WO2014208472A1 - 画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体 - Google Patents

画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体 Download PDF

Info

Publication number
WO2014208472A1
WO2014208472A1 PCT/JP2014/066467 JP2014066467W WO2014208472A1 WO 2014208472 A1 WO2014208472 A1 WO 2014208472A1 JP 2014066467 W JP2014066467 W JP 2014066467W WO 2014208472 A1 WO2014208472 A1 WO 2014208472A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
value
peripheral region
color information
target
Prior art date
Application number
PCT/JP2014/066467
Other languages
English (en)
French (fr)
Inventor
修 小柴
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201480035768.0A priority Critical patent/CN105340260B/zh
Priority to EP14818634.9A priority patent/EP3016376A1/en
Publication of WO2014208472A1 publication Critical patent/WO2014208472A1/ja
Priority to US14/980,743 priority patent/US9754375B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/77Determining position or orientation of objects or cameras using statistical methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • H04N1/648Transmitting or storing the primary (additive or subtractive) colour signals; Compression thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects

Definitions

  • the present invention relates to an image processing device, an image processing method, and a non-transitory storage medium storing an image processing program for detecting and correcting pixels to be corrected such as defective pixels and impulse noise pixels from an image.
  • the degree of isolation is high not only in the pixel region to be corrected but also in the edge region or gradation region where the pixel value changes greatly. Therefore, in the method described in the above document, it may be difficult to calculate an accurate isolation degree representing a pixel to be corrected.
  • the present invention has been made in view of the above circumstances, and stores an image processing apparatus, an image processing method, and an image processing program that can detect and correct pixels to be corrected, such as defective pixels and impulse noise pixels, more accurately. It is an object to provide a non-temporary storage medium.
  • the image processing apparatus includes a similarity between a pixel value of a target pixel in an input image and a pixel value of a reference pixel in the vicinity of the target pixel, and the target pixel.
  • a similarity calculation unit that calculates the similarity between the pixel value of the reference pixel and the average value of the pixel values of a plurality of reference pixels in the vicinity of the pixel of interest, and the highest similarity among the calculated similarities For each of the pixel value of the reference pixel and the average value of the pixel values of the reference pixel, the ratio or difference with respect to the multiplication result multiplied by a coefficient equal to or greater than a predetermined threshold has a similarity that is equal to or greater than a second predetermined threshold.
  • a weighting factor calculation unit that calculates a weighting factor that increases as the ratio or difference decreases, and a weighted average value of pixel values of the reference pixel and a pixel value of the reference pixel using the calculated weighting factor.
  • the weighted average value of the average value A weighted average value calculating unit, a difference value between a pixel value of the target pixel and a pixel value of the reference pixel, and a weighted average of an average value of the pixel value of the target pixel and the pixel value of the reference pixel
  • a subtraction unit that calculates a difference value from the value
  • an isolation degree calculation unit that calculates an isolation level for determining whether the pixel of interest is to be corrected based on the calculated difference value
  • the calculated isolation level And a correction unit that corrects the pixel of interest based on the degree.
  • the image processing apparatus uses, as a component, the pixel value of a pixel included in a pixel-of-interest peripheral region that is a region including pixels around the pixel of interest in an input image. Generating a pixel-of-interest feature vector, and color information included in the peripheral region of the target pixel and color information included in a peripheral region of the reference pixel that is a region including pixels around the reference pixel in the vicinity of the target pixel.
  • a reference pixel feature having a pixel value included in the reference pixel peripheral region as a component A vector is generated, and when there is a pixel having different color information included in the target pixel peripheral region and color information included in the reference pixel peripheral region, the pixel included in the reference pixel peripheral region A pixel value of a pixel having color information different from that of the eye pixel peripheral region is a pixel located around a pixel having color information different from that of the target pixel peripheral region included in the reference pixel peripheral region, and is equal to the target pixel peripheral region
  • a vector generation unit that generates a reference pixel feature vector having a pixel value replaced by a pixel value calculated using a pixel having color information as a component; and the generated target pixel feature vector and the reference pixel feature vector
  • a similarity calculation unit that calculates a similarity, and a ratio or difference to a multiplication result obtained by multiplying the highest similarity among
  • a weighted average value calculating unit that calculates a weighted average value of pixel values of pixels and an average value of pixel values of the reference pixels; a weighted average value of pixel values of the target pixel and pixel values of the reference pixels; And a subtraction unit that calculates a difference value between a pixel value of the target pixel and a weighted average value of an average value of the pixel values of the reference pixel, and the target pixel corrects based on the calculated difference value
  • An isolation degree calculation unit that calculates an isolation degree for determining whether the pixel is a power pixel, and a correction unit that corrects the pixel of interest based on the calculated isolation degree.
  • an image processing apparatus includes a detection unit that detects an isolation degree for each pixel in an input image, and an area that includes pixels around the target pixel in the input image. Generate a target pixel feature vector whose component is a pixel value of a region around a target pixel, and generate a target isolation feature vector whose component is the degree of isolation included in the target pixel peripheral region with respect to the degree of isolation of the target pixel And comparing the color information included in the pixel-of-interest peripheral region with the color information included in the reference pixel-periphery region, which is a region including pixels around the reference pixel near the pixel of interest, for each pixel, When the color information included in the peripheral area and the color information included in the reference pixel peripheral area are all equal, the reference pixel feature vector having the pixel value included in the reference pixel peripheral area as a component and the reference pixel When a reference isolation feature vector having an isolation level included in the side region as a component is
  • the image processing method includes a similarity between a pixel value of a target pixel in an input image and a pixel value of a reference pixel in the vicinity of the target pixel, and the target pixel.
  • the ratio or difference with respect to the multiplication result multiplied by the coefficient is equal to or greater than a second predetermined threshold value.
  • an image processing method uses, as components, pixel values of pixels included in a pixel-of-interest peripheral region that is a region including pixels around a pixel of interest in an input image. Generating a pixel-of-interest feature vector, and color information included in the peripheral region of the target pixel and color information included in a peripheral region of the reference pixel that is a region including pixels around the reference pixel in the vicinity of the target pixel.
  • a reference pixel feature having a pixel value included in the reference pixel peripheral region as a component A vector is generated, and when there is a pixel having different color information included in the target pixel peripheral region and color information included in the reference pixel peripheral region, the pixel included in the reference pixel peripheral region A pixel value of a pixel having color information different from that of the eye pixel peripheral region is a pixel located around a pixel having color information different from that of the target pixel peripheral region included in the reference pixel peripheral region, and is equal to the target pixel peripheral region Generating a reference pixel feature vector whose component is a pixel value replaced with a pixel value calculated using a pixel having color information, and a similarity between the generated target pixel feature vector and the reference pixel feature vector And a degree of similarity in which a ratio or difference to a multiplication result obtained by multiplying the highest similarity among the calculated similarities by
  • an image processing method is a region that detects the degree of isolation for each pixel in the input image and includes pixels around the target pixel in the input image.
  • the degree of isolation of pixels having different information is a pixel located in the periphery of the pixel of different color information from the pixel of interest surrounding area included in the reference pixel peripheral region, and Generating a reference isolation feature vector having as a component the isolation degree replaced with the isolation degree calculated using the isolation degree of the pixel having the same color information as the reference isolation feature vector and the reference isolation feature vector And calculating a similarity between the target pixel feature vector and the reference pixel feature vector, and calculating a weighting factor of the reference pixel based on the calculated similarity and the detected isolation Calculating a weighted average value of a plurality of the reference pixels as a correction value using the calculated weighting factor, and a pixel value of the target pixel and the correction value based on the detected degree of isolation And mixing.
  • the non-transitory storage medium provides a similarity between a pixel value of a target pixel in an input image and a pixel value of a reference pixel in the vicinity of the target pixel, and Calculating the similarity between the pixel value of the target pixel and the average value of the pixel values of a plurality of reference pixels in the vicinity of the target pixel, and setting the first predetermined value to the highest similarity among the calculated similarities
  • the ratio or difference with respect to the multiplication result multiplied by a coefficient equal to or greater than the threshold value is equal to or greater than a second predetermined threshold value.
  • An image processing program to be realized by a computer is stored.
  • a non-transitory storage medium provides a pixel value of a pixel included in a pixel-of-interest peripheral region that is a region including a pixel around a pixel of interest in an input image.
  • a pixel-of-interest feature vector as a component, color information included in the pixel-of-interest peripheral region, and color information included in a reference-pixel peripheral region that is a region including pixels around the reference pixel in the vicinity of the pixel of interest; For each pixel, and when the color information included in the peripheral region of the target pixel and the color information included in the peripheral region of the reference pixel are all equal, a reference using the pixel value included in the peripheral region of the reference pixel as a component A pixel feature vector is generated, and when there is a pixel having different color information included in the target pixel peripheral region and color information included in the reference pixel peripheral region, the pixel feature vector is included in the reference pixel peripheral region
