WO2014080961A1 - 画像処理装置、画像処理方法およびx線診断装置 - Google Patents

画像処理装置、画像処理方法およびx線診断装置 Download PDF

Info

Publication number
WO2014080961A1
WO2014080961A1 PCT/JP2013/081329 JP2013081329W WO2014080961A1 WO 2014080961 A1 WO2014080961 A1 WO 2014080961A1 JP 2013081329 W JP2013081329 W JP 2013081329W WO 2014080961 A1 WO2014080961 A1 WO 2014080961A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise reduction
image processing
unit
processing apparatus
processing
Prior art date
Application number
PCT/JP2013/081329
Other languages
English (en)
French (fr)
Inventor
大石 悟
白石 邦夫
久人 竹元
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201380060486.1A priority Critical patent/CN104812293B/zh
Publication of WO2014080961A1 publication Critical patent/WO2014080961A1/ja
Priority to US14/717,511 priority patent/US10198793B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • Embodiments described herein relate generally to an image processing apparatus, an image processing method, and an X-ray diagnostic apparatus according to image noise reduction.
  • Image processing is performed, for example, in order to cope with deterioration or modification of an image acquired by a video recorder or a digital camera.
  • the image processing may be performed for the purpose of clearly grasping the pattern of the structure or the structure itself in order to inspect whether the structure is manufactured as designed.
  • a tissue in a subject such as a fluoroscopic image, a tomographic image, and a blood flow in the subject is acquired using a medical image diagnostic apparatus.
  • the acquired tissue information is imaged to generate a medical image.
  • examinations and diagnoses are performed using these medical images.
  • various medical image diagnostic apparatuses such as an X-ray CT (X-ray Computed Tomography) apparatus, an MRI (Magnetic Resonance Imaging) apparatus, an ultrasonic diagnostic apparatus, and an X-ray diagnostic apparatus.
  • Various image processing has been applied to this. The utility of drawing blood flow or contrast medium flow, or extracting lesions or contours of organs is widely recognized.
  • noise reduction techniques are widely known as a noise reduction technique.
  • This smoothing means that when there is an input value f (i, j) for a certain pixel (i, j), the average density in the vicinity of this pixel (i, j) is calculated for the pixel (i, j).
  • Output value g (i, j) Specifically, if n ⁇ n pixels in the vicinity of the pixel (i, j) are used, the output value g (i, j) is
  • a, b, c, and d in the above formula (1) are integers. Further, 1 / (b ⁇ a + 1) (d ⁇ c + 1) in the above equation (1) is a so-called weight.
  • edge blur occurs. Due to the edge blurring, the spatial resolution of the image is impaired, and the entire image becomes blurred.
  • the vascular structure is not originally depicted according to the noise suppression processing according to the above equation (1). Averaging (smoothing) is performed including the pixels. That is, even if noise is suppressed, the contrast representing the blood vessel structure is also reduced by the smoothing, and it may be difficult to depict a fine blood vessel structure.
  • an image processing apparatus that calculates the similarity between a pixel and a peripheral pixel for each pixel in the image, and averages the pixel and the peripheral pixel with a weight according to the calculated similarity.
  • the weighted average is used as the pixel value of the pixel (Patent Document 1).
  • the image processing apparatus not only noise but also image blur can be suppressed.
  • volume data includes voxels (pixels) arranged three-dimensionally, and information (pixel values and the like) indicating the density and density of an object in the region is assigned to each voxel.
  • noise suppression processing is performed on the volume data as described above.
  • an image processing apparatus that performs noise suppression processing (two-dimensional noise suppression processing) on an arbitrary cross section of volume data, and isotropically diffuses the processing content to perform noise suppression processing on the entire volume data.
  • the degree of diffusion is determined by whether or not the attention area includes edge information.
  • noise suppression processing three-dimensional noise suppression processing
  • noise suppression processing is performed between frames acquired at different time phases. For example, noise suppression processing is performed using corresponding pixels in each frame acquired at different time phases.
  • noise suppression may be insufficient in the above two-dimensional noise suppression processing.
  • the noise suppression processing may not be suitable.
  • the characteristics such as the tendency of the distribution of pixel values of each pixel tend to be different between the cross section relating to the noise suppression process and the different cross section.
  • noise suppression processing applied to a predetermined cross section in volume data, it may not be suitable for a cross section orthogonal to the cross section, for example. In that case, an artifact-like signal is presented for an important region in the image. There is a fear. The same applies when noise suppression processing is performed between frames acquired at different time phases.
  • the amount of calculation required for the process becomes enormous.
  • weighted averaging is performed according to the similarity between each voxel and the surrounding voxels.
  • the processing time may increase due to the three-dimensional noise suppression processing.
  • the present embodiment has been made in view of the above circumstances, and an object of the present embodiment is to reduce noise while suppressing blurring of an image, and to prevent a situation where a calculation amount in noise suppression increases.
  • An object of the present invention is to provide an image processing apparatus that can perform the above processing.
  • the image processing apparatus includes an acquisition unit and a filter processing unit.
  • the acquisition unit acquires medical image data.
  • the filter processing unit performs noise reduction processing in a set order in at least two directions among three different directions in the medical image data.
  • FIG. 1 is a block diagram showing a schematic configuration of an image processing apparatus according to a first embodiment.
  • 6 is a flowchart illustrating a series of operations of noise reduction processing in the image processing apparatus according to the first embodiment.
  • Schematic which shows an example of the order of the filter process in volume data.
  • Schematic which shows an example of the order of the filter process in volume data.
  • Schematic which shows an example of the order of the filter process in volume data.
  • the block diagram which shows schematic structure of the image processing apparatus concerning 2nd Embodiment.
  • Schematic which shows an example of the blood vessel containing an aneurysm, the stent inserted into the blood vessel, and a stent marker.
  • 9 is a flowchart showing a series of operations of the image processing apparatus according to the second embodiment.
  • Schematic which shows an example of the blood vessel containing an aneurysm, the stent inserted into the blood vessel, and a stent marker.
  • the block diagram which shows schematic structure of the image processing apparatus concerning 3rd Embodiment. 10 is a flowchart illustrating a series of operations of the image processing apparatus according to the third embodiment. 10 is a flowchart illustrating a series of operations of the image processing apparatus according to the third embodiment. 10 is a flowchart illustrating a series of operations of the image processing apparatus according to the fourth embodiment.
  • Schematic which shows the concept of the range of a surrounding pixel.
  • Schematic which shows the concept of the range of a surrounding pixel.
  • Schematic which shows the relationship of each flame
  • FIG. 1 is a block diagram illustrating a schematic configuration of an image processing apparatus 1 according to the first embodiment.
  • the image processing apparatus 1 according to the first embodiment will be described using a medical image workstation as an example.
  • the image processing apparatus 1 acquires volume data relating to a medical image, and performs noise reduction processing in a preset order on three cross sections (three orthogonal cross sections, etc.) that intersect each other in the volume data. It is.
  • the image processing apparatus 1 according to the first embodiment is configured to acquire the volume data acquired in advance by any one of the image acquisition apparatuses 20A to 20C and stored in the image storage apparatus 30.
  • information on a body tissue of a subject, reconstruction processing, and generation of volume data may be performed.
  • the image processing apparatus 1 includes a main control unit 2, a transmission / reception unit 3, a display unit 4, an operation unit 5, a storage unit 6, a processing order control unit 7, and an image processing unit 8.
  • the image processing apparatus 1 and a plurality of image acquisition apparatuses 20A, an image acquisition apparatus 20B, an image acquisition apparatus 20C,..., An image acquisition apparatus 20n are connected via a network.
  • the image processing apparatus 1 is connected to the image storage apparatus 30 via a network.
  • the image processing device 1 acquires volume data from the image storage device 30 or the like via the transmission / reception unit 3 in response to an instruction signal from the main control unit 2.
  • FIG. 1 The image processing device 1 acquires volume data from the image storage device 30 or the like via the transmission / reception unit 3 in response to an instruction signal from the main control unit 2.
  • the image acquisition device 20A, the image acquisition device 20B, the image acquisition device 20C, and the image storage device 30 are connected to the network as an example, but the number of each device can be arbitrarily set. .
  • the image acquisition device 20A and the like will be described as an image acquisition device for medical images that collects information on the body tissue of a subject.
  • an X-ray image diagnostic apparatus, an X-ray CT apparatus, an MRI apparatus, an ultrasonic diagnostic apparatus, and the like are examples of medical images that collects information on the body tissue of a subject.
  • an X-ray image diagnostic apparatus for example, an X-ray CT apparatus, an MRI apparatus, an ultrasonic diagnostic apparatus, and the like.
  • the image storage device 30 is based on, for example, PACS (Pictures Archiving and Communication System).
  • the image storage device 30 is an image management device having an image database.
  • the image management apparatus manages medical image data in the image database by a program.
  • the image storage device 30 may be a file server that stores medical image data such as a network attached storage (NAS).
  • NAS network attached storage
  • the main control unit 2 is composed of, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the main control unit 2 receives an operation signal from the operation unit 5 and executes a volume data acquisition request from the image storage device 30. Further, the main control unit 2 performs control related to display of the medical image by the display unit 4.
  • setting information related to noise reduction processing described later is received from the processing order control unit 7, and control related to noise reduction processing for volume data is performed. Details regarding the control of the main control unit 2 will be described below.
  • the transmission / reception unit 3 is an interface for exchanging volume data with the image acquisition device 20A, the image acquisition device 20B, the image acquisition device 20C, or the image storage device 30.
  • the display unit 4 is a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), an organic EL (OELD; Organic Electro-Luminescence Display), or an FED (Field Emission Display) device.
  • the display unit 4 displays various screens (display screen S and the like) and images (X-ray images and the like) under the control of the main control unit 2.
  • the operation unit 5 is configured by an arbitrary type of operation device or input device such as a keyboard, a mouse, a trackball, a joystick, or a control panel. An operation signal output from the operation unit 5 based on the performed operation is sent to the main control unit 2, and the main control unit 2 executes control and calculation corresponding to the operation content.
  • the storage unit 6 is an arbitrary storage medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the storage unit 6 stores analysis software, volume data received from the image storage device 30 and the like, and a program for executing each function of the image processing device 1.
  • the storage unit 6 may not store the volume data, and the volume data may be temporarily stored in the RAM of the main control unit 2 or the like.
  • the processing order control unit 7 controls the processing order of noise reduction by the image processing unit 8 based on setting information set in advance.
  • the image processing unit 8 is controlled based on setting information related to the order of noise reduction processing for three orthogonal cross sections of volume data.
  • FIG. 2 is a flowchart showing a series of operations of noise reduction processing in the image processing apparatus 1 of the first embodiment.
  • FIGS. 3A to 3C are schematic diagrams illustrating an example of the order of filter processing in volume data.
  • FIG. 3A conceptually shows a state in which coherent filter processing is executed on the sagittal plane as the first order of filter processing.
  • FIG. 3A conceptually shows a state in which coherent filter processing is executed on the sagittal plane as the first order of filter processing.
  • FIG. 3B conceptually illustrates a state in which the process of the coherent filter is executed on the coronal plane as the second order of the filter process.
  • FIG. 3C conceptually shows a state in which coherent filter processing is performed on the axial plane as the last of the order of filter processing.
  • image processing unit 8 corresponds to an example of a “processing unit”.
  • the coherent filter process and the filter process correspond to an example of “noise reduction process”.
  • An operator such as a doctor inputs identification information or the like for identifying volume data through the operation unit 5 of the image processing apparatus 1.
  • the identification information is an image ID, a patient ID, an examination ID, and the like.
  • the main control unit 2 sends the identification information and the like input from the operation unit 5 to an external device (such as the image storage device 30) that stores the target volume data via the transmission / reception unit 3.
  • the external device such as the image storage device 30 receives the identification information and sends the corresponding volume data to the image processing device 1.
  • the main control unit 2 of the image processing apparatus 1 temporarily stores the volume data in the storage unit 6 or the like.
  • the main control unit 2 sends the volume data once stored in S01 to the image processing unit 8.
  • the image processing unit 8 specifies three orthogonal sections in the volume data.
  • the specification of the three orthogonal cross sections is, for example, by specifying the axial direction in the volume data.
  • the three orthogonal cross sections are, for example, an axial plane, a coronal plane, and a sagittal plane.
  • the axial plane is a cross section orthogonal to the body axis direction.
  • the coronal plane is parallel to the body axis direction and is a cross section that divides the human body in the front-rear direction (back side and front side).
  • the sagittal plane is a cross section that divides the human body in the left-right direction, and is orthogonal to the axial plane and the coronal plane.
  • each of the three orthogonal cross sections includes the center position of the volume data, but other settings can be made for the cross section position.
  • the processing order control unit 7 sends setting information related to a preset noise reduction processing order from the storage unit 6 or another storage unit (not shown). read out.
  • setting information related to the order of noise reduction processing will be described.
  • the image processing apparatus 1 according to the first embodiment performs noise reduction processing on three orthogonal cross sections of volume data.
  • the setting information is information about the order in which the noise reduction processing is performed on each of the three orthogonal cross sections. Setting information can be appropriately changed depending on the nature of the volume data.
  • each structure of the human body tends to be similar in the body axis direction.
  • a structure adjacent to a certain structure in the body along the body width direction or the front-rear direction tends to be not substantially similar. Therefore, when performing noise reduction processing in order on three orthogonal cross sections having different cross-sectional directions as in the present embodiment, it may be effective to set the order according to the above tendency.
  • the first cross section to be subjected to the noise reduction process is an axial plane.
  • On the axial plane structures adjacent in the body width direction and the body front-rear direction are shown, but as described above, the human body has a tendency that the structures adjacent in the body width direction and the body front-rear direction are not similar to each other.
  • noise reduction processing coherent filter or the like
  • the cross sections in other directions are smoothed based on pixels that show similar structures. there is a possibility. In that case, there is a possibility that the preservability of the edge is deteriorated.
  • the effect of the noise reduction process affects the entire voxel.
  • noise reduction processing is performed on the sagittal surface and the coronal surface after performing noise reduction processing on the axial surface, further smoothing is performed based on the pixels of the structure in which the blur is generated by the smoothing.
  • the spatial resolution of the entire volume data is impaired.
  • the image based on the volume data tends to be blurred.
  • the sagittal plane (see FIG. 3A) and the coronal plane (see FIG. 3B) are parallel to the body axis direction, the structures shown in these tend to be similar to each other. Therefore, it is preferable to first process the sagittal surface or the coronal surface first, rather than performing noise reduction processing on the axial surface first. That is, in the setting information related to the order of noise reduction processing (hereinafter, sometimes referred to as “order setting information”), it is preferable that the axial plane is set last.
  • the operator may be able to predict the sagittal plane state and the coronal plane state in the volume data in advance before the noise reduction process. In such a case, it is preferable to first specify a cross section for performing the noise reduction process. . Therefore, the image processing apparatus 1 may store screen data for correcting the order setting information.
  • the processing order control unit 7 sends the read setting information to the image processing unit 8. Based on the order setting information, the image processing unit 8 determines whether it is necessary to perform coordinate transformation that rotates the current direction of the volume data. That is, since the coordinate position of the volume data subjected to noise reduction processing by the image processing unit 8 is set at the position of the axial plane (see FIG. 3C) in this embodiment, whether or not the volume data needs to be rotated by coordinate conversion. Judgment is required based on the information of the first section in the order setting information. Since the three orthogonal cross sections of the volume data are specified by the image processing unit 8, the direction of the volume data to be processed is specified.
  • the rotation direction is specified based on the positional relationship between the cross section and the axial surface in the order setting information, and the volume data is rotated by 90 ° in that direction.
  • the image processing unit 8 performs affine transformation (Affine Transformation) as such coordinate transformation. Note that the affine transformation here does not need to include enlargement / reduction or mirroring.
  • the sagittal plane is displaced to the position of the axial plane before the conversion by the coordinate conversion of the volume data.
