WO2014203571A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014203571A1
WO2014203571A1 PCT/JP2014/056986 JP2014056986W WO2014203571A1 WO 2014203571 A1 WO2014203571 A1 WO 2014203571A1 JP 2014056986 W JP2014056986 W JP 2014056986W WO 2014203571 A1 WO2014203571 A1 WO 2014203571A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
connection
power conversion
bus bars
series circuit
Prior art date
Application number
PCT/JP2014/056986
Other languages
English (en)
French (fr)
Inventor
公之 小柳
雅博 木下
Original Assignee
三菱電機株式会社
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 東芝三菱電機産業システム株式会社 filed Critical 三菱電機株式会社
Priority to JP2015522596A priority Critical patent/JP6022062B2/ja
Priority to CN201480034228.0A priority patent/CN105308846B/zh
Priority to US14/890,511 priority patent/US9559612B2/en
Priority to KR1020157035468A priority patent/KR101740174B1/ko
Publication of WO2014203571A1 publication Critical patent/WO2014203571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars

Definitions

  • the present invention relates to a wiring structure of a power conversion device.
  • a conventional power converter includes a capacitor series circuit that smoothes a DC voltage of a DC power supply circuit, and a power converter that converts the smoothed DC voltage into an AC voltage using a semiconductor switching element.
  • a positive bus bar connecting the positive electrode of the converter, a negative bus bar connecting the negative electrode of the capacitor series circuit and the negative electrode of the power converter, a first smoothing capacitor, and a second smoothing capacitor are connected in series.
  • An intermediate connection bus bar is an intermediate connection bus bar.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power conversion device that can promote reduction of DC wiring inductance.
  • the power conversion device includes a capacitor series circuit in which a first smoothing capacitor and a second smoothing capacitor are connected in series, and a plurality of semiconductor switching elements, and includes a DC power and an AC power of the capacitor series circuit.
  • a power conversion unit that performs power conversion between them.
  • the power converter includes a first connection for connecting the positive electrode of the capacitor series circuit and the positive electrode of the power conversion unit, and a second connection for connecting the negative electrode of the capacitor series circuit and the negative electrode of the power conversion unit.
  • a third connection for connecting the first smoothing capacitor and the second smoothing capacitor in series.
  • One of the first and second connections is formed by connecting two bus bars in parallel without being adjacent to each other, and the other of the first and second connections is connected in the two bus bars connected in parallel. Consists of one bus bar arranged adjacent to one sheet, the third connection is composed of one bus bar, and a total of four bus bars are closely stacked via an insulating layer to form a stacked bus bar Is done.
  • the power converter according to the present invention is configured as described above, the DC wiring inductance of the power converter can be greatly reduced. Thereby, the spike voltage generated when the current of the semiconductor switching element is interrupted can be suppressed, and the deterioration of the semiconductor switching element can be prevented.
  • FIG. 1 is an equivalent circuit diagram of a power conversion device according to Embodiment 1 of the present invention. It is a side view which shows the structure of the power converter device by Embodiment 2 of this invention. It is an equivalent circuit schematic of the power converter device by Embodiment 2 of this invention. It is a side view which shows the structure of the power converter device by Embodiment 3 of this invention. It is an equivalent circuit schematic of the power converter device by Embodiment 3 of this invention. It is a side view which shows the structure of the power converter device by Embodiment 4 of this invention.
  • FIG. 1 is a side view showing a configuration of a power conversion device according to Embodiment 1 of the present invention
  • FIG. 2 is a plan view of the power conversion device.
  • FIG. 3 shows an equivalent circuit diagram of the power converter.
  • the power conversion device includes a capacitor series circuit CA, a power conversion unit QA, and a four-layer bus bar 10 as a stacked bus bar.
  • the capacitor series circuit CA is configured by connecting a smoothing capacitor CF1 as a first smoothing capacitor and a smoothing capacitor CF2 as a second smoothing capacitor in series, and includes a positive electrode CP and a negative electrode CN.
  • the power conversion unit QA is configured by connecting two semiconductor switching elements Q1 and Q2 made of, for example, an IGBT module, and includes a positive electrode QP, a negative electrode QN, and an output terminal QAC, and outputs a two-level AC voltage. Note that, in this case, the power conversion unit QA is described as converting the DC power of the capacitor series circuit CA into AC power. However, the power conversion unit QA may convert AC power into DC power.
  • the four-layer bus bar 10 includes four bus bars 11 to 14 including two positive-side bus bars 11 and 12, one negative-side bus bar 13, and one intermediate connection bus bar 14, respectively.
  • the insulating layer 15 is arranged and closely stacked. Further, the outer shapes of the four bus bars 11 to 14 are formed in substantially the same shape.
  • the two positive side bus bars 11 and 12 are arranged in the first layer and the fourth layer and connected in parallel, and the first connection 16 connecting the positive electrode CP of the capacitor series circuit CA and the positive electrode QP of the power conversion unit QA.
  • the negative side bus bar 13 is arranged in the third layer and serves as a second connection for connecting the negative electrode CN of the capacitor series circuit CA and the negative electrode QN of the power conversion unit QA.
  • the intermediate connection bus bar 14 is arranged in the second layer and serves as a third connection for connecting the smoothing capacitor CF1 (negative electrode) and the smoothing capacitor CF2 (positive electrode) in series.
  • the two positive side bus bars 11 and 12 are arranged with the negative side bus bar 13 and the intermediate connection bus bar 14 sandwiched therebetween.
  • the capacitor series circuit CA is connected to the first side (left side in the drawing) of the four-layer bus bar 10 in the longitudinal direction, and the power conversion unit QA is connected to the second side of the multilayer bus bar in the longitudinal direction.
  • the smoothing capacitor CF1 on the positive electrode CP side of the capacitor series circuit CA is arranged farther from the power conversion unit QA than the smoothing capacitor CF2 on the negative electrode CN side. Therefore, the connection point A between the positive electrode CP of the capacitor series circuit CA and the positive-side bus bars 11 and 12, the connection point B between the smoothing capacitor CF1 and the intermediate connection bus bar 14, and the connection between the smoothing capacitor CF2 and the intermediate connection bus bar 14.
  • the point C is arranged in the order of the connection point A, the connection point B, and the connection point C from the first side end in the longitudinal direction of the four-layer bus bar 10 toward the second side.
  • FIG. 3 shows the inductance L11 of the positive bus bar 11, the inductance L12 of the positive bus bar 12, the inductance L13 of the negative bus bar 13, the inductance L14 of the intermediate connection bus bar 14, and the direction of the current flowing through each of the bus bars 11-14.