  • the pixel value of a pixel having color information different from that of the target pixel peripheral region is a pixel located around a pixel having color information different from that of the target pixel peripheral region included in the reference pixel peripheral region, and Generating a reference pixel feature vector whose component is a pixel value
  • a non-transitory storage medium is a region that includes a function for detecting the degree of isolation for each pixel in the input image and pixels around the target pixel in the input image. Generating a pixel-of-interest feature vector whose component is the pixel value of the pixel-of-interest peripheral region, and generating Generating and comparing the color information included in the peripheral area of the target pixel and the color information included in the reference pixel peripheral area, which is an area including pixels around the reference pixel in the vicinity of the target pixel, for each pixel.
  • the reference pixel feature vector having the pixel value included in the reference pixel peripheral region as a component and the reference image When a reference isolation feature vector is generated with the isolation included in the peripheral region as a component, and there is a pixel in which the color information included in the target pixel peripheral region and the color information included in the reference pixel peripheral region are different A pixel value of a pixel having color information different from that of the target pixel peripheral area included in the reference pixel peripheral area, and a pixel positioned in the periphery of the pixel having color information different from that of the target pixel peripheral area included in the reference pixel peripheral area A reference pixel feature vector having a pixel value replaced with a pixel value calculated using a pixel having color information equal to that of the target pixel peripheral region, and the target pixel peripheral region included in the reference pixel peripheral region,
  • the degree of isolation of pixels having different color information is a pixel located in the peripher
  • FIG. 1 is a diagram illustrating a configuration example of an information processing apparatus having an image processing apparatus according to each embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of an image processing unit as the image processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing an image processing operation by the image processing unit according to the first embodiment of the present invention.
  • FIG. 4A is a first diagram illustrating a first selection example of reference pixels.
  • FIG. 4B is a second diagram illustrating a first selection example of reference pixels.
  • FIG. 5A is a first diagram illustrating a second selection example of reference pixels.
  • FIG. 5B is a second diagram illustrating a second selection example of reference pixels.
  • FIG. 5A is a first diagram illustrating a second selection example of reference pixels.
  • FIG. 5B is a second diagram illustrating a second selection example of reference pixels.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing apparatus having an image
  • FIG. 6 is a diagram illustrating a calculation example when calculating the weighting factor from the similarity according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of an isolation degree calculation method.
  • FIG. 8 is a block diagram illustrating a configuration example of an image processing unit as an image processing apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a method for generating a target pixel feature vector.
  • FIG. 10 is a diagram illustrating a first example of a reference pixel feature vector generation method.
  • FIG. 11 is a diagram illustrating a second example of a method for generating a reference pixel feature vector.
  • FIG. 12 is a diagram illustrating a first generation example of a feature vector having a smaller number of components than 3 ⁇ 3 components.
  • FIG. 13 is a diagram illustrating a second generation example of a feature vector having a smaller number of components than 3 ⁇ 3 components.
  • FIG. 14 is a diagram illustrating an example of calculating the similarity using the target pixel feature vector and the reference pixel feature vector.
  • FIG. 15 is a block diagram illustrating a configuration example of an image processing unit as an image processing apparatus according to the third embodiment of the present invention.
  • FIG. 16A shows a first example of generation when generating a feature vector having one component for each color information of R, G, and B from a 3 ⁇ 3 pixel area centered on the target pixel and the reference pixel.
  • FIG. 16B shows a second example of generation when generating a feature vector having one component for each of R, G, and B color information from a 3 ⁇ 3 pixel area centered on the target pixel and the reference pixel.
  • FIG. FIG. 17 is a diagram illustrating a calculation example when calculating the weighting coefficient from the similarity according to the third embodiment of the present invention. It is a figure which shows the example of a setting of the mixture ratio of the attention pixel and correction value based on isolation.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing apparatus having an image processing apparatus according to each embodiment of the present invention.
  • An information processing apparatus 1 shown in FIG. 1 is a personal computer (PC), for example.
  • the information processing apparatus 1 is not necessarily a PC, and may be various information processing apparatuses having an image processing function.
  • the information processing apparatus 1 may be a digital camera.
  • the information processing apparatus 1 includes a control unit 2, a storage unit 3, an image processing unit 4, a display unit 5, an operation unit 6, a RAM 7, and a bus 8.
  • the control unit 2 is a CPU, for example, and controls various operations of the information processing apparatus 1 according to a program stored in the storage unit 3.
  • the storage unit 3 is, for example, a hard disk, and stores various data such as a program necessary for the operation of the information processing apparatus 1 and an input image that is an image to be processed by the image processing unit 4.
  • the image processing unit 4 as an image processing apparatus according to each embodiment of the present invention performs image processing on an input image read from the storage unit 3 and developed in the RAM 7.
  • the display unit 5 displays an input image.
  • the operation unit 6 is, for example, a keyboard or a mouse, and is an operation member necessary for the user to perform various operations on the information processing apparatus 1.
  • the RAM 7 temporarily stores various data generated inside the information processing apparatus 1.
  • the bus 8 is a transfer path for transferring various data generated in the information processing apparatus 1.
  • FIG. 2 is a block diagram illustrating a configuration example of the image processing unit 4 as the image processing apparatus according to the first embodiment of the present invention. Solid arrows in FIG. 2 indicate the flow of image data. Moreover, the broken line arrow of FIG. 2 shows the flow of control data.
  • the image processing unit 4 includes a detection unit 110 and a correction unit 120. The function of each block of the image processing unit 4 may be realized by hardware, may be realized by software, or may be realized by a combination thereof.
  • the detection unit 110 includes a reference pixel selection unit 111, a similarity calculation unit 112, a weight coefficient calculation unit 113, a weighted average value calculation unit 114, a subtraction unit 115, and an isolation degree calculation unit 116.
  • the degree of isolation for detecting an isolated point that is a pixel to be corrected in the input image is calculated.
  • the reference pixel selection unit 111 is connected to the similarity calculation unit 112 and the weighted average value calculation unit 114, and selects and selects the pixel value of the reference pixel among the input images stored in the similarity calculation unit 112 and the RAM 7.
  • the pixel value of the reference pixel is input to the similarity calculation unit 112 and the weighted average value calculation unit 114.
  • the similarity calculation unit 112 is connected to the reference pixel selection unit 111 and the weight coefficient calculation unit 113, calculates the similarity between the target pixel and the reference pixel, and inputs the calculated similarity to the weight coefficient calculation unit 113.
  • the weight coefficient calculation unit 113 is connected to the similarity calculation unit 112 and the weighted average value calculation unit 114, calculates a weight coefficient corresponding to each reference pixel according to the similarity calculated by the similarity calculation unit 112, and calculates The weighted coefficient is input to the weighted average value calculation unit 114.
  • the weighted average value calculation unit 114 is connected to the reference pixel selection unit 111, the weighting factor calculation unit 113, and the subtraction unit 115, and based on the output of the reference pixel selection unit 111 and the output of the weighting factor calculation unit 113, The weighted average value of the pixel values of the reference pixel selected in 111 is calculated as a correction value for the target pixel, and the calculated correction value is input to the subtraction unit 115 and the correction unit 120.
  • the subtraction unit 115 is connected to the weighted average value calculation unit 114 and the isolation degree calculation unit 116, calculates a difference value between the pixel value of the target pixel and the correction value, and inputs the calculated difference value to the isolation degree calculation unit 116. To do.
  • the isolation level calculation unit 116 is connected to the subtraction unit 115 and the correction unit 120, calculates the isolation level of the target pixel based on the difference value calculated by the subtraction unit 115, and inputs the calculated isolation level to the correction unit 120. To do
  • the correction unit 120 is connected to the isolation degree calculation unit 116, and uses the correction value calculated in the same manner as the weighted average value calculation unit 114 according to the isolation degree calculated by the isolation degree calculation unit 116, as the target pixel.
  • the pixel value of is corrected.
  • FIG. 3 is a flowchart showing the operation of image processing by the image processing unit 4 of the present embodiment.
  • FIG. 3 shows an example in which only defective pixel correction is performed as image processing. In practice, various types of image processing other than defective pixel correction may be performed.
  • step S101 the reference pixel selection unit 111 selects the target pixel P in the input image stored in the RAM 7, and selects the reference pixel Qi in the input image according to the position (coordinates) of the selected target pixel P.
  • the target pixel P is a pixel to be corrected.
  • the target pixel P at the time of the first selection is, for example, the upper left pixel of the input image.
  • the position of the target pixel P is sequentially changed by the process of step S107.
  • the reference pixel selection unit 111 selects the reference pixel Qi at the position shown in FIGS. 4A and 4B or FIGS. 5A and 5B.
  • 4, 4 ⁇ / b> B, 5 ⁇ / b> A, and 5 ⁇ / b> B are examples in which the color arrangement of the input image is a primary color Bayer arrangement. The color arrangement of the input image may not be the primary color Bayer arrangement.
