WO2014054273A1 - 画像ノイズ除去装置、および画像ノイズ除去方法 - Google Patents

画像ノイズ除去装置、および画像ノイズ除去方法 Download PDF

Info

Publication number
WO2014054273A1
WO2014054273A1 PCT/JP2013/005844 JP2013005844W WO2014054273A1 WO 2014054273 A1 WO2014054273 A1 WO 2014054273A1 JP 2013005844 W JP2013005844 W JP 2013005844W WO 2014054273 A1 WO2014054273 A1 WO 2014054273A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise
reliability
noise removal
spatial
Prior art date
Application number
PCT/JP2013/005844
Other languages
English (en)
French (fr)
Inventor
匡夫 濱田
忠則 手塚
中村 剛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380004125.5A priority Critical patent/CN104115482B/zh
Priority to US14/359,961 priority patent/US9367900B2/en
Priority to JP2014509025A priority patent/JP6254938B2/ja
Publication of WO2014054273A1 publication Critical patent/WO2014054273A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Definitions

  • the present invention relates to an image noise removing apparatus and an image noise removing method.
  • Filter processing for removing noise from image data includes a temporal noise removal filter and a spatial noise removal filter.
  • a method of switching between these noise removal filters Patent Document 1 discloses a method of selecting one of the processing results of the temporal noise removal filter and the spatial noise removal filter using the result of motion detection.
  • Patent Document 2 discloses a method of outputting the final processing result after determining whether to use the processing result of the temporal noise removal filter using the processing result of the spatial noise removal filter.
  • noise When noise is removed by the temporal noise removal filter, there is a problem that noise (for example, afterimage or moving image discomfort) may be newly generated. In other words, there is a problem that it is difficult to perform temporal noise removal processing with an intensity suitable for removing noise on an image.
  • the present invention provides an image noise removing apparatus that applies time noise removal processing with an appropriate intensity to an image.
  • An image noise removing apparatus is an image noise removing apparatus for removing noise included in a second image after removing noise from the first image, and includes pixels included in the second image.
  • a spatial noise removing unit that generates a spatial noise-removed image by performing an operation for removing noise included in the second image using a value, the spatial noise-removed image, the second image, and the first image Based on the first noise-removed image from which noise of one image has been removed, a reliability calculation unit that calculates the reliability of movement in the second image, and the second image and the first noise-removed image
  • a time blending unit that removes noise included in the second image by performing weighted addition processing based on the reliability.
  • the image noise removal apparatus and method of the present invention it is possible to perform noise removal that optimally applies the time noise removal filter to the target image by adaptively changing the filter strength of the time noise removal filter.
  • FIG. 1 is a configuration diagram of an image noise removing apparatus according to the first embodiment.
  • FIG. 2 is a configuration diagram of the reliability calculation unit in the first embodiment.
  • FIG. 3 is an explanatory diagram of a relationship between a pixel value and a vector in the first embodiment.
  • FIG. 4 is a diagram showing a probability distribution of noise.
  • FIG. 5 is an example of the correspondence between ⁇ tnr and P in the first embodiment.
  • FIG. 6 is a flowchart showing the flow of processing in the first embodiment.
  • FIG. 7 is a configuration diagram of the image noise removing apparatus according to the second embodiment.
  • FIG. 8 is a flowchart showing the flow of processing in the second embodiment.
  • FIG. 9 is an example of a configuration diagram of an image noise removing device in each embodiment.
  • Image (moving image, still image) data includes noise (noise) depending on the shooting environment or the characteristics of the image sensor.
  • Types of noise include light shot noise, dark noise, fixed pattern noise, or circuit noise. Since the quality (image quality) of the image deteriorates due to this noise, noise removal for removing or reducing the noise of the image data is performed by the filter processing.
  • noise removal filters are spatial noise removal filters that are processed using data in one image.
  • a temporal noise removal filter that reduces or removes noise by a smoothing process using correlation between the frames is also used.
  • the temporal noise removal method there is a method of performing weighted averaging of pixel data of interest and pixel data of a frame existing in time.
  • a temporal noise removal filter is selectively used if the pixel data of interest is a stationary part, and a spatial noise removal filter is selectively used if it is a moving part.
  • Patent Document 1 discloses a method of selecting one of processing results of a temporal noise removal filter and a spatial noise removal filter using a motion detection result. Disclosure.
  • Patent Document 2 discloses a method of outputting the final processing result after determining whether to use the processing result of the temporal noise removal filter using the processing result of the spatial noise removal filter.
  • the present invention provides an image noise removing apparatus that applies time noise removal processing with an appropriate intensity to an image.
  • an image noise removing apparatus for removing noise included in a second image after removing noise from the first image.
  • a spatial noise removing unit that generates a spatial noise-removed image by performing an operation for removing noise included in the second image using a pixel value included in the second image; and the spatial noise-removed image
  • a reliability calculation unit that calculates a reliability of movement in the second image based on the second image and the first noise-removed image from which noise of the first image has been removed; and the second image
  • a time blending unit that removes noise included in the second image by performing weighted addition processing based on the reliability with respect to the first noise-removed image.
  • the movement in the second image is detected with high accuracy using the spatial noise-removed image obtained by spatially removing the noise of the second image, Depending on the detection result, temporal noise removal can be performed on the second image. Since the accuracy of motion detection in the second image is high, the accuracy of temporal noise removal can be improved. Therefore, the image noise removal device can perform temporal noise removal processing with appropriate intensity on the image.
  • the detection of motion in the second image according to the conventional technique is performed by using the second image and the first noise-removed image, but it is known that the detection result is inaccurate.
  • the accuracy of the motion detection result can be improved by using the spatial noise-removed image of the second image in addition to the above two images.
  • the reliability calculation unit calculates a larger value as the reliability as the movement of the pixels included in the second image is smaller, and the time blending unit calculates the first as the reliability is higher.
  • a weighted addition process in which the weight of the noise-removed image is increased is performed as the weighted addition process.
  • the motion in the second image is smaller, it is possible to perform the temporal noise removal process in which the weight of the first noise removed image is increased.
  • the noise of the image after the temporal noise removal process can be reduced by increasing the weight of the first noise-removed image from which noise has already been removed.
  • the reliability calculation unit calculates a larger value as the reliability as the difference between pixel values at the same position included in each of the first noise-removed image and the second image is smaller.
  • the reliability calculation unit calculates a larger value as the reliability as the difference between pixel values at the same position included in each of the first noise-removed image and the spatial noise-removed image is smaller.
  • the image noise removing device increases the weight of the first noise-removed image in the temporal noise removal when it is determined that the possibility that there is a motion in the second image is smaller. Since the noise has already been removed from the first noise-removed image, the noise of the image after the temporal noise removal processing can be reduced.
  • the reliability calculation unit calculates the reliability based on a ratio of the difference to a deviation of a pixel value distribution that is a predetermined deviation and changes due to noise.
  • the image noise removing device can determine the size by using the ratio to the deviation of the distribution of the pixel value that changes due to the noise when determining the difference of the pixel value.
  • the pixel value includes a plurality of components
  • the reliability calculation unit includes, as a component, a difference between pixel values of pixels at the same position in each of the spatial noise-removed image and the second image. The smaller the angle formed between the vector and the second vector having as a component the pixel value difference of the pixel at the same position in each of the first noise-removed image and the second image, the larger the value as the reliability. calculate.
  • the image noise removal device includes a first vector corresponding to a difference between the spatial noise removal image and the second image, and a second vector corresponding to the difference between the first noise removal image and the second image. It is determined that the possibility that there is a motion in the second image is smaller as the formed angle is smaller, and the weight of the first noise-removed image in the temporal noise removal is increased. Since the noise has already been removed from the first noise-removed image, the noise of the image after the temporal noise removal processing can be reduced.
  • the first noise-removed image is an image obtained by removing noise included in the first image by the image noise removing device.
  • the image noise removal device can use an image obtained by performing temporal noise removal processing on the first image by the image noise removal device as the first noise removal image.
  • the first image is one of images constituting a moving image
  • the second image is one of images constituting the moving image
  • the images are arranged in time order. It is an image immediately after the first image.
  • a temporal noise removal process is performed on successive images in consideration of a noise removal result of an image immediately before the image. Can be applied.
  • the image noise removal device further includes a spatial blend unit that generates a spatial blend image by performing weighted addition processing based on the reliability on the second image and the spatial noise removal image.
  • the time blending unit further performs weighted addition processing based on the reliability on the spatial blended image and the first noise-removed image from which noise included in the first image has been removed. , Noise included in the second image is removed.
  • the reliability calculation unit calculates a larger value as the reliability as the movement of a pixel included in the second image is smaller, and the spatial blending unit calculates the second as the reliability is higher.
  • a weighted addition process in which the weight of the image is increased is performed as the weighted addition process, and the time blending unit performs the weighted addition process in which the weight of the first noise-removed image is increased as the reliability increases. This is performed as a weighted addition process.
