axis CL of the laser light emitted from the EBS 130.
 絞り部材143は、集光レンズ141の後側焦点の近傍に配置できる。 The diaphragm member 143 can be disposed in the vicinity of the rear focal point of the condenser lens 141.
 ここで、「集光レンズ141の後側焦点の近傍」とは、絞り部材143の配置位置が集光レンズ141の後側焦点から大きく位置ズレしない範囲で、配置位置を若干異ならせてもよいことを意味する。例えば、集光レンズ141の中心から集光レンズ141の後側焦点までの距離K1と集光レンズ141の中心から絞り部材143のピンホール143hの中心までの距離K2との比K1/K2が0.9/1以上1.1/1以下の範囲であれば、絞り部材143が集光レンズ141の後側焦点の近傍に配置されているといえる。このような範囲であれば、集光レンズ141によって集光されたレーザー光を効果的に絞ることができる。 Here, “in the vicinity of the rear focal point of the condensing lens 141” may be slightly different from the arrangement position of the diaphragm member 143 within a range in which the arrangement position of the diaphragm member 143 is not greatly displaced from the rear focal point of the condensing lens 141. Means that. For example, the ratio K1 / K2 between the distance K1 from the center of the condenser lens 141 to the rear focal point of the condenser lens 141 and the distance K2 from the center of the condenser lens 141 to the center of the pinhole 143h of the aperture member 143 is 0. If it is in the range of not less than .9 / 1 and not more than 1.1 / 1, it can be said that the diaphragm member 143 is disposed in the vicinity of the rear focal point of the condenser lens 141. If it is such a range, the laser beam condensed by the condensing lens 141 can be narrowed down effectively.
 尚、絞り部材143は、集光レンズ141の後側焦点の近傍に配置できるが、絞り部材143の配置位置は、必ずしもこの位置に限定されない。絞り部材143の配置位置は、集光レンズ141とコリメートレンズ145との間の光路上であればよく、集光レンズ141の後側焦点の近傍に限らない。 The diaphragm member 143 can be arranged in the vicinity of the rear focal point of the condenser lens 141, but the arrangement position of the diaphragm member 143 is not necessarily limited to this position. The arrangement position of the diaphragm member 143 may be on the optical path between the condenser lens 141 and the collimator lens 145, and is not limited to the vicinity of the rear focal point of the condenser lens 141.
 図3に戻り、移動機構147は、第1保持枠142、保持部材144及び第2保持枠146の各々を、レーザー光の進行方向と平行な方向に移動させるスライダ機構148と、スライダ機構148を保持する保持台149と、を有する。 Returning to FIG. 3, the moving mechanism 147 moves the first holding frame 142, the holding member 144, and the second holding frame 146 in a direction parallel to the traveling direction of the laser light, and the slider mechanism 148. Holding base 149 for holding.
 例えば、保持部材144を定位置に配置した状態で、第1保持枠142及び第2保持枠146をレーザー光の進行方向と平行な方向に移動させることにより、第1保持枠142、保持部材144及び第2保持枠146の相互の位置決めが行われる。具体的には、絞り部材143をコリメートレンズ145の前側焦点の位置で且つ集光レンズ141の後側焦点の位置に配置する。 For example, the first holding frame 142 and the holding member 144 are moved by moving the first holding frame 142 and the second holding frame 146 in a direction parallel to the traveling direction of the laser beam in a state where the holding member 144 is arranged at a fixed position. And the mutual positioning of the 2nd holding frame 146 is performed. Specifically, the diaphragm member 143 is disposed at the position of the front focal point of the collimating lens 145 and the position of the rear focal point of the condenser lens 141.
 図1に戻り、スキャナー105は、レーザー光を保持面101sと平行な平面内(XY平面内)で2軸走査する。すなわち、スキャナー105は、テーブル101に対してレーザー光をX方向とY方向に独立に相対移動させる。これにより、テーブル101に保持された対象物110の任意の位置に精度よくレーザー光を照射することが可能となっている。 Referring back to FIG. 1, the scanner 105 scans the laser beam biaxially in a plane parallel to the holding surface 101s (in the XY plane). That is, the scanner 105 moves the laser light relative to the table 101 independently in the X direction and the Y direction. Thereby, it is possible to accurately irradiate the laser beam to an arbitrary position of the object 110 held on the table 101.
 スキャナー105は、第1照射位置調整装置151と、第2照射位置調整装置154と、を備えている。 The scanner 105 includes a first irradiation position adjustment device 151 and a second irradiation position adjustment device 154.
 第1照射位置調整装置151及び第2照射位置調整装置154は、IOR104から射出されたレーザー光を保持面101sと平行な平面内で2軸走査する走査素子を構成している。第1照射位置調整装置151及び第2照射位置調整装置154としては、例えば、ガルバノスキャナーを用いる。尚、走査素子としては、ガルバノスキャナーに限らず、ジンバルを用いることもできる。 The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 constitute a scanning element that biaxially scans the laser light emitted from the IOR 104 in a plane parallel to the holding surface 101s. As the first irradiation position adjustment device 151 and the second irradiation position adjustment device 154, for example, a galvano scanner is used. The scanning element is not limited to a galvano scanner, and a gimbal can be used.
 第1照射位置調整装置151は、ミラー152と、ミラー152の設置角度を調整するアクチュエータ153と、を備えている。アクチュエータ153は、Z方向に平行な回転軸を有する。アクチュエータ153は、制御装置107の制御に基づいて、ミラー152をZ軸回りに回転させる。 The first irradiation position adjusting device 151 includes a mirror 152 and an actuator 153 that adjusts the installation angle of the mirror 152. The actuator 153 has a rotation axis parallel to the Z direction. The actuator 153 rotates the mirror 152 around the Z axis based on the control of the control device 107.
 第2照射位置調整装置154は、ミラー155と、ミラー155の設置角度を調整するアクチュエータ156と、を備えている。アクチュエータ156は、Y方向に平行な回転軸を有する。アクチュエータ156は、制御装置107の制御に基づいて、ミラー155をY軸回りに回転させる。 The second irradiation position adjusting device 154 includes a mirror 155 and an actuator 156 that adjusts the installation angle of the mirror 155. The actuator 156 has a rotation axis parallel to the Y direction. The actuator 156 rotates the mirror 155 around the Y axis based on the control of the control device 107.
 スキャナー105とテーブル101との間の光路上には、スキャナー105を経由したレーザー光を保持面101sに向けて集光する集光レンズ108が配置されている。 On the optical path between the scanner 105 and the table 101, a condenser lens 108 that condenses the laser light passing through the scanner 105 toward the holding surface 101s is disposed.
 例えば、集光レンズ108としては、fθレンズを用いる。これにより、ミラー155から集光レンズ108に平行に射出されたレーザー光を対象物110に平行に集光させることができる。 For example, an fθ lens is used as the condensing lens 108. Thereby, the laser beam emitted in parallel to the condenser lens 108 from the mirror 155 can be condensed in parallel to the object 110.
 尚、スキャナー105とテーブル101との間の光路上に、集光レンズ108が配置されていない構成であってもよい。 It should be noted that the condensing lens 108 may not be disposed on the optical path between the scanner 105 and the table 101.
 レーザー発振器102から放射されたレーザー光Lは、音響光学素子103、IOR104、ミラー152、ミラー155、集光レンズ108を経由してテーブル101に保持された対象物110に照射される。第1照射位置調整装置151、第2照射位置調整装置154は、制御装置107の制御に基づいて、レーザー発振器102からテーブル101に保持された対象物110に向けて照射されるレーザー光の照射位置を調整する。 The laser beam L emitted from the laser oscillator 102 is applied to the object 110 held on the table 101 via the acoustooptic device 103, the IOR 104, the mirror 152, the mirror 155, and the condenser lens. The first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 are the irradiation positions of the laser beams irradiated from the laser oscillator 102 toward the object 110 held on the table 101 based on the control of the control device 107. Adjust.
 スキャナー105の制御によるレーザー光の加工領域105s(以下、スキャン領域と称する)は、保持面101sの法線方向から見て矩形である。本実施形態では、スキャン領域105sの面積は、第1保持面101s1及び第2保持面101s2の各々の面積よりも小さい。 A laser beam processing region 105s (hereinafter referred to as a scan region) controlled by the scanner 105 is rectangular when viewed from the normal direction of the holding surface 101s. In the present embodiment, the area of the scan region 105s is smaller than the areas of the first holding surface 101s1 and the second holding surface 101s2.
 移動装置106は、テーブル101とスキャナー105とを相対移動させる。移動装置106は、テーブル101を保持面101sに平行な第1の方向(X方向)に移動させる第1スライダ機構161と、第1スライダ機構161を保持面101sに平行かつ第1の方向と直交する第2の方向(Y方向)に移動させる第2スライダ機構162と、を有する。移動装置106は、第1スライダ機構161及び第2スライダ機構162の各々が内蔵するリニアモータを作動させてテーブル101を、XYの各方向へ移動させる。 The moving device 106 moves the table 101 and the scanner 105 relative to each other. The moving device 106 moves the table 101 in a first direction (X direction) parallel to the holding surface 101s, and the first slider mechanism 161 is parallel to the holding surface 101s and orthogonal to the first direction. And a second slider mechanism 162 that moves in the second direction (Y direction). The moving device 106 operates the linear motor built in each of the first slider mechanism 161 and the second slider mechanism 162 to move the table 101 in each direction of XY.
 スライダ機構内においてパルス駆動されるリニアモータは、リニアモータに供給されるパルス信号によって出力軸の回転角度制御を精細に行うことができる。従って、スライダ機構に支持されたテーブル101のXYの各方向上の位置を高精度に制御できる。尚、テーブル101の位置制御はパルスモータを用いた位置制御に限られず、サーボモータを用いたフィードバック制御や、その他任意の制御方法によって実現することもできる。 The linear motor that is pulse-driven in the slider mechanism can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Therefore, the position of the table 101 supported by the slider mechanism in each direction of XY can be controlled with high accuracy. Note that the position control of the table 101 is not limited to the position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.
 制御装置107は、レーザー発振器102及び音響光学素子103(駆動ドライバ131)を制御するレーザー制御部171と、スキャナー105を制御するスキャナー制御部172と、移動装置106を制御するスライダ制御部173と、を有する。 The control device 107 includes a laser control unit 171 that controls the laser oscillator 102 and the acoustooptic device 103 (drive driver 131), a scanner control unit 172 that controls the scanner 105, a slider control unit 173 that controls the moving device 106, Have
 具体的には、レーザー制御部171は、レーザー発振器102のON/OFF、レーザー発振器102から放射されるレーザー光の出力、レーザー発振器102から放射されたレーザー光Lが音響光学素子103を通過するタイミング、駆動ドライバ131の制御を行う。
 スキャナー制御部172は、第1照射位置調整装置151のアクチュエータ153、第2照射位置調整装置154のアクチュエータ156の各々の駆動の制御を行う。
 スライダ制御部173は、第1スライダ機構161及び第2スライダ機構162の各々が内蔵するリニアモータの作動の制御を行う。
Specifically, the laser control unit 171 turns on / off the laser oscillator 102, the output of the laser light emitted from the laser oscillator 102, and the timing at which the laser light L emitted from the laser oscillator 102 passes through the acoustooptic device 103. The drive driver 131 is controlled.
The scanner control unit 172 controls driving of the actuator 153 of the first irradiation position adjustment device 151 and the actuator 156 of the second irradiation position adjustment device 154.
The slider control unit 173 controls the operation of the linear motor built in each of the first slider mechanism 161 and the second slider mechanism 162.
 図5は、レーザー光照射装置100の制御システムの構成を示す図である。
 図5に示すように、制御装置107には入力信号を入力可能な入力装置109が接続されている。入力装置109は、キーボード、マウス等の入力機器、あるいは外部の装置からのデータを入力可能な通信装置等を有する。制御装置107は、レーザー光照射装置100の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。
FIG. 5 is a diagram illustrating a configuration of a control system of the laser light irradiation apparatus 100.
As shown in FIG. 5, an input device 109 capable of inputting an input signal is connected to the control device 107. The input device 109 includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device. The control device 107 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the laser light irradiation device 100, or may be connected to the display device.
 ユーザーが入力装置109に加工データを入力することにより初期設定が完了すると、制御装置107のレーザー制御部171の制御に基づいて、レーザー発振器102からレーザー光が放射される。この際、制御装置107のスキャナー制御部172の制御に基づいて、スキャナー105を構成するミラーの回転駆動が開始される。これと同時に、制御装置107のスライダ制御部173の制御に基づいて、第1スライダ機構161,第2スライダ機構162に設けられたモーターなどの駆動軸の回転数がロータリーエンコーダなどのセンサーにより検出される。 When the user inputs the processing data to the input device 109 and the initial setting is completed, the laser light is emitted from the laser oscillator 102 based on the control of the laser control unit 171 of the control device 107. At this time, based on the control of the scanner control unit 172 of the control device 107, rotation driving of the mirrors constituting the scanner 105 is started. At the same time, based on the control of the slider control unit 173 of the control device 107, the number of rotations of a drive shaft such as a motor provided in the first slider mechanism 161 and the second slider mechanism 162 is detected by a sensor such as a rotary encoder. The
 制御装置107は、各々の座標値をリアルタイムで補正して加工データと一致する座標にレーザー光が射出されるように、即ち、レーザー光が対象物110(図1参照)において所望の軌跡を描くように、移動装置106とスキャナー105とを制御する。制御装置107は、例えば、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域をスキャナー105で調整する。 The control device 107 corrects each coordinate value in real time so that the laser light is emitted at coordinates that match the machining data, that is, the laser light draws a desired locus on the object 110 (see FIG. 1). Thus, the moving device 106 and the scanner 105 are controlled. For example, the control device 107 scans the laser beam mainly by the moving device 106, and adjusts the region where the laser device irradiation position cannot be controlled with the moving device 106 with the scanner 105.
 図6は、IOR104の作用を説明するための図である。
 図6の左段の図はピンホール143hを通過する前のレーザー光の強度分布を示す図である。図6の左段上段の図は平面図である。図6の左段中段の図は斜視図である。図6の左段下段の図は横軸を位置、縦軸を強度として示す図である。
 図6の右段の図はピンホール143hを通過した後のレーザー光の強度分布を示す図である。図6の右段上段の図は平面図である。図6の右段中段の図は斜視図である。図6の右段下段の図は横軸を位置、縦軸を強度として示す図である。
FIG. 6 is a diagram for explaining the operation of the IOR 104.
