WO2014203568A1 - スポットサイズ変換光導波路 - Google Patents

スポットサイズ変換光導波路 Download PDF

Info

Publication number
WO2014203568A1
WO2014203568A1 PCT/JP2014/056076 JP2014056076W WO2014203568A1 WO 2014203568 A1 WO2014203568 A1 WO 2014203568A1 JP 2014056076 W JP2014056076 W JP 2014056076W WO 2014203568 A1 WO2014203568 A1 WO 2014203568A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
spot size
size conversion
taper
Prior art date
Application number
PCT/JP2014/056076
Other languages
English (en)
French (fr)
Inventor
慎太郎 山▲崎▼
奈良 一孝
正典 高橋
泰芳 内田
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2015522591A priority Critical patent/JP6346177B2/ja
Publication of WO2014203568A1 publication Critical patent/WO2014203568A1/ja
Priority to US14/961,248 priority patent/US9417388B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Definitions

  • the present invention relates to a spot size conversion optical waveguide.
  • An optical fiber circuit such as an optical fiber and a planar lightwave circuit (PLC) is an optical waveguide device that forms a refractive index difference between a core portion and a cladding portion to confine and propagate light in the core portion.
  • PLC planar lightwave circuit
  • the relative refractive index difference ⁇ for optical confinement is often different between the optical fiber and the optical waveguide circuit. Therefore, the spot sizes of light propagating through the core part are often different from each other.
  • the relative refractive index difference ⁇ may be made higher than the relative refractive index difference ⁇ of the optical fiber for downsizing and the like.
  • a spot size conversion optical waveguide is disclosed that is arranged at a connection portion between an optical fiber and an optical waveguide circuit to convert the spot size of light (for example, a patent).
  • a spot size conversion optical waveguide is also used when optical waveguide circuits having different light spot sizes are connected.
  • the spot size conversion optical waveguide is required to reduce the connection loss between optical waveguide elements to be optically connected.
  • the present invention has been made in view of the above, and an object thereof is to provide a spot size conversion optical waveguide capable of reducing connection loss.
  • a spot size conversion optical waveguide includes a cladding part, and a core part disposed in the cladding part and having a higher refractive index than the cladding part.
  • the core part is formed continuously with the first straight part, the first straight part extending in a predetermined direction, the width and height being substantially constant in the extending direction, and the width toward the terminal part And a first core portion having a first taper portion whose height decreases, a straight portion covering portion formed so as to cover the first straight portion of the first core portion, and the straight portion covering portion.
  • a taper portion covering portion formed to cover the first taper portion of the first core portion and having a width and height that decreases along the shape of the first taper portion, and a width and height toward the extending direction.
  • Second to expand Has a over path portion the light output end face is formed at the end portion, and having a second core portion has a lower refractive index than the first core portion.
  • the relative refractive index difference of the first core portion relative to the cladding portion is 2.5% to 12%, and the second core portion relative to the cladding portion.
  • the relative refractive index difference is 0.3% to 1.8%.
  • the spot size conversion optical waveguide according to the present invention is characterized in that, in the above-mentioned invention, the light output end face of the second core portion is a rectangular shape having a side length of 8 ⁇ m to 14 ⁇ m.
  • the width and height of the tapered portion covering portion of the second core portion are larger than the width and height of the first tapered portion of the first core portion, It has a width and height for propagating light of a predetermined wavelength in a single mode.
  • the second core portion has a side portion extending in the width direction of the straight portion covering portion, and the width of the side portion is greater than 0 ⁇ m and 2 ⁇ m or less. It is characterized by being.
  • the second core portion includes a connecting portion that connects the tapered portion covering portion and the second tapered portion, and the width of the connecting portion is:
  • the taper portion is wider by 0 ⁇ m to 2 ⁇ m than the width of the covering portion.
  • the second core portion has a connecting portion that connects the taper portion covering portion and the second taper portion, and the taper of the second core portion.
  • the end portion of the portion covering portion forms a step with respect to the connecting portion, and the height of the step is greater than 0 ⁇ m.
  • the separation distance from the terminal end portion of the first taper portion to the second taper portion is greater than ⁇ 100 ⁇ m with the stretching direction as a positive direction.
  • the spot size conversion optical waveguide according to the present invention is characterized in that, in the above invention, the length of the first taper portion is 300 ⁇ m or more.
  • the spot size conversion optical waveguide according to the present invention is characterized in that, in the above invention, the length of the second taper portion is 200 ⁇ m or more.
  • the second core portion is formed continuously with the second taper portion, and the width and height are substantially constant in the extending direction, and the end portion It further has a second straight portion on which the light output end face is formed.
  • FIG. 1 is a schematic perspective view of a spot size conversion optical waveguide according to the first embodiment.
  • FIG. 2 is a schematic side view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 3 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 4A is a view showing a cut surface of the first core portion and the second core portion in the cross section along the line AA shown in FIG.
  • FIG. 4B is a view showing a cut surface of the first core portion and the second core portion in the cross section taken along line BB shown in FIG.
  • FIG. 4C is a diagram showing the cut surfaces of the first core portion and the second core portion in the cross section along the line CC shown in FIG.
  • FIG. 5 is a schematic perspective view of a spot size conversion optical waveguide according to the second embodiment.
  • FIG. 6 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 7A is a view showing the cut surfaces of the first core portion and the second core portion in the cross section along the line DD shown in FIG.
  • FIG. 7B is a view showing the cut surfaces of the first core portion and the second core portion in the cross section taken along the line EE shown in FIG.
  • FIG. 7C is a view showing the cut surfaces of the first core portion and the second core portion in the cross section taken along line FF shown in FIG.
  • FIG. 8 is a schematic perspective view of a spot size conversion optical waveguide according to the third embodiment.
  • FIG. 7A is a view showing the cut surfaces of the first core portion and the second core portion in the cross section along the line DD shown in FIG.
  • FIG. 7B is a view showing the cut surfaces of the first core portion and the second core portion in the cross section taken along the line
  • FIG. 9 is a schematic side view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 10 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 11A is a diagram showing a cut surface of the first core portion and the second core portion in the section GG shown in FIG.
  • FIG. 11B is a diagram showing the cut surfaces of the first core portion and the second core portion in the HH line cross section shown in FIG.
  • FIG. 11C is a view showing the cut surfaces of the first core portion and the second core portion in the section taken along the line II shown in FIG.
  • FIG. 12 is a diagram illustrating the relationship between the length of one side and the loss on the light output end face of the second core portion.
  • FIG. 13 is a diagram illustrating the relationship between the distance between the tapered portions and the loss.
  • FIG. 14 is a diagram illustrating the relationship between the height of the step and the loss when ⁇ of the second core portion is 0.8%.
  • FIG. 15 is a diagram illustrating the relationship between the height of the step and the loss when ⁇ of the second core portion is 1.55%.
  • FIG. 16 is a diagram illustrating the relationship between the length of the first taper portion and the loss.
  • FIG. 17 is a diagram illustrating the relationship between the length of the second taper portion and the loss.
  • FIG. 18 is a diagram illustrating the relationship between the length of the overlapping portion and the loss.
  • FIG. 19A is a diagram for explaining an example of the method for manufacturing the spot size conversion optical waveguide according to the first embodiment.
  • FIG. 19A is a diagram for explaining an example of the method for manufacturing the spot size conversion optical waveguide according to the first embodiment.
  • FIG. 19B is a diagram for explaining an example of the manufacturing method of the spot size conversion optical waveguide according to the first embodiment.
  • FIG. 19C is a diagram for explaining an example of the method for manufacturing the spot size conversion optical waveguide according to the first embodiment.
  • FIG. 20 is a diagram for explaining an example of the method for manufacturing the spot size conversion optical waveguide according to the first embodiment.
  • FIG. 1 is a schematic perspective view of a spot size conversion optical waveguide according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic side view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 3 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • the spot size conversion optical waveguide 100 according to the first embodiment includes a substrate 10, a clad portion 20 formed on the substrate 10, and a core disposed in the clad portion 20. Part 30. The core part 30 extends in the direction D1.
  • the substrate 10 is made of, for example, silicon.
  • the clad part 20 is made of, for example, quartz glass to which an oxide such as boron (B) or phosphorus (P) is added.
  • the core part 30 is made of quartz glass having a refractive index higher than that of the clad part 20.
  • the core unit 30 includes a first core unit 31 and a second core unit 32 having a refractive index lower than that of the first core unit 31.
  • the configuration of the first core unit 31 and the second core unit 32 will be specifically described.
  • the 1st core part 31 has the 1st straight part 31a and the 1st taper part 31b.
  • the first straight portion 31a extends in the direction D1 (extension direction), has a square cross section in a plane perpendicular to the extension direction, for example, and has a substantially constant width and height in the extension direction.
  • the first taper portion 31b is formed continuously with the first straight portion 31a and has a square cross section, for example, but the width and height are reduced in a tapered shape toward the end portion 31ba.
  • the first taper portion 31b has a length L13 (see FIG. 3). Note that the width and the height do not necessarily have to be reduced at the same time.
  • the width may be reduced after the height has been reduced first.
  • the first core portion 31 is an oxide such as zirconium (Zr), hafnium (Hf), titanium (Ti), tantalum (Ta), niobium (Nb), or aluminum (Al), which is a material that increases the refractive index, for example. It consists of quartz glass to which is added.
  • the relative refractive index difference of the first core portion 31 with respect to the cladding portion 20 is, for example, 2.5% to 12%, and more preferably 4% to 12%.
  • the second core portion 32 connects the straight portion covering portion 32a, the tapered portion covering portion 32b, the second tapered portion 32d, the second straight portion 32e, the tapered portion covering portion 32b, and the second tapered portion 32d. And a connecting portion 32c. Furthermore, the 2nd core part 32 has side part 32aa extended in the width direction of the straight part coating
  • the second core portion 32 is made of, for example, quartz glass to which an oxide such as germanium (Ge) is added, which is a material that increases the refractive index.
  • the relative refractive index difference between the second core portion 32 and the clad portion 20 is, for example, 0.3% to 1.8%.
  • the straight part covering part 32a is formed so as to cover the first straight part 31a of the first core part 31 from above.
  • the straight portion covering portion 32a gradually decreases in height toward the side opposite to the direction D1.
  • the taper portion covering portion 32b is formed to be continuous with the straight portion covering portion 32a and cover the first taper portion 31b of the first core portion 31, and has a width and height along the shape of the first taper portion 31b. The taper is reduced.
  • the tapered portion covering portion 32b has a length that is at least the length L13 of the first tapered portion 31b (see FIG. 3).
  • An end portion 32ba corresponding to the end portion 31ba of the first taper portion 31b is formed at the end portion of the taper portion covering portion 32b.
  • the second tapered portion 32d has a width and height that increase in a tapered shape in the direction D1.
  • the second taper portion 32d has a length L14 (see FIG. 3).
  • the distance from the terminal portion 31ba of the first tapered portion 31b to the second tapered portion 32d is a distance L15.
  • the second straight portion 32e is formed continuously with the second taper portion 32d, has a cross section in a plane perpendicular to the direction D1, for example, is square, and has a substantially constant width and height in the direction D1, at the end.
  • a light output end face 32ea is formed.
  • the second straight portion 32e has a length L11 (see FIG. 2).
  • the light output end face 32ea is on the same plane as the end face 100a of the spot size conversion optical waveguide 100.
  • the cross section of the second straight portion 32e and the light output end face 32ea are, for example, a square whose one side is a length L12 (see FIG. 1).
  • the second straight portion 32e is not always necessary, but it is preferable to provide the second straight portion 32e in order to stably obtain the desired size of the light output end face 32ea.
  • the end surface formed at the end of the second taper portion 32d is located on the same plane as the end surface 100a of the spot size conversion optical waveguide 100, and becomes the light output end surface.
  • the connecting portion 32c extends to the side portion of the tapered portion covering portion 32b and the second tapered portion 32d side. In the spot size conversion optical waveguide 100 according to the first embodiment, the connecting portion 32c is formed so as to connect the side portion 32aa and the second tapered portion 32d.
  • FIG. 4A, FIG. 4B, and FIG. 4C respectively show the cut surfaces of the first core portion 31 and the second core portion 32 in the AA line cross section, the BB line cross section, and the CC line cross section shown in FIG. FIG.
  • the end portion of the first straight portion 31a appears in the first core portion 31.
  • coated part 32a formed so that the 1st straight part 31a might be covered, and the side part 32aa which spreads in the width direction of the straight part coating
  • the first straight portion 31a has a square cross section with one side having a length L16.
  • the side portion 32aa has a width W13.
  • the first taper portion 31b of the first core portion 31 is reduced in square width and height toward the end portion 31ba. ing.
  • the tapered portion covering portion 32b of the second core portion 32 covers the first tapered portion 31b, and the width and height are reduced along the shape of the first tapered portion 31b.
  • FIG. 4B in the cross section taken along the line BB, the end portion 32ba of the tapered portion covering portion 32b and the connecting portion 32c appear in the second core portion 32.
  • the first core portion 31 is indicated by a broken line because the end portion 31ba of the first taper portion 31b is located on the AA line cross section side of the BB line cross section.
  • the end portion 31ba has a width W11.
  • the end portion 32ba has a width W12.
  • the end portion 32ba forms a step H1 with respect to the connecting portion 32c.
  • the connecting portion 32c is wider than the tapered portion covering portion 32b by a width W14.
  • the value of the width W14 increases from the cross section along the line AA toward the cross section along the line BB.
  • the first core portion 31 does not exist from the BB line cross section to the CC line cross section, and the connecting portion 32c of the second core portion 32 has a rectangular cross section. Furthermore, it extends in the direction D1. As shown in FIG. 4C, only the connecting portion 32c of the second core portion 32 appears in the CC cross section.
  • the spot size conversion optical waveguide 100 an optical waveguide circuit is connected to the first straight portion 31 a side of the first core portion 31. Further, as shown in FIG. 2, the optical fiber OF is disposed so that the end face of the optical fiber OF faces the light output end face 32ea on the same plane as the end face 100a of the spot size conversion optical waveguide 100.
  • the optical fiber OF has a core part OF1 and a cladding part OF2.
  • the optical fiber OF is, for example, ITU-T (International Telecommunication Union) A standard single-mode optical fiber that is used in the field of optical communication and conforms to 652.
  • an optical signal having a wavelength included in the range of 1520 nm to 1620 nm, which is a wavelength band used for optical communication is input from the optical waveguide circuit side to the first core unit 31.
  • the length L16 which is the length of one side, and a relative refractive index difference are set so that the 1st core part 31 may be optically connected with an optical waveguide circuit with low loss. Therefore, the loss when the signal light is input from the optical waveguide circuit to the spot size conversion optical waveguide 100 is small.
  • the first core part 31 first propagates the optical signal input in the first straight part 31a in the direction D1.
