WO2014203476A1 - 車両用熱管理システム - Google Patents

車両用熱管理システム Download PDF

Info

Publication number
WO2014203476A1
WO2014203476A1 PCT/JP2014/002922 JP2014002922W WO2014203476A1 WO 2014203476 A1 WO2014203476 A1 WO 2014203476A1 JP 2014002922 W JP2014002922 W JP 2014002922W WO 2014203476 A1 WO2014203476 A1 WO 2014203476A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigerant
air
heat exchanger
Prior art date
Application number
PCT/JP2014/002922
Other languages
English (en)
French (fr)
Inventor
憲彦 榎本
梯 伸治
加藤 吉毅
木下 宏
牧原 正径
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480034712.3A priority Critical patent/CN105324259B/zh
Priority to US14/898,718 priority patent/US9994087B2/en
Priority to DE112014002874.6T priority patent/DE112014002874T5/de
Publication of WO2014203476A1 publication Critical patent/WO2014203476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • This disclosure relates to a thermal management system used for a vehicle.
  • a relief valve is installed as a safety device when the refrigerant pressure rises excessively.
  • the relief valve opens when the refrigerant pressure becomes equal to or higher than a predetermined pressure, and plays a role of releasing the refrigerant pressure to the outside of the refrigeration cycle apparatus.
  • the reason why the refrigerant pressure rises excessively is that the ambient temperature around the refrigeration cycle apparatus becomes high when the refrigeration cycle apparatus stops (when the compressor stops). That is, the main equipment of the refrigeration cycle apparatus is disposed in the engine room, and the engine room becomes very hot due to heat generated from engine equipment such as an engine and an engine radiator, solar radiation in summer, and the like. As a result, the refrigerant in the refrigeration cycle apparatus also becomes very hot and the refrigerant pressure rises excessively.
  • Patent Document 1 describes a vehicle air conditioner that performs air conditioning of a vehicle interior using a coolant heated or cooled by a refrigeration cycle apparatus. Specifically, in the condenser constituting the refrigeration cycle apparatus, the coolant is heated by exchanging heat between the high-temperature refrigerant and the coolant, and in the chiller constituting the refrigeration cycle apparatus, the coolant is exchanged by exchanging heat between the low-temperature refrigerant and the coolant. Cooling.
  • Patent Document 1 since the high-temperature refrigerant and the coolant are exchanged in the condenser, compared with the case where the high-temperature refrigerant and the outside air are exchanged in the condenser, When the refrigeration cycle apparatus is stopped (when the compressor is stopped), the refrigerant pressure may easily rise excessively.
  • the relief valve is opened and the refrigerant is likely to be released to the atmosphere.
  • the time during which the refrigerant pressure is high becomes longer, the service life of the components and piping of the refrigeration cycle is shortened.
  • the present disclosure aims to suppress an excessive increase in the refrigerant pressure.
  • the vehicle thermal management system of the present disclosure includes a compressor, a heat exchanger for heating a heat medium, and a flow adjusting unit.
  • the compressor sucks and discharges the refrigerant.
  • the heat exchanger for heat medium heats the heat medium by exchanging heat between the refrigerant discharged from the compressor and a heat medium different from air.
  • the flow adjusting unit causes a cooling fluid for cooling the refrigerant to flow when the compressor is stopped.
  • the refrigerant can be cooled by flowing the cooling fluid, so that it is possible to suppress the refrigerant pressure from rising excessively.
  • the vehicle thermal management system of the present disclosure includes a compressor, a heat exchanger for heating medium heating, a pressure reducing unit, a heat exchanger for cooling the heating medium, a heating medium air heat exchanger, a pump, a blower, and a control unit. Also good.
  • the compressor sucks and discharges the refrigerant.
  • the heat exchanger for heat medium heating heats the heat medium by exchanging heat between the refrigerant discharged from the compressor and a heat medium different from air.
  • the decompression unit decompresses and expands the refrigerant heat-exchanged by the heat exchanger for heating the heat medium.
  • the heat exchanger for cooling the heat medium cools the heat medium by exchanging heat between the refrigerant expanded in the decompression section and the heat medium.
  • the heat medium air heat exchanger exchanges heat between the heat medium and air.
  • the pump circulates the heat medium through the heat medium cooling heat exchanger and the heat medium air heat exchanger.
  • the blower blows air to the heat medium air heat exchanger.
  • the pressure of the refrigerant rises or is estimated to rise after the compressor is stopped, the heat medium is caused to flow, and the air is sent to the heat medium air heat exchanger. It can be circulated. Therefore, the refrigerant can be cooled, and an excessive increase in the refrigerant pressure can be suppressed.
  • the vehicle heat management system includes a compressor, a heat exchanger for heat medium heating, a decompression unit, a heat exchanger for heat medium cooling, a heat medium air heat exchanger, a pump, and a heat exchanger for cooling an internal combustion engine.
  • a blower and a control unit may be provided.
  • Compressor sucks and discharges refrigerant.
  • the heat exchanger for heat medium heating heats the heat medium by exchanging heat between the refrigerant discharged from the compressor and a heat medium different from air.
  • the decompression unit decompresses and expands the refrigerant heat-exchanged by the heat exchanger for heating the heat medium.
  • the heat exchanger for cooling the heat medium cools the heat medium by exchanging heat between the refrigerant expanded in the decompression section and the heat medium.
  • the heat medium air heat exchanger exchanges heat between the heat medium and air.
  • the pump circulates the heat medium through the heat medium cooling heat exchanger and the heat medium air heat exchanger.
  • the heat exchanger for cooling the internal combustion engine exchanges heat between the cooling medium for cooling the internal combustion engine and the air.
  • the blower blows air to the heat exchanger for cooling the internal combustion engine.
  • the blower control unit operates the blower when it is determined that the internal combustion engine and the compressor are stopped and the pressure or temperature of the refrigerant exceeds or is estimated to exceed the predetermined value.
  • the cooling medium for the internal combustion engine can be dissipated to the air to reduce the residual heat of the internal combustion engine.
  • An increase in temperature can be suppressed.
  • the vehicle thermal management system of the present disclosure may include a refrigeration cycle unit and a refrigerant flow path forming member.
  • the refrigeration cycle unit is composed of a plurality of devices constituting the refrigeration cycle.
  • the refrigerant flow path forming member is disposed in a low temperature region where the air temperature is lower than the region where the refrigeration cycle unit is disposed, and forms a flow path through which the refrigerant flows.
  • 1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment.
  • 1 is a perspective perspective view showing a vehicle on which a vehicle thermal management system according to a first embodiment is arranged. It is a block diagram which shows the electric control part in the thermal management system for vehicles of 1st Embodiment. It is a flowchart which shows the control processing which the control apparatus of the thermal management system for vehicles in 1st Embodiment performs. It is a whole block diagram of the thermal management system for vehicles in 1st Embodiment, and has shown other operation modes. It is a principal part block diagram of the thermal management system for vehicles in 2nd Embodiment.
  • thermal management system for vehicles in 2nd Embodiment It is a principal part block diagram of the thermal management system for vehicles in 2nd Embodiment, and has shown the state in which the vehicle is drive
  • thermo management system for vehicles in 6th Embodiment It is a whole block diagram of the thermal management system for vehicles in 6th Embodiment. It is a whole block diagram of the thermal management system for vehicles in 7th Embodiment. It is a flowchart which shows the control processing which the control apparatus of the thermal management system for vehicles in 8th Embodiment performs. It is a whole block diagram of the thermal management system for vehicles in 9th Embodiment. It is a flowchart which shows the control processing which the control apparatus of the thermal management system for vehicles in 9th Embodiment performs.
  • the vehicle thermal management system 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors provided in the vehicle to appropriate temperatures.
  • the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor.
  • the hybrid vehicle according to the present embodiment is a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
  • a battery vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the vehicle thermal management system 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
  • the vehicle thermal management system 10 includes a first pump 11, a second pump 12, a radiator 13, a cooling water cooler 14, a cooling water heater 15, a device 16, a cooler core 17, a heater core 18, A first switching valve 19 and a second switching valve 20 are provided.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water (heat medium).
  • the cooling water is a fluid as a heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water.
  • the radiator 13, the cooling water cooler 14, the cooling water heater 15 and the device 16 are cooling water distribution devices (heat medium distribution devices) through which the cooling water flows.
  • the radiator 13 is a heat exchanger (heat medium outside air heat exchange, heat medium air heat exchanger) that exchanges heat between cooling water and outside air (air outside the passenger compartment).
  • heat exchanger heat medium outside air heat exchange, heat medium air heat exchanger
  • the radiator 13 When the temperature of the cooling water is higher than the temperature of the outside air, the radiator 13 functions as a radiator that radiates the heat of the cooling water to the outside air.
  • the radiator 13 When the temperature of the cooling water is lower than the temperature of the outside air, the radiator 13 It functions as a heat absorber that absorbs heat.
  • the outside air is blown to the radiator 13 by the outdoor blower 21.
  • the outdoor blower 21 is a blower that blows outside air to the radiator 13 and is configured by an electric blower.
  • the radiator 13 and the outdoor blower 21 are arranged at the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
  • the cooling water cooler 14 is a cooling device that cools the cooling water. Specifically, the cooling water cooler 14 heats the low pressure side refrigerant of the refrigeration cycle 22 and the cooling water to exchange heat, thereby cooling the cooling water (a heat exchanger for heat medium cooling or a heat exchanger). Medium refrigerant heat exchanger).
  • the cooling water inlet side (heat medium inlet side) of the cooling water cooler 14 is connected to the cooling water discharge side (heat medium discharge side) of the first pump 11.
  • the cooling water heater 15 is a heater that heats the cooling water. Specifically, the cooling water heater 15 heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 22 and the cooling water (a heat exchanger for heat medium heating, a heat medium). Refrigerant heat exchanger).
  • the cooling water inlet side (heat medium inlet side) of the cooling water heater 15 is connected to the cooling water discharge side (heat medium discharge side) of the second pump 12.
  • the refrigeration cycle 22 is a vapor compression refrigerator that includes a compressor 23, a cooling water heater 15, an expansion valve 24, and a cooling water cooler 14.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 23 is an electric compressor driven by electric power supplied from the battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 22.
  • a relief valve 25 is arranged on the refrigerant discharge side of the compressor 23.
  • the relief valve 25 is a pressure relief part that opens when the pressure of the refrigerant becomes equal to or higher than a predetermined pressure and releases the refrigerant pressure to the outside of the refrigeration cycle 22.
  • the cooling water heater 15 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 23 and the cooling water.
  • the expansion valve 24 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the cooling water heater 15.
  • the cooling water cooler 14 is an evaporator that evaporates the low pressure refrigerant by exchanging heat between the low pressure refrigerant decompressed and expanded by the expansion valve 24 and the cooling water.
  • the gas-phase refrigerant evaporated in the cooling water cooler 14 is sucked into the compressor 23 and compressed.
  • the cooling water In the radiator 13, the cooling water is cooled by outside air, whereas in the cooling water cooler 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 22. For this reason, the radiator 13 cannot cool the cooling water to a temperature lower than the temperature of the outside air, whereas the cooling water cooler 14 can cool the cooling water to a temperature lower than the temperature of the outside air. That is, the temperature of the cooling water cooled by the cooling water cooler 14 can be made lower than the temperature of the cooling water cooled by the radiator 13.
  • the device 16 is a device (a temperature adjustment target device) that has a flow path through which the cooling water flows and that exchanges heat with the cooling water.
  • Examples of the device 16 include an inverter, a battery, a battery temperature control heat exchanger, a traveling electric motor, an engine device, a cold storage heat body, a ventilation heat recovery heat exchanger, a cooling water cooling water heat exchanger, and the like.
  • An inverter is a power conversion device that converts DC power supplied from a battery into AC voltage and outputs the AC voltage to a traveling electric motor.
  • the battery temperature control heat exchanger is a heat exchanger (air heat medium heat exchanger) that is arranged in a ventilation path to the battery and exchanges heat between air and cooling water.
  • Engine devices are, for example, turbochargers, intercoolers, EGR coolers, CVT warmers, CVT coolers, exhaust heat recovery devices, and the like.
  • the turbocharger is a supercharger that supercharges engine intake air (intake).
  • the intercooler is an intake air cooler (intake heat medium heat exchanger) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
  • the EGR cooler is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that cools exhaust gas by exchanging heat between engine exhaust gas (exhaust gas) returned to the intake side of the engine and cooling water.
  • CVT warmer is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that heats CVT oil by exchanging heat between lubricating oil (CVT oil) that lubricates CVT (continuously variable transmission) and cooling water. It is.
  • the CVT cooler is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that cools the CVT oil by exchanging heat between the CVT oil and the cooling water.
  • lubricating oil cooling water heat exchanger lubricating oil heat medium heat exchanger
  • the exhaust heat recovery unit is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that exchanges heat between the exhaust and the cooling water to absorb the heat of the exhaust into the cooling water.
  • exhaust cooling water heat exchanger exhaust heat medium heat exchanger
  • the cold storage heat storage body stores the heat or cold energy of the cooling water.
  • Examples of the cold storage body include a chemical heat storage material, a heat retaining tank, a latent heat storage body (paraffin or hydrate-based substance), and the like.
  • the ventilation heat recovery heat exchanger is a heat exchanger that recovers the heat (cold or hot) that is thrown out by ventilation.
  • a ventilation heat recovery heat exchanger recovers heat (cold heat or hot heat) that is thrown out by ventilation, thereby reducing power required for air conditioning.
  • the cooling water cooling water heat exchanger is a heat exchanger that exchanges heat between cooling water and cooling water.
  • a cooling water cooling water heat exchanger includes cooling water (cooling water circulated by the first pump 11 or the second pump 12) of the vehicle thermal management system 10 and an engine cooling circuit (cooling water for engine cooling). Heat can be exchanged between the vehicle thermal management system 10 and the engine cooling circuit by exchanging heat with the cooling water in the circulating circuit).
  • the cooler core 17 is an air cooling heat exchanger (air cooler) that cools the air into the vehicle interior by exchanging heat between the cooling water and the air into the vehicle interior. Therefore, the cooling water cooled by the cooling water cooler 14 or a device that generates cold heat needs to flow through the cooler core 17.
  • air cooling heat exchanger air cooler
  • the heater core 18 is an air heating heat exchanger (air heater) for exchanging heat between the air into the vehicle interior and the cooling water to heat the air into the vehicle interior. Therefore, it is necessary for the cooling water heated by the cooling water heater 15 or a device that generates heat to flow through the heater core 18.
  • air heating heat exchanger air heater
  • the cooler core 17 and the heater core 18 are blown by the indoor blower 26 with the inside air (vehicle interior air), the outside air, or the mixed air of the inside air and the outside air.
  • the indoor blower 26 is a blower that blows air to the cooler core 17 and the heater core 18, and is configured by an electric blower.
  • the cooler core 17, the heater core 18, and the indoor blower 26 are accommodated in a casing 28 of an indoor air conditioning unit 27 of the vehicle air conditioner.
  • the indoor air conditioning unit 27 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the casing 28 forms an outer shell of the indoor air conditioning unit 27.
  • the casing 28 forms an air passage for air to be blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • a resin for example, polypropylene
  • An inside / outside air switching device (not shown) is arranged on the most upstream side of the passenger compartment air flow in the casing 28.
  • the inside / outside air switching device is an inside / outside air introduction unit that switches and introduces inside air and outside air into the casing 28.
  • An opening is formed in the most downstream portion of the air flow of the casing 28 to blow out the conditioned air whose temperature is adjusted by the cooler core 17 and the heater core 18 into the vehicle interior that is the air-conditioning target space.
  • the first pump 11 is disposed in the first pump flow path 31.
  • a cooling water cooler 14 is disposed on the cooling water discharge side of the first pump 11 in the first pump flow path 31.
  • the second pump 12 is disposed in the second pump flow path 32.
  • a cooling water heater 15 is disposed on the cooling water discharge side of the second pump 12 in the second pump flow path 32.
  • the radiator 13 is disposed in the radiator flow path 33.
  • the device 16 is disposed in the device flow path 36.
  • the cooler core 17 is disposed in the cooler core flow path 37.
  • the heater core 18 is disposed in the heater core flow path 38.
  • the first pump flow path 31, the second pump flow path 32, the radiator flow path 33, the equipment flow path 36, the cooler core flow path 37, and the heater core flow path 38 are the first switching valve 19 and the second switching path. Connected to the valve 20.
