WO2014203594A1 - 金属多孔体及びその製造方法 - Google Patents

金属多孔体及びその製造方法 Download PDF

Info

Publication number
WO2014203594A1
WO2014203594A1 PCT/JP2014/060253 JP2014060253W WO2014203594A1 WO 2014203594 A1 WO2014203594 A1 WO 2014203594A1 JP 2014060253 W JP2014060253 W JP 2014060253W WO 2014203594 A1 WO2014203594 A1 WO 2014203594A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
chromium
nickel
tin
metal
Prior art date
Application number
PCT/JP2014/060253
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
真嶋 正利
賢吾 塚本
斉 土田
英敏 斉藤
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Priority to EP14812928.1A priority Critical patent/EP3012893B1/en
Priority to KR1020157035006A priority patent/KR20160021769A/ko
Priority to US14/899,275 priority patent/US10287646B2/en
Priority to CN201480033871.1A priority patent/CN105307802B/zh
Publication of WO2014203594A1 publication Critical patent/WO2014203594A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/11Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of chromium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a porous metal body that can be used as a current collector for various batteries, capacitors, fuel cells and the like.
  • the problem to be solved by the present invention is to provide a metal porous body made of a nickel-tin binary alloy and a metal porous body excellent in corrosion resistance compared to a metal porous body made of a nickel-chromium binary alloy, It is.
  • the inventors have a three-dimensional network-like skeleton, and are a porous metal body containing at least nickel, tin, and chromium, and the concentration of chromium contained in the porous metal body is the surface of the skeleton of the porous metal body. It has been found that the above-mentioned problem can be solved by adopting a configuration in which it is the highest in the above and becomes lower toward the inside of the skeleton. The above configuration allows one or more elements different from nickel, tin, and chromium to be intentionally or inevitably included in the metal porous body as long as the above-described problems can be solved.
  • ⁇ ⁇ According to the present invention, it is possible to provide a metal porous body that is superior in corrosion resistance compared to conventional metal porous bodies made of nickel-tin binary alloys and metal porous bodies made of nickel-chromium binary alloys.
  • the porous metal body according to one aspect of the present invention has a three-dimensional network skeleton, includes at least nickel, tin, and chromium, and the concentration of chromium contained in the porous metal body is that of the skeleton of the porous metal body. It is the highest on the surface and becomes lower toward the inside of the skeleton.
  • the amount of chromium (mass) in the interior is relatively small compared to a completely porous metal body, and the influence on the corrosion resistance of the porous metal body is greatest. It is possible to increase the chromium concentration on the surface of the skeleton of the porous metal body that is a part. For this reason, it is possible to reduce the amount of chromium used in manufacturing, and hence the material cost, compared to a porous metal body having a uniform chromium concentration from the surface of the skeleton to the inside.
  • the chromium concentration on the surface of the skeleton of the porous metal body is preferably 3% by mass or more and 70% by mass or less, more preferably 5% by mass or more and 50% by mass or less.
  • the chromium concentration on the surface of the skeleton of the porous metal body is less than 3% by mass, the corrosion resistance decreases.
  • the chromium concentration on the surface of the skeleton of the porous metal body is larger than 70% by mass, the ratio of chromium oxide on the surface of the skeleton is large, so that the contact resistance increases.
  • the present inventors have found that by adopting the following configurations (3) to (12), it is possible to produce a porous metal body that solves the above problems.
  • the chromium-dispersed tin layer forming step includes supplying a chromium powder to the tin plating bath and stirring the tin plating bath to disperse the chromium powder in the tin plating bath; and forming the nickel layer into the tin plating bath And a chromium-dispersed tin plating step immersed in the substrate.
  • a layer forming step, a nickel layer forming step of forming a nickel layer on the surface of the conductive coating layer, a tin layer forming step of forming a tin layer on the surface of the nickel layer, and a chromium layer on the surface of the tin layer A chromium layer forming step to be formed, and a heat treatment step in which metal atoms diffuse between the nickel layer, the tin layer and the chromium layer by heating.
  • a chromium layer is formed on the surface of the tin layer by a vapor phase method.
  • the chromium layer forming step the chromium layer is formed on the surface of the tin layer by immersing the tin layer in a chromium plating bath.
  • the configuration of (7) above it is possible to form a layer having a high chromium concentration on the skeleton surface of the porous body with a small amount of chromium.
  • a chromium layer is formed on the surface of the tin layer by applying a mixture of the chromium powder and the binder to the surface of the tin layer.
  • a chromium layer is formed on the surface of the nickel-tin alloy layer by a vapor phase method.
  • the chromium layer is formed on the surface of the nickel-tin alloy layer by immersing the nickel-tin alloy layer in a chromium plating bath.
  • the configuration of (11) above it is possible to form a layer with a high chromium concentration on the surface of the skeleton of the porous body with a small amount of chromium.
  • a chromium layer is formed on the surface of the nickel-tin alloy layer by applying a mixture of the chromium powder and the binder to the surface of the nickel-tin alloy layer.
  • One specific example of the “metal porous body having a three-dimensional network skeleton” is Celmet (registered trademark of Sumitomo Electric Industries, Ltd.).
  • the “porous substrate made of a resin material” a known or commercially available material can be adopted as long as it is a porous material made of a resin.
  • the porous substrate made of a resin material include a foam made of a resin material, a nonwoven fabric made of a resin material, a felt made of a resin material, a three-dimensional network made of a resin material, or a combination thereof. Is mentioned.
  • the kind of resin material which comprises a porous body base material is not specifically limited, What can be removed by incineration is desirable.
  • Specific examples of the foam made of a resin material include foamed urethane, foamed styrene, and foamed melamine resin.
  • urethane foam or the like is desirable.
  • the shape of the porous substrate is a sheet, it is desirable that the material is flexible (cannot be folded when bent) from the viewpoint of handling.
  • the porosity of the porous substrate is not limited and is appropriately selected depending on the application, but is usually 60% to 98%, more preferably 80% to 96%.
  • the thickness of the porous substrate is not limited and is appropriately selected depending on the application, but is usually 150 ⁇ m or more and 5000 ⁇ m or less, more preferably 200 ⁇ m or more and 2000 ⁇ m or less, and further preferably 300 ⁇ m or more and 1200 ⁇ m or less.
  • Conductive coating layer refers to a layer formed on the surface of a porous substrate made of a resin material and having conductivity.
  • the conductive coating layer forming step various methods can be adopted as long as the conductive coating layer can be formed on the surface of the porous substrate.
  • Specific examples of the “conductive coating layer forming step” include conductive powder on the surface of the porous substrate (for example, powder of metal material such as stainless steel, crystalline graphite, carbon such as amorphous carbon black, etc.
  • a method of applying a mixture of a powder and a binder a method of forming a layer made of a conductive metal material on the surface of a porous substrate by electroless plating, sputtering, vapor deposition, ion plating, etc. Is mentioned.
  • the electroless plating treatment using nickel include a method of immersing the porous substrate in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite. Further, if necessary, the porous base material may be immersed in an activation liquid (a cleaning liquid manufactured by Kanisen Co., Ltd.) containing a small amount of palladium ions before being immersed in the plating bath.
  • an activation liquid a cleaning liquid manufactured by Kanisen Co., Ltd.
  • a porous substrate is fixed to a substrate holder, and ionization is performed by applying a DC voltage between the substrate holder and a target (nickel) while introducing an inert gas.
  • a target nickel
  • examples thereof include a method in which the inert gas collided with nickel and the blown-off nickel particles are deposited on the surface of the porous substrate.
  • the conductive coating layer only needs to be continuously (conductable) on the surface of the porous substrate, and the basis weight (amount of adhesion to the porous substrate) is not limited.
  • the conductive coating layer When nickel is used, it is usually 5 g / m 2 or more and 15 g / m 2 or less, more preferably 7 g / m 2 or more and 10 g / m 2 or less.
  • the “nickel layer” is a layer composed of nickel (a simple substance), and allows one or more elements different from nickel to be intentionally or inevitably contained as long as the above-described problems can be solved. .
  • chrome powder examples include chromium alone powder, chromium oxide powder, and the like.
  • a tin layer in which chromium powder is dispersed is a layer in which chromium powder is dispersed inside a layer composed of tin (a simple substance). Allows intentional or unavoidable inclusion of one or more kinds of other elements as long as the above problem can be solved.
  • the “tin layer” is a layer composed of tin (a simple substance), and allows one or more elements different from tin to be intentionally or inevitably contained as long as the above-mentioned problems can be solved. .
  • Chromium layer is a layer composed of chromium (a simple substance) or chromium oxide, and contains one or more elements different from chromium intentionally or unavoidably as long as the above problems can be solved. Is acceptable.
  • Gas phase method is a general term for a method of forming a thin film using a gas.
  • gas phase method include sputtering, vapor deposition, ion plating, pulsed laser deposition (PLD), and the like.
  • the “binder” is a material that fixes the chromium powder to the surface of the porous skeleton.
  • specific examples of the binder include various known materials such as polyvinylidene fluoride, styrene butadiene rubber, carboxymethyl cellulose, polytetrafluoroethylene, polyethylene, polypropylene, and polyvinyl alcohol.
  • the porous substrate made of resin material can be removed by burning a porous substrate made of a resin material or dissolving it with a chemical solution.
  • the porous substrate made of resin material is removed by burning, the temperature at which the porous substrate made of resin material is burned and the temperature at which the metal porous body is held during the heat treatment step If there is not much difference between the heat treatment step and the heat treatment step, the porous substrate made of resin material can be removed (the heat treatment step can remove the porous substrate made of resin material). is there).
  • Example 1 Chrome powder dispersion plating The details of Example 1 will be described below.
  • Example 1 is a nickel-tin-chromium alloy porous body, which is an embodiment of the present invention.
  • a 1.5 mm thick foamed polyurethane sheet (pore diameter 0.45 mm) was prepared as a three-dimensional network resin (one embodiment of a porous substrate made of a resin material).
  • 90 g of graphite having an average particle diameter of 0.5 ⁇ m was dispersed in 0.5 L of a 10% by mass acrylic ester resin aqueous solution, and an adhesive paint was produced at this ratio.