  • the length L16 which is the length of one side of the first straight portion 31a, is set to such a length that an input optical signal having a predetermined wavelength can be propagated in a single mode.
  • the length L16 is, for example, 1.5 ⁇ m to 3.0 ⁇ m.
  • the length L16 is preferably set according to the wavelength of the optical signal and the relative refractive index difference of the first core portion 31.
  • the first core unit 31 then propagates the optical signal input at the first taper unit 31b.
  • the first taper portion 31b is reduced in width and height. Therefore, the propagating light field gradually spreads to the tapered portion covering portion 32b of the second core portion 32 during propagation through the first tapered portion 31b.
  • the width and height of the tapered portion covering portion 32 b are larger than the width and height of the first tapered portion 31 b of the first core portion 31.
  • the width and height of the tapered portion covering portion 32b are such that the portion including the first tapered portion 31b and the tapered portion covering portion 32b of the core portion 30 propagates signal light in a single mode. It is preferable.
  • the relative refractive index difference of the first core portion 31 is 4% to 12%
  • the relative refractive index difference of the second core portion 32 is 0.3% to 1.8%
  • the wavelength of the signal light is 1520 nm to 1620 nm.
  • the width and height of the tapered portion covering portion 32b are preferably larger than the width and height of the first tapered portion 31b and are, for example, 10 ⁇ m or less.
  • the first taper part 31b does not exist in the direction D1 from the terminal part 31ba, but the signal light propagating through the first taper part 31b is obtained by setting the length L13 of the first taper part 31b to an appropriate value. Is transferred to the connecting portion 32c of the second core portion 32 with low loss via the tapered portion covering portion 32b.
  • the width W14 in which the connecting portion 32c extends with respect to the tapered portion covering portion 32b is in the range of 0 ⁇ m to 2 ⁇ m, it is possible to suppress the deformation of the spot size when the signal light power is shifted. The power of signal light can be transferred with lower loss.
  • the connecting portion 32c propagates the signal light propagating through the first tapered portion 31b to the second tapered portion 32d. Thereafter, since the width and height of the second taper portion 32d increase in the direction D1, the signal light propagates to the second straight portion 32e while increasing the spot size.
  • the second straight part 32e propagates the signal light whose spot size is enlarged to an appropriate size and outputs it from the light output end face 32ea.
  • the spot size of the signal light output from the optical output end face 32ea is converted to a spot size that can be optically coupled to the optical fiber OF with low loss. Therefore, the loss when the signal light is input from the spot size conversion optical waveguide 100 to the optical fiber OF is low.
  • the spot size conversion optical waveguide 100 can optically couple the signal light input from the optical waveguide circuit to the optical fiber OF with low connection loss.
  • the spot size conversion optical waveguide 100 optically couples signal light input from the optical waveguide circuit to the optical fiber OF with a low connection loss even when the first core portion 31 has such a high relative refractive index difference. This is particularly effective.
  • FIG. 5 is a schematic perspective view of a spot size conversion optical waveguide according to the second embodiment of the present invention.
  • FIG. 6 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • the spot size conversion optical waveguide 200 according to the second embodiment includes a substrate 10, a cladding portion 40 formed on the substrate 10, and a core portion disposed in the cladding portion 40. 50.
  • the core portion 50 extends in the direction D2.
  • the substrate 10 is the same as the substrate 10 of the spot size conversion optical waveguide 100 according to the first embodiment.
  • the clad portion 40 is made of quartz glass to which an oxide such as boron (B) or phosphorus (P) is added, like the clad portion 20 of the spot size conversion optical waveguide 100.
  • the core part 50 is made of quartz glass having a refractive index higher than that of the clad part 40, similarly to the core part 30 of the spot size conversion optical waveguide 100.
  • the core unit 50 includes a first core unit 51 and a second core unit 52 having a refractive index lower than that of the first core unit 51.
  • the first core part 51 has a first straight part 51a and a first taper part 51b, like the first core part 31 of the spot size conversion optical waveguide 100.
  • the first straight portion 51a extends in the direction D2 (stretching direction), has a square cross section in a plane perpendicular to the stretching direction, for example, and has a substantially constant width and height in the stretching direction.
  • the first tapered portion 51b is formed continuously with the first straight portion 51a and has a square cross section, for example, but the width and height are reduced in a tapered shape toward the end portion 51ba.
  • the first taper portion 51b has a length L23 (see FIG. 6).
  • the first core portion 51 is made of quartz-based glass to which the same material that increases the refractive index as the first core portion 31 is added.
  • the relative refractive index difference of the first core portion 51 with respect to the cladding portion 40 is, for example, 2.5% to 12%, and more preferably 4% to 12%.
  • the second core portion 52 has a straight portion covering portion 52a, a tapered portion covering portion 52b, and a width and height that increase in the direction D2. It has the 2 taper part 52d, the 2nd straight part 52e, and the connection part 52c which connects the taper part coating
  • the second core portion 52 is not formed with a portion corresponding to the side portion 32aa of the second core portion 32.
  • the second core portion 52 is made of quartz glass to which a material that increases the refractive index similar to the second core portion 32 is added.
  • the relative refractive index difference between the second core portion 52 and the cladding portion 40 is, for example, 0.3% to 1.8%.
  • the straight portion covering portion 52a is formed so as to cover the first straight portion 51a of the first core portion 51 from above.
  • the straight portion covering portion 52a has a constant height along the direction D2, but as with the straight portion covering portion 32a in the first embodiment, the height gradually decreases toward the opposite side to the direction D2. Also good.
  • the tapered portion covering portion 52b is formed so as to be continuous with the straight portion covering portion 52a and cover the first tapered portion 51b of the first core portion 51, and has a width and height along the shape of the first tapered portion 51b. The taper is reduced.
  • the tapered portion covering portion 52b has a length that is at least the length L23 of the first tapered portion 51b (see FIG. 6).
  • An end portion 52ba corresponding to the end portion 51ba of the first taper portion 51b is formed at the end portion of the taper portion covering portion 52b.
  • the second taper portion 52d has a width and height that increase in a taper shape in the direction D2.
  • the second tapered portion 52d has a length L24 (see FIG. 6).
  • the distance from the terminal portion 51ba of the first taper portion 51b to the second taper portion 52d is a distance L25.
  • the second straight portion 52e is formed continuously with the second taper portion 52d, has a square cross section in a plane perpendicular to the direction D2, for example, and has a substantially constant width and height in the direction D2.
  • a light output end face 52ea is formed.
  • the second straight portion 52e has a length L21 (see FIG. 6).
  • the light output end face 52ea is on the same plane as the end face 200a of the spot size conversion optical waveguide 200.
  • the light output end face 52ea is, for example, a square having a side L22 (see FIG. 5).
  • the connecting portion 52c extends to the side of the tapered portion covering portion 52b and the second tapered portion 52d side.
  • FIG. 7A, FIG. 7B, and FIG. 7C show the cut surfaces of the first core portion 51 and the second core portion 52 in the DD line cross section, the EE line cross section, and the FF line cross section shown in FIG. 5, respectively.
  • FIG. 7A in the cross section taken along the line DD, the end portion of the first straight portion 51a appears with respect to the first core portion 51.
  • coated part 52a formed so that the 1st straight part 51a might be covered appears.
  • the first straight portion 51a has a square cross section with one side having a length L26.
  • the first taper portion 51b of the first core portion 51 is reduced in square width and height toward the end portion 51ba. ing. Further, the taper portion covering portion 52b of the second core portion 52 is reduced in width and height along the shape of the first taper portion 51b. As shown in FIG. 7B, in the cross section taken along the line EE, the end portion 52ba of the tapered portion covering portion 52b and the connecting portion 52c appear in the second core portion 52.
  • the first core portion 51 is indicated by a broken line because the end portion 51ba of the first taper portion 51b is located closer to the DD line cross section than the EE line cross section.
  • the end portion 51ba has a width W21.
  • the end portion 52ba has a width W22.
  • the end portion 52ba forms a step H2 with respect to the connecting portion 52c.
  • the connecting portion 52c is wider than the tapered portion covering portion 52b by a width W24.
  • the value of the width W24 increases from the DD line cross section toward the EE line cross section.
  • the width W24 is preferably 0 ⁇ m to 2 ⁇ m.
  • the first core portion 51 does not exist from the EE line cross section to the FF line cross section, and the connecting portion 52c of the second core portion 52 has a rectangular cross section. Furthermore, it extends in the direction D2. As shown in FIG. 7C, only the connecting portion 52c of the second core portion 52 appears in the cross section taken along the line FF.
  • the spot size conversion optical waveguide 200 has an optical waveguide circuit connected to the first straight portion 51a side of the first core portion 51.
  • the optical fiber is arranged so that the end face faces the light output end face 52ea on the same plane as the end face 200a of the spot size conversion optical waveguide 200.
  • FIG. 8 is a schematic perspective view of a spot size conversion optical waveguide according to the third embodiment of the present invention.
  • FIG. 9 is a schematic side view of the spot size conversion optical waveguide shown in FIG.
  • FIG. 10 is a schematic plan view of the spot size conversion optical waveguide shown in FIG.
  • the spot size conversion optical waveguide 300 according to the third embodiment includes a substrate 10, a clad portion 60 formed on the substrate 10, and a core portion arranged in the clad portion 60. 70.
  • the core portion 70 extends in the direction D3.
  • the substrate 10 is the same as the substrate 10 of the spot size conversion optical waveguide 100 according to the first embodiment.
  • the clad part 60 is made of quartz glass to which an oxide such as boron (B) or phosphorus (P) is added, like the clad part 20 of the spot size conversion optical waveguide 100.
  • the core part 70 is made of silica-based glass whose refractive index is set higher than that of the cladding part 60, similarly to the core part 30 of the spot size conversion optical waveguide 100.
  • the core part 70 includes a first core part 71 and a second core part 72 having a refractive index lower than that of the first core part 71.
  • the first core portion 71 includes a first straight portion 71a and a first taper portion 71b, like the first core portion 31 of the spot size conversion optical waveguide 100.
  • the first straight portion 71a extends in the direction D3 (extension direction), has a square cross section in a plane perpendicular to the extension direction, for example, and has a substantially constant width and height in the extension direction.
  • the first taper portion 71b is formed continuously with the first straight portion 71a and has a square cross section, for example, but the width and height are reduced toward the end portion 71ba in a tapered shape.
  • the first taper portion 71b has a length L33 (see FIG. 10).
  • the first core portion 71 is made of quartz glass to which a material that increases the refractive index similar to that of the first core portion 31 is added.
  • the relative refractive index difference of the first core portion 71 with respect to the cladding portion 60 is, for example, 2.5% to 12%, and more preferably 4% to 12%.
  • the second core portion 72 has a straight portion covering portion 72a, a tapered portion covering portion 72b, and a width and height that increase in the direction D3.
  • the 2nd core part 72 has side part 72aa which spreads in the width direction of the straight part coating
  • the second core portion 72 is made of quartz glass to which a material that increases the refractive index similar to the second core portion 32 is added.
  • the relative refractive index difference between the second core portion 72 and the cladding portion 60 is, for example, 0.3% to 1.8%.
  • the straight portion covering portion 72a is formed so as to cover the first straight portion 71a of the first core portion 71 from above.
  • the straight portion covering portion 72a gradually decreases in height and width toward the opposite side to the direction D3.
  • the second termination portion 72ab is located at a position where the height and width coincide with the first straight portion 71a of the first core portion 71 and the straight portion covering portion 72a of the second core portion 72 covering the first core portion 71 is interrupted. (See FIG. 9).
  • the length L37 shown in FIG. 9 is the length of the overlapping portion that is the length from the terminal end portion 71ba of the first core portion 71 to the second terminal end portion 72ab.
  • the position at which the straight portion covering portion 72a is interrupted may be different between the upper surface and the side surface of the first straight portion 71a, but the length L37 of the overlapping portion is the straight portion covering portion 72a on the upper surface of the first straight portion 71a. Is defined by the length from the second end portion 72ab, which is a position where the point is interrupted, to the end portion 71ba of the first core portion 71.
  • the tapered portion covering portion 72b is formed so as to be continuous with the straight portion covering portion 72a and cover the first tapered portion 71b of the first core portion 71, and the width is tapered along the shape of the first tapered portion 71b. It is shrinking.
  • the tapered portion covering portion 72b has a length that is at least the length L33 of the first tapered portion 71b (see FIG. 10).
  • An end portion 72ba corresponding to the end portion 71ba of the first taper portion 71b is formed at the end portion of the taper portion covering portion 72b.
  • the second taper portion 72d has a width and height that increase in a taper shape in the direction D3.
  • the height H32 of the second taper portion 72d at the position of the end portion 71ba of the first taper portion 71b is higher than the height H31 of the end portion 71ba of the first taper portion 71b.
  • the second tapered portion 72d has a length L34 (see FIG. 10).
  • the terminal end portion 72ba of the taper portion covering portion 72b and the end portion on the taper portion covering portion 72b side of the second taper portion 72d are formed so as to substantially coincide with each other.
  • the second straight portion 72e is formed continuously with the second taper portion 72d, has a cross-section in a plane perpendicular to the direction D3, for example, a square, and has a substantially constant width and height in the direction D3.
  • a light output end face 72ea is formed.
  • the second straight portion 72e has a length L31 (see FIG. 10).
  • the light output end face 72ea is on the same plane as the end face 300a of the spot size conversion optical waveguide 300.
  • the light output end face 72ea is, for example, a square having a side L32 (see FIG. 8).
  • the connecting portion 72c extends to the side portion of the tapered portion covering portion 72b.
  • the connecting portion 72c is formed so as to connect the side portion 72aa and the second tapered portion 72d.
  • FIG. 11A, FIG. 11B, and FIG. 11C respectively show the cut surfaces of the first core portion 71 and the second core portion 72 in the GG line cross section, the HH line cross section, and the II line cross section shown in FIG. FIG.
  • the end of the first straight portion 71a appears for the first core portion 71 in the cross section taken along the line GG.
  • coated part 72a formed so that the 1st straight part 71a might be covered, and the side part 72aa which spreads in the width direction of the straight part coating
  • the first straight portion 71a has a square cross section with one side having a length L36.
  • the side portion 72aa has a width W33.
  • the first taper portion 71b of the first core portion 71 is reduced in square width and height toward the end portion 71ba. ing. Further, the width of the tapered portion covering portion 72b of the second core portion 72 is reduced along the shape of the first tapered portion 71b. As shown in FIG. 11B, in the cross section taken along the line HH, the end portion 72ba of the tapered portion covering portion 72b and the connecting portion 72c appear in the second core portion 72.
  • the first core portion 72 is indicated by a broken line because the end portion 71ba of the first taper portion 71b is located on the GG line cross section side of the HH line cross section.
  • the end portion 71ba has a width W31.
  • the end portion 72ba has a width W32.
  • the end portion 72ba forms a step H3 with respect to the connecting portion 72c.
  • the connecting portion 72c is wider than the tapered portion covering portion 72b by a width W34.
  • the value of the width W34 increases from the GG line cross section toward the HH line cross section.
  • the width W34 is preferably 0 ⁇ m to 2 ⁇ m.
  • the width of the side portion 72aa and the connecting portion 72c may be adjusted so that the width W33 becomes zero and only the straight portion covering portion 72a appears in the GG line cross section.