  • An image noise removal method is an image noise removal method for removing noise included in a second image after noise removal of the first image, and is included in the second image.
  • a time blending step for removing noise included in the second image by performing weighted addition processing based on the reliability.
  • a program according to an aspect of the present invention is a program for causing a computer to execute the image noise removal method described above.
  • An integrated circuit is an integrated circuit for removing noise included in the second image after removing noise from the first image, and the pixel value included in the second image is determined.
  • a spatial noise removal unit that generates a spatial noise-removed image by performing an operation for removing noise included in the second image, the spatial noise-removed image, the second image, and the first image.
  • a reliability calculation unit that calculates the reliability of the movement in the second image, and the second image and the first noise-removed image,
  • FIG. 1 is a configuration diagram of an image noise removing apparatus according to the present embodiment.
  • the image noise removing apparatus 1 includes an input image terminal 10, a spatial noise removing unit 20, a reliability calculating unit 30, a time blending rate calculating unit 40, a time blending unit 50, and a buffer. 60 and an output image terminal 70.
  • the input image terminal 10 receives an image (hereinafter referred to as “input image”) input to the image noise removal device 1. Specifically, the input image terminal 10 receives the pixel value (pixel data) of the target pixel and the pixel values (pixel data) of the surrounding pixels. Note that the input image corresponds to the second image.
  • the spatial noise removal unit 20 performs noise removal by smoothing using the pixel value of the target pixel received by the input image terminal 10 and the pixel values of the surrounding pixels.
  • the image from which noise has been removed in this way corresponds to a spatial noise-removed image.
  • the reliability calculation unit 30 calculates the probability that the target pixel received by the input image terminal 10 is stationary with respect to the pixel at the same position in the past input image (corresponding to the first image). That is, the reliability calculation unit 30 receives the pixel value of the target pixel received by the input image terminal 10, the pixel value at the same position in the image obtained by removing noise from the past image recorded in the buffer, and the space. The pixel value at the same position in the image after the noise removal unit 20 performs noise removal is used as an input, and using these, the target pixel is stationary relative to the pixel at the same position in the noise removal signal for the past image. Calculate the probability of being. The calculation method will be described later.
  • the pixel is stationary means that the photographing object corresponding to the pixel does not change. That is, “the pixel is stationary” when the photographing objects corresponding to the pixels in each of the two images are the same. Furthermore, it can be said that “the pixel is stationary” even when the pixel values are different because noises of different magnitudes are added to these two pixels. On the other hand, when the photographing objects corresponding to the pixels in the two images are different, it is said that “the pixels are not stationary”.
  • one image pixel is stationary relative to the other image pixel. It can be said. Furthermore, when different noise is added to the pixel of the one image and the pixel of the other image, the pixel value is different, but in this case also, the pixel of one image is different from that of the other image. It can be said that it is stationary with respect to the pixel. On the other hand, if two images are extracted from a moving image of a subject that is actually moving (for example, a moving car or a person waving), the pixel of the one image is in the moving portion. It cannot be said that it is stationary with respect to the other image pixel.
  • the “past image recorded in the buffer” means an image that has been past the input image received by the input image terminal 10 and has been subjected to noise removal processing. That is, the past image may be an image input before the input image and subjected to noise removal processing, or may be input a predetermined number of times before the input image and subjected to noise removal processing. It may be an image. At this time, the predetermined number may be the number of images considered to have a relatively small difference from the input image.
  • the “past image recorded in the buffer” corresponds to the first noise-removed image.
  • the time blend rate calculation unit 40 is recorded in the buffer with the pixel value received by the input image terminal 10 used by the time blend unit 50.
  • a blend ratio (mixing ratio) with a pixel value of a past image is calculated.
  • the time blend unit 50 receives the pixel value received by the input image terminal 10 and the pixel value at the same position in the noise removal signal for the past image recorded in the buffer.
  • the output image is generated by blending with and the generated output image is output.
  • FIG. 2 is a configuration diagram of the reliability calculation unit 30 in the present embodiment.
  • the reliability calculation unit 30 includes a difference calculation unit 31a, a difference calculation unit 31b, a difference calculation unit 31c, and a probability calculation unit 32. Thereafter, the pixel value received by the input image terminal 10 input to the reliability calculation unit 30 is CUR, and the pixel value after the spatial noise removal unit 20 performs noise removal (spatial noise removal) is SNR, and is recorded in the buffer 60.
  • the image data of the processed image will be described as PRE.
  • a pixel value is composed of a plurality of color component data such as RGB or YCbCr
  • a, b, and c calculated by the difference calculation units 31a, 31b, and 31c are regarded as vectors having a plurality of components. be able to.
  • the vectors a, b, and c are expressed as (Equation 1).
  • the subscripts y, cb, and cr indicate the Y component, Cb component, and Cr component of the pixel value, respectively.
  • the vectors a, b, and c are three-dimensional vectors when the pixel value is composed of three components (for example, YCbCr or RGB format). However, for example, when there is only information about the Y component as in gray scale (when Cb and Cr are always 0), it may be treated as one-dimensional, or Cb and Cr are regarded as zero and regarded as three-dimensional. May be handled.
  • FIG. 3 is an explanatory diagram of the relationship between the pixel value and the vector in the first embodiment.
  • FIG. 3 shows the relationship between the pixel values CUR, SNR and PRE, and the vectors a, b and c.
  • each of the pixel values CUR, SNR, and PRE is arranged at coordinates corresponding to the pixel value.
  • the vector a is drawn as a vector having a CUR as a start point and an SNR as an end point.
  • the vector b is drawn as a vector starting from CUR and ending at PRE.
  • the vector c is drawn as a vector having the SNR as the start point and the PRE as the end point.
  • the probability calculation unit 32 calculates the probability P that the pixel data is stationary according to (Equation 2).
  • ⁇ , ⁇ and ⁇ are constants given from the outside. Further, ⁇ 0, ⁇ 1, and ⁇ 2 are calculated by (Expression 3), (Expression 4), and (Expression 5).
  • is a deviation of a noise model normal distribution (a distribution of pixel values changed by noise) included in the image, and is given from the outside.
  • FIG. 4 shows an example of a probability distribution of noise included in an image. This probability distribution is modeled as a normal distribution of deviation ⁇ centered on the true pixel value S that does not contain noise.
  • the method using only b is equivalent to using only the first factor on the right side of (Expression 2).
  • a deviation from the ideal case is considered in which both the pixel value after temporal noise removal and the pixel value after spatial noise removal are correct.
  • the pixel value after temporal noise removal when it is assumed that noise has been completely removed by temporal noise removal and the pixel after spatial noise removal when it is assumed that noise has been completely removed by spatial noise removal The value is considered equal. That is, in an ideal case, the difference
  • the probability P is calculated by (Expression 2) by further using the above
  • the above relationship does not hold, it indicates that the accuracy of time noise removal is low. That is, there is a high possibility that the pixel of interest has moved from the past image (not stationary).
  • the time blend rate calculation unit 40 calculates the blend rate ⁇ tnr used in the time blend unit 50 using the probability P that the pixel value calculated by the reliability calculation unit 30 is stationary. Although ⁇ tnr is normalized by 1 and output, normalization is not necessarily required in relation to the calculation in the subsequent time blending unit 50. ⁇ tnr may be obtained by calculation using the probability P, or may be calculated using a table or correspondence prepared in advance.
  • FIG. 5 is an example of the correspondence between ⁇ tnr and P in the first embodiment.
  • (A) of FIG. 5 is a first example of the correspondence between ⁇ tnr and P. It shows that ⁇ tnr changes in proportion to P when P changes from 0 to 1.
  • the range in which ⁇ tnr changes is, for example, 0 to 0.9.
  • FIG. 5B is a second example of the correspondence between ⁇ tnr and P.
  • ⁇ tnr changes in proportion to P in the interval between P and 0 to a predetermined number
  • ⁇ tnr takes a constant value in the interval between P and the predetermined number.
  • the range in which ⁇ tnr changes is, for example, from 0 to 0.9 as described above.
  • ⁇ tnr can be changed from 0 to a predetermined number.
  • the time blend rate calculation unit 40 can be omitted, and the configuration can be simplified.
  • noise removal can be performed by optimally applying the temporal noise removal filter to the target image by adaptively changing the filter strength of the temporal noise removal filter.
  • FIG. 6 is a flowchart showing the flow of processing in the present embodiment.
  • FIG. 6 is a flowchart of processing for one image in the present embodiment.
  • step S101 pixel values are input.
  • step S102 spatial noise removal processing is performed on the pixel value input in step S101.
  • step S103 the probability that the pixel is stationary is calculated based on the pixel value from which spatial noise is removed in step S102, the pixel value input in step S101, and the pixel value of the past image.
  • step S104 the time blend ratio is calculated based on the probability calculated in step S103.
  • step S105 based on the time blend ratio calculated in step S104, the time blend process of the pixel value input in step S101 and the pixel value of the past image is performed.
  • step S106 the output image after the time blending process in step S105 is performed is output.
  • step S107 the output image is recorded in the buffer.
  • step S108 it is determined whether all the pixels have been processed. If it is determined that the processing has been completed, the processing for the one image is terminated (step S109). If it is determined that the process has not ended, the process proceeds to step S101.
  • the noise removal filter process can be performed on all the images constituting the moving image by sequentially performing the above processing on each of the images constituting the moving image.