  • An arrow is shown.
  • the positive side bus bar 12 and the negative side bus bar 13 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the positive side bus bar 11 and the intermediate connection bus bar 14 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced. For this reason, the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented. Further, since the outer shapes of the bus bars 11 to 14 are formed in substantially the same shape, the alignment for forming the four-layer bus bar 10 is easy and the manufacturing is easy. It can be easily realized.
  • the negative side bus bar 13 is arranged in the third layer and the intermediate connection bus bar 14 is arranged in the second layer.
  • the negative side bus bar 13 is arranged in the second layer and the intermediate connection bus bar 14 is arranged in 3 layers. It may be arranged in the layer and has the same effect.
  • FIG. 4 is a side view showing the configuration of the power conversion device according to Embodiment 2 of the present invention
  • FIG. 5 shows an equivalent circuit diagram of the power conversion device.
  • the top view of this power converter device is the same as that of FIG. 2 of the first embodiment.
  • the two positive bus bars 11 and 12 constituting the first connection 16 are arranged in the second and fourth layers, and the negative bus bar 13 in the second connection is the third and third layers.
  • the intermediate connection bus bar 14 is arranged in the first layer to constitute a four-layer bus bar 10a as a laminated bus bar. That is, the two positive-side bus bars 11 and 12 are arranged with the negative-side bus bar 13 interposed therebetween, and the intermediate connection bus bar 14 is arranged outside thereof.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 5 shows the inductance L11 of the positive bus bar 11, the inductance L12 of the positive bus bar 12, the inductance L13 of the negative bus bar 13, the inductance L14 of the intermediate connection bus bar 14, and the direction of the current flowing through each of the bus bars 11-14.
  • An arrow is shown.
  • the positive side bus bar 12 and the negative side bus bar 13 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the positive side bus bar 11 and the intermediate connection bus bar 14 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced.
  • the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented.
  • the outer shapes of the bus bars 11 to 14 are formed to be substantially the same shape, the alignment for forming the four-layer bus bar 10a is easy and the manufacturing is easy. It can be easily realized.
  • the positive side bus bars 11 and 12 are arranged in the first and third layers, the negative side bus bar 13 is arranged in the second layer therebetween, and the intermediate connection bus bar 14 is arranged in the fourth layer. Good and has the same effect.
  • FIG. 7 shows an equivalent circuit diagram of the power conversion device.
  • the top view of this power converter device is the same as that of FIG. 2 of the first embodiment.
  • the two positive bus bars 11 and 12 constituting the first connection 16 are arranged in the first and third layers, and the negative bus bar 13 in the second connection is the fourth and third layers.
  • the intermediate connection bus bar 14 is arranged in the second layer to form a four-layer bus bar 10b as a laminated bus bar. That is, the two positive-side bus bars 11 and 12 are disposed with the intermediate connection bus bar 14 therebetween, and the negative-side bus bar 13 is disposed on the outside thereof.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 7 shows the inductance L11 of the positive bus bar 11, the inductance L12 of the positive bus bar 12, the inductance L13 of the negative bus bar 13, the inductance L14 of the intermediate connection bus bar 14, and the direction of the current flowing through each of the bus bars 11-14.
  • An arrow is shown.
  • the positive side bus bar 12 and the negative side bus bar 13 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the positive side bus bar 11 and the intermediate connection bus bar 14 are adjacent to each other, and the current flowing directions are opposite to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced.
  • the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented.
  • the outer shapes of the bus bars 11 to 14 are formed in substantially the same shape, the alignment for forming the four-layer bus bar 10b is easy and the manufacturing is easy. It can be easily realized.
  • the positive side bus bars 11 and 12 may be arranged in the second and fourth layers, the intermediate connection bus bar 14 may be arranged in the third layer therebetween, and the negative side bus bar 13 may be arranged in the first layer. Good and has the same effect.
  • FIG. 8 is a side view showing the configuration of the power conversion device according to Embodiment 4 of the present invention
  • FIG. 9 shows an equivalent circuit diagram of this power conversion device.
  • the power converter includes a capacitor series circuit CA, a power converter QA, and a four-layer bus bar 20 as a laminated bus bar.
  • Capacitor series circuit CA and power conversion unit QA are the same as those in the first embodiment.
  • the four-layer bus bar 20 includes four bus bars 21 to 24 including one positive bus bar 21, two negative bus bars 22 and 23, and one intermediate connection bus bar 24.
  • the insulating layer 15 is arranged and closely stacked. Further, the outer shapes of the four bus bars 21 to 24 are formed in substantially the same shape.
  • the two negative-side busbars 22 and 23 are arranged in the first and fourth layers and connected in parallel, and have a second connection 26 connecting the negative electrode CN of the capacitor series circuit CA and the negative electrode QN of the power conversion unit QA.
  • the positive side bus bar 21 is disposed in the second layer and serves as a first connection for connecting the positive electrode CP of the capacitor series circuit CA and the positive electrode QP of the power conversion unit QA.
  • the intermediate connection bus bar 24 is arranged in the third layer and serves as a third connection for connecting the smoothing capacitor CF1 (negative electrode) and the smoothing capacitor CF2 (positive electrode) in series.
  • the two negative side bus bars 22 and 23 are arranged with the positive side bus bar 21 and the intermediate connection bus bar 24 sandwiched therebetween.
  • the capacitor series circuit CA is connected to the first side (left side in the drawing) of the four-layer bus bar 10 in the longitudinal direction, and the power conversion unit QA is connected to the second side of the multilayer bus bar in the longitudinal direction.
  • the smoothing capacitor CF2 on the negative electrode CN side of the capacitor series circuit CA is disposed farther from the power conversion unit QA than the smoothing capacitor CF1 on the positive electrode CP side. Therefore, the connection point D between the negative electrode CN of the capacitor series circuit CA and the negative side bus bars 22 and 23, the connection point C between the smoothing capacitor CF2 and the intermediate connection bus bar 24, and the connection between the smoothing capacitor CF1 and the intermediate connection bus bar 24.
  • the point B is arranged in the order of the connection point D, the connection point C, and the connection point B from the first side end in the longitudinal direction of the four-layer bus bar 20 toward the second side.
  • FIG. 9 shows the inductance L21 of the positive bus bar 21, the inductance L22 of the negative bus bar 22, the inductance L23 of the negative bus bar 23, the inductance L24 of the intermediate connection bus bar 24, and the direction of the current flowing through each of the bus bars 21-24.