  • the side portion 72aa has a shape in which the height increases in a taper shape from the second end portion 72ab in the direction D3 and the width decreases in a taper shape.
  • the spot size conversion optical waveguide 300 according to the third embodiment also has an optical waveguide circuit connected to the first straight portion 71a side of the first core portion 71.
  • the optical fiber OF having the core part OF1 and the clad part OF2 is disposed so that the end face faces the light output end face 72ea on the same plane as the end face 300a of the spot size conversion optical waveguide 300, as in the first embodiment. Is done.
  • the signal light propagates through the core portion 70 while the signal light propagates through the core portion 70 to the tapered portion covering portion 72b. Then, the spot size is enlarged by the second taper portion 72d and output from the light output end face 72ea of the second straight portion 72e, and is optically coupled to the optical fiber OF with low connection loss.
  • FIG. 12 is a diagram showing the relationship between the length L12 of one side of the light output end face 32ea of the second core portion 32 and the loss when the spot size conversion optical waveguide 100 and the standard single mode optical fiber are connected. . 12 to 18, the loss is a sum of the propagation loss in the spot size conversion optical waveguide 100 and the connection loss between the spot size conversion optical waveguide 100 and the standard single mode optical fiber.
  • FIG. 12 shows the calculation result when the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is set to 0.8% or 1.55%.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 31 is 5%
  • the length L16 of one side of the first straight portion 31a is, for example, 3 ⁇ m, and is a value that allows light having a wavelength of 1550 nm to propagate in a single mode.
  • Data points are plotted at intervals of 0.5 ⁇ m.
  • the loss when connected to a standard single mode optical fiber can be suppressed, for example, about 0.6 dB or less. Can do.
  • FIG. 12 shows the case where the relative refractive index difference ⁇ is 0.8% and 1.55%, but the relative refractive index difference ⁇ is in the range of 0.3% to 1.8%. It is preferable to set the length L12 to 8 ⁇ m to 14 ⁇ m because loss when connected to a standard single mode optical fiber can be suppressed.
  • the range of 8 ⁇ m to 14 ⁇ m is the length L22 of one side of the light output end face 52ea of the spot size conversion optical waveguide 200 or the length L32 of one side of the light output end face 72ea of the spot size conversion optical waveguide 300. Even if it is applied, it is a preferable range.
  • a distance L15 which is a distance (distance between the taper portions) from the terminal end portion 31ba of the first taper portion 31b to the second taper portion 32d when the spot size conversion optical waveguide 100 is optically connected to the standard single mode optical fiber. A preferable value of will be described.
  • FIG. 13 is a diagram showing the relationship between the distance L15, which is the distance between the tapered portions, and the loss when the spot size conversion optical waveguide 100 and the standard single mode optical fiber are connected.
  • the distance between the taper portions on the horizontal axis takes a positive value when the second taper portion 32d is separated from the terminal portion 31ba in the direction D1, and is opposite to the direction D1. The case where it is separated in the direction is taken as a negative value.
  • FIG. 13 shows the calculation result when the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is set to 1.55%.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 31 is 5%
  • the length L16 of one side of the first straight portion 31a is, for example, 3 ⁇ m, and is a value that allows light having a wavelength of 1550 nm to propagate in a single mode.
  • the length L13 of the first taper portion 31b is 500 ⁇ m.
  • the length L14 of the second taper portion 32d is 1000 ⁇ m.
  • the length L12 of one side of the light output end face 32ea is 12 ⁇ m. Data points are plotted at 100 ⁇ m intervals.
  • the distance L15 which is the distance between the tapered portions, is ⁇ 100 ⁇ m or more, the loss when connected to the standard single mode optical fiber is drastically reduced, and more preferably 0 ⁇ m or more. Furthermore, 500 ⁇ m or less is sufficient. It is preferable to set the distance L15 to about 0 ⁇ m because both a reduction in loss and a reduction in the size of the spot size conversion optical waveguide 100 in the direction D1 can be achieved. Note that this range of ⁇ 100 ⁇ m or more, 0 ⁇ m or more, and even 500 ⁇ m or less is a preferable range even when applied to the distance L25 of the spot size conversion optical waveguide 200.
  • 14 and 15 are diagrams showing the relationship between the height of the step H1 and the loss when the spot size conversion optical waveguide 100 and the standard single mode optical fiber are connected. 14 and 15 show calculation results when the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is set to 0.8% and 1.55%, respectively.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 31 is 5%, the length L16 of one side of the first straight portion 31a is, for example, 3 ⁇ m, and is a value that allows light having a wavelength of 1550 nm to propagate in a single mode.
  • the length L13 of the first taper portion 31b is 500 ⁇ m.
  • the length L14 of the second taper portion 32d is 1000 ⁇ m.
  • the length L12 of one side of the light output end face 32ea is 12 ⁇ m.
  • the distance L15 is 0 ⁇ m.
  • the width W11 of the terminal end portion 31ba of the first taper portion 31b is set to 0.01 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, or 2.5 ⁇ m. Data points are plotted at intervals of 0.2 ⁇ m.
  • the loss can be reduced by reducing the height of the step H1. Moreover, if the terminal width is narrowed, the loss can be reduced. Further, in the case of FIG. 15 where the relative refractive index difference ⁇ is 1.55%, the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is 0.8%.
  • the loss is low.
  • the height of the step H1 is preferably in the range of greater than 0 ⁇ m and 2 ⁇ m or less, and the width W11 is preferably 1 ⁇ m or less. Moreover, it is more preferable that the cross-sectional area represented by the product of the value of the step H1 and the value of the width W11 is 0.5 ⁇ m or more.
  • the range of the step H1 and the width W11 is a preferable range even when applied to the step H2 and the width W21 of the spot size conversion optical waveguide 200 or the step H3 and the width W31 of the spot size conversion optical waveguide 300.
  • FIG. 16 is a diagram showing the relationship between the length L13 (taper length) and the loss when the spot size conversion optical waveguide 100 and the standard single mode optical fiber are connected.
  • FIG. 16 shows a calculation result when the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is set to 0.8% or 1.55%.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 31 is 5%
  • the length L16 of one side of the first straight portion 31a is 3 ⁇ m
  • the light having a wavelength of 1550 nm propagates in a single mode.
  • the length L14 of the second taper portion 32d is 1000 ⁇ m.
  • the length L12 of one side of the light output end face 32ea is 12 ⁇ m.
  • the distance L15 is 0 ⁇ m. Data points are plotted at 100 ⁇ m intervals.
  • the length L13 is preferably 300 ⁇ m or more, more preferably 400 ⁇ m or more, the loss when connected to a standard single mode optical fiber can be suppressed, for example, about 0.6 dB or less. it can.
  • FIG. 16 shows the case where the relative refractive index difference ⁇ is 0.8% and 1.55%, but the relative refractive index difference ⁇ is in the range of 0.3% to 1.8%.
  • the length L13 is preferably 300 ⁇ m or more, more preferably 400 ⁇ m or more, so that loss when connected to a standard single mode optical fiber can be suppressed.
  • the range of 300 ⁇ m or more or 400 ⁇ m or more applies to the length L23 of the first taper portion 51b of the spot size conversion optical waveguide 200 or the length L33 of the first taper portion 71b of the spot size conversion optical waveguide 300. However, it is a preferable range.
  • FIG. 17 is a diagram showing the relationship between the length L14 (taper length) and the loss when the spot size conversion optical waveguide 100 and the standard single mode optical fiber are connected. Note that FIG. 17 shows a calculation result when the relative refractive index difference ⁇ of the second core portion 32 with respect to the cladding portion 20 is set to 0.8% or 1.55%.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 31 is 5%, the length L16 of one side of the first straight portion 31a is 3 ⁇ m, and the light having a wavelength of 1550 nm propagates in a single mode.
  • the length L13 of the first taper portion 31b is 500 ⁇ m.
  • the length L12 of one side of the light output end face 32ea is 12 ⁇ m.
  • the distance L15 is 0 ⁇ m. Data points are plotted at 100 ⁇ m intervals.
  • the length L14 is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, loss when connected to a standard single mode optical fiber can be suppressed, for example, about 0.6 dB or less. it can.
  • FIG. 17 shows the case where the relative refractive index difference ⁇ is 0.8% and 1.55%, but the relative refractive index difference ⁇ is in the range of 0.3% to 1.8%.
  • the length L14 is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, so that loss when connected to the standard single mode optical fiber can be suppressed.
  • the range of 200 ⁇ m or more, or 300 ⁇ m or more is applied to the length L24 of the second taper portion 52d of the spot size conversion optical waveguide 200 or the length L34 of the second taper portion 72d of the spot size conversion optical waveguide 300. However, it is a preferable range.
  • the length L37 of the overlapping portion is shifted from the design value by shifting the fixed position of the shadow mask in the longitudinal direction of the waveguide. It is because there is a case to do.
  • FIG. 18 is a diagram showing the relationship between the length L37 of the overlapping portion and the loss when the spot size conversion optical waveguide 300 and the standard single mode optical fiber are connected.
  • FIG. 18 shows a calculation result when the length L34 (taper length) of the second taper portion 72d is set to 500 ⁇ m or 1000 ⁇ m.
  • FIG. 18 shows a calculation result when the relative refractive index difference ⁇ of the second core portion 72 with respect to the cladding portion 60 is set to 1.55%.
  • the wavelength of light is 1550 nm.
  • the relative refractive index difference of the first core portion 71 is 5%, the length L36 of one side of the first straight portion 71a is 3 ⁇ m, and the light with a wavelength of 1550 nm propagates in a single mode.
  • the length L33 of the first taper portion 71b is 500 ⁇ m.
  • the length L32 of one side of the light output end face 72ea is 12 ⁇ m. Data points are plotted at intervals of 100 ⁇ m when the length L34 is 500 ⁇ m, and at intervals of 200 ⁇ m when the length L34 is 1000 ⁇ m.
  • the loss when connected to the standard single mode optical fiber can be suppressed. It can be set to about 5 dB or less. That is, low loss can be maintained even when the length L37 of the overlapping portion is shifted within the range of 100 ⁇ m.
  • the length L34 is 1000 ⁇ m and the length L37 of the overlapping portion is preferably 300 ⁇ m or more and 900 ⁇ m or less
  • the loss when connected to a standard single mode optical fiber can be suppressed, for example, about 0.5 dB or less. can do. That is, even when the overlapping portion length L37 is shifted within the range of 600 ⁇ m, low loss can be maintained.
  • the length L34 of the second taper portion 72d is preferably 500 ⁇ m or more, and more preferably 1000 ⁇ m or more.
  • the range of 500 ⁇ m or more, or 1000 ⁇ m or more is applied to the length L14 of the second taper portion 32d of the spot size conversion optical waveguide 100 or the length L24 of the second taper portion 52d of the spot size conversion optical waveguide 200.
  • FIG. 19A to FIG. 19C and FIG. 20 are diagrams for explaining an example of the manufacturing method of the spot size conversion optical waveguide according to the first embodiment.
  • quartz glass fine particles are deposited on the substrate 10 by a known flame deposition (FHD) method, and this is heated to convert the glass fine particles into a transparent glass.
  • FHD flame deposition
  • a quartz glass fine particle layer 80 to be the first core portion 31 is deposited on the lower layer 20a by plasma CVD (Chemical Vapor Deposition).
  • a mask M made of a metal or a photoresist is formed on the quartz glass fine particle layer 80.
  • the mask M has a tapered portion T1 whose thickness is gradually reduced.
  • the mask M having the tapered portion T1 is formed as follows. First, a resist is applied on the quartz glass fine particle layer 80. Next, when exposing the resist, multiple exposures are performed while gradually changing the exposure range. For example, FIG. 19A shows exposure ranges S1, S2, S3, S4,. The exposure ranges S1, S2, S3, S4,... Are exposure ranges of the first time, the second time, the third time, the fourth time,. Note that the exposure amount per time is smaller than the appropriate exposure amount unique to the resist to be used, and the exposure per time is underexposure.
  • etching gas EG such as a fluorine-based gas (for example, CF 4 ) and the mask M as an etching mask.
  • a quartz-based glass fine particle layer 80A having a tapered portion T2 to which the shape of the mask M having the tapered portion T1 is transferred is formed.
  • the silica-based glass fine particle layer 80A is patterned into the shape of the first core portion 31 by photolithography and etching.
  • a shadow mask SM is disposed on the lower layer 20a on which the silica glass fine particle layer 80A is formed.
  • a material gas MG for depositing quartz glass fine particles is supplied from above the shadow mask SM by FHD, plasma CVD, sputtering, or the like.
  • the source gas MG is blocked in the region covered with the shadow mask SM, and reaches the lower layer 20a as it is in the region not covered with the shadow mask SM.
  • the region not covered with the shadow mask SM is a region immediately below a hole formed in the shadow mask SM or a region on the outer periphery of the shadow mask SM.
  • the source gas MG wraps around the lower side of the shadow mask SM and reaches the lower layer 20a. It decreases with increasing distance from the periphery.
  • the thickness is constant in the region not covered with the shadow mask SM, but the taper portion T3 where the thickness becomes tapered toward the region covered with the shadow mask SM.
  • a silica-based glass fine particle layer 90 having the following is formed.
  • the silica glass fine particle layer 90 is formed so that the end portion of the silica glass fine particle layer 90 covers the silica glass fine particle layer 80A.
  • the shape of the quartz glass fine particle layer 90 can be adjusted by setting the height of the shadow mask SM from the lower layer 20a and the position of the peripheral edge of the shadow mask SM. Thereafter, after removing the shadow mask SM, the quartz glass fine particle layer 90 is patterned into the shape of the second core portion 32 by photolithography and etching.
  • the width W13 of the side portion 32aa is larger than 0 ⁇ m, and is preferably set according to an assumed patterning error, and may be 2 ⁇ m or less.
  • quartz glass fine particles for forming the remaining portion of the clad portion 20 are again deposited by the FHD method. Thereafter, the entire substrate is heated to convert each silica-based fine glass into transparent glass, and the clad part 20 and the core part 30 are completed. Thereafter, the substrate is cut into a desired shape to complete the spot size conversion optical waveguide 100.
  • the end surface 100a of the spot size conversion optical waveguide 100 is formed by cutting at this time, an error may occur in the cutting position.
  • the area of the end surface of the second taper portion 32d exposed to the end surface 100a varies depending on the cutting position error.
  • manufacturing variations may occur in the spot size of the signal light output from the end face 100 a of the spot size conversion optical waveguide 100.
  • the second straight portion 32e having the length L11 is present in the second core portion 32, even if there is a cutting error.
  • the area of the light output end face 32ea of the second straight portion 32e exposed on the end face 100a is less likely to vary, and it is preferable because signal light having a stable spot size can be output.
  • the width of the dicer is about 100 ⁇ m
  • the length L11 is preferably 200 ⁇ m or more.
  • the material added to increase the refractive index to the first core portion is a material that takes longer to form the glass fine particle layer than when Ge is added, or Ge is added. If the material is difficult to etch compared to the case, it is difficult to achieve a low connection loss by using a spot size conversion optical waveguide consisting only of the first core part and processing the shape of the first core part. is there.
  • the spot size conversion optical waveguide according to the above embodiment forms a second core portion having a predetermined shape to which a material such as Ge or the like that is easy to form or etch and is relatively easy to process is formed, and has a low connection loss. Is realized.
  • the present invention is particularly effective when a material (for example, Zr) that makes it difficult to process the shape of the first core portion is added.
  • the cross section of the first core part, the cross section of the second straight part of the second core part, and the light output end face are square, but should be set according to the shape of the object to be optically connected.
  • a rectangular shape other than a square or a trapezoidal shape may be used.
  • the spot size conversion optical waveguide according to the present invention is suitable mainly for use in the field of optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 スポットサイズ変換光導波路100は、クラッド部20と、当該クラッド部内に配置され、当該クラッド部よりも屈折率が高いコア部30と、を備える。前記コア部は、第1コア部31と、当該第1コア部よりも屈折率が低い第2コア部32と、を有する。前記第1コア部は、所定の方向に延伸し、幅および高さが延伸方向において略一定である第1ストレート部31aと、当該第1ストレート部と連続して形成され、終端部に向かって幅および高さが縮小する第1テーパ部31bとを有する。前記第2コア部は、前記第1ストレート部を覆うように形成されたストレート部被覆部32aと、当該ストレート部被覆部と連続して前記第1テーパ部を覆うように形成され、前記第1テーパ部の形状に沿って幅および高さが縮小するテーパ部被覆部32bと、延伸方向に向かって幅および高さが拡大する第2テーパ部32dと、を有する。前記スポットサイズ変換光導波路は、接続損失を小さくできるものである。