  • the foamed polyurethane sheet was continuously dipped in the paint, squeezed with a roll, and then dried to give a conductive treatment, thereby forming a conductive coating layer on the surface of the three-dimensional network resin.
  • the viscosity of the conductive coating was adjusted with a thickener, and the coating weight of the conductive coating after drying was adjusted to 69 g / m 2 so as to obtain a desired alloy composition.
  • a coating film of a conductive paint containing carbon powder is formed on the surface of the three-dimensional network resin.
  • a mixture of tin and chrome powder is 75 g / m in a tin plating solution in which 300 g / m 2 of nickel is dispersed by electroplating on a three-dimensional network resin that has been subjected to a conductive treatment, and then chromium particles having a volume average particle size of 5 ⁇ m are dispersed.
  • m 2 was deposited to form an electroplating layer (one embodiment of a nickel layer and a tin layer containing chromium powder).
  • nickel was a nickel sulfamate plating solution
  • tin was an organic acid bath.
  • Heat treatment process About the metal porous body obtained at the said process, first, it heat-processed for 15 minutes at 800 degreeC in air
  • Example 1 a porous alloy body having a thickness of 1.5 mm, a basis weight of 375 g / m 2 , nickel 80% by mass, tin 15% by mass, and chromium 5% by mass was obtained (Sample 1).
  • Example 2 Nickel plating / tin plating / chromium sputtering Since Example 2 is the same as Example 1 up to the conductive treatment, detailed description is omitted.
  • nickel was a nickel sulfamate plating solution
  • tin was a sulfuric acid bath.
  • a nickel plating layer and a tin plating layer are formed on the coating film of the conductive paint containing carbon powder.
  • 3 g / m 2 of chromium was deposited on the nickel tin porous body by sputtering. Sputtering was performed with a sputtering apparatus into which an inert atmosphere gas was introduced, and the gas pressure during film formation was 0.5 Pa.
  • Example 2 Since the heat treatment step in Example 2 is the same as the heat treatment step in Example 1, detailed description thereof is omitted.
  • the three-dimensional network resin is removed by thermal decomposition.
  • the nickel plating layer, the tin plating layer, and the chromium sputter layer are reduced by the carbon powder contained in the conductive coating layer.
  • the nickel plating layer, the tin plating layer, and the chromium sputter layer are alloyed by thermal diffusion.
  • a porous alloy body having a thickness of 1.5 mm, a basis weight of 363 g / m 2 , nickel of 82.7% by mass, tin of 16.5% by mass and chromium of 0.8% by mass was obtained (Sample 2).
  • Example 3 Nickel plating / tin plating / chromium plating
  • Example 3 the method up to tin plating is the same as in Example 2, and therefore detailed description thereof is omitted.
  • Chromium plating was performed using a commercially available trivalent chromium plating solution and plating with a chromium basis weight of 30 g / m 2 . Since the heat treatment step in Example 3 is the same as the heat treatment step in Example 1, detailed description thereof is omitted. Through the heat treatment step, the three-dimensional network resin is removed by thermal decomposition.
  • the nickel plating layer, the tin plating layer, and the chromium plating layer are reduced by the carbon powder contained in the conductive coating layer. Further, the nickel plating layer, the tin plating layer, and the chromium plating layer are alloyed by thermal diffusion. Finally, a porous alloy body having a thickness of 1.5 mm, a basis weight of 390 g / m 2 , 76.9% by mass of nickel, 15.4% by mass of tin, and 7.7% by mass of chromium was obtained (Sample 3).
  • Example 4 Nickel plating / tin plating / chrome powder coating Since the same method as in Example 2 up to tin plating in Example 4, detailed description is omitted. By going through the steps so far, a porous metal body of nickel 300 g / m 2 and tin 60 g / m 2 was obtained. Subsequently, 12 g of chromium particles having a volume average particle diameter of 3 ⁇ m were dispersed in 0.5 L of a 10% by mass acrylic ester resin aqueous solution, and a chromium powder coating material was produced at this ratio.
  • the porous metal body was immersed in the paint continuously, and the excess paint was removed with an air brush and then dried to form a chromium powder coating layer on the surface of the porous metal body.
  • the viscosity of the coating material was adjusted with a thickener, and the coating weight of the conductive coating material after drying was adjusted to 69 g / m 2 so as to obtain a desired alloy composition. Since the heat treatment step in Example 4 is the same as the heat treatment step in Example 1, detailed description thereof is omitted. Through this step, the three-dimensional network resin is removed by thermal decomposition. The nickel plating layer, tin plating layer, and chromium powder coating layer are reduced by the carbon powder contained in the conductive coating layer.
  • nickel plating layer, tin plating layer and chromium powder coating layer are alloyed by thermal diffusion.
  • an alloy porous body having a thickness of 1.5 mm, a basis weight of 373 g / m 2 , nickel 80.3% by mass, tin 16.1% by mass, and chromium 3.6% by mass was obtained (Sample 4).
  • Embodiment 5 Nickel-tin alloy plating / chromium sputtering Since Embodiment 5 is the same as Embodiment 1 up to the conductive treatment, detailed description thereof is omitted.
  • a commercially available plating solution was used to obtain a nickel-tin alloy porous metal body having a basis weight of 360 g / m 2.
  • chromium sputtering and heat treatment were performed, and finally the thickness of 1.
  • a porous alloy body of 5 mm, basis weight 363 g / m 2 , nickel 30.3% by mass, tin 68.9% by mass, and chromium 0.8% by mass was obtained (Sample 5).
  • Example 6 Nickel-tin alloy plating / chromium plating
  • a nickel-tin alloy porous body was obtained in the same manner as in Example 5, and chromium plating and heat treatment were performed in the same manner as in Example 3.
  • a porous alloy body having an amount of 390 g / m 2 , nickel 28.2% by mass, tin 64.1% by mass, and chromium 7.7% by mass was obtained (Sample 6).
  • Example 7 Nickel-tin alloy plating / chromium powder coating
  • a nickel-tin alloy porous body was obtained in the same manner as in Example 5, chromium powder coating and heat treatment were performed in the same manner as in Example 4, and the final thickness was 1.5 mm.
  • Comparative Example 1 Details of the porous nickel-tin alloy as Comparative Example 1 will be described below.
  • the viscosity of the conductive paint was adjusted with a thickener so that the coating weight of the conductive paint after drying was 55 g / m 2 so as to obtain a desired alloy composition.
  • a coating film of a conductive paint containing carbon powder is formed on the surface of the three-dimensional network resin.
  • Metal plating process Conductive treatment with 3-dimensional network resin 300 g / m 2 of nickel by electroplating subjected, tin 53 g / m 2 adhered to, to form an electroplating layer.
  • nickel was a nickel sulfamate plating solution
  • tin was a sulfuric acid bath.
  • a nickel plating layer and a tin plating layer are formed on the coating film of the conductive paint containing carbon powder.
  • Heat treatment process About the metal porous body obtained at the said process, first, it heat-processed for 15 minutes at 800 degreeC in air
  • Comparative Example 2 Details of the nickel-chromium alloy porous body as Comparative Example 2 will be described below.
  • the viscosity of the conductive paint was adjusted with a thickener so that the coating weight of the conductive paint after drying was 55 g / m 2 so as to obtain a desired alloy composition.
  • a coating film of a conductive paint containing carbon powder is formed on the surface of the three-dimensional network resin.
  • the electroplating layer was formed by depositing 300 g / m 2 of nickel on the three-dimensional network resin subjected to the conductive treatment by electroplating.
  • a nickel sulfamate plating solution was used as nickel.
  • a nickel plating layer is formed on the coating film of the conductive paint containing carbon powder.
  • Heat treatment process About the metal porous body obtained at the said process, first, it heat-processed for 15 minutes at 800 degreeC in air
  • Chromium diffusion process Chromium was diffused in the nickel porous body obtained in the above process by chromization treatment (powder pack method). Penetration material obtained by mixing nickel powder with chromium powder, ammonium chloride and alumina powder (chromium: 90 mass%, NH 4 Cl: 1 mass%, Al 2 O 3 : 9 mass%) is filled with hydrogen A nickel-chromium alloy porous body was obtained by heating to 800 ° C. in a gas atmosphere.
  • the chromium concentration on the surface of the skeleton was measured by fluorescent X-rays on the front and back sides of the sheet-like samples (Sample 1 to Sample 7, Sample 11, Sample 12) obtained in the above Examples and Comparative Examples. The measurement results are shown in Table 1 below.
  • a portable fluorescent X-ray analyzer (NITON XL3t-700 manufactured by Thermo Fisher Scientific) was used, and the measurement unit was applied to the measured surface of the metal porous body.
  • the metal porous bodies of Sample 1 to Sample 7 have a higher chromium concentration on the surface than the chromium composition ratio (average value of the chromium composition ratio when viewed as the whole sample) from the metal amount. More specifically, the surface chromium concentration of the metal porous bodies of Sample 1 to Sample 7 is about 4 to 30 times the composition ratio of chromium from the amount of metal. Therefore, the concentration of chromium contained in the porous metal bodies of Samples 1 to 7 is highest on the surface of the skeleton of the porous metal body, and decreases toward the inside of the skeleton.
  • the concentration of chromium contained in the porous metal body of the sample 12 is substantially the same between the surface of the skeleton of the porous metal body and the inside of the skeleton.
  • Example 1 As a method for evaluating the corrosion resistance of the sheet-like samples (Sample 1 to Sample 7, Sample 11, Sample 12) obtained in the above-described Examples and Comparative Examples, a test based on ASTM G5-94 was performed.
  • the acidic aqueous solution used for anodic polarization curve measurement was prepared by adjusting a 1 mol / L sodium sulfate aqueous solution and adjusting the pH with sulfuric acid.
  • the test temperature was 60 ° C., and hydrogen bubbling was performed during the test to obtain a hydrogen saturated state.
  • the potential range of voltammetry was based on a standard hydrogen electrode, from 0 V to 1.0 V considered to be actually applied in the fuel cell, and the sweep rate was 5 mV / s.
  • anodic polarization measurement of the material can be performed and evaluated by the value of the anode current in the potential range actually used in the fuel cell.
  • JIS G0579 JIS G0579, “Method for measuring anode polarization curves of stainless steel”
  • ASTM G5-94 ASTM G5-94 (2004) Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements.
  • ASTM G5-94 describes evaluation for fuel cells, and since it has been adopted for corrosion resistance testing of materials in the fuel cell field, evaluation was performed with reference to that method (Chih-Yeh Chung, et al., J.
  • the current values of Sample 1 to Sample 7 are smaller than the current value of Sample 11 at both test potentials of 0.2 V and 0.8 V. Therefore, it can be seen that Samples 1 to 7 have higher corrosion resistance than Sample 11. Further, when Sample 1 and Sample 2 are compared with Sample 12, the current value when the test potential is 0.2 V is larger than that of Sample 12 but the test potential is 0.8 V. The current value of Sample 1 and Sample 2 is about 1/5 that of Sample 12. Therefore, it can be seen that Sample 1 and Sample 2 are superior in corrosion resistance on the high voltage side as compared to Sample 12. Further, the current value when the corrosion resistance test is repeated (fifth time) does not change much in the samples 1 to 7, whereas the current value of 0.2 V increases in the sample 11 and 0 for the sample 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

