WO2014208202A1 - パターン形状評価装置及び方法 - Google Patents
パターン形状評価装置及び方法 Download PDFInfo
- Publication number
- WO2014208202A1 WO2014208202A1 PCT/JP2014/062242 JP2014062242W WO2014208202A1 WO 2014208202 A1 WO2014208202 A1 WO 2014208202A1 JP 2014062242 W JP2014062242 W JP 2014062242W WO 2014208202 A1 WO2014208202 A1 WO 2014208202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shape
- contour data
- pattern
- exposure condition
- circuit pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000011156 evaluation Methods 0.000 title claims description 49
- 230000008569 process Effects 0.000 claims abstract description 46
- 238000013461 design Methods 0.000 claims abstract description 22
- 238000013075 data extraction Methods 0.000 claims abstract description 3
- 230000008859 change Effects 0.000 claims description 35
- 238000012937 correction Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012821 model calculation Methods 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 19
- 239000004065 semiconductor Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 12
- 238000010894 electron beam technology Methods 0.000 description 11
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0006—Industrial image inspection using a design-rule based approach
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
- H01J37/222—Image processing arrangements associated with the tube
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6113—Specific applications or type of materials patterned objects; electronic devices printed circuit board [PCB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10144—Varying exposure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention relates to an apparatus and method for evaluating the pattern shape of a semiconductor pattern formed on a substrate.
- the dose and focus value of the exposure apparatus are changed stepwise to measure the test pattern manufactured on the silicon wafer with a length measuring SEM (Scanning Electron Microscope), and the dose for manufacturing a normal pattern.
- a technique for determining the range and focus range is used. This method is disclosed in Patent Document 1.
- this method is referred to as “process window analysis”.
- the process window analysis is used to determine exposure conditions and to select a photosensitive light receiving resin (hereinafter referred to as “resist”) to be applied on a silicon wafer.
- resist photosensitive light receiving resin
- the result of the process window analysis is used for managing the mass production stage, and is fed back to the exposure apparatus as necessary.
- the pattern has a high density and the pattern shape is also complicated. Accordingly, it is difficult to automatically set optimum process windows (for example, a dose range and a focus range) for all pattern shapes and arrangements of all patterns depending on the conventional length measurement SEM. For this reason, for this type of pattern or part, a method of determining whether or not the pattern is a normal pattern by visual observation and obtaining a process window is employed.
- optimum process windows for example, a dose range and a focus range
- the pattern shape evaluation method includes a method of evaluating a pattern shape using electronic device design data as a reference pattern (Patent Documents 2 to 5), a method of evaluating a pattern shape using a non-defective pattern as a reference pattern (Patent Document 3), There is a technique (Patent Document 6) for generating a typical reference pattern and evaluating a pattern shape.
- Japanese Patent Laid-Open No. 11-288879 Japanese Patent Application No. 6-49264 Japanese Patent Laid-Open No. 10-312461 JP 2002-6479 A JP 2001-338304 A JP 2009-194051 A JP 2006-66478 A
- Patent Documents 2 to 5 are based on the premise that the difference between the pattern shape on the design data and the pattern shape actually transferred onto the wafer is small. Wrong evaluation.
- Patent Document 3 discloses a method for evaluating a pattern shape using a non-defective pattern as a reference pattern.
- the pattern shape is stable when it includes deformation of the pattern shape due to process variations and edge roughness. Cannot be evaluated.
- Patent Document 6 A technique for solving these problems is disclosed in Patent Document 6.
- the method of Patent Document 6 creates contour distribution data from the contour data of at least two circuit patterns, and evaluates the pattern shape using the average shape or the center shape of the contour distribution frame as a reference pattern.
- it is necessary to acquire two or more circuit patterns having the same exposure conditions and design layout.
- the present invention relating to an apparatus for evaluating the pattern shape of a semiconductor pattern is a method for extracting contour data from captured images of a plurality of circuit patterns formed by changing exposure conditions for the same design layout.
- Data extraction means shape change amount measuring means for measuring the shape deformation amount of each edge or local region of the circuit pattern based on the extracted plurality of contour data, and predetermined based on the measured shape deformation amount
- a change amount model calculating means for calculating a change amount model of a circuit pattern or shape corresponding to the exposure condition, and a circuit pattern or shape corresponding to the exposure condition specified in the reference exposure condition by using the change amount model. Estimate the amount of circuit pattern or shape change corresponding to an arbitrary exposure condition, and process based on the estimated shape change. And a process window calculation means for calculating the window.