  • the image processing unit 8 specifies the coordinate position of the first cross section of the order setting information based on the order setting information.
  • a noise reduction process (for example, a coherent filter) is applied to the sagittal plane displaced to the coordinate position where the noise reduction process is performed in S02.
  • the outline of the coherent filter is described below.
  • the image processing unit 8 determines, for each pixel in the target cross section (referred to as “target pixel”), a similarity degree as to whether it is similar to the surrounding pixels according to the setting. Further, the image processing unit 8 changes the filter coefficient of the coherent filter according to the obtained similarity degree. For example, the image processing unit 8 increases the filter coefficient as the obtained degree of similarity increases. Similarly, the image processing unit 8 decreases the filter coefficient as the obtained degree of similarity is lower.
  • the orthogonal 3 cross section is comprised by the pixel of 512x512
  • the example of the range of the surrounding pixel with respect to an object pixel is 11x11. Further, the concept of the coherent filter in this example will be described below.
  • the image processing unit 8 quantifies the degree of matching between the pixel value (vector value or scalar value) for each pixel constituting the target cross section and the pixel value of other pixels (referred to as “peripheral pixels”). In addition, the image processing unit 8 obtains the magnitude of the degree of matching between the quantified target pixel and the surrounding pixels by threshold processing or determination as to whether it belongs to a numerical range of a plurality of stages. Further, the image processing unit 8 uses the pixel value of the peripheral pixel as the pixel value of the target pixel. At this time, the image processing unit 8 increases the contribution degree of the surrounding pixels when the matching degree is large. Similarly, when the degree of adaptation is small, the contribution degree of the surrounding pixels is reduced.
  • the image processing unit 8 causes a weight function, which is a function of the degree of matching between the target pixel and the surrounding pixels, to act on the degree of matching obtained for each pixel value of each surrounding pixel.
  • the image processing unit 8 thereby determines the weight of the pixel value of each peripheral pixel.
  • the image processing unit 8 calculates a weighted average of pixel values for peripheral pixels using this weight. Thereby, the image processing unit 8 increases the weight of the peripheral pixel when the degree of matching between the target pixel and the peripheral pixel is large. In this way, the image processing unit 8 configures the pixel value of the target pixel by increasing the contribution in the weighted average of the pixel values of the peripheral pixels.
  • the image processing unit 8 configures the pixel value of the target pixel by reducing the contribution in the weighted average of the pixel values of the peripheral pixels. According to such processing, the pixel value of the target pixel is configured with emphasis on the peripheral pixels determined to be “similar” to the target pixel. As a result, it is possible to suppress the loss of spatial resolution.
  • the weighting function can be a non-negative monotonically increasing function related to the fitness.
  • the image processing unit 8 specifies the rotation direction based on the positional relationship between the next section in the order setting information and the coordinate position for noise reduction processing, and rotates the volume data by 90 ° in that direction.
  • the coronal plane is displaced to the position of the sagittal plane before the conversion by the second coordinate conversion of the volume data.
  • the coordinate conversion in S04 is not executed.
  • the image processing unit 8 instead of S02, specifies the coordinate position of the second cross section based on the order setting information.
  • a noise reduction process (coherent filter) is applied to the coronal plane displaced to the coordinate position where the noise reduction process is performed in S04.
  • the coherent filter here is the same as that described in S03.
  • the image processing unit 8 specifies the rotation direction based on the positional relationship between the next section in the order setting information and the coordinate position for noise reduction processing, and rotates the volume data by 90 ° in that direction.
  • the axial surface is displaced to the position of the coronal surface before the conversion by the last coordinate conversion of the volume data.
  • Step 07> A noise reduction process (coherent filter) is applied to the axial plane displaced to the coordinate position where the noise reduction process is performed in S06.
  • the coherent filter here is the same as that described in S03.
  • noise reduction processing is executed in the order of sagittal surface, coronal surface, and axial surface.
  • noise reduction processing may be executed in order of coronal surface, sagittal surface, and axial surface.
  • the data when collecting data for generating volume data (for example, during imaging), the data may be collected with the body axis of the subject tilted.
  • the surface having the closest angle to the actual axial surface may be recognized as an axial surface, and thereafter the same processing as described above may be performed.
  • the filtering process on the axial surface which is the final stage, may not be high as an effect of noise reduction.
  • noise such as gray matter or white matter of the brain parenchyma
  • the filter processing on the axial side works in the direction of suppressing weak contrast. In such a case, it is desirable not to perform processing in the axial direction.
  • a diffusion filter an anisotropic diffusion process
  • an adaptive weighted anisotropic diffusion Adaptive Weighted Anisotropic Diffusion; AWAD
  • the adaptive weighted anisotropic diffusion process is effective in maintaining related tissue structures of various sizes, or edges around the structure, and reducing noise.
  • the image processing apparatus 1 is configured to perform noise reduction processing on three orthogonal cross sections in volume data noise reduction processing. Therefore, the processing amount can be suppressed as compared with a configuration in which noise reduction processing is performed three-dimensionally for each voxel of the volume data. As a result, it is possible to reduce the time for noise reduction processing of volume data.
  • the volume data is subjected to two-dimensional noise reduction processing two-dimensionally on a predetermined cross section, and compared with a configuration for obtaining a noise reduction effect, blurring of the edge portion of the image in the cross section is prevented.
  • the noise reduction processing applied to the predetermined cross section does not match the cross section orthogonal to the cross section, resulting in the spatial resolution in other cross sections. Reduction can be suppressed.
  • the order in which noise reduction processing is performed on three orthogonal cross sections is set in advance.
  • the order in which the noise reduction processing is performed on the axial plane is finally set for volume data based on data collected using the human body as the subject.
  • FIG. 4 is a schematic block diagram illustrating an example of the image processing apparatus 1 according to the second embodiment.
  • FIG. 5 is a schematic view showing an example of a blood vessel including an aneurysm, a stent inserted into the blood vessel, and a stent marker M.
  • the axial plane is set last as the order of noise reduction processing.
  • a plurality of predetermined feature points such as the stent marker M are extracted from the volume data, and the axial surface, coronal surface, or sagittal surface closest to the cross section including the plurality of feature points is extracted. Identify. Further, as the order of the noise reduction processing, the specified axial surface, coronal surface, or sagittal surface is set last.
  • the image processing apparatus 1 includes a main control unit 2, a transmission / reception unit 3, a display unit 4, an operation unit 5, a storage unit 6, a processing order control unit 7, and an image processing unit 8. And a specific portion 9A.
  • the main control unit 2, the transmission / reception unit 3, the display unit 4, the operation unit 5 and the storage unit 6 are the same as those in the first embodiment.
  • the specifying unit 9A according to the second embodiment will be described.
  • the volume data indicating the state of the internal organization of the target object may include a characteristic organization itself or a characteristic structure related to the organization.
  • the specifying unit 9A obtains the coordinate position of the structure in the volume data (hereinafter sometimes referred to as “feature point”). Further, when there are a plurality of feature points, the specifying unit 9A specifies a cross section representing the inclination of each feature point. Further, the specifying unit 9A specifies feature points using the feature point setting information. Next, this feature point setting information will be described. Note that a cross section representing the inclination of each feature point is obtained as a plane estimated to be the closest cross section from two or more feature points included in the volume data. Moreover, this surface may be described as a “specific surface” below.
  • a storage unit (not shown) of the image processing apparatus 1 stores a structure that can be a feature point in the volume data and a pixel value indicated by the structure in association with each other. This information is hereinafter referred to as “feature point setting information”.
  • feature point setting information there is a stent marker M (such as a radiopaque metal) having a predetermined property.
  • a stent is included inside the object indicated by the volume data.
  • four stent markers M are provided at both ends of the stent used for blood vessel intervention treatment.
  • a structure having a predetermined property (such as X-ray opacity) like a stent marker M is used for a method of collecting tissue information of an object of a medical image (such as X-ray, ultrasound, and nuclear magnetic resonance).
  • a predetermined pixel value is shown in the image. Therefore, in order to identify the feature point, in the feature point setting information, the type of the structure that the target object has as a standard or the type of structure (such as the stent marker M of the stent) inserted into the target object (blood vessel or the like) Structure data corresponding to the type of each structure is associated.
  • the structure data is information such as a pixel value, a volume, and a shape that a pixel indicating a structure of medical image data normally has.
  • the type of the specific structure may be associated with a general numerical range of pixel values of pixels indicating the structure.
  • the specifying unit 9A detects from the volume data whether there is a voxel corresponding to the pixel value of each structure registered in the feature point setting information. Further, a structure having a similar pixel value, for example, a coil inserted into an aneurysm, a metal insert into a tooth, or the like is removed from candidates using the volume, shape, etc. of the extracted structure. As a result of the detection, when there are a plurality of structures registered in the feature point setting information, the specifying unit 9A stores the coordinate positions of the respective structures. Further, the specifying unit 9A obtains, as the specific surface, a cross section that minimizes the average distance from the coordinate positions of the same (or the same type) structure stored in this way.
  • the cross section estimated to be closest to each feature point group by the specifying unit 9A is obtained as the specific surface.
  • the cross section can be expressed by the following formula (2).
  • the cross-section estimated to be closest to each feature point group, that is, the specific surface can be obtained by minimizing the following expression (3).
  • the specifying unit 9A may be configured to exclude the separated feature points.
  • the specifying unit 9A Based on the coordinates of each feature point, the distant feature points are excluded, and a cross section is obtained using only adjacent feature points.
  • the specifying unit 9A specifies an axial surface, a coronal surface, or a sagittal surface having an angle closest to the specified cross section.
  • the specifying unit 9A calculates, for example, the inner product of the normal unit vector of the specified cross section and the normal unit vectors of the axial plane, the coronal plane, and the sagittal plane. Furthermore, the specifying unit 9A specifies the order in which the calculated inner product values are small.
  • the angle formed by the specified cross section and the axial, coronal, or sagittal plane may be calculated.
  • the order in which the angle formed is large is specified.
  • the angle formed is selected to be an acute angle.
  • the specific unit 9A may be configured not to obtain a cross section closest to each feature point.
  • the specifying unit 9A may sequentially specify a surface (such as an axial surface, a coronal surface, or a sagittal surface) in which the dispersion of the distance from each feature point is greatest based on the coordinate positions of the feature points of each group. .
  • the specifying unit 9A thus sets the order of the noise reduction processing for the cross sections (axial surface, coronal surface, sagittal surface, etc.) in each direction.
  • the order setting information in the processing order control unit 7 is changed.
  • FIG. 6 is a flowchart showing a series of operations of the image processing apparatus according to the second embodiment.
  • An operator such as a doctor inputs identification information or the like for identifying volume data through the operation unit 5 of the image processing apparatus 1.
  • the identification information is an image ID, a patient ID, an examination ID, and the like.
  • the main control unit 2 sends the identification information and the like input from the operation unit 5 to an external device (such as the image storage device 30) that stores the target volume data via the transmission / reception unit 3.
  • the external device such as the image storage device 30 receives the identification information and sends the corresponding volume data to the image processing device 1.
  • the main control unit 2 of the image processing apparatus 1 temporarily stores the volume data in the storage unit 6 or the like.
  • Step 12> The main control unit 2 sends the volume data once stored in S11 to the specifying unit 9A.
  • the specifying unit 9A detects voxels corresponding to pixel values for each type of structure registered in the feature point setting information from the volume data.
  • the specifying unit 9A determines whether a plurality of feature points are detected.
  • the feature points are structures corresponding to pixel values and the like of various structures registered in the feature point setting information.
  • the specifying unit 9A stores the coordinate position of the feature point in the storage unit 6 when determining that there are a plurality of feature points. Further, the specifying unit 9A obtains a cross section (specific surface) estimated to be closest to each coordinate position, for example.
  • the specifying unit 9A obtains the inclination between each of the axial plane, the coronal plane, and the sagittal plane, and the cross section specified in S14.
  • 9 A of specific parts identify the order with the big inclination with a specific surface among three orthogonal cross sections. That is, the specifying unit 9A obtains the surface farthest from the specific surface among the three orthogonal cross sections.
  • the specifying unit 9A changes the order of the noise reduction processing with the order setting information based on the order of the large slopes identified in S15. For example, noise reduction processing is performed in order of increasing inclination.
  • the image processing apparatus 1 is configured to perform noise reduction processing on three orthogonal cross sections in volume data. Therefore, the amount of processing can be suppressed and the time for noise reduction processing can be reduced. In addition, blurring of the edge portion of the image in the cross section is prevented.
  • noise reduction processing is performed in at least two of three different directions in medical image data, a reduction in spatial resolution in other cross sections due to noise reduction processing in each direction is suppressed. It is possible.
  • the noise reduction processing when noise reduction processing is first performed on the three orthogonal cross sections (for example, axial surfaces) closest to the cross section (specific surface) representing the inclination of the feature point, the noise reduction processing reaches the entire volume data,
  • the spatial resolution of a cross section (eg, sagittal plane, coronal plane) orthogonal to the cross section for processing may be reduced.
  • the second embodiment has the following effects.
  • feature points are detected from the volume data, and in the order in which it is determined that the inclination with respect to the surface including the plurality of detected feature points is the largest among the three orthogonal cross sections. Set the noise reduction processing order. Therefore, since noise reduction processing is performed in the order in which struts are difficult to blur, strut blurring can be minimized in the final processed image.
  • the specifying unit 9A is configured to detect a feature point of the volume data based on the pixel value.
  • a configuration in which morphological feature points are specified by shape analysis of each structure in the volume data is also possible.
  • the specifying unit 9A performs pattern recognition of each part indicated in the volume data.
  • a plurality of patterns in the form of each structure of the object are registered in the image processing apparatus 1 as feature point setting information.
  • the specifying unit 9A extracts, from the volume data, a group of voxels in a predetermined area having the same or corresponding pixel values among adjacent voxels. Note that “a pixel value corresponds” indicates that a pixel value difference between voxels is included in a predetermined numerical range.
  • the specifying unit 9A compares the extraction result with the registered pattern.
  • the specifying unit 9A detects a structure correlated with the registered pattern from the volume data. Thereby, the specifying unit 9A specifies the feature point in the volume data and stores the coordinates of the voxel.
  • the specifying unit 9A determines the voxel group in the predetermined area in the volume data as a feature point.
  • This modification also has the same effect as that of the second embodiment.
  • FIG. 8 is a schematic block diagram illustrating an example of the image processing apparatus 1 according to the third embodiment.
  • the specifying unit 9A when the specifying unit 9A obtains the closest specific surface from each feature point, the angle formed by the specific surface and the axial, coronal, or sagittal surface is calculated.
  • the specifying unit 9A further changes the order setting information according to the order in which the angle forming the order of the noise reduction processing for any of the specified three orthogonal cross sections is large.
  • the cross-section calculating unit 9B obtains two cross sections orthogonal to the specific surface with reference to the coordinate position.
  • the image processing apparatus 1 includes a main control unit 2, a transmission / reception unit 3, a display unit 4, an operation unit 5, a storage unit 6, a processing order control unit 7, an image processing unit 8, It has 9A of specific parts and the cross-section calculation part 9B.
  • the main control unit 2, the transmission / reception unit 3, the display unit 4, the operation unit 5 and the storage unit 6 are the same as those in the first embodiment.
  • the cross-sectional calculation unit 9B will be mainly described with respect to the third embodiment.
  • the third embodiment obtains information for defining the specific surface.
  • This information is, for example, coordinates indicating the range of the specific surface.
  • the specifying unit 9A sends information for defining the specific surface to the cross-section calculating unit 9B.