  • An arrow is shown.
  • the positive side bus bar 21 and the negative side bus bar 22 are adjacent to each other, and the directions of current flow are opposed to each other.
  • the negative side bus bar 23 and the intermediate connection bus bar 24 are adjacent to each other, and the current flowing directions are opposed to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced.
  • the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented.
  • the outer shapes of the bus bars 21 to 24 are formed in substantially the same shape, the alignment for forming the four-layer bus bar 20 is easy and the manufacturing is easy. It can be easily realized.
  • the positive side bus bar 21 is arranged in the second layer and the intermediate connection bus bar 24 is arranged in the third layer.
  • the positive side bus bar 21 is arranged in the third layer and the intermediate connection bus bar 24 is arranged in two layers. It may be arranged in the layer and has the same effect.
  • FIG. 10 is a side view showing the configuration of the power conversion device according to Embodiment 5 of the present invention
  • FIG. 11 shows an equivalent circuit diagram of this power conversion device.
  • the two negative side bus bars 22 and 23 constituting the second connection 26 are arranged in the first layer and the third layer, and the positive side bus bar 21 of the first connection is the second layer and the third layer.
  • the intermediate connection bus bar 24 is arranged in the fourth layer to constitute a four-layer bus bar 20a as a laminated bus bar. That is, the two negative-side bus bars 22 and 23 are arranged with the positive-side bus bar 21 interposed therebetween, and the intermediate connection bus bar 24 is arranged outside thereof.
  • Other configurations are the same as those of the fourth embodiment.
  • FIG. 11 shows the inductance L21 of the positive bus bar 21, the inductance L22 of the negative bus bar 22, the inductance L23 of the negative bus bar 23, the inductance L24 of the intermediate connection bus bar 24, and the direction of the current flowing through each bus bar 21-24.
  • An arrow is shown.
  • the positive side bus bar 21 and the negative side bus bar 22 are adjacent to each other, and the directions of current flow are opposed to each other.
  • the negative side bus bar 23 and the intermediate connection bus bar 24 are adjacent to each other, and the current flowing directions are opposed to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced.
  • the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented.
  • the outer shapes of the bus bars 21 to 24 are formed in substantially the same shape, the alignment for forming the four-layer bus bar 20a is easy and the manufacturing is easy. It can be easily realized.
  • the negative side bus bars 22 and 23 are arranged in the second and fourth layers, the positive side bus bar 21 is arranged in the third layer therebetween, and the intermediate connection bus bar 24 is arranged in the first layer. Good and has the same effect.
  • FIG. 12 is a side view showing the configuration of the power conversion device according to Embodiment 6 of the present invention.
  • FIG. 13 shows an equivalent circuit diagram of the power conversion device.
  • the two negative bus bars 22 and 23 constituting the second connection 26 are arranged in the second and fourth layers, and the positive bus bar 21 in the first connection is the first and third layers.
  • the intermediate connection bus bar 24 is arranged in the third layer to constitute a four-layer bus bar 20b as a laminated bus bar. That is, the two negative-side bus bars 22 and 23 are disposed with the intermediate connection bus bar 24 interposed therebetween, and the positive-side bus bar 21 is disposed outside thereof.
  • Other configurations are the same as those of the fourth embodiment.
  • FIG. 13 shows the inductance L21 of the positive bus bar 21, the inductance L22 of the negative bus bar 22, the inductance L23 of the negative bus bar 23, the inductance L24 of the intermediate connection bus bar 24, and the direction of the current flowing through each of the bus bars 21-24.
  • An arrow is shown.
  • the positive side bus bar 21 and the negative side bus bar 22 are adjacent to each other, and the directions of current flow are opposed to each other.
  • the negative side bus bar 23 and the intermediate connection bus bar 24 are adjacent to each other, and the current flowing directions are opposed to each other.
  • the current direction can be opposed by the adjacent bus bars, and the DC wiring inductance can be canceled and reduced.
  • the spike voltage generated when the current of the semiconductor switching elements Q1 and Q2 of the power conversion unit QA is interrupted can be suppressed, and the deterioration of the semiconductor switching elements Q1 and Q2 can be prevented.
  • the outer shapes of the bus bars 21 to 24 are formed in substantially the same shape, the alignment for forming the four-layer bus bar 20b is easy and the manufacturing is easy. It can be easily realized.
  • the negative side bus bars 22 and 23 may be arranged in the first and third layers, the intermediate connection bus bar 24 may be arranged in the second layer therebetween, and the positive side bus bar 21 may be arranged in the fourth layer. Good and has the same effect.
  • FIG. 14 is a side view showing the configuration of the power conversion device according to embodiment 7 of the present invention.
  • the four-layer bus bar 10c includes four bus bars 11a, 12, two positive bus bars 11a, 12; one negative bus bar 13; and one intermediate connection bus bar 14a. 13 and 14a are formed by closely stacking insulating layers 15 between the bus bars.
  • the two positive-side bus bars 11a and 12 are arranged in the first layer and the fourth layer and connected in parallel, and the first connection 16a that connects the positive electrode CP of the capacitor series circuit CA and the positive electrode QP of the power conversion unit QA.
  • the negative side bus bar 13 is arranged in the third layer and serves as a second connection for connecting the negative electrode CN of the capacitor series circuit CA and the negative electrode QN of the power conversion unit QA.
  • the intermediate connection bus bar 14a is arranged in the second layer and serves as a third connection for connecting the smoothing capacitor CF1 (negative electrode) and the smoothing capacitor CF2 (positive electrode) in series.
  • the positive side bus bar 11 a arranged in the first layer and the intermediate connection bus bar 14 a arranged in the second layer are formed shorter than the other bus bars 12 and 13.
  • Other configurations are the same as those of the first embodiment.
  • the positive side bus bar 11a and the intermediate connection bus bar 14a are shorter than those in the first embodiment, but the omitted region is a region contributing to the connection with the capacitor series circuit CA and the power conversion unit QA. Also, it is not a region through which a current that contributes to a reduction in DC wiring inductance flows. For this reason, the current direction can be opposed by the adjacent bus bars, the DC wiring inductance can be canceled and reduced, the same effect as in the first embodiment can be obtained, and the cost and weight can be reduced. Note that the size of the region omitted in the positive bus bar 11a and the intermediate connection bus bar 14a is determined to such an extent that an increase in wiring inductance due to the area reduction of the bus bars 11a and 14a does not have an adverse effect.
  • the four-layer bus bar 10 according to the first embodiment is modified.
  • the four-layer bus bar according to other embodiments 2 to 6 may be modified in the same manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Rectifiers (AREA)