- the global or local shape difference of the predetermined exposure condition with respect to the reference exposure condition can be calculated with high accuracy, and the process window analysis for the predetermined part can be performed stably.
- the figure explaining an example of a semiconductor measurement system The figure which shows the schematic structural example of a scanning electron microscope.
- contour data is extracted from image data of a plurality of circuit patterns formed under different exposure conditions (dose amount, focus value), and due to process variation based on the extracted plurality of contour data
- a pattern shape evaluation apparatus having a function of specifying a process window with high accuracy by generating a shape change amount that does not depend on a shape change will be described. More specifically, an apparatus and a system including a length-measuring scanning electron microscope (CD-SEM) as one of the constituent elements will be described.
- CD-SEM length-measuring scanning electron microscope
- a charged particle beam apparatus is illustrated as an apparatus for acquiring image data, and an example in which SEM is used as one aspect thereof is described.
- FIB Focused FI Ion Beam
- an SEM that is superior to the FIB apparatus in terms of resolution.
- FIG. 1 shows a schematic configuration of a semiconductor measurement system in which a plurality of measurement devices or inspection devices are connected to a network.
- a CD-SEM 101 a defect inspection apparatus 102, a condition setting apparatus 103, a simulator 104, and a storage medium 105 are connected to a network 106.
- the CD-SEM 101 is an apparatus that acquires an image by irradiating a sample (semiconductor wafer, photomask, etc.) with an electron beam, and measures a pattern dimension from the acquired image.
- the defect inspection apparatus 102 is an apparatus that acquires an image by irradiating a sample with an electron beam, and extracts a defect based on a comparison result between the acquired image and a previously registered reference image.
- the condition setting device 103 is a device for setting a measurement position, measurement conditions, and the like on the design data of the semiconductor device.
- the simulator 104 is a device that simulates the quality of the pattern based on the design data of the semiconductor device and the manufacturing conditions of the semiconductor manufacturing apparatus.
- the storage medium 105 is an apparatus for storing design data including layout data and manufacturing conditions of semiconductor devices.
- the design data is expressed in, for example, the GDS format or the OASIS format, and is stored in the storage medium 105 in a predetermined format.
- the type of design data is not limited as long as the software that displays the design data can display the format and can handle it as graphic data.
- the storage medium 105 may be incorporated in the control device of the CD-SEM 101, the control device of the defect inspection device 102, the condition setting device 103, and the simulator 104.
- Each SEM is provided with a control device (not shown), and executes control necessary for each SEM.
- These control devices may be equipped with functions of the simulator 104 and setting functions such as measurement conditions.
- the SEM focuses the electron beam emitted from the electron source using a plurality of stages of lenses, and then performs deflection scanning using a scanning deflector. Thereby, the electron beam scans the sample surface in one or two dimensions.
- Secondary electrons (SE: Secondary Electron) or backscattered electrons (BSE) emitted from the sample surface by scanning the electron beam are detected by the detector, and are synchronized with the scanning of the scanning deflector to frame memory, etc.
- the image signals stored in the frame memory are integrated by an arithmetic device mounted in the control device. Further, scanning with a scanning deflector is possible for any size, position, and direction.
- the above control and the like are executed by the SEM control device. An image acquired by scanning the electron beam and a corresponding signal are sent to the condition setting device 103 via the network 106.
- condition setting device 103 may control each SEM, and the control device of each SEM A setting process may be executed.
- the condition setting device 103 or the control device of each SEM stores a program for executing measurement processing, and executes measurement or calculation according to the program.
- the condition setting device 103 has a function of creating a program (recipe) for controlling the operation of the SEM based on the design data of the semiconductor device, and functions as a recipe setting unit. More specifically, the condition setting device 103 uses positional information (for example, design data, pattern outline data, desired measurement points on the simulation-designed data, autofocus, etc. for executing processing necessary for the SEM. Points, auto stigma points, addressing points), etc., and a program for automatically controlling the sample stage, deflector, etc. of the SEM is created based on the settings. In addition, the condition setting device 103 incorporates or stores a program that causes a dedicated processor or a general-purpose processor to extract information on a region serving as a template from design data and create a template based on the extracted information.
- positional information for example, design data, pattern outline data, desired measurement points on the simulation-designed data, autofocus, etc.
- Points, auto stigma points, addressing points etc.
- FIG. 2 shows a schematic configuration example of a scanning electron microscope.
- the electron beam 203 is extracted from the electron source 201 by the extraction electrode 202 and accelerated by an acceleration electrode (not shown).