The diagram on the left side of FIG. 6 is a diagram showing the intensity distribution of the laser light before passing through the pinhole 143h. The upper left diagram in FIG. 6 is a plan view. 6 is a perspective view. 6 is a diagram showing the horizontal axis as the position and the vertical axis as the intensity.
The diagram on the right side of FIG. 6 shows the intensity distribution of the laser light after passing through the pinhole 143h. The diagram on the upper right side of FIG. 6 is a plan view. 6 is a perspective view. 6 is a diagram showing the horizontal axis as the position and the vertical axis as the intensity.
 図6の左段の図に示すように、ピンホール143hを通過する前のレーザー光の強度分布は、ビームの中心部において強度が強く、ビームの外周部において強度の弱い強度分布となっている。 As shown in the diagram on the left side of FIG. 6, the intensity distribution of the laser beam before passing through the pinhole 143h is an intensity distribution having a high intensity at the center of the beam and a low intensity at the outer periphery of the beam. .
 これに対し、図6の右段の図に示すように、ピンホール143hを通過した後のレーザー光の強度分布は、レーザー光の強度分布のうち偏光板の切断には寄与しない裾の部分が除去されることにより、レーザー光の強度分布が理想的なガウシアン分布となる。ピンホール143hを通過した後のレーザー光の強度分布の半値幅は、ピンホール143hを通過する前のレーザー光の強度分布の半値幅よりも狭くなっている。 On the other hand, as shown in the diagram on the right side of FIG. 6, the intensity distribution of the laser light after passing through the pinhole 143h has a tail portion that does not contribute to the cutting of the polarizing plate in the intensity distribution of the laser light. By being removed, the intensity distribution of the laser light becomes an ideal Gaussian distribution. The half width of the intensity distribution of the laser light after passing through the pinhole 143h is narrower than the half width of the intensity distribution of the laser light before passing through the pinhole 143h.
 図7(a)~(d)は、EBS130の作用を説明するための図である。
 図7(a)は、レーザー発振器102から放射されるレーザー光の制御信号を示している。
 図7(b)は、レーザー発振器102から放射されたレーザー光そのものの出力特性、即ちレーザー発振器102から放射されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性を示している。
 図7(c)は、音響光学素子103の制御信号を示している。
 図7(d)は、レーザー発振器102から放射されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性を示している。
 図7(b)、(d)の各々において、横軸は時間、縦軸はレーザー光の強度である。
 図8(a)~(d)は、図7(a)~(d)において、レーザー光の1つのパルスに着目した図である。
 尚、以下の説明では、「レーザー発振器102から放射されるレーザー光の制御信号」を「レーザー光の制御信号」と称する。「レーザー発振器102から放射されたレーザー光が音響光学素子103を通過する前のレーザー光の出力特性」を「音響光学素子103通過前のレーザー光の出力特性」と称する。「レーザー発振器102から放射されたレーザー光が音響光学素子103を通過した後のレーザー光の出力特性」を「音響光学素子103通過後のレーザー光の出力特性」と称する。
FIGS. 7A to 7D are diagrams for explaining the operation of the EBS 130. FIG.
FIG. 7A shows a control signal of laser light emitted from the laser oscillator 102.
FIG. 7B shows the output characteristics of the laser light itself emitted from the laser oscillator 102, that is, the output characteristics of the laser light before the laser light emitted from the laser oscillator 102 passes through the acoustooptic device 103. .
FIG. 7C shows a control signal of the acoustooptic device 103.
FIG. 7D shows the output characteristics of the laser light after the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103.
In each of FIGS. 7B and 7D, the horizontal axis represents time, and the vertical axis represents the intensity of laser light.
FIGS. 8A to 8D are diagrams focusing on one pulse of laser light in FIGS. 7A to 7D.
In the following description, the “control signal for laser light emitted from the laser oscillator 102” is referred to as “control signal for laser light”. “Output characteristics of laser light before the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light before passing through the acousto-optic element 103”. “Output characteristics of laser light after the laser light emitted from the laser oscillator 102 passes through the acousto-optic element 103” is referred to as “output characteristics of laser light after passing through the acousto-optic element 103”.
 図7(a)、図8(a)に示すように、レーザー光の制御信号のパルスPs1は矩形パルスである。図7(a)に示すように、レーザー光の制御信号は、レーザー発振器102へのON/OFF信号が周期的に切り替えられることにより複数のパルスPs1を発生させる、いわゆるクロックパルスである。 As shown in FIGS. 7A and 8A, the pulse Ps1 of the laser light control signal is a rectangular pulse. As shown in FIG. 7A, the control signal of the laser beam is a so-called clock pulse that generates a plurality of pulses Ps1 when the ON / OFF signal to the laser oscillator 102 is periodically switched.
 図7(a)、図8(a)において、パルスPs1の山の部分は、レーザー発振器102へON信号が送られた状態、即ちレーザー発振器102からレーザー光が放射されるON状態である。パルスPs1の谷の部分は、レーザー発振器102へOFF信号が送られた状態、即ちレーザー発振器102からレーザー光が放射されないOFF状態である。 7A and 8A, the peak portion of the pulse Ps1 is a state where an ON signal is sent to the laser oscillator 102, that is, an ON state where laser light is emitted from the laser oscillator 102. The valley portion of the pulse Ps1 is a state in which an OFF signal is sent to the laser oscillator 102, that is, an OFF state in which laser light is not emitted from the laser oscillator 102.
 図7(a)に示すように、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成されている。3つの集合パルスPL1は、3つのパルスPs1の配置間隔よりも長い間隔で配置されている。例えば、隣り合う2つのパルスPs1の間の間隔は1ミリ秒であり、隣り合う2つの集合パルスPL1の間の間隔は10ミリ秒である。 As shown in FIG. 7A, one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals. The three collective pulses PL1 are arranged at intervals longer than the arrangement interval of the three pulses Ps1. For example, the interval between two adjacent pulses Ps1 is 1 millisecond, and the interval between two adjacent collective pulses PL1 is 10 milliseconds.
 尚、本実施形態では、3つのパルスPs1が短い間隔で配置されることにより1つの集合パルスPL1が形成される例を挙げて説明しているが、これに限らない。例えば、2つ又は4つ以上の複数のパルスが短い間隔で配置されることにより1つの集合パルスが形成されていてもよい。
 また、複数のパルスが周期的に形成されることに限らず、1つのパルスが長い幅で形成される構成であってもよい。即ち、レーザー発振器へのON信号からOFF信号まで一定の強度のレーザー光が所定の時間だけ放射される構成であってもよい。
In the present embodiment, an example in which one collective pulse PL1 is formed by arranging three pulses Ps1 at short intervals is described, but the present invention is not limited to this. For example, one collective pulse may be formed by arranging a plurality of two or four or more pulses at short intervals.
Further, the configuration is not limited to the plurality of pulses being periodically formed, and one pulse may be formed with a long width. That is, a configuration in which laser light having a certain intensity from the ON signal to the OFF signal to the laser oscillator is emitted for a predetermined time may be employed.
 図7(b)、図8(b)に示すように、音響光学素子103通過前のレーザー光の出力特性のパルスPs2は、立ち上がり部分G1と立ち下がり部分G2とを有する波形パルスである。 As shown in FIGS. 7B and 8B, the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103 is a waveform pulse having a rising portion G1 and a falling portion G2.
 ここで、立ち上がり部分G1とは、パルスPs2のうちレーザー光の強度がゼロから対象物の切断に寄与する強度に達するまでの期間における部分を意味する。立ち下がり部分G2とは、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する強度からゼロに至るまでの期間における部分を意味する。対象物の切断に寄与する強度は、対象物の材質や厚み、レーザー光の出力値によって異なるが、一例として、図8(b)に示すように、レーザー光のピーク強度(100%)の50%の強度とする。 Here, the rising portion G1 means a portion of the pulse Ps2 in the period from when the intensity of the laser beam reaches zero to an intensity that contributes to the cutting of the object. The falling portion G2 means a portion in the period from the intensity at which the intensity of the laser light contributes to the cutting of the object to zero, among the pulses Ps2 of the output characteristics of the laser light. The intensity that contributes to the cutting of the object varies depending on the material and thickness of the object and the output value of the laser beam. As an example, as shown in FIG. 8B, 50% of the peak intensity (100%) of the laser beam. % Strength.
 図7(b)、図8(b)に示すように、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い。つまり、レーザー発振器102から放射されるレーザー光の立ち上がり部分G1の時間がレーザー光の立ち下がり部分G2の時間よりも長い。
 例えば、立ち上がり部分G1の幅は45マイクロ秒であり、立ち下がり部分G2の幅は25マイクロ秒である。
As shown in FIGS. 7B and 8B, the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2. That is, the time of the rising portion G1 of the laser light emitted from the laser oscillator 102 is longer than the time of the falling portion G2 of the laser light.
For example, the width of the rising portion G1 is 45 microseconds, and the width of the falling portion G2 is 25 microseconds.
 尚、本実施形態では、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも長い例を挙げて説明しているが、これに限らない。例えば、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅と概ね等しい場合、パルスPs2の立ち上がり部分G1の幅が立ち下がり部分G2の幅よりも短い場合、においても本発明を適用可能である。 In this embodiment, the example in which the width of the rising portion G1 of the pulse Ps2 is longer than the width of the falling portion G2 is described, but the present invention is not limited to this. For example, when the width of the rising portion G1 of the pulse Ps2 is substantially equal to the width of the falling portion G2, the present invention can be applied even when the width of the rising portion G1 of the pulse Ps2 is shorter than the width of the falling portion G2. is there.
 図7(b)に示すように、3つのパルスPs2が図7(a)に示す3つのパルスPs1に対応する位置に配置されることにより1つの集合パルスPL2が形成されている。3つの集合パルスPL2は、図7(a)に示す3つの集合パルスPL1に対応する位置に配置されている。 As shown in FIG. 7B, one set pulse PL2 is formed by arranging the three pulses Ps2 at positions corresponding to the three pulses Ps1 shown in FIG. 7A. The three collective pulses PL2 are arranged at positions corresponding to the three collective pulses PL1 shown in FIG.
 図7(c)、図8(c)に示すように、音響光学素子103の制御信号のパルスPs3は矩形パルスである。図7(c)に示すように、音響光学素子103の制御信号は、レーザー光が音響光学素子103を通過するタイミングが周期的に切り替えられるように駆動ドライバ131への制御信号が周期的に切り替えられることにより複数のパルスPs3を発生させる、いわゆるクロックパルスである。 As shown in FIGS. 7C and 8C, the control signal pulse Ps3 of the acoustooptic device 103 is a rectangular pulse. As shown in FIG. 7C, the control signal for the acoustooptic device 103 is periodically switched so that the timing at which the laser beam passes through the acoustooptic device 103 is periodically switched. This is a so-called clock pulse that generates a plurality of pulses Ps3.
 図7(c)、図8(c)において、パルスPs3の山の部分は、レーザー光を通過させる状態、即ちレーザー光を透過させる透光状態である。パルスPs3の谷の部分は、レーザー光を通過させない状態、即ちレーザー光を遮蔽する遮光状態である。 7 (c) and 8 (c), the peak portion of the pulse Ps3 is in a state where the laser light is transmitted, that is, a light transmitting state where the laser light is transmitted. The valley portion of the pulse Ps3 is in a state where laser light is not passed, that is, in a light shielding state where the laser light is shielded.
 図7(c)に示すように、各パルスPs3の谷の部分が図7(b)に示す各パルスPs2の立ち上がり部分G1及び立ち下がり部分G2の双方に重なるように配置されている。 As shown in FIG. 7C, the valley portion of each pulse Ps3 is disposed so as to overlap both the rising portion G1 and the falling portion G2 of each pulse Ps2 shown in FIG. 7B.
 図8(c)に示すように、1つのパルスPs3に着目すると、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と概ね等しい。例えば、パルスPs3の前側の谷の部分V1の幅は45マイクロ秒、パルスPs3の後側の谷の部分V2の幅は25マイクロ秒である。このように、EBS130は、早い応答特性を持つスイッチ機能を有する。 As shown in FIG. 8C, when focusing on one pulse Ps3, the width of the valley portion V1 on the front side of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the rear side of the pulse Ps3. The width of the valley portion V2 is substantially equal to the width of the falling portion of the pulse Ps2. For example, the width of the valley portion V1 on the front side of the pulse Ps3 is 45 microseconds, and the width of the valley portion V2 on the rear side of the pulse Ps3 is 25 microseconds. As described above, the EBS 130 has a switch function having a quick response characteristic.
 これにより、レーザー光の立ち上がり部分G1と立ち下がり部分G2とを除去し、レーザー光の出力特性のパルスPs2のうちレーザー光の強度が対象物の切断に寄与する部分を選択的に取り出すことができる。 As a result, the rising portion G1 and the falling portion G2 of the laser beam can be removed, and the portion of the laser beam output characteristic pulse Ps2 in which the intensity of the laser beam contributes to the cutting of the object can be selectively extracted. .
 その結果、図7(d)、図8(d)に示すように、音響光学素子103通過後のレーザー光の出力特性のパルスPs4は、立ち上がり部分G1と立ち下がり部分G2とを有しない、シャープに突出したパルスとなる。 As a result, as shown in FIG. 7D and FIG. 8D, the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 does not have a rising portion G1 and a falling portion G2. It becomes a pulse protruding to
 尚、本実施形態では、パルスPs3の前側の谷の部分V1の幅がパルスPs2の立ち上がり部分G1の幅よりも大きく、且つ、パルスPs3の後側の谷の部分V2の幅がパルスPs2の立ち下がり部分の幅と概ね等しい例を挙げて説明しているが、これに限らない。
 例えば、パルスPs3の前側の谷の部分V1の幅をパルスPs2の立ち上がり部分G1の幅と概ね等しくしたり、パルスPs3の後側の谷の部分V2の幅をパルスPs2の立ち下がり部分の幅よりも大きくしたりする等、必要に応じて適宜調整することができる。
In this embodiment, the width of the front valley portion V1 of the pulse Ps3 is larger than the width of the rising portion G1 of the pulse Ps2, and the width of the rear valley portion V2 of the pulse Ps3 is the rising edge of the pulse Ps2. Although an example that is substantially equal to the width of the falling portion is described, the present invention is not limited to this.