  • the same color pixel in the vicinity is, for example, the closest pixel located at a position in an oblique direction in the vertical and horizontal directions around a certain target pixel P.
  • the average of two pixels of the same color in the vicinity of the target pixel P is an average of pixels in the same color pixel in the vicinity of the target pixel P at a point-symmetrical position with respect to the target pixel P.
  • FIG. 4A shows the reference pixel Qi for the G pixel.
  • FIG. 4B shows reference pixels Qi for the B pixel and the R pixel.
  • the average of three pixels of the same color in the vicinity of the target pixel P is the average of the pixels at the upper left, upper right, lower left, and lower right positions of the same color pixels in the vicinity of the target pixel P and two pixels sandwiching each pixel That is.
  • FIG. 5A shows the reference pixel Qi for the G pixel.
  • FIG. 5B shows reference pixels Qi for the B pixel and the R pixel.
  • the similarity calculation unit 112 calculates the similarity difi between the target pixel P and the reference pixel Qi.
  • the similarity difi is an absolute difference value between the pixel value a of the target pixel P and the pixel value bi of the reference pixel Qi, as shown in (Equation 1) below.
  • difi
  • an example is shown in which similarity is calculated for each pixel.
  • the similarity (sum of absolute differences) of a plurality of pixels may be used as the similarity.
  • step S103 the weighting factor calculation unit 113 calculates the weighting factor Wi for each reference pixel Qi from the similarity difi of each reference pixel Qi input from the similarity calculation unit 112.
  • FIG. 6 shows a calculation example when calculating the weighting factor Wi from the similarity difi.
  • the weighting factor Wi for each reference pixel Qi is calculated according to the ratio between the similarity difi of each reference pixel Qi and the minimum value DIF_MIN of the similarity difi.
  • the weighting factor Wi has a value from 0 to 1, and the ratio between the DIF_MIN and the similarity difi with respect to the reference pixel Qi is equal to or less than a constant C (for example, C is 1 or more) as a second predetermined threshold. In this case, a non-zero weight coefficient is assigned to the reference pixel Qi as an effective reference pixel. On the other hand, when the ratio between the DIF_MIN and the similarity difi with respect to the reference pixel Qi is larger than the constant C, the weight coefficient 0 is assigned as an invalid reference pixel.
  • the following (Formula 2) shows a formula for calculating the weight coefficient Wi.
  • the distribution of the similarity difi of the reference pixel Qi varies depending on the tendency of the pixel value in the peripheral region of the pixel of interest P. Therefore, when the weighting factor Wi is calculated by a simple comparison between the similarity difi and a predetermined threshold value, the number of reference pixels Qi to which a non-zero effective weighting factor Wi is assigned varies. This causes deterioration in image quality after correction such as blurring of edges and generation of steps.
  • the weight coefficient Wi is assigned based on the minimum value of the similarity difi calculated for the reference pixel Qi, that is, the highest similarity DIF_MIN. Therefore, stable weighting factor Wi can be assigned according to the state of the pixel value in the peripheral region of the target pixel P.
  • the method of assigning the weighting factor Wi is similar to the method of assigning the same weighting factor when the ratio of the DIF_MIN and the similarity difi is equal to or less than the constant C, in addition to the method shown in (Equation 2).
  • a method of assigning a weighting coefficient according to a difference rather than a ratio with the degree difi is used. That is, any method may be used as long as weighting factors are assigned in descending order of similarity based on DIF_MIN.
  • step S104 the weighted average value calculation unit 114 calculates the weighted average value based on the weight coefficient Wi for the pixel value bi of the reference pixel Qi as the correction value bave as shown in the following (Equation 3).
  • step S ⁇ b> 106 the isolation degree calculation unit 116 corrects the difference value isodif input from the subtraction unit 115 to calculate an isolation degree iso for determining a pixel to be corrected in the input image.
  • FIG. 7 shows an example of the isolation degree calculation method. In the example of FIG.
  • a positive gain value SLP_PLUS and a negative gain value SLP_MINUS with respect to the difference value isodif, and a positive clip value CLP_PLUS and a negative clip value CLP_MINUS are set in advance.
  • the degree of isolation is calculated as shown in the following (Formula 5).
  • the isolation degree iso is calculated according to the lightness and darkness tendency between the target pixel and the reference pixel located in the vicinity thereof. be able to.
  • the correction unit 120 corrects the pixel value of the pixel of interest P read from the RAM 7 as necessary from the isolation degree iso calculated by the isolation degree calculation unit 116.
  • the correction unit 120 compares the isolation degree iso with a predetermined threshold value, determines that no correction is necessary when the isolation degree iso is equal to or less than the threshold value, and outputs the pixel value of the target pixel P as it is.
  • the threshold value is determined as a threshold value that is likely to be determined as an isolated point.
  • the isolated point is a pixel to be corrected, such as a defective pixel (for example, a white defect pixel whose output is saturated regardless of the brightness of the subject) or an impulse noise pixel on the image sensor that captures the input image.
  • the correction unit 120 determines that correction is required when the isolation degree is greater than the threshold value.
  • the correction is performed, for example, by replacing the pixel value of the target pixel P with a correction value calculated in the same manner as the weighted average value calculation unit 114.
  • a stable weighting factor can be assigned according to the state of the pixel value.
  • an edge, gradation, or corner pattern included in the input image is determined as an isolated point. It is possible to suppress an erroneous calculation of the degree of isolation.
  • the degree of isolation is calculated while grasping the light and dark tendency between the target pixel and the reference pixel located in the vicinity thereof. it can.
  • the difference value isodif is corrected to obtain the isolation degree iso.
  • the difference value isodif may be used as it is as the isolation degree iso.
  • FIG. 8 is a block diagram illustrating a configuration example of the image processing unit 4 as the image processing apparatus according to the second embodiment of the present invention.
  • a vector generation unit 117 is provided between the reference pixel selection unit 111 and the similarity calculation unit 112.
  • the vector generation unit 117 generates a feature vector that represents the feature of the target pixel P (hereinafter referred to as a target pixel feature vector) and a feature vector that represents the feature of the reference pixel Qi (hereinafter referred to as a reference pixel feature vector).
  • a defect position information generation unit 130 is provided.
  • the defect position information generation unit 130 is, for example, a ROM and stores position information of defective pixels.
  • the vector generation unit 117 After the reference pixel is selected in step S101 of FIG. 3, the vector generation unit 117 generates a target pixel feature vector and a reference pixel feature vector.
  • generation examples of the target pixel feature vector and the reference pixel feature vector will be described with reference to FIGS. 9, 10, and 11.
  • the examples of FIGS. 9 to 11 are examples in which a feature vector having a pixel value of 3 ⁇ 3 pixels centered on the target pixel P or the reference pixel Qi is generated.
  • FIG. 9 is a diagram illustrating an example of a method for generating a target pixel feature vector.
  • the vector generation unit 117 reads out pixel values of a 3 ⁇ 3 pixel region centered on the target pixel P indicated by a thick frame in FIG. 9 and generates a target pixel feature vector having each pixel value as a component. If the position of the target pixel P is the reference position (0, 0), the pixel values of the target pixel peripheral area A with respect to the target pixel P are am, n ( ⁇ 1 ⁇ m ⁇ 1, ⁇ 1 ⁇ n ⁇ 1). expressed. Accordingly, the components a′m, n ( ⁇ 1 ⁇ m ⁇ 1, ⁇ 1 ⁇ n ⁇ 1) of the target pixel feature vector are calculated according to the following (Equation 6).
  • FIGS. 10 and 11 are diagrams illustrating an example of a method for generating a reference pixel feature vector.
  • the vector generation unit 117 reads out pixels in a 3 ⁇ 3 pixel area centered on the reference pixel Qi with respect to the reference pixel Qi of the same color as the target pixel P selected by the reference pixel selection unit 111, and sets the target pixel P as the target pixel P.
  • the color information (pixel value) of the pixel in the 3 ⁇ 3 pixel area having the center is compared with the color information of the 3 ⁇ 3 pixel area having the reference pixel Qi in the center for each pixel.
  • the vector generation unit 117 When the color information of the pixel in the 3 ⁇ 3 pixel area centered on the target pixel P and the color information of the pixel in the 3 ⁇ 3 pixel area centered on the reference pixel Qi are all equal, the vector generation unit 117 performs FIG. As shown in FIG. 4, a reference pixel feature vector having a pixel value in a 3 ⁇ 3 pixel region centered on the reference pixel Qi as a component is generated.
  • the vector generation unit As shown in FIG.
  • the pixel 117 reads pixels located further around the 3 ⁇ 3 pixel area centered on the reference pixel Qi, and the pixel color of the 3 ⁇ 3 pixel area centered on the pixel of interest P
  • a reference pixel feature vector is generated by replacing the surrounding pixels with a component equal to the information.
  • the method of generating as a component a pixel value having color information equal to the target pixel from pixels located around pixels having different color information is an allowable calculation such as an average value or a median value of pixel values having the same color information. An appropriate method is selected depending on the amount. In the example of FIG.
  • the pixel value of the reference pixel peripheral region Bi with respect to the reference pixel Qi is set to bm, n ( ⁇ 1 ⁇ m ⁇ 1, ⁇ If 1 ⁇ n ⁇ 1), the reference pixel feature vector components b′m, n ( ⁇ 1 ⁇ m ⁇ 1, ⁇ 1 ⁇ n ⁇ 1) for the reference pixel Qi are calculated according to the following (Equation 7).
  • the reference pixel feature vector so that the color information of the pixels included in the peripheral region of the target pixel P and the color information of the pixels included in the peripheral region of the reference pixel Qi are equal.
  • the number of reference pixels Qi that can be used for the calculation can be increased. Therefore, the similarity can be calculated with higher accuracy.
  • FIG. 9 to 11 show examples of generating feature vectors having 3 ⁇ 3 components.
  • FIG. 12 shows a first generation example of a feature vector having a smaller number of components than 3 ⁇ 3 components.
  • FIG. 12 generates feature vectors r, g, and b having one component for each color information of R, G, and B from pixels in a 3 ⁇ 3 pixel region centered on the target pixel P and the reference pixel Qi.
  • An example is shown.
  • the method of generating each component of the feature vector is a method of generating an average value or a median value of pixel values having equal color information in a 3 ⁇ 3 pixel region centered on the target pixel P or the reference pixel Qi. For example, an appropriate method is selected according to an allowable calculation amount.