  • coordinate information sent to the cross section calculation unit 9B includes the coordinates of voxels corresponding to the end portions (corner portions) of the cross section, the coordinates of two different voxels included in the cross section, the coordinates of at least one side of the cross section, the specific surface Any information may be used as long as it is information that can define the specific surface, such as coordinates of the outer edge.
  • the cross section calculating unit 9B Upon receiving the information for defining the specific surface from the specifying unit 9A, the cross section calculating unit 9B calculates the specific surface from the coordinates, and further calculates three orthogonal cross sections with the specific surface as one cross section. For example, the cross-section calculation unit 9B obtains the center position on the specific surface. Furthermore, the cross-section calculation unit 9B obtains two cross-sections that include the voxel at the center position of the specific surface, are orthogonal to the specific surface, and are orthogonal to each other. Note that the two cross sections may not include the voxel at the center position of the cross section as long as the two cross sections are orthogonal to the specific plane and orthogonal to each other. Further, since there are a plurality of orthogonal cross sections, one of them may be identified using, for example, one of the positions of the structure.
  • the section calculation unit 9B sends the obtained coordinate information of three orthogonal sections to the image processing unit 8 via the main control unit 2.
  • the cross-section calculation unit 9B changes the order setting information of the processing order control unit 7.
  • the changed order setting information is set so that the order of noise reduction processing on the specific surface is last.
  • the cross section calculating unit 9B also changes the setting for the cross section on which the first noise reduction process is performed in the order setting information of the processing order control unit 7.
  • in order setting information information for defining a specific surface specified by coordinates and the order of processing are stored in association with each other.
  • the image processing unit 8 receives the order setting information from the processing order control unit 7, determines the cross section specified by the coordinates and the order based on the setting information, and performs noise reduction processing. To start.
  • FIGS. 9 and 10 are flowcharts showing a series of operations of the image processing apparatus according to the third embodiment.
  • An operator such as a doctor inputs identification information or the like for identifying volume data through the operation unit 5 of the image processing apparatus 1.
  • the identification information is an image ID, a patient ID, an examination ID, and the like.
  • the main control unit 2 sends the identification information and the like input from the operation unit 5 to an external device (such as the image storage device 30) that stores the target volume data via the transmission / reception unit 3.
  • the external device such as the image storage device 30 receives the identification information and sends the corresponding volume data to the image processing device 1.
  • the main control unit 2 of the image processing apparatus 1 temporarily stores the volume data in the storage unit 6 or the like.
  • Step 22> The main control unit 2 sends the volume data once stored in S11 to the specifying unit 9A.
  • the specifying unit 9A detects whether there is a voxel corresponding to the pixel value for each structure registered in the feature point setting information from each voxel of the volume data.
  • the specifying unit 9A determines whether a plurality of voxel groups (feature points) corresponding to pixel values corresponding to any of the various registered structures are detected.
  • Step 24> As a result of the determination in S23, when the specifying unit 9A determines that there are a plurality of voxel groups (feature points) corresponding to the pixel values of the feature point setting information, the coordinate position of those voxel groups is determined as the coordinate position of the feature point.
  • the specifying unit 9A obtains a cross section closest to each coordinate position as the specific surface.
  • the cross-section calculation unit 9B obtains the specific plane specified in S24 and two cross-sections that include the voxel at the center position of the specific plane and are orthogonal to the cross-section and orthogonal to each other.
  • the cross section calculating unit 9B changes the order setting information of the processing order control unit 7 so that the order of the noise reduction processing for the specific surface specified in S24 is last.
  • Step 27 The image processing unit 8 starts noise reduction processing based on the order setting information. Of the three orthogonal cross sections specified by the cross section calculating unit 9B, the cross section specified in S24 is finally subjected to noise reduction processing.
  • the orientation of the stent is identified, and any three orthogonal cross sections to which noise reduction processing is applied are determined so as to suppress blurring of the struts.
  • the present invention is not limited thereto, and may include means for appropriately identifying three orthogonal cross sections with respect to a head medical image such as a head X-ray CT image.
  • the identifying unit 9A recognizes an ear that is a protrusion structure, and further recognizes an eye socket that is the largest hole in the skull structure, thereby identifying a surface that is substantially an axial surface.
  • the specifying unit 9A specifies the sagittal plane as a plane that passes through the midpoint of the two orbits and the midpoint of the two ears and is perpendicular to the identified plane. Further, the specifying unit 9A can identify the coronal plane as a plane perpendicular to the axial plane and the sagittal plane. According to such a configuration, even if it is difficult to face the front depending on the patient's condition, the axial, coronal, and sagittal planes are identified from the image, so that the sagittal, coronal, and axial planes are appropriate. The noise reduction processing can be performed in a proper order.
  • the identified three orthogonal cross sections may coincide with the three orthogonal cross sections of the volume data.
  • reconstruction may be performed so that the identified three orthogonal cross sections coincide with the three orthogonal cross sections of the volume data.
  • the image processing apparatus 1 is configured to perform noise reduction processing on three orthogonal cross sections in volume data. Therefore, the amount of processing can be suppressed and the time for noise reduction processing can be reduced. The blur of the edge portion of the structure of interest in the cross section is prevented.
  • the noise reduction processing when noise reduction processing is first performed on a cross section that represents the inclination of a feature point, the noise reduction processing reaches the entire volume data, which may cause a reduction in spatial resolution of a cross section orthogonal to the cross section related to the processing. .
  • a plurality of feature points are detected from the volume data, and a specific surface is obtained. Furthermore, three orthogonal cross sections including the specific surface are specified. Furthermore, the specific surface among the three orthogonal cross sections specified is set last as the noise reduction processing order. Therefore, since the cross section having the feature point of the stent marker is smoothed last, it is possible to suppress the blur of the strut in the noise reduction process.
  • FIG. 11 is a flowchart showing a series of operations of the image processing apparatus according to the fourth embodiment.
  • 12A and 12B are schematic diagrams illustrating the concept of the range of peripheral pixels.
  • the fourth embodiment includes parts common to the first to third embodiments, but only the parts of the fourth embodiment that are different from the above embodiment will be described below. The basic part will be described based on the first embodiment among the first to third embodiments.
  • An operator such as a doctor inputs identification information or the like for identifying volume data through the operation unit 5 of the image processing apparatus 1.
  • the identification information is an image ID, a patient ID, an examination ID, and the like.
  • the main control unit 2 sends the identification information and the like input from the operation unit 5 to an external device (such as the image storage device 30) that stores the target volume data via the transmission / reception unit 3.
  • the external device such as the image storage device 30 receives the identification information and sends the corresponding volume data to the image processing device 1.
  • the main control unit 2 of the image processing apparatus 1 temporarily stores the volume data in the storage unit 6 or the like.
  • the image processing unit 8 sets the 11 ⁇ 11 range of the coronal plane and the 11 ⁇ 11 range of the sagittal plane (see FIG. 12B) in the volume data as peripheral pixels for calculating the similarity. Next, the similarity between the 3 ⁇ 3 ⁇ 3 (see FIG. 12A) voxel region and the surrounding pixels is obtained. The image processing unit 8 further adjusts the weight to be added based on the obtained similarity, and performs processing on the coronal plane and the sagittal plane at once by adding peripheral pixels based on the weight.
  • the image processing apparatus 1 is configured to perform noise reduction processing on three orthogonal cross sections in volume data. Therefore, the amount of processing can be suppressed and the time for noise reduction processing can be reduced. The blur of the edge portion of the image in the cross section is prevented.
  • a noise reduction process is performed by adding a region obtained by synthesizing a coronal section and a sagittal section, and then the noise reduction process is performed on an axial section. Accordingly, since the coronal section and sagittal section can be filtered at a time, the amount of calculation is reduced. As a result, the processing time can be shortened.
  • the specifying unit 9A corresponds to an example of a “feature point calculating unit”.
  • the first to fourth embodiments can be combined as appropriate.
  • the configuration in which the image processing apparatus 1 is connected to the image acquisition apparatus 20A and the like via a network has been described, but an external apparatus disposed around the image acquisition apparatus 20A, the image acquisition apparatus 20B, the image acquisition apparatus 20C, and the like. You may comprise as. Further, it may be a part of the image acquisition device 20A, the image acquisition device 20B, the image acquisition device 20C, or the like.
  • FIGS. 13A and 13B are schematic diagrams showing the relationship between frames acquired with time.
  • the fifth embodiment includes parts common to the first to fourth embodiments, but only the parts of the fifth embodiment that are different from the above embodiment will be described below. The basic portion will be described based on the first embodiment among the first to fourth embodiments.
  • the medical image data is volume data
  • the medical image data is described as a plurality of frame groups generated according to the time change.
  • This medical image data is acquired by, for example, scanning the same part of the subject continuously or intermittently.
  • Each frame in the medical image data is a two-dimensional image.
  • the configuration of the image processing apparatus 1 has been described.
  • an X-ray diagnostic apparatus (not shown) will be described as an example of a medical image diagnostic apparatus.
  • the imaging target of the subject is fixed and fluoroscopy is performed.
  • fluoroscopy X-ray transmission data relating to the imaging target of the subject is detected, and a plurality of X-ray image frames having different time phases on a predetermined time axis are generated by a generation unit (not shown).
  • a plurality of frames t 1 to t n of the X-ray image relating to the subject's head are generated.
  • a blood vessel image of the head is drawn in each of the frames t 1 to t n of the X-ray image relating to the head of the specimen.
  • the traveling direction of the blood vessels shown in the frames t 1 to t n of the X-ray image of the head corresponds to the vertical direction (y direction) in the figure.
  • the specifying unit of the X-ray diagnostic apparatus estimates the traveling direction of the blood vessel based on the target portion of the X-ray image, and finally performs noise reduction processing in a direction orthogonal to the traveling direction.
  • the traveling direction of the blood vessels shown in the frames t 1 to t n of the X-ray image (medical image data) is the vertical direction (y direction) in the figure, and therefore a specific unit (not shown) ) Is the last noise reduction process in the direction orthogonal to the main traveling direction of the blood vessel, that is, in the left-right direction (see FIG. 13A).
  • a plurality of frames t 1 to t n of the X-ray image relating to the abdomen of the subject are generated.
  • an abdominal blood vessel image is drawn in each of the frames t 1 to t n .
  • the traveling direction of the blood vessels shown in the frames t 1 to t n of the X-ray image of the abdomen corresponds to the horizontal direction (x direction) in the figure.
  • the traveling direction of the blood vessel shown in each of the frames t 1 to t n is the left-right direction (x direction) in the figure, and therefore the specifying unit is orthogonal to the main traveling direction of the blood vessel.
  • the order of noise reduction processing is the last in the direction, that is, the vertical direction (see FIG. 13B).
  • ⁇ Time direction> As shown in FIGS. 13A and 13B, in the fifth embodiment, a plurality of frames t 1 to t n of X-ray images of different time phases on a predetermined time axis are generated. In the fifth embodiment, noise reduction processing is performed between corresponding positions in the frames t 1 to t n .
  • Noise may also be included in each of the common positions of the frames t 1 to t n . Therefore, in the X-ray diagnostic apparatus of the fifth embodiment, the noise reduction process is performed based on the pixel value at the common position of the plurality of frames t 1 to t n .
  • the X-ray diagnostic apparatus identifies corresponding pixels in frames t 1 to t n of different time phases on a predetermined time axis.
  • a moving part such as the heart
  • there is a body movement of the subject there is a body movement of the subject.
  • the same structure is not necessarily shown at the same coordinate position of each frame. Therefore, alignment may be performed between the frames t 1 to t n .
  • An image processing unit (not shown) of the X-ray diagnostic apparatus obtains a difference between pixel values of each frame.
  • the image processing unit changes the weighting according to the obtained difference.
  • the image processing section based on the weighting using a common position of the plurality of frames, performing noise reduction processing for a given frame t alpha.
  • the image processing unit when displaying a fluoroscopic image in real time, performs noise reduction processing using a frame in a time phase before the processing target frame.
  • the noise reduction process when the noise reduction process at t 4 is performed, the noise reduction process is performed using frames t 1 to t 3 acquired before that.
  • the noise reduction processing using the frames t 1 to t 3 is less than the number of frames to be subjected to normal noise reduction processing. This is because using frames t 5 to t n after the target frame t 4 for noise reduction processing or increasing the number of frames to be subjected to noise reduction processing may impair real-time performance.
  • the number of frames used for noise reduction processing is set in advance.
  • the image processing unit is not limited to the frame before the target frame but the frame after the target frame in order to improve the accuracy of the noise reduction processing. May be used.
  • the image processing unit can use all the frames t 1 to t n included in the medical image data.
  • the direction in which noise reduction processing is performed can be defined as three directions including not only the vertical and horizontal directions of each frame but also the time direction.
  • the similarity between pixels tends to be high. Also, the similarity between pixels varies depending on the characteristics and state of the target object. From these tendencies, the order of the noise reduction processing by the image processing unit may be changed depending on the characteristics and state of the target focused by the surgeon.
  • the X-ray diagnostic apparatus is configured to perform noise reduction processing in each of three directions orthogonal to each other in the noise reduction processing of medical image data. Therefore, compared to a configuration in which noise reduction processing is performed two-dimensionally on each frame multiple times to obtain a noise reduction effect, blurring of the edge portion of the image in the frame is prevented, and as a result, the resolution of each frame Can be suppressed. Furthermore, compared with a configuration in which noise reduction processing is performed two-dimensionally on each frame a plurality of times, the noise reduction processing is not suitable for noise reduction processing between frames of different time phases and suppresses a decrease in resolution. It is possible to avoid the situation.
  • the order in which noise reduction processing is performed in three directions including the time direction and two directions orthogonal to each frame is set in advance.
  • the sixth embodiment includes parts common to the first to fifth embodiments, but only the parts of the sixth embodiment that are different from the above embodiment will be described below.
  • the basic portion will be described based on the first embodiment among the first to fifth embodiments.
  • Medical image data is generated based on data acquired based on scan conditions (imaging conditions, fluoroscopic conditions, etc.) set for each part of the subject.
  • scan conditions imaging conditions, fluoroscopic conditions, etc.
  • the focus size, the region of interest, and the like are set as scan conditions according to the target region and the inspection purpose.
  • image processing conditions are set corresponding to the scanning conditions.
  • the image processing conditions include setting the order of noise reduction processing for each direction of medical image data. A combination of this scan condition and image processing condition is referred to as a “protocol”.
  • the target region is “head” and the examination purpose is “intervention”.
  • the main traveling direction of the blood vessel of the target region is the vertical direction with respect to the standing subject. Therefore, as the order of the noise reduction processing in the image processing conditions, the time direction is set to the first, the direction corresponding to the main running direction of the blood vessel of the target site is set to the second, and the last is set to the direction orthogonal to the running direction.
  • the image processing unit of the image processing apparatus or the X-ray diagnostic apparatus performs noise reduction processing on the medical image data according to the set order.
  • the order of noise reduction processing in the image processing conditions is set so that the direction orthogonal to the direction corresponding to this direction is the last.
  • the image processing unit of the image processing apparatus or the X-ray diagnostic apparatus performs noise reduction processing on the medical image data according to the set order.
  • the image processing unit of the image processing apparatus or the X-ray diagnostic apparatus performs a noise reduction process in each of three different directions.
  • the image processing unit can perform noise reduction processing in two directions among three different directions. In the direction in which the similarity of pixels in the medical image data tends to be low, noise may be reduced depending on the result of noise reduction processing in the other two directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 画像のぼけを抑制しつつノイズを低減し、なおかつノイズ抑制における計算量が増大してしまう事態を防止することができる画像処理装置を提供することにある。画像処理装置は、取得部とフィルタ処理部とを備える。取得部は医用画像データを取得する。フィルタ処理部は、医用画像データにおける異なる3方向のうち、少なくとも2方向に対し、設定された順序でノイズ低減処理を行う。