  • the image noise removal device of the present embodiment in addition to the second image and the first noise removal image, the spatial noise removal image obtained by spatially removing the noise of the second image is used.
  • the image noise removal device can perform temporal noise removal processing with appropriate intensity on the image.
  • the detection of motion in the second image according to the conventional technique is performed by using the second image and the first noise-removed image, and it is known that the detection result is inaccurate.
  • the accuracy of the motion detection result can be improved by using the spatial noise-removed image of the second image in addition to the above two images.
  • the smaller the movement in the second image the more time noise removal processing can be performed on the image with the weight of the first noise removal image being increased.
  • the noise of the image after the temporal noise removal process can be reduced by increasing the weight of the first noise-removed image from which noise has already been removed.
  • the image noise removal device increases the weight of the first noise-removed image in temporal noise removal when it is determined that there is less possibility of movement in the second image. Since the noise has already been removed from the first noise-removed image, the noise of the image after the temporal noise removal processing can be reduced.
  • the image noise removing device can make the size determination using the ratio to the deviation of the distribution of the pixel value that changes due to the noise when determining the size of the difference between the pixel values.
  • the image noise removing device has an angle formed between the first vector corresponding to the difference between the spatial noise removed image and the second image and the second vector corresponding to the difference between the first noise removed image and the second image. It is determined that there is a smaller possibility of movement in the second image as the value is smaller, and the weight of the first noise-removed image in temporal noise removal is increased. Since the noise has already been removed from the first noise-removed image, the noise of the image after the temporal noise removal processing can be reduced.
  • the image noise removing device can use an image obtained by performing temporal noise removing processing on the first image by the image noise removing device as the first noise removed image.
  • a time noise removal process is sequentially performed on successive images in consideration of a noise removal result of an image immediately before the image. Can do.
  • FIG. 7 is a configuration diagram of the image noise removing apparatus according to the present embodiment.
  • the image noise removing apparatus 2 includes an input image terminal 10, a spatial noise removing unit 20, a reliability calculating unit 30, a time blending rate calculating unit 40, a time blending unit 50, and a buffer. 60, an output image terminal 70, a spatial blend rate calculation unit 80, and a spatial blend unit 90.
  • the input image terminal 10 receives an image (hereinafter referred to as “input image”) input to the image noise removal device 1. Specifically, the input image terminal 10 receives the pixel value (pixel data) of the target pixel and the pixel values (pixel data) of the surrounding pixels.
  • the spatial noise removal unit 20 performs noise removal by smoothing using the pixel values received by the input image terminal 10 and the pixel values of surrounding pixels.
  • the reliability calculation unit 30 calculates the probability that the target pixel received by the input image terminal 10 is stationary with respect to the pixel at the same position in the past input image. That is, the reliability calculation unit 30 receives the pixel value of the target pixel received by the input image terminal 10, the pixel value at the same position in the image obtained by removing noise from the past image recorded in the buffer, and the space. The pixel value at the same position in the image after the noise removal unit 20 performs noise removal is used as an input, and the pixel of interest is stationary with respect to the pixel at the same position in the noise removal signal for the past image using these values. Probability is calculated.
  • the spatial blend ratio calculation unit 80 is based on the probability calculated by the reliability calculation unit 30 and the pixel value received by the input image terminal 10 used in the spatial blend unit 90 based on the probability that the target pixel is stationary.
  • the blend ratio with the pixel value after the processing by the noise removing unit 20 is calculated.
  • the spatial blend unit 90 blends the pixel value received by the input image terminal 10 and the pixel value at the same position in the image after processing by the spatial noise removal unit 20 according to the blend rate calculated by the spatial blend rate calculation unit 80. I do.
  • the time blend rate calculation unit 40 Based on the probability that the target pixel calculated by the reliability calculation unit 30 is still, the time blend rate calculation unit 40 outputs the output image of the spatial blend unit 90 used by the time blend unit 50 and the past recorded in the buffer. A blend ratio (mixing ratio) with the pixel value at the same position in the noise removal signal for the image is calculated.
  • the time blending unit 50 blends the image value output from the spatial blending unit 90 and the pixel value at the same position in the past image recorded in the buffer according to the blending ratio calculated by the time blending rate calculating unit 40. Thus, an output image is generated, and the generated output image is output.
  • the spatial blend rate calculation unit 80 calculates the blend rate ⁇ snr based on the probability P that the target pixel described in the first embodiment is stationary.
  • the blend rate ⁇ snr is calculated in consideration of the following, for example.
  • the blend rate is adjusted so that the input image terminal 10 is blended at a relatively high rate for the purpose of suppressing the side effects such as the above-mentioned blur.
  • ⁇ snr is normalized and output, but normalization is not necessarily required in relation to the calculation in the spatial blending unit 90 in the subsequent stage.
  • ⁇ snr may be obtained by calculation using the probability P, or may be calculated using a table or correspondence prepared in advance. As described in the first embodiment, the correspondence shown in FIG. 5 may be adopted as the correspondence.
  • the probability P normalized by 1 can be used as it is as the blend rate ⁇ snr normalized by 1 without considering the side effect of spatial noise removal.
  • the space blend ratio calculation unit 80 can be omitted, and the configuration can be simplified.
  • the temporal noise removal filter can be optimally applied to the target image by adaptively changing the filter strength of the temporal noise removal filter, and the space for the moving part can be optimized. Noise removal can be performed by smoothly switching to the noise removal filter.
  • FIG. 8 is a flowchart showing the flow of processing in the present embodiment.
  • FIG. 8 is a flowchart of processing for one image in the present embodiment.
  • step S101 pixel values are input.
  • step S102 spatial noise removal processing is performed on the pixel value input in step S101.
  • step S103 the probability that the pixel is stationary is calculated based on the pixel value from which spatial noise is removed in step S102, the pixel value input in step S101, and the pixel value of the past image.
  • step S201 the spatial blend ratio is calculated based on the probability calculated in step S103.
  • step S202 based on the spatial blend ratio calculated in step S201, spatial blend processing is performed on the pixel value input in step S101 and the pixel value from which spatial noise is removed.
  • step S104 the time blend ratio is calculated based on the probability calculated in step S103.
  • step S105 based on the time blend ratio calculated in step S104, the time blend process of the pixel value input in step S101 and the pixel value processed in step S202 is performed.
  • step S106 the output image after the time blending process in step 105 is performed is output.
  • step S107 the output image is recorded in the buffer.
  • step S108 it is determined whether all the pixels have been processed. If it is determined that the processing has been completed, the processing for the one image is terminated (step S109). If it is determined that the process has not ended, the process proceeds to step S101.
  • noise removal filter processing that adaptively changes the strength of the temporal noise removal filter and gently switches the moving portion with the spatial noise removal filter.
  • the motion in the second image is detected with high accuracy as described above, and the spatial noise removal is performed on the second image according to the detection result. Later, temporal noise removal can be performed. Since the accuracy of motion detection in the second image is high, the accuracy of spatial noise removal can be improved. Then, since the temporal noise removal is performed after the spatial noise removal, a more appropriate temporal noise removal process can be performed on the image.
  • FIG. 9 is an example of a configuration diagram of an image noise removing device in each embodiment.
  • an image noise removing apparatus 1A for removing noise included in the second image after the first image in time order includes a spatial noise removing unit 20, a reliability calculating unit 30, A time blending unit 50.
  • the spatial noise removal unit 20 generates a spatial noise-removed image (SNR) by performing an operation for removing noise included in the second image (CUR) using the pixel values included in the second image (CUR). To do.
  • SNR spatial noise-removed image
  • the reliability calculation unit 30 uses the second image (CUR) based on the spatial noise-removed image (SNR), the second image (CUR), and the first noise-removed image (PRE) obtained by removing noise from the first image. ) To calculate the reliability, which is an index of the presence or absence of movement.
  • the time blending unit 50 performs addition processing based on reliability on the second image (CUR) and the first noise-removed image (PRE).
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the image noise removing apparatus and the like of each of the above embodiments is the following program.
  • this program is an image noise removal method for removing noise contained in the second image after removing noise from the first image, using the pixel value contained in the second image.
  • a spatial noise removal step of generating a spatial noise-removed image by performing an operation for removing noise included in the second image, the spatial noise-removed image, the second image, and the noise of the first image A reliability calculation step for calculating a reliability of movement in the second image based on the first noise-removed image from which the image is removed, and the reliability for the second image and the first noise-removed image.
  • an image noise removing method including a time blending step for removing noise contained in the second image is executed.
  • the image noise removing apparatus according to one or a plurality of aspects has been described based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the technique of the image noise removal apparatus can adaptively change the strength of the temporal noise removal filter, which is useful for noise removal of digital video cameras and digital still cameras that capture moving images. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去装置(1)は、第二画像に含まれる画素値を用いて第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部(20)と、空間ノイズ除去画像と、第二画像と、第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、第二画像における動きについての信頼度を算出する信頼度算出部(30)と、第二画像と第一ノイズ除去画像とに対して、信頼度に基づいた重み付け加算処理を行うことで、第二画像に含まれるノイズを除去する時間ブレンド部(50)とを備える。