- the accelerated electron beam 203 is focused by a condenser lens 204 which is a form of a focusing lens, and then deflected by a scanning deflector 205.
- the electron beam 203 scans the sample 209 one-dimensionally or two-dimensionally.
- the electron beam 203 incident on the sample 209 is decelerated by the negative voltage applied to the electrode built in the sample stage 208 and is focused by the lens action of the objective lens 206 to irradiate the surface of the sample 209.
- Electrons 210 (secondary electrons, backscattered electrons, etc.) are emitted from the irradiated portion on the sample 209.
- the emitted electrons 210 are accelerated in the direction of the electron source 201 by an acceleration action based on a negative voltage applied to the electrode built in the sample stage 208.
- the accelerated electrons 210 collide with the conversion electrode 212 and generate secondary electrons 211.
- the secondary electrons 211 emitted from the conversion electrode 212 are captured by the detector 213, and the output I of the detector 213 changes depending on the amount of captured secondary electrons. In accordance with the change in the output I, the luminance of a display device (not shown) changes.
- the deflection signal to the scanning deflector 205 and the output I of the detector 213 are synchronized to form an image of the scanning region.
- an electron detector 215 for detecting secondary electrons 216 is disposed in the objective lens 206.
- the control device 214 has a function of controlling each component of the scanning electron microscope, a function of forming an image based on the detected electrons, and a pattern formed on the sample based on the detected electron intensity distribution called a line profile. It also has a function to measure the pattern width.
- the pattern shape evaluation apparatus is realized, for example, by (1) built in the control device 214, (2) realized through image processing by the calculation device of the control device 214, (3) an external device connected to the control device 214 via a network This is realized through image evaluation in an arithmetic device (for example, the condition setting device 103).
- FIG. 3 shows the contents of the evaluation process performed by the pattern shape evaluation apparatus according to the embodiment.
- This evaluation process consists of (1) ⁇ ⁇ contour data generation processing based on the SEM image captured by the scanning electron microscope described above, and (2) ⁇ ⁇ shape variation model (hereinafter referred to as “variation amount model”) based on the generated contour data. Generation processing, and (3) process window setting and registration processing using the generated variation model (circuit pattern).
- the pattern shape evaluation apparatus shoots an FEM (Focus Exposure Matrix) wafer on which the same circuit pattern is baked while changing the exposure conditions (focus value and dose amount) for each shot (one exposure unit) as an SEM image. (301). Note that an SEM image whose pattern is broken is not suitable for creating a model. For this reason, at this time, the SEM image in which the pattern is broken may be removed in advance.
- FEM Fluorescence Exposure Matrix
- the pattern shape evaluation apparatus extracts circuit pattern outlines from each SEM image (302).
- Various proposals have been made for the extraction of contour lines.
- Patent Document 7 Japanese Patent Application Laid-Open No. 2006-664708
- Non-Patent Document 1 “R. Matsuoka,“ New method ”of“ Contour ”based“ mask ”shape”
- the method disclosed in SPIE-Proc-6730-21, 2007.9.21 can be applied.
- the pattern shape evaluation apparatus applies the technique of Patent Document 7 or Non-Patent Document 1 to the SEM image 402 including the white belt image 401, and extracts the outline data 403 of the line drawing as shown in FIG. .
- the generation of the contour line data 403 is executed for all the SEM images 402 except for the above-described corrupted pattern.
- the pattern shape evaluation apparatus performs position correction between each piece of contour data as shown in FIG. 5 in order to improve the accuracy of the measurement value as preprocessing for measuring the shape change amount.
- the pattern shape evaluation apparatus selects the design data 501 (FIG. 5) or representative contour data, measures the distance 503 between the edges with the corresponding contour data 502, and the measured value and variation are different. Calculate the minimum position. Note that if the exposure condition deviates from the optimum value, a local shape change occurs and the center of gravity position and the edge-to-edge distance 503 vary, and there is a possibility that position correction cannot be performed correctly for the entire circuit pattern. Therefore, in this embodiment, position correction is executed in response to local shape deformation caused by changes in exposure conditions.
- FIG. 6 shows a position correction process for contour data assuming local shape deformation caused by changes in exposure conditions.
- the pattern shape evaluation apparatus first reads contour data from the SEM image corresponding to each exposure condition (601).
- the pattern shape evaluation apparatus selects contour data serving as a reference (602).
- contour data 701 (FIG. 7) that gives a median value is selected from a plurality of contour data corresponding to each exposure condition.