  • the first switching valve 19 and the second switching valve 20 are switching units (heat medium flow switching units) that switch the flow of cooling water.
  • the first switching valve 19 is a multi-way valve having a large number of ports (first switching valve ports) constituting the inlet or outlet of the cooling water. Specifically, the first switching valve 19 has a first inlet 19a and a second inlet 19b as cooling water inlets, and first to third outlets 19c to 19e as cooling water outlets.
  • the second switching valve 20 is a multi-way valve having a large number of ports (second switching valve ports) constituting an inlet or an outlet of the cooling water. Specifically, the second switching valve 20 has a first outlet 20a and a second outlet 20b as cooling water outlets, and first to third inlets 20c to 20e as cooling water inlets.
  • One end of the first pump flow path 31 is connected to the first inlet 19 a of the first switching valve 19.
  • the cooling water outlet side of the cooling water cooler 14 is connected to the first inlet 19 a of the first switching valve 19.
  • One end of a cooler core flow path 37 is connected to a portion of the first pump flow path 31 between the cooling water cooler 14 and the first switching valve 19.
  • the coolant inlet side of the cooler core 17 is connected to the coolant outlet side of the coolant cooler 14.
  • One end of the second pump flow path 32 is connected to the second inlet 19b of the first switching valve 19.
  • the cooling water outlet side of the cooling water heater 15 is connected to the second inlet 19 b of the first switching valve 19.
  • One end of a radiator flow path 33 is connected to the first outlet 19c of the first switching valve 19.
  • the cooling water inlet side of the radiator 13 is connected to the first outlet 19 c of the first switching valve 19.
  • One end of a device flow path 36 is connected to the second outlet 19d of the first switching valve 19.
  • the cooling water inlet side of the device 16 is connected to the second outlet 19 d of the first switching valve 19.
  • One end of the heater core flow path 38 is connected to the third outlet 19e of the first switching valve 19.
  • the cooling water inlet side of the heater core 18 is connected to the third outlet 19 e of the first switching valve 19.
  • the other end of the first pump flow path 31 is connected to the first outlet 20a of the second switching valve 20.
  • the cooling water suction side of the first pump 11 is connected to the first outlet 20 a of the second switching valve 20.
  • the other end of the second pump flow path 32 is connected to the second outlet 20b of the second switching valve 20.
  • the cooling water suction side of the second pump 12 is connected to the second outlet 20 b of the second switching valve 20.
  • the other end of the heater core channel 38 is connected to a portion of the second pump channel 32 between the second switching valve 20 and the second pump 12.
  • the coolant outlet side of the heater core 18 is connected to the coolant intake side of the second pump 12.
  • the other end of the radiator flow path 33 is connected to the first inlet 20c of the second switching valve 20.
  • the cooling water outlet side of the radiator 13 is connected to the first inlet 20 c of the second switching valve 20.
  • the other end of the device flow path 36 is connected to the second inlet 20d of the second switching valve 20.
  • the cooling water outlet side of the device 16 is connected to the second inlet 20 d of the second switching valve 20.
  • the other end of the cooler core flow path 37 is connected to the third inlet 20e of the second switching valve 20.
  • the cooling water outlet side of the cooler core 17 is connected to the third inlet 20 e of the second switching valve 20.
  • the first switching valve 19 can arbitrarily or selectively switch the communication state between the inlets 19a and 19b and the outlets 19c to 19e.
  • the second switching valve 20 can also arbitrarily or selectively switch the communication state between the outlets 20a and 20b and the inlets 20c to 20e.
  • the first switching valve 19 is configured so that the cooling water discharged from the first pump 11 flows into the radiator 13, the device 16, and the heater core 18, and the cooling water discharged from the second pump 12. Is switched between a state in which the coolant flows and a state in which the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 do not flow.
  • the second switching valve 20 includes a state in which cooling water flows out to the first pump 11, a state in which cooling water flows out to the second pump 12, a first pump 11, The state where the cooling water does not flow out to the second pump 12 is switched.
  • Each of the first switching valve 19 and the second switching valve 20 includes a case forming an outer shell and a valve body accommodated in the case. An inlet and an outlet of the cooling water are formed at predetermined positions of the case, and the communication state between the inlet and the outlet of the cooling water is changed by rotating the valve body.
  • valve body of the first switching valve 19 and the valve body of the second switching valve 20 are independently rotationally driven by separate electric motors.
  • the valve body of the first switching valve 19 and the valve body of the second switching valve 20 may be rotationally driven in conjunction with a common electric motor.
  • the first switching valve 19 may be composed of a plurality of valve bodies.
  • the second switching valve 20 may be composed of a plurality of valve bodies.
  • the valve body of the first switching valve 19 and the valve body of the second switching valve 20 may be mechanically connected.
  • the valve body of the first switching valve 19 and the valve body of the second switching valve 20 may be integrally formed.
  • the first pump 11, the second pump 12, the cooling water cooler 14, the cooling water heater 15, the first switching valve 19, the second switching valve 20, the compressor 23, the expansion valve 24, and the relief valve 25 are a refrigeration cycle unit. 40.
  • the refrigeration cycle unit 40 includes a first pump 11, a second pump 12, a cooling water cooler 14, a cooling water heater 15, a first switching valve 19, a second switching valve 20, a compressor 23, an expansion valve 24, and a relief valve.
  • a housing (not shown) for housing 25 is included.
  • the refrigeration cycle unit 40 is disposed in the engine room 1 at the front of the vehicle.
  • the radiator 13 and the outdoor blower 21 are disposed at the forefront of the vehicle.
  • the cooler core 17 and the heater core 18 housed in the casing 28 of the indoor air conditioning unit 27 are arranged inside an instrument panel (instrument panel) provided at the foremost part in the passenger compartment 2.
  • the engine room 1 is an engine housing space for housing the engine, and is formed outside the vehicle compartment by a vehicle body member. In the vehicle front-rear direction, the engine room 1 is formed on the rear side of the frontmost part of the vehicle and on the front side of the firewall (not shown).
  • the firewall is a partition wall that partitions the vehicle compartment 2 and the engine compartment 1.
  • the engine room 1 is formed below the hood hood and above the lowest part of the vehicle body in the vertical direction of the vehicle.
  • the engine room 1 is formed inside the fender in the vehicle left-right direction.
  • an engine 16A, an inverter 16B, and a battery 16C are provided as the device 16.
  • Engine 16A and inverter 16B are arranged in engine room 1 of the vehicle.
  • the battery 16C is disposed in the trunk room 3 at the rear of the vehicle.
  • the control device (ECU) 50 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the control device performs various calculations and processes based on the air conditioning control program stored in the ROM, and the first pump 11, the second pump 12, the outdoor blower 21, the compressor 23, and the indoor blower connected to the output side. 26, controls the operation of the switching valve electric motor 51 and the like.
  • the switching valve electric motor 51 is a switching valve drive unit that drives the valve body of the first switching valve 19 and the valve body of the second switching valve 20.
  • an electric motor for driving the valve body of the first switching valve 19 and an electric motor for driving the valve body of the second switching valve 20 are provided separately.
  • the control device 50 is configured integrally with a control unit that controls various control target devices connected to the output side.
  • the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
  • the configuration (hardware and software) for controlling the operation of the first pump 11 and the second pump 12 is the pump control unit 50a.
  • the pump control unit 50a is a flow adjusting unit that causes cooling water to flow.
  • the pump control unit 50a may be configured separately from the control device 50.
  • the configuration (hardware and software) for controlling the operation of the outdoor fan 21 is the outdoor fan controller 50b (fan controller). You may comprise the outdoor air blower control part 50b with respect to the control apparatus 50 separately.
  • the configuration (hardware and software) for controlling the operation of the compressor 23 is the compressor control unit 50c.
  • the compressor control unit 50c may be configured separately from the control device 50.
  • the configuration (hardware and software) for controlling the operation of the indoor blower 26 is an indoor blower control unit 50d (blower control unit).
  • the indoor fan control unit 50d may be configured separately from the control device 50.
  • the configuration (hardware and software) for controlling the operation of the switching valve electric motor 51 is referred to as a switching valve control unit 50e.
  • the switching valve control unit 50e may be configured separately from the control device 50.
  • Detecting signals of sensor groups such as the inside air sensor 52, the outside air sensor 53, the first water temperature sensor 54, the second water temperature sensor 55, and the refrigerant temperature sensor 56 are input to the input side of the control device 50.
  • the inside air sensor 52 is a detector (inside air temperature detector) that detects the inside air temperature (in-vehicle temperature).
  • the outside air sensor 53 is a detector (outside air temperature detector) that detects outside air temperature (vehicle compartment outside temperature).
  • the first water temperature sensor 54 is a detector (first heat medium temperature detector) that detects the temperature of the cooling water flowing through the first pump flow path 31 (for example, the temperature of the cooling water flowing out of the cooling water cooler 14). is there.
  • the second water temperature sensor 55 is a detector (second heat medium temperature detector) that detects the temperature of the cooling water flowing through the second pump flow path 32 (for example, the temperature of the cooling water flowing out of the cooling water heater 15). is there.
  • the refrigerant temperature sensor 56 is a detector (refrigerant temperature detector) that detects the refrigerant temperature of the refrigeration cycle 22 (for example, the temperature of the refrigerant discharged from the compressor 23 or the temperature of the cooling water flowing out of the cooling water cooler 14). It is.
  • the refrigerant temperature sensor 56 may be arranged in a heat exchanger arranged in the refrigeration cycle 22 as necessary.
  • the inside air temperature, the outside air temperature, the cooling water temperature, and the refrigerant temperature may be estimated based on detection values of various physical quantities.
  • a refrigerant pressure sensor for detecting the refrigerant pressure of the refrigeration cycle 22 (for example, the pressure of the refrigerant discharged from the compressor 23 or the pressure of the cooling water flowing out of the cooling water cooler 14) is arranged. It may be.
  • the air conditioner switch 57 is a switch for switching on / off of the air conditioner, and is disposed near the instrument panel in the passenger compartment.
  • the control device 50 is switched to various operation modes by controlling the operations of the first pump 11, the second pump 12, the compressor 23, the switching valve electric motor 51, and the like.
  • the first pump flow path 31, the radiator flow path 33, the equipment flow path 36, the cooler core flow path 37, and the heater core flow path 38 may be used as the first coolant circuit (first 1 heat medium circuit) is formed.
  • the second cooling water circuit (the second cooling water circuit (second) is composed of at least one other of the second pump flow channel 32, the radiator flow channel 33, the device flow channel 36, the cooler core flow channel 37, and the heater core flow channel 38. A heat medium circuit) is formed.
  • Each of the radiator flow path 33, the equipment flow path 36, the cooler core flow path 37, and the heater core flow path 38 is connected to the first cooling water circuit, and is connected to the second cooling water circuit.
  • the device 16 when the cooling water cooler 14 and the device 16 are connected to the same cooling circuit, the device 16 can be cooled by the cooling water cooled by the cooling water cooler 14. When the cooling water heater 15 and the device 16 are connected to the same cooling circuit, the device 16 can be heated by the cooling water heated by the cooling water heater 15.
  • the cooling water cooler 14 and the cooler core 17 are connected to the same cooling circuit, the air inside the vehicle interior can be cooled by the cooler core 17 so that the vehicle interior can be cooled.
  • the cooling water heater 15 and the heater core 18 are connected to the same cooling circuit, the air inside the vehicle interior can be heated by the heater core 18 to heat the vehicle interior.
  • the cooling water cooler 14 and the radiator 13 are connected to the same cooling circuit, the heat pump operation of the refrigeration cycle 22 can be performed. That is, in the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the radiator 13, so that the cooling water absorbs heat from the outside air by the radiator 13. Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 to dissipate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the outside air through the cooling water.
  • the refrigerant that has absorbed heat from the outside air in the cooling water cooler 14 radiates heat by exchanging heat with the cooling water in the second cooling water circuit in the cooling water heater 15. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
  • the control device 50 performs the control process shown in the flowchart of FIG. 4 when the compressor 23 is stopped. This control process is performed even when the ignition switch of the vehicle is turned off.
  • step S100 it is determined whether or not the refrigerant pressure Pc in the refrigeration cycle 22 exceeds a predetermined value P1.
  • the predetermined value P1 is stored in the control device 50 in advance.
  • the predetermined value P1 is a value equal to or lower than the valve opening pressure of the relief valve 25.
  • step S100 When it is determined that the refrigerant pressure Pc of the refrigeration cycle 22 does not exceed the predetermined value P1, the process returns to step S100, and when it is determined that the refrigerant pressure or temperature of the refrigeration cycle 22 exceeds the predetermined value, step Proceed to S110.
  • step S110 the first pump 11 and the outdoor blower 21 are operated, and the first switching valve 19 and the second switching valve 20 are switched so as to be in the operation mode shown in FIG.
  • the cooling water circulates in the radiator 13 and the cooling water cooler 14, the cooling water absorbs heat from the refrigerant in the cooling water cooler 14, and the cooling water dissipates heat to the outside air in the radiator 13. Therefore, the refrigerant of the refrigeration cycle 22 is cooled, and the refrigerant pressure Pc decreases.
  • the radiator 13 may be radiated naturally from the cooling water to the outside air without operating the outdoor blower 21.
  • step S120 it is determined whether or not the refrigerant pressure Pc in the refrigeration cycle 22 is equal to or less than a predetermined value P1. If it is determined that the refrigerant pressure Pc in the refrigeration cycle 22 is not equal to or less than the predetermined value P1, the process returns to step S120. On the other hand, when it determines with the refrigerant
  • the components of the refrigeration cycle 22 can be protected, and the compressor 23 can be operated without hindrance.
  • the first pump 11 and the outdoor blower 21 are stopped.
  • the first pump 11 and the outdoor blower 21 may be stopped.
  • steps S100 to S130 the operation / stop of the first pump 11 is switched according to the refrigerant pressure Pc of the refrigeration cycle 22, but the operation / stop of the first pump 11 is performed according to the refrigerant temperature Tc of the refrigeration cycle 22. May be switched. For example, when it is determined that the refrigerant temperature Tc of the refrigeration cycle 22 exceeds a predetermined value T1, the first pump 11 is operated, and it is determined that the refrigerant temperature Tc of the refrigeration cycle 22 is equal to or lower than the predetermined value T1. In this case, the first pump 11 may be stopped. In this case, the predetermined value T1 is lower than the refrigerant temperature corresponding to the valve opening pressure of the relief valve 25.
  • the refrigerant pressure Pc or temperature Tc of the refrigeration cycle 22 exceeds the predetermined values P1 and T1.
  • the first pump 11 may be stopped.
  • step S110 the first switching valve 19 and the second switching valve 20 are switched to operate the first pump 11 so as to be in the operation mode shown in FIG. 1, but the first switching is performed so as to be in the operation mode shown in FIG.
  • the second pump 12 may be operated by switching the valve 19 and the second switching valve 20.
  • the cooling water circulates in the radiator 13 and the cooling water heater 15, the cooling water absorbs heat from the refrigerant in the cooling water heater 15, and the cooling water dissipates heat to the outside air in the radiator 13. Therefore, the refrigerant of the refrigeration cycle 22 is cooled, and the refrigerant pressure Pc decreases.
  • the control device 50 when the compressor 23 is stopped, the control device 50 (pump control unit 50a) operates the first pump 11 to cause the cooling water to flow.
  • the cooling water flowing by the first pump 11 functions as a cooling fluid for cooling the refrigerant.
  • control device 50 (pump control unit 50a) estimates that the compressor 23 is stopped and the refrigerant pressure Pc or temperature Tc exceeds or exceeds predetermined values P1 and T1. If it is determined, at least one of the first pump 11 and the second pump 12 is operated.
  • a first switching valve that switches between a state in which cooling water circulates between the radiator 13 and the cooling water heater 15 and a state in which cooling water circulates between the radiator 13 and the cooling water cooler 14. 19 and the second switching valve 20 are provided.
  • the first switching valve 19 and the second switching valve 20 determine that the compressor 23 is stopped and the refrigerant pressure Pc or temperature Tc exceeds or is estimated to exceed the predetermined values P1 and T1. In this case, an operation pattern for switching to a state in which cooling water circulates between the radiator 13 and the cooling water cooler 14 is performed.
  • control device 50 stops the pump when the refrigerant pressure Pc or the temperature Tc is equal to or lower than the predetermined values P1 and T1 after the pump is operated.
  • the control device 50 may stop the pump when a predetermined time has elapsed after operating the pump.
  • control device 50 estimates that the compressor 23 is stopped and the refrigerant pressure Pc or temperature Tc exceeds or exceeds the predetermined values P1 and T1. If it is determined, the outdoor blower 21 is operated.