Abstract

コンデンサ直列回路(CA)の正極と電力変換部(QA)の正極とを結線する2枚の正極側ブスバー(11、12)と、コンデンサ直列回路(CA)の負極と電力変換部(QA)の負極とを結線する負極側ブスバー(13)と、コンデンサ直列回路(CA)内の2つの平滑コンデンサ(CF1、CF2)を直列接続する中間接続用ブスバー(14)との4枚のブスバー(11~14)を絶縁層(15)を介して密接に積層して4層ブスバー(10)を構成する。そして、2枚の正極側ブスバー(11、12)は隣接せずに並列接続され、その内の1枚の正極側ブスバー(11)と負極側ブスバー(13)とが隣接配置されて、コンデンサ直列回路(CA)と電力変換部(QA)とを接続する配線構造の直流配線インダクタンスが低減される。

Description

電力変換装置
 この発明は、電力変換装置の配線構造に関するものである。
 従来の電力変換装置では、直流電源回路の直流電圧を平滑するコンデンサ直列回路と、平滑された直流電圧を半導体スイッチング素子により交流電圧に変換する電力変換部を備え、コンデンサ直列回路の正極と前記電力変換部の正極とを接続する正極側ブスバーと、前記コンデンサ直列回路の負極と前記電力変換部の負極とを接続する負極側ブスバーと、第1の平滑コンデンサと第2の平滑コンデンサとを直列接続する中間接続用ブスバーとを備える。そして、すべての前記ブスバーの外形をほぼ同一形状に形成すると共に、前記中間接続用ブスバーを挟んで、前記正極側ブスバー、中間接続用ブスバー及び負極側ブスバーを積層することにより、3層構造とし、隣接するブスバー同士の電流の流れを対向させて直流配線インダクタンスを減少させ、半導体スイッチング素子のスパイク電圧を低減させることが可能な構成のものがある(例えば、特許文献1参照)。
特開2004-153951号公報
 このような電力変換装置にあっては、3層構造で正極側ブスバーと負極側ブスバーとの間に中間接続用ブスバーを挟んでいるため、コンデンサ直列回路、電力変換部の正極同士を結ぶ正極側ブスバーと、負極同士を結ぶ負極側ブスバーとの対向距離が離れてしまう。このため、インダクタンスの低減効果が充分に得られないと言う問題点があった。
 この発明は、上記のような問題点を解消するために成されたものであって、直流配線インダクタンスの低減を促進できる電力変換装置を得ることを目的としている。
 この発明に係る電力変換装置は、第1平滑コンデンサと第2平滑コンデンサとが直列接続されて成るコンデンサ直列回路と、複数の半導体スイッチング素子を備えて上記コンデンサ直列回路の直流電力と交流電力との間で電力変換する電力変換部とを備える。また、この電力変換装置は、上記コンデンサ直列回路の正極と上記電力変換部の正極とを結線する第1結線と、上記コンデンサ直列回路の負極と上記電力変換部の負極とを結線する第2結線と、上記第1平滑コンデンサと上記第2平滑コンデンサとを直列接続する第3結線とを備える。そして、上記第1、第2結線の一方は、2枚のブスバーが隣接することなく並列接続されて成り、上記第1、第2結線の他方は、並列接続された上記2枚のブスバー内の1枚と隣接するように配置された1枚のブスバーから成り、上記第3結線は1枚のブスバーから成り、計4枚の上記ブスバーが絶縁層を介して密接に積層されて積層ブスバーが構成される。
 この発明に係る電力変換装置は、以上のように構成されるため、電力変換装置の直流配線インダクタンスを大幅に低減できる。これにより半導体スイッチング素子の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子の劣化を防止できる。
この発明の実施の形態1による電力変換装置の構成を示す側面図である。 図1に示す電力変換装置の平面図である。 この発明の実施の形態1による電力変換装置の等価回路図である。 この発明の実施の形態2による電力変換装置の構成を示す側面図である。 この発明の実施の形態2による電力変換装置の等価回路図である。 この発明の実施の形態3による電力変換装置の構成を示す側面図である。 この発明の実施の形態3による電力変換装置の等価回路図である。 この発明の実施の形態4による電力変換装置の構成を示す側面図である。 この発明の実施の形態4による電力変換装置の等価回路図である。 この発明の実施の形態5による電力変換装置の構成を示す側面図である。 この発明の実施の形態5による電力変換装置の等価回路図である。 この発明の実施の形態6による電力変換装置の構成を示す側面図である。 この発明の実施の形態6による電力変換装置の等価回路図である。 この発明の実施の形態7による電力変換装置の構成を示す側面図である。
実施の形態1.
 以下、この発明の実施の形態1による電力変換装置を図1~図3に基づいて以下に説明する。図1は、この発明の実施の形態1による電力変換装置の構成を示す側面図であり、図2は、この電力変換装置の平面図である。また電力変換装置の等価回路図を図3に示す。
 図に示すように、電力変換装置は、コンデンサ直列回路CAと電力変換部QAと積層ブスバーとしての4層ブスバー10とを備える。
 コンデンサ直列回路CAは、第1平滑コンデンサとしての平滑コンデンサCF1と、第2平滑コンデンサとしての平滑コンデンサCF2とを直列接続して構成され、正極CP、負極CNを備える。電力変換部QAは、例えばIGBTモジュールから成る2つの半導体スイッチング素子Q1、Q2を接続して構成され、正極QP、負極QNおよび出力端子QACを備えて2レベルの交流電圧を出力する。なお、電力変換部QAは、この場合、コンデンサ直列回路CAの直流電力を交流電力に変換するものとして説明するが、交流電力を直流電力に変換するものであっても良い。
 4層ブスバー10は、2枚の正極側ブスバー11、12と、1枚の負極側ブスバー13と、1枚の中間接続用ブスバー14との4枚のブスバー11~14を、各ブスバー間にそれぞれ絶縁層15を配して密接に積層して構成される。また、この4枚のブスバー11~14の外形は、ほぼ同一形状に形成される。
 2枚の正極側ブスバー11、12は、1層目と4層目に配置されて並列接続され、コンデンサ直列回路CAの正極CPと電力変換部QAの正極QPとを結線する第1結線16を構成する。負極側ブスバー13は3層目に配置され、コンデンサ直列回路CAの負極CNと電力変換部QAの負極QNとを結線する第2結線となる。中間接続用ブスバー14は2層目に配置されて、平滑コンデンサCF1(の負極)と平滑コンデンサCF2(の正極)とを直列に接続する第3結線となる。
 このように、2枚の正極側ブスバー11、12は、負極側ブスバー13と中間接続用ブスバー14とを間に挟んで配置されている。
 また、4層ブスバー10の長手方向の第1側(図中左側)にコンデンサ直列回路CAが、上記積層ブスバーの長手方向の第2側に電力変換部QAが接続される。そして、コンデンサ直列回路CAの正極CP側の平滑コンデンサCF1は、負極CN側の平滑コンデンサCF2よりも電力変換部QAから遠方に配置される。このため、コンデンサ直列回路CAの正極CPと正極側ブスバー11、12との接続点A、平滑コンデンサCF1と中間接続用ブスバー14との接続点B、平滑コンデンサCF2と中間接続用ブスバー14との接続点Cは、4層ブスバー10の長手方向の第1側端から第2側に向かい、接続点A、接続点B、接続点Cの順に配置される。