- the contour data giving the median value is referred to as “reference contour data”
- the exposure condition used for the formation is referred to as “reference exposure condition”.
- the circuit pattern corresponding to the reference contour data is not limited to the center position of the FEM wafer.
- FIG. 7 shows the relationship between exposure conditions and corresponding contour data.
- FIG. 7 is an overall image of the above-described FEM wafer.
- the dose amount of each shot arranged in a matrix in the wafer is assumed to be larger on the right side in the horizontal direction and smaller on the left side in the horizontal direction, and the focus value of each shot is It is assumed that the upper side in the vertical direction is larger and the lower side in the vertical direction is smaller.
- the pattern shape evaluation apparatus includes reference contour data (contour data 701) and contour data 702 obtained from an SEM image of circuit data formed under other exposure conditions adjacent to the exposure conditions corresponding to the contour data.
- the distance between the edges is obtained, and the edge data of each edge is corrected to a position where the distance is minimum and the variation is minimum (603).
- the method for calculating the position where the distance between the edges is the smallest and the variation is the smallest is, for example, calculating the root mean square from the distance between the edges of the entire contour data, and determining the position where the value is minimized while shifting the correction target pattern.
- the pattern shape evaluation apparatus uses the contour data whose position correction has been completed as new reference contour data, and repeats the above processing until all the position corrections are completed (604). Finally, the pattern shape evaluation apparatus registers the position correction amount of the contour data for each exposure condition on the memory or in a file (605). Thereby, the positional relationship of the contour data between adjacent exposure conditions can be specified.
- the pattern shape evaluation apparatus measures the shape change amount of each contour data (304).
- the technique disclosed in Patent Document 3 Japanese Patent Laid-Open No. 10-31461
- Patent Document 6 Japanese Patent Laid-Open No. 2009-194051
- These methods are methods for designating or generating a reference pattern and measuring an interval with other contour data.
- the pattern shape evaluation apparatus extracts, for example, the minimum contour data (innermost contour data) 802 and the maximum contour data (outermost contour data) 803 from the overlay data 801 of each contour data. Then, the correspondence is performed so that the edges of the two contour data change smoothly and do not cross each other (corresponding relationship 804 is obtained).
- the pattern shape evaluation apparatus obtains the median value 805 of the minimum contour data 802 and the maximum contour data 803, and the normal vector of each median is the normal vector of the next median, the minimum contour data 802, and the maximum contour data 803.
- the vector direction is controlled so as not to intersect within the range surrounded by. Thereafter, after the measurement is completed, the pattern shape evaluation apparatus obtains the shape change amount of each contour data based on the defined measurement direction.
- the pattern shape evaluation apparatus generates a variation model for each edge or local region based on the measured variation (305).
- FIG. 9 shows the contents of the change amount model generation process.
- the amount of change measured for each edge or local region does not become an ideal value due to pattern deformation or edge roughness due to process variation.
- the ideal value is a shape change amount in accordance with generally known physical characteristics. For example, when the dose amount is equal and only the focus value is changed, the shape evaluation value changes so as to fit the quadratic curve (1001 in FIG. 10). When the focus values are equal and only the dose amount is changed, the shape evaluation value changes so as to fit on a linear or logarithmic approximation curve (1002 in FIG. 10). A formulation of the relationship between the focus value and the dose amount is called a variation model.
- the pattern shape evaluation apparatus first reads shape evaluation values for each exposure condition (901), and adapts the variation model to the measurement values of each edge or local region (902) to correct each contour data (903). ). Since the contour data is corrected independently for each edge, the smoothness of the contour data after correction is lost. Therefore, the pattern shape evaluation apparatus evaluates the smoothness of the corrected contour data (904), and if not smooth, recorrects the contour data by shape approximation (905). After re-correction, the pattern shape evaluation device re-adjusts each edge information of the corrected contour data to the variation model, and performs processing until the adaptability of the variation model and the smoothness of the contour data reach a constant value. Repeat.
- the pattern shape evaluation apparatus registers the calculated variation model in the memory (906).
- the generated variation model not only the exposure conditions used to generate the variation model (that is, the exposure conditions used to generate the FEM wafer), whether within or outside these exposure conditions It becomes possible to generate contour data under an arbitrary exposure condition.
- the contour data corresponding to the exposure condition within the range of the exposure condition used for generating the variation model is calculated by interpolation between the contour data corresponding to the adjacent exposure conditions.
- the contour data corresponding to the exposure condition outside the range of the exposure condition used for generating the variation model is calculated by extrapolation using the contour data corresponding to the adjacent exposure condition.