Description

スポットサイズ変換光導波路
 本発明は、スポットサイズ変換光導波路に関するものである。
 光ファイバ、および、平面光波回路(PLC)等の光導波路回路は、いずれもコア部とクラッド部との間に屈折率差を形成してコア部内に光を閉じ込めて伝搬させる光導波路素子である。しかしながら、光ファイバおよび光導波路回路とでは、光閉じ込めのための比屈折率差Δが異なる場合が多い。そのため、コア部を伝搬する光のスポットサイズが互いに異なる場合が多い。特に、光導波路回路の場合、小型化等のために比屈折率差Δを光ファイバの比屈折率差Δよりも高くしている場合がある。光ファイバと光導波路回路とで比屈折率差Δが異なる場合、伝搬する光のスポットサイズが互いに異なる。この場合、光ファイバと光導波路回路とをそのまま光学的に接続すると、スポットサイズの不整合のために大きな接続損失が生じる。このような大きな接続損失の発生を抑制するために、光ファイバと光導波路回路との接続箇所に配置して、光のスポットサイズを変換するスポットサイズ変換光導波路が開示されている(たとえば、特許文献1、2、非特許文献1参照)。このようなスポットサイズ変換光導波路は、光のスポットサイズが互いに異なる光導波路回路間を接続する場合にも使用される。
 スポットサイズ変換光導波路には、光学的に接続すべき光導波路素子間の接続損失を小さくすることが要求されている。
 本発明は、上記に鑑みてなされたものであって、接続損失を小さくすることができるスポットサイズ変換光導波路を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るスポットサイズ変換光導波路は、クラッド部と、前記クラッド部内に配置され、前記クラッド部よりも屈折率が高いコア部と、を備え、前記コア部は、所定の方向に延伸し、幅および高さが延伸方向において略一定である第1ストレート部と、前記第1ストレート部と連続して形成され、終端部に向かって幅および高さが縮小する第1テーパ部とを有する第1コア部と、前記第1コア部の第1ストレート部を覆うように形成されたストレート部被覆部と、前記ストレート部被覆部と連続して前記第1コア部の第1テーパ部を覆うように形成され、前記第1テーパ部の形状に沿って幅および高さが縮小するテーパ部被覆部と、前記延伸方向に向かって幅および高さが拡大する第2テーパ部と、を有し、端部に光出力端面が形成され、前記第1コア部よりも屈折率が低い第2コア部と、を有することを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第1コア部の前記クラッド部に対する比屈折率差は2.5%~12%であり、前記第2コア部の前記クラッド部に対する比屈折率差は0.3%~1.8%であることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部の光出力端面は1辺の長さが8μm~14μmの矩形状であることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部のテーパ部被覆部の幅および高さは、前記第1コア部の第1テーパ部の幅および高さよりも大きく、所定の波長の光をシングルモードで伝搬する幅および高さであることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部は、前記ストレート部被覆部の幅方向に広がる側部を有し、該側部の幅は0μmより大きく2μm以下であることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部は、前記テーパ部被覆部と前記第2テーパ部とを連結する連結部を有し、該連結部の幅は、前記テーパ部被覆部の幅より0μm~2μmだけ広いことを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部は、前記テーパ部被覆部と前記第2テーパ部とを連結する連結部を有し、前記第2コア部のテーパ部被覆部の終端部は前記連結部に対して段差を形成しており、該段差の高さは0μmより大きいことを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第1テーパ部の終端部から前記第2テーパ部までの離間距離は、前記延伸方向を正の方向として、-100μmより大きいことを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第1テーパ部の長さは300μm以上であることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2テーパ部の長さは200μm以上であることを特徴とする。
 本発明に係るスポットサイズ変換光導波路は、上記発明において、前記第2コア部は、前記第2テーパ部と連続して形成され、前記延伸方向において幅および高さが略一定であり、端部に前記光出力端面が形成された第2ストレート部をさらに有することを特徴とする。
 本発明によれば、接続損失を小さくすることができるスポットサイズ変換光導波路を提供できるという効果を奏する。
図1は、実施の形態1に係るスポットサイズ変換光導波路の模式的な斜視図である。 図2は、図1に示すスポットサイズ変換光導波路の模式的な側面図である。 図3は、図1に示すスポットサイズ変換光導波路の模式的な平面図である。 図4Aは、図1に示すA-A線断面における第1コア部と第2コア部の断表面を示す図である。 図4Bは、図1に示すB-B線断面における第1コア部と第2コア部の断表面を示す図である。 図4Cは、図1に示すC-C線断面における第1コア部と第2コア部の断表面を示す図である。 図5は、実施の形態2に係るスポットサイズ変換光導波路の模式的な斜視図である。 図6は、図5に示すスポットサイズ変換光導波路の模式的な平面図である。 図7Aは、図5に示すD-D線断面における第1コア部と第2コア部の断表面を示す図である。 図7Bは、図5に示すE-E線断面における第1コア部と第2コア部の断表面を示す図である。 図7Cは、図5に示すF-F線断面における第1コア部と第2コア部の断表面を示す図である。 図8は、実施の形態3に係るスポットサイズ変換光導波路の模式的な斜視図である。 図9は、図8に示すスポットサイズ変換光導波路の模式的な側面図である。 図10は、図8に示すスポットサイズ変換光導波路の模式的な平面図である。 図11Aは、図8に示すG-G線断面における第1コア部と第2コア部の断表面を示す図である。 図11Bは、図8に示すH-H線断面における第1コア部と第2コア部の断表面を示す図である。 図11Cは、図8に示すI-I線断面における第1コア部と第2コア部の断表面を示す図である。 図12は、第2コア部の光出力端面における1辺の長さと損失との関係を示す図である。 図13は、テーパ部間距離と損失との関係を示す図である。 図14は、第2コア部のΔが0.8%の場合の段差の高さと損失との関係を示す図である。 図15は、第2コア部のΔが1.55%の場合の段差の高さと損失との関係を示す図である。 図16は、第1テーパ部の長さと損失との関係を示す図である。 図17は、第2テーパ部の長さと損失との関係を示す図である。 図18は、重なり部分の長さと損失との関係を示す図である。 図19Aは、実施の形態1に係るスポットサイズ変換光導波路の製造方法の一例を説明する図である。 図19Bは、実施の形態1に係るスポットサイズ変換光導波路の製造方法の一例を説明する図である。 図19Cは、実施の形態1に係るスポットサイズ変換光導波路の製造方法の一例を説明する図である。 図20は、実施の形態1に係るスポットサイズ変換光導波路の製造方法の一例を説明する図である。
 以下に、図面を参照して本発明に係るスポットサイズ変換光導波路の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
 図1は、本発明の実施の形態1に係るスポットサイズ変換光導波路の模式的な斜視図である。図2は、図1に示すスポットサイズ変換光導波路の模式的な側面図である。図3は、図1に示すスポットサイズ変換光導波路の模式的な平面図である。図1~図3に示すように、本実施の形態1に係るスポットサイズ変換光導波路100は、基板10と、基板10上に形成されたクラッド部20と、クラッド部20内に配置されたコア部30とを備えている。コア部30は方向D1の方向に延伸している。
 基板10は、たとえばシリコンからなる。クラッド部20は、たとえばボロン(B)またはリン(P)などの酸化物を添加した石英系ガラスからなる。
 コア部30は、クラッド部20よりも屈折率が高く設定された石英系ガラスからなる。コア部30は、第1コア部31と、第1コア部31よりも屈折率が低い第2コア部32とを有している。
 第1コア部31および第2コア部32の構成について具体的に説明する。第1コア部31は、第1ストレート部31aと、第1テーパ部31bとを有する。第1ストレート部31aは、方向D1の方向(延伸方向)に延伸しており、延伸方向と垂直な面における断面がたとえば正方形であり、かつその幅および高さが延伸方向において略一定である。第1テーパ部31bは、第1ストレート部31aと連続して形成され、断面がたとえば正方形であるが、終端部31baに向かって幅および高さがテーパ状に縮小している。第1テーパ部31bは長さL13を有する(図3参照)。なお、幅と高さは必ずしも同時に縮小する必要はなく、例えば先に高さが縮小した後に幅が縮小していてもよい。ただし、小型化の観点からは、幅と高さが同時に縮小することが好ましい。第1コア部31は、たとえば屈折率を高める材料である、ジルコニウム(Zr)、ハフニウム(Hf)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、またはアルミニウム(Al)などの酸化物を添加した石英系ガラスからなる。第1コア部31の、クラッド部20に対する比屈折率差はたとえば2.5%~12%であり、より好ましくは4%~12%である。
 第2コア部32は、ストレート部被覆部32aと、テーパ部被覆部32bと、第2テーパ部32dと、第2ストレート部32eと、テーパ部被覆部32bと第2テーパ部32dとを連結する連結部32cとを有する。さらに、第2コア部32は、ストレート部被覆部32aの幅方向に広がる側部32aaを有する。第2コア部32は、たとえば屈折率を高める材料である、ゲルマニウム(Ge)などの酸化物を添加した石英系ガラスからなる。第2コア部32のクラッド部20に対する比屈折率差はたとえば0.3%~1.8%である。
 ストレート部被覆部32aは、第1コア部31の第1ストレート部31aを上側から覆うように形成されている。ストレート部被覆部32aは方向D1と反対側に向かって高さが徐々に低くなっている。テーパ部被覆部32bは、ストレート部被覆部32aと連続し、かつ第1コア部31の第1テーパ部31bを覆うように形成され、第1テーパ部31bの形状に沿って幅および高さがテーパ状に縮小している。テーパ部被覆部32bは、少なくとも第1テーパ部31bの長さL13以上の長さを有する(図3参照)。テーパ部被覆部32bの終端部には、第1テーパ部31bの終端部31baと対応した終端部32baが形成されている。第2テーパ部32dは、方向D1に向かって幅および高さがテーパ状に拡大している。第2テーパ部32dは長さL14を有する(図3参照)。第1テーパ部31bの終端部31baから第2テーパ部32dまでは距離L15だけ離間している。
 第2ストレート部32eは、第2テーパ部32dと連続して形成され、方向D1に垂直な面における断面がたとえば正方形であり、かつ幅および高さが方向D1において略一定であり、端部に光出力端面32eaが形成されている。第2ストレート部32eは長さL11を有する(図2参照)。光出力端面32eaはスポットサイズ変換光導波路100の端面100aと同一面上にある。第2ストレート部32eの断面および光出力端面32eaはたとえば1辺の長さが長さL12(図1参照)である正方形である。なお、第2ストレート部32eは、必ずしも必要ないが、所望の光出力端面32eaの大きさを安定して得るためには、第2ストレート部32eを設けることが好ましい。第2ストレート部32eが無い場合は、第2テーパ部32dの端部に形成された端面が、スポットサイズ変換光導波路100の端面100aと同一面上に位置し、光出力端面となる。連結部32cは、テーパ部被覆部32bの側部および第2テーパ部32d側に広がっている。本実施の形態1に係るスポットサイズ変換光導波路100では、連結部32cは側部32aaと第2テーパ部32dとの間も連結するように形成されている。
 図4A、図4B、図4Cは、それぞれ、図1に示すA-A線断面、B-B線断面、C-C線断面における第1コア部31と第2コア部32の断表面を示す図である。図4Aに示すように、A-A線断面では、第1コア部31については第1ストレート部31aの端部が表れている。第2コア部32については第1ストレート部31aを覆うように形成されたストレート部被覆部32aと、ストレート部被覆部32aの幅方向に広がる側部32aaが表れている。第1ストレート部31aは1辺の長さが長さL16である正方形の断面を有している。側部32aaは幅W13を有する。
 A-A線断面からB-B線断面にかけては、図1にも示すように、第1コア部31の第1テーパ部31bは、終端部31baに向かって正方形の幅および高さが縮小している。また、第2コア部32のテーパ部被覆部32bは、第1テーパ部31bを覆っており、第1テーパ部31bの形状に沿って幅および高さが縮小している。そして、図4Bに示すように、B-B線断面では、第2コア部32については、テーパ部被覆部32bの終端部32baと、連結部32cとが表れている。第1コア部31については、第1テーパ部31bの終端部31baはB-B線断面よりもA-A線断面側に位置するので、破線で示している。終端部31baは幅W11を有する。終端部32baは幅W12を有する。終端部32baは連結部32cに対して段差H1を形成している。連結部32cはテーパ部被覆部32bに対して幅W14だけ幅が広くなっている。幅W14はA-A線断面からB-B線断面に向かって値が増加している。