 図3に、正極側ブスバー11のインダクタンスL11、正極側ブスバー12のインダクタンスL12、負極側ブスバー13のインダクタンスL13、中間接続用ブスバー14のインダクタンスL14および、各ブスバー11~14に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー12と負極側ブスバー13とが隣接して、しかも電流の流れる方向が対向する。また、正極側ブスバー11と中間接続用ブスバー14とが隣接して、しかも電流の流れる方向が対向する。
 このように隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。
 またブスバー11~14の外形をほぼ同一形状に形成しているため、4層ブスバー10を形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、この実施の形態では、負極側ブスバー13を3層目、中間接続用ブスバー14を2層目に配置するものとしたが、負極側ブスバー13を2層目、中間接続用ブスバー14を3層目に配置するものとしても良く、同様の効果を有する。
実施の形態2.
 次に、この発明の実施の形態2による電力変換装置を図4、図5に基づいて以下に説明する。図4は、この発明の実施の形態2による電力変換装置の構成を示す側面図であり、この電力変換装置の等価回路図を図5に示す。なお、この電力変換装置の平面図は上記実施の形態1の図2と同様である。
 この実施の形態2では、第1結線16を構成する2枚の正極側ブスバー11、12が2層目と4層目に配置され、第2結線の負極側ブスバー13が3層目、第3結線の中間接続用ブスバー14が1層目に配置されて、積層ブスバーとしての4層ブスバー10aを構成する。即ち、2枚の正極側ブスバー11、12は、負極側ブスバー13を間に挟んで配置され、その外側に中間接続用ブスバー14が配置されている。その他の構成は上記実施の形態1と同様である。
 図5に、正極側ブスバー11のインダクタンスL11、正極側ブスバー12のインダクタンスL12、負極側ブスバー13のインダクタンスL13、中間接続用ブスバー14のインダクタンスL14および、各ブスバー11~14に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー12と負極側ブスバー13とが隣接して、しかも電流の流れる方向が対向する。また、正極側ブスバー11と中間接続用ブスバー14とが隣接して、しかも電流の流れる方向が対向する。
 この実施の形態2においても、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、上記実施の形態1と同様に、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。またブスバー11~14の外形をほぼ同一形状に形成しているため、4層ブスバー10aを形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、正極側ブスバー11、12を1層目と3層目に配置して、その間の2層目に負極側ブスバー13を配置し、中間接続用ブスバー14を4層目に配置するものとしても良く、同様の効果を有する。
実施の形態3.
 次に、この発明の実施の形態3による電力変換装置を図6、図7に基づいて以下に説明する。図6は、この発明の実施の形態3による電力変換装置の構成を示す側面図であり、この電力変換装置の等価回路図を図7に示す。なお、この電力変換装置の平面図は上記実施の形態1の図2と同様である。
 この実施の形態3では、第1結線16を構成する2枚の正極側ブスバー11、12が1層目と3層目に配置され、第2結線の負極側ブスバー13が4層目、第3結線の中間接続用ブスバー14が2層目に配置されて、積層ブスバーとしての4層ブスバー10bを構成する。即ち、2枚の正極側ブスバー11、12は、中間接続用ブスバー14を間に挟んで配置され、その外側に負極側ブスバー13が配置されている。その他の構成は上記実施の形態1と同様である。
 図7に、正極側ブスバー11のインダクタンスL11、正極側ブスバー12のインダクタンスL12、負極側ブスバー13のインダクタンスL13、中間接続用ブスバー14のインダクタンスL14および、各ブスバー11~14に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー12と負極側ブスバー13とが隣接して、しかも電流の流れる方向が対向する。また、正極側ブスバー11と中間接続用ブスバー14とが隣接して、しかも電流の流れる方向が対向する。
 この実施の形態3においても、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、上記実施の形態1と同様に、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。またブスバー11~14の外形をほぼ同一形状に形成しているため、4層ブスバー10bを形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、正極側ブスバー11、12を2層目と4層目に配置して、その間の3層目に中間接続用ブスバー14を配置し、負極側ブスバー13を1層目に配置するものとしても良く、同様の効果を有する。
実施の形態4.
 次に、この発明の実施の形態4による電力変換装置を図8、図9に基づいて以下に説明する。図8は、この発明の実施の形態4による電力変換装置の構成を示す側面図であり、この電力変換装置の等価回路図を図9に示す。
 電力変換装置は、コンデンサ直列回路CAと電力変換部QAと積層ブスバーとしての4層ブスバー20とを備える。コンデンサ直列回路CAおよび電力変換部QAは上記実施の形態1と同様である。
 4層ブスバー20は、1枚の正極側ブスバー21と、2枚の負極側ブスバー22、23と、1枚の中間接続用ブスバー24との4枚のブスバー21~24を、各ブスバー間にそれぞれ絶縁層15を配して密接に積層して構成される。また、この4枚のブスバー21~24の外形は、ほぼ同一形状に形成される。
 2枚の負極側ブスバー22、23は、1層目と4層目に配置されて並列接続され、コンデンサ直列回路CAの負極CNと電力変換部QAの負極QNとを結線する第2結線26を構成する。正極側ブスバー21は2層目に配置され、コンデンサ直列回路CAの正極CPと電力変換部QAの正極QPとを結線する第1結線となる。中間接続用ブスバー24は3層目に配置されて、平滑コンデンサCF1(の負極)と平滑コンデンサCF2(の正極)とを直列に接続する第3結線となる。
 このように、2枚の負極側ブスバー22、23は、正極側ブスバー21と中間接続用ブスバー24とを間に挟んで配置されている。
 また、4層ブスバー10の長手方向の第1側(図中左側)にコンデンサ直列回路CAが、上記積層ブスバーの長手方向の第2側に電力変換部QAが接続される。そして、コンデンサ直列回路CAの負極CN側の平滑コンデンサCF2は、正極CP側の平滑コンデンサCF1よりも電力変換部QAから遠方に配置される。このため、コンデンサ直列回路CAの負極CNと負極側ブスバー22、23との接続点D、平滑コンデンサCF2と中間接続用ブスバー24との接続点C、平滑コンデンサCF1と中間接続用ブスバー24との接続点Bは、4層ブスバー20の長手方向の第1側端から第2側に向かい、接続点D、接続点C、接続点Bの順に配置される。