Description

画像処理装置、画像処理方法およびX線診断装置
 この発明の実施形態は、画像のノイズの低減にかかる画像処理装置、画像処理方法およびX線診断装置に関する。
 現在、画像処理技術は、様々な分野で利用されるようになっている。
 画像処理は、例えば、ビデオレコーダやデジタルカメラ等で取得される画像の劣化やその改質等に対処するために行われる。また画像処理は、構造物が設計通りに製造されているかを検査するために、構造物のパターンや構造そのものを明瞭に把握することを目的として行われる場合がある。
 医療機関では、医用画像診断装置を用いて被検体内の透視画像、断層画像、血流など、被検体内の組織の情報を取得する。医用画像診断装置では、取得された組織の情報を画像化し医用画像を生成する。医療機関では、この医用画像により検査や診断が行われている。またX線CT(X-ray Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、超音波診断(Ultrasound diagnostic)装置、X線診断装置等の種々の医用画像診断装置において、医用画像を生成するために様々な画像処理が施されている。血流ないし造影剤流の描出、あるいは病変部抽出や臓器等の輪郭抽出等を施すことについては、その効用が広く認められている。
 画像処理には、ノイズ抑制技術、特徴抽出技術、パターン認識技術等の各種要素技術等が用いられる。これらの技術は、単独で、または適宜組み合わせて利用される。なお、このような要素技術の中で、画像に含まれるランダムなノイズを低減する技術は、撮像や再構成等した物体をより鮮明に再現するために利用される。
 しかしながら、従来の画像処理技術、とりわけノイズ低減技術には、更なる改良が求められている。例えば、ノイズ低減技術としては、いわゆる「平滑化」が広く知られている。この平滑化とは、ある画素(i,j)について入力値f(i,j)があったときに、この画素(i,j)の近傍の平均濃度を、当該画素(i,j)についての出力値g(i,j)とするものである。具体的には、上記画素(i,j)近傍のn×n画素を用いるとすれば、出力値g(i,j)は、
Figure JPOXMLDOC01-appb-M000001
 として求められる。ただし、上式(1)におけるa,b,c,dは整数である。また、上式(1)における1/(b-a+1)(d-c+1)は、いわゆる重みと呼ばれるものである。
 ところで一般に、分散がσ2であるような母集団の分布から、独立にとられたn個のサンプルの平均値を計算すると、当該平均値の分散がσ2/nになることが知られている。したがって、上記式(1)によれば、上記にいう「母集団」および「その分散σ2」が、それぞれ、各画素(i,j)の値に含まれ、ノイズに起因する成分を確率変数とした確率分布、およびその分散に該当する。すなわち、各画素の値f(i,j)におけるノイズの寄与分を低下させることができる。
 しかしながら、これを単純に適用するのみでは、いわゆる「エッジぼけ」が発生する。エッジぼけにより、画像の空間分解能が損なわれ、画像の全体がぼやけた感じになってしまう。上述した医用画像を例として言えば、細密な血管構造をなるべく少ないノイズで描写したいという場合にあっても、上記(1)式によるノイズ抑制処理によれば、本来、血管構造を描写していない画素をも含めて平均化(平滑化)が行われる。すなわち、ノイズは抑制されるにしても、血管構造を表すコントラストも平滑化によって低下してしまい、細密な血管構造の描写が困難になる場合がある。
 そこで、画像における画素ごとに、その画素の周辺画素との類似度を算出し、その算出された類似度に応じて、その画素と周辺画素とを重み付き平均する画像処理装置がある。その画像処理装置では、重み付き平均をその画素の画素値とする(特許文献1)。その画像処理装置では、ノイズを抑制するだけでなく画像のぼけを抑えることができる。
 また、医用画像取得装置のように対象物の3次元的な領域の情報を取得する場合がある。このように取得された3次元領域の情報に基づき、ボリュームデータが生成される。ボリュームデータはボクセル(画素)が3次元的に配列されてなり、各ボクセルには当該領域における物体の密度や濃度を示す情報(画素値等)が割り当てられる。
 また、画像処理装置においては上記のようにボリュームデータに対してノイズ抑制処理が行われている。例えば、ボリュームデータの任意の断面に対しノイズ抑制処理(2次元ノイズ抑制処理)をし、その処理内容を等方的に拡散してボリュームデータ全体のノイズ抑制処理を行う画像処理装置がある。この時拡散の程度は注目領域にエッジ情報を含むかどうかによって決定する。また他の例として、ボリュームデータ全体の各ボクセルに対して上記平均化等のノイズ抑制処理(3次元ノイズ抑制処理)を行う画像処理装置がある。
 また画像処理装置において、異なる時相で取得されたフレーム間でノイズ抑制処理が行われている。例えば、異なる時相で取得された各フレームにおいて対応する画素を用いてノイズ抑制処理が行われる。
特開2008-161693号公報
 ボリュームデータに対するノイズ抑制処理において、上記2次元ノイズ抑制処理では、ノイズ抑制が不十分となるおそれがある。また、ノイズ抑制処理を行った断面と異なる断面(例えば切断方向の違う断面)を観察した場合に、ノイズ抑制処理が適合しない場合がある。すなわち、人体が対象物である場合等、ボリュームデータにおいて各ボクセルが有する情報は一様になりにくい。つまり、ノイズ抑制処理にかかる断面と上記異なる断面とでは、各画素の画素値の分布の傾向等、性質が異なりやすい。その結果、ボリュームデータにおける所定断面に施したノイズ抑制処理があっても、例えばその断面と直交する断面には適合しないことがあり、その場合は画像における重要な領域についてアーチファクトのような信号を呈するおそれがある。異なる時相で取得されたフレーム間でノイズ抑制処理が行われる場合も同様である。
 また、より強いノイズ抑制効果を得るため、2次元ノイズ抑制処理を同じ断面に複数回行うと、当該断面における画像のエッジ部分が不鮮明になるおそれがある。これは上記異なる断面において顕著である。
 一方、3次元ノイズ抑制処理を行った場合、処理にかかる計算量が膨大となってしまう。例えば各ボクセルとその周囲のボクセルとの類似度により重み付き平均する場合等である。その結果、3次元ノイズ抑制処理により処理時間が増大するおそれがある。
 本実施形態は、上記事情に鑑みてなされたものであり、その目的とするところは、画像のぼけを抑制しつつノイズを低減し、なおかつノイズ抑制における計算量が増大してしまう事態を防止することができる画像処理装置を提供することにある。
 実施形態にかかる画像処理装置は、取得部とフィルタ処理部とを備える。取得部は医用画像データを取得する。フィルタ処理部は、医用画像データにおける異なる3方向のうち、少なくとも2方向に対し、設定された順序でノイズ低減処理を行う。
第1実施形態にかかる画像処理装置の概略構成を示すブロック図。 第1実施形態の画像処理装置におけるノイズ低減処理の一連の動作を表すフローチャート。 ボリュームデータにおけるフィルタ処理の順序の一例を示す概略図。 ボリュームデータにおけるフィルタ処理の順序の一例を示す概略図。 ボリュームデータにおけるフィルタ処理の順序の一例を示す概略図。 第2実施形態にかかる画像処理装置の概略構成を示すブロック図。 動脈瘤を含む血管と、その血管に挿入されたステントおよびステントマーカーの一例を示す概略図。 第2実施形態の画像処理装置の一連の動作を表すフローチャート。 動脈瘤を含む血管と、その血管に挿入されたステントおよびステントマーカーの一例を示す概略図。 第3実施形態にかかる画像処理装置の概略構成を示すブロック図。 第3実施形態の画像処理装置の一連の動作を表すフローチャート。 第3実施形態の画像処理装置の一連の動作を表すフローチャート。 第4実施形態の画像処理装置の一連の動作を表すフローチャート。 周辺画素の範囲の概念を示す概略図。 周辺画素の範囲の概念を示す概略図。 時間変化にともなって取得された各フレームの関係を示す概略図。 時間変化にともなって取得された各フレームの関係を示す概略図。
 図1~図13Bを参照して、第1実施形態~第6実施形態にかかる画像処理装置について説明する。
[第1実施形態]
 第1実施形態にかかる画像処理装置につき、図1~図3Cを参照して説明する。図1は、第1実施形態にかかる画像処理装置1の概略構成を示すブロック図である。第1実施形態にかかる画像処理装置1について、医用画像ワークステーションを一例として説明する。第1実施形態は、画像処理装置1が医用画像にかかるボリュームデータを取得し、そのボリュームデータにおいて互いに交わる3断面(直交3断面等)に対し、あらかじめ設定された順序でノイズ低減処理を行うものである。なお、第1実施形態の画像処理装置1は、あらかじめ画像取得装置20A~画像取得装置20Cのいずれかにより取得され、画像保管装置30に保管されたボリュームデータを取得する構成である。ただし、画像処理装置の構成の他の例として、後述の第4実施形態のように、被検体の体内組織の情報の収集、再構成処理、ボリュームデータの生成を行うものであってもよい。
(画像処理装置と外部装置の概略構成)
 図1に示すように、第1実施形態の画像処理装置1は、主制御部2、送受信部3、表示部4、操作部5、記憶部6、処理順制御部7および画像処理部8を有する。また、ネットワークを介して、画像処理装置1と複数の画像取得装置20A、画像取得装置20B 、画像取得装置20C…画像取得装置20nが接続されている。さらに画像処理装置1は、ネットワークを介して画像保管装置30に接続されている。画像処理装置1は、主制御部2の指示信号により送受信部3を介して画像保管装置30等からボリュームデータを取得する。なお、図1においては一例として画像取得装置20A、画像取得装置20B、画像取得装置20Cおよび画像保管装置30がネットワークに接続されているが、各装置の数は任意に設定することが可能である。なお、以下の例において、画像取得装置20A等は被検体の体内組織の情報の収集等を行う医用画像の画像取得装置として説明される。例えば、X線画像診断装置、X線CT装置、MRI装置、超音波診断装置等である。
 また、画像保管装置30は、例えばPACS(Picture Archiving and Communication System)によるものである。例えば画像保管装置30は、画像データベースを有する画像管理装置である。画像管理装置はプログラムにより、画像データベースの医用画像データを管理する。他の例として画像保管装置30はネットワークアタッチドストレージ(NAS;Network Attached Storage)等の医用画像データを記憶するファイルサーバとしてもよい。
 <制御部>
 主制御部2は例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等で構成される。ROMには、あらかじめ制御プログラムが記憶され、CPUが当該制御プログラムを適宜RAM上に展開することにより、主制御部2として機能する。例えば、主制御部2は操作部5からの操作信号を受け、画像保管装置30からボリュームデータの取得要求を実行する。また主制御部2は、表示部4による医用画像の表示にかかる制御を行う。また処理順制御部7から後述するノイズ低減処理にかかる設定情報を受け、ボリュームデータに対するノイズ低減処理にかかる制御を行う。主制御部2の制御に関し、詳しくは以下において記載する。
 <送受信部>
 送受信部3は、画像取得装置20A、画像取得装置20B 、画像取得装置20Cまたは画像保管装置30との間で、ボリュームデータをやり取りするためのインターフェースである。
 <表示部>
 表示部4は、CRT(Cathode Ray Tube)や、LCD(Liquid Crystal Display)、有機EL(OELD;Organic Electro-Luminescence Display)または、FED(Field Emission Display)等の任意の形態の表示デバイスによって構成される。表示部4は、主制御部2の制御を受けて各種の画面(表示画面S等)や画像(X線画像等)を表示する。
 <操作部>
 操作部5は、キーボード、マウス、トラックボール、ジョイスティック、コントロールパネル等の任意の形態の操作デバイスや入力デバイスによって構成される。実施された操作に基づいて操作部5が出力する操作信号は主制御部2に送られ、主制御部2はこの操作内容に対応する制御や演算を実行する。
<記憶部>
 記憶部6には、HDD(Hard Disk Drive)やSSD(Solid State Drive)等、任意の記憶媒体が用いられる。記憶部6には解析用のソフトウェアや画像保管装置30等から受けたボリュームデータ、その他、画像処理装置1の各機能を実行するためのプログラム等が記憶される。なお、記憶部6がボリュームデータを記憶せず、ボリュームデータが主制御部2のRAM等に一時的に記憶される構成であってもよい。
<処理順制御部>
 処理順制御部7は、画像処理部8によるノイズ低減の処理順を、あらかじめ設定された設定情報に基づいて制御する。本実施形態の一例においてはボリュームデータの直交3断面に対するノイズ低減処理の順序にかかる設定情報に基づいて画像処理部8を制御する。
<画像処理部>
 画像処理部8は、ボリュームデータにノイズ低減処理を実行する制御プログラム等により、例えばボリュームデータの任意の直交3断面にコヒーレントフィルタをかける(以下、「フィルタ処理」と記載することがある)。この処理の一連の動作について図2および図3A~図3Cを参照して説明する。図2は、第1実施形態の画像処理装置1におけるノイズ低減処理の一連の動作を表すフローチャートである。図3A~図3Cは、ボリュームデータにおけるフィルタ処理の順序の一例を示す概略図である。図3Aは、フィルタ処理の第1の順序としてサジタル面にコヒーレントフィルタの処理を実行する状態を概念的に示している。図3Bは、フィルタ処理の第2の順序としてコロナル面にコヒーレントフィルタの処理を実行する状態を概念的に示している。図3Cは、フィルタ処理の順序の最後として、アキシャル面にコヒーレントフィルタの処理を実行する状態を概念的に示している。
 なお、画像処理部8は、「処理部」の一例に該当する。またコヒーレントフィルタ処理およびフィルタ処理は、「ノイズ低減処理」の一例に該当する。
(動作)
 <ステップ01>
 医師等の操作者は、画像処理装置1の操作部5により、ボリュームデータを識別するための識別情報等を入力する。識別情報は、画像ID、患者ID、検査ID等である。主制御部2は、送受信部3を介し、対象のボリュームデータを記憶する外部装置(画像保管装置30等)に、操作部5から入力された識別情報等を送る。画像保管装置30等の外部装置は、識別情報を受けて対応するボリュームデータを画像処理装置1に送る。画像処理装置1の主制御部2は、当該ボリュームデータを記憶部6等に一旦記憶させる。
 <ステップ02>
 主制御部2は、S01で一旦記憶させたボリュームデータを画像処理部8に送る。画像処理部8は、例えば図3A~図3Cに示すように、ボリュームデータにおける直交3断面を特定する。直交3断面の特定は、例えばボリュームデータにおけるアキシャル方向の特定等による。また直交3断面は、例えばアキシャル面、コロナル面、サジタル面である。人の組織を示すボリュームデータであれば、アキシャル面は体軸方向に直交する断面である。コロナル面は、体軸方向に平行であって、人体を前後方向に(背面側と正面側に)分割するような断面である。サジタル面は人体を左右方向に分割するような断面であって、アキシャル面およびコロナル面とそれぞれ直交する。また、通常、直交3断面はそれぞれボリュームデータの中心位置を含むが、断面位置について他の設定をすることも可能である。
 また画像処理部8が直交3断面を特定することに対応して、処理順制御部7はあらかじめ設定されたノイズ低減処理の順序にかかる設定情報を、記憶部6または他の図示しない記憶部から読み出す。ここでノイズ低減処理の順序にかかる設定情報について説明する。第1実施形態の画像処理装置1は、ボリュームデータの直交3断面にノイズ低減処理を実行するものである。設定情報は、直交3断面それぞれに対し当該ノイズ低減処理を実行する順序についての情報である。設定情報は、ボリュームデータの性質により適宜設定変更が可能である。
 一例として、人体を対象とするボリュームデータに対するノイズ低減処理の設定情報がある。人体の各構造は、おおよそ体軸方向に隣接して類似しやすい傾向がある。言い換えれば、体内における、ある構造物に対し、体幅方向または体前後方向(胸から背へ向かう方向)に沿って隣接する構造は、おおよそ類似しない傾向がある。したがって、本実施形態のように断面方向が異なる直交3断面に対し、順番にそれぞれノイズ低減処理をかける場合、その順序を上記傾向に応じて設定することが有効となる場合がある。
 上記傾向に対応する設定について説明するために、まず、ノイズ低減処理をかける最初の断面がアキシャル面である場合が適切であるかについて説明する。アキシャル面には、体幅方向および体前後方向に隣接する構造物が示されるが、上記のように人体は、体幅方向および体前後方向に隣接する構造同士が類似しない傾向を有する。このような傾向を有するアキシャル面に先にノイズ低減処理(コヒーレントフィルタ等)が行われた場合、他の方向の断面については、類似しない構造物を示す画素同士に基づいて、平滑化されていく可能性がある。その場合、エッジの保存性が悪化するおそれがある。
 さらにそのノイズ低減処理の効果は、ボクセル全体に影響する。アキシャル面にノイズ低減処理を施した後、サジタル面およびコロナル面に対してノイズ低減処理をかけると、当該平滑化によりぼけが生じた構造物の画素に基づいてさらに平滑化が行われる。その結果、ボリュームデータ全体の空間分解能が損なわれる。その結果、そのボリュームデータに基づく画像は、ぼやけやすくなる。
 例えば、ノイズ低減処理完了後のボリュームデータに基づきアキシャル像を生成した場合、画像ぼけが大きくなるおそれがある。すなわち、最初のノイズ低減処理によりアキシャル面においてぼけが生じやすく、さらにその後のノイズ低減処理によりぼけが増す場合がある。その場合、アキシャル像にはノイズ低減処理における、類似しない構造物の画素同士の平滑化の影響が大きく現れる。
 これに対し、サジタル面(図3A参照)、コロナル面(図3B参照)は、体軸方向に平行な面であるため、これらに示される構造物同士は類似する傾向がある。したがって、まずアキシャル面にノイズ低減処理を施す場合より、サジタル面またはコロナル面の処理順序を先にする方が好ましい。すなわち、ノイズ低減処理の順序にかかる設定情報(以下、「順序設定情報」と記載することがある。)においては、アキシャル面が最後となるように設定されることが好ましい。また、ノイズ低減処理の前にあらかじめ、ボリュームデータにおけるサジタル面の状態、コロナル面の状態を操作者が予測できる場合があり、その場合は、最初にノイズ低減処理を行う断面を特定することが好ましい。したがって、画像処理装置1は、順序設定情報の修正を行うための画面データを記憶しておいてもよい。
 以上のことから次のことが導かれる。すなわち、ボリュームデータのように3以上の方向を有する医用画像データにおいて、ある1方向に沿った画素同士(所定断面の画素同士)の類似度が、他の方向に比べて低くなる傾向が見られる。そのような医用画像データに対し、少なくとも2方向以上についてノイズ低減処理を施す場合、類似度が低い方向以外の方向の断面について、先にノイズ低減処理を行うことが望ましい。言い換えると、画素同士の類似度が高い傾向がある方向について先にノイズ低減処理を施すことにより、後にノイズ低減処理を行う方向の断面においてぼけが生じるおそれを低減できる。このような観点を踏まえて、画像処理装置1の動作の説明を継続する。
 処理順制御部7は、読み出した設定情報を画像処理部8に送る。画像処理部8は、順序設定情報に基づき、現在のボリュームデータの向きを回転させる座標変換を行う必要があるかについて判断する。すなわち、画像処理部8によりノイズ低減処理をかけるボリュームデータの座標位置について、本実施形態ではアキシャル面(図3C参照)の位置で設定されているため、座標変換によりボリュームデータの回転が必要かどうか、順序設定情報における最初の断面の情報に基づいて判断が必要となる。なお、画像処理部8によりボリュームデータの直交3断面が特定されているので、処理対象のボリュームデータの向きは特定されている。
 判断の結果、回転が必要であると判断した場合、順序設定情報における断面とアキシャル面との位置関係に基づいて、回転方向を特定し、ボリュームデータをその方向に90°回転させる。例えば画像処理部8は、このような座標変換としてアフィン変換(Affine Transformation)を行う。なお、ここでのアフィン変換は拡大/縮小や鏡映等を含まなくてよい。図2の例では、ボリュームデータの座標変換により、サジタル面は、変換前のアキシャル面の位置に変位する。