 B-B線断面からC-C線断面にかけては、図1にも示すように、第1コア部31は存在せず、第2コア部32の連結部32cが、矩形の断面形状を有するように、方向D1の方向に延伸している。そして、図4Cに示すように、C-C線断面では、第2コア部32の連結部32cのみが表れている。
 つぎに、本実施の形態1に係るスポットサイズ変換光導波路100の使用方法および動作について説明する。このスポットサイズ変換光導波路100は、第1コア部31の第1ストレート部31a側に光導波路回路が接続される。また、図2に示すように、スポットサイズ変換光導波路100の端面100aと同一面上にある光出力端面32eaに、光ファイバOFの端面が対向するように光ファイバOFが配置される。光ファイバOFはコア部OF1とクラッド部OF2とを有する。光ファイバOFはたとえばITU-T(国際電気通信連合)G.652に準拠する、光通信分野において標準的に用いられる標準シングルモード光ファイバである。
 光導波路回路側から第1コア部31に、たとえば光通信に用いられる波長帯である1520nm~1620nmの範囲に含まれる波長を有する光信号が入力される。なお、第1コア部31は、光導波路回路と低損失で光接続されるように、その1辺の長さである長さL16や比屈折率差が設定されている。したがって、信号光が光導波路回路からスポットサイズ変換光導波路100に入力する際の損失は小さい。
 第1コア部31は、まず第1ストレート部31aにおいて入力された光信号を方向D1の方向へ伝搬する。第1ストレート部31aの1辺の長さである長さL16は、入力された所定の波長の光信号をシングルモードで伝搬できる程度の長さに設定されている。第1コア部31の比屈折率差が4%~12%であり、信号光の波長が1520nm~1620nmの範囲である場合、長さL16はたとえば1.5μm~3.0μmである。長さL16は光信号の波長および第1コア部31の比屈折率差に応じて設定されることが好ましい。
 第1コア部31は、つぎに第1テーパ部31bにおいて入力された光信号を伝搬する。第1テーパ部31bはその幅および高さが縮小する。そのため、伝搬する光のフィールドは第1テーパ部31bを伝搬中に徐々に第2コア部32のテーパ部被覆部32bまで広がっていく。テーパ部被覆部32bの幅および高さは、第1コア部31の第1テーパ部31bの幅および高さよりも大きい。また、テーパ部被覆部32bの幅および高さは、コア部30の第1テーパ部31bとテーパ部被覆部32bとを含む部分が信号光をシングルモードで伝搬するような幅および高さであることが好ましい。第1コア部31の比屈折率差が4%~12%であり、第2コア部32の比屈折率差が0.3%~1.8%であり、信号光の波長が1520nm~1620nmの範囲である場合、テーパ部被覆部32bの幅および高さは、第1テーパ部31bの幅および高さより大きく、かつたとえば10μm以下であることが好ましい。
 第1テーパ部31bは終端部31baより方向D1の方向には存在しないが、第1テーパ部31bの長さL13を適切な値とすることで、第1テーパ部31bを伝搬していた信号光のパワーは、テーパ部被覆部32bを介して、低損失で第2コア部32の連結部32cに移行する。ここで、連結部32cがテーパ部被覆部32bに対して広がっている幅W14が0μm~2μmの範囲であれば、信号光のパワーの移行の際にスポットサイズが変形することが抑制されるので、より低損失で信号光のパワーが移行できる。
 連結部32cは、第1テーパ部31bを伝搬していた信号光を第2テーパ部32dへ伝搬する。その後、第2テーパ部32dは、方向D1に向かって幅および高さが拡大しているため、信号光を、そのスポットサイズを拡大しながら第2ストレート部32eへ伝搬する。第2ストレート部32eは、スポットサイズが適切なサイズまで拡大された信号光を伝搬し、光出力端面32eaから出力する。光出力端面32eaから出力した信号光は、そのスポットサイズが、光ファイバOFに低損失で光結合できるスポットサイズに変換されている。したがって、信号光がスポットサイズ変換光導波路100から光ファイバOFに入力する際の損失は低い。
 以上のようにして、スポットサイズ変換光導波路100は、光導波路回路から入力された信号光を、低接続損失で光ファイバOFに光結合させることができる。
 特に、スポットサイズ変換光導波路100は、第1コア部31がこのような高い比屈折率差を有する場合でも、光導波路回路から入力された信号光を、低接続損失で光ファイバOFに光結合させることができ、特に大きな効果が発揮される。
(実施の形態2)
 図5は、本発明の実施の形態2に係るスポットサイズ変換光導波路の模式的な斜視図である。図6は、図5に示すスポットサイズ変換光導波路の模式的な平面図である。図5、6に示すように、本実施の形態2に係るスポットサイズ変換光導波路200は、基板10と、基板10上に形成されたクラッド部40と、クラッド部40内に配置されたコア部50とを備えている。コア部50は方向D2の方向に延伸している。
 基板10は、実施の形態1に係るスポットサイズ変換光導波路100の基板10と同じものである。クラッド部40は、スポットサイズ変換光導波路100のクラッド部20と同様に、たとえばボロン(B)またはリン(P)などの酸化物を添加した石英系ガラスからなる。
 コア部50は、スポットサイズ変換光導波路100のコア部30と同様に、クラッド部40よりも屈折率が高く設定された石英系ガラスからなる。コア部50は、第1コア部51と、第1コア部51よりも屈折率が低い第2コア部52とを有している。
 第1コア部51は、スポットサイズ変換光導波路100の第1コア部31と同様に、第1ストレート部51aと、第1テーパ部51bとを有する。第1ストレート部51aは、方向D2の方向(延伸方向)に延伸しており、延伸方向と垂直な面における断面がたとえば正方形であり、かつその幅および高さが延伸方向において略一定である。第1テーパ部51bは、第1ストレート部51aと連続して形成され、断面がたとえば正方形であるが、終端部51baに向かって幅および高さがテーパ状に縮小している。第1テーパ部51bは長さL23を有する(図6参照)。第1コア部51は、第1コア部31と同様の屈折率を高める材料を添加した石英系ガラスからなる。第1コア部51の、クラッド部40に対する比屈折率差はたとえば2.5%~12%であり、より好ましくは4%~12%である。
 第2コア部52は、スポットサイズ変換光導波路100の第2コア部32と同様に、ストレート部被覆部52aと、テーパ部被覆部52bと、方向D2に向かって幅および高さが拡大する第2テーパ部52dと、第2ストレート部52eと、テーパ部被覆部52bと第2テーパ部52dとを連結する連結部52cとを有する。ただし、第2コア部52には、第2コア部32の側部32aaに相当する部分が形成されていない。第2コア部52は、第2コア部32と同様の屈折率を高める材料を添加した石英系ガラスからなる。第2コア部52のクラッド部40に対する比屈折率差はたとえば0.3%~1.8%である。
 ストレート部被覆部52aは、第1コア部51の第1ストレート部51aを上側から覆うように形成されている。ストレート部被覆部52aは方向D2に沿って高さが一定であるが、実施の形態1におけるストレート部被覆部32aと同様に、方向D2と反対側に向かって高さが徐々に低くなっていてもよい。テーパ部被覆部52bは、ストレート部被覆部52aと連続し、かつ第1コア部51の第1テーパ部51bを覆うように形成され、第1テーパ部51bの形状に沿って幅および高さがテーパ状に縮小している。テーパ部被覆部52bは、少なくとも第1テーパ部51bの長さL23以上の長さを有する(図6参照)。テーパ部被覆部52bの終端部には、第1テーパ部51bの終端部51baと対応した終端部52baが形成されている。第2テーパ部52dは、方向D2に向かって幅および高さがテーパ状に拡大している。第2テーパ部52dは長さL24を有する(図6参照)。第1テーパ部51bの終端部51baから第2テーパ部52dまでは距離L25だけ離間している。
 第2ストレート部52eは、第2テーパ部52dと連続して形成され、方向D2に垂直な面における断面がたとえば正方形であり、かつ方向D2において幅および高さが略一定であり、端部に光出力端面52eaが形成されている。第2ストレート部52eは長さL21を有する(図6参照)。光出力端面52eaはスポットサイズ変換光導波路200の端面200aと同一面上にある。光出力端面52eaはたとえば1辺の長さが長さL22(図5参照)である正方形である。連結部52cは、テーパ部被覆部52bの側部および第2テーパ部52d側に広がっている。
 図7A、図7B、図7Cは、それぞれ、図5に示すD-D線断面、E-E線断面、F-F線断面における第1コア部51と第2コア部52の断表面を示す図である。図7Aに示すように、D-D線断面では、第1コア部51については第1ストレート部51aの端部が表れている。第2コア部52については第1ストレート部51aを覆うように形成されたストレート部被覆部52aが表れている。第1ストレート部51aは1辺の長さが長さL26である正方形の断面を有している。
 D-D線断面からE-E線断面にかけては、図5にも示すように、第1コア部51の第1テーパ部51bは、終端部51baに向かって正方形の幅および高さが縮小している。また、第2コア部52のテーパ部被覆部52bは、第1テーパ部51bの形状に沿って幅および高さが縮小している。そして、図7Bに示すように、E-E線断面では、第2コア部52については、テーパ部被覆部52bの終端部52baと、連結部52cとが表れている。第1コア部51については、第1テーパ部51bの終端部51baはE-E線断面よりもD-D線断面側に位置するので、破線で示している。終端部51baは幅W21を有する。終端部52baは幅W22を有する。終端部52baは連結部52cに対して段差H2を形成している。連結部52cはテーパ部被覆部52bに対して幅W24だけ幅が広くなっている。幅W24はD-D線断面からE-E線断面に向かって値が増加している。幅W24は0μm~2μmであることが好ましい。
 E-E線断面からF-F線断面にかけては、図5にも示すように、第1コア部51は存在せず、第2コア部52の連結部52cが、矩形の断面形状を有するように、方向D2の方向に延伸している。そして、図7Cに示すように、F-F線断面では、第2コア部52の連結部52cのみが表れている。
 本実施の形態2に係るスポットサイズ変換光導波路200も、実施の形態1に係るスポットサイズ変換光導波路100と同様に、第1コア部51の第1ストレート部51a側に光導波路回路が接続され、スポットサイズ変換光導波路200の端面200aと同一面上にある光出力端面52eaに、端面が対向するように光ファイバが配置される。
 そして、光導波路回路側から第1コア部51に、所定の波長を有する光信号が入力されると、信号光はコア部50を伝搬するうちに、第1テーパ部51bからテーパ部被覆部52bを介して第2コア部52の連結部52cに移行し、さらに第2テーパ部52dによってスポットサイズが拡大されて、第2ストレート部52eの光出力端面52eaから出力され、低接続損失で光ファイバに光結合する。
(実施の形態3)
 図8は、本発明の実施の形態3に係るスポットサイズ変換光導波路の模式的な斜視図である。図9は、図8に示すスポットサイズ変換光導波路の模式的な側面図である。図10は、図8に示すスポットサイズ変換光導波路の模式的な平面図である。図8~10に示すように、本実施の形態3に係るスポットサイズ変換光導波路300は、基板10と、基板10上に形成されたクラッド部60と、クラッド部60内に配置されたコア部70とを備えている。コア部70は方向D3の方向に延伸している。
 基板10は、実施の形態1に係るスポットサイズ変換光導波路100の基板10と同じものである。クラッド部60は、スポットサイズ変換光導波路100のクラッド部20と同様に、たとえばボロン(B)またはリン(P)などの酸化物を添加した石英系ガラスからなる。
 コア部70は、スポットサイズ変換光導波路100のコア部30と同様に、クラッド部60よりも屈折率が高く設定された石英系ガラスからなる。コア部70は、第1コア部71と、第1コア部71よりも屈折率が低い第2コア部72とを有している。
 第1コア部71は、スポットサイズ変換光導波路100の第1コア部31と同様に、第1ストレート部71aと、第1テーパ部71bとを有する。第1ストレート部71aは、方向D3の方向(延伸方向)に延伸しており、延伸方向と垂直な面における断面がたとえば正方形であり、かつその幅および高さが延伸方向において略一定である。第1テーパ部71bは、第1ストレート部71aと連続して形成され、断面がたとえば正方形であるが、終端部71baに向かって幅および高さがテーパ状に縮小している。第1テーパ部71bは長さL33を有する(図10参照)。第1コア部71は、第1コア部31と同様の屈折率を高める材料を添加した石英系ガラスからなる。第1コア部71の、クラッド部60に対する比屈折率差はたとえば2.5%~12%であり、より好ましくは4%~12%である。