  • the pixel value of the target pixel peripheral area A is set to am, n ( ⁇ 1 ⁇ m ⁇ 1, ⁇ 1 ⁇ n ⁇ 1), and the reference pixel
  • n ⁇ 1 ⁇ m ⁇ 1, ⁇ 1 ⁇ n ⁇ 1
  • FIG. 13 shows a second generation example of a feature vector having a smaller number of components than 3 ⁇ 3 components.
  • FIG. 13 shows two pixels for the G color information and one component for the R and B color information from the pixels in the 3 ⁇ 3 pixel region centered on the target pixel P and the reference pixel Qi.
  • This is an example of generating feature vectors g0, g1, and mg having.
  • the method of generating each component of the feature vector is a method of generating an average value or a median value of pixel values having equal color information in a 3 ⁇ 3 pixel region centered on the target pixel P or the reference pixel Qi. For example, an appropriate method is selected according to an allowable calculation amount.
  • the similarity calculation unit 112 calculates the similarity by generating a feature vector having a smaller number of components than the number of pixels included in the target pixel peripheral region or the reference pixel peripheral region. The amount of calculation at the time can be reduced. In addition, as shown in FIG. 13, by generating a component that uses unique characteristics related to the color components of the input image, such as the color information arrangement pattern and the characteristics for each color component, It is possible to reduce the amount of calculation when the similarity calculation unit 112 calculates the similarity while suppressing a decrease in accuracy.
  • the similarity calculation unit 112 in the present embodiment obtains the similarity between the target pixel feature vector input from the vector generation unit 117 and each reference pixel feature vector.
  • FIG. 14 shows an example of calculating the degree of similarity using the target pixel feature vector and the reference pixel feature vector.
  • isolated points to be corrected include those whose positions are known, considering the presence of isolated points whose positions in the peripheral region of the target pixel P and the peripheral region of the reference pixel Qi are similar, only the normal pixels are used. It is desirable to calculate the degree.
  • a method for calculating the degree of similarity in consideration of the presence or absence of such a known isolated point will be described.
  • the similarity calculation unit 112 as in the following (Equation 10), each component a′m, n of the target pixel feature vector and the reference pixel feature vector input from the vector generation unit 117 and the reference pixel feature vector b ′.
  • the similarity calculation unit 112 determines that the predetermined weight Wn of each component is not a known isolated point in accordance with the discriminant represented by (Equation 11) below. A weight Wn ′ masked only for pixels is generated.
  • the similarity calculation unit 112 performs a product-sum operation on the difference absolute value dif_absm, n and the weight Wn ′ as shown in the following (Equation 12), and the result of the product-sum operation is the sum of the weights Wn ′.
  • the weighted average value difi of the absolute difference value is calculated. This weighted average value difi is the similarity to the reference pixel Qi.
  • the method for setting the weight Wn is not limited.
  • the weight Wn may be set according to the distance from the center pixel of each of the target pixel peripheral region and the reference pixel peripheral region, for example.
  • By calculating the similarity using only normal pixels as in the present embodiment it is possible to calculate the similarity with particularly high accuracy when the input pixel includes many isolated points whose positions are known.
  • the weight Wn of each component of the feature vector according to the presence or absence of a known isolated point the similarity can be calculated according to the feature vector generation method and the characteristics of the input image.
  • FIG. 15 is a block diagram illustrating a configuration example of the image processing unit 4 as an image processing apparatus according to the third embodiment of the present invention.
  • the correction unit 120 not the detection unit 110, includes a reference pixel selection unit 121, a vector generation unit 122, a similarity calculation unit 123, a weight coefficient calculation unit 124, and a weighted average value calculation unit 125.
  • the correction unit 120 includes a mixing unit 126 connected to the weighted average value calculation unit 125.
  • the mixing unit 126 mixes the pixel value of the pixel of interest and the correction value (weighted average value) calculated by the weighted average value calculation unit 125 according to the degree of isolation obtained by the detection unit 110, thereby obtaining the pixel value of the pixel of interest. Perform the correction.
  • the reference pixel selection unit 121 selects a pixel of the same color in the vicinity of the target pixel P as the reference pixel Qi, as in the first and second embodiments.
  • the vector generation unit 122 includes a target pixel feature vector that represents the feature of the target pixel P, a target isolation feature vector that represents the isolation feature of the target pixel P, a reference pixel feature vector that represents the feature of the reference pixel Qi, and a reference A reference isolation feature vector representing the isolation feature of the pixel Qi is generated.
  • FIGS. 16A and 16B are examples of generation when generating a feature vector having one component for each color information of R, G, and B from a 3 ⁇ 3 pixel area centered on the target pixel P and the reference pixel Qi. Indicates.
  • FIG. 16A shows an example of generating a target pixel feature vector and a reference pixel feature vector.
  • 16B shows a generation example of the attention isolation feature vector and the reference isolation feature vector.
  • the method for generating each component is appropriate according to the allowable amount of calculation such as an average value or median value of pixel values having equal color information in a 3 ⁇ 3 pixel area centered on the target pixel P or the reference pixel Qi. Method is selected.
  • the similarity calculation unit 123 calculates the similarity between the target pixel feature vector input from the vector generation unit 122 and each reference pixel feature vector.
  • the difference absolute value of each component is calculated from the feature vector of the target pixel P and the feature vector of the reference pixel Qi, and the attention isolation degree is determined with respect to a weight predetermined for the absolute difference value for each component.
  • a weight excluding a component including an isolated point is calculated from the feature vector and the reference isolation degree feature vector, and a weighted average value of absolute differences taking into account the isolation degree for each component is used as the similarity to the reference pixel.
  • the similarity calculation unit 123 uses the components a′m, n and the reference pixels of the target pixel feature vector and the reference pixel feature vector input from the vector generation unit 117 as shown in the following (Equation 15).
  • the absolute difference value dif_absm, n of the feature vector b′m, n is calculated.
  • the similarity calculation unit 123 follows the discriminant represented by the following (Equation 16), and each component of each component a_isom, n of the attention isolation feature vector input from the vector generation unit 117 and the reference isolation feature vector b_isom, n is compared with a predetermined threshold TH1. When the degree of isolation greater than the threshold value TH1 is included, the similarity calculation unit 123 generates a weight Wn ′ that takes into account the degree of isolation of each component by masking a predetermined weight Wn of each component. .
  • the similarity calculation unit 123 performs a product-sum operation on the difference absolute value dif_absm, n and the weight Wn ′ as shown in (Expression 17) below, and the result of the product-sum operation is the sum of the weights Wn ′.
  • the weighted average value difi of the absolute difference value is calculated. This weighted average value difi is the similarity to the reference pixel Qi.
  • the method for setting the weight Wn is not limited.
  • the weight Wn may be set according to the distance from the center pixel of each of the target pixel peripheral region and the reference pixel peripheral region, for example.
  • the accuracy is particularly high when the input pixel includes many isolated points whose positions are known.
  • a high degree of similarity can be calculated.
  • the similarity is calculated according to the feature vector generation method and the characteristics of the input image by adjusting the weight Wn of each component of the feature vector. Can do.
  • the weighting factor calculating unit 124 calculates the weighting factor Wi for each reference pixel Qi from the similarity difi and the isolation degree iso of each reference pixel Qi input from the similarity calculating unit 123. .
  • FIG. 17 shows a calculation example when calculating the weighting coefficient Wi from the similarity difi.
  • the weighting factor Wi for each reference pixel Qi is calculated according to the ratio between the similarity difi of each reference pixel Qi and the minimum value DIF_MIN of the similarity difi.
  • the weight coefficient Wi has a value from 0 to 1, and when the ratio of the DIF_MIN and the similarity difi to the reference pixel Qi is equal to or less than a constant C, the reference pixel Qi is assumed to be a valid reference pixel and is non-zero. Assign a weighting factor. On the other hand, when the ratio between the DIF_MIN and the similarity difi with respect to the reference pixel Qi is larger than the constant C, or the isolation degree iso of the target pixel P is larger than a preset threshold value TH2, the weighting factor 0 is set as an invalid reference pixel. Assign.
  • the following (Formula 18) shows a formula for calculating the weight coefficient Wi.
  • the weighted average value calculation unit 125 calculates the weighted average value based on the weighting coefficient Wi of the pixel value bi of the reference pixel Qi as a correction value bave as shown in (Equation 19) below.
  • the mixing unit 126 sets a mixture ratio between the target pixel and the correction value based on the degree of isolation input by the detection unit 110, and based on the mixture ratio, the mixing unit 126 sets the target pixel and the correction value. Perform a blending process using a weighted average.
  • FIG. 18 shows an example of setting the mixture ratio between the target pixel and the correction value based on the degree of isolation.
  • the threshold value 1 that is likely to be determined as a normal pixel and the threshold value that is likely to be determined as an isolated point from the numerical tendency of the degree of isolation between isolated points and other pixels included in the input image. 2 and the mixing ratio with respect to the degree of isolation between them is calculated by a linear equation.
  • a mixing ratio so that correction values are mixed even for a target pixel (that is, a normal pixel) having an isolation degree lower than the threshold 1, random noise included in the input image can be reduced. it can.
  • Each processing method by the imaging apparatus in the above-described embodiment, that is, the processing shown in each flowchart is stored as a program that can be executed by the control unit 2.
  • This program is stored and distributed in a storage medium of an external storage device such as a memory card (ROM card, RAM card, etc.), magnetic disk (floppy disk, hard disk, etc.), optical disc (CD-ROM, DVD, etc.), semiconductor memory, etc. can do.
  • the control part 2 can perform the process mentioned above by reading the program memorize