Description

画像ノイズ除去装置、および画像ノイズ除去方法
 本発明は、画像ノイズ除去装置および画像ノイズ除去方法に関する。
 画像データのノイズを除去するフィルタ処理(以降、単に「フィルタ」とも記載する)には、時間ノイズ除去フィルタと空間ノイズ除去フィルタとがある。これらのノイズ除去フィルタを切り替える方法として、特許文献1は、動き検出の結果を用いて時間ノイズ除去フィルタと空間ノイズ除去フィルタとのそれぞれの処理結果のいずれかを選択する方法を開示している。
 また、特許文献2は、空間ノイズ除去フィルタの処理結果を用いて、時間ノイズ除去フィルタの処理結果を用いるかどうかを判断した上で、最終処理結果を出力する方法を開示している。
特開平2-248173号公報 国際公開第2010/073488号
 時間ノイズ除去フィルタによりノイズを除去すると、新たにノイズ(例えば、残像又は動画像の違和感)を生成してしまう場合があるという問題がある。つまり、ノイズを除去するのに適切な強度の時間ノイズ除去処理を画像に施すことが難しいという問題がある。
 そこで、本発明は、適切な強度の時間ノイズ除去処理を画像に施す画像ノイズ除去装置を提供する。
 本発明の一態様に係る画像ノイズ除去装置は、第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去装置であって、前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部と、前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出部と、前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンド部とを備える。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明の画像ノイズ除去装置および方法によれば、時間ノイズ除去フィルタのフィルタ強度を適応的に変化させることにより、ターゲットとする画像に対して時間ノイズ除去フィルタを最適にかけるノイズ除去ができる。
図1は、実施の形態1における画像ノイズ除去装置の構成図である。 図2は、実施の形態1における信頼度算出部の構成図である。 図3は、実施の形態1における画素値とベクトルとの関係の説明図である。 図4は、ノイズの確率分布を表す図である。 図5は、実施の形態1におけるαtnrとPとの対応関係の例である。 図6は、実施の形態1における処理の流れを示すフローチャートである。 図7は、実施の形態2における画像ノイズ除去装置の構成図である。 図8は、実施の形態2における処理の流れを示すフローチャートである。 図9は、各実施の形態における画像ノイズ除去装置の構成図の一例である。
(本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した、ノイズ除去技術に関し、以下の問題が生じることを見出した。
 画像(動画像、静止画像)データには撮影環境又はイメージセンサの特性により、ノイズ(雑音)が含まれている。ノイズの種類には、光ショットノイズ、ダークノイズ、固定パターンノイズ、又は、回路ノイズなどがある。このノイズにより画像の品質(画質)が劣化するため、画像データのノイズを除去又は低減するノイズ除去がフィルタ処理にて行われる。
 ノイズ除去の方法として、注目している画素データ(画素値)の近傍領域のデータを用いて画素値を平滑化する方法がよく知られている。平滑化の方法の例として、領域の平均値を取るフィルタや近傍領域の中央値をとるメディアンフィルタ等がある。これらのノイズ除去フィルタは、1枚の画像内のデータを用いて処理される空間ノイズ除去フィルタである。
 しかし動画像では、時間方向に連続する画像(フレーム)が存在するため、このフレーム間の相関を用いた平滑化処理により、ノイズを低減又は除去する時間ノイズ除去フィルタも用いられる。時間ノイズ除去の方法の例として、注目している画素データと時間的に前に存在するフレームの画素データを加重平均する方法がある。
 空間ノイズ除去フィルタと時間ノイズ除去フィルタとを組み合わせた方法として、注目画素データが静止部分であれば時間ノイズ除去フィルタを、移動部分であれば空間ノイズ除去フィルタを選択的に用いるものもある。
 画像データのノイズを除去するノイズ除去フィルタを切り替える方法として、特許文献1は、動き検出の結果を用いて時間ノイズ除去フィルタと空間ノイズ除去フィルタとのそれぞれの処理結果のいずれかを選択する方法を開示している。
 また、特許文献2は、空間ノイズ除去フィルタの処理結果を用いて、時間ノイズ除去フィルタの処理結果を用いるかどうかを判断した上で、最終処理結果を出力する方法を開示している。
 しかしながら、時間ノイズ除去フィルタと空間ノイズ除去フィルタとを切り替える方式において、時間ノイズ除去フィルタのノイズ除去効果を高めるためには、時間方向での平滑化処理を強くかけることが必要となる。時間ノイズ除去フィルタを強くかけた場合、移動領域周辺で残像が発生し画質が低下する。この残像を抑えるため時間ノイズ除去フィルタを強くかけることができず、時間ノイズ除去フィルタのノイズ除去効果が低下する。
 また、空間ノイズ除去フィルタの処理結果を用いて、時間ノイズ除去フィルタの処理結果を用いるかどうかを判断する場合、時間ノイズ除去フィルタ処理結果を有効とするか、又は、無効とするかの選択になるため、時間ノイズ除去フィルタと空間ノイズ除去フィルタとのノイズ除去性能の差により、2つのフィルタの切り替るタイミングで動画像に違和感が生ずる。
 上記のように、時間ノイズ除去フィルタによりノイズを除去すると、新たにノイズ(例えば、残像又は動画像の違和感)を生成してしまう場合があるという問題がある。つまり、ノイズを除去するのに適切な強度の時間ノイズ除去処理を画像に施すことができないという問題がある。
 そこで、本発明は、適切な強度の時間ノイズ除去処理を画像に施す画像ノイズ除去装置を提供する。
 このような問題を解決するために、本発明の一態様に係る画像ノイズ除去装置は、第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去装置であって、前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部と、前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出部と、前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンド部とを備える。
 これによれば、第二画像と、第一ノイズ除去画像とに加えて、第二画像のノイズを空間的に除去した空間ノイズ除去画像を用いて高い精度で第二画像における動きを検出し、その検出結果に応じて第二画像に対する時間ノイズ除去を行うことができる。第二画像における動き検出の精度が高いので、時間ノイズ除去の精度を向上させることができる。よって、画像ノイズ除去装置は、適切な強度の時間ノイズ除去処理を画像に施すことができる。
 従来技術での第二画像における動きの検出は、第二画像と第一ノイズ除去画像とにより行われるが、その検出結果は精度が悪いことが知られている。本発明においては、上記の2つの画像に加えて第二画像の空間ノイズ除去画像を用いることで、動きの検出結果の精度を向上させることができる。
 例えば、前記信頼度算出部は、前記第二画像に含まれる画素の動きが小さいほど、より大きな値を前記信頼度として算出し、前記時間ブレンド部は、前記信頼度が大きいほど、前記第一ノイズ除去画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行う。
 これによれば、第二画像における動きが小さいほど、第一ノイズ除去画像の重みを大きくした時間ノイズ除去処理を画像に施すことができる。第二画像において動きがある可能性が小さい部分では、すでにノイズが除去されている第一ノイズ除去画像の重みを大きくすることで、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 例えば、前記信頼度算出部は、前記第一ノイズ除去画像と前記第二画像とのそれぞれに含まれる同一位置の画素値の差分が小さいほど、より大きな値を前記信頼度として算出する。
 例えば、前記信頼度算出部は、前記第一ノイズ除去画像と前記空間ノイズ除去画像とのそれぞれに含まれる同一位置の画素値の差分が小さいほど、より大きな値を前記信頼度として算出する。
 これによれば、画像ノイズ除去装置は、第二画像において動きがある可能性がより小さいと判断した場合に、時間ノイズ除去における第一ノイズ除去画像の重みを大きくする。第一ノイズ除去画像は、すでにノイズが除去されているので、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 例えば、前記信頼度算出部は、予め定められた偏差であってノイズにより変化する画素値の分布の偏差に対する、前記差分の比に基づいて、前記信頼度を算出する。
 これによれば、画像ノイズ除去装置は、画素値の差分の大小判定の際に、ノイズにより変化する画素値の分布の偏差に対する比を用いて、大小判定をすることができる。
 例えば、前記画素値は、複数の成分を有し、前記信頼度算出部は、前記空間ノイズ除去画像と前記第二画像とのそれぞれにおける同一位置の画素の画素値の差分を成分として有する第一ベクトルと、前記第一ノイズ除去画像と前記第二画像とのそれぞれにおける同一位置の画素の画素値の差分を成分として有する第二ベクトルとのなす角が小さいほど、より大きな値を前記信頼度として算出する。
 これによれば、画像ノイズ除去装置は、空間ノイズ除去画像と第二画像との差分に対応する第一ベクトルと、第一ノイズ除去画像と第二画像との差分に対応する第二ベクトルとのなす角が小さいほど、第二画像において動きがある可能性がより小さいと判断し、時間ノイズ除去における第一ノイズ除去画像の重みを大きくする。第一ノイズ除去画像は、すでにノイズが除去されているので、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 例えば、前記第一ノイズ除去画像は、前記第一画像に含まれるノイズを当該画像ノイズ除去装置により除去した画像である。
 これによれば、画像ノイズ除去装置は、当該画像ノイズ除去装置により第一画像を時間ノイズ除去処理して得られる画像を第一ノイズ除去画像として用いることができる。
 例えば、前記第一画像は、動画像を構成する画像のうちの1つの画像であり、前記第二画像は、前記動画像を構成する画像のうちの1つの画像であって、時間順で前記第一画像の直後の画像である。
 これによれば、時間順で連続した複数の画像で構成される動画像に対して、連続した画像に対して、順次、当該画像の直前の画像のノイズ除去結果を考慮して時間ノイズ除去処理を施すことができる。
 例えば、前記画像ノイズ除去装置は、さらに、前記第二画像と前記空間ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、空間ブレンド画像を生成する空間ブレンド部とを備え、前記時間ブレンド部は、さらに、前記空間ブレンド画像と前記第一画像に含まれるノイズを除去した第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する。
 これによれば、上記のように高い精度で第二画像における動きを検出し、その検出結果に応じて第二画像に対する空間ノイズ除去を行った後に、時間ノイズ除去を行うことができる。第二画像における動き検出の精度が高いので、空間ノイズ除去の精度を向上させることができる。そして、この空間ノイズ除去を行った後に時間ノイズ除去を行うので、さらに適切な時間ノイズ除去処理を画像に施すことができる。
 例えば、前記信頼度算出部は、前記第二画像に含まれる画素の動きが小さいほど、より大きな値を前記信頼度として算出し、前記空間ブレンド部は、前記信頼度が大きいほど、前記第二画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行い、前記時間ブレンド部は、前記信頼度が大きいほど、前記第一ノイズ除去画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行う。
 これによれば、第二画像における動きがある可能性が小さいほど、第二画像の重みを大きくした空間ノイズ除去処理を画像に施すことができる。第二画像において動きがある可能性が小さい部分では、第二画像の重みを大きくすることで、空間ノイズ除去により生ずるボケなどの副作用を回避することができる。