 第2コア部72は、スポットサイズ変換光導波路100の第2コア部32と同様に、ストレート部被覆部72aと、テーパ部被覆部72bと、方向D3に向かって幅および高さが拡大する第2テーパ部72dと、第2ストレート部72eと、テーパ部被覆部72bと第2テーパ部72dとを連結する連結部72cとを有する。さらに、第2コア部72は、ストレート部被覆部72aの幅方向に広がる側部72aaを有する。第2コア部72は、第2コア部32と同様の屈折率を高める材料を添加した石英系ガラスからなる。第2コア部72のクラッド部60に対する比屈折率差はたとえば0.3%~1.8%である。
 ストレート部被覆部72aは、第1コア部71の第1ストレート部71aを上側から覆うように形成されている。ストレート部被覆部72aは、方向D3と反対側に向かって高さ及び幅が徐々に小さくなっている。そして、高さ及び幅が第1コア部71の第1ストレート部71aと一致し、第1コア部71を覆う第2コア部72のストレート部被覆部72aが途切れる位置に第2終端部72abを有する(図9参照)。図9に示す長さL37は、第1コア部71の終端部71baから第2終端部72abまでの長さである重なり部分の長さである。なお、ストレート部被覆部72aが途切れる位置が、第1ストレート部71aの上面と側面とで異なる場合があるが、重なり部分の長さL37は、第1ストレート部71aの上面におけるストレート部被覆部72aが途切れる位置である第2終端部72abから第1コア部71の終端部71baまでの長さで定義される。
 テーパ部被覆部72bは、ストレート部被覆部72aと連続し、かつ第1コア部71の第1テーパ部71bを覆うように形成され、第1テーパ部71bの形状に沿って幅がテーパ状に縮小している。テーパ部被覆部72bは、少なくとも第1テーパ部71bの長さL33以上の長さを有する(図10参照)。テーパ部被覆部72bの終端部には、第1テーパ部71bの終端部71baと対応した終端部72baが形成されている。第2テーパ部72dは、方向D3に向かって幅および高さがテーパ状に拡大している。このとき、第1テーパ部71bの終端部71baの位置における第2テーパ部72dの高さH32は、第1テーパ部71bの終端部71baの高さH31より高くされている。第2テーパ部72dは長さL34を有する(図10参照)。テーパ部被覆部72bの終端部72baと第2テーパ部72dのテーパ部被覆部72b側の端部とは略一致するように形成されている。
 第2ストレート部72eは、第2テーパ部72dと連続して形成され、方向D3に垂直な面における断面がたとえば正方形であり、かつ方向D3において幅および高さが略一定であり、端部に光出力端面72eaが形成されている。第2ストレート部72eは長さL31を有する(図10参照)。光出力端面72eaはスポットサイズ変換光導波路300の端面300aと同一面上にある。光出力端面72eaはたとえば1辺の長さが長さL32(図8参照)である正方形である。連結部72cは、テーパ部被覆部72bの側部に広がっている。本実施の形態3に係るスポットサイズ変換光導波路300では、連結部72cは側部72aaと第2テーパ部72dとの間を連結するように形成されている。
 図11A、図11B、図11Cは、それぞれ、図8に示すG-G線断面、H-H線断面、I-I線断面における第1コア部71と第2コア部72の断表面を示す図である。図11Aに示すように、G-G線断面では、第1コア部71については第1ストレート部71aの端部が表れている。第2コア部72については第1ストレート部71aを覆うように形成されたストレート部被覆部72aと、ストレート部被覆部72aの幅方向に広がる側部72aaが表れている。第1ストレート部71aは1辺の長さが長さL36である正方形の断面を有している。側部72aaは幅W33を有する。
 G-G線断面からH-H線断面にかけては、図8にも示すように、第1コア部71の第1テーパ部71bは、終端部71baに向かって正方形の幅および高さが縮小している。また、第2コア部72のテーパ部被覆部72bは、第1テーパ部71bの形状に沿って幅が縮小している。そして、図11Bに示すように、H-H線断面では、第2コア部72については、テーパ部被覆部72bの終端部72baと、連結部72cとが表れている。第1コア部72については、第1テーパ部71bの終端部71baはH-H線断面よりもG-G線断面側に位置するので、破線で示している。終端部71baは幅W31を有する。終端部72baは幅W32を有する。終端部72baは連結部72cに対して段差H3を形成している。連結部72cはテーパ部被覆部72bに対して幅W34だけ幅が広くなっている。幅W34はG-G線断面からH-H線断面に向かって値が増加している。幅W34は0μm~2μmであることが好ましい。
 H-H線断面からI-I線断面にかけては、図8にも示すように、第1コア部71は存在せず、第2コア部72の第2テーパ部72dは、第2ストレート部72eに向かって幅および高さが拡大している。そして、図11Cに示すように、I-I線断面では、第2コア部72の第2テーパ部72dのみが表れている。
 なお、G-G線断面において、幅W33がゼロとなりストレート部被覆部72aのみが表れるよう、側部72aaおよび連結部72cの幅を調整してもよい。このとき、側部72aaは、第2終端部72abから方向D3に向かって高さがテーパ状に拡大し、かつ幅がテーパ状に縮小する形状を有する。
 本実施の形態3に係るスポットサイズ変換光導波路300も、実施の形態1に係るスポットサイズ変換光導波路100と同様に、第1コア部71の第1ストレート部71a側に光導波路回路が接続され、スポットサイズ変換光導波路300の端面300aと同一面上にある光出力端面72eaに、端面が対向するように実施の形態1と同様にコア部OF1とクラッド部OF2とを有する光ファイバOFが配置される。
 そして、光導波路回路側から第1コア部71に、所定の波長を有する光信号が入力されると、信号光はコア部70を伝搬するうちに、第1テーパ部71bからテーパ部被覆部72bおよび連結部72cに移行し、さらに第2テーパ部72dによってスポットサイズが拡大されて、第2ストレート部72eの光出力端面72eaから出力され、低接続損失で光ファイバOFに光結合する。
(構成要素の好ましい寸法)
 つぎに、実施の形態1、2、3に係るスポットサイズ変換光導波路100、200、300の構成要素の好ましい寸法について説明する。
 はじめに、スポットサイズ変換光導波路100を上述した標準シングルモード光ファイバと光接続する際の、光出力端面32eaの好ましい1辺の長さL12について説明する。
 図12は、第2コア部32の光出力端面32eaの1辺の長さL12と、スポットサイズ変換光導波路100と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。ここで、図12~図18において、損失とは、スポットサイズ変換光導波路100における伝搬損失と、スポットサイズ変換光導波路100と標準シングルモード光ファイバとの接続損失と、を加算したものである。また、図12では、第2コア部32のクラッド部20に対する比屈折率差Δを0.8%または1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部31の比屈折率差は5%とし、第1ストレート部31aの1辺の長さL16は、たとえば3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。また、データ点は0.5μm間隔でプロットしている。
 図12に示すように、光出力端面32eaの1辺の長さL12が8μm~14μmであれば、標準シングルモード光ファイバと接続した場合の損失を抑制でき、たとえば0.6dB程度以下とすることができる。なお、図12では、比屈折率差Δが0.8%および1.55%の場合について示しているが、比屈折率差Δが0.3%~1.8%の範囲内であれば、長さL12を8μm~14μmとすることで、標準シングルモード光ファイバと接続した場合の損失を抑制することができるので好ましい。なお、この8μm~14μmの範囲は、スポットサイズ変換光導波路200の光出力端面52eaの1辺の長さL22、または、スポットサイズ変換光導波路300の光出力端面72eaの1辺の長さL32に適用しても好ましい範囲である。
 つぎに、スポットサイズ変換光導波路100を標準シングルモード光ファイバと光接続する際の、第1テーパ部31bの終端部31baから第2テーパ部32dまでの距離(テーパ部間距離)である距離L15の好ましい値について説明する。
 図13は、テーパ部間距離である距離L15と、スポットサイズ変換光導波路100と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。なお、図13において、横軸のテーパ部間距離は、第2テーパ部32dが、終端部31baに対して方向D1の方向に離間している場合を正の値にとり、方向D1とは逆の方向に離間している場合を負の値にとっている。また、図13では、第2コア部32のクラッド部20に対する比屈折率差Δを1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部31の比屈折率差は5%とし、第1ストレート部31aの1辺の長さL16は、たとえば3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。第1テーパ部31bの長さL13は500μmとしている。第2テーパ部32dの長さL14は1000μmとしている。光出力端面32eaの1辺の長さL12は12μmとしている。また、データ点は100μm間隔でプロットしている。
 図13に示すように、テーパ部間距離である距離L15が-100μm以上であれば、標準シングルモード光ファイバと接続した場合の損失が急激に減少するので好ましく、0μm以上であることがさらに好ましく、さらには500μm以下で十分である。なお、距離L15を0μm程度とすると、損失の低減と、方向D1におけるスポットサイズ変換光導波路100のサイズの低減とを両立できるので好ましい。なお、この-100μm以上あるいは0μm以上、さらには500μm以下の範囲は、スポットサイズ変換光導波路200の距離L25に適用しても好ましい範囲である。
 つぎに、スポットサイズ変換光導波路100を標準シングルモード光ファイバと光接続する際の、好ましい段差H1の高さについて説明する。
 図14、15は、段差H1の高さと、スポットサイズ変換光導波路100と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。なお、図14、15は、第2コア部32のクラッド部20に対する比屈折率差Δを、それぞれ0.8%、1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部31の比屈折率差は5%とし、第1ストレート部31aの1辺の長さL16は、たとえば3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。第1テーパ部31bの長さL13は500μmとしている。第2テーパ部32dの長さL14は1000μmとしている。光出力端面32eaの1辺の長さL12は12μmとしている。距離L15は0μmとしている。また、第1テーパ部31bの終端部31baの幅W11は、0.01μm、0.5μm、1.0μm、2.0μm、または2.5μmに設定している。また、データ点は0.2μm間隔でプロットしている。
 図14、15に示すように、段差H1の高さを低くすれば、損失を低くできる。また、終端部幅を狭くすれば、損失を低くできる。さらに、第2コア部32のクラッド部20に対する比屈折率差Δが0.8%である図14の場合よりも、比屈折率差Δが1.55%である図15の場合の方が、損失が低い。段差H1の高さについては、0μmより大きく2μm以下の範囲が好ましく、幅W11については、1μm以下であることが好ましい。また、段差H1の値と幅W11の値との積で表される断面積を0.5μm以上とすることが、さらに好ましい。なお、この段差H1および幅W11の範囲は、スポットサイズ変換光導波路200の段差H2および幅W21、または、スポットサイズ変換光導波路300の段差H3および幅W31に適用しても好ましい範囲である。
 つぎに、スポットサイズ変換光導波路100を標準シングルモード光ファイバと光接続する際の、好ましい第1テーパ部31bの長さL13について説明する。
 図16は、長さL13(テーパ長)と、スポットサイズ変換光導波路100と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。なお、図16では、第2コア部32のクラッド部20に対する比屈折率差Δを0.8%または1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部31の比屈折率差は5%とし、第1ストレート部31aの1辺の長さL16は3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。第2テーパ部32dの長さL14は1000μmとしている。光出力端面32eaの1辺の長さL12は12μmとしている。距離L15は0μmとしている。また、データ点は100μm間隔でプロットしている。
 図16に示すように、長さL13が好ましくは300μm以上、さらに好ましくは400μm以上であれば、標準シングルモード光ファイバと接続した場合の損失を抑制でき、たとえば0.6dB程度以下とすることができる。なお、図16では、比屈折率差Δが0.8%および1.55%の場合について示しているが、比屈折率差Δが0.3%~1.8%の範囲内であれば、長さL13を好ましくは300μm以上、さらに好ましくは400μm以上とすることで、標準シングルモード光ファイバと接続した場合の損失を抑制することができる。なお、この300μm以上または400μm以上の範囲は、スポットサイズ変換光導波路200の第1テーパ部51bの長さL23、または、スポットサイズ変換光導波路300の第1テーパ部71bの長さL33に適用しても好ましい範囲である。