For example, the width of the valley portion V1 on the front side of the pulse Ps3 is made substantially equal to the width of the rising portion G1 of the pulse Ps2, or the width of the valley portion V2 on the rear side of the pulse Ps3 is made larger than the width of the falling portion of the pulse Ps2. It can be appropriately adjusted as necessary, for example, by increasing the size.
 図9は、比較例に係るレーザー光照射装置を用いて、対象物である偏光板を切断したときの切断面の拡大図である。
 ここで、比較例に係るレーザー光照射装置は、音響光学素子103を通過する前のレーザー光をそのまま用いたレーザー光照射装置、即ちEBS130を備えていないレーザー光照射装置である。
 図10は、本実施形態に係るレーザー光照射装置100を用いて、対象物である偏光板を切断したときの切断面の拡大図である。
FIG. 9 is an enlarged view of a cut surface when a polarizing plate which is an object is cut using the laser beam irradiation apparatus according to the comparative example.
Here, the laser light irradiation apparatus according to the comparative example is a laser light irradiation apparatus that uses the laser light before passing through the acousto-optic element 103 as it is, that is, a laser light irradiation apparatus that does not include the EBS 130.
FIG. 10 is an enlarged view of a cut surface when a polarizing plate, which is an object, is cut using the laser beam irradiation apparatus 100 according to the present embodiment.
 図7(b)、図8(b)に示したように、レーザー光の強度は、レーザー発振器102へのON/OFF信号の切替前後で異なり、レーザー光の出力が安定するまで小さい。
レーザー光の出力が安定するまでには一定の時間を要し、その間レーザー光の強度が小さいと、レーザー光が偏光板の切断に寄与しなくなる。
As shown in FIGS. 7B and 8B, the intensity of the laser light differs before and after switching the ON / OFF signal to the laser oscillator 102, and is small until the output of the laser light is stabilized.
A certain time is required until the output of the laser beam is stabilized. If the intensity of the laser beam is low during that time, the laser beam does not contribute to the cutting of the polarizing plate.
 この場合、図9に示すように、比較例に係るレーザー光照射装置では、偏光板の切断面がテーパ形状となっていることが確認される。これは、偏光板をカットする際、レーザー光の立ち上がり部分がカットラインに沿う部分に熱影響を与えたことにより、偏光板のカット領域以外の部分が溶解したことが原因と考えられる。 In this case, as shown in FIG. 9, in the laser beam irradiation apparatus according to the comparative example, it is confirmed that the cut surface of the polarizing plate has a tapered shape. This is considered to be because when the polarizing plate was cut, the rising portion of the laser beam thermally affected the portion along the cut line, so that the portion other than the cut region of the polarizing plate was dissolved.
 これに対し、図7(d)、図8(d)に示したように、音響光学素子103を通過した後のレーザー光の出力特性のパルスPs4は、レーザー光の立ち上がり部分G1と立ち下がり部分G2とが除去されることにより、シャープに突出したパルスとなる。音響光学素子103通過後のレーザー光の出力特性のパルスPs4の全幅は、音響光学素子103通過前のレーザー光の出力特性のパルスPs2の全幅よりも狭くなっている。 On the other hand, as shown in FIG. 7D and FIG. 8D, the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 is the rising part G1 and the falling part of the laser light. By removing G2, a sharply protruding pulse is obtained. The full width of the pulse Ps4 of the output characteristic of the laser light after passing through the acoustooptic device 103 is narrower than the full width of the pulse Ps2 of the output characteristic of the laser light before passing through the acoustooptic device 103.
 この場合、図10に示すように、本実施形態に係るEBS130を備えたレーザー光照射装置100では、偏光板の切断面が保持面に垂直になっていることが確認される。これは、偏光板をカットする際、レーザー光の出力特性のうち偏光板の切断に寄与する部分が偏光板に照射されることにより、偏光板のカット領域を選択的に溶断できたことによると考えられる。 In this case, as shown in FIG. 10, in the laser beam irradiation apparatus 100 provided with the EBS 130 according to the present embodiment, it is confirmed that the cut surface of the polarizing plate is perpendicular to the holding surface. This is because when the polarizing plate is cut, the portion of the output characteristics of the laser light that contributes to the cutting of the polarizing plate is irradiated to the polarizing plate, so that the cut region of the polarizing plate can be selectively blown. Conceivable.
 以上説明したように、本実施形態に係るレーザー光照射装置100によれば、対象物110をシャープに切断でき、カット品質の低下を抑制することができる。 As described above, according to the laser beam irradiation apparatus 100 according to the present embodiment, the object 110 can be cut sharply, and a reduction in cut quality can be suppressed.
 また、音響光学素子103を用いたEBS130によれば、早い応答特性を持つスイッチ機能を有するため、レーザー発振器102からレーザー光が短い周期で放射される場合であっても、レーザー光の立ち上がり部分G1及び立ち下がり部分G2を選択的に除去することができる。 In addition, since the EBS 130 using the acoustooptic device 103 has a switching function having a quick response characteristic, even when the laser light is emitted from the laser oscillator 102 with a short period, the rising portion G1 of the laser light. In addition, the falling portion G2 can be selectively removed.
 また、集光レンズ108がスキャナー105とテーブル101との間の光路上に配置されているため、スキャナー105を経由したレーザー光を対象物110に平行に集光させることができる。従って、対象物110を精度良く切断することができる。 Further, since the condensing lens 108 is disposed on the optical path between the scanner 105 and the table 101, the laser light passing through the scanner 105 can be condensed in parallel with the object 110. Therefore, the object 110 can be cut with high accuracy.
 また、本実施形態のレーザー光照射装置100では、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域をスキャナー105で調整する。そのため、移動装置106のみ又はスキャナー105のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。 Further, in the laser beam irradiation apparatus 100 of the present embodiment, the scanning of the laser beam is mainly performed by the moving device 106, and an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106 is adjusted by the scanner 105. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
 尚、本実施形態では、一例として、レーザー光照射装置100が、テーブル101と、レーザー発振器102と、遮蔽手段(遮蔽部)としてのEBS130と、スキャナー105と、移動装置106と、を含む構成を挙げて説明したがこれに限らない。例えば、レーザー光照射装置が、レーザー発振器と、EBSと、を含む構成であってもよい。即ち、レーザー光照射装置が、テーブル、スキャナー及び移動装置を備えていない構成であってもよい。 In this embodiment, as an example, the laser light irradiation apparatus 100 includes a table 101, a laser oscillator 102, an EBS 130 as a shielding unit (shielding unit), a scanner 105, and a moving device 106. Although it has been described above, it is not limited to this. For example, the laser beam irradiation apparatus may be configured to include a laser oscillator and EBS. That is, the laser light irradiation device may be configured not to include a table, a scanner, and a moving device.
(光学部材貼合体の製造装置)
 以下、本発明の一実施形態に係る光学部材貼合体の製造装置であるフィルム貼合システム1について図面を参照して説明する。本実施形態に係るフィルム貼合システム1は、切断装置が上述したレーザー光照射装置100によって構成されている。
(Manufacturing device for optical member bonded body)
Hereinafter, the film bonding system 1 which is a manufacturing apparatus of the optical member bonding body which concerns on one Embodiment of this invention is demonstrated with reference to drawings. The film bonding system 1 which concerns on this embodiment is comprised by the laser beam irradiation apparatus 100 which the cutting device mentioned above.
 図11は、本実施形態のフィルム貼合システム1の概略構成を示す図である。
 フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムといったフィルム状の光学部材を貼合するものである。
FIG. 11 is a diagram illustrating a schematic configuration of the film bonding system 1 of the present embodiment.
The film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, and a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、光学表示部品である液晶パネルの搬送方向をX方向としており、液晶パネルの面内においてX方向に直交する方向(液晶パネルの幅方向)をY方向、X方向及びY方向に直交する方向をZ方向としている。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the transport direction of the liquid crystal panel, which is an optical display component, is the X direction, and the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction. The direction orthogonal to the Z direction is taken as the Z direction.
 図11に示すように、本実施形態のフィルム貼合システム1は、液晶パネルPの製造ラインの一工程として設けられている。フィルム貼合システム1の各部は、電子制御装置としての制御部40により統括制御される。 As shown in FIG. 11, the film bonding system 1 of this embodiment is provided as one process of the manufacturing line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
 図12は、液晶パネルPを液晶パネルPの液晶層P3の厚さ方向から見た平面図である。液晶パネルPは、平面視で長方形状を有する第1基板P1と、第1基板P1に対向して配置される比較的小形の長方形状を有する第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1基板P1の外形状に沿う長方形状を有し、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。 FIG. 12 is a plan view of the liquid crystal panel P viewed from the thickness direction of the liquid crystal layer P3 of the liquid crystal panel P. The liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, a second substrate P2 having a relatively small rectangular shape disposed opposite to the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2. The liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in plan view is defined as a display region P4.
 図13は図12のA-A断面図である。液晶パネルPの表裏面には、長尺帯状の第1光学シートF1及び第2光学シートF2(図11参照、以下、光学シートFXと総称することがある。)からそれぞれ切り出した第1光学部材F11及び第2光学部材F12(以下、光学部材F1Xと総称することがある。)が適宜貼合される。本実施形態では、液晶パネルPの両面には、偏光フィルムがそれぞれ貼合される。液晶パネルPのバックライト側の面には、偏光フィルムとして第1光学部材F11が貼合される。液晶パネルPの表示面側の面には、偏光フィルムとして第2光学部材F12が貼合される。 FIG. 13 is a cross-sectional view taken along the line AA in FIG. On the front and back surfaces of the liquid crystal panel P, a first optical member cut out from each of a long strip-shaped first optical sheet F1 and second optical sheet F2 (see FIG. 11, hereinafter may be collectively referred to as an optical sheet FX). F11 and the second optical member F12 (hereinafter may be collectively referred to as an optical member F1X) are appropriately bonded. In the present embodiment, polarizing films are bonded to both surfaces of the liquid crystal panel P, respectively. The first optical member F11 is bonded to the surface of the liquid crystal panel P on the backlight side as a polarizing film. The second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P as a polarizing film.
 表示領域P4の外側には、液晶パネルPの第1基板P1及び第2基板P2を接合するシール剤等を配置する所定幅の額縁部Gが設けられている。 Outside the display area P4, a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 of the liquid crystal panel P is provided.
 尚、第1光学部材F11及び第2光学部材F12は、後述する第1シート片F1m及び第2シート片F2m(以下、シート片FXmと総称することがある。)から、それぞれその貼合面の外側の余剰部分を切り離すことにより形成されたものである。貼合面については後述する。 In addition, the 1st optical member F11 and the 2nd optical member F12 are respectively the bonding surface from the 1st sheet piece F1m and the 2nd sheet piece F2m (henceforth a sheet piece FXm) mentioned later. It is formed by cutting off the excess part on the outside. The bonding surface will be described later.
 図14は液晶パネルPに貼合する光学シートFXの部分断面図である。光学シートFXは、フィルム状の光学部材本体F1aと、光学部材本体F1aの一方の面(図14では上面)に設けられた粘着層F2aと、粘着層F2aを介して光学部材本体F1aの一方の面に分離可能に積層されたセパレータF3aと、光学部材本体F1aの他方の面(図14では下面)に積層された表面保護フィルムF4aとを有する。光学部材本体F1aは偏光板として機能し、液晶パネルPの表示領域P4の全域と表示領域P4の周辺領域とにわたって貼合される。尚、図示都合上、図14の各層のハッチングは省略する。 FIG. 14 is a partial cross-sectional view of the optical sheet FX to be bonded to the liquid crystal panel P. The optical sheet FX includes a film-like optical member main body F1a, an adhesive layer F2a provided on one surface (upper surface in FIG. 14) of the optical member main body F1a, and one of the optical member main bodies F1a via the adhesive layer F2a. Separator F3a laminated | stacked on the surface so that isolation | separation was possible, and the surface protection film F4a laminated | stacked on the other surface (FIG. 14 lower surface) of the optical member main body F1a. The optical member main body F1a functions as a polarizing plate, and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. For convenience of illustration, hatching of each layer in FIG. 14 is omitted.
 光学部材本体F1aは、光学部材本体F1aの一方の面に粘着層F2aを残しつつセパレータF3aを分離させた状態で、液晶パネルPに粘着層F2aを介して貼合される。以下、光学シートFXからセパレータF3aを除いた部分を貼合シートF5という。 The optical member main body F1a is bonded to the liquid crystal panel P via the adhesive layer F2a in a state where the separator F3a is separated while leaving the adhesive layer F2a on one surface of the optical member main body F1a. Hereinafter, the part remove | excluding the separator F3a from the optical sheet FX is called the bonding sheet | seat F5.
 セパレータF3aは、粘着層F2aから分離されるまでの間に粘着層F2a及び光学部材本体F1aを保護する。表面保護フィルムF4aは、光学部材本体F1aと共に液晶パネルPに貼合される。表面保護フィルムF4aは、光学部材本体F1aに対して液晶パネルPと反対側に配置されて光学部材本体F1aを保護する。表面保護フィルムF4aは、所定のタイミングで光学部材本体F1aから分離される。尚、光学シートFXが表面保護フィルムF4aを含まない構成であってもよい。表面保護フィルムF4aが光学部材本体F1aから分離されない構成であってもよい。 The separator F3a protects the adhesive layer F2a and the optical member body F1a before being separated from the adhesive layer F2a. The surface protective film F4a is bonded to the liquid crystal panel P together with the optical member body F1a. The surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a. The surface protective film F4a is separated from the optical member main body F1a at a predetermined timing. The optical sheet FX may be configured not to include the surface protective film F4a. The structure which is not isolate | separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
 光学部材本体F1aは、シート状の偏光子F6と、偏光子F6の一方の面に接着剤等で接合される第1フィルムF7と、偏光子F6の他方の面に接着剤等で接合される第2フィルムF8とを有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。 The optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and the other surface of the polarizer F6 with an adhesive or the like. And a second film F8. The first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
 尚、光学部材本体F1aは、一層の光学層からなる単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等でもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理やアンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材本体F1aは、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータF3aを光学部材本体F1aの一方の面に粘着層F2aを介して貼り合わせてもよい。 The optical member body F1a may have a single-layer structure composed of a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked on each other. In addition to the polarizer F6, the optical layer may be a retardation film, a brightness enhancement film, or the like. At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment. The optical member body F1a may not include at least one of the first film F7 and the second film F8. For example, when the first film F7 is omitted, the separator F3a may be bonded to one surface of the optical member main body F1a via the adhesive layer F2a.