従来のニッケル-スズ二元合金からなる金属多孔体およびニッケル-クロム二元合金からなる金属多孔体に比べて耐食性に優れた金属多孔体を提供する。三次元網目状の骨格を有し、少なくともニッケル、スズおよびクロムを含む金属多孔体であって、当該金属多孔体に含まれるクロムの濃度を、前記金属多孔体の骨格の表面において最も高く、前記骨格の内部に向かうに従って低くする。また、一実施態様として、金属多孔体の骨格の表面におけるクロムの濃度は3質量%以上70質量%以下とすることがより好ましい。

Description

金属多孔体及びその製造方法
  本発明は各種電池、キャパシタ、燃料電池等の集電体に用いることが可能な金属多孔体に関する。
  従来、樹脂多孔体に導電化処理を施し、この上に金属からなる電気めっき層を形成し、必要に応じて樹脂多孔体を焼却して除去することにより金属多孔体を製造する方法が知られている。例えば特許文献1に記載の如くである。
  また、耐酸化性及び耐食性を有するとともに多孔度が大きく、各種電池、キャパシタ、燃料電池等の集電体に適した金属多孔体として、ニッケル-スズ合金からなる金属多孔体が提案されている。例えば、特許文献2に記載の如くである。
  さらに、高い耐食性を有する金属多孔体として、ニッケル-クロム合金からなる金属多孔体が提案されている。例えば、特許文献3に記載の如くである。
特開平11-154517号公報 特開2012-132083号公報 特開2012-149282号公報
  しかし、近年は各種電池、キャパシタ、燃料電池等に対してますます高出力化、高容量化(小型化)が望まれており、これに伴って集電体を構成する金属多孔体に対してもさらなる耐酸化性及び耐食性の向上が望まれている。
  本発明が解決しようとする課題は、従来のニッケル-スズ二元合金からなる金属多孔体およびニッケル-クロム二元合金からなる金属多孔体に比べて耐食性に優れた金属多孔体を提供すること、である。
  発明者らは、三次元網目状の骨格を有し、少なくともニッケル、スズおよびクロムを含む金属多孔体であって、当該金属多孔体に含まれるクロムの濃度が、前記金属多孔体の骨格の表面において最も高く、前記骨格の内部に向かうに従って低くなる、という構成を採用することにより、上記課題が解決されることを見出した。
  なお、上記構成は、ニッケル、スズおよびクロムとは別の一種類以上の元素が上記課題を解決可能な限りにおいて金属多孔体に意図的あるいは不可避的に含まれることを許容する。
  本発明によれば、従来のニッケル-スズ二元合金からなる金属多孔体およびニッケル-クロム二元合金からなる金属多孔体に比べて耐食性に優れた金属多孔体を提供することが可能である。
  以下では、本発明の一形態の構成について説明する。
  (1)本発明の一形態の金属多孔体は、三次元網目状の骨格を有し、少なくともニッケル、スズおよびクロムを含み、金属多孔体に含まれるクロムの濃度が、金属多孔体の骨格の表面において最も高く、骨格の内部に向かうに従って低くなる。
  上記(1)の構成を採用することにより、従来のニッケル-スズ二元合金からなる金属多孔体およびニッケル-クロム二元合金からなる金属多孔体に比べて耐食性に優れた金属多孔体を提供することが可能である。
  特に、上記(1)の構成を採用した場合、内部のクロム濃度が完全に均一な金属多孔体に比べて相対的に少ないクロム量(質量)で、金属多孔体の耐食性への影響が最も大きい部分である金属多孔体の骨格の表面のクロム濃度を上昇させることが可能である。
  そのため、クロム濃度が骨格の表面から内部にわたって均一な金属多孔体に比べて製造時のクロムの使用量、ひいては材料コストを抑えることが可能である。
  また、金属多孔体の骨格にクロムを均等に拡散させる場合にはかなりの高温(例えば、1200℃)で長時間保持しなければならず、エネルギーコストが大きい。
  これに対して、上記(1)の構成を採用した場合、クロムを金属多孔体の骨格の表面から必要最小限だけ拡散させれば良いので、クロムを拡散させるために要するエネルギーコストを抑えつつ、金属多孔体の耐食性を向上させることが可能である。
  上記(1)の構成に加えて、以下の(2)の構成を採用することがより好ましい。
  (2)金属多孔体の骨格の表面におけるクロムの濃度は3質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下であることが好ましい。
  上記(2)の構成を採用することにより、高い耐食性・高い機械強度を付与すると同時に、集電体として適当な電気伝導性を付与することができる。
  金属多孔体の骨格の表面におけるクロムの濃度が3質量%未満の場合、耐食性が低下する。
  金属多孔体の骨格の表面におけるクロムの濃度が70質量%より大きい場合、骨格の表面におけるクロム酸化物の割合が大きいため、接触抵抗が増加する。
  発明者らは、以下の(3)~(12)の構成を採用することにより、上記課題を解決する金属多孔体を製造可能であることを見出した。
  (3)上記(1)又は上記(2)に記載の金属多孔体を製造する金属多孔体の製造方法であって、樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、導電被覆層の表面にニッケルの層を形成するニッケル層形成工程と、ニッケルの層の表面に、クロムの粉末が分散されたスズの層を形成するクロム分散スズ層形成工程と、加熱によりニッケルの層とクロムの粉末が分散されたスズの層との間で相互に金属原子が拡散する熱処理工程と、を含む。
  上記(3)の構成を採用することにより、クロム含有量の多いスズ層を多孔体骨格表面に形成することが可能である。
  上記(3)の構成に加えて、以下の(4)の構成を採用することがより好ましい。
  (4)クロム分散スズ層形成工程は、クロムの粉末をスズメッキ浴に供給してスズメッキ浴を撹拌することによりスズメッキ浴中にクロムの粉末を分散させるクロム粉末分散工程と、ニッケルの層をスズメッキ浴に浸漬するクロム分散スズメッキ工程と、を含む。
  上記(4)の構成を採用することにより、クロム粉末を多孔体骨格表面に均一に分散させることが可能である。
  (5)上記(1)又は上記(2)に記載の金属多孔体を製造する金属多孔体の製造方法であって、樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、導電被覆層の表面にニッケルの層を形成するニッケル層形成工程と、ニッケル層の表面にスズの層を形成するスズ層形成工程と、スズの層の表面にクロムの層を形成するクロム層形成工程と、加熱によりニッケルの層、スズの層およびクロムの層の間で相互に金属原子が拡散する熱処理工程と、を含む。
  上記(5)の構成を採用することにより、多孔体骨格表面のクロム濃度を高めることが可能である。
  上記(5)の構成に加えて、以下の(6)の構成を採用することがより好ましい。
  (6)クロム層形成工程において、気相法によりクロムの層がスズの層の表面に形成される。
  上記(6)の構成を採用することにより、少ないクロムの量で、多孔体の骨格表面にクロム濃度の高い層を形成することが可能である。
  上記(5)の構成に加えて、以下の(7)の構成を採用することがより好ましい。
  (7)クロム層形成工程において、スズの層をクロムメッキ浴に浸漬することによりクロムの層がスズの層の表面に形成される。
  上記(7)の構成を採用することにより、少ないクロムの量で、多孔体の骨格表面にクロム濃度の高い層を形成することが可能である。
  上記(5)の構成に加えて、以下の(8)の構成を採用することがより好ましい。
  (8)クロム層形成工程において、クロムの粉末とバインダとの混合物をスズの層の表面に塗布することによりクロムの層がスズの層の表面に形成される。
  上記(8)の構成を採用することにより、多孔体の骨格表面にクロム濃度の高い層を形成することが可能である。