 つぎに、スポットサイズ変換光導波路100を標準シングルモード光ファイバと光接続する際の、好ましい第2テーパ部32dの長さL14について説明する。
 図17は、長さL14(テーパ長)と、スポットサイズ変換光導波路100と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。なお、図17では、第2コア部32のクラッド部20に対する比屈折率差Δを0.8%または1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部31の比屈折率差は5%とし、第1ストレート部31aの1辺の長さL16は3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。第1テーパ部31bの長さL13は500μmとしている。光出力端面32eaの1辺の長さL12は12μmとしている。距離L15は0μmとしている。また、データ点は100μm間隔でプロットしている。
 図17に示すように、長さL14が好ましくは200μm以上、さらに好ましくは300μm以上であれば、標準シングルモード光ファイバと接続した場合の損失を抑制でき、たとえば0.6dB程度以下とすることができる。なお、図17では、比屈折率差Δが0.8%および1.55%の場合について示しているが、比屈折率差Δが0.3%~1.8%の範囲内であれば、長さL14を好ましくは200μm以上、さらに好ましくは300μm以上とすることで、標準シングルモード光ファイバと接続した場合の損失を抑制することができる。なお、この200μm以上、または300μm以上の範囲は、スポットサイズ変換光導波路200の第2テーパ部52dの長さL24、または、スポットサイズ変換光導波路300の第2テーパ部72dの長さL34に適用しても好ましい範囲である。
 つぎに、スポットサイズ変換光導波路300を標準シングルモード光ファイバと光接続する際の、好ましい重なり部分の長さL37について説明する。後述する製造方法のように、シャドウマスクを用いて第2テーパ部72dを形成する場合、シャドウマスクの固定位置が導波路の長手方向でずれることによって、重なり部分の長さL37が設計値からシフトする場合があるためである。
 図18は、重なり部分の長さL37と、スポットサイズ変換光導波路300と標準シングルモード光ファイバとを接続した場合の損失との関係を示す図である。なお、図18では、第2テーパ部72dの長さL34(テーパ長)を500μmまたは1000μmに設定したときの計算結果を示している。また、図18では、第2コア部72のクラッド部60に対する比屈折率差Δを1.55%に設定したときの計算結果を示している。また、光の波長は1550nmとしている。第1コア部71の比屈折率差は5%とし、第1ストレート部71aの1辺の長さL36は3μmであり、波長1550nmの光がシングルモードで伝搬する値としている。第1テーパ部71bの長さL33は500μmとしている。光出力端面72eaの1辺の長さL32は12μmとしている。また、データ点は、長さL34が500μmのとき100μm間隔で、長さL34が1000μmのとき200μm間隔でプロットしている。
 図18に示すように、長さL34が500μmのとき、重なり部分の長さL37が好ましくは250μm以上350μm以下であれば、標準シングルモード光ファイバと接続した場合の損失を抑制でき、たとえば0.5dB程度以下とすることができる。すなわち、重なり部分の長さL37がこの100μmの範囲内でシフトしても低損失を維持することができる。つぎに、長さL34が1000μmのとき、重なり部分の長さL37が好ましくは300μm以上900μm以下であれば、標準シングルモード光ファイバと接続した場合の損失を抑制でき、たとえば0.5dB程度以下とすることができる。すなわち、重なり部分の長さL37がこの600μmの範囲内でシフトしても低損失を維持することができる。
 また、この計算結果から、第2テーパ部72dの長さL34が長い方が、重なり部分の長さL37のシフトに対して低損失を維持できる範囲が広いことがわかる。したがって、第2テーパ部72dの長さL34は、500μm以上であることが好ましく、1000μm以上であることがより好ましい。なお、この500μm以上、または1000μm以上の範囲は、スポットサイズ変換光導波路100の第2テーパ部32dの長さL14、または、スポットサイズ変換光導波路200の第2テーパ部52dの長さL24に適用しても好ましい範囲である。
(製造方法)
 つぎに、実施の形態1に係るスポットサイズ変換光導波路100の製造方法の一例について説明する。なお、実施の形態2に係るスポットサイズ変換光導波路200および実施の形態3に係るスポットサイズ変換光導波路300も同様の方法で製造できる。図19A~図19C、図20は、実施の形態1に係るスポットサイズ変換光導波路の製造方法の一例を説明する図である。はじめに、図19Aに示すように、公知の火炎堆積(Flame Hydrolysis Deposition、FHD)法により、基板10上に石英系ガラスの微粒子を堆積し、これを加熱してガラス微粒子を透明ガラス化し、クラッド部20の下部を構成する下部層20aを形成する。つぎに、下部層20a上にプラズマCVD(Chemical Vapor Deposition)法によって、第1コア部31となる石英系ガラス微粒子層80を堆積する。つぎに、石英系ガラス微粒子層80上に、金属やフォトレジストからなるマスクMを形成する。このマスクMは、厚さが徐々に薄くなるテーパ部T1を有している。
 このようにテーパ部T1を有するマスクMは、たとえば以下のように形成する。まず、石英系ガラス微粒子層80上にレジストを塗布する。つぎに、レジストを露光する際に、露光範囲を徐々に変化させながら、複数回の露光を行う。たとえば、図19Aには、露光範囲S1、S2、S3、S4、・・・を示している。露光範囲S1、S2、S3、S4、・・・は、それぞれ、1回目、2回目、3回目、4回目、・・・の露光範囲である。なお、1回当たりの露光量は、使用するレジスト固有の適正露光量よりも小さい露光量とし、1回当たりの露光はアンダー露光になるようにしている。
 このように露光範囲を徐々に変化させながら、複数回のアンダー露光を行うことによって、現像後には、多重露光された回数が多い部分ほど厚さが厚くなるようにテーパ部T1が形成されたマスクMが得られる。なお、テーパ部T1の傾斜を滑らかにするには、露光範囲を徐々に変化させるときの変化の幅を、露光範囲を決める装置のマスキングの精度以下とする方法がある。これによって、露光範囲を離散的に変化させたとしても、滑らかな傾斜のテーパ部T1を形成することができる。
 つぎに、図19Bに示すように、たとえばフッ素系ガス(たとえばCF)などのエッチングガスEGを用いて、マスクMをエッチングマスクとして、石英系ガラス微粒子層80のドライエッチングを行う。これによって、図19Cに示すように、テーパ部T1を有するマスクMの形状が転写された、テーパ部T2を有する石英系ガラス微粒子層80Aが形成される。つぎに、マスクMを除去した後、フォトリソグラフィ技術およびエッチングによって、石英系ガラス微粒子層80Aを第1コア部31の形状にパターニングする。
 つぎに、図20に示すように、石英系ガラス微粒子層80Aを形成した下部層20a上に、シャドウマスクSMを配置する。そして、シャドウマスクSMの上から、FHD法、プラズマCVD法、またはスパッタ法等によって、石英系ガラス微粒子を堆積するための原料ガスMGを供給する。すると、原料ガスMGはシャドウマスクSMで覆われた領域では遮断され、シャドウマスクSMで覆われていない領域では、そのまま下部層20a上に到達する。ここで、シャドウマスクSMで覆われていない領域とは、シャドウマスクSMに形成された孔の直下の領域や、シャドウマスクSMの外周の領域である。また、シャドウマスクSMの孔や外周の周縁領域では、原料ガスMGがシャドウマスクSMの下側に回りこんで下部層20a上に到達するが、その回り込む原料ガスMGの量は、シャドウマスクSMの周縁から遠ざかるにつれて少なくなる。その結果、図20に示すように、シャドウマスクSMで覆われていない領域では厚さが一定であるが、シャドウマスクSMで覆われた領域に向かって厚さがテーパ状に薄くなるテーパ部T3を有する石英系ガラス微粒子層90が形成される。このとき、ストレート部被覆部32aおよびテーパ部被覆部32bを形成するために、石英系ガラス微粒子層90の端部が石英系ガラス微粒子層80Aを覆うように石英系ガラス微粒子層90を形成する。石英系ガラス微粒子層90の形状は、シャドウマスクSMの下部層20aからの高さや、シャドウマスクSMの周縁部の位置の設定で調整することができる。その後、シャドウマスクSMを除去した後、フォトリソグラフィ技術およびエッチングによって、石英系ガラス微粒子層90を第2コア部32の形状にパターニングする。
 ここで、第2コア部32の形状のパターニングを行う際に、ストレート部被覆部32aの幅方向に広がる側部32aa(図1、4参照)を形成する。これによって、パターニングの形状や位置に誤差があったとしても、その誤差を側部32aaの領域に吸収させることができるので、その誤差がストレート部被覆部32aのサイズに及ぶことを防止できる。側部32aaの幅W13は0μmより大きくし、想定されるパターニングの誤差に応じて設定することが好ましく、2μm以下であればよい。
 つぎに、再びFHD法により、クラッド部20の残りの部分を形成するための石英系ガラス微粒子を堆積する。その後、基板全体を加熱して各石英系ガラス微粒子を透明ガラス化し、クラッド部20およびコア部30を完成させる。その後、基板を所望の形状に切断してスポットサイズ変換光導波路100が完成する。
 なお、このとき切断によってスポットサイズ変換光導波路100の端面100aを形成するが、切断の位置に誤差が生じる場合がある。ここで、仮に第2コア部32の第2テーパ部32dにおいて切断を行うとすると、切断の位置誤差に応じて、端面100aに露出する第2テーパ部32dの端面の面積がばらつくこととなる。その結果、スポットサイズ変換光導波路100の端面100aから出力する信号光のスポットサイズに製造ばらつきが生じるおそれがある。
 これに対して、本実施の形態1に係るスポットサイズ変換光導波路100では、第2コア部32に長さL11を有する第2ストレート部32eが存在しているので、切断の誤差があっても端面100aに露出する第2ストレート部32eの光出力端面32eaの面積にばらつきが生じにくくなり、安定したスポットサイズの信号光を出力できるので好ましい。ダイサーの幅が100μm程度であることを考慮すると、長さL11は200μm以上であることが好ましい。
 また、上記実施の形態において、第1コア部に屈折率を高めるために添加する材料が、Geを添加する場合と比較してガラス微粒子層の成膜に時間がかかる材料や、Geを添加する場合と比較してエッチングが困難になる材料である場合、第1コア部のみからなるスポットサイズ変換光導波路を用い、第1コア部の形状を加工して低接続損失を実現することは困難である。しかしながら、上記実施の形態に係るスポットサイズ変換光導波路は、Ge等の成膜あるいはエッチングが容易で比較的加工しやすい材料を添加した所定の形状の第2コア部を形成して、低接続損失を実現している。このように、第1コア部の形状の加工が困難になる材料(たとえばZr)を添加する場合に、本発明は特に有効である。
 なお、上記実施の形態では、第1コア部の断面、第2コア部の第2ストレート部の断面および光出力端面は正方形状であるが、光接続すべき対象の形状に応じて設定することができ、正方形以外の矩形状または台形状でもよい。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係るスポットサイズ変換光導波路は、主に光通信の分野に利用して好適なものである。
 10 基板
 20、40、60 クラッド部
 20a 下部層
 30、50、70 コア部
 31、51、71 第1コア部
 31a、51a、71a 第1ストレート部
 31b、51b、71b 第1テーパ部
 31ba、32ba、51ba、52ba、71ba、72ba 終端部
 72ab 第2終端部
 32、52、72 第2コア部
 32a、52a、72a ストレート部被覆部
 32aa、72aa 側部
 32b、52b、72b テーパ部被覆部
 32c、52c、72c 連結部
 32d、52d、72d 第2テーパ部
 32e、52e、72e 第2ストレート部
 32ea、52ea、72ea 光出力端面
 80、80A、90 石英系ガラス微粒子層
 100、200、300 スポットサイズ変換光導波路
 100a、200a、300a 端面
 D1、D2、D3 方向
 EG エッチングガス
 H1、H2、H3 段差
 H31、H32 高さ
 L11、L12、L13、L14、L16、L21、L22、L23、L24、L26、L31、L32、L33、L34、L36、L37 長さ
 L15、L25 距離
 M マスク
 MG 原料ガス
 OF 光ファイバ
 OF1 コア部
 OF2 クラッド部
 S1、S2、S3、S4 露光範囲
 SM シャドウマスク
 T1、T2、T3 テーパ部
 W11、W12、W13、W14、W21、W22、W24、W31、W32、W34 幅