 次に、本実施形態のフィルム貼合システム1について、詳しく説明する。
 図11に示すように、本実施形態のフィルム貼合システム1は、図中右側の液晶パネルPの搬送方向上流側(+X方向側)から図中左側の液晶パネルPの搬送方向下流側(-X方向側)に至り、液晶パネルPを水平状態で搬送する駆動式のローラコンベア5を備えている。
Next, the film bonding system 1 of this embodiment is demonstrated in detail.
As shown in FIG. 11, the film laminating system 1 according to the present embodiment is configured such that the liquid crystal panel P on the right side in the drawing direction (+ X direction side) to the downstream side in the carrying direction of the liquid crystal panel P on the left side in FIG. X-direction side), and a drive type roller conveyor 5 that conveys the liquid crystal panel P in a horizontal state is provided.
 ローラコンベア5は、後述する反転装置15を境に、上流側コンベア6と下流側コンベア7とに分かれる。上流側コンベア6では、液晶パネルPは表示領域P4の短辺を搬送方向に沿うようにして搬送される。一方、下流側コンベア7では、液晶パネルPは表示領域P4の長辺を搬送方向に沿うようにして搬送される。液晶パネルPの表裏面に対して、帯状の光学シートFXから所定長さに切り出した貼合シートF5のシート片FXm(光学部材F1Xに相当)が貼合される。 The roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a reversing device 15 described later as a boundary. On the upstream conveyor 6, the liquid crystal panel P is transported so that the short side of the display area P <b> 4 is along the transport direction. On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported with the long side of the display area P <b> 4 along the transport direction. A sheet piece FXm (corresponding to the optical member F1X) of the bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet FX is bonded to the front and back surfaces of the liquid crystal panel P.
 尚、上流側コンベア6は、後述する第1吸着装置11では、下流側に独立したフリーローラコンベア24を備えている。一方、下流側コンベア7は、後述する第2吸着装置20では、下流側に独立したフリーローラコンベア24を備えている。 In addition, the upstream conveyor 6 is provided with the independent free roller conveyor 24 in the downstream in the 1st adsorption | suction apparatus 11 mentioned later. On the other hand, the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
 本実施形態のフィルム貼合システム1は、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32、及び制御部40を備えている。 The film bonding system 1 of this embodiment is the 1st adsorption | suction apparatus 11, the 1st dust collector 12, the 1st bonding apparatus 13, the 1st detection apparatus 41, the 1st cutting device 31, the inversion apparatus 15, and 2nd collection. The dust device 16, the 2nd bonding apparatus 17, the 2nd detection apparatus 42, the 2nd cutting device 32, and the control part 40 are provided.
 第1吸着装置11は、液晶パネルPを吸着して上流側コンベア6に搬送すると共に液晶パネルPのアライメント(位置決め)を行う。第1吸着装置11は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 The first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P. The first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、上流側コンベア6により下流側のストッパSに当接した液晶パネルPを上下方向及び水平方向に移動可能に保持すると共に液晶パネルPのアライメントを行う。パネル保持部11aは、ストッパSに当接した液晶パネルPの上面を真空吸着によって吸着保持する。パネル保持部11aは、液晶パネルPを吸着保持した状態でレールR上を移動して液晶パネルPを搬送する。パネル保持部11aは、搬送が終わると吸着保持を解除して液晶パネルPをフリーローラコンベア24に受け渡す。 The panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and aligns the liquid crystal panel P. The panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction. The panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P. When the conveyance is finished, the panel holding unit 11 a releases the suction holding and delivers the liquid crystal panel P to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した液晶パネルPをパネル保持部11aが保持し、上昇した状態で液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する液晶パネルPのアライメントが行われる。つまり、液晶パネルPは、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び液晶パネルPの垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。
 パネル保持部11aによりレールR上を搬送された液晶パネルPは吸着パッド26に吸着された状態でシート片FXmと共に先端部を挟圧ロール23に挟持される。
In the alignment camera 11b, the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state. Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a operates to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination. In other words, the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the shift in the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the turning direction about the vertical axis of the liquid crystal panel P. .
The liquid crystal panel P conveyed on the rail R by the panel holding portion 11a is nipped by the pinching roll 23 with the sheet piece FXm while being adsorbed by the suction pad 26.
 第1集塵装置12は、第1貼合装置13の貼合位置である挟圧ロール23の、液晶パネルPの搬送上流側に設けられている。第1集塵装置12は、貼合位置に導入される前の液晶パネルPの周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13. FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
 第1貼合装置13は、第1吸着装置11よりもパネル搬送下流側に設けられている。第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5(第1シート片F1mに相当)の貼合を行う。 The 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption | suction apparatus 11. FIG. The 1st bonding apparatus 13 bonds the bonding sheet | seat F5 (equivalent to 1st sheet piece F1m) cut into the predetermined size with respect to the lower surface of liquid crystal panel P introduced into the bonding position.
 第1貼合装置13は、搬送装置22と、挟圧ロール23とを備えている。 The 1st bonding apparatus 13 is provided with the conveying apparatus 22 and the pinching roll 23. FIG.
 搬送装置22は、光学シートFXが巻回された原反ロールR1から光学シートFXを巻き出しつつ光学シートFXを光学シートFXの長手方向に沿って搬送する。搬送装置22は、セパレータF3aをキャリアとして貼合シートF5を搬送する。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、切断装置22cと、ナイフエッジ22dと、巻き取り部22eと、を有する。 The conveying device 22 conveys the optical sheet FX along the longitudinal direction of the optical sheet FX while unwinding the optical sheet FX from the original roll R1 around which the optical sheet FX is wound. The conveying apparatus 22 conveys the bonding sheet | seat F5 by using separator F3a as a carrier. The conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
 ロール保持部22aは、帯状の光学シートFXを巻回した原反ロールR1を保持すると共に光学シートFXを光学シートFXの長手方向に沿って繰り出す。
 複数のガイドローラ22bは、原反ロールR1から巻き出した光学シートFXを所定の搬送経路に沿って案内するように光学シートFXを巻きかける。
 切断装置22cは、搬送経路上の光学シートFXにハーフカットを施す。
 ナイフエッジ22dは、ハーフカットを施した光学シートFXを鋭角に巻きかけてセパレータF3aから貼合シートF5を分離させつつ貼合シートF5を貼合位置に供給する。
 巻き取り部22eは、ナイフエッジ22dを経て単独となったセパレータF3aを巻き取るセパレータロールR2を保持する。
The roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet FX is wound and feeds the optical sheet FX along the longitudinal direction of the optical sheet FX.
The plurality of guide rollers 22b wind the optical sheet FX so as to guide the optical sheet FX unwound from the original roll R1 along a predetermined conveyance path.
The cutting device 22c performs a half cut on the optical sheet FX on the conveyance path.
The knife edge 22d feeds the bonding sheet F5 to the bonding position while winding the optical sheet FX subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3a.
The winding unit 22e holds a separator roll R2 that winds the separator F3a that has become independent through the knife edge 22d.
 搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが光学シートFXを光学シートFXの搬送方向へ繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータF3aを巻き取る。以下、搬送装置22における光学シートFX(セパレータF3a)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。 The roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example. Thereby, the winding unit 22e winds up the separator F3a that has passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet FX in the conveyance direction of the optical sheet FX. Hereinafter, the upstream side in the transport direction of the optical sheet FX (separator F3a) in the transport device 22 is referred to as a sheet transport upstream side, and the downstream side in the transport direction is referred to as a sheet transport downstream side.
 各ガイドローラ22bは、搬送中の光学シートFXの進行方向を搬送経路に沿って変化させると共に、複数のガイドローラ22bの少なくとも一部が搬送中の光学シートFXのテンションを調整するように可動する。 Each guide roller 22b changes the traveling direction of the optical sheet FX being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet FX being conveyed. .
 尚、ロール保持部22aと切断装置22cとの間には、図示しないダンサローラが配置されていてもよい。ダンサローラは、光学シートFXが切断装置22cで切断される間に、ロール保持部22aから搬送される光学シートFXの繰り出し量を吸収する。 A dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c. The dancer roller absorbs the feeding amount of the optical sheet FX conveyed from the roll holding unit 22a while the optical sheet FX is cut by the cutting device 22c.
 図15は、本実施形態の切断装置22cの動作を示す図である。
 図15に示すように、切断装置22cは、光学シートFXが所定長さ繰り出された際、光学シートFXの長手方向と直交する幅方向の全幅にわたって、光学シートFXの厚さ方向の一部を切断するハーフカットを行う。本実施形態の切断装置22cは、光学シートFXに対してセパレータF3aとは反対側から光学シートFXに向かって進退可能に設けられている。
FIG. 15 is a diagram illustrating the operation of the cutting device 22c of the present embodiment.
As shown in FIG. 15, when the optical sheet FX is fed out by a predetermined length, the cutting device 22c applies a part in the thickness direction of the optical sheet FX over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet FX. Make a half-cut to cut. The cutting device 22c of the present embodiment is provided so as to be able to advance and retreat from the side opposite to the separator F3a with respect to the optical sheet FX toward the optical sheet FX.
 切断装置22cは、光学シートFXの搬送中に働くテンションによって光学シートFX(セパレータF3a)が破断しないように(所定の厚さがセパレータF3aに残るように)、切断刃の進退位置を調整し、粘着層F2aとセパレータF3aとの界面の近傍までハーフカットを施す。尚、切断刃に代わるレーザー装置を用いてもよい。 The cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet FX (separator F3a) is not broken by the tension acting during conveyance of the optical sheet FX (so that a predetermined thickness remains in the separator F3a), Half-cut to the vicinity of the interface between the adhesive layer F2a and the separator F3a. In addition, you may use the laser apparatus replaced with a cutting blade.
 ハーフカット後の光学シートFXには、光学シートFXの厚さ方向で光学部材本体F1a及び表面保護フィルムF4aが切断されることにより、光学シートFXの幅方向の全幅にわたる切込線L1,切込線L2が形成される。切込線L1,切込線L2は、帯状の光学シートFXの長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切込線L1,複数の切込線L2は光学シートFXの長手方向で等間隔に形成される。光学シートFXは、複数の切込線L1,複数の切込線L2によって長手方向で複数の区画に分けられる。光学シートFXにおける長手方向で隣り合う一対の切込線L1,切込線L2に挟まれる区画は、それぞれ貼合シートF5における一つのシート片FXmとされる。シート片FXmは、液晶パネルPの外側にはみ出るサイズの光学シートFXのシート片である。 In the optical sheet FX after the half cut, the optical member main body F1a and the surface protective film F4a are cut in the thickness direction of the optical sheet FX, so that the cut lines L1 and the cuts extend over the entire width in the width direction of the optical sheet FX. A line L2 is formed. A plurality of the cut lines L1 and the cut lines L2 are formed so as to be arranged in the longitudinal direction of the belt-shaped optical sheet FX. For example, in the case of the bonding process which conveys the liquid crystal panel P of the same size, the plurality of cut lines L1 and the plurality of cut lines L2 are formed at equal intervals in the longitudinal direction of the optical sheet FX. The optical sheet FX is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines L1 and a plurality of cut lines L2. A section sandwiched between a pair of cut lines L1 and L2 adjacent in the longitudinal direction in the optical sheet FX is a sheet piece FXm in the bonding sheet F5. The sheet piece FXm is a sheet piece of the optical sheet FX having a size that protrudes outside the liquid crystal panel P.
 図11に戻り、ナイフエッジ22dは、上流側コンベア6の下方に配置されて光学シートFXの幅方向で少なくとも光学シートFXの全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の光学シートFXのセパレータF3a側に摺接するように光学シートFXを巻きかける。 11, the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over the entire width of the optical sheet FX in the width direction of the optical sheet FX. The knife edge 22d winds the optical sheet FX so as to be in sliding contact with the separator F3a side of the optical sheet FX after the half cut.
 ナイフエッジ22dは、光学シートFXの幅方向(上流側コンベア6の幅方向)から見て伏せた姿勢に配置される第1面と、第1面の上方で光学シートFXの幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部とを有する。 The knife edge 22d is seen from the width direction of the optical sheet FX above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet FX (width direction of the upstream conveyor 6). It has the 2nd surface arrange | positioned at an acute angle with respect to a 1st surface, and the front-end | tip part where a 1st surface and a 2nd surface cross.
 第1貼合装置13において、ナイフエッジ22dは、ナイフエッジ22dの先端部に第1光学シートF1を鋭角に巻きかける。第1光学シートF1は、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータF3aから貼合シートF5のシート片(第1シート片F1m)を分離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送下流側に近接して配置される。ナイフエッジ22dによりセパレータF3aから分離した第1シート片F1mは、第1吸着装置11に吸着された状態の液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。第1シート片F1mは、液晶パネルPの外側にはみ出るサイズの第1光学シートF1のシート片である。 In the 1st bonding apparatus 13, the knife edge 22d winds the 1st optical sheet F1 at an acute angle around the front-end | tip part of the knife edge 22d. The first optical sheet F1 separates the sheet piece (first sheet piece F1m) of the bonding sheet F5 from the separator F3a when folded at an acute angle at the tip of the knife edge 22d. The tip end of the knife edge 22d is arranged close to the panel conveyance downstream side of the pinching roll 23. The first sheet piece F1m separated from the separator F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping the lower surface of the liquid crystal panel P in a state of being sucked by the first suction device 11. Is done. The first sheet piece F1m is a sheet piece of the first optical sheet F1 having a size that protrudes outside the liquid crystal panel P.
 一方、ナイフエッジ22dにより、貼合シートF5と分離されたセパレータF3aは巻き取り部22eに向かう。巻き取り部22eは、貼合シートF5と分離されたセパレータF3aを巻き取り、回収する。 On the other hand, the separator F3a separated from the bonding sheet F5 is directed to the winding portion 22e by the knife edge 22d. The winding unit 22e winds and collects the separator F3a separated from the bonding sheet F5.
 挟圧ロール23は、搬送装置22が第1光学シートF1から分離させた第1シート片F1mを上流側コンベア6により搬送される液晶パネルPの下面に貼合する。ここで、挟圧ロール23は、貼合装置に相当する。 The pinching roll 23 bonds the first sheet piece F1m separated from the first optical sheet F1 by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6. Here, the pinching roll 23 corresponds to a bonding apparatus.
 挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23aを有する。一対の貼合ローラ23aのうち上側の貼合ローラは上下に移動可能である。一対の貼合ローラ23a間には所定の間隙が形成される。この間隙内が第1貼合装置13の貼合位置となる。 The pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction. Of the pair of bonding rollers 23a, the upper bonding roller is movable up and down. A predetermined gap is formed between the pair of bonding rollers 23a. The inside of this gap becomes the bonding position of the first bonding apparatus 13.
 間隙内には、液晶パネルP及び第1シート片F1mが重なり合って導入される。液晶パネルP及び第1シート片F1mが、一対の貼合ローラ23aに挟圧されつつ上流側コンベア6のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPのバックライト側の面に第1シート片F1mが貼合されることにより、第1光学部材貼合体PA1が形成される。 In the gap, the liquid crystal panel P and the first sheet piece F1m are overlapped and introduced. Liquid crystal panel P and the 1st sheet piece F1m are sent out to the panel conveyance downstream of the upstream conveyor 6, being pinched by a pair of bonding roller 23a. In this embodiment, 1st optical member bonding body PA1 is formed by the 1st sheet piece F1m being bonded by the pinching roll 23 to the surface at the side of the backlight of liquid crystal panel P. As shown in FIG.
 第1検出装置41は、第1貼合装置13よりもパネル搬送下流側に設けられている。第1検出装置41は、液晶パネルPと第1シート片F1mとの貼合面(以下、第1貼合面SA1と称する)の端縁を検出する。 The 1st detection apparatus 41 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13. FIG. The 1st detection apparatus 41 detects the edge of the bonding surface (henceforth 1st bonding surface SA1) of liquid crystal panel P and 1st sheet piece F1m.
 図16は、第1貼合面SA1の端縁EDの検出工程を示す平面図である。
 第1検出装置41は、例えば図16に示すように、上流側コンベア6の搬送経路上に設置された4箇所の検査領域CAにおいて第1貼合面SA1の端縁EDを検出する。各検査領域CAは、矩形形状を有する第1貼合面SA1の4つの角部に対応する位置に配置されている。端縁EDは、ライン上を搬送される液晶パネルPごとに検出される。第1検出装置41によって検出された端縁EDのデータは、図示しない記憶部に記憶される。
FIG. 16 is a plan view showing a step of detecting the edge ED of the first bonding surface SA1.
For example, as illustrated in FIG. 16, the first detection device 41 detects the edge ED of the first bonding surface SA <b> 1 in the four inspection areas CA installed on the transport path of the upstream conveyor 6. Each inspection area | region CA is arrange | positioned in the position corresponding to four corner | angular parts of 1st bonding surface SA1 which has a rectangular shape. The edge ED is detected for each liquid crystal panel P conveyed on the line. The data of the edge ED detected by the first detection device 41 is stored in a storage unit (not shown).
 尚、検査領域CAの配置位置はこれに限らない。例えば、各検査領域CAが、第1貼合面SA1の各辺の一部(例えば各辺の中央部)に対応する位置に配置されていてもよい。 In addition, the arrangement position of the inspection area CA is not limited to this. For example, each inspection area | region CA may be arrange | positioned in the position corresponding to a part (for example, center part of each side) of each edge | side of 1st bonding surface SA1.
 図17は、第1検出装置41の模式図である。
 図17においては、便宜上、第1光学部材貼合体PA1の第1シート片F1mが貼合された側を上側とし、第1検出装置41の構成を上下反転して示している。
FIG. 17 is a schematic diagram of the first detection device 41.
In FIG. 17, for convenience, the configuration of the first detection device 41 is shown upside down with the side on which the first sheet piece F1m of the first optical member bonding body PA1 is bonded as the upper side.
 図17に示すように、第1検出装置41は、端縁EDを照明する照明光源44と、第1貼合面SA1の法線方向に対して端縁EDよりも第1貼合面SA1の内側に傾斜した位置に配置され、第1光学部材貼合体PA1の第1シート片F1mが貼合された側から端縁EDの画像を撮像する撮像装置43と、を備えている。 As illustrated in FIG. 17, the first detection device 41 includes an illumination light source 44 that illuminates the edge ED, and the first bonding surface SA1 rather than the edge ED with respect to the normal direction of the first bonding surface SA1. The image pickup device 43 is disposed at a position inclined inward and picks up an image of the edge ED from the side where the first sheet piece F1m of the first optical member bonding body PA1 is bonded.
 照明光源44と撮像装置43とは、図16で示した4箇所の検査領域CA(第1貼合面SA1の4つの角部に対応する位置)にそれぞれ配置されている。 The illumination light source 44 and the imaging device 43 are respectively arranged in the four inspection areas CA (positions corresponding to the four corners of the first bonding surface SA1) shown in FIG.
 第1貼合面SA1の法線と撮像装置43の撮像面43aの法線とのなす角度θ(以下、撮像装置43の傾斜角度θと称する)は、撮像装置43の撮像視野内にパネル分断時のずれやバリ等が入り込まないように設定できる。例えば、第2基板P2の端面が第1基板P1の端面よりも外側にずれている場合、撮像装置43の傾斜角度θは、撮像装置43の撮像視野内に第2基板P2の端縁が入り込まないように設定する。 An angle θ between the normal line of the first bonding surface SA1 and the normal line of the image pickup surface 43a of the image pickup device 43 (hereinafter referred to as an inclination angle θ of the image pickup device 43) is divided into panels within the image pickup field of the image pickup device 43. It can be set so that time lag and burrs do not enter. For example, when the end surface of the second substrate P2 is shifted outward from the end surface of the first substrate P1, the inclination angle θ of the imaging device 43 is such that the edge of the second substrate P2 enters the imaging field of the imaging device 43. Set to not.
 撮像装置43の傾斜角度θは、第1貼合面SA1と撮像装置43の撮像面43aの中心との間の距離H(以下、撮像装置43の高さHと称する)に適合するように設定できる。例えば、撮像装置43の高さHが50mm以上100mm以下の場合、撮像装置43の傾斜角度θは、5°以上20°以下の範囲の角度に設定できる。ただし、経験的にずれ量が分かっている場合には、そのずれ量に基づいて撮像装置43の高さH及び撮像装置43の傾斜角度θを求めることができる。本実施形態では、撮像装置43の高さHが78mm、撮像装置43の傾斜角度θが10°に設定されている。 The inclination angle θ of the imaging device 43 is set to match the distance H (hereinafter referred to as the height H of the imaging device 43) between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43. it can. For example, when the height H of the imaging device 43 is 50 mm or more and 100 mm or less, the inclination angle θ of the imaging device 43 can be set to an angle in the range of 5 ° or more and 20 ° or less. However, when the deviation amount is empirically known, the height H of the imaging device 43 and the inclination angle θ of the imaging device 43 can be obtained based on the deviation amount. In the present embodiment, the height H of the imaging device 43 is set to 78 mm, and the inclination angle θ of the imaging device 43 is set to 10 °.
 照明光源44と撮像装置43とは、各検査領域CAに固定して配置されている。 The illumination light source 44 and the imaging device 43 are fixedly arranged in each inspection area CA.
 尚、照明光源44と撮像装置43とは、第1貼合面SA1の端縁EDに沿って移動可能に配置されていてもよい。この場合、照明光源44と撮像装置43とがそれぞれ1つずつ設けられていればよい。これにより、照明光源44と撮像装置43とを、第1貼合面SA1の端縁EDを撮像しやすい位置に移動させることができる。 In addition, the illumination light source 44 and the imaging device 43 may be arrange | positioned so that a movement is possible along the edge ED of 1st bonding surface SA1. In this case, the illumination light source 44 and the imaging device 43 should each be provided one each. Thereby, the illumination light source 44 and the imaging device 43 can be moved to the position where the edge ED of 1st bonding surface SA1 is easy to image.
 照明光源44は、第1光学部材貼合体PA1の第1シート片F1mが貼合された側とは反対側に配置されている。照明光源44は、第1貼合面SA1の法線方向に対して端縁EDよりも第1貼合面SA1の外側に傾斜した位置に配置されている。本実施形態では、照明光源44の光軸と撮像装置43の撮像面43aの法線とが平行になっている。 The illumination light source 44 is arrange | positioned on the opposite side to the side by which the 1st sheet piece F1m of 1st optical member bonding body PA1 was bonded. The illumination light source 44 is arrange | positioned in the position which inclined outside the 1st bonding surface SA1 rather than the edge ED with respect to the normal line direction of 1st bonding surface SA1. In the present embodiment, the optical axis of the illumination light source 44 and the normal line of the imaging surface 43a of the imaging device 43 are parallel.
 尚、照明光源は、第1光学部材貼合体PA1の第1シート片F1mが貼合された側に配置されていてもよい。 In addition, the illumination light source may be arrange | positioned at the side by which the 1st sheet piece F1m of 1st optical member bonding body PA1 was bonded.
 また、照明光源44の光軸と撮像装置43の撮像面43aの法線とが若干斜めに交差していてもよい。 Further, the optical axis of the illumination light source 44 and the normal line of the image pickup surface 43a of the image pickup device 43 may slightly cross each other.
 第1シート片F1mのカット位置は、第1貼合面SA1の端縁EDの検出結果に基づいて調整される。制御部40(図11参照)は、記憶部に記憶された第1貼合面SA1の端縁EDのデータを取得し、第1光学部材F11が液晶パネルPの外側(第1貼合面SA1の外側)にはみ出さない大きさとなるように第1シート片F1mのカット位置を決定する。第1切断装置31は、制御部40によって決定されたカット位置において第1シート片F1mを切断する。 The cutting position of the first sheet piece F1m is adjusted based on the detection result of the edge ED of the first bonding surface SA1. The control part 40 (refer FIG. 11) acquires the data of the edge ED of 1st bonding surface SA1 memorize | stored in the memory | storage part, and the 1st optical member F11 is outside the liquid crystal panel P (1st bonding surface SA1). The cutting position of the first sheet piece F1m is determined so as not to protrude beyond the outer side. The first cutting device 31 cuts the first sheet piece F1m at the cutting position determined by the control unit 40.
 図11に戻り、第1切断装置31は、第1検出装置41よりもパネル搬送下流側に設けられている。第1切断装置31は、端縁EDに沿ってレーザーカットを行うことにより、第1光学部材貼合体PA1から第1貼合面SA1の外側にはみ出た部分の第1シート片F1m(第1シート片F1mの余剰部分)を切り離し、第1貼合面SA1に対応する大きさの光学部材(第1光学部材F11)を形成する。第1切断装置31は、切断装置に相当する。 Referring back to FIG. 11, the first cutting device 31 is provided on the downstream side of the panel conveyance from the first detection device 41. The 1st cutting device 31 performs the laser cut along edge ED, and is the 1st sheet piece F1m (1st sheet | seat) of the part which protruded outside 1st bonding surface SA1 from 1st optical member bonding body PA1. The surplus portion of the piece F1m) is cut off, and an optical member (first optical member F11) having a size corresponding to the first bonding surface SA1 is formed. The first cutting device 31 corresponds to a cutting device.
 ここで、「第1貼合面SA1に対応する大きさ」とは、第1基板P1の外形状の大きさを示す。ただし、表示領域P4の大きさ以上、液晶パネルPの外形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を含む。 Here, “the size corresponding to the first bonding surface SA1” indicates the size of the outer shape of the first substrate P1. However, it includes a region that is not less than the size of the display region P4 and not more than the size of the outer shape of the liquid crystal panel P, and that avoids a functional part such as an electrical component mounting portion.
 第1切断装置31により第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されて構成される第2光学部材貼合体PA2が形成される。第1シート片F1mから切り離された余剰部分は、不図示の剥離装置によって液晶パネルPから剥離され回収される。 The 1st optical member F11 is bonded by the surface of the backlight side of liquid crystal panel P, and the 1st optical member bonding body PA1 is cut | disconnected from 1st optical member bonding body PA1 by the 1st cutting device 31, and is comprised. 2nd optical member bonding body PA2 is formed. The surplus part cut off from the first sheet piece F1m is peeled off and collected from the liquid crystal panel P by a peeling device (not shown).
 反転装置15は、液晶パネルPの表示面側を上面にした第2光学部材貼合体PA2を表裏反転させて液晶パネルPのバックライト側を上面にすると共に、第2貼合装置17に対する液晶パネルPのアライメントを行う。 The reversing device 15 reverses the front and back of the second optical member bonding body PA2 with the display surface side of the liquid crystal panel P as the upper surface so that the backlight side of the liquid crystal panel P is the upper surface, and the liquid crystal panel for the second bonding device 17 Align P.
 反転装置15は、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。反転装置15には、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられている。 The reversing device 15 has the same alignment function as the panel holding unit 11a of the first suction device 11. The reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
 反転装置15は、制御部40に記憶された光学軸方向の検査データ及びアライメントカメラ15cの撮像データに基づき、第2貼合装置17に対する第2光学部材貼合体PA2の部品幅方向での位置決め及び回転方向での位置決めを行う。この状態で、第2光学部材貼合体PA2が第2貼合装置17の貼合位置に導入される。 The reversing device 15 is positioned in the component width direction of the second optical member bonding body PA2 with respect to the second bonding device 17 based on the inspection data in the optical axis direction stored in the control unit 40 and the imaging data of the alignment camera 15c. Position in the rotational direction. In this state, 2nd optical member bonding body PA2 is introduce | transduced into the bonding position of the 2nd bonding apparatus 17. FIG.