  (9)上記(1)又は上記(2)に記載の金属多孔体を製造する金属多孔体の製造方法であって、樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、導電被覆層の表面にニッケル-スズ合金の層を形成するニッケル-スズ合金層形成工程と、ニッケル-スズ合金の層の表面にクロムの層を形成するクロム層形成工程と、加熱によりニッケル-スズ合金の層およびクロムの層の間で相互に金属原子が拡散する熱処理工程と、を含む。
  上記(9)の構成を採用することにより、ニッケルとスズが予め合金化しているため、これらを拡散させるための熱処理時間を短縮することが可能である。
  上記(9)の構成に加えて、以下の(10)の構成を採用することがより好ましい。
  (10)クロム層形成工程において、気相法によりクロムの層がニッケル-スズ合金の層の表面に形成される。
  上記(10)の構成を採用することにより、少ないクロムの量で、多孔体の骨格の表面にクロム濃度の高い層を形成することが可能である。
  上記(9)の構成に加えて、以下の(11)の構成を採用することがより好ましい。
  (11)クロム層形成工程において、ニッケル-スズ合金の層をクロムメッキ浴に浸漬することによりクロムの層がニッケル-スズ合金の層の表面に形成される。
  上記(11)の構成を採用することにより、少ないクロムの量で、多孔体の骨格の表面にクロム濃度の高い層を形成することが可能である。
  上記(9)の構成に加えて、以下の(12)の構成を採用することがより好ましい。
  (12)クロム層形成工程において、クロムの粉末とバインダとの混合物をニッケル-スズ合金の層の表面に塗布することによりクロムの層がニッケル-スズ合金の層の表面に形成される。
  上記(12)の構成を採用することにより、多孔体の骨格の表面にクロム濃度の高い層を形成することが可能である。
  「三次元網目状の骨格を有する金属多孔体」の具体例の一つとしては、セルメット(住友電気工業(株)の登録商標)が挙げられる。
  「樹脂材料からなる多孔体基材」は樹脂からなる多孔性の材料であれば公知又は市販のものを採用することが可能である。樹脂材料からなる多孔体基材の具体例としては樹脂材料からなる発泡体、樹脂材料からなる不織布、樹脂材料からなるフェルト、樹脂材料からなる三次元網目状の物、あるいはこれらを組み合わせたもの等が挙げられる。
  多孔体基材を構成する樹脂材料の種類は特に限定されないが、焼却により除去可能なものが望ましい。樹脂材料からなる発泡体の具体例としては発泡ウレタン、発泡スチレン、発泡メラミン樹脂等が挙げられる。多孔体基材の多孔度を大きくする観点からは発泡ウレタン等が望ましい。多孔体基材の形状がシート状である場合、取り扱いの観点から柔軟性を有する(折り曲げたときに折れない)素材であることが望ましい。
  多孔体基材の多孔度は限定的ではなく、用途に応じて適宜選択されるものであるが、通常は60%以上98%以下、より好ましくは80%以上96%以下である。
  多孔体基材の厚みは限定的ではなく、用途に応じて適宜選択されるものであるが、通常は150μm以上5000μm以下、より好ましくは200μm以上2000μm以下、さらに好ましくは300μm以上1200μm以下が望ましい。
  「導電被覆層」は樹脂材料からなる多孔体基材の表面に形成される層であって導電性を有する層を指す。
  「導電被覆層形成工程」としては、多孔体基材の表面に導電被覆層を形成可能な限りにおいて種々の方法を採用することが可能である。「導電被覆層形成工程」の具体例としては多孔体基材の表面に導電性を有する粉末(例えば、ステンレススチール等の金属材料の粉末、結晶質のグラファイト、非晶質のカーボンブラック等のカーボンの粉末)とバインダとの混合物を塗着する方法、無電解めっき処理、スパッタリング、蒸着、イオンプレーティング等により多孔体基材の表面に導電性を有する金属材料からなる層を形成する方法、等が挙げられる。
  ニッケルを用いた無電解めっき処理の具体例としては次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に多孔体基材を浸漬する方法等が挙げられる。また、必要に応じて、多孔体基材をめっき浴に浸漬する前に微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)に浸漬しても良い。
  ニッケルを用いたスパッタリング処理の具体例としては、基板ホルダーに多孔体基材を固定し、不活性ガスを導入しつつ基板ホルダーとターゲット(ニッケル)との間に直流電圧を印加することにより、イオン化した不活性ガスをニッケルに衝突させ、吹き飛ばしたニッケル粒子を多孔体基材の表面に堆積させる方法等が挙げられる。
  導電被覆層は多孔体基材の表面に連続的に(導通可能に)形成されていれば良く、その目付量(多孔体基材への付着量)は限定的ではないが、例えば導電被覆層としてニッケルを用いる場合、通常は5g/m以上15g/m以下、より好ましくは7g/m以上10g/m以下とすれば良い。
  「ニッケルの層」はニッケル(の単体)で構成される層であり、ニッケルとは別の一種類以上の元素が上記課題を解決可能な限りにおいて意図的あるいは不可避的に含まれることを許容する。
  「クロムの粉末」の具体例としては、クロム単体の粉末、酸化クロムの粉末等が挙げられる。
  「クロムの粉末が分散されたスズの層」はスズ(の単体)で構成される層の内部にクロムの粉末が分散したものであり、スズ(の単体)で構成される部分にはスズとは別の一種類以上の元素が上記課題を解決可能な限りにおいて意図的あるいは不可避的に含まれることを許容する。
  「スズの層」はスズ(の単体)で構成される層であり、スズとは別の一種類以上の元素が上記課題を解決可能な限りにおいて意図的あるいは不可避的に含まれることを許容する。
  「クロムの層」はクロム(の単体)または酸化クロムで構成される層であり、クロムとは別の一種類以上の元素が上記課題を解決可能な限りにおいて意図的あるいは不可避的に含まれることを許容する。
  「気相法」は気体を用いて薄膜を形成する手法の総称である。気相法の具体例としては、スパッタリング、蒸着法、イオンプレーティング、パルスレーザー蒸着法(PLD:Pulsed  Laser  Deposition)等が挙げられる。
  「バインダ」はクロム粉末を多孔体骨格表面に固定する材料である。バインダの具体例としては、ポリフッ化ビニリデン、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリビニルアルコール等、既知の種々の材料が挙げられる。
  樹脂材料からなる多孔体基材を燃焼させる、あるいは薬液により溶解することにより除去することができる。
  ここで、樹脂材料からなる多孔体基材を燃焼させることにより除去する場合であって、樹脂材料からなる多孔体基材を燃焼させるときの温度と熱処理工程の際に金属多孔体を保持する温度との間にそれほど差が無い場合は、熱処理工程が樹脂材料からなる多孔体基材を除去する工程を兼ねることができる(熱処理工程により樹脂材料からなる多孔体基材を除去することが可能である)。
  (実施例1)クロム粉末分散めっき
  以下では実施例1の詳細について説明する。実施例1はニッケル-スズ-クロム合金多孔体であり、本発明の実施の一形態である。
  (3次元網目状樹脂の導電化処理)
  最初に3次元網目状樹脂(樹脂材料からなる多孔体基材の実施の一形態)として、1.5mm厚の発泡ポリウレタンシート(孔径0.45mm)を用意した。続いて平均粒径0.5μmのグラファイト90gを0.5Lの10質量%アクリル酸エステル系樹脂水溶液に分散し、この比率で粘着塗料を作製した。