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

 類似度算出部(112)は、入力画像における注目画素の画素値と参照画素の画素値との類似度及び注目画素の画素値と複数の参照画素の画素値の平均値との類似度を算出する。重み係数算出部(113)は、算出された類似度に基づいて重み係数を算出する。重み付け平均値算出部(114)は、算出された重み係数を用いて、参照画素の画素値の重み付け平均値及び参照画素の画素値の平均値の重み付け平均値を算出する。減算部(115)は、注目画素の画素値と参照画素の画素値の重み付け平均値を算出する。孤立度算出部(116)は、算出された差分値に基づいて孤立度を算出する。補正部(120)は、算出された孤立度に基づいて注目画素を補正する。

Description

画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体
 本発明は、欠陥画素及びインパルスノイズの画素といった補正すべき画素を画像から検出して補正するための画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体に関する。
 欠陥画素やインパルスノイズの画素等の補正すべき画素を入力画像から検出する技術として例えばRoman Garnett, Timothy Huegerich, Charles Chui, Fellow, IEEE, and Wenjie He, Member, IEEE,“A Universal Noise Removal Algorithm with an Impulse Detector”の方法が知られている。この文献では、注目画素とその近傍画素の平均値との差分絶対値又は注目画素とその近傍画素との差分絶対値のうち、差分絶対値の小さい4つの合計値を孤立度として算出する方法が提案されている。
 ここで、上記文献の方法では、補正すべき画素の領域だけでなく、画素値が大きく変化するエッジ領域又はグラデーション領域においても孤立度が高くなる。したがって、上記文献の方法では、補正すべき画素を表す正確な孤立度を算出することが困難な場合がある。
 本発明は、前記の事情に鑑みてなされたもので、欠陥画素及びインパルスノイズの画素等の補正すべき画素をより正確に検出して補正できる画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体を提供することを目的とする。
 前記の目的を達成するために、本発明の第1の態様の画像処理装置は、入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出する類似度算出部と、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出する重み係数算出部と、前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出する重み付け平均値算出部と、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出する減算部と、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出する孤立度算出部と、前記算出された孤立度に基づいて前記注目画素を補正する補正部とを具備する。
 前記の目的を達成するために、本発明の第2の態様の画像処理装置は、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成するベクトル生成部と、前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出する類似度算出部と、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出する重み係数算出部と、前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出する重み付け平均値算出部と、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出する減算部と、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出する孤立度算出部と、前記算出された孤立度に基づいて前記注目画素を補正する補正部とを具備する。
 前記の目的を達成するために、本発明の第3の態様の画像処理装置は、入力画像における画素毎の孤立度を検出する検出部と、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成するベクトル生成部と、前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出する類似度算出部と、前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出する重み係数算出部と、前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出する重み付け平均値算出部と、前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合する混合部とを具備する。
 前記の目的を達成するために、本発明の第4の態様の画像処理方法は、入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出することと、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出することと、前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、前記算出された孤立度に基づいて前記注目画素を補正することとを具備する。
 前記の目的を達成するために、本発明の第5の態様の画像処理方法は、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成することと、前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出することと、前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、前記算出された孤立度に基づいて前記注目画素を補正することとを具備する。
 前記の目的を達成するために、本発明の第6の態様の画像処理方法は、入力画像における画素毎の孤立度を検出することと、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成することと、前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出することと、前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出することと、前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合することとを具備する。
 前記の目的を達成するために、本発明の第7の態様の非一時的記憶媒体は、入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出することと、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出することと、前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、前記算出された孤立度に基づいて前記注目画素を補正することとをコンピュータに実現させるための画像処理プログラムを記憶している。
 前記の目的を達成するために、本発明の第8の態様の非一時的記憶媒体は、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成することと、前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出することと、前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、前記算出された孤立度に基づいて前記注目画素を補正することとをコンピュータに実現させるための画像処理プログラムを記憶している。
 前記の目的を達成するために、本発明の第9の態様の非一時的記憶媒体は、入力画像における画素毎の孤立度を検出する機能と、入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成することと、前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出することと、前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出することと、前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合することとをコンピュータに実現させるための画像処理プログラムを記憶している。
図1は、本発明の各実施形態に係る画像処理装置を有する情報処理装置の構成例を示す図である。 図2は、本発明の第1の実施形態に係る画像処理装置としての画像処理部の一構成例を示すブロック図である。 図3は、本発明の第1の実施形態の画像処理部による画像処理の動作を示すフローチャートである。 図4Aは、参照画素の第1の選択例を示す第1の図である。 図4Bは、参照画素の第1の選択例を示す第2の図である。 図5Aは、参照画素の第2の選択例を示す第1の図である。 図5Bは、参照画素の第2の選択例を示す第2の図である。 図6は、本発明の第1の実施形態における類似度から重み係数を算出する際の算出例を示す図である。 図7は、孤立度算出方法の例を示す図である。 図8は、本発明の第2の実施形態に係る画像処理装置としての画像処理部の一構成例を示すブロック図である。 図9は、注目画素特徴ベクトルの生成方法の例を示す図である。 図10は、参照画素特徴ベクトルの生成方法の第1の例を示す図である。 図11は、参照画素特徴ベクトルの生成方法の第2の例を示す図である。 図12は、3×3成分よりも少ない成分数を持つ特徴ベクトルの第1の生成例を示す図である。 図13は、3×3成分よりも少ない成分数を持つ特徴ベクトルの第2の生成例を示す図である。 図14は、注目画素特徴ベクトルと参照画素特徴ベクトルとを用いた類似度の算出例を示す図である。 図15は、本発明の第3の実施形態に係る画像処理装置としての画像処理部の一構成例を示すブロック図である。 図16Aは、注目画素及び参照画素を中心とする3×3画素の領域から、R、G、Bの色情報毎に一つの成分を持つ特徴ベクトルを生成する際の生成例を示す第1の図である。 図16Bは、注目画素及び参照画素を中心とする3×3画素の領域から、R、G、Bの色情報毎に一つの成分を持つ特徴ベクトルを生成する際の生成例を示す第2の図である。 図17は、本発明の第3の実施形態における類似度から重み係数を算出する際の算出例を示す図である。 孤立度に基づく注目画素と補正値との混合比率の設定例を示す図である。
 以下、図面を参照して本発明の実施形態を説明する。 
 図1は、本発明の各実施形態に係る画像処理装置を有する情報処理装置の構成例を示す図である。図1に示す情報処理装置1は、例えばパーソナルコンピュータ(PC)である。ただし、情報処理装置1は、必ずしもPCである必要はなく、画像処理機能を有する各種の情報処理装置でよい。例えば情報処理装置1は、デジタルカメラでよい。
 情報処理装置1は、制御部2と、記憶部3と、画像処理部4と、表示部5と、操作部6と、RAM7と、バス8とを有している。制御部2は、例えばCPUであり、記憶部3に記憶されているプログラムに従って情報処理装置1の各種の動作を制御する。記憶部3は、例えばハードディスクであり、情報処理装置1の動作に必要なプログラム及び画像処理部4の処理対象の画像である入力画像といった各種のデータを記憶している。本発明の各実施形態に係る画像処理装置としての画像処理部4は、記憶部3から読み出されてRAM7に展開された入力画像に対して画像処理を施す。表示部5は、入力画像を表示する。操作部6は、例えばキーボードやマウスであり、ユーザが情報処理装置1の各種の操作をするために必要な操作部材である。RAM7は、情報処理装置1の内部で発生した各種のデータを一時記憶する。バス8は、情報処理装置1の内部で発生した各種のデータを転送するための転送路である。
 [第1の実施形態] 
 (構成) 
 以下、本発明の第1の実施形態について説明する。図2は、本発明の第1の実施形態に係る画像処理装置としての画像処理部4の一構成例を示すブロック図である。図2の実線矢印は、画像データの流れを示す。また、図2の破線矢印は、制御データの流れを示す。図2に示すように、画像処理部4は、検出部110と、補正部120とを有している。画像処理部4の各ブロックの機能は、ハードウェアによって実現されてもよいし、ソフトウェアによって実現されてもよいし、それらの組み合わせによって実現されてもよい。