 第2吸着装置20は、第1吸着装置11と同様の構成を備えているため同一部分に同一符号を付して説明する。第2吸着装置20は、第2光学部材貼合体PA2を吸着して下流側コンベア7に搬送すると共に第2光学部材貼合体PA2のアライメント(位置決め)を行う。第2吸着装置20は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 Since the second adsorption device 20 has the same configuration as the first adsorption device 11, the same parts are denoted by the same reference numerals and described. The 2nd adsorption | suction apparatus 20 adsorbs 2nd optical member bonding body PA2, conveys it to the downstream conveyor 7, and performs alignment (positioning) of 2nd optical member bonding body PA2. The second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、下流側コンベア7により下流側のストッパSに当接した第2光学部材貼合体PA2を上下方向及び水平方向に移動可能に保持すると共に第2光学部材貼合体PA2のアライメントを行う。パネル保持部11aは、ストッパSに当接した第2光学部材貼合体PA2の上面を真空吸着によって吸着保持する。パネル保持部11aは、第2光学部材貼合体PA2を吸着保持した状態でレールR上を移動して第2光学部材貼合体PA2を搬送する。パネル保持部11aは、この搬送が終わると前記吸着保持を解除して第2光学部材貼合体PA2をフリーローラコンベア24に受け渡す。 The panel holding part 11a holds the second optical member bonding body PA2 in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction and aligns the second optical member bonding body PA2. Do. The panel holding | maintenance part 11a adsorbs and hold | maintains the upper surface of 2nd optical member bonding body PA2 contact | abutted to the stopper S by vacuum suction. The panel holding | maintenance part 11a moves on the rail R in the state which adsorbed and hold | maintained 2nd optical member bonding body PA2, and conveys 2nd optical member bonding body PA2. When this conveyance is finished, the panel holding unit 11a releases the suction holding and transfers the second optical member bonding body PA2 to the free roller conveyor 24.
 アライメントカメラ11bは、ストッパSに当接した第2光学部材貼合体PA2をパネル保持部11aが保持し、上昇した状態で第2光学部材貼合体PA2のアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する第2光学部材貼合体PA2のアライメントが行われる。つまり、第2光学部材貼合体PA2は、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び第2光学部材貼合体PA2の垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。 The alignment camera 11b holds the second optical member bonding body PA2 in contact with the stopper S by the panel holding portion 11a, and images the alignment mark, the tip shape, and the like of the second optical member bonding body PA2 in the raised state. Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the second optical member bonding body PA2 with respect to the free roller conveyor 24 at the transport destination. That is, 2nd optical member bonding body PA2 is in the state which considered the gap in the turning direction around the perpendicular direction of the conveyance direction to the free roller conveyor 24, the direction orthogonal to the conveyance direction, and the 2nd optical member bonding body PA2. It is conveyed to the free roller conveyor 24.
 第2集塵装置16は、第2貼合装置17の貼合位置である挟圧ロール23の、液晶パネルPの搬送方向上流側に配置されている。第2集塵装置16は、貼合位置に導入される前の第2光学部材貼合体PA2の周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 2nd dust collector 16 is arrange | positioned in the conveyance direction upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 2nd bonding apparatus 17. FIG. The second dust collecting device 16 performs static electricity removal and dust collection in order to remove dust around the second optical member bonding body PA2 before being introduced to the bonding position, particularly dust on the lower surface side.
 第2貼合装置17は、第2集塵装置16よりもパネル搬送下流側に設けられている。第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットした貼合シートF5(第2シート片F2mに相当)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。 The 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16. FIG. The 2nd bonding apparatus 17 bonded the bonding sheet F5 (equivalent to 2nd sheet piece F2m) cut into the predetermined size with respect to the lower surface of 2nd optical member bonding body PA2 introduced into the bonding position. Do. The 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13. FIG.
 挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、第2光学部材貼合体PA2及び第2シート片F2mが重なり合って導入される。第2シート片F2mは、液晶パネルPの表示領域P4よりも大きいサイズの第2光学シートF2のシート片である。 2nd optical member bonding body PA2 and 2nd sheet piece F2m are overlapped and introduce | transduced in the clearance gap (bonding position of the 2nd bonding apparatus 17) between a pair of bonding rollers 23a of the pinching roll 23. FIG. The second sheet piece F2m is a sheet piece of the second optical sheet F2 having a size larger than the display area P4 of the liquid crystal panel P.
 第2光学部材貼合体PA2及び第2シート片F2mが、一対の貼合ローラ23aに挟圧されつつ下流側コンベア7のパネル搬送下流側に送り出される。本実施形態では、挟圧ロール23により液晶パネルPの表示面側の面(第2光学部材貼合体PA2の第1光学部材F11が貼合された面とは反対側の面)に第2シート片F2mが貼合されることにより、第3光学部材貼合体PA3が形成される。 2nd optical member bonding body PA2 and 2nd sheet piece F2m are sent out to the panel conveyance downstream of the downstream conveyor 7, being pinched by a pair of bonding roller 23a. In this embodiment, it is a 2nd sheet | seat on the surface (surface on the opposite side to the surface where the 1st optical member F11 of 2nd optical member bonding body PA2 was bonded) of the liquid crystal panel P by the pinching roll 23. By bonding the piece F2m, the third optical member bonding body PA3 is formed.
 第2検出装置42は、第2貼合装置17よりもパネル搬送下流側に設けられている。第2検出装置42は、液晶パネルPと第2シート片F2mとの貼合面(以下、第2貼合面と称する)の端縁を検出する。第2検出装置42によって検出された端縁のデータは、図示しない記憶部に記憶される。 The 2nd detection apparatus 42 is provided in the panel conveyance downstream rather than the 2nd bonding apparatus 17. FIG. The 2nd detection apparatus 42 detects the edge of the bonding surface (henceforth a 2nd bonding surface) of liquid crystal panel P and the 2nd sheet piece F2m. The edge data detected by the second detection device 42 is stored in a storage unit (not shown).
 第2シート片F2mのカット位置は、第2貼合面の端縁の検出結果に基づいて調整される。制御部40(図11参照)は、記憶部に記憶された第2貼合面の端縁のデータを取得し、第2光学部材F12が液晶パネルPの外側(第2貼合面の外側)にはみ出さない大きさとなるように第2シート片F2mのカット位置を決定する。第2切断装置32は、制御部40によって決定されたカット位置において第2シート片F2mを切断する。 The cut position of the second sheet piece F2m is adjusted based on the detection result of the edge of the second bonding surface. The control part 40 (refer FIG. 11) acquires the data of the edge of the 2nd bonding surface memorize | stored in the memory | storage part, and the 2nd optical member F12 is the outer side of the liquid crystal panel P (outside of a 2nd bonding surface). The cutting position of the second sheet piece F2m is determined so as not to protrude. The second cutting device 32 cuts the second sheet piece F2m at the cutting position determined by the control unit 40.
 第2切断装置32は、第2検出装置42よりもパネル搬送下流側に設けられている。第2切断装置32は、第2貼合面の端縁に沿ってレーザーカットを行うことにより、第3光学部材貼合体PA3から第2貼合面の外側にはみ出た部分の第2シート片F2m(第2シート片F2mの余剰部分)を切り離し、第2貼合面に対応する大きさの光学部材(第2光学部材F12)を形成する。 The second cutting device 32 is provided on the downstream side of the panel conveyance with respect to the second detection device 42. The 2nd cutting device 32 is the 2nd sheet piece F2m of the part which protruded from the 3rd optical member bonding body PA3 to the outer side of the 2nd bonding surface by performing a laser cut along the edge of a 2nd bonding surface. (Excess part of 2nd sheet piece F2m) is cut off, and the optical member (2nd optical member F12) of the magnitude | size corresponding to a 2nd bonding surface is formed.
 第2切断装置32により第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの表示面側の面に第2光学部材F12が貼合され、かつ、液晶パネルPのバックライト側の面に第1光学部材F11が貼合されて構成される第4光学部材貼合体PA4(光学部材貼合体)が形成される。第2シート片F2mから切り離された余剰部分は、不図示の剥離装置によって液晶パネルPから剥離され回収される。 The second optical member F12 is bonded to the surface on the display surface side of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32, and The 4th optical member bonding body PA4 (optical member bonding body) comprised by bonding the 1st optical member F11 to the surface at the side of the backlight of liquid crystal panel P is formed. The surplus portion separated from the second sheet piece F2m is peeled off from the liquid crystal panel P by a peeling device (not shown) and collected.
 第1切断装置31および第2切断装置32は、上述したレーザー光照射装置100によって構成されている。第1切断装置31および第2切断装置32は、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。 The first cutting device 31 and the second cutting device 32 are constituted by the laser beam irradiation device 100 described above. The 1st cutting device 31 and the 2nd cutting device 32 cut | disconnect endlessly the sheet piece FXm bonded by liquid crystal panel P along the outer periphery of the bonding surface.
 第2貼合装置17よりもパネル搬送下流側には、不図示の貼合検査装置が設けられている。貼合検査装置は、フィルム貼合が行われたワーク(液晶パネルP)の不図示の検査装置による検査(光学部材F1Xの位置が適正か否か(位置ズレが公差範囲内にあるか否か)等の検査)が行われる。液晶パネルPに対する光学部材F1Xの位置が適正ではないと判定されたワークは、不図示の払い出し手段によりシステム外に排出される。 A bonding inspection device (not shown) is provided on the downstream side of the panel conveyance from the second bonding device 17. The bonding inspection device is an inspection (not shown whether the position of the optical member F1X is within the tolerance range) by the inspection device (not shown) of the workpiece (liquid crystal panel P) on which the film bonding is performed. ) Etc.) is performed. The work determined that the position of the optical member F1X with respect to the liquid crystal panel P is not appropriate is discharged out of the system by a not-shown discharging means.
 尚、本実施形態においてフィルム貼合システム1の各部を統括制御する電子制御装置としての制御部40は、コンピュータシステムを含んで構成されている。このコンピュータシステムは、CPU等の演算処理部と、メモリやハードディスク等の記憶部とを備える。
 本実施形態の制御部40は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御部40には、入力信号を入力可能な入力装置が接続されていてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置等を含む。制御部40は、フィルム貼合システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。
In addition, in this embodiment, the control part 40 as an electronic control apparatus which carries out overall control of each part of the film bonding system 1 is comprised including the computer system. This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
The control unit 40 of the present embodiment includes an interface that can execute communication with an external device of the computer system. An input device that can input an input signal may be connected to the control unit 40. The input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system. The control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
 制御部40の記憶部には、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされている。制御部40の記憶部には、演算処理部にフィルム貼合システム1の各部を制御させることによって、フィルム貼合システム1の各部に光学シートFXを精度よく搬送させるための処理を実行させるプログラムが記録されている。記憶部に記録されているプログラムを含む各種情報は、制御部40の演算処理部が読み取り可能である。制御部40は、フィルム貼合システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよい。 An operating system (OS) that controls the computer system is installed in the storage unit of the control unit 40. The storage unit of the control unit 40 includes a program that causes each unit of the film bonding system 1 to execute processing for accurately conveying the optical sheet FX by causing the arithmetic processing unit to control each unit of the film bonding system 1. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40. The control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
 記憶部は、RAM(Random Access Memory)、ROM(Read Only Memory)などといった半導体メモリや、ハードディスク、CD-ROM読取り装置、ディスク型記憶媒体などといった外部記憶装置などを含む。記憶部は、機能的には、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1検出装置41、第1切断装置31、反転装置15、第2吸着装置20、第2集塵装置16、第2貼合装置17、第2検出装置42、第2切断装置32の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域、その他各種の記憶領域が設定される。 The storage unit includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium. The storage unit functionally includes the first adsorption device 11, the first dust collector 12, the first bonding device 13, the first detection device 41, the first cutting device 31, the reversing device 15, and the second adsorption device 20. , Second dust collector 16, second bonding device 17, second detection device 42, storage area for storing program software in which the control procedure of the operation of second cutting device 32 is described, and other various storage areas are set Is done.
 以下、図18A、18Bを参照して、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)の決定方法の一例を説明する。 Hereinafter, with reference to FIG. 18A and 18B, an example of the determination method of the bonding position (relative bonding position) of the sheet piece FXm with respect to liquid crystal panel P is demonstrated.
 まず、図18Aに示すように、光学シートFXの幅方向に複数の検査ポイントCPを設定し、各検査ポイントCPにおいて光学シートFXの光学軸の方向を検出する。光学軸を検出するタイミングは、原反ロールR1の製造時でもよく、原反ロールR1から光学シートFXを巻き出してハーフカットするまでの間でもよい。光学シートFXの光学軸方向のデータは、光学シートFXの位置(光学シートFXの長手方向の位置および幅方向の位置)と関連付けられて不図示の記憶装置に記憶される。 First, as shown in FIG. 18A, a plurality of inspection points CP are set in the width direction of the optical sheet FX, and the direction of the optical axis of the optical sheet FX is detected at each inspection point CP. The timing for detecting the optical axis may be at the time of manufacturing the original fabric roll R1, or may be until the optical sheet FX is unwound from the original fabric roll R1 and half cut. Data in the optical axis direction of the optical sheet FX is stored in a storage device (not shown) in association with the position of the optical sheet FX (position in the longitudinal direction and position in the width direction of the optical sheet FX).
 制御部40は、記憶装置から各検査ポイントCPの光学軸のデータ(光学軸の面内分布の検査データ)を取得し、シート片FXmが切り出される部分の光学シートFX(切込線CLによって区画される領域)の平均的な光学軸の方向を検出する。 The control unit 40 acquires the optical axis data (inspection data on the in-plane distribution of the optical axis) of each inspection point CP from the storage device, and partitions the optical sheet FX (cut line CL) into the portion where the sheet piece FXm is cut out. The direction of the average optical axis of the region to be detected is detected.
 例えば、図18Bに示すように、光学軸の方向と光学シートFXのエッジラインELとのなす角度(ずれ角)を検査ポイントCP毎に検出し、ずれ角のうち最も大きな角度(最大ずれ角)をθmaxとし、最も小さな角度(最小ずれ角)をθminとしたときに、最大ずれ角θmaxと最小ずれ角θminとの平均値θmid(=(θmax+θmin)/2)を平均ずれ角として検出する。そして、光学シートFXのエッジラインELに対して平均ずれ角θmidをなす方向を光学シートFXの平均的な光学軸の方向として検出する。尚、ずれ角は、例えば、光学シートFXのエッジラインELに対して左回りの方向を正とし、右回りの方向を負として算出される。 For example, as shown in FIG. 18B, an angle (deviation angle) formed between the direction of the optical axis and the edge line EL of the optical sheet FX is detected for each inspection point CP, and the largest angle (maximum deviation angle) among the deviation angles. Is θmax and the smallest angle (minimum deviation angle) is θmin, the average value θmid (= (θmax + θmin) / 2) of the maximum deviation angle θmax and the minimum deviation angle θmin is detected as the average deviation angle. Then, the direction that forms the average deviation angle θmid with respect to the edge line EL of the optical sheet FX is detected as the direction of the average optical axis of the optical sheet FX. The deviation angle is calculated, for example, with the counterclockwise direction being positive with respect to the edge line EL of the optical sheet FX and the clockwise direction being negative.