  • the coolant is cooled by circulating the cooling water, but in this embodiment, the coolant is cooled by introducing the outside air to the refrigeration cycle unit 40 as shown in FIG.
  • the front / rear and up / down arrows in FIG. 6 indicate the front / rear and up / down directions of the vehicle.
  • the refrigeration cycle unit 40 is disposed in the air guide duct 60.
  • the air guide duct 60 is an air guide unit that guides outside air to the refrigeration cycle unit 40.
  • the air duct 60 is an outside air passage forming member that forms an outside air passage through which outside air flows.
  • the air guide duct 60 is disposed so as to extend in the vertical direction in the engine room 1.
  • the opening surface of the opening 60 a on the lower end side of the air duct 60 is disposed in the lower part of the engine room 1.
  • the opening surface of the opening 60a on the lower end side of the air guide duct 60 is disposed above the lowest part of the vehicle body. In other words, the vertical distance LH from the ground surface to the opening surface of the opening 60a on the lower end side of the air guide duct 60 is larger than the minimum ground clearance LG of the vehicle.
  • the opening 60b on the upper end side of the air guide duct 60 opens in the cowl 4 of the vehicle.
  • the cowl 4 is a member on which a vehicle wiper (not shown) is arranged, and is arranged between the vehicle hood 5 and a windshield (not shown).
  • a cooling water pipe 40 a of the refrigeration cycle unit 40 passes through the air guide duct 60.
  • Two open / close doors 61 are arranged in the air guide duct 60.
  • the two opening / closing doors 61 are outside air passage opening / closing sections that open and close the outside air passage in the air guide duct 60.
  • One open / close door 61 is disposed between the refrigeration cycle unit 40 and the opening 60 a on the lower end side of the air guide duct 60, and the other open / close door 61 is the upper end of the refrigeration cycle unit 40 and the air guide duct 60. It arrange
  • the two open / close doors 61 are driven by the electric actuator 62.
  • the electric actuator 62 is a drive unit that drives the two opening / closing doors 61.
  • the operation of the electric actuator 62 is controlled by the control device 50.
  • control device 50 controls the operation of the electric actuator 62 so that the two open / close doors 61 open the outside air passage in the air guide duct 60 as shown in FIG.
  • the outside air in the outside air passage in the air guide duct 60 is heated by the refrigeration cycle unit 40 and natural convection is generated. Due to this natural convection, an outside air flow is generated in the outside air passage in the air guide duct 60 as shown by the arrows in FIG. 6, so that the outside air can be guided to the refrigeration cycle unit 40 to cool the refrigerant in the refrigeration cycle unit 40. .
  • control device 50 controls the operation of the electric actuator 62 so that the two open / close doors 61 open the outside air passage in the air guide duct 60 as shown in FIG.
  • the negative pressure is increased. Due to this negative pressure difference, an outside air flow is generated in the outside air passage in the air guide duct 60 as shown by the arrows in FIG. 7, so that the outside air is guided to the refrigeration cycle unit 40 and the refrigerant in the refrigeration cycle unit 40 is supplied. Can be cooled.
  • control device 50 controls the operation of the electric actuator 62 so that the two opening / closing doors 61 close the outside air passage in the air guide duct 60 as shown in FIG.
  • the air of the refrigeration cycle unit 40 is heated and heated by the waste heat of the compressor 23, the first pump 11, the second pump 12, and the like.
  • the absorbed air is absorbed by the refrigerant flowing through the cooling water cooler 14. Therefore, waste heat from the compressor 23, the first pump 11, the second pump 12, and the like can be used for heating.
  • the refrigerant can be cooled by flowing the outside air even when the compressor 23 is stopped, and the pressure of the refrigerant is excessive. It is possible to suppress the rise.
  • the air guide duct 60 has at least two openings 60a and 60b, and the opening surfaces of the two openings 60a and 60b are arranged at different heights in the vehicle vertical direction. . According to this, since the outside air can be flowed using natural convection, the power for blowing the outside air can be made unnecessary or reduced.
  • the two openings 60a and 60b of the air guide duct 60 have a pressure lower than that of the other opening 60b due to the traveling wind of the vehicle.
  • the outside air can be flowed by utilizing the pressure drop caused by the traveling wind, the power for blowing the outside air can be made unnecessary or reduced.
  • a blower 63 is arranged in the outside air passage in the air guide duct 60 with respect to the second embodiment.
  • the blower 63 is an electric blower whose operation is controlled by the control device 50.
  • control device 50 controls the operation of the electric actuator 62 so that the two open / close doors 61 open the outside air passage in the air guide duct 60 and also operates the blower 63, thereby Since an outside air flow is generated in the outside air passage, the outside air can be guided to the refrigeration cycle unit 40 to cool the refrigerant in the refrigeration cycle unit 40.
  • the refrigerant in the refrigeration cycle unit 40 is cooled using the convection of the refrigerant.
  • the refrigeration cycle 22 includes a second expansion valve 65 and a second evaporator 66.
  • the second expansion valve 65 and the second evaporator 66 are arranged in parallel with the expansion valve 24 and the cooling water cooler 14 in the refrigerant flow of the refrigeration cycle 22.
  • the second expansion valve 65 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the cooling water heater 15.
  • the second evaporator 66 is an air cooling heat exchanger that heat-exchanges the low-pressure refrigerant decompressed and expanded by the second expansion valve 65 and the air into the vehicle interior to cool the air into the vehicle interior.
  • the second evaporator 66 is a refrigerant flow path forming member that forms a flow path through which the refrigerant flows.
  • the second evaporator 66 is disposed in the casing 28 of the indoor air conditioning unit 27. Therefore, the second evaporator 66 is disposed in the vehicle compartment 2 partitioned by the firewall 6 with respect to the engine room 1.
  • the interior of the vehicle compartment 2 in which the second evaporator 66 is arranged has a refrigeration cycle.
  • the environment becomes a low temperature environment. Therefore, the refrigerant circulates between the refrigeration cycle unit 40 and the second evaporator 66 by natural convection. At this time, the refrigerant radiates heat to the passenger compartment air in the second evaporator 66. Therefore, the refrigerant in the refrigeration cycle unit 40 can be cooled.
  • the 2nd evaporator 66 is arrange
  • the refrigerant is radiated by the second evaporator 66.
  • the refrigerant is radiated by the refrigerant pipe 67 constituting the refrigeration cycle 22, as shown in FIG.
  • the refrigerant pipe 67 is a refrigerant flow path forming member that forms a flow path through which the refrigerant flows, and is branched from the refrigerant circulation flow path of the refrigeration cycle 22.
  • the refrigerant circulation channel is a channel through which the refrigerant circulates through the compressor 23, the cooling water heater 15, the expansion valve 24, and the cooling water cooler 14.
  • the refrigerant pipe 67 is branched from between the compressor 23 and the cooling water heater 15.
  • the refrigerant pipe 67 may be branched from between the cooling water heater 15 and the expansion valve 24.
  • the refrigerant pipe 67 may be branched from between the expansion valve 24 and the cooling water cooler 14.
  • the refrigerant pipe 67 may be branched from between the cooling water cooler 14 and the compressor 23.
  • the refrigerant pipe 67 extends to a low temperature region (for example, the lower portion of the engine room 1) where the air temperature is lower than the region where the refrigeration cycle unit 40 is disposed.
  • the refrigerant goes back and forth through the refrigerant pipe 67 by natural convection, and the refrigerant radiates heat to the passenger compartment air through the refrigerant pipe 67. Therefore, the refrigerant in the refrigeration cycle unit 40 can be cooled.
  • the refrigerant pipe 67 branched from the refrigerant circulation channel extends to the low temperature region, but the same effect can be obtained even if the refrigerant circulation channel itself extends to the low temperature region. Even if at least one of the compressor 23, the cooling water heater 15, the expansion valve 24, and the cooling water cooler 14 is disposed in the low temperature region, the same effect can be obtained. (Sixth embodiment) In the first embodiment, when it is determined that the compressor 23 is stopped and the refrigerant pressure Pc or temperature Tc exceeds or is estimated to exceed the predetermined values P1 and T1, the pump 11 and the outdoor The blower 21 is activated.
  • the pump 12 and the outdoor blower 21 are used. In addition, the compressor 23 is also operated.
  • control device 50 performs the control process shown in the flowchart of FIG. 12 when the compressor 23 is stopped. This control process is performed even when the ignition switch of the vehicle is turned off.
  • steps S110 and S130 in the flowchart of FIG. 4 shown in the first embodiment are changed to steps S111 and S131.
  • step S100 When it is determined in step S100 that the refrigerant pressure Pc or temperature Tc of the refrigeration cycle 22 exceeds the predetermined values P1 and T1, the process proceeds to step S111, and the first switching valve 19 is set to the operation mode shown in FIG. And while switching the 2nd switching valve 20, the compressor 23, the 2nd pump 12, and the outdoor air blower 21 are operated.
  • a second cooling water circuit C2 having the radiator 13 and the cooling water heater 15 is formed.
  • the cooling water circulates in the radiator 13 and the cooling water heater 15, so that the cooling water absorbs heat from the refrigerant in the cooling water heater 15, and the radiator 13 Cooling water dissipates heat to the outside air. Therefore, the refrigerant of the refrigeration cycle 22 is cooled, and the refrigerant pressure Pc decreases.
  • step S120 If it is determined in step S120 that the refrigerant pressure Pc or temperature Tc of the refrigeration cycle 22 is equal to or less than the second predetermined value P2, T2, the process proceeds to step S131, and the compressor 23, the second pump 12, and the outdoor blower 21 are stopped.
  • the second predetermined values P2 and T2 are stored in the control device 50 in advance.
  • the second predetermined values P2 and T2 may be the same values as the predetermined values P1 and T1.
  • control device 50 (specifically, the pump control unit 50a, the outdoor fan control unit 50b, and the compressor control unit 50c) has the compressor 23 stopped, and the refrigerant pressure Pc or temperature Tc is When it is determined that the predetermined values P1 and T1 are exceeded or estimated to exceed, the compressor 23, the pump 12, and the outdoor blower 21 are operated.
  • control device 50 (specifically, the pump control unit 50a, the outdoor blower control unit 50b, and the compressor control unit 50c) operates the compressor 23, the pumps 11 and 12, and the outdoor blower 21, When the refrigerant pressure Pc or the temperature Tc becomes equal to or lower than the second predetermined values P2 and T2, the compressor 23, the pump 12, and the outdoor blower 21 are stopped.
  • FIG. (Seventh embodiment) In the sixth embodiment, when it is determined that the compressor 23 is stopped and the refrigerant pressure Pc or the temperature Tc exceeds or is estimated to exceed the predetermined values P1, T1, the compressor 23, Although the 2nd pump 12 and the outdoor air blower 21 are operated, in this embodiment, it is estimated that the compressor 23 has stopped and the refrigerant
  • the 1st pump 11 is also operated.
  • the cooling water cooled by the cooling water cooler 14 circulates in the first cooling water circuit C 1 having the cooler core 17. Therefore, since the cold heat can be stored in the entire first cooling water circuit C1, the temperature rise of the refrigerant after stopping the compressor 23 can be further suppressed and the pressure increase of the refrigerant can be further suppressed as compared with the sixth embodiment. .
  • the compressor 23 After the compressor 23, the first pump 11, the second pump 12, and the outdoor blower 21 are operated, when the refrigerant pressure Pc or the temperature Tc becomes equal to or lower than the second predetermined value P2, T2, the compression is performed.
  • the machine 23, the 1st pump 11, the 2nd pump 12, and the outdoor air blower 21 are stopped.
  • the first pump 11 and the first pump 11 when it is determined that the compressor 23 is stopped and the refrigerant pressure Pc or the temperature Tc exceeds or is estimated to exceed the predetermined values P1 and T1, the first pump 11 and the first pump 11 Although both of the two pumps 12 are operated, the first pump 11 may be operated and the second pump 12 may not be operated.
  • control device 50 performs the control process shown in the flowchart of FIG. 15 when the compressor 23 is stopped. This control process is performed even when the ignition switch of the vehicle is turned off.
  • step S120 in the flowchart of FIG. 12 shown in the sixth embodiment is changed to step S121.
  • step S121 it is determined whether or not the temperature Tw of the cooling water circulated by the pump is equal to or lower than the cooling water temperature predetermined value T3 (heat medium temperature predetermined value).
  • the cooling water temperature predetermined value T3 is stored in the control device 50 in advance.
  • the process returns to step S120.
  • the process proceeds to step S131, and the compressor 23, the second pump 12, and the outdoor blower 21 are stopped.
  • the temperature Tw of the cooling water has a correlation with the temperature Tc and the pressure Pc of the refrigerant in the refrigeration cycle 22. Specifically, the higher the temperature Tw of the cooling water, the higher the temperature Tc and the pressure Pc of the refrigerant in the refrigeration cycle 22.
  • the refrigerant temperature Tc of the refrigeration cycle 22 is equal to or lower than the second predetermined value T2.
  • the refrigerant temperature Tc of the refrigeration cycle 22 is not equal to or lower than the second predetermined value T2.
  • the refrigerant pressure Pc in the refrigeration cycle 22 is equal to or lower than the second predetermined value P2.
  • the refrigerant pressure Pc in the refrigeration cycle 22 is not equal to or lower than the second predetermined value P2.
  • control device 50 (pump control unit 50a, outdoor fan control unit 50b, compressor control unit 50c) operates the compressor 23, the pump 12, and the outdoor blower 21, and then the temperature Tw of the cooling water is When the cooling water temperature falls below the predetermined value T3, the compressor 23, the pump 12 and the blower 21 are stopped.
  • step S111 of this embodiment you may make it operate the 1st pump 11 in addition to the compressor 23, the 2nd pump 12, and the outdoor air blower 21.
  • step S131 the first pump 11 may be stopped in addition to the compressor 23, the second pump 12, and the outdoor blower 21.
  • the compressor 23 when the compressor 23 has stopped, the pressure rise of a refrigerant
  • coolant is suppressed by cooling the cooling water of a cooling water circuit.
  • the compressor 23 when the compressor 23 is stopped, the refrigerant pressure rise is suppressed by dissipating the cooling water of the engine cooling circuit C3.
  • the engine cooling circuit C3 is a cooling water circuit that circulates engine cooling water (cooling medium for the internal combustion engine) in the engine 70 (internal combustion engine), and includes an engine pump 71 and an engine radiator 72.
  • the engine pump 71 is a pump that circulates engine coolant in the engine cooling circuit C3.
  • the engine radiator 72 is a heat exchanger (heat exchanger for cooling an internal combustion engine) that cools the engine coolant by exchanging heat between the engine coolant and the outside air.
  • the engine radiator 72 functions as a radiator that radiates heat of engine cooling water to the outside air. Outside air is blown to the engine radiator 72 by the outdoor blower 21.
  • steps S110 and S130 in the flowchart of FIG. 4 shown in the first embodiment are changed to steps S112 and S132.
  • step S100 When it is determined in step S100 that the refrigerant pressure Pc or temperature Tc of the refrigeration cycle 22 exceeds the predetermined values P1 and T1, the process proceeds to step S112, and the outdoor fan 21 is operated.
  • the engine radiator 72 dissipates heat to the outside air and is cooled by the engine radiator 72, so that the temperature rise in the engine room due to the residual heat of the engine 70 is suppressed. Therefore, since the rise in the atmospheric temperature of the refrigeration cycle 22 is suppressed, the temperature rise of the refrigerant is suppressed and the pressure increase of the refrigerant is suppressed.
  • step S120 When it is determined in step S120 that the refrigerant pressure Pc or temperature Tc of the refrigeration cycle 22 is equal to or less than the second predetermined value P2, T2, the process proceeds to step S132, and the outdoor blower 21 is stopped.
  • the vehicle air conditioner of the present embodiment includes an engine radiator 72 that exchanges heat between engine coolant and air, and an outdoor fan 21 that blows air to the engine radiator 72.
  • the control device 50 specifically, the outdoor fan control unit 50b
  • the outdoor fan control unit 50b determines that the refrigerant pressure Pc or the temperature Tc exceeds or is estimated to exceed the predetermined values P1 and T1, the outdoor fan 21 is operated.
  • the refrigeration cycle unit 40 may be provided with a member having a large heat capacity.
  • the housing of the refrigeration cycle unit 40 is configured with a member having a large heat capacity. Thereby, it can suppress that the refrigerant
  • the enclosure which restricts the heat exchange amount with outside air is arrange
  • the refrigeration cycle unit 40 is disposed in the engine room 1, it may be disposed in a space in which a heat generator such as a motor (for example, an electric motor for traveling) or a fuel cell is disposed. In this case, even if the refrigeration cycle unit 40 is affected by the heat generated by the prime mover or the fuel cell, the refrigerant pressure in the refrigeration cycle unit 40 can be prevented from rising excessively.
  • a heat generator such as a motor (for example, an electric motor for traveling) or a fuel cell
  • cooling water is used as the heat medium flowing through the cooler core 17, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of heat stored in the heat medium itself can be increased.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. May be.
  • the refrigeration cycle 22 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. You may comprise.
  • the vehicle thermal management system 10 is applied to a hybrid vehicle.
  • an electric vehicle that does not have an engine and obtains driving force for traveling from a traveling electric motor, or hydrogen and oxygen
  • the vehicle thermal management system 10 may be applied to a fuel cell vehicle or the like that travels by obtaining electric power by the reaction of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 車両用空調装置は、圧縮機(23)、熱媒体加熱用熱交換器(15)および流動調整部(50b、60)を備える。圧縮機(23)は冷媒を吸入して吐出する。熱媒体加熱用熱交換器(15)は、圧縮機(23)から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて熱媒体を加熱する。流動調整部(50b、60)は、圧縮機(23)が停止している場合、冷媒を冷却するための冷却流体を流動させる。車両用空調装置は、冷凍サイクルユニット(40)および部材(66、67)とをさらに備える。冷凍サイクルユニット(40)は、冷凍サイクル(22)を構成する複数の機器(14、15、23、24)で構成される。部材(66、67)は、冷凍サイクルユニット(40)が配置される領域と比較して空気温度の低い低温領域に配置され、内部を冷媒が流れる。