 ただし、以上の座標変換を行わない構成とすることも可能である。例えば、画像処理部8によるノイズ低減処理についてのボリュームデータの座標位置を、順序設定情報により特定して変更することが可能であれば、上記S02の座標変換は実行されない。この場合はS02の代わりに、画像処理部8は、順序設定情報の最初の断面の座標位置を順序設定情報に基づいて特定する。
 <ステップ03>
 S02によりノイズ低減処理を行う座標位置に変位されたサジタル面に対し、ノイズ低減処理(例えばコヒーレントフィルタ)をかける。コヒーレントフィルタの概要について次に記載する。
 画像処理部8は、対象の断面における画素(「対象画素」とする)ごとに、周辺画素と似ているかどうかの類似度を設定に応じて求める。さらに画像処理部8は、求めた類似度合いによりコヒーレントフィルタのフィルタ係数を変化させる。例えば画像処理部8は、求めた類似度合いが高くなればなるほど、フィルタ係数を大きくしていく。同様に画像処理部8は、求めた類似度合いが低ければ低いほどフィルタ係数を小さくしていく。なお、直交3断面が512×512の画素により構成されている場合、対象画素に対する周辺画素の範囲の例は11×11である。さらに以下において、本例におけるコヒーレントフィルタの概念について説明する。
 画像処理部8は、対象の断面を構成する画素ごとの画素値(ベクトル値またはスカラー値)と、他の画素の画素値(「周辺画素」とする)間の適合度を定量化する。また、画像処理部8は、定量化された対象画素と周辺画素の適合度の大小を、閾値処理または複数段階の数値範囲に属するかの判断により求める。また、画像処理部8は、周辺画素の画素値を対象画素の画素値として利用する。このとき画像処理部8は、当該適合度が大きい場合には、当該周辺画素の寄与度を大きくする。同様に、当該適合度が小さい場合には、当該周辺画素の寄与度を小さくする。
 具体例として画像処理部8は、対象画素と周辺画素の適合度の関数である重み関数を、各周辺画素の画素値のそれぞれについて求められた適合度に作用させる。画像処理部8は、それにより各周辺画素の画素値の重みを決定する。また画像処理部8は、この重みを用いた周辺画素について画素値の重み付き平均を算出する。それにより、画像処理部8は、対象画素と周辺画素との適合度が大きい場合には、周辺画素の重みを大きくする。このようにして画像処理部8は、周辺画素の画素値の重み付き平均における寄与度を大きくして対象画素の画素値を構成する。同様に適合度が小さい場合には重みを小さくすることで、画像処理部8は、周辺画素の画素値の重み付き平均における寄与を小さくして対象画素の画素値を構成する。このような処理によれば、対象画素と「類似する」と判定される周辺画素を重視して対象画素の画素値を構成することになる。その結果、空間分解能を損なうことを抑制できる。なお、重み関数は、適合度に関する非負の単調増加関数とすることが可能である。
 <ステップ04>
 画像処理部8は、順序設定情報における次の断面とノイズ低減処理をするための座標位置との位置関係に基づいて、回転方向を特定し、ボリュームデータをその方向に90°回転させる。図2の例では、ボリュームデータの2回目の座標変換により、コロナル面が、変換前のサジタル面の位置に変位する。
 ただし、画像処理部8によるノイズ低減処理についてのボリュームデータの座標位置を、順序設定情報により特定して変更することが可能であれば、上記S04の座標変換は実行されない。この場合はS02の代わりに、画像処理部8は、順序設定情報に基づいて2番目の断面の座標位置を特定する。
 <ステップ05>
 S04によりノイズ低減処理を行う座標位置に変位されたコロナル面に対し、ノイズ低減処理(コヒーレントフィルタ)をかける。ここでのコヒーレントフィルタについては、S03の説明と同様である。
 <ステップ06>
 画像処理部8は、順序設定情報における次の断面とノイズ低減処理をするための座標位置との位置関係に基づいて、回転方向を特定し、ボリュームデータをその方向に90°回転させる。図2の例では、ボリュームデータの最後の座標変換により、アキシャル面が、変換前のコロナル面の位置に変位する。
 <ステップ07>
 S06によりノイズ低減処理を行う座標位置に変位されたアキシャル面に対し、ノイズ低減処理(コヒーレントフィルタ)をかける。ここでのコヒーレントフィルタについては、S03の説明と同様である。
 なお、以上においてはサジタル面、コロナル面、アキシャル面の順でノイズ低減処理を実行しているが、コロナル面、サジタル面、アキシャル面の順でノイズ低減処理を実行してもよい。ただし頭蓋内の構造を把握するためにはサジタル面、コロナル面、アキシャル面の順でノイズ低減処理を行うことが好適である。
 また、ボリュームデータを生成するためのデータ収集時(撮像時等)において、被検体の体軸が傾けられた状態で収集される場合がある。このような場合は、実際のアキシャル面に対し、なす角が最も近い面をアキシャル面と認識し、後は上記と同様に処理を行えばよい。
 さらに、直交3断面全てにフィルタ処理を行わなくてもよい。最終段階であるアキシャル面でのフィルタ処理は、ノイズ低減の効果として高くないことがある。一方で脳実質の灰白質や白質のようなノイズよりさらに低いコントラストに注目する場合、微弱なコントラストとノイズとを区別することが困難である。しかしサジタル面やコロナル面では微弱なコントラストを無視して重み付き平均を適応しても、フィルタ処理は類似構造が隣接しているため問題はない。しかしアキシャル面でのフィルタ処理では微弱なコントラストを抑える方向に働いてしまう。このような場合はアキシャル方向での処理を行わない方が望ましい。
 また、上記においてはコヒーレントフィルタの例を説明したが、ディフュージョンフィルタ(非等方拡散処理)を用いることも可能である。ディフュージョンフィルタとしては、適応加重非等方拡散(Adaptively Weighted Anisotropic Diffusion;AWAD)処理を用いることが可能である。適応加重非等方拡散処理は、様々なサイズの関連性のある生体組織の構造、またはこの構造の周囲のエッジを維持し、かつノイズを低減する点で有効である。
(作用・効果)
 以上説明した本実施形態にかかる画像処理装置1の作用および効果について説明する。
 本実施形態にかかる画像処理装置1によれば、ボリュームデータのノイズ低減処理において、直交3断面にノイズ低減処理を行う構成である。したがって、ボリュームデータの各ボクセルについて3次元的にノイズ低減処理を行う構成と比較して、処理量を抑制することができる。その結果、ボリュームデータのノイズ低減処理の時間を低減させることが可能である。
 また、ボリュームデータに対し、所定断面に2次元的にノイズ低減処理を複数回行い、ノイズ低減効果を得ようとする構成と比較して、当該断面における画像のエッジ部分のぼけが防止され、結果としてボリュームデータの空間分解能の低下を抑制することが可能である。さらに所定断面に2次元的にノイズ低減処理を複数回行う構成と比較して、所定断面に施したノイズ低減処理が、その断面と直交する断面に適合しないことによる、他の断面における空間分解能の低下を抑制できる。
 さらに本実施形態にかかる画像処理装置1では、直交3断面にノイズ低減処理を行う順序があらかじめ設定されている。また処理順制御部7において、人体を被検体として収集されたデータに基づくボリュームデータに対しては、アキシャル面にノイズ低減処理を行う順序が最後に設定されている。
 このような構成によれば、類似しない構造物を示す画素同士の平滑化による、ボリュームデータ全体の空間分解能の低下を抑制することが可能である。
[第2実施形態]
 次に、第2実施形態にかかる画像処理装置1について図4および図5を参照して説明する。図4は、第2実施形態にかかる画像処理装置1の一例を示す概略ブロック図である。図5は、動脈瘤を含む血管と、その血管に挿入されたステントおよびステントマーカーMの一例を示す概略図である。第1実施形態では、人体を対象とするボリュームデータにおいてノイズ低減処理の順序としてアキシャル面が最後となるように設定される。これに対し、第2実施形態によれば、ボリュームデータからステントマーカーM等の所定の特徴点を複数抽出し、それらの複数の特徴点を含む断面と最も近いアキシャル面、コロナル面またはサジタル面を特定する。さらにノイズ低減処理の順序として、その特定したアキシャル面、コロナル面またはサジタル面のいずれかが最後となるように設定される。
 図4に示すように、第2実施形態にかかる画像処理装置1は、主制御部2、送受信部3、表示部4、操作部5、記憶部6、処理順制御部7、画像処理部8および特定部9Aを有する。主制御部2、送受信部3、表示部4、操作部5および記憶部6については、第1実施形態と同様である。
(特定部)
 第2実施形態にかかる特定部9Aについて説明する。対象物の内部組織の状態を示すボリュームデータには、特徴的な組織自体、またはその組織に関係する特徴的な構造物が含まれることがある。特定部9Aは、ボリュームデータにおけるその構造物の座標位置(以下、「特徴点」と記載することがある。)を求める。さらに特徴点が複数ある場合、特定部9Aは、各特徴点の傾きを表す断面を特定する。また特定部9Aは、特徴点設定情報を用いて特徴点を特定する。次にこの特徴点設定情報について説明する。なお、各特徴点の傾きを表す断面は、ボリュームデータに含まれる2以上の特徴点から最も近い断面と推定される面として求められる。またこの面は、以下において「特定面」と記載されることがある。
 <特徴点設定情報>
 画像処理装置1の図示しない記憶部等には、ボリュームデータ内の特徴点となりうる構造物とその構造物が示す画素値とが対応付けて記憶されている。この情報を以下、「特徴点設定情報」と記載する。特徴点設定情報の例として、所定の性質を有するステントマーカーM(X線不透過の金属等)が挙げられる。ボリュームデータが示す対象物の内部には、ステントが含まれている場合がある。血管のインターベンション治療に用いられるステントの両端には、ステントマーカーMが例えば4つずつ設けられる。
 医用画像の対象物の組織の情報の収集方法(X線、超音波、核磁気共鳴等)に対し、ステントマーカーMのように所定の性質(X線不透過等)を有する構造物は、医用画像において所定の画素値を示す。
 したがって特徴点の特定のため、特徴点設定情報において、対象物が標準的に有する構造物の種類または対象物(血管等)に挿入された構造物(ステントのステントマーカーM等)の種類と、当該各構造物の種類に応じた構造物データとが対応付けられている。構造物データとは、医用画像データの構造物を示す画素が通常有する画素値、体積、形状などの情報である。あるいは特徴点設定情報において、当該特定の構造物の種類と、その構造物を示す画素の画素値の一般的な数値範囲が対応付けられていてもよい。
 特定部9Aは、ボリュームデータから、特徴点設定情報に登録された各種構造物の画素値に対応するボクセルがあるか検出する。さらに抽出された構造物の体積、形状などを利用して画素値が類似する構造、例えば動脈瘤へ挿入されたコイル、歯への金属挿入物などを候補から除去する。検出の結果、特定部9Aは、特徴点設定情報に登録された構造物が複数あった場合には、それらの各構造物の座標位置を記憶させる。また、特定部9Aは、このように記憶させた同一(または同種)の構造物の各座標位置からの距離の平均が最小となるような断面を、特定面として求める。
 このようにして、特定部9Aによって各特徴点群に最も近いと推定される断面が特定面として求められる。
 例えば、4つのステントマーカーMがあり、それぞれの座標が、(X ,Y ,Z)(i=1~4)である場合、断面は下記式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 これにしたがって、各特徴点群に最も近いと推定される断面、すなわち特定面は、以下の式(3)を最小化することで求めることができる。
Figure JPOXMLDOC01-appb-M000003
 なお、ステントの一端のステントマーカーMおよび他端のステントマーカーMのように、離れた位置に特徴点が検出される場合がある。このように、特徴点の各座標がボリュームデータにおいて所定の長さ以上離れている場合、特定部9Aは、その離れた特徴点を除外する構成とすることも可能である。また、ある構造物の長手方向の一端に、例えば4つの特徴点があり、かつその特徴点それぞれから離れた当該構造物の他端にも1以上の特徴点がある場合、特定部9Aは、各特徴点の座標に基づいて、当該離れた特徴点を除外し、近接した特徴点のみを用いて断面を求める。
 <断面の特定>
 次に特定部9Aは、特定した断面と最も近い角度を有するアキシャル面、コロナル面またはサジタル面を特定する。特定の例として、特定部9Aは、例えば特定した断面の法線単位ベクトルと、アキシャル面、コロナル面およびサジタル面それぞれの法線単位ベクトルとの内積を計算する。さらに特定部9Aは、計算された内積の値が小さい順番を特定する。
 他の例としては、内積を計算する代わりに特定した断面と、アキシャル面、コロナル面またはサジタル面とのなす角を計算しても良い。この場合なす角が大きい順番を特定する。なお、なす角度は鋭角となる方が選択される。
 また他の例として、特定部9Aが各特徴点に最も近い断面を求めない構成であってもよい。例えば特定部9Aは、各グループの特徴点の座標位置に基づき、各特徴点からの距離の分散が最も大きくなる面(アキシャル面、コロナル面またはサジタル面等)を、順番に特定してもよい。
 特定部9Aはこのようにして、各方向の断面(アキシャル面、コロナル面およびサジタル面等)に対する、ノイズ低減処理の順序を設定する。本実施形態では、処理順制御部7における順序設定情報が変更される。
 また、特定部9Aが画素値でなくパターン認識等、ボリュームデータにおける各構造物の形状解析によって、形態的な特徴点を特定する構成とすることも可能である。この構成については変形例において説明する。
(動作)
 次に、第2実施形態の画像処理装置1の動作について、図6を参照して説明する。図6は、第2実施形態の画像処理装置の一連の動作を表すフローチャートである。
 <ステップ11>
 医師等の操作者は、画像処理装置1の操作部5により、ボリュームデータを識別するための識別情報等を入力する。識別情報は、画像ID、患者ID、検査ID等である。主制御部2は、送受信部3を介し、対象のボリュームデータを記憶する外部装置(画像保管装置30等)に、操作部5から入力された識別情報等を送る。画像保管装置30等の外部装置は、識別情報を受けて対応するボリュームデータを画像処理装置1に送る。画像処理装置1の主制御部2は、当該ボリュームデータを記憶部6等に一旦記憶させる。
 <ステップ12>
 主制御部2は、S11で一旦記憶させたボリュームデータを特定部9Aに送る。特定部9Aは、ボリュームデータから、特徴点設定情報に登録された、構造物の種類ごとの画素値に対応するボクセルを検出する。
 <ステップ13>
 検出の結果、特定部9Aは、特徴点が複数検出されたかについて判断する。特徴点は、特徴点設定情報に登録された各種構造物の画素値等に対応する構造物である。
 <ステップ14>
 S13の判断の結果、特定部9Aは、特徴点が複数あったと判断した場合、特徴点の座標位置を記憶部6に記憶させる。さらに特定部9Aは、例えば当該各座標位置から最も近いと推定される断面(特定面)を求める。
 <ステップ15>
 特定部9Aは、アキシャル面、コロナル面およびサジタル面のそれぞれと、S14で特定した断面との傾きを求める。特定部9Aは、直交3断面のうち、特定面との傾きが大きい順番を同定する。すなわち、特定部9Aは、直交3断面のうち、特定面と最も遠い面を求める。
 <ステップ16>
 特定部9Aは、S15で同定した傾きの大きい順番に基づき、ノイズ低減処理の順序を順序設定情報で変更する。例えば傾きが大きい順番にノイズ低減処理を行う。
(作用・効果)
 以上説明した第2実施形態にかかる画像処理装置1の作用および効果について説明する。
 本実施形態にかかる画像処理装置1は第1実施形態と同様に、ボリュームデータにおける直交3断面にノイズ低減処理を行う構成である。したがって、処理量が抑制されてノイズ低減処理の時間を低減させることが可能である。また当該断面における画像のエッジ部分のぼけが防止される。また、本実施形態によれば、医用画像データにおける異なる3方向のうち、少なくとも2方向にノイズ低減処理を施す場合、各方向へのノイズ低減処理による、他の断面における空間分解能の低下を抑制することが可能である。例えば、特徴点の傾きを表す断面(特定面)と最も近い直交3断面(例えば、アキシャル面)に最初にノイズ低減処理を行った場合、そのノイズ低減処理がボリュームデータ全体におよぶことで、当該処理にかかる断面と直交する断面(例えば、サジタル面、コロナル面)の空間分解能の低下が生じうる。この点、本実施形態によれば、上記構成により当該空間分解能の低下を抑制することが可能である。
 また第2実施形態では次のような効果を有する。
 図7に示すように、血管とステントの間にできる隙間が大きくなると、凝固した血液により血栓が生じるおそれがある。したがって、ステントが血管に対して十分に広がっているかを画像により把握可能になっている必要がある。ただし、ノイズ低減処理によってストラットがぼけてしまうと、ユーザにとって、ステントと血管壁との関係が把握し難くなる。ステントは、その軸方向に直交する断面において、画素間が類似しない傾向にある。したがって、軸方向に直交する断面に対し先にノイズ低減処理を施すと、画像においてストラットがぼけてしまう。
 この点、第2実施形態にかかる画像処理装置1では、ボリュームデータから特徴点を検出し、直交3断面のうち、検出した複数の特徴点を含む面に対する傾きが最も大きいと判断された順番にノイズ低減処理順を設定する。したがって、ストラットがぼけ難い順にノイズ低減処理を施すので、最終的な処理画像においてストラットのぼけをもっとも少なくすることができる。
(変形例)
 次に、第2実施形態の変形例について説明する。上述の通り、特定部9Aは画素値に基づきボリュームデータの特徴点を検出する構成である。しかしながらボリュームデータにおける各構造物の形状解析によって、形態的な特徴点を特定する構成とすることも可能である。
 例えば特定部9Aは、ボリュームデータに示される各部分のパターン認識を行う。この例において画像処理装置1には、特徴点設定情報として、対象物の各構造物の形態のパターンが複数登録されている。特定部9Aは、互いに隣接するボクセルのうち画素値が同一または対応する所定領域のボクセル群を、ボリュームデータから抽出する。なお、「画素値が対応する」とはボクセル同士の画素値の差が所定数値範囲内に含まれることを示す。また特定部9Aは、抽出結果と、登録されたパターンとを比較する。特定部9Aは、登録されたパターンと相関する構造物をボリュームデータから検出する。これにより、特定部9Aはボリュームデータにおける特徴点を特定し、そのボクセルの座標を記憶する。
 なお、検出においては、ボリュームデータにおける上記所定領域のボクセル群と、あらかじめ特徴点設定情報として登録された特定構造物パターンとの類似度、相関度、一致率などを求める。当該パターン認識の結果、特定構造物パターンとボクセル群との類似度があらかじめ設定した値以上であれば、特定部9Aは、当該ボリュームデータにおける所定領域のボクセル群を、特徴点として判断する。
 この変形例においても第2実施形態と同様の効果を奏する。
[第3実施形態]
 次に、第3実施形態にかかる画像処理装置1について図8および図9を参照して説明する。図8は、第3実施形態にかかる画像処理装置1の一例を示す概略ブロック図である。第2実施形態は、特定部9Aが各特徴点から最も近い特定面を求めると、その特定面とアキシャル面、コロナル面またはサジタル面とのなす角を計算する構成であった。第2実施形態では、さらに特定部9Aが、特定した直交3断面のいずれかに対するノイズ低減処理の順序を、なす角が大きい順番に応じて順序設定情報を変更する。これに対し、第3実施形態は特定部9Aが特定面を求めると、断面算出部9Bが、座標位置を基準にその特定面と、互いに直交する2断面を求める。
 図8に示すように第3実施形態にかかる画像処理装置1は、主制御部2、送受信部3、表示部4、操作部5、記憶部6、処理順制御部7、画像処理部8、特定部9A、断面算出部9Bを有する。主制御部2、送受信部3、表示部4、操作部5および記憶部6については、第1実施形態と同様である。以下、第3実施形態につき断面算出部9Bを主として説明する。