- the pattern shape evaluation apparatus obtains a plurality of pattern shape amounts generated under a predetermined optimum exposure condition and contour data generated under an arbitrary exposure condition by using the calculated change amount model.
- the amount of change in shape is estimated from the ideal contour data, and a process window is calculated based on the estimated amount of change in shape (306).
- the calculation of the process window here does not have to be the entire pattern shape, and can be calculated for each arbitrary part (for example, edge). Thereafter, the pattern shape evaluation apparatus registers the calculated process window in a memory or the like (307).
- an ideal pattern shape corresponding to each exposure condition can be generated based on SEM images of a plurality of circuit patterns having the same design layout and different exposure conditions.
- the global or local shape difference of different exposure conditions can be calculated with high accuracy from the predetermined exposure conditions, and the process window analysis for the predetermined part can be stably performed.
- each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware.
- Each of the above-described configurations, functions, and the like may be realized by the processor interpreting and executing a program that realizes each function. That is, it may be realized as software.
- Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
- control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
図1は、複数の測定装置又は検査装置がネットワークに接続された半導体計測システムの概略構成を示す。図1に示す半導体計測システムでは、ネットワーク106に、CD-SEM101、欠陥検査装置102、条件設定装置103、シミュレータ104、記憶媒体105が接続されている。CD-SEM101は、試料(半導体ウェハやフォトマスク等)に電子ビームを照射して画像を取得し、取得した画像からパターン寸法を測定する装置である。欠陥検査装置102は、試料に電子ビームを照射して画像を取得し、取得した画像と予め登録した参照画像との比較結果に基づいて欠陥を抽出する装置である。以下、CD-SEM101と欠陥検査装置102を区別しない場合には単にSEMともいう。条件設定装置103は、半導体デバイスの設計データ上で測定位置や測定条件等を設定する装置である。シミュレータ104は、半導体デバイスの設計データと半導体製造装置の製造条件等に基づいて、パターンの出来栄えをシミュレーションする装置である。記憶媒体105は、半導体デバイスのレイアウトデータや製造条件を含む設計データを記憶する装置である。
図2に、走査電子顕微鏡の概略構成例を示す。電子ビーム203は、電子源201から引出電極202によって引き出され、不図示の加速電極により加速される。加速された電子ビーム203は、集束レンズの一形態であるコンデンサレンズ204により絞られた後、走査偏向器205により偏向される。これにより、電子ビーム203は、試料209上を一次元的又は二次元的に走査する。試料209に入射する電子ビーム203は、試料台208に内蔵された電極に印加された負電圧により減速されると共に、対物レンズ206のレンズ作用により集束されて試料209の表面を照射する。試料209上の照射箇所からは電子210(二次電子、後方散乱電子等)が放出される。放出された電子210は、試料台208に内蔵された前記電極に印加された負電圧に基づく加速作用により、電子源201の方向に加速される。加速された電子210は変換電極212に衝突し、二次電子211を発生させる。変換電極212から放出された二次電子211は、検出器213により捕捉され、捕捉された二次電子量により検出器213の出力Iが変化する。この出力Iの変化に応じ、不図示の表示装置の輝度が変化する。例えば二次元像を形成する場合には、走査偏向器205への偏向信号と、検出器213の出力Iとを同期させ、走査領域の画像を形成する。なお、図2の走査電子顕微鏡では、対物レンズ206内に二次電子216を検出する電子検出器215が配置されている。
次に、パターン形状評価装置の構成例を説明する。パターン形状評価装置は、例えば(1) 制御装置214に内蔵される、(2) 制御装置214の演算装置による画像処理を通じて実現される、(3) 制御装置214とネットワーク経由で接続された外部の演算装置(例えば条件設定装置103)における画像評価を通じて実現される。
以上の通り、本実施例によれば、設計レイアウトが等しく、露光条件が異なる複数の回路パターンのSEM画像に基づいて、各露光条件に対応する理想的なパターン形状を生成することができる。これにより、所定の露光条件から異なる露光条件の大域的あるいは局所的な形状差を高精度に算出でき、所定の部位についてのプロセスウィンドウ解析を安定的に行うことができる。