Description

車両用熱管理システム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年6月18日に出願された日本特許出願2013-127529および2014年4月11日に出願された日本特許出願2014-81927を基にしている。
 本開示は、車両に用いられる熱管理システムに関する。
 従来、車両に搭載される冷凍サイクル装置には、冷媒の圧力が過剰に上昇したときの安全装置としてリリーフ弁が設置されている。リリーフ弁は、冷媒の圧力が所定圧力以上となった際に開弁して、冷媒の圧力を冷凍サイクル装置の外部へ逃がす役割を果たす。
 冷媒の圧力が過剰に上昇する原因としては、冷凍サイクル装置の停止時(圧縮機の停止時)に冷凍サイクル装置の周辺の雰囲気温度が高温になることが挙げられる。すなわち、冷凍サイクル装置の主要機器はエンジンルームに配置されており、エンジンルームは、エンジンやエンジンラジエータ等のエンジン機器から発生する熱や、夏季の日射等によって非常に高温になる。その結果、冷凍サイクル装置内の冷媒も非常に高温になって、冷媒の圧力が過剰に上昇することとなる。
 一方、特許文献1には、冷凍サイクル装置で加熱または冷却されたクーラントを用いて車室内の空調を行う車両用空調装置が記載されている。具体的には、冷凍サイクル装置を構成するコンデンサにおいて、高温冷媒とクーラントとを熱交換させてクーラントを加熱し、冷凍サイクル装置を構成するチラーにおいて、低温冷媒とクーラントとを熱交換させてクーラントを冷却する。
国際公開第2012/112760号
 しかしながら、本願発明者らの検討によると、特許文献1の従来技術によると、コンデンサにおいて高温冷媒とクーラントとを熱交換させるので、コンデンサにおいて高温冷媒と外気とを熱交換させる場合と比較して、冷凍サイクル装置の停止時(圧縮機の停止時)に冷媒の圧力が過剰に上昇しやすいおそれがある。
 すなわち、コンデンサにおいて高温冷媒と外気とを熱交換させる場合には、冷媒の熱が外気に自然放熱されるので冷媒の圧力上昇を抑制できるのに対し、特許文献1の従来技術のようにコンデンサにおいて高温冷媒とクーラントとを熱交換させる場合には、冷媒の熱を自然放熱させるのが困難であるため、冷媒の圧力が過剰に上昇しやすくなってしまう。
 その結果、リリーフ弁が開弁して冷媒が大気に放出されることが起こりやすくなってしまう。また、冷媒の圧力が高い状況になる時間が長くなることによって、冷凍サイクルの構成機器や配管の寿命が短くなってしまう。
 本開示は上記点に鑑みて、冷媒の圧力が過剰に上昇することを抑制することを目的とする。
 上記目的を達成するため、本開示の車両用熱管理システムは、圧縮機、熱媒体加熱用熱交換器、および流動調整部を備える。圧縮機は冷媒を吸入して吐出する。熱媒体用熱交換器は、圧縮機から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて熱媒体を加熱する。流動調整部は、圧縮機が停止している場合、冷媒を冷却するための冷却流体を流動させる。
 これにより、圧縮機が停止している場合であっても冷却流体を流動させることによって冷媒を冷却できるので、冷媒の圧力が過剰に上昇することを抑制できる。
 あるいは、本開示の車両用熱管理システムは、圧縮機、熱媒体加熱用熱交換器、減圧部、熱媒体冷却用熱交換器、熱媒体空気熱交換器、ポンプ、送風機および制御部を備えても良い。圧縮機は、冷媒を吸入して吐出する。熱媒体加熱用熱交換器は、圧縮機から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて熱媒体を加熱する。減圧部は、熱媒体加熱用熱交換器で熱交換された冷媒を減圧膨張させる。熱媒体冷却用熱交換器は、減圧部で減圧膨張された冷媒と熱媒体とを熱交換させて熱媒体を冷却する。熱媒体空気熱交換器は、熱媒体と空気とを熱交換させる。ポンプは、熱媒体冷却用熱交換器および熱媒体空気熱交換器に熱媒体を循環させる。送風機は、熱媒体空気熱交換器に空気を送風する。制御部は、圧縮機が停止しており、かつ冷媒の圧力または温度が所定値を超えている、または超えると推定されると判定した場合、圧縮機、ポンプおよび送風機を作動させる。
 これによると、圧縮機が停止した後において冷媒の圧力が上昇している、または上昇すると推定される場合に熱媒体を流動させ、かつ熱媒体空気熱交換器に空気を送風させ、さらに冷媒を循環させることができる。従って、冷媒を冷却でき、冷媒の圧力が過剰に上昇することを抑制できる。
 あるいは、本開示の車両用熱管理システムは、圧縮機、熱媒体加熱用熱交換器、減圧部、熱媒体冷却用熱交換器、熱媒体空気熱交換器、ポンプ、内燃機関冷却用熱交換器、送風機および制御部を備えても良い。
 圧縮機は冷媒を吸入して吐出する。熱媒体加熱用熱交換器は、圧縮機から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて熱媒体を加熱する。減圧部は、熱媒体加熱用熱交換器で熱交換された冷媒を減圧膨張させる。熱媒体冷却用熱交換器は、減圧部で減圧膨張された冷媒と熱媒体とを熱交換させて熱媒体を冷却する。熱媒体空気熱交換器は、熱媒体と空気とを熱交換させる。ポンプは、熱媒体冷却用熱交換器および熱媒体空気熱交換器に熱媒体を循環させる。内燃機関冷却用熱交換器は、内燃機関を冷却する内燃機関用冷却媒体と空気とを熱交換させる。送風機は、内燃機関冷却用熱交換器に空気を送風する。送風機制御部は、内燃機関および圧縮機が停止しており、冷媒の圧力または温度が所定値を超えている、または超えると推定されると判定した場合、送風機を作動させる。
 これによると、圧縮機が停止している場合であっても内燃機関用冷却媒体を空気に放熱させて内燃機関の残熱を低減できるので、内燃機関の残熱によって冷媒が加熱されて冷媒の温度が上昇することを抑制できる。その結果、冷媒の圧力が過剰に上昇することを抑制できる。
 あるいは、本開示の車両用熱管理システムは、冷凍サイクルユニットと冷媒流路形成部材を備えても良い。
 冷凍サイクルユニットは、冷凍サイクルを構成する複数の機器で構成される。冷媒流路形成部材は、冷凍サイクルユニットが配置される領域と比較して空気温度の低い低温領域に配置され、冷媒が流れる流路を形成する。
 これにより、圧縮機が停止している場合であっても冷媒の自然対流によって冷媒が冷却されるので、冷媒の圧力が過剰に上昇することを抑制できる。
第1実施形態における車両用熱管理システムの全体構成図である。 第1実施形態における車両用熱管理システムが配置された車両を示す斜視透視図である。 第1実施形態の車両用熱管理システムにおける電気制御部を示すブロック図である。 第1実施形態における車両用熱管理システムの制御装置が実行する制御処理を示すフローチャートである。 第1実施形態における車両用熱管理システムの全体構成図であり、他の作動モードを示している。 第2実施形態における車両用熱管理システムの要部構成図である。 第2実施形態における車両用熱管理システムの要部構成図であり、車両が走行中の状態を示している。 第2実施形態における車両用熱管理システムの要部構成図であり、開閉ドアが閉じている状態を示している。 第3実施形態における車両用熱管理システムの要部構成図である。 第4実施形態における車両用熱管理システムの要部構成図である。 第5実施形態における車両用熱管理システムの要部構成図である。 第6実施形態における車両用熱管理システムの制御装置が実行する制御処理を示すフローチャートである。 第6実施形態における車両用熱管理システムの全体構成図である。 第7実施形態における車両用熱管理システムの全体構成図である。 第8実施形態における車両用熱管理システムの制御装置が実行する制御処理を示すフローチャートである。 第9実施形態における車両用熱管理システムの全体構成図である。 第9実施形態における車両用熱管理システムの制御装置が実行する制御処理を示すフローチャートである。
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。本実施形態では、車両用熱管理システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車である。電池としては、例えばリチウムイオン電池を用いることができる。
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄えることができ、電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理システム10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
 図1に示すように、車両用熱管理システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、冷却水加熱器15、機器16、クーラコア17、ヒータコア18、第1切替弁19および第2切替弁20を備えている。
 第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。
 ラジエータ13、冷却水冷却器14、冷却水加熱器15および機器16は、冷却水が流通する冷却水流通機器(熱媒体流通機器)である。
 ラジエータ13は、冷却水と外気(車室外空気)とを熱交換する熱交換器(熱媒体外気熱交換、熱媒体空気熱交換器)である。ラジエータ13は、冷却水の温度が外気の温度よりも高い場合、冷却水の熱を外気に放熱させる放熱器として機能し、冷却水の温度が外気の温度よりも低い場合、冷却水に外気の熱を吸熱させる吸熱器として機能する。
 ラジエータ13には、室外送風機21によって外気が送風される。室外送風機21は、ラジエータ13に外気を送風する送風機であり、電動送風機で構成されている。ラジエータ13および室外送風機21は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。
 冷却水冷却器14は、冷却水を冷却する冷却器である。具体的には、冷却水冷却器14は、冷凍サイクル22の低圧側冷媒と冷却水とを熱交換させることによって冷却水を冷却する低圧側熱交換器(熱媒体冷却用熱交換器、あるいは熱媒体冷媒熱交換器)である。冷却水冷却器14の冷却水入口側(熱媒体入口側)は、第1ポンプ11の冷却水吐出側(熱媒体吐出側)に接続されている。
 冷却水加熱器15は、冷却水を加熱する加熱器である。具体的には、冷却水加熱器15は、冷凍サイクル22の高圧側冷媒と冷却水とを熱交換させることによって冷却水を加熱する高圧側熱交換器(熱媒体加熱用熱交換器、熱媒体冷媒熱交換器)である。冷却水加熱器15の冷却水入口側(熱媒体入口側)は、第2ポンプ12の冷却水吐出側(熱媒体吐出側)に接続されている。
 冷凍サイクル22は、圧縮機23、冷却水加熱器15、膨張弁24および冷却水冷却器14を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機23は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル22の冷媒を吸入して圧縮して吐出する。圧縮機23の冷媒吐出側には、リリーフ弁25が配置されている。リリーフ弁25は、冷媒の圧力が所定圧力以上となった際に開弁して、冷媒の圧力を冷凍サイクル22の外部へ逃がす圧力逃がし部である。
 冷却水加熱器15は、圧縮機23から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。膨張弁24は、冷却水加熱器15から流出した液相冷媒を減圧膨張させる減圧部である。
 冷却水冷却器14は、膨張弁24で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機23に吸入されて圧縮される。
 ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル22の低圧冷媒によって冷却水を冷却する。このため、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低温まで冷却できる。すなわち、冷却水冷却器14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。
 機器16は、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる機器(温度調整対象機器)である。機器16の例としては、インバータ、電池、電池温調用熱交換器、走行用電動モータ、エンジン機器、蓄冷熱体、換気熱回収熱交換器、冷却水冷却水熱交換器などが挙げられる。
 インバータは、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。
 電池温調用熱交換器は、電池への送風経路に配置され、空気と冷却水とを熱交換する熱交換器(空気熱媒体熱交換器)である。
 エンジン機器は、例えばターボチャージャ、インタークーラ、EGRクーラ、CVTウォーマ、CVTクーラ、排気熱回収器などである。
 ターボチャージャは、エンジンの吸入空気(吸気)を過給する過給機である。インタークーラは、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(吸気熱媒体熱交換器)である。
 EGRクーラは、エンジンの吸気側に戻されるエンジン排気ガス(排気)と冷却水とを熱交換して排気を冷却する排気冷却水熱交換器(排気熱媒体熱交換器)である。
 CVTウォーマは、CVT(無段変速機)を潤滑する潤滑油(CVTオイル)と冷却水とを熱交換してCVTオイルを加熱する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
 CVTクーラは、CVTオイルと冷却水とを熱交換してCVTオイルを冷却する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
 排気熱回収器は、排気と冷却水とを熱交換して冷却水に排気の熱を吸熱させる排気冷却水熱交換器(排気熱媒体熱交換器)である。
 蓄冷熱体は、冷却水が持つ温熱または冷熱を蓄えるものである。蓄冷熱体の例としては、化学蓄熱材、保温タンク、潜熱型蓄熱体(パラフィンや水和物系の物質)などが挙げられる。
 換気熱回収熱交換器は、換気で外に捨てられる熱(冷熱または温熱)を回収する熱交換器である。例えば、換気熱回収熱交換器が、換気で外に捨てられる熱(冷熱または温熱)を回収することによって、冷暖房に必要な動力を低減できる。
 冷却水冷却水熱交換器は、冷却水と冷却水とを熱交換する熱交換器である。例えば、冷却水冷却水熱交換器が、車両用熱管理システム10の冷却水(第1ポンプ11または第2ポンプ12によって循環される冷却水)と、エンジン冷却回路(エンジン冷却用の冷却水が循環する回路)の冷却水とを熱交換することによって、車両用熱管理システム10とエンジン冷却回路との間で熱をやり取りできる。