(特定部)
 特定部9Aが第2実施形態と同様に特定面を求めると、第3実施形態では、特定面を規定するための情報を求める。この情報は例えば特定面の範囲を示す座標等である。特定部9Aは特定面を規定するための情報を断面算出部9Bに送る。ここで断面算出部9Bに送られる例えば座標情報は、断面の各端部(角部分)にあたるボクセルの座標、断面に含まれる異なる2点のボクセルの座標、断面の少なくとも一辺の座標、特定面の外縁の座標等、特定面を規定しうる情報であればどのような情報であってもよい。
(断面算出部)
 断面算出部9Bは、特定部9Aから特定面を規定するための情報を受けると、座標から特定面を求め、さらに特定面を1断面とした直交3断面を求める。例えば断面算出部9Bは、特定面における中心位置を求める。さらに断面算出部9Bは、特定面の中心位置のボクセルを含み、特定面と直交し、さらに互いに直交する2断面を求める。なお、当該2断面は、特定面と直交し、かつ互いに直交していれば、当該断面の中心位置のボクセルを含まなくてもよい。また直交断面は複数存在するため、その中の一つを例えば構造物の位置の一つを用いて同定しても良い。
 断面算出部9Bは、求めた直交3断面の座標情報を、主制御部2を介して画像処理部8に送る。また、断面算出部9Bは、処理順制御部7の順序設定情報を変更する。変更された順序設定情報においては、特定面のノイズ低減処理の順序が最後となるように設定される。また、断面算出部9Bは、処理順制御部7の順序設定情報における最初のノイズ低減処理を行う断面についても、設定を変更する。なお、第3実施形態の場合は、順序設定情報において、座標により特定される特定面を規定するための情報と処理の順序とが対応付けられて記憶される。
(画像処理部)
 画像処理部8は、他の実施形態と同様に、処理順制御部7から順序設定情報を受け、当該設定情報に基づいて、座標により特定される断面とその順序とを決定し、ノイズ低減処理を開始する。
(動作)
 次に、第3実施形態の画像処理装置1の動作について、図9および図10を参照して説明する。図9および図10は、第3実施形態の画像処理装置の一連の動作を表すフローチャートである。
 <ステップ21>
 医師等の操作者は、画像処理装置1の操作部5により、ボリュームデータを識別するための識別情報等を入力する。識別情報は、画像ID、患者ID、検査ID等である。主制御部2は、送受信部3を介し、対象のボリュームデータを記憶する外部装置(画像保管装置30等)に、操作部5から入力された識別情報等を送る。画像保管装置30等の外部装置は、識別情報を受けて対応するボリュームデータを画像処理装置1に送る。画像処理装置1の主制御部2は、当該ボリュームデータを記憶部6等に一旦記憶させる。
 <ステップ22>
 主制御部2は、S11で一旦記憶させたボリュームデータを特定部9Aに送る。特定部9Aは、ボリュームデータの各ボクセルから、特徴点設定情報に登録された各種構造物ごとに、その画素値に対応するボクセルがあるか検出する。
 <ステップ23>
 検出の結果、特定部9Aは、登録された各種構造物のいずれかに対応する画素値に対応する複数のボクセル群(特徴点)を検出したか判断する。
 <ステップ24>
 S23の判断の結果、特定部9Aは、特徴点設定情報の画素値に該当する複数のボクセル群(特徴点)があったと判断した場合、それらのボクセル群の座標位置を、特徴点の座標位置として記憶させる。さらに特定部9Aは、当該各座標位置に最も近い断面を、特定面として求める。
 <ステップ25>
 断面算出部9Bは、S24で特定された特定面と、特定面の中心位置のボクセルを含み、当該断面と直交し、かつ互いに直交する2断面とを求める。
 <ステップ26>
 断面算出部9Bは、処理順制御部7の順序設定情報を、S24で特定された特定面のノイズ低減処理の順序が最後となるように変更する。
 <ステップ27>
 画像処理部8は、順序設定情報に基づいてノイズ低減処理を開始する。断面算出部9Bで特定された直交3断面のうち、S24で特定された断面は、最後にノイズ低減処理される。
(変形例)
 上記第3実施形態の画像処理装置ではステントの向きを同定し、ストラットのぼけを抑えるようにノイズ低減処理を施す任意の直交3断面を決めている。しかし本発明はそれに捉われることなく、例えば頭部X線CT画像などの頭部医用画像に対して直交3断面を適切に同定する手段を有していても良い。具体的には特定部9Aが、突起構造である耳を認識し、さらに頭蓋構造における最も大きな穴である眼窩を認識することで、実質的にアキシャル面となる面を同定する。次に特定部9Aは、2つの眼窩の中点と2つの耳の中点を通り、且つ同定した面に垂直な面としてサジタル面を特定する。さらに特定部9Aは、コロナル面をアキシャル面、サジタル面に垂直な面として同定できる。このような構成によれば、患者の状態によって正面方向を向かせることが困難な場合でも、アキシャル面、コロナル面、サジタル面を画像から同定することで、サジタル面、コロナル面、アキシャル面という適切な順序でノイズ低減処理を施すことができる。
 また第3実施形態では直交3断面とボリュームデータの直交3断面とが一致しない場合がある。これに対してはボリュームデータを回転させることで、同定した直交3断面とボリュームデータの直交3断面とが一致するようにしても良い。あるいは同定した直交3断面とボリュームデータの直交3断面とが一致するように再構成を実施しても良い。
(作用・効果)
 以上説明した第3実施形態にかかる画像処理装置1の作用および効果について説明する。
 本実施形態にかかる画像処理装置1は第1実施形態と同様に、ボリュームデータにおける直交3断面にノイズ低減処理を行う構成である。したがって、処理量が抑制されてノイズ低減処理の時間を低減させることが可能である。当該断面における注目する構造物のエッジ部分のぼけが防止される。また、特徴点の傾きを表す断面に最初にノイズ低減処理を行った場合、そのノイズ低減処理がボリュームデータ全体におよぶことで、当該処理にかかる断面と直交する断面の空間分解能の低下が生じうる。この点、本実施形態によれば、上記構成により当該空間分解能の低下を抑制することが可能である。
 また第3実施形態にかかる画像処理装置1では、ボリュームデータから複数の特徴点を検出し、特定面を求める。さらに特定面を含む直交3断面を特定する。さらに特定された直交3断面のうち特定面を、ノイズ低減処理順として最後に設定する。したがって、ステントマーカーという特徴点を有する断面を最後に平滑化するので、ノイズ低減処理におけるストラットのぼけを抑制することが可能である。
[第4実施形態]
 次に、第4実施形態にかかる画像処理装置1について図11および図12を参照して説明する。図11は、第4実施形態の画像処理装置の一連の動作を表すフローチャートである。図12Aおよび図12Bは、周辺画素の範囲の概念を示す概略図である。第4実施形態は、第1実施形態~第3実施形態それぞれと共通する部分を含むが、以下においては第4実施形態において上記実施形態と異なる部分のみを説明する。なお、基礎となる部分は、第1実施形態~第3実施形態のうち、第1実施形態を基に記載する。
 <ステップ31>
 医師等の操作者は、画像処理装置1の操作部5により、ボリュームデータを識別するための識別情報等を入力する。識別情報は、画像ID、患者ID、検査ID等である。主制御部2は、送受信部3を介し、対象のボリュームデータを記憶する外部装置(画像保管装置30等)に、操作部5から入力された識別情報等を送る。画像保管装置30等の外部装置は、識別情報を受けて対応するボリュームデータを画像処理装置1に送る。画像処理装置1の主制御部2は、当該ボリュームデータを記憶部6等に一旦記憶させる。
 <ステップ32>
 画像処理部8は、ボリュームデータにおけるコロナル面の11×11の範囲とサジタル面の11×11の範囲(図12B参照)を、類似度を求める周辺画素として設定する。次に3×3×3(図12A参照)のボクセルの領域と当該周辺画素との類似度を求める。画像処理部8は、さらに求めた類似度に基づき加算する重みを調整し、重みに基づいて周辺画素を加算することによりコロナル面とサジタル面の処理を一度に実施する。
 <ステップ33>
 S32のノイズ低減処理の後、アキシャル面にノイズ低減処理を行う。
(作用・効果)
 以上説明した第4実施形態にかかる画像処理装置1の作用および効果について説明する。
 本実施形態にかかる画像処理装置1は第1実施形態と同様に、ボリュームデータにおける直交3断面にノイズ低減処理を行う構成である。したがって、処理量が抑制されてノイズ低減処理の時間を低減させることが可能である。当該断面における画像のエッジ部分のぼけが防止される。
 また第4実施形態にかかる画像処理装置1では、コロナル断面とサジタル断面を合成した領域を加算してノイズ低減処理を行い、その後、アキシャル断面でノイズ低減処理を行う。したがって、一度にコロナル断面、サジタル断面のフィルタ処理ができるため、計算量が低減される。結果として処理時間の短縮が図られる。
 なお、第4実施形態において、アキシャル断面、コロナル断面およびサジタル断面の例を説明したが、第3実施形態に適用する場合は、これらを特定面および直交2断面と読み替えられる。
 また、特定部9Aは、「特徴点算出部」の一例に該当する。また、第1実施形態~第4実施形態は、適宜組み合わせて構成することが可能である。また、画像処理装置1は画像取得装置20A等とネットワークを介して接続されている構成を説明したが、画像取得装置20A、画像取得装置20B 、画像取得装置20C等の周囲に配置される外部装置として構成してもよい。また、画像取得装置20A、画像取得装置20B、画像取得装置20C等の一部であってもよい。
[第5実施形態]
 次に、第5実施形態にかかるX線診断装置について図13Aおよび図13Bを参照して説明する。図13Aおよび図13Bは、時間変化にともなって取得された各フレームの関係を示す概略図である。第5実施形態は、第1実施形態~第4実施形態それぞれと共通する部分を含むが、以下においては第5実施形態において上記実施形態と異なる部分のみを説明する。なお、基礎となる部分は、第1実施形態~第4実施形態のうち、第1実施形態を基に記載する。
 第1実施形態~第4実施形態においては、医用画像データがボリュームデータである場合について説明した。これに対し第5実施形態において医用画像データは、時間変化に応じて生成された複数のフレーム群として説明される。この医用画像データは、例えば被検体の同一部位を連続的、または断続的にスキャンすることにより取得されたものである。また、医用画像データにおける各フレームは2次元画像である。
 また、第1実施形態~第4実施形態においては画像処理装置1の構成について説明した。これに対し第5実施形態においては医用画像診断装置の一例としてX線診断装置(不図示)について説明する。X線診断装置において例えば被検体の撮像対象を固定して透視が行われる。透視の結果、被検体の撮像対象に関するX線透過データが検出され、生成部(不図示)により、所定の時間軸において異なる時相のX線画像のフレームが複数生成される。
 <空間方向;第1の例>
 X線診断装置において例えば被検体の頭部を対象部位として透視が行われた場合、検体の頭部に関するX線画像の複数のフレームt~tが生成される。例えば図13Aに示すように、検体の頭部に関するX線画像の各フレームt~tには、頭部の血管画像が描画される。図13Aにおいて、頭部のX線画像のフレームt~tに示される血管の走行方向は、図中の上下方向(y方向)に相当する。立位の被検体に透視を行った場合、この画像の上下方向を実空間において置き換えると例えば垂直方向となる。横臥した被検体に透視を行った場合、画像の上下方向を実空間において置き換えると、例えば水平方向となる。このように頭部の血管の走行方向は、X線画像において上下方向となる傾向がある。
 第5実施形態において、X線診断装置の特定部は、X線画像の対象部位に基づいて血管の走行方向を推定し、その走行方向と直交する方向について、最後にノイズ低減処理を行うよう、順序設定情報を設定する。この第1の例においては、X線画像(医用画像データ)のフレームt~tに示される血管の走行方向は、図中の上下方向(y方向)であるため、特定部(不図示)は、血管の主な走行方向と直交する方向、すなわち、左右方向(図13A参照)について、ノイズ低減処理の順序を最後とする。
 <空間方向;第2の例>
 X線診断装置において例えば被検体の腹部を対象部位とする透視が行われた場合、検体の腹部に関するX線画像の複数のフレームt~tが生成される。例えば図13Bに示すように、各フレームt~tには、腹部の血管画像が描画される。また図13Bにおいて、腹部のX線画像のフレームt~tに示される血管の走行方向は、図中の左右方向(x方向)に相当する。立位の被検体に透視を行った場合、この左右方向を実空間において置き換えると例えば水平方向となる。横臥した被検体に透視を行った場合、この左右方向を実空間において置き換えると例えば垂直方向となる。このように頭部の血管の走行方向は、X線画像において左右方向となる傾向がある。
 この第2の例においては、各フレームt~tに示される血管の走行方向は、図中の左右方向(x方向)であるため、特定部は、血管の主な走行方向と直交する方向、すなわち、上下方向(図13B参照)について、ノイズ低減処理の順序を最後とする。
 <時間方向>
 図13Aおよび図13Bに示すように、第5実施形態では、所定の時間軸において異なる時相のX線画像の複数のフレームt~tが生成される。第5実施形態では、各フレームt~tにおける対応位置それぞれの間でノイズ低減処理が行われる。
 例えば被検体を固定して透視が行われた場合、透視の対象部位の少なくとも一部は変位しないか、あるいは変位するとしてもその量が少ないと推定される。したがって、各時相におけるフレームそれぞれにおける同じ座標位置には、同じ構造物が描画されることが推定される。
 各フレームt~tの共通する位置それぞれにもノイズが含まれる場合がある。したがって、第5実施形態のX線診断装置では、複数フレームt~tの共通位置における画素値に基づいてノイズ低減処理を行う。
 X線診断装置は、例えば、所定の時間軸において異なる時相の各フレームt~tにおいて対応する画素を特定する。ただし一方で心臓など動きのある部位が観察対象である場合、被検体の体動等がある。その場合、各フレームの同じ座標位置に必ずしも同じ構造物が示されるわけではない。したがって各フレームt~t間で位置合わせが行われる場合がある。
 X線診断装置の画像処理部(不図示)は、各フレームの画素値の差を求める。また画像処理部は、求めた差に応じて重み付けを変更する。また画像処理部は、複数フレームの共通位置を用いたこの重み付けに基づいて、所定フレームtαに対しノイズ低減処理を行う。
 なお、画像処理部は、透視像をリアルタイムで表示する場合、処理対象のフレームより前の時相におけるフレームを用いてノイズ低減処理を行う。図13Aおよび図13Bの例においてtのノイズ低減処理を行う場合は、それより前に取得されたフレームt~tを用いてノイズ低減処理が行われる。フレームt~tを用いたノイズ低減処理は、通常のノイズ低減処理をかける対象のフレーム数より少ない。ノイズ低減処理の対象フレームtより後のフレームt~tを用いると、あるいはノイズ低減処理を行うフレーム数を多くすると、リアルタイム性が損なわれるおそれがあるためである。またノイズ低減処理に用いられるフレーム数はあらかじめ設定される。
 これに対し、透視像の表示についてリアルタイム性が必要とされない場合、画像処理部は、ノイズ低減処理の精度を向上させるため、対象のフレームの前のフレームに限らず、対象のフレームの後のフレームを用いてもよい。例えば画像処理部は、あるフレームにノイズ低減処理を行うとき、医用画像データに含まれる、すべてのフレームt~tを用いることが可能である。
 <ノイズ低減処理の順序>
 第5実施形態における医用画像データにおいて、ノイズ低減処理を行う方向は、各フレームの上下方向および左右方向だけでなく時間方向を含めた3方向と定義することができる。
 このうち、時間方向(t~t)については、上述の通り、画素間の類似度が高い傾向がある。また、注目する対象の特性や状態により、画素同士の類似度は変化する。これらの傾向から、画像処理部によるノイズ低減処理の順序を、術者が注目する対象の特性や状態により変更できるようにしてもよい。
(作用・効果)
 以上説明した本実施形態にかかるX線診断装置の作用および効果について説明する。
 本実施形態にかかるX線診断装置によれば、医用画像データのノイズ低減処理において、互いに直交する3方向それぞれにノイズ低減処理を行う構成である。したがって、各フレームに2次元的にノイズ低減処理を複数回行い、ノイズ低減効果を得ようとする構成と比較して、当該フレームにおける画像のエッジ部分のぼけが防止され、結果として各フレームの分解能の低下を抑制することが可能である。さらに各フレームに2次元的にノイズ低減処理を複数回行う構成と比較して、当該ノイズ低減処理が、その異なる時相のフレーム間のノイズ低減処理に適合せず、分解能の低下を抑制してしまう事態を回避することが可能である。
 さらに本実施形態にかかるX線診断装置では、時間方向および各フレームの直交する2方向を含む3方向に対してノイズ低減処理を行う順序があらかじめ設定されている。
 このような構成によれば、類似しない構造物を示す画素同士の平滑化による、X線データ全体の空間分解能の低下を抑制することが可能である。
 なお、第5実施形態はX線診断装置として説明したが、画像処理装置1に適用することも可能である。
[第6実施形態]
 次に、第6実施形態について説明する。第6実施形態は、第1実施形態~第5実施形態それぞれと共通する部分を含むが、以下においては第6実施形態において上記実施形態と異なる部分のみを説明する。なお、基礎となる部分は、第1実施形態~第5実施形態のうち、第1実施形態を基に記載する。
 医用画像データは、被検体の部位ごとに設定されたスキャン条件(撮影条件、透視条件等)に基づいて取得されたデータに基づいて生成されたものである。例えば、X線診断装置において、対象部位や検査目的に応じて、焦点サイズおよび注目領域等がスキャン条件として設定される。さらにスキャン条件に対応して画像処理条件も設定される。第6実施形態においては、画像処理条件に、医用画像データの方向ごとのノイズ低減処理の順序の設定が含まれる。このスキャン条件および画像処理条件の組み合わせを「プロトコル」と記載する。
 一例として、対象部位を「頭部」とし、検査目的を「インターベンション」とするプロトコルが設定されているものとする。このプロトコルにおいては、対象部位が頭部であるため、上述の通り、対象部位の血管の主な走行方向は、立位の被検体に対する垂直方向である。したがって画像処理条件におけるノイズ低減処理の順序として、時間方向を1番目とし、対象部位の血管の主な走行方向に対応する方向を2番目とし、最後を当該走行方向と直交する方向と設定される。画像処理装置またはX線診断装置の画像処理部は、当該設定された順序にしたがって、医用画像データにノイズ低減処理を行う。
 他の例として、対象部位を「肝臓」または「下肢」とするプロトコルが設定されているものとする。このプロトコルにおいては、対象部位の血管の主な走行方向は、立位の被検体に対する水平方向である。したがって画像処理条件におけるノイズ低減処理の順序として、この方向に対応する方向と直交する方向が最後となるように設定される。画像処理装置またはX線診断装置の画像処理部は、当該設定された順序にしたがって、医用画像データにノイズ低減処理を行う。
(作用・効果)
 以上説明した本実施形態によれば、対象部位や検査目的等を設定するだけで、医用画像データのノイズ低減処理の順序の設定も行うことができる。したがって、ユーザの設定作業の省力化を図ることが可能である。その結果、検査効率または読影効率を向上させることが可能である。
[上記各実施形態の変形例]
 上述の第1実施形態~第6実施形態においては、画像処理装置またはX線診断装置の画像処理部が、異なる3方向それぞれにノイズ低減処理を行う構成である。しかしながら、このような構成に限られない。例えば、当該画像処理部は、異なる3方向のうち、2方向に対してノイズ低減処理を行うことも可能である。この医用画像データにおいて画素の類似度が低い傾向にある方向については、他の2方向のノイズ低減処理の結果によりノイズが低減する場合がある。
 この発明の実施形態を説明したが、上記の実施形態は例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1   画像処理装置
 2   主制御部
 6   記憶部
 7   処理順制御部
 8   画像処理部
 9A  特定部
 9B  断面算出部
 20A 画像取得装置
 30  画像保管装置