なお、本発明は上述した実施例に限定されるものでなく、様々な変形例を含んでいる。例えば上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成や処理を実装する必要は無い。また、前述した実施例に対して他の構成や処理を追加し、又は、実施例の一部の構成や処理を削除若しくは置換しても良い。
102…欠陥検査装置
103…条件設定装置
104…シミュレータ
105…記憶媒体
106…ネットワーク
201…電子源
202…引出電極
203…電子ビーム
204…コンデンサレンズ
205…走査偏向器
206…対物レンズ
207…ステージ
208…試料台
209…試料
210…放出された電子
211…二次電子
212…変換電極
213…検出器
214…制御装置
215…電子検出器
216…二次電子
Claims (10)
- 同一の設計レイアウトについて露光条件を変えて形成した複数の回路パターンの撮像画像からそれぞれ輪郭データを抽出する輪郭データ抽出手段と、
抽出された複数の輪郭データに基づいて、前記回路パターンの各エッジ又は局所領域の形状変形量を測定する形状変化量測定手段と、
測定された前記形状変形量に基づいて所定の露光条件に対応する回路パターン又は形状の輪郭データの変化量モデルを算出する変化量モデル算出手段と、
前記変化量モデルを使用して、基準露光条件に指定された露光条件に対応する回路パターン又は形状に対する任意の露光条件に対応する回路パターン又は形状の形状変化量を推定し、推定された形状変化量に基づいてプロセスウィンドウを算出するプロセスウィンドウ算出手段と
を有するパターン形状評価装置。 - 請求項1に記載のパターン形状評価装置において、
前記輪郭データ抽出手段で抽出された複数の前記輪郭データを処理対象とし、露光条件が隣接関係にある回路パターンの撮像画像から抽出された輪郭データ間で位置を補正する輪郭データ位置補正手段を更に有する
ことを特徴とするパターン形状評価装置。 - 請求項1に記載のパターン形状評価装置において、
前記変化量モデル算出手段は、測定された前記形状変化量をエッジ毎に変化量モデルに適合し、各露光条件に対応する撮像画像から抽出された前記輪郭データを補正する
ことを特徴とするパターン形状評価装置。 - 請求項3に記載のパターン形状評価装置において、
前記変化量モデル算出手段は、補正後の輪郭データの滑らかさを判定とし、滑らかでないと判定された場合には形状近似により前記輪郭データを再補正する
ことを特徴とするパターン形状評価装置。 - 請求項1に記載のパターン形状評価装置において、
前記プロセスウィンドウ算出手段は、前記変化量モデルを使用して、前記回路パターンの任意の部位についてプロセスウィンドウを算出する
ことを特徴とするパターン形状評価装置。 - 同一の設計レイアウトについて露光条件を変えて形成した複数の回路パターンの撮像画像からそれぞれ輪郭データを抽出する第1の処理と、
抽出された複数の輪郭データに基づいて、前記回路パターンの各エッジ又は局所領域の形状変形量を測定する第2の処理と、
測定された前記形状変形量に基づいて所定の露光条件に対応する回路パターン又は形状の輪郭データの変化量モデルを算出する第3の処理と、
前記変化量モデルを使用して、基準露光条件に指定された露光条件に対応する回路パターン又は形状に対する任意の露光条件に対応する回路パターン又は形状の形状変化量を推定し、推定された形状変化量に基づいてプロセスウィンドウを算出する第4の処理と
を有するパターン形状評価方法。 - 請求項6に記載のパターン形状評価方法において、
前記第1の処理で抽出された複数の前記輪郭データを処理対象とし、露光条件が隣接関係にある回路パターンの撮像画像から抽出された輪郭データ間で位置を補正する処理を更に有する
ことを特徴とするパターン形状評価方法。 - 請求項6に記載のパターン形状評価方法において、
前記第3の処理は、測定された前記形状変化量をエッジ毎に変化量モデルに適合し、各露光条件に対応する撮像画像から抽出された前記輪郭データを補正する
ことを特徴とするパターン形状評価方法。 - 請求項8に記載のパターン形状評価方法において、
前記第3の処理は、補正後の輪郭データの滑らかさを判定とし、滑らかでないと判定された場合には形状近似により前記輪郭データを再補正する
ことを特徴とするパターン形状評価方法。 - 請求項6に記載のパターン形状評価方法において、
前記第4の処理は、前記変化量モデルを使用して、前記回路パターンの任意の部位についてプロセスウィンドウを算出する
ことを特徴とするパターン形状評価方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/898,973 US9679371B2 (en) | 2013-06-24 | 2014-05-07 | Pattern shape evaluation device and method |
JP2015523911A JP5966087B2 (ja) | 2013-06-24 | 2014-05-07 | パターン形状評価装置及び方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-131834 | 2013-06-24 | ||
JP2013131834 | 2013-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208202A1 true WO2014208202A1 (ja) | 2014-12-31 |
Family
ID=52141555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062242 WO2014208202A1 (ja) | 2013-06-24 | 2014-05-07 | パターン形状評価装置及び方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9679371B2 (ja) |
JP (1) | JP5966087B2 (ja) |
TW (1) | TWI567384B (ja) |
WO (1) | WO2014208202A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3133553A1 (en) | 2015-08-17 | 2017-02-22 | IMEC vzw | Method for verifying a pattern of features printed by a lithography process |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102582665B1 (ko) * | 2016-10-07 | 2023-09-25 | 삼성전자주식회사 | 집적 회로의 패턴들을 평가하는 시스템 및 방법 |