 図9に、正極側ブスバー21のインダクタンスL21、負極側ブスバー22のインダクタンスL22、負極側ブスバー23のインダクタンスL23、中間接続用ブスバー24のインダクタンスL24および、各ブスバー21~24に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー21と負極側ブスバー22とが隣接して、しかも電流の流れる方向が対向する。また、負極側ブスバー23と中間接続用ブスバー24とが隣接して、しかも電流の流れる方向が対向する。
 この実施の形態4においても、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、上記実施の形態1と同様に、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。またブスバー21~24の外形をほぼ同一形状に形成しているため、4層ブスバー20を形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、この実施の形態では、正極側ブスバー21を2層目、中間接続用ブスバー24を3層目に配置するものとしたが、正極側ブスバー21を3層目、中間接続用ブスバー24を2層目に配置するものとしても良く、同様の効果を有する。
実施の形態5.
 次に、この発明の実施の形態5による電力変換装置を図10、図11に基づいて以下に説明する。図10は、この発明の実施の形態5による電力変換装置の構成を示す側面図であり、この電力変換装置の等価回路図を図11に示す。
 この実施の形態5では、第2結線26を構成する2枚の負極側ブスバー22、23が1層目と3層目に配置され、第1結線の正極側ブスバー21が2層目、第3結線の中間接続用ブスバー24が4層目に配置されて、積層ブスバーとしての4層ブスバー20aを構成する。即ち、2枚の負極側ブスバー22、23は、正極側ブスバー21を間に挟んで配置され、その外側に中間接続用ブスバー24が配置されている。その他の構成は上記実施の形態4と同様である。
 図11に、正極側ブスバー21のインダクタンスL21、負極側ブスバー22のインダクタンスL22、負極側ブスバー23のインダクタンスL23、中間接続用ブスバー24のインダクタンスL24および、各ブスバー21~24に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー21と負極側ブスバー22とが隣接して、しかも電流の流れる方向が対向する。また、負極側ブスバー23と中間接続用ブスバー24とが隣接して、しかも電流の流れる方向が対向する。
 この実施の形態5においても、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、上記実施の形態1と同様に、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。またブスバー21~24の外形をほぼ同一形状に形成しているため、4層ブスバー20aを形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、負極側ブスバー22、23を2層目と4層目に配置して、その間の3層目に正極側ブスバー21を配置し、中間接続用ブスバー24を1層目に配置するものとしても良く、同様の効果を有する。
実施の形態6.
 次に、この発明の実施の形態6による電力変換装置を図12、図13に基づいて以下に説明する。図12は、この発明の実施の形態6による電力変換装置の構成を示す側面図であり、この電力変換装置の等価回路図を図13に示す。
 この実施の形態6では、第2結線26を構成する2枚の負極側ブスバー22、23が2層目と4層目に配置され、第1結線の正極側ブスバー21が1層目、第3結線の中間接続用ブスバー24が3層目に配置されて、積層ブスバーとしての4層ブスバー20bを構成する。即ち、2枚の負極側ブスバー22、23は、中間接続用ブスバー24を間に挟んで配置され、その外側に正極側ブスバー21が配置されている。その他の構成は上記実施の形態4と同様である。
 図13に、正極側ブスバー21のインダクタンスL21、負極側ブスバー22のインダクタンスL22、負極側ブスバー23のインダクタンスL23、中間接続用ブスバー24のインダクタンスL24および、各ブスバー21~24に流れる電流の向きを表す矢印を示した。
 図に示すように、正極側ブスバー21と負極側ブスバー22とが隣接して、しかも電流の流れる方向が対向する。また、負極側ブスバー23と中間接続用ブスバー24とが隣接して、しかも電流の流れる方向が対向する。
 この実施の形態6においても、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができる。このため、上記実施の形態1と同様に、電力変換部QAの半導体スイッチング素子Q1、Q2の電流遮断時に発生するスパイク電圧を抑制でき、半導体スイッチング素子Q1、Q2の劣化を防止できる。またブスバー21~24の外形をほぼ同一形状に形成しているため、4層ブスバー20bを形成する為の位置合わせが容易で製造が容易であるため、上記のような直流配線インダクタンスの低減効果を容易に実現できる。
 なお、負極側ブスバー22、23を1層目と3層目に配置して、その間の2層目に中間接続用ブスバー24を配置し、正極側ブスバー21を4層目に配置するものとしても良く、同様の効果を有する。
実施の形態7.
 上記実施の形態1~6では、4枚のブスバー11~14(21~24)の外形をほぼ同一形状に形成したが、異なる形状に形成しても良い。
 図14は、この発明の実施の形態7による電力変換装置の構成を示す側面図である。図に示すように、4層ブスバー10cは、2枚の正極側ブスバー11a、12と、1枚の負極側ブスバー13と、1枚の中間接続用ブスバー14aとの4枚のブスバー11a、12、13、14aを、各ブスバー間にそれぞれ絶縁層15を配して密接に積層して構成される。2枚の正極側ブスバー11a、12は、1層目と4層目に配置されて並列接続され、コンデンサ直列回路CAの正極CPと電力変換部QAの正極QPとを結線する第1結線16aを構成する。負極側ブスバー13は3層目に配置され、コンデンサ直列回路CAの負極CNと電力変換部QAの負極QNとを結線する第2結線となる。中間接続用ブスバー14aは2層目に配置されて、平滑コンデンサCF1(の負極)と平滑コンデンサCF2(の正極)とを直列に接続する第3結線となる。この場合、1層目に配置された正極側ブスバー11aと2層目に配置された中間接続用ブスバー14aは、他のブスバー12、13よりも短く形成されている。その他の構成は、上記実施の形態1と同様である。
 正極側ブスバー11aと中間接続用ブスバー14aとは、上記実施の形態1に比べて短くなっているが、省略された領域は、コンデンサ直列回路CAや電力変換部QAとの接続に寄与する領域ではなく、また、直流配線インダクタンスの低減に寄与する電流が流れる領域でもない。このため、隣接するブスバーで電流方向を対向させることができ、直流配線インダクタンスを打ち消し合って低減させることができ上記実施の形態1と同様の効果が得られると共に、コストおよび重量の削減が図れる。
 なお、正極側ブスバー11a、中間接続用ブスバー14aにおいて省略される領域の大きさは、各ブスバー11a、14aの面積低減による配線インダクタンスの上昇が悪影響を与えない程度に決定される。
 この実施の形態では、上記実施の形態1の4層ブスバー10を変形するものを示したが、他の実施の形態2~6による4層ブスバーを同様に変形しても良い。
 なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (8)