Claims (28)

  1.  医用画像データを取得する取得部と、
     医用画像データにおける異なる3方向のうち、少なくとも2方向に対し、設定された順序でノイズ低減処理を行う処理部と、
     を備える画像処理装置。
  2.  前記医用画像データは、被検体の3次元領域の状態を示すボリュームデータであり、
     前記処理部は、前記ボリュームデータにおける異なる3方向のうち、少なくとも2方向に前記ノイズ低減処理を行うこと、
     を特徴とする請求項1に記載の画像処理装置。
  3.  前記医用画像データは、時間変化に応じて生成された複数のフレームを含み、
     前記3方向のうちの1方向は、前記複数のフレームの時間軸を示す時間方向であること、
     を特徴とする請求項1に記載の画像処理装置。
  4.  前記処理部は、前記医用画像データにおける異なる3方向それぞれに対し、前記ノイズ低減処理を行うこと、
     を特徴とする請求項2または3に記載の画像処理装置。
  5.  前記処理部は、
     前記ノイズ低減処理の対象画素の画素値と、その周辺画素の画素値との適合度を求め、
     前記対象画素と前記周辺画素それぞれとの適合度に応じ、前記周辺画素それぞれの重みを決め、
     前記重みにより前記周辺画素の重み付き平均を求め、
     前記対象画素の画素値を、前記適合度と前記重み付き平均に基づき求めること、
     を特徴とする請求項1または4に記載の画像処理装置。
  6.  前記異なる3方向は、互いに直交するアキシャル方向、コロナル方向およびサジタル方向であること、
     を特徴とする請求項2に記載の画像処理装置。
  7.  前記処理部における前記ノイズ低減処理を行う前記順序として、前記被検体の体軸と交わる角度が最も大きい方向が最後となるように設定されること、
     を特徴とする請求項6に記載の画像処理装置。
  8.  前記処理部における前記ノイズ低減処理を行う前記順序として、前記サジタル方向が最初となるように設定されること、
     を特徴とする請求項7に記載の画像処理装置。
  9.  前記処理部における前記ノイズ低減処理を行う前記順序として、前記コロナル方向が最初となるように設定されること、
     を特徴とする請求項7に記載の画像処理装置。
  10.  前記医用画像データは、被検体における複数の特徴点を含み、
     前記処理部における前記ノイズ低減処理を行う前記順序は、複数の前記特徴点に基づき設定されること、
     を特徴とする請求項4に記載の画像処理装置。
  11.  前記処理部は、異なる3方向のうち、前記複数の特徴点からなる線または該特徴点それぞれからの距離の平均が最小となるような特定面を求め、該特定面に対し最も近い方向に基づいて、前記順序を設定すること、
     を特徴とする請求項10に記載の画像処理装置。
  12.  前記異なる3方向を設定するための操作部を備え、
     前記処理部における前記ノイズ低減処理を行う前記順序は、操作部を介して設定された方向に基づき設定されること、
     を特徴とする請求項4に記載の画像処理装置。
  13.  前記医用画像データは、被検体における複数の特徴点を含み、
     前記異なる3方向は、互いに直交するアキシャル方向、コロナル方向およびサジタル方向であり、
     前記処理部における前記ノイズ低減処理を行う前記順序として、前記直交する3方向に応じた断面のうち、前記複数の特徴点との距離の分散が最も大きくなる面が最後となるように設定されること、
     を特徴とする請求項2に記載の画像処理装置。
  14.  前記異なる3方向は、アキシャル方向、コロナル方向およびサジタル方向であり、
     前記アキシャル方向、前記コロナル方向および前記サジタル方向に基づく、第1断面、第2断面および第3断面からなる直交3断面が設定され、
     前記処理部における前記ノイズ低減処理を行う前記順序として、前記直交3断面のうち、それぞれの法線単位ベクトルと前記特定面の法線単位ベクトルとの内積が最も大きくなる面が最後となるように設定されること、
     を特徴とする請求項11に記載の画像処理装置。
  15.  前記異なる3方向は、アキシャル方向、コロナル方向およびサジタル方向であり、
     前記アキシャル方向、前記コロナル方向および前記サジタル方向に基づく、第1断面、第2断面および第3断面からなる直交3断面が設定され、
     前記処理部における前記ノイズ低減処理を行う前記順序として、前記直交3断面のうち、前記特定面とによってなされる角度が最小となる断面が最後となるように設定されること、
     を特徴とする請求項11に記載の画像処理装置。
  16.  前記処理部は前記2以上の特徴点群に沿った断面の方向を、前記異なる3方向のうちの1方向に設定すること、
     を特徴とする請求項10に記載の画像処理装置。
  17.  前記処理部における前記ノイズ低減処理を行う前記順序として、前記2以上の特徴点に沿った断面の方向が最後となるように設定されること、
     を特徴とする請求項16に記載の画像処理装置。
  18.  前記医用画像データには、被検体の血管を示す情報、および両端にステントマーカーを有するとともに該血管に留置されるステントを示す情報が含まれ、
     前記複数の特徴点は、前記医用画像データにおいて複数の前記ステントマーカーを示す情報で示され、
     前記医用画像データに対する閾値処理により、前記ステントマーカーのそれぞれの座標位置を求める特徴点算出部と、
     求められた複数の座標位置を含む面を特定する特定部とを備えること、
     を特徴とする請求項10に記載の画像処理装置。
  19.  前記医用画像データには、被検体の頭部を示す情報が含まれ、
     前記複数の特徴点は、前記医用画像データにおける前記被検体の頭部における特徴的な形状を有する部分であって、
     前記医用画像データに対する形状特定処理により、前記頭部の異なる複数の特徴点を特定し、かつ該特徴点それぞれの座標位置を求める特徴点算出部と、
     求められた座標位置それぞれからの距離の平均が最小となるような特定面を求める特定部とを備えること、
     を特徴とする請求項10に記載の画像処理装置。
  20.  前記処理部は、前記医用画像データにおける被検体の部位に応じて、前記ノイズ低減処理の順序を設定すること、
     を特徴とする請求項4に記載の画像処理装置。
  21.  前記処理部は、前記医用画像データにおける被検体の血管の走行方向に応じて、最後に前記ノイズ低減処理を行う方向を設定すること、
     を特徴とする請求項20に記載の画像処理装置。
  22.  前記医用画像データは、被検体の部位ごとに設定されたスキャン条件に基づいて生成されたものであり、
     前記スキャン条件には、前記ノイズ低減処理の前記順序を含む画像処理条件が対応づけられており、
     前記処理部は、前記画像処理条件における前記順序にしたがって、前記ノイズ低減処理を行うこと、
     を特徴とする請求項4に記載の画像処理装置。
  23.  前記医用画像データは、時間変化に応じて生成された複数のフレームを含み、
     前記3方向のうちの1方向は、前記複数のフレームの時間軸を示す時間方向であり、
     前記処理部は、前記複数のフレームのうちの1つのフレームに前記ノイズ低減処理を行うとき、該フレームより前の複数のフレームおよび後の複数のフレームを用いること、
     を特徴とする請求項1の画像処理装置。
  24.  前記医用画像データは、時間変化に応じて生成された複数のフレームを含み、
     前記3方向のうちの1方向は、前記複数のフレームの時間軸を示す時間方向であり、
     前記処理部は、前記複数のフレームのうちの1つのフレームに前記ノイズ低減処理を行うとき、該フレーム及びその前の複数のフレームを用いること、
     を特徴とする請求項1の画像処理装置。
  25.  取得部が医用画像データを取得するステップと、
     処理部が、医用画像データにおける異なる3方向のうち、少なくとも2方向に対し、設定された順序でノイズ低減処理を行うステップと、
     を備える画像処理方法。
  26.  医用画像データを生成する生成部と、
     医用画像データにおける異なる3方向のうち少なくとも2方向に対し、設定された順序でノイズ低減処理を行う処理部と、
     を備えるX線診断装置。
  27.  前記医用画像データは、時間変化に応じて生成された複数のフレームを含み、
     前記3方向のうちの1方向は、前記複数のフレームの時間軸を示す時間方向であり、
     前記処理部は、前記複数のフレームのうちの1つのフレームに前記ノイズ低減処理を行うとき、該フレームおよびその前の複数のフレームを用いること、
     を特徴とする請求項26のX線診断装置。
  28.  前記生成部は、被検体の部位ごとに設定されたスキャン条件に基づいて前記医用画像データを生成し、
     前記スキャン条件には、前記ノイズ低減処理の前記順序を含む画像処理条件が対応づけられており、
     前記処理部は、前記画像処理条件における前記順序にしたがって、前記ノイズ低減処理を行うこと、
     を特徴とする請求項27に記載のX線診断装置。
PCT/JP2013/081329 2012-11-20 2013-11-20 画像処理装置、画像処理方法およびx線診断装置 WO2014080961A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380060486.1A CN104812293B (zh) 2012-11-20 2013-11-20 图像处理装置、图像处理方法以及x射线诊断装置
US14/717,511 US10198793B2 (en) 2012-11-20 2015-05-20 Image processing apparatus, image processing method, and X-ray diagnosis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254651 2012-11-20
JP2012-254651 2012-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/717,511 Continuation US10198793B2 (en) 2012-11-20 2015-05-20 Image processing apparatus, image processing method, and X-ray diagnosis apparatus