US10748272B2 (en) * | 2017-05-18 | 2020-08-18 | Applied Materials Israel Ltd. | Measuring height difference in patterns on semiconductor wafers |
US10599046B2 (en) | 2017-06-02 | 2020-03-24 | Samsung Electronics Co., Ltd. | Method, a non-transitory computer-readable medium, and/or an apparatus for determining whether to order a mask structure |
JP7002949B2 (ja) * | 2018-01-22 | 2022-01-20 | 株式会社日立ハイテク | 画像評価方法及び画像評価装置 |
CN110553581B (zh) * | 2018-06-01 | 2022-01-14 | 华邦电子股份有限公司 | 临界尺寸量测方法及用于量测临界尺寸的图像处理装置 |
JP7062563B2 (ja) | 2018-09-07 | 2022-05-06 | キオクシア株式会社 | 輪郭抽出方法、輪郭抽出装置、及びプログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003173948A (ja) * | 2001-07-19 | 2003-06-20 | Hitachi Ltd | 半導体デバイスの製造工程監視方法及びそのシステム |
WO2007094439A1 (ja) * | 2006-02-17 | 2007-08-23 | Hitachi High-Technologies Corporation | 試料寸法検査・測定方法、及び試料寸法検査・測定装置 |
JP2009194051A (ja) * | 2008-02-13 | 2009-08-27 | Hitachi High-Technologies Corp | パターン生成装置およびパターン形状評価装置 |
JP2009206453A (ja) * | 2008-02-29 | 2009-09-10 | Hitachi High-Technologies Corp | 製造プロセスモニタリングシステム |
WO2012029220A1 (ja) * | 2010-08-30 | 2012-03-08 | 株式会社 日立ハイテクノロジーズ | 半導体製造装置の管理装置、及びコンピュータプログラム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07260699A (ja) | 1994-03-18 | 1995-10-13 | Fujitsu Ltd | 画像データ比較装置 |
JP3127434B2 (ja) | 1997-05-14 | 2001-01-22 | 日本アビオニクス株式会社 | パターン検査方法及びパターン検査装置 |
JPH11288879A (ja) | 1998-02-04 | 1999-10-19 | Hitachi Ltd | 露光条件決定方法とその装置ならびに半導体装置の製造方法 |
JP3524853B2 (ja) | 1999-08-26 | 2004-05-10 | 株式会社ナノジオメトリ研究所 | パターン検査装置、パターン検査方法および記録媒体 |
US6868175B1 (en) | 1999-08-26 | 2005-03-15 | Nanogeometry Research | Pattern inspection apparatus, pattern inspection method, and recording medium |
JP2002006479A (ja) | 2000-06-19 | 2002-01-09 | Toppan Printing Co Ltd | マスク検査方法及びマスク検査装置 |
US20020038510A1 (en) * | 2000-10-04 | 2002-04-04 | Orbotech, Ltd | Method for detecting line width defects in electrical circuit inspection |
US6909930B2 (en) | 2001-07-19 | 2005-06-21 | Hitachi, Ltd. | Method and system for monitoring a semiconductor device manufacturing process |
US20050232066A1 (en) * | 2004-04-19 | 2005-10-20 | Matsushita Electric Industrial Co., Ltd. | Method for characterizing cells with consideration for bumped waveform and delay time calculation method for semiconductor integrated circuits using the same |
JP4154374B2 (ja) | 2004-08-25 | 2008-09-24 | 株式会社日立ハイテクノロジーズ | パターンマッチング装置及びそれを用いた走査型電子顕微鏡 |
JP4866683B2 (ja) * | 2006-08-25 | 2012-02-01 | 富士通セミコンダクター株式会社 | 半導体デバイスの製造方法、データ作成装置、データ作成方法、およびプログラム |
JP4974737B2 (ja) * | 2007-04-05 | 2012-07-11 | 株式会社日立ハイテクノロジーズ | 荷電粒子システム |
JP4659004B2 (ja) * | 2007-08-10 | 2011-03-30 | 株式会社日立ハイテクノロジーズ | 回路パターン検査方法、及び回路パターン検査システム |
US8355562B2 (en) * | 2007-08-23 | 2013-01-15 | Hitachi High-Technologies Corporation | Pattern shape evaluation method |