  1.  第1平滑コンデンサと第2平滑コンデンサとが直列接続されて成るコンデンサ直列回路と、複数の半導体スイッチング素子を備えて上記コンデンサ直列回路の直流電力と交流電力との間で電力変換する電力変換部とを備えた電力変換装置において、
     上記コンデンサ直列回路の正極と上記電力変換部の正極とを結線する第1結線と、上記コンデンサ直列回路の負極と上記電力変換部の負極とを結線する第2結線と、上記第1平滑コンデンサと上記第2平滑コンデンサとを直列接続する第3結線とを備え、
     上記第1、第2結線の一方は、2枚のブスバーが隣接することなく並列接続されて成り、上記第1、第2結線の他方は、並列接続された上記2枚のブスバー内の1枚と隣接するように配置された1枚のブスバーから成り、上記第3結線は1枚のブスバーから成り、計4枚の上記ブスバーが絶縁層を介して密接に積層されて積層ブスバーが構成される
    電力変換装置。
  2.  上記4枚のブスバーは、隣接するブスバーを流れる電流方向が対向するように配置される
    請求項1に記載の電力変換装置。
  3.  上記第1結線は上記2枚のブスバーが並列接続されて成り、該2枚のブスバーの間に、上記第2結線のブスバーと上記第3結線のブスバーとが配置される
    請求項1または請求項2に記載の電力変換装置。
  4.  上記第1結線は上記2枚のブスバーが並列接続されて成り、上記第2、第3結線の一方のブスバーは上記2枚のブスバーの間に配置され、他方のブスバーは上記2枚のブスバーの外側に配置される
    請求項1または請求項2に記載の電力変換装置。
  5.  上記第1結線は上記2枚のブスバーが並列接続されて成り、
     上記積層ブスバーの長手方向の第1側に上記コンデンサ直列回路が、上記積層ブスバーの長手方向の第2側に上記電力変換部が接続され、上記コンデンサ直列回路の正極と上記第1結線のブスバーとの接続点A、上記第1平滑コンデンサと上記第3結線のブスバーとの接続点B、および上記第2平滑コンデンサと上記第3結線のブスバーとの接続点Cは、上記積層ブスバーの上記第1側端から上記第2側に向かい、上記接続点A、上記接続点B、上記接続点Cの順に配置される
    請求項1または請求項2に記載の電力変換装置。
  6.  上記第2結線は上記2枚のブスバーが並列接続されて成り、該2枚のブスバーの間に、上記第1結線のブスバーと上記第3結線のブスバーとが配置される
    請求項1または請求項2に記載の電力変換装置。
  7.  上記第2結線は上記2枚のブスバーが並列接続されて成り、上記第1、第3結線の一方のブスバーは上記2枚のブスバーの間に配置され、他方のブスバーは上記2枚のブスバーの外側に配置される
    請求項1または請求項2に記載の電力変換装置。
  8.  上記第2結線は上記2枚のブスバーが並列接続されて成り、
     上記積層ブスバーの長手方向の第1側に上記コンデンサ直列回路が、上記積層ブスバーの長手方向の第2側に上記電力変換部が接続され、上記コンデンサ直列回路の負極と上記第2結線のブスバーとの接続点D、上記第1平滑コンデンサと上記第3結線のブスバーとの接続点B、および上記第2平滑コンデンサと上記第3結線のブスバーとの接続点Cは、上記積層ブスバーの上記第1側端から上記第2側に向かい、上記接続点D、上記接続点C、上記接続点Bの順に配置される
    請求項1または請求項2に記載の電力変換装置。
PCT/JP2014/056986 2013-06-17 2014-03-14 電力変換装置 WO2014203571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015522596A JP6022062B2 (ja) 2013-06-17 2014-03-14 電力変換装置
CN201480034228.0A CN105308846B (zh) 2013-06-17 2014-03-14 电力变换装置
US14/890,511 US9559612B2 (en) 2013-06-17 2014-03-14 Power conversion device
KR1020157035468A KR101740174B1 (ko) 2013-06-17 2014-03-14 전력 변환 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126427 2013-06-17
JP2013126427 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014203571A1 true WO2014203571A1 (ja) 2014-12-24