 また、本発明の一態様に係る画像ノイズ除去方法は、第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去方法であって、前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去ステップと、前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出ステップと、前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンドステップとを含む。
 これにより、上記の画像ノイズ除去装置と同様の効果を奏する。
 また、本発明の一態様に係るプログラムは、上記に記載の画像ノイズ除去方法をコンピュータに実行させるためのプログラムである。
 これにより、上記の画像ノイズ除去装置と同様の効果を奏する。
 また、本発明の一態様に係る集積回路は、第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための集積回路であって、前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部と、前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出部と、前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンド部とを備える。
 これにより、上記の画像ノイズ除去装置と同様の効果を奏する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 図1は、本実施の形態における画像ノイズ除去装置の構成図である。
 図1に示されるように、画像ノイズ除去装置1は、入力画像端子10と、空間ノイズ除去部20と、信頼度算出部30と、時間ブレンド率算出部40と、時間ブレンド部50と、バッファ60と、出力画像端子70とを備える。
 入力画像端子10は、画像ノイズ除去装置1に入力される画像(以降、「入力画像」と記載する)を受け付ける。具体的には、入力画像端子10は、注目画素の画素値(画素データ)と、その周辺画素の画素値(画素データ)とを受け付ける。なお、入力画像は、第二画像に相当する。
 空間ノイズ除去部20は、入力画像端子10が受け付けた注目画素の画素値と、その周辺画素の画素値とを用いて平滑化によるノイズ除去を行う。このようにノイズ除去された画像が、空間ノイズ除去画像に相当する。
 信頼度算出部30は、入力画像端子10が受け付けた注目画素が、過去の入力画像(第一画像に相当)における同位置の画素に対して静止している確率を算出する。つまり、信頼度算出部30は、入力画像端子10が受け付けた注目画素の画素値と、バッファに記録されている過去の画像に対してノイズ除去を施した画像における同位置の画素値と、空間ノイズ除去部20がノイズ除去を行った後の画像における同位置の画素値とを入力とし、これらを用いて注目画素が過去の画像についてのノイズ除去信号における同位置の画素に対して静止している確率を算出する。算出する方式については、後に説明する。なお、「画素が静止している」とは、当該画素に対応する撮影対象物が変わらないことを意味する。すなわち、2つの画像のそれぞれにおける画素に対応する撮影対象物が同一である場合に、「画素が静止している」という。さらに、これらの2つの画素にそれぞれ異なる大きさのノイズが加わったために画素値が異なる場合であっても、「画素が静止している」といえる。反対に、2つの画像のそれぞれにおける画素に対応する撮影対象物が異なる場合に、「画素が静止していない」という。
 具体的には、現実に動きがない被写体(例えば、風景、建物など)を撮影した動画から2つの画像を抽出すれば、一方の画像の画素が他方の画像の画素に対して静止しているといえる。さらに、上記一方の画像の画素と上記他方の画像の画素とに互いに異なるノイズが加わった場合には、上記の画素値は異なるが、その場合にも、一方の画像の画素が他方の画像の画素に対して静止しているといえる。一方、現実に動きがある被写体(例えば、動いている車、手を振っている人)を撮影した動画から2つの画像を抽出すれば、その動きがある部分においては、一方の画像の画素が他方の画像の画素に対して静止しているとはいえない。
 なお、「バッファに記録されている過去の画像」とは、入力画像端子10が受け付けた入力画像より過去の画像であって、ノイズ除去処理が施された画像を意味である。つまり、過去の画像は、当該入力画像の1つ前に入力されノイズ除去処理が施された画像であってもよいし、当該入力画像の所定数前に入力されノイズ除去処理が施されたた画像であってもよい。このとき、所定数は、当該入力画像との差分が比較的小さいと考えられる画像数とすればよい。なお、「バッファに記録されている過去の画像」は、第一ノイズ除去画像に相当する。
 時間ブレンド率算出部40は、信頼度算出部30が算出した注目画素が静止している確率に基づいて、時間ブレンド部50が用いる入力画像端子10が受け付けた画素値とバッファに記録されている過去の画像の画素値とのブレンド率(混合率)を算出する。
 時間ブレンド部50は、時間ブレンド率算出部40が算出したブレンド率に従い、入力画像端子10が受け付けた画素値と、バッファに記録されている過去の画像についてのノイズ除去信号における同位置の画素値とのブレンドを行うことで出力画像を生成し、生成した出力画像を出力する。
 図2は、本実施の形態における信頼度算出部30の構成図である。
 図2に示されるように、信頼度算出部30は、差分演算部31aと、差分演算部31bと、差分演算部31cと、確率算出部32とを備える。以降において、信頼度算出部30に入力される入力画像端子10が受け付ける画素値をCURとし、空間ノイズ除去部20がノイズ除去(空間ノイズ除去)した後の画素値をSNRとし、バッファ60に記録されている画像の画像データをPREとして説明する。
 差分演算部31aは、a=SNR-CURを算出する。
 差分演算部31bは、b=PRE-CURを算出する。
 差分演算部31cは、c=PRE-SNRを算出する。
 一般に、画素値は、RGB又はYCbCrのような複数の色成分データによって構成されているので、差分演算部31a、31b及び31cが算出するa、b及びcは、複数の成分を有するベクトルととらえることができる。例えば、画素値がYCbCrの3つの情報にて構成される場合には、ベクトルa、b及びcは、(式1)のように表わされる。
Figure JPOXMLDOC01-appb-M000001
 ここで、添字のy、cb及びcrは、それぞれ画素値のY成分、Cb成分及びCr成分であることを示す。ベクトルa、b及びcは、画素値が3つの成分(例えばYCbCrやRGB形式)にて構成される場合には3次元のベクトルとなる。しかし、例えばグレースケールのようにY成分のみしか情報がない場合(CbとCrとが常に0である場合)には1次元として扱ってもよいし、CbとCrとを0として3次元と見なして扱ってもよい。
 図3は、実施の形態1における画素値とベクトルとの関係の説明図である。図3には、画素値CUR、SNR及びPRE、並びに、ベクトルa、b及びcの関係が示されている。
 具体的には、画素値CUR、SNR及びPREのそれぞれがその画素値に対応する座標に配置されている。ベクトルaは、CURを始点とし、SNRを終点とするベクトルとして描かれている。ベクトルbは、CURを始点とし、PREを終点とするベクトルとして描かれている。ベクトルcは、SNRを始点とし、PREを終点とするベクトルとして描かれている。
 確率算出部32は、(式2)に従い、画素データが静止している確率Pを算出する。
Figure JPOXMLDOC01-appb-M000002
 ここで、α、β及びγは、外部から与えられる定数である。また、ω0、ω1及びω2は、(式3)、(式4)及び(式5)にて計算される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、σは画像に含まれるノイズモデル正規分布(ノイズにより変化する画素値の分布)の偏差であり、外部から与えられる。図4は、画像に含まれるノイズの確率分布の一例を示している。この確率分布は、ノイズを含まない真の画素値Sを中心とした偏差σの正規分布にモデル化されている。
 一般に、画素データが静止している確率Pは、単にb(=PRE-CUR)により算出することができるが精度が低い。単にbのみを用いる方法は、(式2)の右辺の1つ目の因数だけを用いることと同等である。
 これに対し、本実施の形態において、時間ノイズ除去した後の画素値と空間ノイズ除去した後の画素値との双方が正しいという理想的な場合からのずれが考慮される。具体的には、時間ノイズ除去により完全にノイズが除去されたと仮定した場合の時間ノイズ除去後の画素値と、空間ノイズ除去により完全にノイズが除去されたと仮定した場合の空間ノイズ除去後の画素値とは、等しいと考える。つまり、理想的な場合には、両者の画素値の差|c|が0であり、かつベクトルaとbとのなす角θが0である。現実的に上記の理想的な場合が実現することは難しく、理想的な場合から若干のずれが生ずる。その場合、両者の画素値の差|c|が比較的小さく、かつベクトルaとbとのなす角θが比較的小さいという関係がある。そこで、上記の|c|及びθを、さらに用いて確率Pを(式2)により算出する。反対に、上記の関係が成り立たない場合は、時間ノイズ除去の精度が低いことを示している。つまり、注目している画素が過去の画像から移動している(静止していない)可能性が高いことを示している。
 時間ブレンド率算出部40は、信頼度算出部30が算出した画素値が静止している確率Pを用いて、時間ブレンド部50で用いるブレンド率αtnrを算出する。αtnrは1で正規化されて出力されるが、後段の時間ブレンド部50における演算との関係で正規化を必ずしも必要としない。αtnrは確率Pを用いた演算で求めても良いし、あらかじめ用意したテーブル又は対応関係を用いて算出してもよい。
 図5は、実施の形態1におけるαtnrとPとの対応関係の例である。
 図5の(a)は、αtnrとPとの対応関係の第一例である。Pが0から1まで変化する場合に、αtnrがPに比例して変化することを示している。αtnrが変化する範囲は、例えば、0から0.9までとする。
 図5の(b)は、αtnrとPとの対応関係の第二例である。Pが0から1まで変化する場合に、Pが0から所定数までの区間ではαtnrがPに比例して変化し、Pが所定数から1までの区間ではαtnrが一定値をとることを示している。αtnrが変化する範囲は、例えば、上記と同様に0から0.9までとする。
 上記のようにすれば、Pが0から1まで変化する場合に、αtnrが0から所定数まで変化するようにすることができる。
 なお、1で正規化した確率Pをそのまま、1で正規化したブレンド率αtnrとして用いることにより、時間ブレンド率算出部40を省略することもでき、構成を簡単にすることができる。
 時間ブレンド部50は、時間ブレンド率算出部40が算出したブレンド率αtnrを用いて出力画像OUTを出力する。例えば、αtnrが1で正規化してある場合には、OUT=αtnr×PRE+(1-αtnr)×CURとなる。
 以上の構成と処理により、時間ノイズ除去フィルタのフィルタ強度を適応的に変化させることにより、ターゲットとする画像に対して時間ノイズ除去フィルタを最適にかけるノイズ除去ができる。
 図6は、本実施の形態における処理の流れを示すフローチャートである。図6は、本実施の形態における1画像に対する処理のフローチャートである。
 ステップS101において、画素値の入力が行われる。
 ステップS102において、ステップS101で入力された画素値に対して空間ノイズ除去処理が行われる。
 ステップS103において、ステップS102において空間ノイズ除去された画素値と、ステップS101で入力された画素値と、過去の画像の画素値とに基づいて画素が静止している確率を算出する。
 ステップS104において、ステップS103で算出した確率を元に時間ブレンド率を算出する。
 ステップS105において、ステップS104で算出した時間ブレンド率を元に、ステップS101で入力された画素値と、過去の画像の画素値の時間ブレンド処理を行う。
 ステップS106において、ステップS105での時間ブレンド処理が行われた後の出力画像を出力する。
 ステップS107において、上記の出力画像をバッファに記録する。