 クーラコア17は、冷却水と車室内への空気とを熱交換させて車室内への空気を冷却する空気冷却用熱交換器(空気冷却器)である。したがって、クーラコア17には、冷却水冷却器14や冷熱を発生する機器等で冷却された冷却水が流通する必要がある。
 ヒータコア18は、車室内への空気と冷却水とを熱交換させて車室内への空気を加熱する空気加熱用熱交換器(空気加熱器)である。したがって、ヒータコア18には、冷却水加熱器15や温熱を発生する機器等で加熱された冷却水が流通する必要がある。
 クーラコア17およびヒータコア18には、室内送風機26によって内気(車室内空気)、外気、または内気と外気との混合空気が送風される。室内送風機26は、クーラコア17およびヒータコア18に空気を送風する送風機であり、電動送風機で構成されている。
 クーラコア17、ヒータコア18および室内送風機26は、車両用空調装置の室内空調ユニット27のケーシング28に収容されている。室内空調ユニット27は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。ケーシング28は、室内空調ユニット27の外殻を形成している。
 ケーシング28は、車室内に送風される空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
 ケーシング28内の車室内空気流れ最上流側には、内外気切替装置(図示せず)が配置されている。内外気切替装置は、ケーシング28に内気と外気とを切替導入する内外気導入部である。
 ケーシング28の空気流れ最下流部には、クーラコア17およびヒータコア18で温度調整された空調風を、空調対象空間である車室内へ吹き出す開口部が形成されている。
 第1ポンプ11は第1ポンプ用流路31に配置されている。第1ポンプ用流路31において第1ポンプ11の冷却水吐出側には、冷却水冷却器14が配置されている。第2ポンプ12は第2ポンプ用流路32に配置されている。第2ポンプ用流路32において第2ポンプ12の冷却水吐出側には、冷却水加熱器15が配置されている。
 ラジエータ13はラジエータ用流路33に配置されている。機器16は機器用流路36に配置されている。クーラコア17はクーラコア用流路37に配置されている。ヒータコア18はヒータコア用流路38に配置されている。
 第1ポンプ用流路31、第2ポンプ用流路32、ラジエータ用流路33、機器用流路36、クーラコア用流路37およびヒータコア用流路38は、第1切替弁19および第2切替弁20に接続されている。
 第1切替弁19および第2切替弁20は、冷却水の流れを切り替える切替部(熱媒体流れ切替部)である。
 第1切替弁19は、冷却水の入口または出口を構成する多数個のポート(第1切替弁ポート)を有する多方弁である。具体的には、第1切替弁19は、冷却水の入口として第1入口19aおよび第2入口19bを有し、冷却水の出口として第1~第3出口19c~19eを有している。
 第2切替弁20は、冷却水の入口または出口を構成する多数個のポート(第2切替弁ポート)を有する多方弁である。具体的には、第2切替弁20は、冷却水の出口として第1出口20aおよび第2出口20bを有し、冷却水の入口として第1~第3入口20c~20eを有している。
 第1切替弁19の第1入口19aには、第1ポンプ用流路31の一端が接続されている。換言すれば、第1切替弁19の第1入口19aには、冷却水冷却器14の冷却水出口側が接続されている。
 第1ポンプ用流路31のうち冷却水冷却器14と第1切替弁19との間の部位には、クーラコア用流路37の一端が接続されている。換言すれば、冷却水冷却器14の冷却水出口側には、クーラコア17の冷却水入口側が接続されている。
 第1切替弁19の第2入口19bには、第2ポンプ用流路32の一端が接続されている。換言すれば、第1切替弁19の第2入口19bには、冷却水加熱器15の冷却水出口側が接続されている。
 第1切替弁19の第1出口19cには、ラジエータ用流路33の一端が接続されている。換言すれば、第1切替弁19の第1出口19cには、ラジエータ13の冷却水入口側が接続されている。
 第1切替弁19の第2出口19dには、機器用流路36の一端が接続されている。換言すれば、第1切替弁19の第2出口19dには、機器16の冷却水入口側が接続されている。
 第1切替弁19の第3出口19eには、ヒータコア用流路38の一端が接続されている。換言すれば、第1切替弁19の第3出口19eには、ヒータコア18の冷却水入口側が接続されている。
 第2切替弁20の第1出口20aには、第1ポンプ用流路31の他端が接続されている。換言すれば、第2切替弁20の第1出口20aには、第1ポンプ11の冷却水吸入側が接続されている。
 第2切替弁20の第2出口20bには、第2ポンプ用流路32の他端が接続されている。換言すれば、第2切替弁20の第2出口20bには、第2ポンプ12の冷却水吸入側が接続されている。
 第2ポンプ用流路32のうち第2切替弁20と第2ポンプ12との間の部位には、ヒータコア用流路38の他端が接続されている。換言すれば、第2ポンプ12の冷却水吸入側には、ヒータコア18の冷却水出口側が接続されている。
 第2切替弁20の第1入口20cには、ラジエータ用流路33の他端が接続されている。換言すれば、第2切替弁20の第1入口20cには、ラジエータ13の冷却水出口側が接続されている。
 第2切替弁20の第2入口20dには、機器用流路36の他端が接続されている。換言すれば、第2切替弁20の第2入口20dには、機器16の冷却水出口側が接続されている。
 第2切替弁20の第3入口20eには、クーラコア用流路37の他端が接続されている。換言すれば、第2切替弁20の第3入口20eには、クーラコア17の冷却水出口側が接続されている。
 第1切替弁19は、各入口19a、19bと各出口19c~19eとの連通状態を任意または選択的に切り替え可能である。第2切替弁20も、各出口20a、20bと各入口20c~20eとの連通状態を任意または選択的に切り替え可能である。
 具体的には、第1切替弁19は、ラジエータ13、機器16およびヒータコア18のそれぞれについて、第1ポンプ11から吐出された冷却水が流入する状態と、第2ポンプ12から吐出された冷却水が流入する状態と、第1ポンプ11から吐出された冷却水および第2ポンプ12から吐出された冷却水が流入しない状態を切り替える。
 第2切替弁20は、ラジエータ13、機器16およびクーラコア17のそれぞれについて、第1ポンプ11へ冷却水が流出する状態と、第2ポンプ12へ冷却水が流出する状態と、第1ポンプ11および第2ポンプ12へ冷却水が流出しない状態とを切り替える。
 第1切替弁19および第2切替弁20の構造例を簡単に説明する。第1切替弁19および第2切替弁20はそれぞれ、外殻をなすケースと、ケースに収容された弁体とを備える。ケースの所定の位置に冷却水の入口および出口が形成され、弁体が回転操作されることによって冷却水の入口と出口との連通状態が変化するようになっている。
 第1切替弁19の弁体および第2切替弁20の弁体は、別個の電動モータによって独立して回転駆動される。第1切替弁19の弁体および第2切替弁20の弁体は、共通の電動モータによって連動して回転駆動されるようになっていてもよい。
 第1切替弁19は、複数の弁体から構成されていてもよい。第2切替弁20は、複数の弁体から構成されていてもよい。第1切替弁19の弁体と第2切替弁20の弁体とが機械的に連結されていてもよい。第1切替弁19の弁体と第2切替弁20の弁体とが一体形成されていてもよい。
 第1ポンプ11、第2ポンプ12、冷却水冷却器14、冷却水加熱器15、第1切替弁19、第2切替弁20、圧縮機23、膨張弁24およびリリーフ弁25は、冷凍サイクルユニット40を構成している。
 冷凍サイクルユニット40は、第1ポンプ11、第2ポンプ12、冷却水冷却器14、冷却水加熱器15、第1切替弁19、第2切替弁20、圧縮機23、膨張弁24およびリリーフ弁25を収容する筐体(図示せず)を有している。
 図2に示すように、冷凍サイクルユニット40は、車両前部のエンジンルーム1内に配置されている。ラジエータ13および室外送風機21は車両最前部に配置されている。室内空調ユニット27のケーシング28に収容されたクーラコア17およびヒータコア18は、車室2内の最前部に設けられた計器盤(インストルメントパネル)の内側に配置されている。
 エンジンルーム1は、エンジンを収容するエンジン収容空間であり、車体部材によって車室外に形成されている。エンジンルーム1は、車両前後方向においては、車両の最前部よりも後方側、かつファイヤーウォール(図示せず)よりも前方側に形成されている。ファイヤーウォールは、車室2とエンジンルーム1とを仕切る隔壁である。
 エンジンルーム1は、車両上下方向においては、ボンネットフードの下方側、かつ車体の最も低い部位よりも上方側に形成されている。エンジンルーム1は、車両左右方向においては、フェンダーよりも内側に形成されている。
 図2の例では、機器16として、エンジン16A、インバータ16Bおよび電池16Cが設けられている。エンジン16Aおよびインバータ16Bは、車両のエンジンルーム1内に配置されている。電池16Cは、車両後部のトランクルーム3に配置されている。
 次に、車両用熱管理システム10の電気制御部を図3に基づいて説明する。制御装置(ECU)50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。制御装置は、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された第1ポンプ11、第2ポンプ12、室外送風機21、圧縮機23、室内送風機26、切替弁用電動モータ51等の作動を制御する。
 切替弁用電動モータ51は、第1切替弁19の弁体と第2切替弁20の弁体とを駆動する切替弁駆動部である。本実施形態では、切替弁用電動モータ51として、第1切替弁19の弁体駆動用の電動モータと、第2切替弁20の弁体駆動用の電動モータとが別個に設けられている。
 制御装置50は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
 本実施形態では、第1ポンプ11および第2ポンプ12の作動を制御する構成(ハードウェアおよびソフトウェア)をポンプ制御部50aとする。ポンプ制御部50aは、冷却水を流動させる流動調整部である。ポンプ制御部50aを制御装置50に対して別体で構成してもよい。
 本実施形態では、室外送風機21の作動を制御する構成(ハードウェアおよびソフトウェア)を室外送風機制御部50b(送風制御部)とする。室外送風機制御部50bを制御装置50に対して別体で構成してもよい。
 本実施形態では、圧縮機23の作動を制御する構成(ハードウェアおよびソフトウェア)を圧縮機制御部50cとする。圧縮機制御部50cを制御装置50に対して別体で構成してもよい。
 本実施形態では、室内送風機26の作動を制御する構成(ハードウェアおよびソフトウェア)を室内送風機制御部50d(送風制御部)とする。室内送風機制御部50dを制御装置50に対して別体で構成してもよい。
 本実施形態では、切替弁用電動モータ51の作動を制御する構成(ハードウェアおよびソフトウェア)を切替弁制御部50eとする。切替弁制御部50eを制御装置50に対して別体で構成してもよい。
 制御装置50の入力側には、内気センサ52、外気センサ53、第1水温センサ54、第2水温センサ55、冷媒温度センサ56等のセンサ群の検出信号が入力される。
 内気センサ52は、内気温(車室内温度)を検出する検出器(内気温度検出器)である。外気センサ53は、外気温(車室外温度)を検出する検出器(外気温度検出器)である。
 第1水温センサ54は、第1ポンプ用流路31を流れる冷却水の温度(例えば冷却水冷却器14から流出した冷却水の温度)を検出する検出器(第1熱媒体温度検出器)である。
 第2水温センサ55は、第2ポンプ用流路32を流れる冷却水の温度(例えば冷却水加熱器15から流出した冷却水の温度)を検出する検出器(第2熱媒体温度検出器)である。
 冷媒温度センサ56は、冷凍サイクル22の冷媒温度(例えば圧縮機23から吐出される冷媒の温度や、冷却水冷却器14から流出した冷却水の温度)を検出する検出器(冷媒温度検出器)である。冷媒温度センサ56は、必要に応じて冷凍サイクル22内に配置される熱交換器に配置されていてもよい。
 例えば、内気温、外気温、冷却水温度および冷媒温度を、種々の物理量の検出値に基づいて推定するようにしてもよい。
 冷媒温度センサ56の代わりに、冷凍サイクル22の冷媒圧力(例えば圧縮機23から吐出される冷媒の圧力や、冷却水冷却器14から流出した冷却水の圧力)を検出する冷媒圧力センサが配置されていてもよい。
 制御装置50の入力側には、エアコンスイッチ57からの操作信号が入力される。エアコンスイッチ57は、エアコンのオン・オフを切り替えるスイッチであり、車室内の計器盤付近に配置されている。
 次に、上記構成における作動を説明する。制御装置50が第1ポンプ11、第2ポンプ12、圧縮機23、切替弁用電動モータ51等の作動を制御することによって、種々の作動モードに切り替えられる。
 例えば、第1ポンプ用流路31とラジエータ用流路33、機器用流路36、クーラコア用流路37およびヒータコア用流路38とのうち少なくとも1つの流路とで第1冷却水回路(第1熱媒体回路)が形成される。第2ポンプ用流路32とラジエータ用流路33、機器用流路36、クーラコア用流路37およびヒータコア用流路38のうち少なくとも他の1つの流路とで第2冷却水回路(第2熱媒体回路)が形成される。
 ラジエータ用流路33、機器用流路36、クーラコア用流路37およびヒータコア用流路38のそれぞれについて、第1冷却水回路に接続される場合と、第2冷却水回路に接続される場合とを状況に応じて切り替えることによって、ラジエータ13、機器16、クーラコア17およびヒータコア18を状況に応じて適切な温度に調整できる。
 すなわち、冷却水冷却器14と機器16とが互いに同じ冷却回路に接続された場合、冷却水冷却器14で冷却された冷却水によって機器16を冷却できる。冷却水加熱器15と機器16とが互いに同じ冷却回路に接続された場合、冷却水加熱器15で加熱された冷却水によって機器16を加熱できる。
 冷却水冷却器14とクーラコア17とが互いに同じ冷却回路に接続された場合、クーラコア17によって車室内への空気を冷却して、車室内を冷房できる。
 冷却水加熱器15とヒータコア18とが互いに同じ冷却回路に接続された場合、ヒータコア18によって車室内への空気を加熱して、車室内を暖房できる。
 