 そして、上記の方法で検出された光学シートFXの平均的な光学軸の方向が、液晶パネルPの表示領域P4の長辺または短辺に対して所望の角度をなすように、液晶パネルPに対するシート片FXmの貼合位置(相対貼合位置)が決定される。例えば、設計仕様によって光学部材F1Xの光学軸の方向が表示領域P4の長辺または短辺に対して90°をなす方向に設定されている場合には、光学シートFXの平均的な光学軸の方向が表示領域P4の長辺又は短辺に対して90°をなすように、シート片FXmが液晶パネルPに貼合される。 And the direction of the average optical axis of the optical sheet FX detected by the above method makes a desired angle with respect to the long side or the short side of the display region P4 of the liquid crystal panel P. The bonding position (relative bonding position) of the sheet piece FXm is determined. For example, when the direction of the optical axis of the optical member F1X is set to be 90 ° with respect to the long side or the short side of the display region P4 according to the design specification, the average optical axis of the optical sheet FX is set. The sheet piece FXm is bonded to the liquid crystal panel P so that the direction is 90 ° with respect to the long side or the short side of the display region P4.
 前述した第1切断装置31,第2切断装置32は、液晶パネルPの表示領域P4の外周縁をカメラ等の検出手段で検出し、液晶パネルPに貼合されたシート片FXmを貼合面の外周縁に沿って無端状に切断する。貼合面の外周縁は、貼合面の端縁を撮像することによって検出される。
 本実施形態では、貼合面の外周縁に沿って第1切断装置31,第2切断装置32の各々によるレーザーカットが行われる。
The first cutting device 31 and the second cutting device 32 described above detect the outer peripheral edge of the display area P4 of the liquid crystal panel P by a detection means such as a camera, and paste the sheet piece FXm bonded to the liquid crystal panel P to the bonding surface. Cut endlessly along the outer periphery. The outer peripheral edge of the bonding surface is detected by imaging the edge of the bonding surface.
In this embodiment, the laser cutting by each of the 1st cutting device 31 and the 2nd cutting device 32 is performed along the outer periphery of the bonding surface.
 レーザー加工機の切断線の振れ幅(公差)は切断刃のそれよりも小さい。したがって本実施形態では、切断刃を用いて光学シートFXを切断する場合と比べて、貼合面の外周縁に沿って容易に切断することが可能であり、液晶パネルPの小型化及び(又は)表示領域P4の大型化が可能である。これは、近年のスマートフォンやタブレット端末のように、筐体のサイズが制限される中で表示画面の拡大が要求される高機能モバイル機器への適用に有効である。 ¡The deflection width (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in this embodiment, compared with the case where the optical sheet FX is cut using a cutting blade, it can be easily cut along the outer peripheral edge of the bonding surface, and the liquid crystal panel P can be downsized and / or ) The display area P4 can be enlarged. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
 また、光学シートFXを液晶パネルPの表示領域P4に整合するシート片にカットした後に液晶パネルPに貼合する場合、シート片及び液晶パネルPそれぞれの寸法公差、並びにシート片と液晶パネルPとの相対貼合位置の寸法公差が重なるため、液晶パネルPの額縁部Gの幅を狭めることが困難になる(表示エリアの拡大が困難になる)。 Further, when the optical sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the sheet piece and the liquid crystal panel P, and the sheet piece and the liquid crystal panel P Therefore, it becomes difficult to reduce the width of the frame portion G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
 一方、光学シートFXから液晶パネルPの外側にはみ出るサイズの光学シートFXのシート片FXmを切り出し、切り出したシート片FXmを液晶パネルPに貼合した後に貼合面に合わせてカットする場合、切断線の振れ公差のみを考慮すればよく、額縁部Gの幅の公差を小さくすることができる(±0.1mm以下)。この点においても、液晶パネルPの額縁部Gの幅を狭めることができる(表示エリアの拡大が可能となる)。 On the other hand, when cutting out the sheet piece FXm of the optical sheet FX of a size that protrudes from the optical sheet FX to the outside of the liquid crystal panel P, and pasting the cut sheet piece FXm on the liquid crystal panel P and cutting it according to the bonding surface, cutting Only the run-out tolerance of the line needs to be considered, and the tolerance of the width of the frame G can be reduced (± 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
 さらに、シート片FXmを刃物ではなくレーザーでカットすることで、切断時の力が液晶パネルPに入力されず、液晶パネルPの基板の端縁にクラックや欠けが生じ難くなり、ヒートサイクル等に対する耐久性が向上する。同様に、液晶パネルPに非接触であるため、電気部品取り付け部に対するダメージも少ない。 Further, by cutting the sheet piece FXm with a laser instead of a blade, the force at the time of cutting is not input to the liquid crystal panel P, and the edge of the substrate of the liquid crystal panel P is less likely to be cracked or chipped. Durability is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion.
 図19は、切断装置として図1に示すレーザー光照射装置100を用いてシート片FXmを所定サイズの光学部材F1Xに切断する際、レーザー光をシート片FXm上で矩形状に走査するための制御方法を示す図である。 FIG. 19 shows a control for scanning a laser beam in a rectangular shape on the sheet piece FXm when the sheet piece FXm is cut into an optical member F1X having a predetermined size using the laser beam irradiation apparatus 100 shown in FIG. 1 as a cutting device. It is a figure which shows a method.
 尚、図19において、符号Trは目的とするレーザー光の移動軌跡(所望の軌跡。以下、レーザー光移動軌跡ということがある)であり、符号Tr1はテーブル101とスキャナー105との相対移動による移動軌跡をシート片FXmに投影した軌跡(以下、光源移動軌跡ということがある)である。光源移動軌跡Tr1は矩形形状を有するレーザー光移動軌跡Trの4つの角部を湾曲させた形状であり、符号SL1は角部以外の直線区間であり、符号SL2は角部の屈曲区間である。符号Tr2はスキャナー105が光源移動軌跡Tr1上を相対移動しているときにレーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154により光源移動軌跡Tr1と直交する方向にどの程度ずらされるか(調整されているか)を示す曲線(以下、調整曲線ということがある)である。レーザー照射位置のずれ量(調整量)は、光源移動軌跡Tr1と直交する方向における調整曲線Tr2とレーザー光移動軌跡Trとの間の距離で示されている。 In FIG. 19, reference numeral Tr denotes a target laser beam movement locus (desired locus; hereinafter referred to as laser light movement locus), and reference numeral Tr <b> 1 denotes movement due to relative movement between the table 101 and the scanner 105. This is a trajectory obtained by projecting the trajectory onto the sheet piece FXm (hereinafter also referred to as a light source movement trajectory). The light source movement trajectory Tr1 has a shape in which four corners of the laser light movement trajectory Tr having a rectangular shape are curved, the symbol SL1 is a straight section other than the corner, and the symbol SL2 is a bent section of the corner. Reference numeral Tr2 indicates that the irradiation position of the laser beam is perpendicular to the light source movement locus Tr1 by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 when the scanner 105 is relatively moving on the light source movement locus Tr1. It is a curve (hereinafter also referred to as an adjustment curve) indicating how much is shifted (adjusted). The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.
 図19に示すように、光源移動軌跡Tr1は、角部が湾曲した実質的に矩形の移動軌跡となっている。光源移動軌跡Tr1とレーザー光移動軌跡Trとは概ね一致しており、角部の狭い領域でのみ両者の形状が異なっている。光源移動軌跡Tr1が矩形形状をしていると、矩形の角部でスキャナー105の移動速度が遅くなり、角部がレーザー光の熱によって膨れたり波打ったりすることがある。そのため、図19では、光源移動軌跡Tr1の角部を湾曲させてスキャナー105の移動速度が光源移動軌跡Tr1全体で概ね一定となるようにしている。 As shown in FIG. 19, the light source movement locus Tr1 is a substantially rectangular movement locus with curved corners. The light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. If the light source movement locus Tr1 has a rectangular shape, the moving speed of the scanner 105 is slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser light. For this reason, in FIG. 19, the corners of the light source movement locus Tr1 are curved so that the moving speed of the scanner 105 is substantially constant over the entire light source movement locus Tr1.
 制御装置107は、スキャナー105が直線区間SL1を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しているので、レーザー光の照射位置を第1照射位置調整装置151および第2照射位置調整装置154により調整せずに、そのままスキャナー105からシート片FXmにレーザー光を照射させる。一方、スキャナー105が屈曲区間SL2を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しないので、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置を制御し、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようにする。例えば、スキャナー105が符号M1で示す位置を移動しているときには、第1照射位置調整装置151および第2照射位置調整装置154によりレーザー光の照射位置が光源移動軌跡Tr1と直交する方向N1に距離W1だけずらされる。距離W1は、光源移動軌跡Tr1と直交する方向N1における調整曲線Tr2とレーザー光移動軌跡Trとの距離W2と同じである。光源移動軌跡Tr1はレーザー光移動軌跡Trよりも内側にずれて配置されているが、このずれを相殺するようにレーザー光の照射位置が第1照射位置調整装置151および第2照射位置調整装置154によって光源移動軌跡Tr1よりも外側にずらされるので、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようになる。 Since the light source movement locus Tr1 and the laser beam movement locus Tr coincide with each other when the scanner 105 is moving in the straight section SL1, the control device 107 sets the irradiation position of the laser beam to the first irradiation position adjusting device 151. And without adjusting by the 2nd irradiation position adjustment apparatus 154, a laser beam is irradiated to the sheet piece FXm from the scanner 105 as it is. On the other hand, when the scanner 105 is moving in the bending section SL2, the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser light. The irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr. For example, when the scanner 105 is moving at the position indicated by the symbol M1, the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 move the laser beam irradiation position in the direction N1 perpendicular to the light source movement locus Tr1. Shifted by W1. The distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1. The light source movement trajectory Tr1 is displaced inward from the laser light movement trajectory Tr, and the irradiation position of the laser light is set to the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 so as to cancel out the deviation. Therefore, the irradiation position of the laser beam is arranged on the laser beam movement track Tr.
 以上説明したように、本実施形態のフィルム貼合システム1によれば、第1切断装置31および第2切断装置32が上述したレーザー光照射装置によって構成されているため、第1シート片F1m,第2シート片F2mをシャープに切断でき、カット品質の低下を抑制することができる。 As explained above, according to the film bonding system 1 of this embodiment, since the 1st cutting device 31 and the 2nd cutting device 32 are comprised by the laser beam irradiation apparatus mentioned above, 1st sheet piece F1m, The 2nd sheet piece F2m can be cut | disconnected sharply, and the fall of cut quality can be suppressed.
 また、制御装置107の制御により、シート片FXmにおいて所望の軌跡Trを描くように、移動装置106とスキャナー105とが制御される。この構成においては、第1照射位置調整装置151および第2照射位置調整装置154により調整すべきレーザー光の照射区間は狭い屈曲区間SL2のみである。それ以外の広い直線区間SL1は、移動装置106によるテーブル101の移動によってレーザー光がシート片FXm上を走査される。本実施形態では、レーザー光の走査を主として移動装置106によって行い、移動装置106で精度よくレーザー光の照射位置を制御できない領域のみ第1照射位置調整装置151および第2照射位置調整装置154でレーザー光の照射位置を調整している。そのため、移動装置106のみ又はスキャナー105のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。 Further, under the control of the control device 107, the moving device 106 and the scanner 105 are controlled so as to draw a desired trajectory Tr in the sheet piece FXm. In this configuration, the laser beam irradiation section to be adjusted by the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 is only the narrow bending section SL2. In the other wide straight section SL1, the laser beam is scanned on the sheet piece FXm by the movement of the table 101 by the moving device 106. In the present embodiment, laser beam scanning is mainly performed by the moving device 106, and the first irradiation position adjusting device 151 and the second irradiation position adjusting device 154 perform laser only in an area where the irradiation position of the laser beam cannot be accurately controlled by the moving device 106. The light irradiation position is adjusted. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 106 or the scanner 105 alone.
 また、撮像装置43の撮像方向が第1貼合面SA1の法線方向に対して斜めに交差している。すなわち、撮像装置43の撮像方向が、撮像装置43の撮像視野内に第2基板P2の端縁が入り込まないように設定されている。そのため、第1シート片F1m越しに、第1貼合面SA1の端縁EDを検出する際に、第2基板P2の端縁を誤検出してしまうことはなく、第1貼合面SA1の端縁EDのみを検出することができる。よって、第1貼合面SA1の端縁EDを精度良く検出することができる。 Moreover, the imaging direction of the imaging device 43 crosses diagonally with respect to the normal direction of the first bonding surface SA1. That is, the imaging direction of the imaging device 43 is set so that the edge of the second substrate P2 does not enter the imaging field of view of the imaging device 43. Therefore, when the edge ED of the first bonding surface SA1 is detected over the first sheet piece F1m, the edge of the second substrate P2 is not erroneously detected, and the first bonding surface SA1 is not detected. Only the edge ED can be detected. Therefore, the edge ED of the first bonding surface SA1 can be detected with high accuracy.
 また、液晶パネルPの外側にはみ出るサイズの第1シート片F1m,第2シート片F2mを液晶パネルPに貼合した後に、第1シート片F1m,第2シート片F2mの余剰部分を切り離すことで、貼合面に対応するサイズの第1光学部材F11,第2光学部材F12を液晶パネルPの面上で形成することができる。これにより、第1光学部材F11,第2光学部材F12を貼合面の際まで精度よく設けることができ、表示領域P4の外側の額縁部Gを狭めて表示エリアの拡大及び機器の小型化を図ることができる。 Moreover, after bonding the 1st sheet piece F1m and the 2nd sheet piece F2m of the size which protrudes on the outer side of the liquid crystal panel P to the liquid crystal panel P, the excess part of the 1st sheet piece F1m and the 2nd sheet piece F2m is cut off. The first optical member F11 and the second optical member F12 having a size corresponding to the bonding surface can be formed on the surface of the liquid crystal panel P. Thereby, the 1st optical member F11 and the 2nd optical member F12 can be provided accurately to the time of a pasting surface, the frame part G outside the display field P4 is narrowed, and an enlargement of a display area and size reduction of an apparatus are carried out. Can be planned.