 検出部110は、参照画素選択部111と、類似度算出部112と、重み係数算出部113、重み付け平均値算出部114と、減算部115と、孤立度算出部116とを有しており、入力画像における補正すべき画素である孤立点を検出するための孤立度を算出する。参照画素選択部111は、類似度算出部112と重み付け平均値算出部114とに接続され、類似度算出部112とRAM7に記憶された入力画像のうちの参照画素の画素値を選択し、選択した参照画素の画素値を類似度算出部112と重み付け平均値算出部114とに入力する。類似度算出部112は、参照画素選択部111と重み係数算出部113とに接続され、注目画素と参照画素との類似度を算出し、算出した類似度を重み係数算出部113に入力する。重み係数算出部113は、類似度算出部112と重み付け平均値算出部114とに接続され、類似度算出部112で算出された類似度に従ってそれぞれの参照画素に対応した重み係数を算出し、算出した重み係数を重み付け平均値算出部114に入力する。重み付け平均値算出部114は、参照画素選択部111と重み係数算出部113と減算部115に接続され、参照画素選択部111の出力と重み係数算出部113の出力とに基づき、参照画素選択部111で選択された参照画素の画素値の重み付け平均値を注目画素に対する補正値として算出し、算出した補正値を減算部115と補正部120とに入力する。減算部115は、重み付け平均値算出部114と孤立度算出部116とに接続され、注目画素の画素値と補正値との差分値を算出し、算出した差分値を孤立度算出部116に入力する。孤立度算出部116は、減算部115と補正部120とに接続され、減算部115で算出された差分値に基づいて注目画素の孤立度を算出し、算出した孤立度を補正部120に入力する。
 補正部120は、孤立度算出部116に接続され、孤立度算出部116で算出された孤立度により、必要に応じて重み付け平均値算出部114と同様にして算出した補正値を用いて注目画素の画素値を補正する。
 (動作) 
 次に、本実施形態に係る画像処理部4の動作を説明する。図3は、本実施形態の画像処理部4による画像処理の動作を示すフローチャートである。図3は、画像処理として欠陥画素補正のみが行われる例を示している。実際には、欠陥画素補正以外の各種の画像処理が行われてよい。
 ステップS101において、参照画素選択部111は、RAM7に記憶されている入力画像における注目画素Pを選択し、選択した注目画素Pの位置(座標)に従って入力画像における参照画素Qiを選択する。注目画素Pは、補正処理の対象となる画素である。最初の選択時における注目画素Pは、例えば入力画像の左上端の画素である。2回目以後は、ステップS107の処理により、注目画素Pの位置が順次変更される。
 図4A、図4B、図5A、図5Bは、参照画素Qi(i=0,1,2,3,…,N-1)の選択例を示している。参照画素選択部111は、注目画素Pの位置に基づき、図4A及び図4B又は図5A及び図5Bで示した位置の参照画素Qiを選択する。なお、図4、図4B、図5A、図5Bは、入力画像の色配列が原色系ベイヤ配列の例である。入力画像の色配列は、原色系ベイヤ配列でなくともよい。
 図4A及び図4Bは、注目画素Pの近傍の同色画素(i=0~7)と注目画素Pの近傍の同色2画素の平均(i=8~11)とを参照画素Qiとする例を示している。近傍の同色画素は、例えばある注目画素Pを中心として上下左右斜め方向の位置にある最も近い画素のことである。また、注目画素Pの近傍の同色2画素の平均とは、注目画素Pの近傍の同色画素のうち、注目画素Pに対して点対称の位置にある画素の平均のことである。図4Aは、G画素についての参照画素Qiを示している。また、図4Bは、B画素及びR画素についての参照画素Qiを示している。
 図5A及び図5Bは、注目画素Pの近傍の同色画素(i=0~7)と注目画素Pの近傍の同色2画素の平均(i=8~11)と注目画素Pの近傍の同色3画素の平均(i=12~15)を参照画素Qiとする例を示している。注目画素Pの近傍の同色3画素の平均とは、注目画素Pの近傍の同色画素のうち、左上、右上、左下、右下の位置にある画素と、それぞれの画素を挟む2画素との平均のことである。図5Aは、G画素についての参照画素Qiを示している。また、図5BはB画素及びR画素についての参照画素Qiを示している。
 ステップS102において、類似度算出部112は、注目画素Pと参照画素Qiとの類似度difiを算出する。類似度difiは、以下の(式1)に示すように、注目画素Pの画素値aと参照画素Qiの画素値biとの差分絶対値である。 
   difi=|a-bi|                  (式1)
(式1)の演算によってN個の類似度difi(i=0~N-1)が得られる。本実施形態では例として画素毎に類似度を算出する例を示している。この他、複数の画素の類似度の和(差分絶対値和)を類似度としてもよい。
 ステップS103において、重み係数算出部113は、類似度算出部112から入力されるそれぞれの参照画素Qiの類似度difiから、それぞれの参照画素Qiに対する重み係数Wiを算出する。図6は、類似度difiから重み係数Wiを算出する際の算出例を示す。それぞれの参照画素Qiに対する重み係数Wiは、それぞれの参照画素Qiの類似度difiと類似度difiの最小値DIF_MINとの比に応じて算出される。重み係数Wiは0から1までの値を持つものであり、DIF_MINと参照画素Qiに対する類似度difiとの比が第2の所定の閾値としての定数C(例えばCは、1以上)以下である場合、参照画素Qiは有効な参照画素であるとして非零の重み係数を割り当てる。一方、DIF_MINと参照画素Qiに対する類似度difiとの比が定数Cよりも大きい場合、無効な参照画素として重み係数0を割り当てる。以下の(式2)が重み係数Wiの算出式を示している。 
Figure JPOXMLDOC01-appb-M000001
 参照画素Qiの類似度difiの分布は、注目画素Pの周辺領域の画素値の傾向によって異なる。したがって、類似度difiと予め定められた閾値との単純な比較によって重み係数Wiを算出した場合、非零の有効な重み係数Wiが割り当てられる参照画素Qiの個数にバラツキが生じる。このことは、エッジ部のボケや段差の発生といった補正後の画質の劣化の原因となる。これに対し、本実施形態では、参照画素Qiに対して算出される類似度difiのうちの最小値、すなわち最も高い類似度DIF_MINを基準として重み係数Wiを割り当てている。したがって、注目画素Pの周辺領域の画素値の状況に応じて安定した重み係数Wiの割り当てを行うことができる。
 ここで、重み係数Wiを割り当てる方法は、(式2)で示した以外にも、DIF_MINと類似度difiとの比が定数C以下の場合には一律に同じ重み係数を割り当てる方法、DIF_MINと類似度difiとの比ではなく差に応じて重み係数を割り当てる方法等が用いられる。すなわち、DIF_MINを基準とした類似度の高い順番に重み係数を割り当てる方法であればよい。
 ステップS104において、重み付け平均値算出部114は、参照画素Qiの画素値biについての重み係数Wiによる重み付け平均値を補正値baveとして以下の(式3)で示すようにして算出する。 
Figure JPOXMLDOC01-appb-M000002
 ステップS105において、減算部115は、注目画素Pの画素値aと重み付け平均値算出部114から入力された補正値baveとの差分値isodifを以下の(式4)で示すようにして算出する。 
   isodif=a-bave                (式4)
 ステップS106において、孤立度算出部116は、減算部115から入力された差分値isodifを修正することにより、入力画像における補正すべき画素を判定するための孤立度isoを算出する。図7は、孤立度算出方法の例を示す。図7の例では、差分値isodifに対する正のゲイン値SLP_PLUS及び負のゲイン値SLP_MINUSと、正のクリップ値CLP_PLUS及び負のクリップ値CLP_MINUSとが予め設定される。ここで、|SLP_PLUS|>|SLP_MINUS|かつ|CLP_PLUS|>|CLP_MINUS|である。孤立度isoは、以下の(式5)で示すようにして算出される。 
Figure JPOXMLDOC01-appb-M000003
(式5)に示すように、差分値isodifの正負に応じて孤立度isoを算出することにより、注目画素とその近傍に位置する参照画素との明暗の傾向に応じた孤立度isoを算出することができる。
 ステップS107において、補正部120は、孤立度算出部116で算出された孤立度isoから必要に応じてRAM7から読み出した注目画素Pの画素値を補正する。補正部120は、孤立度isoを予め定められた閾値と比較し、孤立度isoが閾値以下である場合には補正の必要がないと判定して、注目画素Pの画素値をそのまま出力する。なお、閾値は、孤立点と判断するに確からしい閾値として定められるものである。孤立点は、入力画像を撮像する撮像素子上の欠陥画素(例えば被写体の明るさによらずに出力が飽和してしまう白キズ画素)やインパルスノイズの画素等の補正すべき画素である。一方、補正部120は、孤立度isoが閾値よりも大きい場合に補正の必要があると判定する。補正は、例えば注目画素Pの画素値を重み付け平均値算出部114と同様にして算出した補正値に置き換えることで行われる。
 以上説明したように本実施形態によれば、参照画素毎に算出される類似度のうちの最も高い類似度を基準とした重み係数をそれぞれの参照画素に割り当てることにより、注目画素の周辺領域の画素値の状況に応じて安定した重み係数の割り当てを行うことができる。
 さらに、注目画素の近傍に位置する同色の参照画素に加えて複数の参照画素による平均値も参照画素として扱うことにより、入力画像に含まれるエッジ、グラデーション、角のパターンを孤立点と判定するような孤立度の誤算出を抑制することができる。
 さらに、注目画素と参照画素の重み付け平均値とを減算した結果に基づいて孤立度を算出することにより、注目画素とその近傍に位置する参照画素との明暗の傾向を把握しつつ孤立度を算出できる。本実施形態では差分値isodifを修正して孤立度isoとしている。これに対し、差分値isodifをそのまま孤立度isoとしてもよい。
 [第2の実施の形態]
 (構成) 
 図8は、本発明の第2の実施形態に係る画像処理装置としての画像処理部4の一構成例を示すブロック図である。図8において図2と異なる部分についての説明は省略する。図8においては、参照画素選択部111と類似度算出部112との間にベクトル生成部117が設けられている。ベクトル生成部117は、注目画素Pの特徴を表す特徴ベクトル(以下、注目画素特徴ベクトルと呼ぶ)と参照画素Qiの特徴を表す特徴ベクトル(以下、参照画素特徴ベクトルと呼ぶ)とを生成する。また、図8においては、欠陥位置情報生成部130が設けられている。欠陥位置情報生成部130は、例えばROMであって欠陥画素の位置情報を記憶している。
 (動作) 
 次に、本実施形態に係る画像処理部4の動作を説明する。ここでは第1の実施の形態と異なる部分を中心に説明する。すなわち、ベクトル生成部117の動作を主に説明する。図3のステップS101において参照画素の選択が行われた後、ベクトル生成部117は、注目画素特徴ベクトルと参照画素特徴ベクトルとを生成する。以下、図9、図10、図11を参照して注目画素特徴ベクトル及び参照画素特徴ベクトルの生成例を説明する。ここで、図9~図11の例は、注目画素P又は参照画素Qiを中心とする3×3画素の画素値を有する特徴ベクトルを生成する例である。
 注目画素特徴ベクトルの生成について説明する。図9は、注目画素特徴ベクトルの生成方法の例を示す図である。ベクトル生成部117は、図9の太枠で示す注目画素Pを中心とする3×3画素の領域の画素値を読み出し、それぞれの画素値を成分とする注目画素特徴ベクトルを生成する。注目画素Pの位置が基準位置(0,0)であるとすると、注目画素Pに対する注目画素周辺領域Aの画素値はam,n(-1≦m≦1,-1≦n≦1)と表される。したがって、注目画素特徴ベクトルの成分a´m,n(-1≦m≦1,-1≦n≦1)は、以下の(式6)に従って算出される。 
Figure JPOXMLDOC01-appb-M000004
 参照画素特徴ベクトルの生成について説明する。図10及び図11は、参照画素特徴ベクトルの生成方法の例を示す図である。ベクトル生成部117は、参照画素選択部111により選択された注目画素Pと同色の参照画素Qiに対して、参照画素Qiを中心とする3×3画素の領域の画素を読み出し、注目画素Pを中心とする3×3画素の領域の画素の色情報(画素値)と参照画素Qiを中心とする3×3画素の領域の色情報とを画素毎に比較する。注目画素Pを中心とする3×3画素の領域の画素の色情報と参照画素Qiを中心とする3×3画素の領域の画素の色情報が全て等しい場合、ベクトル生成部117は、図10に示すように、参照画素Qiを中心とする3×3画素の領域の画素値を成分とする参照画素特徴ベクトルを生成する。一方、注目画素Pを中心とする3×3画素の領域の画素の色情報と参照画素Qiを中心とする3×3画素の領域の画素の色情報が異なる画素が存在する場合、ベクトル生成部117は、図11に示すように、参照画素Qiを中心とする3×3画素の領域のさらに周辺に位置する画素を読み出し、注目画素Pを中心とする3×3画素の領域の画素の色情報と等しい成分を持つように周辺の位置する画素と置き換えた参照画素特徴ベクトルを生成する。異なる色情報を持つ画素の周辺に位置する画素から注目画素と等しい色情報を持つ画素値を成分として生成する方法は、等しい色情報を持つ画素値の平均値や中央値等、許容される演算量に応じて適切な方法が選択される。図11の例において、等しい色情報を持つ画素値の平均値を用いて成分を生成する場合、参照画素Qiに対する参照画素周辺領域Biの画素値をbm,n(-1≦m≦1,-1≦n≦1)とすると、参照画素Qiに対する参照画素特徴ベクトルの成分b´m,n(-1≦m≦1,-1≦n≦1)は、以下の(式7)に従って算出される。 
Figure JPOXMLDOC01-appb-M000005
 このように、注目画素Pの周辺領域に含まれる画素の色情報と参照画素Qiの周辺領域に含まれる画素の色情報とが等しくなるように参照画素特徴ベクトルを生成することにより、類似度の算出に使用できる参照画素Qiの個数を増加させることができる。したがって、より高精度に類似度を算出することができる。