  次に前記発泡ポリウレタンシートを前記塗料に連続的に漬け、ロールで絞った後乾燥させることによって導電化処理を施し、3次元網目状樹脂の表面に導電性被覆層を形成した。なお、導電性塗料の粘度は増粘剤によって調整し、所望の合金組成となるように、乾燥後の導電性塗料の塗布重量が69g/mとなるよう調整した。
  この工程を経ることにより、3次元網目状樹脂の表面にカーボン粉末を含む導電性塗料の塗膜が形成される。
  (金属めっき工程)
  導電化処理を施した3次元網目状樹脂に、電気めっきによりニッケルを300g/m、次いで体積平均粒径5μmのクロム粒子を分散させたスズめっき液中でスズとクロム粉末の混合物を75g/m付着させ、電気めっき層(ニッケルの層およびクロム粉末を含むスズの層の実施の一形態)を形成した。めっき液としては、ニッケルはスルファミン酸ニッケルめっき液、スズは有機酸浴を用いた。
  この工程を経ることにより、カーボン粉末を含む導電性塗料の塗膜の上にニッケルめっき層及びクロム粒子を含むスズめっき層が形成される。
  (熱処理工程)
  上記工程で得られた金属多孔体について、まず大気中800℃で15分熱処理を行い、3次元網目状樹脂及びバインダを焼失させた。その後水素雰囲気1000℃で50分の熱処理を行い、大気熱処理で酸化した金属を還元すると共に熱拡散による合金化を行った。
  この工程を経ることにより、3次元網目状樹脂は熱分解により除去される。また、ニッケルめっき層、スズめっき層及びスズめっき層に含まれるクロム粒子は、導電性被覆層に含まれるカーボン粉末によって還元される。さらに、ニッケルめっき層及びスズめっき層及びスズめっき層に含まれるクロム成分は、熱拡散により合金化する。最終的に厚さ1.5mm、目付量375g/m、ニッケル80質量%、スズ15質量%、クロム5質量%の合金多孔体を得た(試料1)。
  (実施例2)ニッケルめっき/スズめっき/クロムスパッタ
  実施例2のうち導電化処理までは実施例1と同様であるため、詳細な記載を省略する。
  導電化処理を施した3次元網目状樹脂に、電気めっきによりニッケルを300g/m、次いでスズめっき液中でスズを60g/m付着させ、電気めっき層(ニッケルの層およびクロム粉末を含むスズの層の実施の一形態)を形成した。めっき液としては、ニッケルはスルファミン酸ニッケルめっき液、スズは硫酸浴を用いた。
  この工程を経ることにより、カーボン粉末を含む導電性塗料の塗膜の上にニッケルめっき層及びスズめっき層が形成される。
  次に、ニッケルスズ多孔体に対しスパッタを用いてクロムを3g/m付着させた。スパッタは不活性雰囲気ガスを導入したスパッタ装置で行い、成膜時のガス圧力は0.5Paとした。
  実施例2における熱処理工程は実施例1における熱処理工程と同様であるため、詳細な記載を省略する。
  熱処理工程を経ることにより、3次元網目状樹脂は熱分解により除去される。また、ニッケルめっき層、スズめっき層及びクロムスパッタ層は、導電性被覆層に含まれるカーボン粉末によって還元される。さらに、ニッケルめっき層、スズめっき層及びクロムスパッタ層は熱拡散により合金化する。最終的に厚さ1.5mm、目付量363g/m、ニッケル82.7質量%、スズ16.5質量%、クロム0.8質量%の合金多孔体を得た(試料2)。
  (実施例3)ニッケルめっき/スズめっき/クロムめっき
  実施例3のうちスズめっきまでは実施例2と同様の方法であるため、詳細な記載を省略する。ここまでの工程を経ることにより、ニッケル300g/m、スズ60g/mの金属多孔体を得た。
  クロムめっきは市販の三価クロムめっき液を用い、クロム目付量30g/mのめっきを行った。
  実施例3における熱処理工程は実施例1における熱処理工程と同様であるため、詳細な記載を省略する。
  熱処理工程を経ることにより、3次元網目状樹脂は熱分解により除去される。また、ニッケルめっき層、スズめっき層及びクロムめっき層とは、導電性被覆層に含まれるカーボン粉末によって還元される。さらにニッケルめっき層、スズめっき層及びクロムめっき層とは熱拡散により合金化する。最終的に厚さ1.5mm、目付量390g/m、ニッケル76.9質量%、スズ15.4質量%、クロム7.7質量%の合金多孔体を得た(試料3)。
  (実施例4)ニッケルめっき/スズめっき/クロム粉末塗布
  実施例4のうちスズめっきまで実施例2と同様の方法であるため、詳細な記載を省略する。ここまでの工程を経ることにより、ニッケル300g/m、スズ60g/mの金属多孔体を得た。
  続いて体積平均粒径3μmのクロム粒子12gを0.5Lの10%質量%アクリル酸エステル系樹脂水溶液に分散し、この比率でクロム粉末塗料を作製した。
  次に金属多孔体を前記塗料に連続的に漬け、余分な塗料をエアブラシで除去した後に乾燥させることによって、金属多孔体の表面にクロム粉末塗布層を形成した。なお、塗料の粘度は増粘剤によって調整し、所望の合金組成となるように、乾燥後の導電性塗料の塗布重量が69g/mとなるよう調整した。
  実施例4における熱処理工程は実施例1における熱処理工程と同様であるため、詳細な記載を省略する。
  この工程を経ることにより、3次元網目状樹脂は熱分解により除去される。また、ニッケルめっき層、スズめっき層及びクロム粉末塗布層は、導電性被覆層に含まれるカーボン粉末によって還元される。さらにニッケルめっき層、スズめっき層及びクロム粉末塗布層は熱拡散により合金化する。最終的に厚さ1.5mm、目付量373g/m、ニッケル80.3質量%、スズ16.1質量%、クロム3.6質量%の合金多孔体を得た(試料4)。
  (実施例5)ニッケル-スズ合金めっき/クロムスパッタ
  実施例5のうち導電化処理までは実施例1と同様であるため、詳細な記載を省略する。
  ニッケル-スズ合金めっきは市販のめっき液を使用し、目付量360g/mのニッケルスズ合金金属多孔体を得た
  実施例2と同様にクロムスパッタおよび熱処理を行い、最終的に厚さ1.5mm、目付量363g/m、ニッケル30.3質量%、スズ68.9質量%、クロム0.8質量%の合金多孔体を得た(試料5)。
  (実施例6)ニッケル-スズ合金めっき/クロムめっき
  実施例5と同様にニッケルスズ合金多孔体を得、実施例3と同様にクロムめっきと熱処理を行い、最終的に厚さ1.5mm、目付量390g/m、ニッケル28.2質量%、スズ64.1質量%、クロム7.7質量%の合金多孔体を得た(試料6)。
  (実施例7)ニッケル-スズ合金めっき/クロム粉末塗布
  実施例5と同様にニッケルスズ合金多孔体を得、実施例4と同様にクロム粉末塗布と熱処理を行い、最終的に厚さ1.5mm、目付量373g/m、ニッケル29.5質量%、スズ66.9質量%、クロム3.6質量%の合金多孔体を得た(試料7)。
  (比較例1)
  以下では比較例1たるニッケル-スズ合金多孔体の詳細について説明する。
  (3次元網目状樹脂の導電化処理)
  最初に3次元網目状樹脂として1.5mm厚の発泡ポリウレタンシート(孔径0.45mm)を用意した。続いて体積平均粒径0.5μmのグラファイト90gを0.5Lの10質量%アクリル酸エステル系樹脂水溶液に分散し、この比率で粘着塗料を作製した。
  次に前記発泡ポリウレタンシートを前記塗料に連続的に漬け、ロールで絞った後乾燥させることによって導電化処理を施し、3次元網目状樹脂の表面に導電性被覆層を形成した。なお、導電性塗料の粘度は増粘剤によって調整し、所望の合金組成となるように、乾燥後の導電性塗料の塗布重量が55g/mとなるよう調整した。
  この工程を経ることにより、3次元網目状樹脂の表面にカーボン粉末を含む導電性塗料の塗膜が形成される。
  (金属めっき工程)
  導電化処理を施した3次元網目状樹脂に電気めっきによりニッケルを300g/m、スズを53g/m付着させ、電気めっき層を形成した。めっき液としては、ニッケルはスルファミン酸ニッケルめっき液、スズは硫酸浴を用いた。