JP6043528B2 (ja) * | 2012-07-20 | 2016-12-14 | 株式会社日立ハイテクノロジーズ | パターン測定装置 |
JP2014127165A (ja) * | 2012-12-27 | 2014-07-07 | Fujitsu Ltd | 回路設計プログラム、回路設計装置及び回路設計方法 |
-
2014
- 2014-05-07 WO PCT/JP2014/062242 patent/WO2014208202A1/ja active Application Filing
- 2014-05-07 JP JP2015523911A patent/JP5966087B2/ja active Active
- 2014-05-07 US US14/898,973 patent/US9679371B2/en active Active
- 2014-05-12 TW TW103116710A patent/TWI567384B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003173948A (ja) * | 2001-07-19 | 2003-06-20 | Hitachi Ltd | 半導体デバイスの製造工程監視方法及びそのシステム |
WO2007094439A1 (ja) * | 2006-02-17 | 2007-08-23 | Hitachi High-Technologies Corporation | 試料寸法検査・測定方法、及び試料寸法検査・測定装置 |
JP2009194051A (ja) * | 2008-02-13 | 2009-08-27 | Hitachi High-Technologies Corp | パターン生成装置およびパターン形状評価装置 |
JP2009206453A (ja) * | 2008-02-29 | 2009-09-10 | Hitachi High-Technologies Corp | 製造プロセスモニタリングシステム |
WO2012029220A1 (ja) * | 2010-08-30 | 2012-03-08 | 株式会社 日立ハイテクノロジーズ | 半導体製造装置の管理装置、及びコンピュータプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3133553A1 (en) | 2015-08-17 | 2017-02-22 | IMEC vzw | Method for verifying a pattern of features printed by a lithography process |
US10061209B2 (en) | 2015-08-17 | 2018-08-28 | Imec Vzw | Method for verifying a pattern of features printed by a lithography process |
Also Published As
Publication number | Publication date |
---|---|
TWI567384B (zh) | 2017-01-21 |
JPWO2014208202A1 (ja) | 2017-02-23 |
US20160189368A1 (en) | 2016-06-30 |
TW201506388A (zh) | 2015-02-16 |
US9679371B2 (en) | 2017-06-13 |
JP5966087B2 (ja) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5966087B2 (ja) | パターン形状評価装置及び方法 | |
US9488815B2 (en) | Pattern evaluation method and pattern evaluation device | |
JP5525421B2 (ja) | 画像撮像装置および画像撮像方法 | |
JP6043735B2 (ja) | 画像評価装置及びパターン形状評価装置 | |
US8330104B2 (en) | Pattern measurement apparatus and pattern measurement method | |
JP2009222454A (ja) | パターン測定方法及びパターン測定装置 | |
JP4512395B2 (ja) | 露光プロセスモニタ方法及びその装置 | |
JP7427744B2 (ja) | 画像処理プログラム、画像処理装置、画像処理方法および欠陥検出システム | |
TWI698705B (zh) | 圖案測定方法、及圖案測定裝置 | |
TWI567789B (zh) | A pattern measuring condition setting means, and a pattern measuring means | |
US10558127B2 (en) | Exposure condition evaluation device | |
JP2013083466A (ja) | 計測方法、データ処理装置及びそれを用いた電子顕微鏡 | |
JP5868462B2 (ja) | パターン形状評価装置 | |
US20230222764A1 (en) | Image processing method, pattern inspection method, image processing system, and pattern inspection system | |
JP2011179819A (ja) | パターン測定方法及びコンピュータプログラム | |
JP6581835B2 (ja) | 半導体デバイスの評価条件設定方法、及び評価条件設定装置 | |
JP6207893B2 (ja) | 試料観察装置用のテンプレート作成装置 | |
JP6018803B2 (ja) | 計測方法、画像処理装置、及び荷電粒子線装置 | |
JP5604208B2 (ja) | 欠陥検出装置及びコンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818299 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015523911 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14898973 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818299 Country of ref document: EP Kind code of ref document: A1 |