 前述の図9から図11は、3×3の成分を持つ特徴ベクトルの生成例を示している。これに対し、3×3成分よりも少ない成分数を持つ特徴ベクトルの第1の生成例を図12に示す。図12は、注目画素P及び参照画素Qiを中心とした3×3画素の領域の画素から、R、G、Bの色情報毎に一つの成分を持つ特徴ベクトルr、g、bを生成する例を示している。特徴ベクトルの各成分を生成する方法は、注目画素P又は参照画素Qiを中心とした3×3画素の領域における等しい色情報を持つ画素値の平均値を生成する方法や中央値を生成する方法等、許容される演算量に応じて適切な方法が選択される。等しい色情報を持つ画素値の平均値を用いて成分を生成する場合、注目画素周辺領域Aの画素値をam,n(-1≦m≦1,-1≦n≦1)とし、参照画素周辺領域Biの画素値をbm,n(-1≦m≦1,-1≦n≦1)とした場合、注目画素特徴ベクトルの色情報毎の一つの成分a´k(k=0,1,2)及び参照画素特徴ベクトルの色情報毎の一つの成分b´k(k=0,1,2)は、以下の(式8)に従って算出される。 
Figure JPOXMLDOC01-appb-M000006
 3×3成分よりも少ない成分数を持つ特徴ベクトルの第2の生成例を図13に示す。図13は、注目画素P及び参照画素Qiを中心とした3×3画素の領域の画素から、Gの色情報に対して二つの成分を持ち、RとBの色情報に対して一つの成分を持つ特徴ベクトルg0、g1、mgを生成する例である。特徴ベクトルの各成分を生成する方法は、注目画素P又は参照画素Qiを中心とした3×3画素の領域における等しい色情報を持つ画素値の平均値を生成する方法や中央値を生成する方法等、許容される演算量に応じて適切な方法が選択される。等しい色情報を持つ画素値の平均値を用いて成分を生成する場合、注目画素特徴ベクトルの色情報毎の一つの成分a´k(k=0,1,2)及び参照画素特徴ベクトルの色情報毎の一つの成分b´k(k=0,1,2)は、以下の(式9)に従って算出される。 
Figure JPOXMLDOC01-appb-M000007
 図12及び図13に示すように、注目画素周辺領域又は参照画素周辺領域に含まれる画素数よりも少ない成分数を持つ特徴ベクトルを生成することにより、類似度算出部112における類似度の算出の際の演算量を削減することができる。また、図13のように、色情報の配置パターンや色成分毎の特性等の、入力画像が持つ色成分に関する固有の特性を利用した成分を生成することにより、成分の削減に伴う特徴量の精度の低下を抑えつつ、類似度算出部112における類似度の算出の際の演算量を削減することができる。
 本実施形態における類似度算出部112は、ベクトル生成部117から入力される注目画素特徴ベクトルとそれぞれの参照画素特徴ベクトルとの類似度を求める。図14は、注目画素特徴ベクトルと参照画素特徴ベクトルとを用いた類似度の算出例を示す。入力画素に孤立点が多く含まれる場合、特徴ベクトルの成分には注目画素P以外の補正すべき孤立点が存在する可能性がある。補正すべき孤立点に位置が既知のものが含まれる場合、注目画素Pの周辺領域と参照画素Qiの周辺領域における位置が既知の孤立点の有無を考慮し、正常な画素のみを用いて類似度を算出することが望ましい。以下にこのような既知の孤立点の有無を考慮した類似度の算出方法について説明する。
 類似度算出部112は、以下の(式10)のように、ベクトル生成部117から入力された注目画素特徴ベクトルと参照画素特徴ベクトルとの各成分a´m,n及び参照画素特徴ベクトルb´m,nの差分絶対値dif_absm,nを算出する。 
   dif_absm,n=|a´m,n-b´m,n|     (式10)
 また、類似度算出部112は、注目画素周辺領域と参照画素周辺領域における既知の孤立点の有無を示す情報を欠陥位置情報生成部130から取得する。既知の孤立点が有ることが判別された場合に、類似度算出部112は、以下の(式11)で示す判別式に従って、予め定められた各成分の重みWnを既知の孤立点ではない有効画素のみにマスクした重みWn´を生成する。 
Figure JPOXMLDOC01-appb-M000008
 続いて、類似度算出部112は、以下の(式12)で示すように、差分絶対値dif_absm,nと重みWn´との積和演算を行い、積和演算した結果を重みWn´の合計値によって除算することにより、差分絶対値の重み付け平均値difiを算出する。この重み付け平均値difiが参照画素Qiに対する類似度である。 
Figure JPOXMLDOC01-appb-M000009
 ここで、本実施形態においては重みWnの設定方法は限定されない。重みWnは、例えば注目画素周辺領域及び参照画素周辺領域のそれぞれの中心画素からの距離に応じて設定されてよい。本実施形態のように、正常な画素のみを用いて類似度を算出することにより、入力画素に位置が既知の孤立点が多く含まれる場合に特に精度の高い類似度を算出することができる。また、既知の孤立点の有無に応じて特徴ベクトルの各成分の重みWnを調節することにより、特徴ベクトルの生成方法や入力画像の持つ特性に応じて類似度を算出することができる。
 [第3の実施の形態]
 (構成) 
 図15は、本発明の第3の実施形態に係る画像処理装置としての画像処理部4の一構成例を示すブロック図である。図15において図8と異なる部分についての説明は省略する。図15においては、検出部110ではなく、補正部120が参照画素選択部121と、ベクトル生成部122と、類似度算出部123と、重み係数算出部124と、重み付け平均値算出部125とを有している。また、補正部120は、重み付け平均値算出部125に接続された混合部126を有している。混合部126は、注目画素の画素値と重み付け平均値算出部125で算出される補正値(重み付け平均値)とを検出部110で得られる孤立度に応じて混合することにより注目画素の画素値の補正を行う。
 (動作)
 次に、本実施形態に係る画像処理部4の動作を説明する。ここでは第1及び第2の実施の形態と異なる部分を中心に説明する。第3の実施形態において、参照画素選択部121は、第1及び第2の実施形態と同様、注目画素Pの近傍の同色の画素を参照画素Qiとして選択する。
 ベクトル生成部122は、注目画素Pの特徴を表す注目画素特徴ベクトルと、注目画素Pの孤立度の特徴を表す注目孤立度特徴ベクトルと、参照画素Qiの特徴を表す参照画素特徴ベクトルと、参照画素Qiの孤立度の特徴を表す参照孤立度特徴ベクトルとをそれぞれ生成する。図16A及び図16Bは、注目画素P及び参照画素Qiを中心とする3×3画素の領域から、R、G、Bの色情報毎に一つの成分を持つ特徴ベクトルを生成する際の生成例を示す。ここで、図16Aは、注目画素特徴ベクトルと参照画素特徴ベクトルの生成例を示す。また、図16Bは、注目孤立度特徴ベクトルと参照孤立度特徴ベクトルの生成例を示す。各成分を生成する方法は、注目画素P又は参照画素Qiを中心とした3×3画素の領域における等しい色情報を持つ画素値の平均値や中央値等、許容される演算量に応じて適切な方法が選択される。等しい色情報を持つ画素値の平均値を用いて成分を生成する場合、等しい色情報を持つ画素値の平均値を用いて成分を生成する場合、注目画素特徴ベクトルの色情報毎の一つの成分a´k(k=0,1,2)及び参照画素特徴ベクトルの色情報毎の一つの成分b´k(k=0,1,2)は、以下の(式13)に従って算出される。 
Figure JPOXMLDOC01-appb-M000010
 また、注目画素Pを中心とする3×3画素の領域の孤立度をa_isom,n(-1≦m≦1,-1≦n≦1)とし、参照画素Qiを中心とする3×3画素の領域の孤立度をb_isom,n(-1≦m≦1,-1≦n≦1)としたとき、注目孤立度特徴ベクトルの色情報毎の一つの成分a_iso´k(k=0,1,2)及び参照孤立度特徴ベクトルの色情報毎の一つの成分b_iso´k(k=0,1,2)は、以下の(式14)に従って算出される。 
Figure JPOXMLDOC01-appb-M000011
 類似度算出部123は、ベクトル生成部122から入力される注目画素特徴ベクトルとそれぞれの参照画素特徴ベクトルに対する類似度を求める。入力画素に孤立点が多く含まれる場合、特徴ベクトルの成分に注目画素以外に補正すべき孤立点が存在する可能性がある。したがって、孤立度を考慮して正常な成分のみを用いて類似度を算出することが望ましい。本実施形態では、注目画素Pの特徴ベクトルと参照画素Qiの特徴ベクトルから各成分の差分絶対値を算出し、成分毎の差分絶対値に対して予め定められた重みに対して、注目孤立度特徴ベクトルと参照孤立度特徴ベクトルから孤立点を含む成分を除外した重みを算出し、成分毎の孤立度を考慮した差分絶対値の重み付け平均値を参照画素に対する類似度とする。
 図16A及び図16Bを用いてさらに説明する。本実施形態における類似度算出部123は、以下の(式15)のように、ベクトル生成部117から入力された注目画素特徴ベクトルと参照画素特徴ベクトルとの各成分a´m,n及び参照画素特徴ベクトルb´m,nの差分絶対値dif_absm,nを算出する。 
   dif_absm,n=|a´m,n-b´m,n|   (式15)
 また、類似度算出部123は、以下の(式16)で示す判別式に従って、ベクトル生成部117から入力された注目孤立度特徴ベクトルの各成分a_isom,n及び参照孤立度特徴ベクトルとの各成分b_isom,nを予め定められた閾値TH1と比較する。そして、類似度算出部123は、閾値TH1よりも大きい孤立度が含まれる場合、予め定められた各成分の重みWnをマスクすることより、各成分の孤立度を考慮した重みWn´を生成する。 
Figure JPOXMLDOC01-appb-M000012
 続いて、類似度算出部123は、以下の(式17)で示すように、差分絶対値dif_absm,nと重みWn´との積和演算を行い、積和演算した結果を重みWn´の合計値によって除算することにより、差分絶対値の重み付け平均値difiを算出する。この重み付け平均値difiが参照画素Qiに対する類似度である。 
Figure JPOXMLDOC01-appb-M000013
 ここで、本実施形態においては重みWnの設定方法は限定されない。重みWnは、例えば注目画素周辺領域及び参照画素周辺領域のそれぞれの中心画素からの距離に応じて設定されてよい。本実施形態のように検出部110から入力される孤立度を元に正常な画素のみを用いて類似度を算出することにより、入力画素に位置が既知の孤立点が多く含まれる場合に特に精度の高い類似度を算出することができる。また、本実施形態においても第2の実施形態と同様に、特徴ベクトルの各成分の重みWnを調節することにより、特徴ベクトルの生成方法や入力画像の持つ特性に応じて類似度を算出することができる。
 類似度の算出後、重み係数算出部124は、類似度算出部123から入力されるそれぞれの参照画素Qiの類似度difiと孤立度isoとから、それぞれの参照画素Qiに対する重み係数Wiを算出する。図17は、類似度difiから重み係数Wiを算出する際の算出例を示す。それぞれの参照画素Qiに対する重み係数Wiは、それぞれの参照画素Qiの類似度difiと類似度difiの最小値DIF_MINとの比に応じて算出される。重み係数Wiは0から1までの値を持つものであり、DIF_MINと参照画素Qiに対する類似度difiとの比が定数C以下である場合、参照画素Qiは有効な参照画素であるとして非零の重み係数を割り当てる。一方、DIF_MINと参照画素Qiに対する類似度difiとの比が定数Cよりも大きい場合、又は注目画素Pの孤立度isoが予め設定された閾値TH2よりも大きい場合、無効な参照画素として重み係数0を割り当てる。以下の(式18)が重み係数Wiの算出式を示している。 
Figure JPOXMLDOC01-appb-M000014
 重み係数Wiの算出後、重み付け平均値算出部125は、参照画素Qiの画素値biの重み係数Wiによる重み付け平均値を補正値baveとして以下の(式19)で示すようにして算出する。 
Figure JPOXMLDOC01-appb-M000015
 補正後の算出後、混合部126は、検出部110により入力された孤立度に基づいて注目画素と補正値との混合比率を設定し、この混合比率に基づいて、注目画素と補正値との加重平均による混合処理を行う。図18は、孤立度に基づく注目画素と補正値との混合比率の設定例を示す。図18の例においては、入力画像に含まれる孤立点とそれ以外の画素の孤立度の数値的傾向から、正常な画素と判断するに確からしい閾値1と、孤立点と判断するに確からしい閾値2とを設け、その間の孤立度に対する混合比率を直線式により算出している。また、閾値1よりも低い孤立度を持つ注目画素(すなわち正常な画素)に対しても補正値を混合するように混合比率を設定することにより、入力画像に含まれるランダムノイズを低減することができる。
 以上説明したように本実施形態によれば、検出部110で得られる孤立度に基づいて注目画素の画素値と補正値とを混合することにより、出力画像のディテール保持性能の調整を可能にし、入力画像に含まれるランダムノイズを低減することができる。
 上述した実施形態における撮像装置による各処理の手法、すなわち、各フローチャートに示す処理は、何れも制御部2に実行させることができるプログラムとして記憶される。このプログラムは、メモリカード(ROMカード、RAMカード等)、磁気ディスク(フロッピディスク、ハードディスク等)、光ディスク(CD-ROM、DVD等)、半導体メモリ等の外部記憶装置の記憶媒体に格納して配布することができる。そして、制御部2は、この外部記憶装置の記憶媒体に記憶されたプログラムを読み込み、この読み込んだプログラムによって動作が制御されることにより、上述した処理を実行することができる。