  この工程を経ることにより、カーボン粉末を含む導電性塗料の塗膜の上にニッケルめっき層及びスズめっき層が形成される。
  (熱処理工程)
  上記工程で得られた金属多孔体について、まず大気中800℃で15分熱処理を行い、3次元網目状樹脂及びバインダを焼失させた。その後水素雰囲気1000℃で50分の熱処理を行い、大気熱処理で酸化した金属を還元すると共に熱拡散による合金化を行った。
  この工程を経ることにより、3次元網目状樹脂は熱分解により除去される。また、ニッケルめっき層およびスズめっき層は導電性被覆層に含まれるカーボン粉末によって還元され、熱拡散により合金化する。最終的に厚さ1.5mm、目付量353g/m、ニッケル85質量%、スズ15質量%の合金多孔体を得た(試料11)。
  (比較例2)
  以下では比較例2たるニッケル-クロム合金多孔体の詳細について説明する。
  (3次元網目状樹脂の導電化処理)
  最初に3次元網目状樹脂として1.5mm厚の発泡ポリウレタンシート(孔径0.45mm)を用意した。続いて体積平均粒径0.5μmのグラファイト90gを0.5Lの10質量%アクリル酸エステル系樹脂水溶液に分散し、この比率で粘着塗料を作製した。
  次に前記発泡ポリウレタンシートを前記塗料に連続的に漬け、ロールで絞った後乾燥させることによって導電化処理を施し、3次元網目状樹脂の表面に導電性被覆層を形成した。なお、導電性塗料の粘度は増粘剤によって調整し、所望の合金組成となるように、乾燥後の導電性塗料の塗布重量が55g/mとなるよう調整した。
  この工程を経ることにより、3次元網目状樹脂の表面にカーボン粉末を含む導電性塗料の塗膜が形成される。
  (金属めっき工程)
  導電化処理を施した3次元網目状樹脂に、電気めっきによりニッケルを300g/m付着させ、電気めっき層を形成した。めっき液としては、ニッケルはスルファミン酸ニッケルめっき液を用いた。
  この工程を経ることにより、カーボン粉末を含む導電性塗料の塗膜の上にニッケルめっき層が形成される。
  (熱処理工程)
  上記工程で得られた金属多孔体について、まず大気中800℃で15分熱処理を行い、3次元網目状樹脂及びバインダを焼失させた。その後水素雰囲気1000℃で50分の熱処理を行い、大気熱処理で酸化した金属を還元した。
  この工程を経ることにより、3次元網目状樹脂は熱分解により除去される。そして、ニッケルめっき層は導電性被覆層に含まれるカーボン粉末によって還元される。
  (クロム拡散工程)
  上記工程で得られたニッケル多孔体にクロマイズ処理(粉末パック法)にてクロムを拡散させた。ニッケル多孔体にクロム粉末、塩化アンモニウム及びアルミナ粉末を混合して得られた浸透材(クロム:90質量%、NHCl:1質量%、Al:9質量%)を充填し、水素ガス雰囲気中で800℃に加熱してニッケル-クロム合金多孔体を得た。
  上記クロマイズ処理において、クロマイズ処理の加熱時間を調整することにより、最終的に厚さ1.5mm、目付量460g/m、ニッケル65質量%、クロム35質量%の合金多孔体を得た(試料12)。
(表面クロム濃度の測定)
  上記実施例および比較例により得られたシート状のサンプル(試料1~試料7、試料11、試料12)の表側および裏側について、蛍光X線により骨格の表面のクロム濃度を測定した。測定結果を以下の表1に示す。測定には携帯型の蛍光X線分析装置(Thermo  Fisher  Scientific社製のNITON  XL3t-700)を用い、測定部を金属多孔体の測定した面に当てて測定した。
Figure JPOXMLDOC01-appb-T000001
  表1より、試料1~試料7の金属多孔体は、金属量からのクロムの組成比(サンプル全体として見たときのクロムの組成比の平均値)に比べて表面のクロム濃度が高い。
  より詳細には、試料1~試料7の金属多孔体の表面クロム濃度は金属量からのクロムの組成比の4倍~30倍程度となっている。
  従って、試料1~試料7の金属多孔体に含まれるクロムの濃度は、金属多孔体の骨格の表面において最も高く、骨格の内部に向かうに従って低くなる。
  これに対して、試料12の金属多孔体は、金属量からのクロムの組成比と表面のクロム濃度とがほぼ同じである。
  従って、試料12の金属多孔体に含まれるクロムの濃度は、金属多孔体の骨格の表面と骨格の内部とでほぼ同じである。
  (耐食性試験)
  上記実施例および比較例により得られたシート状のサンプル(試料1~試料7、試料11、試料12)の耐食性評価の手法として、ASTM  G5-94 に基づいた試験を行った。アノード分極曲線測定に用いる酸性水溶液は、1mol/Lの硫酸ナトリウム水溶液を調整し、硫酸によってpHを調節したものを用いた。
  また、試験温度は60℃とし、試験中は水素バブリングを行って水素飽和状態とした。ボルタンメトリーの電位範囲は標準水素電極基準とし、燃料電池中で実際に印可されると考えられる0V から1.0Vまでとし、掃引速度は5mV/sとした。
  耐食性試験に関しては、材料のアノード分極測定を行い、燃料電池で実際に使用する電位範囲におけるアノード電流の値によって評価することができる。金属材料のアノード分極曲線測定に関してはJIS G 0579(JIS G 0579、「ステンレス鋼のアノード分極曲線測定方法」)やASTM G5 - 94(ASTM G5 - 94(2004)Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements)に記述がある。特にASTM G5 - 94 には燃料電池向け評価について記載があり、燃料電池分野で材料の耐食性試験に採用されているため、その手法を参考に評価を行った(Chih-Yeh Chung, et al., J. Power Sources, 176, pp.276-281(2008)、Shuo-Jen Lee, et al., J. Power Sources, Volume 131, Issues 1-2, pp.162-168(2004)、M. Rendon-Belmonte(Rendonのoはアキュート・アクセントがつく), et al., Int. J. Electrochem. Sci., 7, pp.1079-1092(2012))。
  (耐食性試験の結果)
  上記実施例および比較例により得られたシート状のサンプル(試料1~試料7、試料11、試料12)の、ASTM試験電位0.1V及び0.8V時の電流値を測定した。試験は5回行った。このうち、初回と5回目の電流値の測定結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
  表2に示すとおり、試験電位が0.2Vおよび0.8Vの両方において試料1~試料7の電流値は試料11の電流値よりも小さい。
  従って、試料1~試料7は試料11に比べて耐食性が高いことが分かる。
  また、試料1および試料2と試料12とを比較した場合、試験電位が0.2Vのときの電流値については試料1および試料2は試料12よりも大きいが、試験電位が0.8Vのときの電流値については試料1および試料2は試料12の1/5程度になっている。
  従って、試料1および試料2は試料12に比べて高電圧側の耐食性が優れることが分かる。
  さらに、耐食性試験を繰り返したとき(5回目)の電流値は、試料1~試料7においては余り変化しないのに対して、試料11では0.2Vの電流値が増加し、試料12については0.2Vおよび0.8Vの両方の電流値が増加している。
  従って、試料11および試料12は、耐食性試験を繰り返したときに耐食性が低下することが分かった。
  以上の結果により、試料1から試料7は、試料11及び試料12に比べて耐久性に優れることが分かった。
  今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (12)