 冷却水冷却器14とラジエータ13とが互いに同じ冷却回路に接続された場合、冷凍サイクル22のヒートポンプ運転を行うことができる。すなわち、第1冷却水回路では、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、冷却水加熱器15にて第2冷却水回路の冷却水と熱交換して放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。
 制御装置50は、圧縮機23が停止している場合、図4のフローチャートに示す制御処理を実施する。この制御処理は、車両のイグニッションスイッチがオフされている状態であっても実施される。
 ステップS100では、冷凍サイクル22の冷媒の圧力Pcが所定値P1を超えているか否かを判定する。所定値P1は、予め制御装置50に記憶されている。所定値P1は、リリーフ弁25の開弁圧以下の値である。
 冷凍サイクル22の冷媒の圧力Pcが所定値P1を超えていないと判定された場合、ステップS100へ戻り、冷凍サイクル22の冷媒の圧力または温度が所定値を超えていると判定された場合、ステップS110へ進む。
 ステップS110では、第1ポンプ11および室外送風機21を作動させるとともに、図1に示す作動モードになるように第1切替弁19および第2切替弁20を切り替える。
 これにより、ラジエータ13および冷却水冷却器14に冷却水が循環するので、冷却水冷却器14で冷却水が冷媒から吸熱し、ラジエータ13で冷却水が外気に放熱する。したがって、冷凍サイクル22の冷媒が冷却されて、冷媒の圧力Pcが低下する。
 ステップS110において、室外送風機21を作動させず、ラジエータ13で冷却水から外気に自然放熱させてもよい。
 ステップS120では、冷凍サイクル22の冷媒の圧力Pcが所定値P1以下であるか否かを判定する。冷凍サイクル22の冷媒の圧力Pcが所定値P1以下でないと判定された場合、ステップS120へ戻る。一方、冷凍サイクル22の冷媒の圧力Pcが所定値P1以下であると判定された場合、ステップS130へ進み、第1ポンプ11および室外送風機21を停止させる。
 これにより、圧縮機23が停止している場合であっても、冷媒の温度上昇を抑制して冷媒の圧力上昇を抑制できる。
 例えば、エンジン停止時およびエンジン作動時の両方においてエンジンルーム内の温度が上昇するような状況であっても、冷媒の圧力上昇を抑制できるので、冷凍サイクル22の構成機器を保護できるとともに、圧縮機23を支障なく作動させることができる。
 本例では、ステップS120、ステップS130において、冷凍サイクル22の冷媒の圧力Pcが所定値P1以下であると判定された場合、第1ポンプ11および室外送風機21を停止させる。しかしながら、ステップS110で第1ポンプ11および室外送風機21を作動させてからの経過時間が所定時間以上になったと判定された場合、第1ポンプ11および室外送風機21を停止させるようにしてもよい。
 また、ステップS100~S130において、冷凍サイクル22の冷媒の圧力Pcに応じて第1ポンプ11の作動・停止を切り替えるが、冷凍サイクル22の冷媒の温度Tcに応じて第1ポンプ11の作動・停止を切り替えるようにしてもよい。例えば、冷凍サイクル22の冷媒の温度Tcが所定値T1を超えていると判定された場合に第1ポンプ11を作動させ、冷凍サイクル22の冷媒の温度Tcが所定値T1以下であると判定された場合に第1ポンプ11を停止させるようにしてもよい。この場合、所定値T1は、リリーフ弁25の開弁圧に対応する冷媒の温度未満である。
 また、冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1をまだ超えていない場合であっても、冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えると推定される場合、第1ポンプ11を停止させるようにしてもよい。
 ステップS110では、図1に示す作動モードになるように第1切替弁19および第2切替弁20を切り替えて第1ポンプ11を作動させるが、図5に示す作動モードになるように第1切替弁19および第2切替弁20を切り替えて第2ポンプ12を作動させてもよい。
 これにより、ラジエータ13および冷却水加熱器15に冷却水が循環するので、冷却水加熱器15で冷却水が冷媒から吸熱し、ラジエータ13で冷却水が外気に放熱する。したがって、冷凍サイクル22の冷媒が冷却されて、冷媒の圧力Pcが低下する。
 本実施形態では、制御装置50(ポンプ制御部50a)は、圧縮機23が停止している場合、第1ポンプ11を作動させて冷却水を流動させる。第1ポンプ11によって流動される冷却水は、冷媒を冷却するための冷却流体として機能する。
 これにより、圧縮機23が停止している場合であっても冷媒を冷却できるので、冷媒の圧力が過剰に上昇することを抑制できる。
 具体的には、制御装置50(ポンプ制御部50a)は、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、第1ポンプ11および第2ポンプ12のうち少なくとも一方を作動させる。
 これにより、冷媒の圧力が上昇している、または上昇すると推定される場合に冷却水を流動させることができる。
 本実施形態では、ラジエータ13と冷却水加熱器15との間で冷却水が循環する状態と、ラジエータ13と冷却水冷却器14との間で冷却水が循環する状態とを切り替える第1切替弁19および第2切替弁20を備えている。
 第1切替弁19および第2切替弁20は、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、ラジエータ13と冷却水冷却器14との間で冷却水が循環する状態に切り替わる作動パターンを実施する。
 これにより、冷却水冷却器14に滞留した冷媒を冷却して極力液相状態にすることができるので、圧縮機23の再起動時に冷凍サイクル22の性能を速やかに発揮させることができる。
 本実施形態では、制御装置50(ポンプ制御部50a)は、ポンプを作動させた後、冷媒の圧力Pcまたは温度Tcが所定値P1、T1以下になった場合、ポンプを停止させる。
 これにより、ポンプが必要以上に作動することを抑制できるので、ポンプの消費動力を抑制できる。制御装置50(ポンプ制御部50a)は、ポンプを作動させた後、所定時間が経過した場合、ポンプを停止させるようにしてもよい。
 本実施形態では、制御装置50(室外送風機制御部50b)は、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、室外送風機21を作動させる。
 これにより、冷媒を効果的に冷却できるので、冷媒の圧力が過剰に上昇することを効果的に抑制できる。
(第2実施形態)
 上記実施形態では、冷却水を循環させることによって冷媒を冷却するが、本実施形態では、図6に示すように、冷凍サイクルユニット40に外気を導風することによって冷媒を冷却する。図6における前後上下の矢印は、車両の前後上下方向を示している。
 冷凍サイクルユニット40は、導風ダクト60内に配置されている。導風ダクト60は、冷凍サイクルユニット40に外気を導風する導風部である。
 導風ダクト60は、外気が流れる外気通路を形成する外気通路形成部材である。導風ダクト60は、エンジンルーム1内で上下方向に延びるように配置されている。
 導風ダクト60の下端側の開口部60aの開口面は、エンジンルーム1の下部に配置されている。導風ダクト60の下端側の開口部60aの開口面は、車体の最も低い部位よりも上方側に配置されている。換言すれば、地表面から導風ダクト60の下端側の開口部60aの開口面までの鉛直距離LHは、車両の最低地上高LGよりも大きくなっている。
 導風ダクト60の上端側の開口部60bは、車両のカウル4に開口している。カウル4は、車両のワイパー(図示せず)が配置される部材であり、車両のボンネットフード5とフロントガラス(図示せず)との間に配置されている。導風ダクト60には、冷凍サイクルユニット40の冷却水配管40aが貫通している。
 導風ダクト60内には2つの開閉ドア61が配置されている。2つの開閉ドア61は、導風ダクト60内の外気通路を開閉する外気通路開閉部である。
 一方の開閉ドア61は、冷凍サイクルユニット40と導風ダクト60の下端側の開口部60aとの間に配置されており、他方の開閉ドア61は、冷凍サイクルユニット40と導風ダクト60の上端側の開口部60bとの間に配置されている。
 2つの開閉ドア61は、電動アクチュエータ62によって駆動される。電動アクチュエータ62は、2つの開閉ドア61を駆動する駆動部である。電動アクチュエータ62の作動は、制御装置50によって制御される。
 制御装置50は、車両が駐車中の場合、図6に示すように2つの開閉ドア61が導風ダクト60内の外気通路を開けるように電動アクチュエータ62の作動を制御する。
 これによると、導風ダクト60内の外気通路の外気が冷凍サイクルユニット40によって加熱されて自然対流が発生する。この自然対流によって、図6の矢印に示すように導風ダクト60内の外気通路に外気流れが発生するので、冷凍サイクルユニット40に外気を導風して冷凍サイクルユニット40内の冷媒を冷却できる。
 制御装置50は、車両が走行中の場合、図7に示すように2つの開閉ドア61が導風ダクト60内の外気通路を開けるように電動アクチュエータ62の作動を制御する。
 これによると、導風ダクト60の下端側の開口部60aでは、導風ダクト60の上端側の開口部60bと比較して走行風の流速が高くなるので、負圧が大きくなる。この負圧の差によって、図7の矢印に示すように導風ダクト60内の外気通路に外気流れが発生するので、冷凍サイクルユニット40に外気を導風して冷凍サイクルユニット40内の冷媒を冷却できる。
 制御装置50は、圧縮機23が作動中の場合、図8に示すように2つの開閉ドア61が導風ダクト60内の外気通路を閉じるように電動アクチュエータ62の作動を制御する。
 これによると、導風ダクト60内の外気通路に外気流れが発生しないので、圧縮機23、第1ポンプ11および第2ポンプ12等の廃熱によって冷凍サイクルユニット40の空気が加熱され、加熱された空気が冷却水冷却器14を流れる冷媒に吸熱される。そのため、圧縮機23、第1ポンプ11および第2ポンプ12等の廃熱を暖房に利用できる。
 本実施形態では、導風ダクト60によって外気を流動させることができるので、圧縮機23が停止している場合であっても外気を流動させることによって冷媒を冷却でき、ひいては冷媒の圧力が過剰に上昇することを抑制できる。
 本実施形態では、導風ダクト60は、少なくとも2つの開口部60a、60bを有しており、2つの開口部60a、60bの開口面は、車両上下方向において互いに異なる高さに配置されている。これによると、自然対流を利用して外気を流動させることができるので、外気を送風させるための動力を不要としたり低減したりすることができる。
 本実施形態では、導風ダクト60の2つの開口部60a、60bは、車両が走行している場合、一方の開口部60aでは車両の走行風によって他方の開口部60bよりも圧力が低くなる。
 これによると、走行風によって生じる圧力の低下を利用して外気を流動させることができるので、外気を送風するための動力を不要としたり低減したりすることができる。
 本実施形態では、導風ダクト60内の外気通路を開閉する開閉ドア61を備えるので、外気が流動しない状態に切り替えることができる。そのため、冷媒を冷却する状態と冷却しない状態とを切り替えることができる。
(第3実施形態)
 本実施形態では、図9に示すように、上記第2実施形態に対して、導風ダクト60内の外気通路に送風機63が配置されている。送風機63は、制御装置50によって作動が制御される電動送風機である。
 これによると、制御装置50が、2つの開閉ドア61が導風ダクト60内の外気通路を開けるように電動アクチュエータ62の作動を制御するとともに送風機63を作動させることによって、導風ダクト60内の外気通路に外気流れが発生するので、冷凍サイクルユニット40に外気を導風して冷凍サイクルユニット40内の冷媒を冷却できる。
(第4実施形態)
 本実施形態では、冷媒の対流を利用して、冷凍サイクルユニット40内の冷媒を冷却する。
 図10に示すように、冷凍サイクル22は、第2膨張弁65および第2蒸発器66を有している。第2膨張弁65および第2蒸発器66は、冷凍サイクル22の冷媒流れにおいて、膨張弁24および冷却水冷却器14と並列に配置されている。
 第2膨張弁65は、冷却水加熱器15から流出した液相冷媒を減圧膨張させる減圧部である。第2蒸発器66は、第2膨張弁65で減圧膨張された低圧冷媒と車室内への空気とを熱交換させて車室内への空気を冷却する空気冷却用熱交換器である。第2蒸発器66は、冷媒が流れる流路を形成する冷媒流路形成部材である。
 第2蒸発器66は、室内空調ユニット27のケーシング28内に配置されている。したがって、第2蒸発器66は、エンジンルーム1に対してファイヤーウォール6で仕切られた車室2内に配置されている。
 圧縮機23が停止している場合において、エンジンルーム1が高温になって冷凍サイクルユニット40内の冷媒が高温になった場合、第2蒸発器66が配置される車室2内は、冷凍サイクルユニット40が配置されるエンジンルーム1と比較して低温環境となる。従って、冷媒が自然対流によって冷凍サイクルユニット40と第2蒸発器66との間を循環する。このとき、第2蒸発器66で冷媒が車室内空気に放熱する。そのため、冷凍サイクルユニット40内の冷媒を冷却できる。
 本実施形態では、第2蒸発器66は、冷凍サイクルユニット40が配置される領域と比較して空気温度の低い低温領域に配置されている。このため、圧縮機23が停止している場合、冷媒を自然対流で循環させて第2蒸発器66で冷媒を冷却できる。そのため、冷媒の圧力が過剰に上昇することを抑制できる。
(第5実施形態)
 上記第4実施形態では、第2蒸発器66で冷媒を放熱させるが、本実施形態では、図11に示すように、冷凍サイクル22を構成する冷媒配管67によって冷媒を放熱させる。
 冷媒配管67は、冷媒が流れる流路を形成する冷媒流路形成部材であり、冷凍サイクル22の冷媒循環流路から分岐している。冷媒循環流路は、冷媒が圧縮機23、冷却水加熱器15、膨張弁24および冷却水冷却器14を循環する流路である。
 例えば、冷媒配管67は、圧縮機23と冷却水加熱器15との間から分岐している。冷媒配管67は、冷却水加熱器15と膨張弁24との間から分岐していてもよい。冷媒配管67は、膨張弁24と冷却水冷却器14との間から分岐していてもよい。冷媒配管67は、冷却水冷却器14と圧縮機23との間から分岐していてもよい。