 ステップS108において、全画素の処理が終わったかの判定を行い、終わったと判定した場合には当該1画像に対する処理を終了とする(ステップS109)。また、終わっていないと判定された場合には、ステップS101へ移行する。
 以上の処理により、時間ノイズ除去フィルタの強度を適応的に変えて1画像のノイズ除去フィルタ処理を行うことができる。動画像の場合には、動画像を構成する画像のそれぞれに対して、順次、上記の処理を施すことで動画像を構成する全ての画像にノイズ除去フィルタ処理を行うことができる。
 以上のように、本実施の形態における画像ノイズ除去装置によれば、第二画像と、第一ノイズ除去画像とに加えて、第二画像のノイズを空間的に除去した空間ノイズ除去画像を用いて高い精度で第二画像における動きを検出し、その検出結果に応じて第二画像に対する時間ノイズ除去を行うことができる。第二画像における動き検出の精度が高いので、時間ノイズ除去の精度を向上させることができる。よって、画像ノイズ除去装置は、適切な強度の時間ノイズ除去処理を画像に施すことができる。
 従来技術での第二画像における動きの検出は、第二画像と第一ノイズ除去画像とにより行わるが、その検出結果は精度が悪いことが知られている。本発明においては、上記の2つの画像に加えて第二画像の空間ノイズ除去画像を用いることで、動きの検出結果の精度を向上させることができる。
 また、第二画像における動きが小さいほど、第一ノイズ除去画像の重みを大きくした時間ノイズ除去処理を画像に施すことができる。第二画像において動きがある可能性が小さい部分では、すでにノイズが除去されている第一ノイズ除去画像の重みを大きくすることで、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 また、画像ノイズ除去装置は、第二画像において動きがある可能性がより小さいと判断した場合に、時間ノイズ除去における第一ノイズ除去画像の重みを大きくする。第一ノイズ除去画像は、すでにノイズが除去されているので、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 また、画像ノイズ除去装置は、画素値の差分の大小判定の際に、ノイズにより変化する画素値の分布の偏差に対する比を用いて、大小判定をすることができる。
 また、画像ノイズ除去装置は、空間ノイズ除去画像と第二画像との差分に対応する第一ベクトルと、第一ノイズ除去画像と第二画像との差分に対応する第二ベクトルとのなす角が小さいほど、第二画像において動きがある可能性がより小さいと判断し、時間ノイズ除去における第一ノイズ除去画像の重みを大きくする。第一ノイズ除去画像は、すでにノイズが除去されているので、時間ノイズ除去処理後の画像のノイズを小さくすることができる。
 また、画像ノイズ除去装置は、当該画像ノイズ除去装置により第一画像を時間ノイズ除去処理して得られる画像を第一ノイズ除去画像として用いることができる。
 また、時間順で連続した複数の画像で構成される動画像に対して、連続した画像に対して、順次、当該画像の直前の画像のノイズ除去結果を考慮して時間ノイズ除去処理を施すことができる。
 (実施の形態2)
 図7は、本実施の形態における画像ノイズ除去装置の構成図である。
 図7に示されるように、画像ノイズ除去装置2は、入力画像端子10と、空間ノイズ除去部20と、信頼度算出部30と、時間ブレンド率算出部40と、時間ブレンド部50と、バッファ60と、出力画像端子70と、空間ブレンド率算出部80と、空間ブレンド部90とを備える。
 入力画像端子10は、画像ノイズ除去装置1に入力される画像(以降、「入力画像」と記載する)を受け付ける。具体的には、入力画像端子10は、注目画素の画素値(画素データ)と、その周辺画素の画素値(画素データ)とを受け付ける。
 空間ノイズ除去部20は、入力画像端子10が受け付けた画素値と、周辺画素の画素値とを用いて平滑化によるノイズ除去を行う。
 信頼度算出部30は、入力画像端子10が受け付けた注目画素が、過去の入力画像における同位置の画素に対して静止している確率を算出する。つまり、信頼度算出部30は、入力画像端子10が受け付けた注目画素の画素値と、バッファに記録されている過去の画像に対してノイズ除去を施した画像における同位置の画素値と、空間ノイズ除去部20がノイズ除去を行った後の画像における同位置の画素値を入力とし、これらを用いて注目画素が過去の画像についてのノイズ除去信号における同位置の画素に対して静止している確率を算出する。
 空間ブレンド率算出部80は、信頼度算出部30が算出した確率であって、注目画素が静止している確率に基づいて、空間ブレンド部90で用いる入力画像端子10が受け付けた画素値と空間ノイズ除去部20による処理の後の画素値とのブレンド率を算出する。
 空間ブレンド部90は、空間ブレンド率算出部80が算出したブレンド率に従い、入力画像端子10が受け付けた画素値と、空間ノイズ除去部20による処理の後の画像における同位置の画素値とのブレンドを行う。
 時間ブレンド率算出部40は、信頼度算出部30が算出した注目画素が静止している確率に基づいて、時間ブレンド部50が用いる空間ブレンド部90の出力画像とバッファに記録されている過去の画像についてのノイズ除去信号における同位置の画素値とのブレンド率(混合率)を算出する。
 時間ブレンド部50は、時間ブレンド率算出部40が算出したブレンド率に従い、空間ブレンド部90が出力した画像値と、バッファに記録されている過去の画像における同位置の画素値とのブレンディングを行うことで出力画像を生成し、生成した出力画像を出力する。
 空間ブレンド率算出部80は、実施の形態1で説明した注目画素が静止している確率Pに基づいて、ブレンド率αsnrを算出する。
 ブレンド率αsnrの計算は、例えば、以下のようなことを考慮して行う。一般に、空間ノイズ除去による平滑化処理を行うと、画像にボケが発生するなどの副作用が生ずる。そこで、画像が静止している確率が高い場合には上記のボケのような副作用を抑制する目的で、入力画像端子10を比較的高い割合でブレンドするようにブレンド率を調整する。
 αsnrは正規化されて出力されるが、後段の空間ブレンド部90における演算との関係で正規化を必ずしも必要としない。αsnrは確率Pを用いた演算で求めても良いし、あらかじめ用意したテーブル又は対応関係を用いて算出してもよい。対応関係は、実施の形態1で説明したように、図5に示される対応関係を採用してもよい。
 なお、空間ノイズ除去の副作用を考慮せずに、1で正規化した確率Pをそのまま、1で正規化したブレンド率αsnrとして用いることもできる。その場合、空間ブレンド率算出部80を省略することもでき、構成を簡単にすることができる。
 空間ブレンド部90は、空間ブレンド率算出部80が算出したブレンド率αsnrを用いて出力結果OUTsnrを出力する。例えば、αsnrが1で正規化してある場合には、OUTsnr=αsnr×CUR+(1-αsnr)×SNRとなる。
 時間ブレンド部50は、時間ブレンド率算出部40で算出したブレンド率αtnrを用いて出力画像OUTを出力する。例えば、αtnrが1で正規化してある場合には、OUT=αtnr×PRE+(1-αtnr)×OUTsnrとなる。
 以上の構成と処理により、時間ノイズ除去フィルタのフィルタ強度を適応的に変化させることにより、ターゲットとする画像に対して時間ノイズ除去フィルタを最適にかけることができ、かつ、動いている部分に対する空間ノイズ除去フィルタとの切り替えをなだらかに行うノイズ除去ができる。
 図8は、本実施の形態における処理の流れを示すフローチャートである。図8は、本実施の形態における1画像に対する処理のフローチャートである。
 ステップS101において、画素値の入力が行われる。
 ステップS102において、ステップS101で入力された画素値に対して空間ノイズ除去処理が行われる。
 ステップS103において、ステップS102において空間ノイズ除去された画素値と、ステップS101で入力された画素値と、過去の画像の画素値とに基づいて画素が静止している確率を算出する。
 ステップS201において、ステップS103で算出した確率を元に空間ブレンド率の算出を行う。
 ステップS202において、ステップS201で算出した空間ブレンド率を元に、ステップS101で入力された画素値と、空間ノイズ除去された画素値との空間ブレンド処理を行う。
 ステップS104において、ステップS103で算出した確率を元に時間ブレンド率を算出する。
 ステップS105において、ステップS104で算出した時間ブレンド率を元に、ステップS101で入力された画素値と、ステップS202で処理された後の画素値の時間ブレンド処理を行う。
 ステップS106において、ステップ105での時間ブレンド処理が行われた後の出力画像を出力する。
 ステップS107において、上記の出力画像をバッファに記録する。
 ステップS108において、全画素の処理が終わったかの判定を行い、終わったと判定した場合には当該1画像に対する処理を終了とする(ステップS109)。また、終わっていないと判定された場合には、ステップS101へ移行する。
 以上の処理により、時間ノイズ除去フィルタの強度を適応的に変え、かつ動いている部分に対する空間ノイズ除去フィルタとの切り替えをなだらかするノイズ除去フィルタ処理を行うことができる。
 以上のように、本実施の形態における画像ノイズ除去装置によれば、上記のように高い精度で第二画像における動きを検出し、その検出結果に応じて第二画像に対する空間ノイズ除去を行った後に、時間ノイズ除去を行うことができる。第二画像における動き検出の精度が高いので、空間ノイズ除去の精度を向上させることができる。そして、この空間ノイズ除去を行った後に時間ノイズ除去を行うので、さらに適切な時間ノイズ除去処理を画像に施すことができる。
 また、第二画像における動きがある可能性が小さいほど、第二画像の重みを大きくした空間ノイズ除去処理を画像に施すことができる。第二画像において動きがある可能性が小さい部分では、第二画像の重みを大きくすることで、空間ノイズ除去により生ずるボケなどの副作用を回避することができる。
 なお、上記各実施の形態における画像ノイズ除去装置は、以下の構成でも実現できる。図9は、各実施の形態における画像ノイズ除去装置の構成図の一例である。
 図9に示されるように、時間順で第一画像の後の第二画像に含まれるノイズを除去するための画像ノイズ除去装置1Aは、空間ノイズ除去部20と、信頼度算出部30と、時間ブレンド部50とを備える。
 空間ノイズ除去部20は、第二画像(CUR)に含まれる画素値を用いて第二画像(CUR)に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像(SNR)を生成する。
 信頼度算出部30は、空間ノイズ除去画像(SNR)と、第二画像(CUR)と、第一画像のノイズを除去した第一ノイズ除去画像(PRE)とに基づいて、第二画像(CUR)における動きの有無の指標である信頼度を算出する。
 時間ブレンド部50は、第二画像(CUR)と第一ノイズ除去画像(PRE)とに対して、信頼度に基づいた加算処理を行う。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の画像ノイズ除去装置などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去方法であって、前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去ステップと、前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出ステップと、前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンドステップとを含む画像ノイズ除去方法を実行させる。
 以上、一つまたは複数の態様に係る画像ノイズ除去装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本発明にかかる画像ノイズ除去装置の技術により、時間ノイズ除去フィルタの強度を適応的に変更することができるため、動画像を撮影するデジタルビデオカメラやデジタルスチルカメラのノイズ除去に対して有用である。
 1、1A、2  画像ノイズ除去装置
 10  入力画像端子
 20  空間ノイズ除去部
 30  信頼度算出部
 31a、31b、31c  差分演算部
 32  確率算出部
 40  時間ブレンド率算出部
 50  時間ブレンド部
 60  バッファ
 70  出力画像端子
 80  空間ブレンド率算出部
 90  空間ブレンド部