Publications (1)

Publication Number Publication Date
WO2014080961A1 true WO2014080961A1 (ja) 2014-05-30

Family

ID=50776140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081329 WO2014080961A1 (ja) 2012-11-20 2013-11-20 画像処理装置、画像処理方法およびx線診断装置

Country Status (4)

Country Link
US (1) US10198793B2 (ja)
JP (1) JP6381895B2 (ja)
CN (1) CN104812293B (ja)
WO (1) WO2014080961A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128987B2 (ja) * 2013-06-25 2017-05-17 オリンパス株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP6716197B2 (ja) 2014-02-28 2020-07-01 キヤノンメディカルシステムズ株式会社 画像処理装置およびx線診断装置
JP6594075B2 (ja) * 2015-07-22 2019-10-23 キヤノン株式会社 画像処理装置、撮像システム、画像処理方法
FR3047339B1 (fr) * 2016-02-01 2018-04-06 Safran Procede de controle non-destructif par redressement
CN106725615A (zh) * 2016-12-26 2017-05-31 深圳开立生物医疗科技股份有限公司 一种血管内超声图像脉冲干扰抑制方法及装置
JP6870993B2 (ja) * 2017-01-20 2021-05-12 キヤノンメディカルシステムズ株式会社 画像処理装置及びx線診断装置
JP6987352B2 (ja) * 2017-11-17 2021-12-22 富士フイルムヘルスケア株式会社 医用画像処理装置および医用画像処理方法
US11257190B2 (en) * 2019-03-01 2022-02-22 Topcon Corporation Image quality improvement methods for optical coherence tomography
CN109993743B (zh) * 2019-04-09 2023-06-06 飞依诺科技(苏州)有限公司 血管图像处理方法、装置、设备及存储介质
US11054534B1 (en) 2020-04-24 2021-07-06 Ronald Nutt Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11300695B2 (en) 2020-04-24 2022-04-12 Ronald Nutt Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134772A (ja) * 1993-11-10 1995-05-23 Ge Yokogawa Medical Syst Ltd 画像表示装置及び画像処理方法
JP2007021021A (ja) * 2005-07-20 2007-02-01 Ge Medical Systems Global Technology Co Llc 画像処理装置およびx線ct装置
JP2007050259A (ja) * 2005-08-17 2007-03-01 Siemens Ag ボリュームデータ再構成後の断層撮影3d画像のフィルタリング方法
JP2009098100A (ja) * 2007-10-19 2009-05-07 Shimadzu Corp 核医学診断装置
JP2013244046A (ja) * 2012-05-23 2013-12-09 Ge Medical Systems Global Technology Co Llc 画像処理方法、画像処理装置および撮影装置並びにプログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490476B1 (en) * 1999-10-14 2002-12-03 Cti Pet Systems, Inc. Combined PET and X-ray CT tomograph and method for using same
EP1387317A4 (en) 2001-04-19 2008-10-15 Toshiba Kk IMAGE PROCESSING AND PICTURE PROCESSING DEVICE
DE60212917T2 (de) 2001-10-16 2007-03-01 Kabushiki Kaisha Toshiba Vorrichtung zur Berechnung eines Index von örtlichen Blutflüssen
US7457654B2 (en) * 2003-10-27 2008-11-25 Siemens Medical Solutions Usa, Inc. Artifact reduction for volume acquisition
WO2005046478A1 (ja) * 2003-11-12 2005-05-26 Hitachi Medical Corporation 画像処理方法、画像処理装置、医用画像診断支援システム、及び時間軸方向フィルタリング方法
US7623691B2 (en) * 2004-08-06 2009-11-24 Kabushiki Kaisha Toshiba Method for helical windmill artifact reduction with noise restoration for helical multislice CT
JP4901222B2 (ja) * 2006-01-19 2012-03-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像表示装置およびx線ct装置
EP1982305B1 (en) * 2006-01-31 2011-06-15 Canadian Space Agency Method and system for increasing signal-to-noise ratio
US8160199B2 (en) * 2007-10-12 2012-04-17 Siemens Medical Solutions Usa, Inc. System for 3-dimensional medical image data acquisition
JP4864909B2 (ja) 2008-01-21 2012-02-01 株式会社東芝 画像処理装置
JP5053982B2 (ja) * 2008-12-05 2012-10-24 株式会社東芝 X線診断装置および画像処理装置
TWI381828B (zh) * 2009-09-01 2013-01-11 Univ Chang Gung Method of making artificial implants
US8754363B2 (en) * 2010-02-08 2014-06-17 Canon Kabushiki Kaisha Method and apparatus for reducing noise in mass signal
US8311301B2 (en) * 2010-12-10 2012-11-13 Carestream Health, Inc. Segmenting an organ in a medical digital image

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134772A (ja) * 1993-11-10 1995-05-23 Ge Yokogawa Medical Syst Ltd 画像表示装置及び画像処理方法
JP2007021021A (ja) * 2005-07-20 2007-02-01 Ge Medical Systems Global Technology Co Llc 画像処理装置およびx線ct装置
JP2007050259A (ja) * 2005-08-17 2007-03-01 Siemens Ag ボリュームデータ再構成後の断層撮影3d画像のフィルタリング方法
JP2009098100A (ja) * 2007-10-19 2009-05-07 Shimadzu Corp 核医学診断装置
JP2013244046A (ja) * 2012-05-23 2013-12-09 Ge Medical Systems Global Technology Co Llc 画像処理方法、画像処理装置および撮影装置並びにプログラム

Also Published As

Publication number Publication date
JP2014121593A (ja) 2014-07-03
CN104812293B (zh) 2018-07-13
US10198793B2 (en) 2019-02-05
JP6381895B2 (ja) 2018-08-29
US20150269711A1 (en) 2015-09-24
CN104812293A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6381895B2 (ja) 画像処理装置、画像処理方法およびx線診断装置
JP5643304B2 (ja) 胸部トモシンセシスイメージングにおけるコンピュータ支援肺結節検出システムおよび方法並びに肺画像セグメント化システムおよび方法
CN104517303B (zh) 医用图像处理装置以及医用图像处理方法
EP2554120B1 (en) Projection image generation device, projection image generation programme, and projection image generation method
JP5197029B2 (ja) 医用画像処理装置
KR102251830B1 (ko) 초음파 및 ct 영상의 정합에 관한 시스템 및 작동 방법
JP5486197B2 (ja) 椎骨中心検出装置および方法並びにプログラム
JP2016534802A (ja) 医療画像を表示する方法及び装置
US9024941B2 (en) Sequentially displaying virtual endoscopic images by setting an observation path to compensate for a curved region of the tubular structure
US10748263B2 (en) Medical image processing apparatus, medical image processing method and medical image processing system
US8588490B2 (en) Image-based diagnosis assistance apparatus, its operation method and program
JP2007275318A (ja) 画像表示装置、画像表示方法およびそのプログラム
JP2016067832A (ja) 医用画像処理装置、医用画像処理方法
JP2017080389A (ja) 医用画像システム及びプログラム
JP6716197B2 (ja) 画像処理装置およびx線診断装置
JP2009247490A (ja) 画像処理装置および方法並びにプログラム
JP5632920B2 (ja) ボケイメージ内のブラーの特性を決定するシステム及び方法
CN111862312B (zh) 一种脑部血管显示装置及方法
JP2022052210A (ja) 情報処理装置、情報処理方法及びプログラム
US11138736B2 (en) Information processing apparatus and information processing method
JP2011182946A (ja) 医用画像表示装置及び医用画像表示方法
JP2006247293A (ja) 画像処理方法および画像処理装置ならびにプログラム
JPWO2014119412A1 (ja) 医用画像処理装置及び医用画像撮像装置
JP2013505779A (ja) 運動情報を用いて医用画像の質を改善するコンピュータ可読媒体、システム、および方法
US20240112331A1 (en) Medical Image Data Processing Technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856663

Country of ref document: EP

Kind code of ref document: A1