 冷媒配管67は、冷凍サイクルユニット40が配置される領域よりも空気温度の低い低温領域(例えば、エンジンルーム1の下部)まで延びている。
 冷媒は自然対流によって冷媒配管67を行き来し、冷媒配管67で冷媒が車室内空気に放熱する。そのため、冷凍サイクルユニット40内の冷媒を冷却できる。
 本例では、冷媒循環流路から分岐する冷媒配管67が低温領域まで延びているが、冷媒循環流路自体が低温領域まで延びていても、同様の作用効果を奏することができる。圧縮機23、冷却水加熱器15、膨張弁24および冷却水冷却器14のうち少なくとも一つが低温領域に配置されていても、同様の作用効果を奏することができる。
(第6実施形態)
 上記第1実施形態では、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、ポンプ11および室外送風機21を作動させる。本実施形態では、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、ポンプ12および室外送風機21に加えて圧縮機23も作動させる。
 具体的には、制御装置50は、圧縮機23が停止している場合、図12のフローチャートに示す制御処理を実施する。この制御処理は、車両のイグニッションスイッチがオフされている状態であっても実施される。
 図12のフローチャートでは、上記第1実施形態で示した図4のフローチャートにおけるステップS110、S130がステップS111、S131に変更されている。
 ステップS100において冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えていると判定された場合、ステップS111へ進み、図13に示す作動モードになるように第1切替弁19および第2切替弁20を切り替えるとともに、圧縮機23、第2ポンプ12および室外送風機21を作動させる。
 図13に示す作動モードでは、ラジエータ13および冷却水加熱器15を有する第2冷却水回路C2が形成される。
 これにより、圧縮機23が停止している場合であっても、ラジエータ13および冷却水加熱器15に冷却水が循環するので、冷却水加熱器15で冷却水が冷媒から吸熱し、ラジエータ13で冷却水が外気に放熱する。したがって、冷凍サイクル22の冷媒が冷却されて、冷媒の圧力Pcが低下する。
 さらに、冷凍サイクル22に冷媒が循環するので、冷却水冷却器14に冷熱が蓄えられる。そのため、上記第1実施形態と比較して、圧縮機23停止後の冷媒の温度上昇が一層抑制されて冷媒の圧力上昇が一層抑制される。
 ステップS120において冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが第2所定値P2、T2以下であると判定された場合、ステップS131へ進み、圧縮機23、第2ポンプ12および室外送風機21を停止させる。第2所定値P2、T2は、予め制御装置50に記憶されている。第2所定値P2、T2は、所定値P1、T1と同じ値であってもよい。
 本実施形態では、制御装置50(具体的にはポンプ制御部50a、室外送風機制御部50b、圧縮機制御部50c)は、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、圧縮機23、ポンプ12および室外送風機21を作動させる。
 これによると、圧縮機23が停止した後において冷媒の圧力が上昇している、または上昇すると推定される場合に冷却水を流動させ、かつラジエータ13に外気を送風させ、さらに冷凍サイクル22の冷媒を循環させることができる。従って、冷媒を確実に冷却でき、ひいては冷媒の圧力が過剰に上昇することを確実に抑制できる。
 本実施形態では、制御装置50(具体的にはポンプ制御部50a、室外送風機制御部50b、圧縮機制御部50c)は、圧縮機23、ポンプ11、12および室外送風機21を作動させた後、冷媒の圧力Pcまたは温度Tcが第2所定値P2、T2以下になった場合、圧縮機23、ポンプ12および室外送風機21を停止させる。
 これにより、圧縮機23、ポンプ12および室外送風機21が必要以上に作動することを抑制できるので、圧縮機23、ポンプ12および室外送風機21の消費動力を抑制できる。
 制御装置50(具体的にはポンプ制御部50a、室外送風機制御部50b、圧縮機制御部50c)は、圧縮機23、ポンプ12および室外送風機21を作動させた後、所定時間が経過した場合、圧縮機23、ポンプ12および室外送風機21を停止させるようにしてよい。
(第7実施形態)
 上記第6実施形態では、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、圧縮機23、第2ポンプ12および室外送風機21を作動させるが、本実施形態では、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、図14に示すように圧縮機23、第2ポンプ12および室外送風機21に加えて第1ポンプ11も作動させる。
 これによると、第1ポンプ11を作動させるので、冷却水冷却器14で冷却された冷却水が、クーラコア17を有する第1冷却水回路C1に循環する。そのため、第1冷却水回路C1全体に冷熱を蓄えることができるので、上記第6実施形態と比較して圧縮機23停止後の冷媒の温度上昇を一層抑制して冷媒の圧力上昇を一層抑制できる。
 本実施形態では、圧縮機23、第1ポンプ11、第2ポンプ12および室外送風機21を作動させた後、冷媒の圧力Pcまたは温度Tcが第2所定値P2、T2以下になった場合、圧縮機23、第1ポンプ11、第2ポンプ12および室外送風機21を停止させる。
 これにより、圧縮機23、第1ポンプ11、第2ポンプ12および室外送風機21が必要以上に作動することを抑制できるので、圧縮機23、第1ポンプ11、第2ポンプ12および室外送風機21の消費動力を抑制できる。
 本実施形態では、圧縮機23が停止しており、かつ冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、第1ポンプ11および第2ポンプ12の両方を作動させるが、第1ポンプ11を作動させて第2ポンプ12を作動させないようにしてもよい。
 これによると、冷却水冷却器14を有する第1冷却水回路に冷却水が循環するので、冷媒の温度上昇を抑制して冷媒の圧力上昇を抑制できる。
(第8実施形態)
 上記第6実施形態では、冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが第2所定値P2、T2以下であると判定された場合、圧縮機23、第2ポンプ12および室外送風機21を停止させる。本実施形態では、図15に示すように、冷却水の温度が冷却水温度所定値T3以下であると判定された場合、圧縮機23、第2ポンプ12および室外送風機21を停止させる。
 具体的には、制御装置50は、圧縮機23が停止している場合、図15のフローチャートに示す制御処理を実施する。この制御処理は、車両のイグニッションスイッチがオフされている状態であっても実施される。
 図15のフローチャートでは、上記第6実施形態で示した図12のフローチャートにおけるステップS120がステップS121に変更されている。
 ステップS121では、ポンプで循環されている冷却水の温度Twが冷却水温度所定値T3(熱媒体温度所定値)以下であるか否かを判定する。冷却水温度所定値T3は、予め制御装置50に記憶されている。
 冷却水の温度Twが冷却水温度所定値T3以下でないと判定された場合、ステップS120へ戻る。一方、冷却水の温度Twが冷却水温度所定値T3以下であると判定された場合、ステップS131へ進み、圧縮機23、第2ポンプ12および室外送風機21を停止させる。
 ここで、冷却水の温度Twは、冷凍サイクル22の冷媒の温度Tcおよび圧力Pcと相関関係がある。具体的には、冷却水の温度Twが高いほど、冷凍サイクル22の冷媒の温度Tcおよび圧力Pcが高くなる。
 本実施形態では、冷却水の温度Twが冷却水温度所定値T3以下である場合、冷凍サイクル22の冷媒の温度Tcが上述の第2所定値T2以下であると推定できる。冷却水の温度Twが冷却水温度所定値T3以下でない場合、冷凍サイクル22の冷媒の温度Tcが上述の第2所定値T2以下でないと推定できる。
 同様に、冷却水の温度Twが冷却水温度所定値T3以下である場合、冷凍サイクル22の冷媒の圧力Pcが上述の第2所定値P2以下であると推定できる。冷却水の温度Twが冷却水温度所定値T3以下でない場合、冷凍サイクル22の冷媒の圧力Pcが上述の第2所定値P2以下でないと推定できる。
 したがって、本実施形態においても上記第6実施形態と同様の作用効果を奏することができる。
 本実施形態では、制御装置50(ポンプ制御部50a、室外送風機制御部50b、圧縮機制御部50c)は、圧縮機23、ポンプ12および室外送風機21を作動させた後、冷却水の温度Twが冷却水温度所定値T3以下になった場合、圧縮機23、ポンプ12および送風機21を停止させる。
 これにより、圧縮機23、ポンプ12および室外送風機21が必要以上に作動することを抑制できるので、圧縮機23、ポンプ12および室外送風機21の消費動力を抑制できる。
 なお、本実施形態のステップS111において、圧縮機23、第2ポンプ12および室外送風機21に加えて第1ポンプ11も作動させるようにしてもよい。さらに、ステップS131において、圧縮機23、第2ポンプ12および室外送風機21に加えて第1ポンプ11も停止させるようにしてもよい。
(第9実施形態)
 上記実施形態では、圧縮機23が停止している場合、冷却水回路の冷却水を冷却させることによって冷媒の圧力上昇を抑制する。本実施形態では、圧縮機23が停止している場合、エンジン冷却回路C3の冷却水を放熱させることによって冷媒の圧力上昇を抑制する。
 エンジン冷却回路C3は、エンジン70(内燃機関)にエンジン冷却水(内燃機関用冷却媒体)を循環させる冷却水回路であり、エンジン用ポンプ71およびエンジン用ラジエータ72を備えている。
 エンジン用ポンプ71は、エンジン冷却回路C3にエンジン冷却水を循環させるポンプである。エンジン用ラジエータ72は、エンジン冷却水と外気とを熱交換させてエンジン冷却水を冷却する熱交換器(内燃機関冷却用熱交換器)である。エンジン用ラジエータ72は、エンジン冷却水の熱を外気に放熱させる放熱器として機能する。エンジン用ラジエータ72には、室外送風機21によって外気が送風される。
 図17のフローチャートでは、上記第1実施形態で示した図4のフローチャートにおけるステップS110、S130がステップS112、S132に変更されている。
 ステップS100において冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えていると判定された場合、ステップS112へ進み、室外送風機21を作動させる。
 これにより、エンジン用ラジエータ72でエンジン冷却水が外気に放熱して冷却されるので、エンジン70の残熱によるエンジンルーム内の温度上昇が抑制される。そのため、冷凍サイクル22の雰囲気温度の上昇が抑制されるので、冷媒の温度上昇が抑制されて冷媒の圧力上昇が抑制される。
 ステップS120において冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが第2所定値P2、T2以下であると判定された場合、ステップS132へ進み、室外送風機21を停止させる。
 本実施形態の車両用空調装置は、エンジン冷却水と空気とを熱交換させるエンジン用ラジエータ72と、エンジン用ラジエータ72に空気を送風する室外送風機21とを備える。制御装置50(具体的には室外送風機制御部50b)は、冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えている、または超えると推定されると判定した場合、室外送風機21を作動させる。
 これによると、圧縮機23が停止している場合であってもエンジン冷却水を外気に放熱させてエンジンルーム内の温度上昇を抑制できるので、上記第1実施形態と同様に、冷媒の温度上昇を抑制して冷媒の圧力上昇を抑制できる。
(他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 (1)冷凍サイクルユニット40に、熱容量の大きな部材を設けてもよい。例えば、冷凍サイクルユニット40の筐体を、熱容量の大きい部材で構成する。これにより、冷凍サイクルユニット40内の冷媒が高温になることを抑制できる。
 冷却水加熱器15に、外気との熱交換量を制限させる囲いが配置され、囲いと冷却水加熱器15との間に、冷却水加熱器15と接するように蓄冷材が配置されていてもよい。そして、冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えていると判定された場合、または冷凍サイクル22の冷媒の圧力Pcまたは温度Tcが所定値P1、T1を超えると推定される場合、第1ポンプ11を停止させるようにしてもよい。
 (2)冷凍サイクルユニット40がエンジンルーム1に配置されているが、車両の原動機(例えば走行用電動モータ)や燃料電池等の発熱機器が配置される空間に配置されていてもよい。この場合、冷凍サイクルユニット40が、原動機や燃料電池が発生する熱の影響を受けても、冷凍サイクルユニット40内の冷媒の圧力が過剰に上昇することを抑制できる。
 (3)上記実施形態では、クーラコア17を流れる熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。
 蓄冷熱量を増加させることにより、圧縮機23を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理システム10の省動力化が可能になる。
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。
 (4)上記実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 また、上記実施形態の冷凍サイクル22は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 (5)上記実施形態では、車両用熱管理システム10をハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用電動モータから車両走行用の駆動力を得る電気自動車や、水素と酸素との反応で電力を得て走行する燃料電池自動車等に車両用熱管理システム10を適用してもよい。