Claims (13)

  1.  第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去装置であって、
     前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部と、
     前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出部と、
     前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンド部とを備える
     画像ノイズ除去装置。
  2.  前記信頼度算出部は、
     前記第二画像に含まれる画素の動きが小さいほど、より大きな値を前記信頼度として算出し、
     前記時間ブレンド部は、
     前記信頼度が大きいほど、前記第一ノイズ除去画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行う
     請求項1に記載の画像ノイズ除去装置。
  3.  前記信頼度算出部は、
     前記第一ノイズ除去画像と前記第二画像とのそれぞれに含まれる同一位置の画素値の差分が小さいほど、より大きな値を前記信頼度として算出する
     請求項2に記載の画像ノイズ除去装置。
  4.  前記信頼度算出部は、
     前記第一ノイズ除去画像と前記空間ノイズ除去画像とのそれぞれに含まれる同一位置の画素値の差分が小さいほど、より大きな値を前記信頼度として算出する
     請求項2又は3に記載の画像ノイズ除去装置。
  5.  前記信頼度算出部は、
     予め定められた偏差であってノイズにより変化する画素値の分布の偏差に対する、前記差分の比に基づいて、前記信頼度を算出する
     請求項3又は4に記載の画像ノイズ除去装置。
  6.  前記画素値は、複数の成分を有し、
     前記信頼度算出部は、
     前記空間ノイズ除去画像と前記第二画像とのそれぞれにおける同一位置の画素の画素値の差分を成分として有する第一ベクトルと、前記第一ノイズ除去画像と前記第二画像とのそれぞれにおける同一位置の画素の画素値の差分を成分として有する第二ベクトルとのなす角が小さいほど、より大きな値を前記信頼度として算出する
     請求項2~5のいずれか1項に記載の画像ノイズ除去装置。
  7.  前記第一ノイズ除去画像は、前記第一画像に含まれるノイズを当該画像ノイズ除去装置により除去した画像である
     請求項1~6のいずれか1項に記載の画像ノイズ除去装置。
  8.  前記第一画像は、動画像を構成する画像のうちの1つの画像であり、
     前記第二画像は、前記動画像を構成する画像のうちの1つの画像であって、時間順で前記第一画像の直後の画像である
     請求項1~7のいずれか1項に記載の画像ノイズ除去装置。
  9.  前記画像ノイズ除去装置は、さらに、
     前記第二画像と前記空間ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、空間ブレンド画像を生成する空間ブレンド部とを備え、
     前記時間ブレンド部は、さらに、
     前記空間ブレンド画像と前記第一画像に含まれるノイズを除去した第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する
     請求項1に記載の画像ノイズ除去装置。
  10.  前記信頼度算出部は、
     前記第二画像に含まれる画素の動きが小さいほど、より大きな値を前記信頼度として算出し、
     前記空間ブレンド部は、
     前記信頼度が大きいほど、前記第二画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行い、
     前記時間ブレンド部は、
     前記信頼度が大きいほど、前記第一ノイズ除去画像の重みをより大きくした重み付け加算処理を、前記重み付け加算処理として行う
     請求項1に記載の画像ノイズ除去装置。
  11.  第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための画像ノイズ除去方法であって、
     前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去ステップと、
     前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出ステップと、
     前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンドステップとを含む
     画像ノイズ除去方法。
  12.  請求項11に記載の画像ノイズ除去方法をコンピュータに実行させるためのプログラム。
  13.  第一画像のノイズ除去の後に、第二画像に含まれるノイズを除去するための集積回路であって、
     前記第二画像に含まれる画素値を用いて前記第二画像に含まれるノイズを除去するための演算を行うことで空間ノイズ除去画像を生成する空間ノイズ除去部と、
     前記空間ノイズ除去画像と、前記第二画像と、前記第一画像のノイズを除去した第一ノイズ除去画像とに基づいて、前記第二画像における動きについての信頼度を算出する信頼度算出部と、
     前記第二画像と前記第一ノイズ除去画像とに対して、前記信頼度に基づいた重み付け加算処理を行うことで、前記第二画像に含まれるノイズを除去する時間ブレンド部とを備える
     集積回路。
PCT/JP2013/005844 2012-10-04 2013-10-01 画像ノイズ除去装置、および画像ノイズ除去方法 WO2014054273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380004125.5A CN104115482B (zh) 2012-10-04 2013-10-01 图像噪声除去装置、以及图像噪声除去方法
US14/359,961 US9367900B2 (en) 2012-10-04 2013-10-01 Image noise removing apparatus and image noise removing method
JP2014509025A JP6254938B2 (ja) 2012-10-04 2013-10-01 画像ノイズ除去装置、および画像ノイズ除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-221988 2012-10-04
JP2012221988 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054273A1 true WO2014054273A1 (ja) 2014-04-10