 また、液晶パネルPの外側にはみ出るサイズの第1シート片F1m,第2シート片F2mを液晶パネルPに貼合することで、第1シート片F1m,第2シート片F2mの位置に応じて第1シート片F1m,第2シート片F2mの光学軸方向が変化する場合でも、光学軸方向に合わせて液晶パネルPをアライメントして貼合することができる。これにより、液晶パネルPに対する第1光学部材F11,第2光学部材F12の光学軸方向の精度を向上させることができ、光学表示デバイスの精彩及びコントラストを高めることができる。 Also, by sticking the first sheet piece F1m and the second sheet piece F2m of a size that protrudes outside the liquid crystal panel P to the liquid crystal panel P, the first sheet piece F1m and the second sheet piece F2m are arranged in accordance with the positions of the first sheet piece F1m and the second sheet piece F2m. Even when the optical axis direction of the 1 sheet piece F1m and the 2nd sheet piece F2m changes, the liquid crystal panel P can be aligned and bonded according to the optical axis direction. Thereby, the precision of the optical axis direction of the 1st optical member F11 and the 2nd optical member F12 with respect to liquid crystal panel P can be improved, and the clarity and contrast of an optical display device can be improved.
 また、第1切断装置31,第2切断装置32が、第1シート片F1m,第2シート片F2mをレーザーカットすることで、第1シート片F1m,第2シート片F2mを刃物でカットする場合と比べて、液晶パネルPに力が及ばず、クラックや欠けが生じ難くなり、液晶パネルPの安定した耐久性を得ることができる。 Moreover, the 1st cutting device 31 and the 2nd cutting device 32 cut the 1st sheet piece F1m and the 2nd sheet piece F2m with a blade by laser-cutting the 1st sheet piece F1m and the 2nd sheet piece F2m. As compared with the above, the liquid crystal panel P is not exerted with force, cracks and chips are less likely to occur, and the liquid crystal panel P can have a stable durability.
 尚、本実施形態においては、対象物にレーザー光を照射して所定の加工を行う構成として、シート片を切断する構成を例に挙げて説明したが、これに限らない。例えば、シート片を少なくとも二つに分割することの他に、シート片に貫通する切れ目を入れることやシート片に所定の深さの溝(切れ込み)を形成すること等も包含されていることとする。より具体的には、例えば、シート片の端部の切断(切り落とし)、ハーフカット、マーキング加工等も含まれることとする。 In addition, in this embodiment, although demonstrated as an example the structure which cut | disconnects a sheet piece as a structure which irradiates a target object with a laser beam and performs a predetermined process, it is not restricted to this. For example, in addition to dividing the sheet piece into at least two parts, cutting a sheet penetrating the sheet piece and forming a groove (cut) with a predetermined depth in the sheet piece are also included. To do. More specifically, for example, cutting (cutting off) an end portion of a sheet piece, half cutting, marking processing, and the like are included.
 また、本実施形態においては、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視矩形形状(正方形形状)である場合を例に挙げて説明したが、これに限らない。例えば、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視三角形形状であってもよいし、平面視五角形以上の多角形形状であってもよい。また、これに限らず、平面視星型形状、平面視幾何学的形状であってもよい。このような描画軌跡においても本発明を適用することが可能である。 In the present embodiment, the case where the drawing locus of the laser beam emitted from the laser beam irradiation device is a rectangular shape (square shape) in plan view has been described as an example, but the present invention is not limited thereto. For example, the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape that is a pentagon or more in plan view. Moreover, not only this but a planar-view star shape and planar-view geometric shape may be sufficient. The present invention can also be applied to such a drawing trajectory.
 また、本実施形態においては、光学シートFXをロール原反から引き出し、液晶パネルPに液晶パネルPの外側にはみ出るサイズのシート片FXmを貼合した後、シート片FXmから液晶パネルPの貼合面に対応する大きさの光学部材F1Xに切り出す場合を挙げて説明したが、これに限らない。例えば、ロール原反を用いずに、液晶パネルPの外側にはみ出るサイズに切り出された枚葉状の光学フィルムチップを液晶パネルに貼合する場合においても本発明を適用することができる。 In the present embodiment, the optical sheet FX is pulled out from the original roll, and a sheet piece FXm of a size that protrudes outside the liquid crystal panel P is bonded to the liquid crystal panel P, and then the liquid crystal panel P is bonded from the sheet piece FXm. Although the case where it cut out to the optical member F1X of the magnitude | size corresponding to a surface was mentioned and demonstrated was demonstrated, it is not restricted to this. For example, the present invention can also be applied to the case where a sheet-like optical film chip cut out to the outside of the liquid crystal panel P is bonded to the liquid crystal panel without using the roll.
 以上、添付図面を参照しながら本実施形態に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiment according to the present embodiment has been described with reference to the accompanying drawings, but the present invention is not limited to the example. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
1…フィルム貼合システム(光学部材貼合体の製造装置)、23…挟圧ロール(貼合装置)、31…第1切断装置、32…第2切断装置、100…レーザー光照射装置、101…テーブル、101s…保持面、102…レーザー発振器、103…音響光学素子、105…スキャナー、106…移動装置、107…制御装置、108…集光レンズ、130…EBS(遮蔽手段、遮蔽部)、171…レーザー制御部、P…液晶パネル(光学表示部品)、P1…第1基板、P2…第2基板、FX…光学シート、FXm…シート片、F1X…光学部材、PA1…第1光学部材貼合体(シート片貼合体)、PA4…第4光学部材貼合体(光学部材貼合体)、SA1…第1貼合面、ED…端縁。 DESCRIPTION OF SYMBOLS 1 ... Film bonding system (manufacturing apparatus of an optical member bonding body), 23 ... Nipping roll (bonding apparatus), 31 ... 1st cutting device, 32 ... 2nd cutting device, 100 ... Laser beam irradiation apparatus, 101 ... Table, 101s ... holding surface, 102 ... laser oscillator, 103 ... acousto-optic element, 105 ... scanner, 106 ... moving device, 107 ... control device, 108 ... condensing lens, 130 ... EBS (shielding means, shielding unit), 171 DESCRIPTION OF SYMBOLS Laser control part, P ... Liquid crystal panel (optical display component), P1 ... 1st board | substrate, P2 ... 2nd board | substrate, FX ... Optical sheet, FXm ... Sheet piece, F1X ... Optical member, PA1 ... 1st optical member bonding body (Sheet piece bonding body), PA4 ... 4th optical member bonding body (optical member bonding body), SA1 ... 1st bonding surface, ED ... edge.

Claims (8)

  1.  レーザー光を放射するレーザー発振器と、
     前記レーザー光の出力が安定するまで前記レーザー光を遮蔽する遮蔽部と、
     を含むレーザー光照射装置。
    A laser oscillator that emits laser light;
    A shielding part that shields the laser light until the output of the laser light is stabilized;
    Including laser beam irradiation device.
  2.  前記遮蔽部は、
     音響光学素子と、
     前記レーザー光が前記音響光学素子を通過するタイミングを制御する制御装置と、
     を含む請求項1に記載のレーザー光照射装置。
    The shielding part is
    An acousto-optic element;
    A control device for controlling the timing at which the laser light passes through the acoustooptic device;
    The laser beam irradiation apparatus according to claim 1 comprising:
  3.  前記制御装置は、前記レーザー光の立ち上がり部分が除去されるよう前記タイミングを制御する請求項2に記載のレーザー光照射装置。 The laser light irradiation apparatus according to claim 2, wherein the control device controls the timing so that a rising portion of the laser light is removed.
  4.  前記制御装置は、前記レーザー光の立ち下がり部分が除去されるよう前記タイミングを制御する請求項2又は3に記載のレーザー光照射装置。 4. The laser light irradiation device according to claim 2, wherein the control device controls the timing so that a falling portion of the laser light is removed.
  5.  対象物を保持する保持面を有するテーブルと、
     レーザー光を放射するレーザー発振器と、
     前記保持面と平行な平面内で前記レーザー光を2軸走査するスキャナーと、
     前記テーブルと前記スキャナーとを相対移動する移動装置と、
     前記レーザー光の出力が安定するまで前記レーザー光を遮蔽する遮蔽部と、
     を含むレーザー光照射装置。
    A table having a holding surface for holding an object;
    A laser oscillator that emits laser light;
    A scanner that biaxially scans the laser beam in a plane parallel to the holding surface;
    A moving device for relatively moving the table and the scanner;
    A shielding part that shields the laser light until the output of the laser light is stabilized;
    Including laser beam irradiation device.
  6.  前記遮蔽部は、
     音響光学素子と、
     前記レーザー光が前記音響光学素子を通過するタイミングを制御する制御装置と、
     を含む請求項5に記載のレーザー光照射装置。
    The shielding part is
    An acousto-optic element;
    A control device for controlling the timing at which the laser light passes through the acoustooptic device;
    The laser beam irradiation apparatus of Claim 5 containing.
  7.  前記スキャナーから射出されたレーザー光を前記保持面に向けて集光する集光レンズを含む請求項5又は6に記載のレーザー光照射装置。 The laser light irradiation apparatus according to claim 5 or 6, comprising a condensing lens that condenses the laser light emitted from the scanner toward the holding surface.
  8.  光学表示部品に光学部材を貼合して構成される光学部材貼合体の製造装置であって、
     前記光学表示部品に前記光学表示部品の外側にはみ出るサイズのシート片を貼合することによりシート片貼合体を形成する貼合装置と、
     前記シート片貼合体の前記光学表示部品と前記シート片との貼合面の端縁に沿って、前記シート片貼合体から前記貼合面の外側にはみ出た部分の前記シート片を切り離し、前記貼合面に対応する大きさの前記光学部材を形成する切断装置と、を含み、
     前記切断装置は、請求項1から7までのいずれか一項に記載のレーザー光照射装置によって構成され、前記レーザー光照射装置から照射されたレーザー光によって対象物である前記シート片が切断される光学部材貼合体の製造装置。
    It is a manufacturing apparatus of an optical member bonding body configured by bonding an optical member to an optical display component,
    A bonding apparatus that forms a sheet piece bonded body by bonding a sheet piece of a size that protrudes outside the optical display component to the optical display component;
    Along the edge of the bonding surface between the optical display component of the sheet piece bonding body and the sheet piece, the sheet piece of the portion protruding from the sheet surface bonding body to the outside of the bonding surface is cut off, A cutting device for forming the optical member having a size corresponding to the bonding surface,
    The said cutting device is comprised by the laser beam irradiation apparatus as described in any one of Claim 1-7, and the said sheet piece which is a target object is cut | disconnected by the laser beam irradiated from the said laser beam irradiation device. The manufacturing apparatus of an optical member bonding body.
PCT/JP2014/053304 2013-02-13 2014-02-13 Laser irradiation device and manufacturing method of laminate optical member WO2014126140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026097A JP2016013557A (en) 2013-02-13 2013-02-13 Manufacturing apparatus for laser beam irradiation device and optical member adhered body
JP2013-026097 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126140A1 true WO2014126140A1 (en) 2014-08-21

Family

ID=51354139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053304 WO2014126140A1 (en) 2013-02-13 2014-02-13 Laser irradiation device and manufacturing method of laminate optical member

Country Status (3)

Country Link
JP (1) JP2016013557A (en)
TW (1) TW201431632A (en)
WO (1) WO2014126140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039176A1 (en) * 2015-08-28 2017-03-09 (주)이오테크닉스 Laser processing apparatus and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127707B2 (en) * 2013-05-16 2017-05-17 住友化学株式会社 Optical display device production system and production method
JP2014224912A (en) * 2013-05-16 2014-12-04 住友化学株式会社 Optical display device production system, and production method
JP6193618B2 (en) * 2013-05-17 2017-09-06 住友化学株式会社 Optical display device production system
JP7007052B2 (en) * 2017-09-19 2022-01-24 株式会社ディスコ Wafer processing method
JP2018005252A (en) * 2017-09-28 2018-01-11 住友化学株式会社 Polarizing plate and image display device
JP2019110027A (en) * 2017-12-18 2019-07-04 オムロン株式会社 Manufacturing system of surface light source device and method of manufacturing surface light source device
KR102245462B1 (en) * 2019-12-27 2021-04-28 주식회사 에스에프에이 A laser cutting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110182A (en) * 1991-09-27 1993-04-30 Matsushita Electric Ind Co Ltd Laser oscillator
JP2003071581A (en) * 2001-08-30 2003-03-11 Central Glass Co Ltd Positioning method for resin film
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2004082131A (en) * 2002-08-22 2004-03-18 Sumitomo Heavy Ind Ltd Method and apparatus for laser processing
US20120298650A1 (en) * 2010-11-30 2012-11-29 Krzysztof Michal Nowak Laser Pulse Generation Method and Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110182A (en) * 1991-09-27 1993-04-30 Matsushita Electric Ind Co Ltd Laser oscillator
JP2003071581A (en) * 2001-08-30 2003-03-11 Central Glass Co Ltd Positioning method for resin film
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2004082131A (en) * 2002-08-22 2004-03-18 Sumitomo Heavy Ind Ltd Method and apparatus for laser processing
US20120298650A1 (en) * 2010-11-30 2012-11-29 Krzysztof Michal Nowak Laser Pulse Generation Method and Apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039176A1 (en) * 2015-08-28 2017-03-09 (주)이오테크닉스 Laser processing apparatus and method
KR101825922B1 (en) * 2015-08-28 2018-03-22 주식회사 이오테크닉스 Apparatus and method for laser processing

Also Published As

Publication number Publication date
JP2016013557A (en) 2016-01-28
TW201431632A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
WO2014126140A1 (en) Laser irradiation device and manufacturing method of laminate optical member
JP6037564B2 (en) Optical display device production system
KR101572402B1 (en) Laser irradiation device, optical member bonded body manufacturing device, laser irradiation method, and optical member bonded body manufacturing method
JP5821155B2 (en) Optical display device production method and optical display device production system
WO2014126137A1 (en) Laser irradiation device and manufacturing method of laminate optical member
JP5840322B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
JP5791018B2 (en) Optical display device production system and production method
WO2015025727A1 (en) Apparatus and method for manufacturing optical member-bonded body
WO2014125993A1 (en) Cutting device, cutting method, and method of manufacturing laminate optical member
JP6199585B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
JP5793821B2 (en) Detecting device, optical member bonded body manufacturing apparatus, and optical member bonded body manufacturing method
WO2015022850A1 (en) Apparatus for manufacturing optical member-bonded body
WO2014024803A1 (en) System for producing optical display device and method for producing optical display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14751184

Country of ref document: EP

Kind code of ref document: A1