Claims (19)

  1.  冷媒を吸入して吐出する圧縮機(23)と、
     前記圧縮機(23)から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて前記熱媒体を加熱する熱媒体加熱用熱交換器(15)と、
     前記圧縮機(23)が停止している場合、前記冷媒を冷却するための冷却流体を流動させる流動調整部(50a、60)とを備える車両用熱管理システム。
  2.  前記熱媒体加熱用熱交換器(15)で熱交換された前記冷媒を減圧膨張させる減圧部(24)と、
     前記減圧部(24)で減圧膨張された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却する熱媒体冷却用熱交換器(14)と、
     前記熱媒体と空気とを熱交換させる熱媒体空気熱交換器(13、17、18)と、
     前記熱媒体冷却用熱交換器(14)および前記熱媒体空気熱交換器(13、17、18)に前記熱媒体を循環させるポンプ(11、12)とをさらに備え、
     前記冷却流体は前記熱媒体であり、
     前記流動調整部は、前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記ポンプ(11、12)を作動させるポンプ制御部(50a)である請求項1に記載の車両用熱管理システム。
  3.  前記熱媒体と空気とを熱交換させる熱媒体空気熱交換器(13、17、18)と、
     前記熱媒体加熱用熱交換器(15)および前記熱媒体空気熱交換器(13、17、18)に前記熱媒体を循環させるポンプ(11、12)とをさらに備え、
     前記冷却流体は前記熱媒体であり、
     前記流動調整部は、前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記ポンプ(11、12)を作動させるポンプ制御部(50a)である請求項1に記載の車両用熱管理システム。
  4.  前記熱媒体加熱用熱交換器(15)で熱交換された前記冷媒を減圧膨張させる減圧部(24)と、
     前記減圧部(24)で減圧膨張された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却する熱媒体冷却用熱交換器(14)と、
     前記熱媒体と空気とを熱交換させる熱媒体空気熱交換器(13)と、
     前記熱媒体空気熱交換器(13)に前記熱媒体を循環させるポンプ(11、12)と、
     前記熱媒体空気熱交換器(13)と前記熱媒体加熱用熱交換器(15)との間で前記熱媒体が循環する状態と、前記熱媒体空気熱交換器(13)と前記熱媒体冷却用熱交換器(14)との間で前記熱媒体が循環する状態とを切り替える切替部(19、20)とをさらに備え、
     前記冷却流体は前記熱媒体であり、
     前記流動調整部は、前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記ポンプ(11、12)を作動させるポンプ制御部(50a)である請求項1に記載の車両用熱管理システム。
  5.  前記切替部(19、20)は、前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が前記所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記熱媒体空気熱交換器(13、17、18)と前記熱媒体冷却用熱交換器(14)との間で前記熱媒体が循環する状態に切り替わる請求項4に記載の車両用熱管理システム。
  6.  前記ポンプ制御部(50a)は、前記ポンプ(11、12)を作動させた後、前記冷媒の圧力(Pc)または温度(Tc)が前記所定値(P1、T1)以下になった場合、前記ポンプ(11、12)を停止させる請求項2ないし5のいずれか1つに記載の車両用熱管理システム。
  7.  前記ポンプ制御部(50a)は、前記ポンプ(11、12)を作動させた後、所定時間が経過した場合、前記ポンプ(11、12)を停止させる請求項2ないし5のいずれか1つに記載の車両用熱管理システム。
  8.  前記熱媒体空気熱交換器(13、17、18)に空気を送風する送風機(21、26)、および
     前記送風機(21、26)を作動させる送風制御部(50b、50d)をさらに備え、
     前記送風制御部(50b、50d)は、前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が前記所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記送風手段(21、26)を作動させる請求項2ないし7のいずれか1つに記載の車両用熱管理システム。
  9.  冷媒を吸入して吐出する圧縮機(23)と、
     前記圧縮機(23)から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて前記熱媒体を加熱する熱媒体加熱用熱交換器(15)と、
     前記熱媒体加熱用熱交換器(15)で熱交換された前記冷媒を減圧膨張させる減圧部(24)と、
     前記減圧部(24)で減圧膨張された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却する熱媒体冷却用熱交換器(14)と、
     前記熱媒体と空気とを熱交換させる熱媒体空気熱交換器(13、17、18)と、
     前記熱媒体冷却用熱交換器(14)および前記熱媒体空気熱交換器(13、17、18)に前記熱媒体を循環させるポンプ(11、12)と、
     前記熱媒体空気熱交換器(13)に前記空気を送風する送風機(21)と、
     前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記圧縮機(23)、前記ポンプ(11、12)および前記送風機(21)を作動させる制御部(50a、50b、50c)を備える車両用熱管理システム。
  10.  前記制御部(50a、50b、50c)は、前記圧縮機(23)、前記ポンプ(11、12)および前記送風機(21)を作動させた後、前記冷媒の圧力(Pc)または温度(Tc)が第2所定値(P2、T2)以下になった場合、前記圧縮機(23)、前記ポンプ(11、12)および前記送風機(21)を停止させる請求項9に記載の車両用熱管理システム。
  11.  前記制御部(50a、50b、50c)は、前記圧縮機(23)、前記ポンプ(11、12)および前記送風機(21)を作動させた後、前記熱媒体の温度(Tw)が熱媒体温度所定値(T3)以下になった場合、前記圧縮機(23)、前記ポンプ(11、12)および前記送風機(21)を停止させる請求項9に記載の車両用熱管理システム。
  12.  冷媒を吸入して吐出する圧縮機(23)と、
     前記圧縮機(23)から吐出された冷媒と、空気とは異なる熱媒体とを熱交換させて前記熱媒体を加熱する熱媒体加熱用熱交換器(15)と、
     前記熱媒体加熱用熱交換器(15)で熱交換された前記冷媒を減圧膨張させる減圧部(24)と、
     前記減圧部(24)で減圧膨張された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却する熱媒体冷却用熱交換器(14)と、
     前記熱媒体と空気とを熱交換させる熱媒体空気熱交換器(13、17、18)と、
     前記熱媒体冷却用熱交換器(14)および前記熱媒体空気熱交換器(13、17、18)に前記熱媒体を循環させるポンプ(11、12)と、
     内燃機関(70)を冷却する内燃機関用冷却媒体と空気とを熱交換させる内燃機関冷却用熱交換器(72)と、
     前記内燃機関冷却用熱交換器(72)に空気を送風する送風機(21)と、
     前記内燃機関(70)および前記圧縮機(23)が停止しており、かつ前記冷媒の圧力(Pc)または温度(Tc)が所定値(P1、T1)を超えている、または超えると推定されると判定した場合、前記送風機(21)を作動させる送風機制御部(50b)とを備える車両用熱管理システム。
  13.  外気が流れる外気通路を形成する外気通路形成部材(60)をさらに備え、
     前記外気通路には、前記冷媒が流れる部材(40)が配置され、
     前記冷却流体は前記外気であり、
     前記流動調整部は、前記外気通路形成部材(60)である請求項1に記載の車両用熱管理システム。
  14.  前記外気通路形成部材(60)は、少なくとも2つの開口部(60a、60b)を有しており、
     前記2つの開口部(60a、60b)の開口面は、互いに異なる高さに配置されている請求項13に記載の車両用熱管理システム。
  15.  前記2つの開口部(60a、60b)は、車両が走行している場合、一方の開口部(60a)では車両の走行風によって他方の開口部(60b)よりも圧力が低くなるように構成されている請求項14に記載の車両用熱管理システム。
  16.  前記外気通路を開閉する開閉部(61)をさらに備える請求項13ないし15のいずれか1つに記載の車両用熱管理システム。
  17.  冷凍サイクル(22)を構成する複数の機器(14、15、23、24)で構成された冷凍サイクルユニット(40)と、
     前記冷凍サイクルユニット(40)が配置される領域と比較して空気温度の低い低温領域に配置され、前記冷凍サイクル(22)の冷媒が流れる流路を形成する冷媒流路形成部材(66、67)とを備える車両用熱管理システム。
  18.  前記冷媒流路形成部材は、前記冷凍サイクルユニット(40)から前記低温領域に延びる冷媒配管(67)である請求項17に記載の車両用熱管理システム。
  19.  前記冷媒流路形成部材は、前記冷媒と車室内の空気とを熱交換させて前記車室内の空気を冷却する空気冷却用熱交換器(66)である請求項17に記載の車両用熱管理システム。
PCT/JP2014/002922 2013-06-18 2014-06-03 車両用熱管理システム WO2014203476A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480034712.3A CN105324259B (zh) 2013-06-18 2014-06-03 车辆用热管理系统
US14/898,718 US9994087B2 (en) 2013-06-18 2014-06-03 Vehicular heat management system
DE112014002874.6T DE112014002874T5 (de) 2013-06-18 2014-06-03 Fahrzeugwärmemanagementsystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013127529 2013-06-18
JP2013-127529 2013-06-18
JP2014-081927 2014-04-11
JP2014081927A JP6052222B2 (ja) 2013-06-18 2014-04-11 車両用熱管理システム

Publications (1)

Publication Number Publication Date
WO2014203476A1 true WO2014203476A1 (ja) 2014-12-24

Family

ID=52104228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002922 WO2014203476A1 (ja) 2013-06-18 2014-06-03 車両用熱管理システム

Country Status (5)

Country Link
US (1) US9994087B2 (ja)
JP (1) JP6052222B2 (ja)
CN (1) CN105324259B (ja)
DE (1) DE112014002874T5 (ja)
WO (1) WO2014203476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065635A (ja) * 2015-10-02 2017-04-06 株式会社デンソー 車両用熱管理装置
CN107839433A (zh) * 2017-11-28 2018-03-27 中国第汽车股份有限公司 插电式混合动力汽车的整车热管理系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190513A (ja) * 2015-03-30 2016-11-10 富士重工業株式会社 車両用エアーコンディショナ装置
JP6540180B2 (ja) * 2015-04-14 2019-07-10 株式会社デンソー 車両用熱管理システム
JP6433403B2 (ja) * 2015-10-02 2018-12-05 トヨタ自動車株式会社 車両用熱管理装置
KR101846915B1 (ko) 2016-11-01 2018-05-28 현대자동차 주식회사 차량용 히트 펌프 시스템
KR101846923B1 (ko) * 2016-11-01 2018-04-09 현대자동차 주식회사 차량용 히트 펌프 시스템
CN106739943A (zh) * 2017-01-04 2017-05-31 上海爱斯达克汽车空调系统有限公司 一种具有热交换系统的车辆
JP6791052B2 (ja) * 2017-07-31 2020-11-25 株式会社デンソー 空調装置
CN107650619A (zh) * 2017-10-19 2018-02-02 天津商业大学 一种安全环保的汽车空调系统
JP6870570B2 (ja) 2017-10-26 2021-05-12 株式会社デンソー 車両用熱管理システム
KR102474356B1 (ko) * 2017-11-10 2022-12-05 현대자동차 주식회사 차량용 히트 펌프 시스템
US10551276B2 (en) * 2017-12-05 2020-02-04 Electricfil Corporation Vehicle coolant flow and coolant quality sensor assembly
JP7073863B2 (ja) 2018-04-06 2022-05-24 株式会社デンソー 車両用熱管理システム
KR102575170B1 (ko) * 2018-06-15 2023-09-05 현대자동차 주식회사 차량용 히트펌프 시스템
JP7268976B2 (ja) * 2018-08-10 2023-05-08 サンデン株式会社 車両用空気調和装置
US11065936B2 (en) * 2018-08-10 2021-07-20 GM Global Technology Operations LLC Vehicle thermal system architecture
JP7372732B2 (ja) * 2018-12-19 2023-11-01 サンデン株式会社 車両用空気調和装置
WO2020129258A1 (ja) * 2018-12-21 2020-06-25 本田技研工業株式会社 車両
JP7215162B2 (ja) * 2018-12-27 2023-01-31 株式会社デンソー 車両用空調装置
US11936029B2 (en) * 2019-03-08 2024-03-19 Hanon Systems Vehicular heat management system
JP7233986B2 (ja) * 2019-03-12 2023-03-07 サンデン株式会社 車両用空気調和装置
JP7111064B2 (ja) * 2019-06-11 2022-08-02 トヨタ自動車株式会社 Co2回収システム
CN112477543B (zh) * 2020-01-09 2024-01-26 株式会社电装 分体式汽车空调器
US11808477B2 (en) * 2020-02-06 2023-11-07 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus
DE102020129328A1 (de) * 2020-11-06 2022-05-12 Rheinmetall Invent GmbH Heiz- und Kühlsystem sowie Fahrzeug
JP2022108685A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 車両
US11541719B1 (en) 2021-07-14 2023-01-03 GM Global Technology Operations LLC Active thermal management systems and control logic for heat exchanger storage of refrigerant
US20230031346A1 (en) * 2021-07-29 2023-02-02 Rivian Ip Holdings, Llc Heating, ventilation, and air conditioning case with extractor port to ambient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262144A (ja) * 1991-12-04 1993-10-12 Honda Motor Co Ltd 電気自動車におけるバッテリ温度制御装置
JP2002248932A (ja) * 2001-02-26 2002-09-03 Sanyo Electric Co Ltd 車載空気調和機
JP2008265686A (ja) * 2007-04-24 2008-11-06 Denso Corp 車両用冷凍サイクル装置
JP2011105150A (ja) * 2009-11-18 2011-06-02 Hitachi Ltd 車両用空調装置
WO2012075975A1 (de) * 2010-08-24 2012-06-14 Ixetic Bad Homburg Gmbh Heiz-/kühleinrichtung und verfahren zum betreiben einer heiz-/kühleinrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808738B1 (fr) * 2000-05-15 2002-08-23 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique perfectionne a pompe a chaleur pour vehicule automobile
FR2812243B1 (fr) * 2000-07-28 2003-05-09 Valeo Climatisation Dispositif de chauffage-climatisation de l'habitacle d'un vehicule automobile
CN102112819B (zh) * 2008-10-29 2013-07-31 三菱电机株式会社 空调装置
US8899062B2 (en) 2011-02-17 2014-12-02 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP5589967B2 (ja) * 2011-06-13 2014-09-17 株式会社デンソー 車両用温度調節装置
DE102011082584A1 (de) * 2011-09-13 2013-03-14 Behr Gmbh & Co. Kg Vorrichtung zur Temperierung einer Mehrzahl von Komponenten eines Fahrzeugs und Fahrzeugsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262144A (ja) * 1991-12-04 1993-10-12 Honda Motor Co Ltd 電気自動車におけるバッテリ温度制御装置
JP2002248932A (ja) * 2001-02-26 2002-09-03 Sanyo Electric Co Ltd 車載空気調和機
JP2008265686A (ja) * 2007-04-24 2008-11-06 Denso Corp 車両用冷凍サイクル装置
JP2011105150A (ja) * 2009-11-18 2011-06-02 Hitachi Ltd 車両用空調装置
WO2012075975A1 (de) * 2010-08-24 2012-06-14 Ixetic Bad Homburg Gmbh Heiz-/kühleinrichtung und verfahren zum betreiben einer heiz-/kühleinrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065635A (ja) * 2015-10-02 2017-04-06 株式会社デンソー 車両用熱管理装置
CN107839433A (zh) * 2017-11-28 2018-03-27 中国第汽车股份有限公司 插电式混合动力汽车的整车热管理系统
CN107839433B (zh) * 2017-11-28 2024-02-23 中国第一汽车股份有限公司 插电式混合动力汽车的整车热管理系统

Also Published As

Publication number Publication date
US9994087B2 (en) 2018-06-12
US20160129756A1 (en) 2016-05-12
CN105324259B (zh) 2017-05-24
JP2015024806A (ja) 2015-02-05
CN105324259A (zh) 2016-02-10
JP6052222B2 (ja) 2016-12-27
DE112014002874T5 (de) 2016-03-03

Similar Documents

Publication Publication Date Title
JP6052222B2 (ja) 車両用熱管理システム
JP6303615B2 (ja) 車両用熱管理システム
CN108369042B (zh) 制冷循环装置
JP6398764B2 (ja) 車両用熱管理システム
JP6065779B2 (ja) 車両用熱管理システム
JP6112039B2 (ja) 車両用熱管理システム
JP6197671B2 (ja) 空調装置
JP6206231B2 (ja) 車両用熱管理システム
JP5983187B2 (ja) 車両用熱管理システム
JP6540180B2 (ja) 車両用熱管理システム
JP6186998B2 (ja) 車両用空調装置
JP5949668B2 (ja) 車両用熱管理システム
WO2014196186A1 (ja) 車両用空調装置
WO2015097988A1 (ja) 車両用空調装置
JP6663676B2 (ja) 車両用熱管理装置
WO2015115050A1 (ja) 車両用熱管理システム
JP2014218211A (ja) 車両用熱管理システム
JP6083304B2 (ja) 車両用熱管理システム
WO2015097987A1 (ja) 車両用空調装置
WO2017098795A1 (ja) 冷凍サイクル装置
WO2015004904A1 (ja) 車両用空調装置
JP6060799B2 (ja) 車両用空調装置
JP6350236B2 (ja) 空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034712.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898718

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002874

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813198

Country of ref document: EP

Kind code of ref document: A1