Family

ID=50434617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005844 WO2014054273A1 (ja) 2012-10-04 2013-10-01 画像ノイズ除去装置、および画像ノイズ除去方法

Country Status (4)

Country Link
US (1) US9367900B2 (ja)
JP (1) JP6254938B2 (ja)
CN (1) CN104115482B (ja)
WO (1) WO2014054273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791689A (zh) * 2016-09-30 2019-05-21 哈德利公司 图像信号处理器偏置补偿噪声降低系统和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238521B2 (ja) * 2012-12-19 2017-11-29 キヤノン株式会社 3次元計測装置およびその制御方法
JP6135526B2 (ja) * 2014-01-30 2017-05-31 株式会社リガク 画像処理方法および画像処理装置
FR3018147B1 (fr) * 2014-03-03 2016-03-04 Sagem Defense Securite Debruitage video optimise pour systeme multicapteur heterogene
KR101913650B1 (ko) * 2017-11-06 2018-10-31 크루셜텍 (주) 디스플레이 영역에서의 생체 이미지 판독 장치
US10469749B1 (en) * 2018-05-01 2019-11-05 Ambarella, Inc. Temporal filter with criteria setting maximum amount of temporal blend
CN110796624B (zh) 2019-10-31 2022-07-05 北京金山云网络技术有限公司 一种图像生成方法、装置及电子设备
EP3832591B1 (en) * 2019-12-03 2022-06-08 Axis AB Encoding of a video sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060636A (ja) * 2005-07-29 2007-03-08 Victor Co Of Japan Ltd ノイズ検出装置及び方法、並びにノイズ低減装置及び方法
JP2010147840A (ja) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd 画像処理装置及び撮像装置
JP2010147985A (ja) * 2008-12-22 2010-07-01 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
WO2010073488A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 画像ノイズ除去装置及び方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782766B2 (ja) 1989-03-22 1998-08-06 キヤノン株式会社 動画静止画変換方法
GB9607668D0 (en) * 1996-04-12 1996-06-12 Snell & Wilcox Ltd Video noise reducer
US7295616B2 (en) * 2003-11-17 2007-11-13 Eastman Kodak Company Method and system for video filtering with joint motion and noise estimation
US7199838B2 (en) * 2004-06-17 2007-04-03 Samsung Electronics Co., Ltd. Motion adaptive noise reduction apparatus and method for video signals
US7769089B1 (en) * 2004-12-02 2010-08-03 Kolorific, Inc. Method and system for reducing noise level in a video signal
ATE530015T1 (de) * 2005-01-18 2011-11-15 Lg Electronics Inc Anordnung zur entfernung von rauschen aus einem videosignal
US7535517B2 (en) * 2005-04-14 2009-05-19 Samsung Electronics Co., Ltd. Method of motion compensated temporal noise reduction
TWI324013B (en) * 2006-02-22 2010-04-21 Huper Lab Co Ltd Video noise reduction method using adaptive spatial and motion-compensation temporal filters
JP4859632B2 (ja) * 2006-11-15 2012-01-25 富士通セミコンダクター株式会社 画像処理装置及び画像処理方法
JP5052319B2 (ja) * 2007-12-17 2012-10-17 オリンパス株式会社 動画ノイズ低減処理装置、動画ノイズ低減処理プログラム、動画ノイズ低減処理方法
US20090161756A1 (en) * 2007-12-19 2009-06-25 Micron Technology, Inc. Method and apparatus for motion adaptive pre-filtering
US8184705B2 (en) * 2008-06-25 2012-05-22 Aptina Imaging Corporation Method and apparatus for motion compensated filtering of video signals
JPWO2010007777A1 (ja) * 2008-07-16 2012-01-05 パナソニック株式会社 画像処理装置、画像処理方法、プログラム、記録媒体および集積回路
US20100045870A1 (en) * 2008-08-25 2010-02-25 Mediatek Inc. Adaptive noise reduction system
CN101448077B (zh) * 2008-12-26 2010-06-23 四川虹微技术有限公司 一种自适应视频图像3d降噪方法
TWI390467B (zh) * 2009-01-23 2013-03-21 Silicon Integrated Sys Corp 動態雜訊濾波裝置及西格瑪濾波方法
CN101964863B (zh) * 2010-05-07 2012-10-24 镇江唐桥微电子有限公司 一种自适应的时空域视频图像降噪方法
US8427583B2 (en) * 2010-09-30 2013-04-23 Sharp Laboratories Of America, Inc. Automatic parameter control for spatial-temporal filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060636A (ja) * 2005-07-29 2007-03-08 Victor Co Of Japan Ltd ノイズ検出装置及び方法、並びにノイズ低減装置及び方法
JP2010147840A (ja) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd 画像処理装置及び撮像装置
JP2010147985A (ja) * 2008-12-22 2010-07-01 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
WO2010073488A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 画像ノイズ除去装置及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791689A (zh) * 2016-09-30 2019-05-21 哈德利公司 图像信号处理器偏置补偿噪声降低系统和方法
KR20190054126A (ko) * 2016-09-30 2019-05-21 허들리 인코포레이티드 Isp 바이어스-보상 노이즈 감소 시스템들 및 방법들
JP2019530360A (ja) * 2016-09-30 2019-10-17 ハドリー インコーポレイテッド Ispバイアス補償ノイズ低減システムおよび方法
KR102411033B1 (ko) * 2016-09-30 2022-06-17 허들리 인코포레이티드 Isp 바이어스-보상 노이즈 감소 시스템들 및 방법들

Also Published As

Publication number Publication date
JPWO2014054273A1 (ja) 2016-08-25
JP6254938B2 (ja) 2017-12-27
CN104115482B (zh) 2017-11-21
CN104115482A (zh) 2014-10-22
US9367900B2 (en) 2016-06-14
US20140341480A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6254938B2 (ja) 画像ノイズ除去装置、および画像ノイズ除去方法
JP4727720B2 (ja) 画像処理方法および画像処理装置
US9413951B2 (en) Dynamic motion estimation and compensation for temporal filtering
US9514525B2 (en) Temporal filtering for image data using spatial filtering and noise history
US9135683B2 (en) System and method for temporal video image enhancement
US9727984B2 (en) Electronic device and method for processing an image
JP2007274299A5 (ja)
JP2013508811A5 (ja)
US20100067818A1 (en) System and method for high quality image and video upscaling
US20100111438A1 (en) Anisotropic diffusion method and apparatus based on direction of edge
JP2012208553A (ja) 画像処理装置、および画像処理方法、並びにプログラム
JPWO2017169039A1 (ja) 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
JP2009212969A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP4935930B2 (ja) 画像補正装置および画像補正方法
US8750635B2 (en) Image processing apparatus, image processing method, program, and recording medium
JP2012073703A (ja) 画像ボケ量計算装置およびそのプログラム
JP6576179B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2016201037A (ja) 画像処理装置、画像処理方法及びプログラム
Zhao et al. An improved image deconvolution approach using local constraint
JP3959547B2 (ja) 画像処理装置、画像処理方法、及び情報端末装置
JP5701035B2 (ja) 画像処理装置および方法並びにプログラム
US20160328858A1 (en) Image processing system, image processing method, and image processing program
JP4930638B2 (ja) 画像補正装置および画像補正方法
JP5868197B2 (ja) ノイズ低減装置およびその制御方法
JP2014158083A5 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509025

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359961

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844399

Country of ref document: EP

Kind code of ref document: A1