Claims (11)

  1.  クラッド部と、
     前記クラッド部内に配置され、前記クラッド部よりも屈折率が高いコア部と、
     を備え、
     前記コア部は、
      所定の方向に延伸し、幅および高さが延伸方向において略一定である第1ストレート部と、前記第1ストレート部と連続して形成され、終端部に向かって幅および高さが縮小する第1テーパ部とを有する第1コア部と、
      前記第1コア部の第1ストレート部を覆うように形成されたストレート部被覆部と、前記ストレート部被覆部と連続して前記第1コア部の第1テーパ部を覆うように形成され、前記第1テーパ部の形状に沿って幅および高さが縮小するテーパ部被覆部と、前記延伸方向に向かって幅および高さが拡大する第2テーパ部と、を有し、端部に光出力端面が形成され、前記第1コア部よりも屈折率が低い第2コア部と、
     を有することを特徴とするスポットサイズ変換光導波路。
  2.  前記第1コア部の前記クラッド部に対する比屈折率差は2.5%~12%であり、前記第2コア部の前記クラッド部に対する比屈折率差は0.3%~1.8%であることを特徴とする請求項1に記載のスポットサイズ変換光導波路。
  3.  前記第2コア部の光出力端面は1辺の長さが8μm~14μmの矩形状であることを特徴とする請求項1または2に記載のスポットサイズ変換光導波路。
  4.  前記第2コア部のテーパ部被覆部の幅および高さは、前記第1コア部の第1テーパ部の幅および高さよりも大きく、所定の波長の光をシングルモードで伝搬する幅および高さであることを特徴とする請求項1~3のいずれか一つに記載のスポットサイズ変換光導波路。
  5.  前記第2コア部は、前記ストレート部被覆部の幅方向に広がる側部を有し、該側部の幅は0μmより大きく2μm以下であることを特徴とする請求項1~4のいずれか一つに記載のスポットサイズ変換光導波路。
  6.  前記第2コア部は、前記テーパ部被覆部と前記第2テーパ部とを連結する連結部を有し、該連結部の幅は、前記テーパ部被覆部の幅より0μm~2μmだけ広いことを特徴とする請求項1~5のいずれか一つに記載のスポットサイズ変換光導波路。
  7.  前記第2コア部は、前記テーパ部被覆部と前記第2テーパ部とを連結する連結部を有し、前記第2コア部のテーパ部被覆部の終端部は前記連結部に対して段差を形成しており、該段差の高さは0μmより大きいことを特徴とする請求項1~6のいずれか一つに記載のスポットサイズ変換光導波路。
  8.  前記第1テーパ部の終端部から前記第2テーパ部までの離間距離は、前記延伸方向を正の方向として、-100μmより大きいことを特徴とする請求項1~7のいずれか一つに記載のスポットサイズ変換光導波路。
  9.  前記第1テーパ部の長さは300μm以上であることを特徴とする請求項1~8のいずれか一つに記載のスポットサイズ変換光導波路。
  10.  前記第2テーパ部の長さは200μm以上であることを特徴とする請求項1~9のいずれか一つに記載のスポットサイズ変換光導波路。
  11.  前記第2コア部は、前記第2テーパ部と連続して形成され、前記延伸方向において幅および高さが略一定であり、端部に前記光出力端面が形成された第2ストレート部をさらに有することを特徴とする請求項1~10のいずれか一つに記載のスポットサイズ変換光導波路。
PCT/JP2014/056076 2013-06-21 2014-03-07 スポットサイズ変換光導波路 WO2014203568A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015522591A JP6346177B2 (ja) 2013-06-21 2014-03-07 スポットサイズ変換光導波路
US14/961,248 US9417388B2 (en) 2013-06-21 2015-12-07 Spot-size conversion optical waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-131068 2013-06-21
JP2013131068 2013-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/961,248 Continuation US9417388B2 (en) 2013-06-21 2015-12-07 Spot-size conversion optical waveguide

Publications (1)

Publication Number Publication Date
WO2014203568A1 true WO2014203568A1 (ja) 2014-12-24

Family

ID=52104314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056076 WO2014203568A1 (ja) 2013-06-21 2014-03-07 スポットサイズ変換光導波路

Country Status (3)

Country Link
US (1) US9417388B2 (ja)
JP (1) JP6346177B2 (ja)
WO (1) WO2014203568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180863A (ja) * 2015-03-24 2016-10-13 沖電気工業株式会社 スポットサイズ変換器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017216B1 (fr) * 2014-01-31 2017-05-26 Univ De Franche-Comte Methode de fabrication d'un guide d'onde optique a structure "ridge" a faibles pertes de couplage entre le guide d'onde optique a structure "ridge" et une fibre optique, et guide d'onde optique a structure "ridge" fabrique par cette methode
CN107290824B (zh) * 2016-04-13 2020-01-10 华为技术有限公司 波导结构及制备方法
JP6387373B2 (ja) * 2016-06-24 2018-09-05 株式会社フジクラ 微小光回路および光モード変換器
US10345524B2 (en) * 2016-12-22 2019-07-09 Huawei Technologies Co., Ltd. Optical edge coupler with controllable mode field for photonic chip
CN109358395B (zh) * 2018-12-04 2024-02-27 苏州易缆微光电技术有限公司 一种新型波导面耦合模斑转换器及其制备方法
US10534136B1 (en) * 2018-12-18 2020-01-14 Honeywell International Inc. High-efficiency fiber-to-waveguide coupler
US10976496B2 (en) * 2019-02-11 2021-04-13 Poet Technologies, Inc. Dual core waveguide
JP7207087B2 (ja) * 2019-03-28 2023-01-18 住友大阪セメント株式会社 光導波路素子
CN112394446B (zh) * 2019-08-13 2023-04-14 中国科学院苏州纳米技术与纳米仿生研究所 端面耦合器及其制作方法、端面耦合方法
US11204469B1 (en) 2020-06-01 2021-12-21 Honeywell International Inc. Apparatus for high-efficiency fiber-to-chip coupling and mode-conversion to integrated photonics platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110415A (ja) * 1993-10-13 1995-04-25 Kyocera Corp 光導波路、光導波路と光ファイバの接続装置
JP2003167140A (ja) * 2001-11-30 2003-06-13 Nec Corp 光導波路基板
JP2005331967A (ja) * 2005-06-24 2005-12-02 Fujitsu Ltd 光結合装置
JP2012083446A (ja) * 2010-10-08 2012-04-26 National Institute Of Advanced Industrial & Technology 光学変換素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112002A (en) 1996-11-29 2000-08-29 Fujitsu Limited Optical coupler optically coupling a light beam of a semiconductor laser source with a single mode optical waveguide or fiber
FR2786278B1 (fr) * 1998-11-24 2001-01-26 Cit Alcatel Composant optique a semi-conducteur comportant un adapteur de mode
FI20020698A0 (fi) * 2002-04-11 2002-04-11 Valtion Teknillinen Integroidun optisen piirin valokanava ja menetelmä valokanavan valmistamiseksi
US7359593B2 (en) * 2003-10-09 2008-04-15 Infinera Corporation Integrated optical mode shape transformer and method of fabrication
JP4552821B2 (ja) 2005-09-27 2010-09-29 日立電線株式会社 スポットサイズ変換導波路の製造方法
CN101641622B (zh) * 2007-03-20 2011-09-14 日本电气株式会社 光波导和使用该光波导的光斑尺寸转换器
US8031991B2 (en) * 2008-05-28 2011-10-04 Lightwire Inc. Low index, large mode field diameter optical coupler
JP5560602B2 (ja) 2009-07-17 2014-07-30 日本電気株式会社 光導波路
US8264919B2 (en) * 2010-02-25 2012-09-11 Tdk Corporation Thermal assisted magnetic recording head having spot size converter
JP5659866B2 (ja) * 2011-03-02 2015-01-28 住友電気工業株式会社 スポットサイズ変換器
JP5888883B2 (ja) * 2011-06-15 2016-03-22 日本オクラロ株式会社 スポットサイズ変換器、半導体光素子、及びそれらの製造方法
KR20130112548A (ko) * 2012-04-04 2013-10-14 한국전자통신연구원 모드 크기 변환기 및 그의 제조방법
JP5773552B2 (ja) * 2013-09-20 2015-09-02 沖電気工業株式会社 光素子の製造方法及び光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110415A (ja) * 1993-10-13 1995-04-25 Kyocera Corp 光導波路、光導波路と光ファイバの接続装置
JP2003167140A (ja) * 2001-11-30 2003-06-13 Nec Corp 光導波路基板
JP2005331967A (ja) * 2005-06-24 2005-12-02 Fujitsu Ltd 光結合装置
JP2012083446A (ja) * 2010-10-08 2012-04-26 National Institute Of Advanced Industrial & Technology 光学変換素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180863A (ja) * 2015-03-24 2016-10-13 沖電気工業株式会社 スポットサイズ変換器

Also Published As

Publication number Publication date
JP6346177B2 (ja) 2018-06-20
JPWO2014203568A1 (ja) 2017-02-23
US20160085026A1 (en) 2016-03-24
US9417388B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6346177B2 (ja) スポットサイズ変換光導波路
JP6631524B2 (ja) 光回路素子及び光回路素子の構成方法
WO2013084564A1 (ja) 光分岐素子および光分岐回路
JP6107948B2 (ja) 導波モード変換素子、偏波分離器及び光デバイス
US8442364B2 (en) Optical waveguide circuit and manufacturing method of optical waveguide circuit
US9874700B2 (en) Grating coupler and optical waveguide device
US20120201492A1 (en) Optical branching element and optical branching circuit, and manufacturing method thereof
US6775454B2 (en) Silica-based optical waveguide circuit and fabrication method thereof
JP6509509B2 (ja) 光半導体装置およびその製造方法
JP4820917B2 (ja) グレーティング構造を有する基板型光導波路デバイスの製造方法
WO2022029939A1 (ja) フォトマスク、光導波路、光回路および光導波路の製造方法
WO2020166459A1 (ja) リング共振器フィルタ素子
CN112415652A (zh) 一种波导光栅耦合器阵列
WO2009098829A1 (ja) 光導波路及びその製造方法
WO2019117313A1 (ja) 光偏波素子およびその製造方法
JP2013041146A (ja) 波長選択性多モード干渉導波路デバイス
KR102019062B1 (ko) 감소된 위상 오차를 갖는 도파로 및 이를 구비하는 포토닉스 소자
JP2017191253A (ja) 光集積回路及びその製造方法
JP5377161B2 (ja) グレーティング構造を有する基板型光導波路デバイスの設計方法
JP2005092032A (ja) 平面型光導波路の製造方法
KR100198935B1 (ko) 비대칭 방향성 커플러 및 그 제조 방법
JP2009265123A (ja) 光波長フィルタ
JP6029703B2 (ja) 光導波路素子
JP2001350045A (ja) 光導波路
JP2017111202A (ja) 光回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814190

Country of ref document: EP

Kind code of ref document: A1