  1.   三次元網目構造の骨格を有し、少なくともニッケル、スズおよびクロムを含む金属多孔体であって、
      前記金属多孔体に含まれるクロムの濃度は、前記金属多孔体の骨格の表面において最も高く、前記骨格の内部に向かうに従って低くなる、金属多孔体。
  2.   前記金属多孔体の骨格の表面におけるクロムの濃度は3質量%以上70質量%以下である、請求項1に記載の金属多孔体。
  3.   請求項1又は請求項2に記載の金属多孔体を製造する金属多孔体の製造方法であって、  樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、
      前記導電被覆層の表面にニッケルの層を形成するニッケル層形成工程と、
      前記ニッケルの層の表面にクロムの粉末が分散されたスズの層を形成するクロム分散スズ層形成工程と、
      前記ニッケルの層と前記クロムの粉末が分散されたスズの層との間で相互に金属原子が拡散する熱処理工程と、
      を含む、金属多孔体の製造方法。
  4.   前記クロム分散スズ層形成工程は、
      前記クロムの粉末をスズメッキ浴に供給し、前記スズメッキ浴を撹拌することにより前記スズメッキ浴中に前記クロムの粉末を分散させるクロム粉末分散工程と、
      前記ニッケルの層を前記スズメッキ浴に浸漬するクロム分散スズメッキ工程と、
      を含む、請求項3に記載の金属多孔体の製造方法。
  5.   請求項1又は請求項2に記載の金属多孔体を製造する金属多孔体の製造方法であって、  樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、
      前記導電被覆層の表面にニッケルの層を形成するニッケル層形成工程と、
      前記ニッケルの層の表面にスズの層を形成するスズ層形成工程と、
      前記スズの層の表面にクロムの層を形成するクロム層形成工程と、
      前記ニッケルの層、前記スズの層および前記クロムの層の間で相互に金属原子が拡散する熱処理工程と、
      を含む、金属多孔体の製造方法。
  6.   前記クロム層形成工程において、気相法により前記クロムの層が前記スズの層の表面に形成される、請求項5に記載の金属多孔体の製造方法。
  7.   前記クロム層形成工程において、前記スズの層をクロムメッキ浴に浸漬することにより前記クロムの層が前記スズの層の表面に形成される、請求項5に記載の金属多孔体の製造方法。
  8.   前記クロム層形成工程において、クロムの粉末とバインダとの混合物を前記スズの層の表面に塗布することにより前記クロムの層が前記スズの層の表面に形成される、請求項5に記載の金属多孔体の製造方法。
  9.   請求項1又は請求項2に記載の金属多孔体を製造する金属多孔体の製造方法であって、  樹脂材料からなる多孔体基材の表面に導電被覆層を形成する導電被覆層形成工程と、
      前記導電被覆層の表面にニッケル-スズ合金の層を形成するニッケル-スズ合金層形成工程と、
      前記ニッケル-スズ合金の層の表面にクロムの層を形成するクロム層形成工程と、
      前記ニッケル-スズ合金の層および前記クロムの層の間で相互に金属原子が拡散する熱処理工程と、
      を含む、金属多孔体の製造方法。
  10.   前記クロム層形成工程において、気相法により前記クロムの層が前記ニッケル-スズ合金の層の表面に形成される、請求項9に記載の金属多孔体の製造方法。
  11.   前記クロム層形成工程において、前記ニッケル-スズ合金の層をクロムメッキ浴に浸漬することにより前記クロムの層が前記ニッケル-スズ合金の層の表面に形成される、請求項9に記載の金属多孔体の製造方法。
  12.   前記クロム層形成工程において、クロムの粉末とバインダとの混合物を前記ニッケル-スズ合金の層の表面に塗布することにより前記クロムの層が前記ニッケル-スズ合金の層の表面に形成される、請求項9に記載の金属多孔体の製造方法。
PCT/JP2014/060253 2013-06-19 2014-04-09 金属多孔体及びその製造方法 WO2014203594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14812928.1A EP3012893B1 (en) 2013-06-19 2014-04-09 Porous metal body and method for producing same
KR1020157035006A KR20160021769A (ko) 2013-06-19 2014-04-09 금속 다공체 및 그의 제조 방법
US14/899,275 US10287646B2 (en) 2013-06-19 2014-04-09 Porous metal body and method for producing same
CN201480033871.1A CN105307802B (zh) 2013-06-19 2014-04-09 金属多孔体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-128785 2013-06-19
JP2013128785A JP6055378B2 (ja) 2013-06-19 2013-06-19 金属多孔体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014203594A1 true WO2014203594A1 (ja) 2014-12-24