Family

ID=52104316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056986 WO2014203571A1 (ja) 2013-06-17 2014-03-14 電力変換装置

Country Status (5)

Country Link
US (1) US9559612B2 (ja)
JP (1) JP6022062B2 (ja)
KR (1) KR101740174B1 (ja)
CN (1) CN105308846B (ja)
WO (1) WO2014203571A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724928A (zh) * 2019-03-22 2020-09-29 中车大连电力牵引研发中心有限公司 复合母排以及功率模块
JP2022063459A (ja) * 2020-10-12 2022-04-22 東芝三菱電機産業システム株式会社 導体ユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134074B1 (ko) 2018-11-05 2020-07-14 한양대학교 산학협력단 순환 전류를 저감하는 전력 변환 장치 및 이의 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289346A (ja) * 1990-04-03 1991-12-19 Mitsubishi Electric Corp インバータ装置の導体配置方法
JP2001332688A (ja) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd 電力配線構造及び半導体装置
JP2006019367A (ja) * 2004-06-30 2006-01-19 Nippon Chemicon Corp 接続体、電子部品の接続構造、及び電子部品装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436953A (en) * 1981-03-31 1984-03-13 Rogers Corporation Bus bar assembly with discrete capacitor elements
JPH087829Y2 (ja) 1990-09-05 1996-03-04 株式会社東芝 電力変換装置
US5422440A (en) * 1993-06-08 1995-06-06 Rem Technologies, Inc. Low inductance bus bar arrangement for high power inverters
JP3424532B2 (ja) * 1997-11-25 2003-07-07 株式会社日立製作所 電力変換装置
US6359331B1 (en) * 1997-12-23 2002-03-19 Ford Global Technologies, Inc. High power switching module
US5995380A (en) * 1998-05-12 1999-11-30 Lear Automotive Dearborn, Inc. Electric junction box for an automotive vehicle
JP3642012B2 (ja) * 2000-07-21 2005-04-27 株式会社日立製作所 半導体装置,電力変換装置及び自動車
JP2004153951A (ja) 2002-10-31 2004-05-27 Fuji Electric Fa Components & Systems Co Ltd 半導体電力変換回路
SE525572C2 (sv) * 2002-12-23 2005-03-15 Danaher Motion Stockholm Ab Motordrivenhet av växelriktartyp
US7248483B2 (en) * 2004-08-19 2007-07-24 Xantrex Technology, Inc. High power density insulated metal substrate based power converter assembly with very low BUS impedance
JP4567029B2 (ja) * 2007-06-22 2010-10-20 日立オートモティブシステムズ株式会社 電力変換装置
JP5642086B2 (ja) * 2009-11-17 2014-12-17 三菱電機株式会社 3レベル電力変換装置
US9270199B2 (en) * 2011-02-10 2016-02-23 Mitsubishi Electric Corporation Power conversion apparatus with a laminated bus bar comprising an exposed heat radiating portion
FR2985597B1 (fr) * 2012-01-05 2014-10-24 Valeo Equip Electr Moteur Dispositif d'assemblage de capacites pour convertisseur electronique
CN103368359B (zh) * 2012-04-11 2016-04-13 台达电子工业股份有限公司 变流器功率单元及其母线排
US9445532B2 (en) * 2013-05-09 2016-09-13 Ford Global Technologies, Llc Integrated electrical and thermal solution for inverter DC-link capacitor packaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289346A (ja) * 1990-04-03 1991-12-19 Mitsubishi Electric Corp インバータ装置の導体配置方法
JP2001332688A (ja) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd 電力配線構造及び半導体装置
JP2006019367A (ja) * 2004-06-30 2006-01-19 Nippon Chemicon Corp 接続体、電子部品の接続構造、及び電子部品装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724928A (zh) * 2019-03-22 2020-09-29 中车大连电力牵引研发中心有限公司 复合母排以及功率模块
JP2022063459A (ja) * 2020-10-12 2022-04-22 東芝三菱電機産業システム株式会社 導体ユニット
JP7489888B2 (ja) 2020-10-12 2024-05-24 株式会社Tmeic 導体ユニット

Also Published As

Publication number Publication date
KR20160012162A (ko) 2016-02-02
KR101740174B1 (ko) 2017-05-25
JP6022062B2 (ja) 2016-11-09
JPWO2014203571A1 (ja) 2017-02-23
US9559612B2 (en) 2017-01-31
US20160111976A1 (en) 2016-04-21
CN105308846B (zh) 2018-01-09
CN105308846A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5655846B2 (ja) 電力変換装置
JP2021505106A (ja) コンデンサ
CN103986309A (zh) 直流电容模块及其叠层母排结构
WO2013069415A1 (ja) 電力変換装置及び電力変換装置における導体の配置方法
CN102882385A (zh) 用于三电平功率变换器的叠层母排结构以及功率变换器
JP2011181976A5 (ja)
JP2014233193A (ja) 電力変換装置
JP6455523B2 (ja) コンデンサ回路、コンデンサモジュールおよび電力変換システム
JP6022062B2 (ja) 電力変換装置
CN104081649A (zh) 对于双端子hvdc连接的ac/dc多单元功率转换器
CN111630616A (zh) 用于电容器组件的非常低的电感汇流排
CN111865100A (zh) 电力转换装置
WO2015041127A1 (ja) コンデンサモジュール、および、電力変換装置
US10541625B2 (en) Power conversion device
WO2021074981A1 (ja) Dc/dcコンバータ装置
JP2006100507A (ja) コンデンサ接続構造
JP5353757B2 (ja) 積層コンデンサ
US12003183B2 (en) Power conversion device and power conversion unit
JP3015663B2 (ja) 半導体電力変換装置
JP6206090B2 (ja) 3レベル電力変換装置
JP5795219B2 (ja) 整流回路モジュール
JP2017112682A (ja) 3レベル電力変換装置
JPWO2022230037A5 (ja)
JP6786943B2 (ja) コンデンサ装置
JP6264212B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034228.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522596

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890511

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157035468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814523

Country of ref document: EP

Kind code of ref document: A1