Claims (11)

  1.  入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出する類似度算出部と、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出する重み係数算出部と、
     前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出する重み付け平均値算出部と、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出する減算部と、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出する孤立度算出部と、
     前記算出された孤立度に基づいて前記注目画素を補正する補正部と、
     を具備する画像処理装置。
  2.  入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成するベクトル生成部と、
     前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出する類似度算出部と、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出する重み係数算出部と、
     前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出する重み付け平均値算出部と、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出する減算部と、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出する孤立度算出部と、
     前記算出された孤立度に基づいて前記注目画素を補正する補正部と、
     を具備する画像処理装置。
  3.  前記孤立度算出部は、入力画素値又は前記差分値に応じて前記孤立度を修正する請求項1又は2に記載の画像処理装置。
  4.  前記類似度算出部は、入力画像における既知の補正すべき画素の情報によって特定される前記既知の補正すべき画素の画素値を除外して前記類似度を算出する請求項1又は2に記載の画像処理装置。
  5.  入力画像における画素毎の孤立度を検出する検出部と、
     入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成するベクトル生成部と、
     前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出する類似度算出部と、
     前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出する重み係数算出部と、
     前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出する重み付け平均値算出部と、
     前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合する混合部と、
     を具備する画像処理装置。
  6.  入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出することと、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出することと、
     前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、
     前記算出された孤立度に基づいて前記注目画素を補正することと、
     を具備する画像処理装置。
  7.  入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成することと、
     前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出することと、
     前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、
     前記算出された孤立度に基づいて前記注目画素を補正することと、
     を具備する画像処理方法。
  8.  入力画像における画素毎の孤立度を検出することと、
     入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成することと、
     前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、
     前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出することと、
     前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出することと、
     前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合することと、
     を具備する画像処理方法。
  9.  入力画像における注目画素の画素値と前記注目画素の近傍の参照画素の画素値との類似度及び前記注目画素の画素値と前記注目画素の近傍の複数の参照画素の画素値の平均値との類似度を算出することと、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値及び前記参照画素の画素値の平均値のそれぞれに対し、前記比又は差が小さいほど大きくなるような重み係数を算出することと、
     前記算出された重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、
     前記算出された孤立度に基づいて前記注目画素を補正することと、
     をコンピュータに実現させるための画像処理プログラムを記憶した非一時的記憶媒体。
  10.  入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域に含まれる画素の画素値を成分とする注目画素特徴ベクトルを生成するとともに、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルを生成することと、
     前記生成された前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、
     前記算出された類似度のうちの最も高い類似度に第1の所定の閾値以上の係数を乗じた乗算結果に対する比又は差が第2の所定の閾値以上となる類似度を有する前記参照画素の画素値に対し、前記比又は差が小さいほど大きくなるように重み係数を算出することと、
     前記重み係数を用いて、前記参照画素の画素値の重み付け平均値及び前記参照画素の画素値の平均値の重み付け平均値を算出することと、
     前記注目画素の画素値と前記参照画素の画素値の重み付け平均値との差分値及び前記注目画素の画素値と前記参照画素の画素値の平均値の重み付け平均値との差分値を算出することと、
     前記算出された差分値に基づいて前記注目画素が補正すべき画素か判定するための孤立度を算出することと、
     前記算出された孤立度に基づいて前記注目画素を補正することと、
     をコンピュータに実現させるための画像処理プログラムを記憶した非一時的記憶媒体。
  11.  入力画像における画素毎の孤立度を検出することと、
     入力画像における注目画素の周辺の画素を含む領域である注目画素周辺領域の画素値を成分とする注目画素特徴ベクトルを生成し、前記注目画素の孤立度に対して前記注目画素周辺領域に含まれる孤立度を成分とする注目孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記注目画素の近傍の参照画素の周辺の画素を含む領域である参照画素周辺領域に含まれる色情報とを画素毎に比較し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が全て等しい場合には、前記参照画素周辺領域に含まれる画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる孤立度を成分とする参照孤立度特徴ベクトルを生成し、前記注目画素周辺領域に含まれる色情報と前記参照画素周辺領域に含まれる色情報が異なる画素が存在する場合には、該参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の画素値を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素を用いて算出した画素値に置き換えた画素値を成分とする参照画素特徴ベクトルと前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の孤立度を、前記参照画素周辺領域に含まれる前記注目画素周辺領域と色情報が異なる画素の周辺に位置する画素であって前記注目画素周辺領域と等しい色情報を持つ画素の孤立度を用いて算出した孤立度に置き換えた孤立度を成分とする参照孤立度特徴ベクトルを生成することと、
     前記注目孤立度特徴ベクトルと前記参照孤立度特徴ベクトルとを用いて前記注目画素特徴ベクトルと前記参照画素特徴ベクトルとの類似度を算出することと、
     前記算出された類似度と前記検出された孤立度とに基づいて前記参照画素の重み係数を算出することと、
     前記算出された重み係数を用いて複数の前記参照画素の重み付け平均値を補正値として算出することと、
     前記検出された孤立度に基づいて前記注目画素の画素値と前記補正値とを混合することと、
     をコンピュータに実現させるための画像処理プログラムを記憶した非一時的記憶媒体。
PCT/JP2014/066467 2013-06-25 2014-06-20 画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体 WO2014208472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480035768.0A CN105340260B (zh) 2013-06-25 2014-06-20 图像处理装置、图像处理方法和存储了图像处理程序的非暂时存储介质
EP14818634.9A EP3016376A1 (en) 2013-06-25 2014-06-20 Image processing device, image processing method, and non-transitory storage medium storing image processing program
US14/980,743 US9754375B2 (en) 2013-06-25 2015-12-28 Image processing apparatus, image processing method, and non-transitory storage medium storing image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-133099 2013-06-25
JP2013133099A JP6128987B2 (ja) 2013-06-25 2013-06-25 画像処理装置、画像処理方法及び画像処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,743 Continuation US9754375B2 (en) 2013-06-25 2015-12-28 Image processing apparatus, image processing method, and non-transitory storage medium storing image processing program

Publications (1)

Publication Number Publication Date
WO2014208472A1 true WO2014208472A1 (ja) 2014-12-31

Family

ID=52141811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066467 WO2014208472A1 (ja) 2013-06-25 2014-06-20 画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体

Country Status (5)

Country Link
US (1) US9754375B2 (ja)
EP (1) EP3016376A1 (ja)
JP (1) JP6128987B2 (ja)
CN (1) CN105340260B (ja)
WO (1) WO2014208472A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427480B2 (ja) * 2015-12-04 2018-11-21 日本電信電話株式会社 画像検索装置、方法、及びプログラム
JP6870993B2 (ja) * 2017-01-20 2021-05-12 キヤノンメディカルシステムズ株式会社 画像処理装置及びx線診断装置
JP7005168B2 (ja) 2017-05-02 2022-01-21 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
DE112017007815T5 (de) 2017-08-03 2020-04-16 Eizo Corporation Bildverarbeitungsvorrichtung, Bildvergrbeitungsverfahren und Bildverarbeitungsprogramm
WO2019116975A1 (ja) * 2017-12-13 2019-06-20 キヤノン株式会社 画像処理方法、画像処理装置およびプログラム
JP6822441B2 (ja) * 2018-05-29 2021-01-27 京セラドキュメントソリューションズ株式会社 画像処理装置、画像読取装置、画像処理方法
JP7301589B2 (ja) * 2019-04-25 2023-07-03 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
CN110288674A (zh) * 2019-05-20 2019-09-27 昇显微电子(苏州)有限公司 一种异形平滑处理的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086517A (ja) * 1999-09-13 2001-03-30 Toshiba Corp 画素欠陥検出装置
JP2005079843A (ja) * 2003-08-29 2005-03-24 Noritsu Koki Co Ltd 画像処理装置、方法、及びプログラム
JP2007143131A (ja) * 2005-10-26 2007-06-07 Nvidia Corp 画像信号処理方法および装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069855B2 (ja) * 2003-11-27 2008-04-02 ソニー株式会社 画像処理装置及び方法
US20060056722A1 (en) * 2004-09-14 2006-03-16 Nathan Moroney Edge preserving method and apparatus for image processing
JP2006287623A (ja) * 2005-03-31 2006-10-19 Sharp Corp 入力画像補正装置、画像処理装置、画像形成装置、入力画像補正方法、入力画像補正プログラムおよび記録媒体
JP2008028475A (ja) * 2006-07-18 2008-02-07 Olympus Corp 画像処理装置、画像処理プログラム、画像処理プログラムを記録する記録媒体、画像処理方法
WO2009089032A2 (en) * 2008-01-10 2009-07-16 Thomson Licensing Methods and apparatus for illumination compensation of intra-predicted video
JP2009188822A (ja) * 2008-02-07 2009-08-20 Olympus Corp 画像処理装置及び画像処理プログラム
JP5374135B2 (ja) * 2008-12-16 2013-12-25 オリンパス株式会社 画像処理装置、画像処理装置の作動方法および画像処理プログラム
JP2011134200A (ja) * 2009-12-25 2011-07-07 Konica Minolta Holdings Inc 画像評価方法、画像処理方法および画像処理装置
JP5060643B1 (ja) * 2011-08-31 2012-10-31 株式会社東芝 画像処理装置および画像処理方法
US9998726B2 (en) * 2012-06-20 2018-06-12 Nokia Technologies Oy Apparatus, a method and a computer program for video coding and decoding
US9129188B2 (en) * 2012-06-22 2015-09-08 Canon Kabushiki Kaisha Image processing apparatus and control method thereof
WO2014080961A1 (ja) * 2012-11-20 2014-05-30 株式会社 東芝 画像処理装置、画像処理方法およびx線診断装置
JP2014112805A (ja) * 2012-12-05 2014-06-19 Canon Inc 画像形成装置およびその制御方法
JP6362333B2 (ja) * 2013-02-14 2018-07-25 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
KR102144994B1 (ko) * 2013-09-30 2020-08-14 삼성전자주식회사 영상의 노이즈를 저감하는 방법 및 이를 이용한 영상 처리 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086517A (ja) * 1999-09-13 2001-03-30 Toshiba Corp 画素欠陥検出装置
JP2005079843A (ja) * 2003-08-29 2005-03-24 Noritsu Koki Co Ltd 画像処理装置、方法、及びプログラム
JP2007143131A (ja) * 2005-10-26 2007-06-07 Nvidia Corp 画像信号処理方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMAN GARNETT; TIMOTHY HUEGERICH; CHARLES CHUI; FELLOW, IEEE; WENJIE HE, A UNIVERSAL NOISE REMOVAL ALGORITHM WITH AN IMPULSE DETECTOR

Also Published As

Publication number Publication date
JP2015007917A (ja) 2015-01-15
EP3016376A1 (en) 2016-05-04
US20160148385A1 (en) 2016-05-26
CN105340260B (zh) 2019-04-12
US9754375B2 (en) 2017-09-05
CN105340260A (zh) 2016-02-17
JP6128987B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2014208472A1 (ja) 画像処理装置、画像処理方法及び画像処理プログラムを記憶した非一時的記憶媒体
US9967482B2 (en) Image processing apparatus, image processing method, and storage medium for noise reduction processing
JPWO2007105359A1 (ja) 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法
JP6677172B2 (ja) 画像処理装置、画像処理方法およびプログラム
US9888154B2 (en) Information processing apparatus, method for processing information, and computer program
JP5996315B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2011039675A (ja) 画像処理装置、画像処理方法、及び、コンピュータプログラム
WO2014054273A1 (ja) 画像ノイズ除去装置、および画像ノイズ除去方法
US20150187051A1 (en) Method and apparatus for estimating image noise
US10163035B2 (en) Edge detecting apparatus and edge detecting method
JP6365355B2 (ja) 画像生成装置および画像生成方法
JP6552325B2 (ja) 撮像装置、撮像装置の制御方法、及びプログラム
US9270883B2 (en) Image processing apparatus, image pickup apparatus, image pickup system, image processing method, and non-transitory computer-readable storage medium
US20170374239A1 (en) Image processing device and image processing method
JP2018185586A (ja) 画像処理装置および画像処理方法、撮像装置
US10229474B2 (en) Image processing apparatus, image processing method, and storage medium
JP2021129190A (ja) 画像処理装置、画像処理方法およびプログラム
KR20170008177A (ko) 정보 처리 장치, 정보 처리 방법, 컴퓨터 판독가능 기록매체
JP6704726B2 (ja) エッジ検出装置、エッジ検出方法、及び、プログラム
JP2016201037A (ja) 画像処理装置、画像処理方法及びプログラム
WO2018189772A1 (ja) 相関値演算装置
US11403736B2 (en) Image processing apparatus to reduce noise in an image
US9082163B2 (en) Image processing device
JP2012068842A (ja) 動きベクトル検出装置、動きベクトル検出方法、および、動きベクトル検出プログラム
WO2011099290A1 (ja) 色補正装置、映像表示装置及び色補正方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035768.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014818634

Country of ref document: EP