Family

ID=52104338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060253 WO2014203594A1 (ja) 2013-06-19 2014-04-09 金属多孔体及びその製造方法

Country Status (6)

Country Link
US (1) US10287646B2 (ja)
EP (1) EP3012893B1 (ja)
JP (1) JP6055378B2 (ja)
KR (1) KR20160021769A (ja)
CN (1) CN105307802B (ja)
WO (1) WO2014203594A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133296A1 (ja) * 2014-03-06 2015-09-11 住友電気工業株式会社 金属多孔体および金属多孔体の製造方法
EP3016189A1 (en) * 2013-06-27 2016-05-04 Sumitomo Electric Industries, Ltd. Porous metal body, method for manufacturing porous metal body, and fuel cell
EP3333947A4 (en) * 2015-08-04 2018-07-11 Sumitomo Electric Industries, Ltd. Metal porous body, fuel cell, and method for manufacturing metal porous body
EP3333948A4 (en) * 2015-08-07 2018-08-29 Sumitomo Electric Industries, Ltd. Metallic porous body, fuel cell, and method for manufacturing metallic porous body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200040471A1 (en) * 2017-04-24 2020-02-06 Sumitomo Electric Industries, Ltd. Oxide-dispersed metal porous body, electrolysis electrode, and hydrogen generation apparatus
JPWO2019012947A1 (ja) * 2017-07-14 2020-05-07 住友電気工業株式会社 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
WO2019163256A1 (ja) * 2018-02-22 2019-08-29 住友電気工業株式会社 金属多孔体
WO2019167433A1 (ja) * 2018-02-27 2019-09-06 住友電気工業株式会社 金属多孔体およびその製造方法、ならびに燃料電池
WO2020049815A1 (ja) * 2018-09-07 2020-03-12 富山住友電工株式会社 金属多孔体、燃料電池および金属多孔体の製造方法
CN115323316B (zh) * 2022-08-16 2023-05-23 沈伟 一种泡沫镍铬合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
JP2012132083A (ja) 2010-12-24 2012-07-12 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体及びその製造方法
JP2012149282A (ja) 2011-01-17 2012-08-09 Toyama Sumitomo Denko Kk 高耐食性を有する金属多孔体及びその製造方法
WO2013099532A1 (ja) * 2011-12-27 2013-07-04 富山住友電工株式会社 金属多孔体の製造方法及び金属多孔体
WO2014050536A1 (ja) * 2012-09-27 2014-04-03 住友電気工業株式会社 金属多孔体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312546A (en) * 1965-10-20 1967-04-04 Bethlehem Steel Corp Formation of chromium-containing coatings on steel strip
FR2435534A1 (fr) * 1978-07-25 1980-04-04 Snecma Nouveaux corps poreux metalliques et leur procede de preparation
JPS5518579A (en) 1978-07-27 1980-02-08 Citizen Watch Co Ltd Ni-cr base alloy
JPH0483713A (ja) 1990-07-27 1992-03-17 Nippon Steel Corp ゼオライト組成物及びゼオライト組成物の製造方法
US5543183A (en) * 1995-02-17 1996-08-06 General Atomics Chromium surface treatment of nickel-based substrates
JPH09102318A (ja) * 1995-10-06 1997-04-15 Sumitomo Electric Ind Ltd 金属多孔体の製造方法及びそれにより得られた電池用電極基板用金属多孔体
EP0833397B1 (en) 1996-09-20 2002-05-15 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries
JP4378202B2 (ja) * 2004-03-30 2009-12-02 国立大学法人福井大学 水素貯蔵用複合シート体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
JP2012132083A (ja) 2010-12-24 2012-07-12 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体及びその製造方法
JP2012149282A (ja) 2011-01-17 2012-08-09 Toyama Sumitomo Denko Kk 高耐食性を有する金属多孔体及びその製造方法
WO2013099532A1 (ja) * 2011-12-27 2013-07-04 富山住友電工株式会社 金属多孔体の製造方法及び金属多孔体
WO2014050536A1 (ja) * 2012-09-27 2014-04-03 住友電気工業株式会社 金属多孔体及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIH-YEH CHUNG ET AL., J. POWER SOURCES, vol. 176, 2008, pages 276 - 281
M. RENDON-BELMONTE ET AL.: "Rendon is with an acute accent", INT. J. ELECTROCHEM. SCI., vol. 7, 2012, pages 1079 - 1092
SHUO-JEN LEE ET AL., J. POWER SOURCES, vol. 131, no. 1-2, 2004, pages 162 - 168

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016189A1 (en) * 2013-06-27 2016-05-04 Sumitomo Electric Industries, Ltd. Porous metal body, method for manufacturing porous metal body, and fuel cell
EP3016189A4 (en) * 2013-06-27 2016-06-08 Sumitomo Electric Industries POROUS METALLIC BODY, PROCESS FOR MANUFACTURING POROUS METALLIC BODY, AND FUEL CELL
US10205177B2 (en) 2013-06-27 2019-02-12 Sumitomo Electric Industries, Ltd. Porous metal body, method for manufacturing porous metal body, and fuel cell
WO2015133296A1 (ja) * 2014-03-06 2015-09-11 住友電気工業株式会社 金属多孔体および金属多孔体の製造方法
US10128513B2 (en) 2014-03-06 2018-11-13 Sumitomo Electric Industries, Ltd. Porous metal body and method for producing porous metal body
EP3333947A4 (en) * 2015-08-04 2018-07-11 Sumitomo Electric Industries, Ltd. Metal porous body, fuel cell, and method for manufacturing metal porous body
EP3333948A4 (en) * 2015-08-07 2018-08-29 Sumitomo Electric Industries, Ltd. Metallic porous body, fuel cell, and method for manufacturing metallic porous body
US10811696B2 (en) 2015-08-07 2020-10-20 Sumitomo Electric Industries, Ltd. Porous metal body, fuel battery, and method for producing porous metal body
CN107851806B (zh) * 2015-08-07 2021-06-25 住友电气工业株式会社 金属多孔体、燃料电池以及制造金属多孔体的方法
US11228043B2 (en) 2015-08-07 2022-01-18 Sumitomo Electric Industries, Ltd. Fuel battery

Also Published As

Publication number Publication date
CN105307802B (zh) 2017-07-07
CN105307802A (zh) 2016-02-03
EP3012893B1 (en) 2018-08-29
EP3012893A4 (en) 2016-07-20
EP3012893A1 (en) 2016-04-27
KR20160021769A (ko) 2016-02-26
US20160130678A1 (en) 2016-05-12
JP2015004088A (ja) 2015-01-08
JP6055378B2 (ja) 2016-12-27
US10287646B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
JP6055378B2 (ja) 金属多孔体及びその製造方法
JP5952149B2 (ja) 金属多孔体及びその製造方法
JP5691107B2 (ja) 高耐食性を有する金属多孔体及びその製造方法
KR101818085B1 (ko) 고내식성을 갖는 금속 다공체 및 그의 제조 방법
JP5369050B2 (ja) 高耐食性を有する金属多孔体
JP5759169B2 (ja) 高耐食性を有する金属多孔体及びその製造方法
EP3016189B1 (en) Porous metal body, method for manufacturing porous metal body, and fuel cell
Mirzaee et al. Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor
CN110945152B (zh) 金属多孔体以及镍-金属氢化物电池用集电体
JP5735265B2 (ja) 高耐食性を有する金属多孔体の製造方法
JP6189485B2 (ja) 金属多孔体及びその製造方法
JP5635382B2 (ja) 高耐食性を有する金属多孔体の製造方法
Talbot et al. Electrophoretic Deposition
JP2010140647A (ja) 金属多孔体及びそれを用いた電池用電極基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033871.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035006

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014812928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14899275

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE