WO2014202005A1 - 一种快速提取盐湖水中碳酸锂的方法及系统 - Google Patents

一种快速提取盐湖水中碳酸锂的方法及系统 Download PDF

Info

Publication number
WO2014202005A1
WO2014202005A1 PCT/CN2014/080224 CN2014080224W WO2014202005A1 WO 2014202005 A1 WO2014202005 A1 WO 2014202005A1 CN 2014080224 W CN2014080224 W CN 2014080224W WO 2014202005 A1 WO2014202005 A1 WO 2014202005A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
lithium
lithium carbonate
crystallizer
rich
Prior art date
Application number
PCT/CN2014/080224
Other languages
English (en)
French (fr)
Inventor
易丹青
肖丽华
王斌
田哲
朱彬元
余昊
Original Assignee
西藏金浩投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西藏金浩投资有限公司 filed Critical 西藏金浩投资有限公司
Priority to US14/896,148 priority Critical patent/US9714175B2/en
Publication of WO2014202005A1 publication Critical patent/WO2014202005A1/zh
Priority to US15/638,511 priority patent/US9932241B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0022Evaporation of components of the mixture to be separated by reducing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0031Evaporation of components of the mixture to be separated by heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/30Purification; Separation by crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor

Definitions

  • the invention relates to a method and a system for extracting lithium carbonate from a salt lake, in particular to a method and a system for rapidly extracting lithium carbonate from salt lake water.
  • the salt lake contains a variety of mineral salts and is an important source of mineral salts.
  • the mineral salt content in the salt lake is generally low, and it is difficult to use it in large-scale mining.
  • the mining process is mainly the salt lake water salt method and mineral deposit mining method.
  • the salt drying method is the most environmentally friendly mining method, but its efficiency is too low, which restricts its further development, so it can improve the evaporation crystallization efficiency.
  • the method has important strategic value.
  • Lithium is the metal element with the smallest atomic weight. It has the special properties of most negative potential, maximum electrochemical equivalent, high specific heat, high electrical conductivity and strong chemical activity. It is ideal for manufacturing disposable batteries, rechargeable power batteries, and aerospace structural materials. Metal materials, known as the 21st century energy metal.
  • Lithium is mainly found in the natural world as pegmatite ores such as spodumene and lithium mica, and in the form of lithium ions in salt lake brines, underground brines and seawater.
  • Salt lake lithium resources account for more than 69% of the world's lithium resources industrial reserves, China's salt lake lithium resources accounted for 85% of lithium resources industrial reserves.
  • the extraction of lithium from salt lake brine has the characteristics of simple process, low energy consumption and low cost, and has gradually replaced lithium from lithium ore.
  • the industrial production of lithium salt in salt lakes mostly uses the salt field process.
  • the brine is enriched by evaporation in the sun bath in winter, and then it is poured into the solar pool for heat storage and heat preservation. After the temperature reaches 30-50 °C, the lithium carbonate is The solubility in the brine decreases with increasing temperature, so that more lithium carbonate is saturated and crystallized.
  • the industrial grade lithium carbonate product is then obtained by further chemical processing.
  • the process utilizes the resource advantages of high-altitude solar energy and cold energy, the production cycle is too long, in which the drying season requires 4-6 months, the crystallization phase takes 2 to 4 months, and only one harvest per year, the production efficiency is very low. This leads to little annual gains.
  • the construction of the solar pool requires a lot of materials, and the geomembrane for thermal insulation laid at the bottom of the pool has high cost and poor anti-leakage effect.
  • the annual leakage of a large amount of brine is caused by the membrane leakage problem, which seriously affects the production capacity and economic benefits.
  • the composition of the brine is very complicated, and the lithium content is very small relative to the sodium and potassium. Therefore, in order to raise the lithium salt, it is necessary to concentrate the lithium first. Since the solubility of lithium carbonate in water decreases with increasing temperature, this property is called reverse solubility characteristic. Experiments show that its solubility in brine also has similar properties, while sodium salt and potassium salt have positive solubility characteristics, therefore, The sodium salt potassium salt is precipitated at a low temperature by means of freezing, and lithium is initially enriched in the brine, and then the lithium-rich brine is directly heated to achieve the purpose of extracting high-grade lithium carbonate. Experiments have shown that rapid freezing can precipitate sodium salt of potassium salt faster than ordinary freezing. Therefore, the use of rapid freezing technology makes lithium enrichment more efficient.
  • Evaporation under reduced pressure is an efficient way to increase evaporation rate.
  • the liquid phase and the liquid surface-containing gas phase are in equilibrium with the aqueous solution or the solution containing the volatile solvent.
  • the system pressure is reduced, that is, after the liquid phase of the liquid surface is pumped away, the gas-liquid equilibrium is broken, and the water or the volatile solute in the liquid phase tends to evaporate to supplement the gas phase, maintaining the gas-liquid equilibrium. This results in a lower boiling point of the solution.
  • the liquid phase will continue to boil and evaporate.
  • the solute is continuously concentrated. When the solute concentration reaches the saturated concentration at this temperature, it will crystallize and precipitate.
  • the adsorption method utilizes the excellent selective adsorption of lithium by ion sieve type oxide, and the selectivity coefficient for lithium can be as high as 104-105, which can be effectively applied to lithium extraction in salt lake brine, and its mechanical strength and Excellent chemical stability; solvent extraction method is suitable for salt lake brine with high magnesium chloride content, which is characterized by simple process, high product purity and low energy consumption; carbonate precipitation method is simple in process and high in reliability, suitable for low magnesium lithium Than the salt lake brine.
  • Their shortcomings are: the actual adsorption amount of the ion sieve adsorbent is still far from the theoretical adsorption amount.
  • the object of the present invention is to provide a method and system for accelerating the crystallization of lithium carbonate in a salt lake brine, in view of the disadvantages of high cost of chemical extraction, environmental protection and long lithium production cycle in the salt field process.
  • a method for rapidly extracting lithium carbonate from salt lake water comprises the following steps:
  • the pressure of the evaporative crystallizer under reduced pressure is maintained at 25 to 45 kPa.
  • the temperature of evaporation under reduced pressure is 60 to 80 °C.
  • the lithium-rich brine is preheated prior to introduction into the reduced pressure evaporation crystallizer.
  • the lithium-rich brine is prepared by cooling the salt lake brine to -40 ° C to -20 ° C to precipitate sodium and potassium salts in the brine, and separating the solid and liquid to obtain a lithium-rich brine.
  • a system for rapidly extracting lithium carbonate from salt lake water comprising a vacuum evaporation crystallizer, a vacuuming device, a brine preheating device and a brine cooling device, the vacuum evaporation crystallizer having an outer wall, a liner and an upper cover, an outer wall and a inner liner
  • a heater, a steam outlet and a brine inlet are arranged on the upper part of the upper cover, a plurality of detachable fins are arranged at the lower part of the upper cover, and a vacuuming device is connected to the steam discharge port; the vacuuming device is connected to the brine preheating device, the brine The preheating device is connected to the brine cooling device through a pipe.
  • the fins are provided with grooves.
  • the heater ring is disposed around the inner liner.
  • a heat exchanger for pre-cooling the salt lake brine is provided between the brine preheating device and the brine cooling device.
  • the heater is an electric heater.
  • the lithium carbonate obtained by the method of the present invention has a particularly high grade of 95% or more, and the precipitation rate of lithium carbonate can reach 99%. Therefore, the discharged tail liquid contains almost no lithium, and the utilization rate of the brine is high;
  • the invention belongs to a pure physical process, does not contain the use of chemical products, and is environmentally friendly. Continuous production can be achieved, and mechanization and automation can be realized throughout the process, reducing labor costs.
  • the device of the invention can promote the evaporation of water well, fully utilize heat, has the advantages of good acceleration effect and high crystallization efficiency, the acceleration process is pure physical process, environmentally friendly, green and environmentally friendly; most of the lithium carbonate obtained by crystallization is attached It is easy to collect on the fins; it can also produce fresh water while accelerating the crystallization of lithium carbonate, especially suitable for remote salt lake mining areas.
  • a groove provided on the fin further increase the area of heterogeneous nucleation Li 2 CO 3, and helps promote the nucleation crystals Li 2 CO 3, improve the efficiency of the crystallization of Li 2 CO 3.
  • the vapor pressure on the surface of the brine can be further reduced to accelerate crystallization.
  • the recovered steam enters the brine preheating unit, which makes more efficient use of energy.
  • the heater ring is arranged outside the inner casing, so that the heated salt lake brine is self-circulating, forming convection, heating is more uniform, and at the same time avoiding scale formation on the inner wall of the lithium carbonate, affecting heating efficiency.
  • a heat exchanger for pre-cooling the salt lake brine is provided between the brine preheating device and the brine cooling device, which can effectively pre-cool the salt lake brine while heating the lithium-rich brine while reducing cooling and preheating. Energy consumption.
  • Figure 1 is a schematic view showing the structure of the apparatus of the present invention
  • Figure 2 is a schematic view showing the structure of the fin of the apparatus of the present invention.
  • a system for rapidly extracting lithium carbonate in salt lake water comprising a vacuum evaporation crystallizer, a vacuuming device 5, a brine preheating device 6 and a brine cooling device 7, and the vacuum evaporation crystallizer has an outer wall 1.
  • a heater 4 is disposed between the outer wall 3 and the inner cover 3, and the upper cover 3 is provided with a steam discharge port 31 and a brine inlet 32.
  • the lower portion of the upper cover 3 is provided with a plurality of detachable fins 33.
  • the steam discharge port 31 is connected to a vacuuming device 5; the vacuuming device 5 is connected to the brine preheating device 6, and the brine preheating device 6 is connected to the brine cooling device 7 through a pipe.
  • the fins 33 are provided with grooves.
  • the heater 4 is circumferentially disposed around the inner liner 2.
  • the heater is an electric heater.
  • a heat exchanger for pre-cooling the salt lake brine is provided between the brine preheating device and the brine cooling device.
  • the electrical energy used in this system comes from solar power plants. In remote plateau areas, you can effectively use abundant solar energy resources and be green.
  • a groove provided on the fin further increase the area of heterogeneous nucleation Li 2 CO 3, and helps promote the nucleation crystals Li 2 CO 3, improve the efficiency of the crystallization of Li 2 CO 3.
  • the vapor pressure on the surface of the brine can be further reduced to accelerate crystallization.
  • the recovered steam enters the brine preheating unit, which makes more efficient use of energy.
  • the heater ring is arranged outside the inner casing, so that the heated salt lake brine is self-circulating, forming convection, heating is more uniform, and at the same time avoiding scale formation on the inner wall of the lithium carbonate, affecting heating efficiency.
  • the salt lake brine When in use, the salt lake brine enters the brine cooling device 7 for cooling, and the lithium-rich brine obtained by the filtration preferably pre-cools the salt lake brine through the heat exchanger, and simultaneously raises the temperature of the lithium-rich brine, and then enters the brine preheating device 6 to preheat, after which
  • the brine inlet 32 enters the inner liner 2 of the vacuum evaporation crystallizer, and the vacuuming device 5 is activated to reduce the vapor pressure on the surface of the brine brine to accelerate crystallization.
  • the extracted steam enters the brine preheating device 6 to be condensed, and the condensed water is discharged through the pipe 8. Collect fresh water.
  • the grade of lithium carbonate in the obtained mixed salt reached 95.2%, and the lithium salt precipitation rate reached 99.0%.
  • the operation was continued for 7 days, and the salt was precipitated in the reduced-pressure evaporative crystallizer to obtain a lithium carbonate taste of 95.2% of mixed salt of 3.55 tons, and the average time required for production of mixed lithium carbonate per ton of lithium carbonate was 1.97 days.
  • the grade of lithium carbonate in the obtained mixed salt reached 95.8%, and the lithium salt precipitation rate reached 99.6%.
  • the operation was continued for 7 days, and the salt was precipitated in the reduced-pressure evaporative crystallizer to obtain a lithium carbonate taste of 95.8% mixed salt of 3.80 tons, and the average time required for production of mixed lithium carbonate per ton of lithium carbonate was 1.84 days.
  • the grade of lithium carbonate in the obtained mixed salt reached 96.6%, and the precipitation rate of lithium salt reached 99.0%.
  • the operation was continued for 7 days, and the salt was precipitated in the reduced-pressure evaporative crystallizer to obtain a lithium carbonate taste of 96.6% of mixed salt of 4.01 tons, and the average time required for production of mixed salt of lithium carbonate per ton was 1.75 days.
  • the grade of lithium carbonate in the obtained mixed salt was 97.3%, and the lithium salt precipitation rate was 99.8%.
  • the operation was continued for 7 days, and the salt was precipitated in the reduced-pressure evaporative crystallizer to obtain a lithium carbonate taste of 97.3% of mixed salt of 4.28 tons, and the average time required for production of mixed salt of lithium carbonate per ton was 1.63 days.
  • lithium carbonate can be extracted from the salt lake brine quickly and efficiently.
  • the lithium carbonate obtained by the method of the present invention has a particularly high grade of 95% or more, and the precipitation rate of lithium carbonate can reach 99%.
  • the device of the invention can promote the evaporation of water well, fully utilize heat, has the advantages of good acceleration effect and high crystallization efficiency, the acceleration process is pure physical process, environmentally friendly, green and environmentally friendly; most of the lithium carbonate obtained by crystallization is attached It is easy to collect on the fins; it can also produce fresh water while accelerating the crystallization of lithium carbonate, especially suitable for remote salt lake mining areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Seasonings (AREA)

Abstract

提供一种快速提取盐湖水中碳酸锂的方法及系统。该方法包括:1)将富锂卤水导入减压蒸发结晶器,减压蒸发使富锂卤水中的碳酸锂过饱和析出;2)将尾液排出,收集结晶器中沉淀,烘干得到碳酸锂结晶。富锂卤水的制备工艺为:将盐湖卤水冷却至-40°C〜-20°C,使卤水中的钠、钾盐析出,固液分离,得到富锂卤水。该系统包括:减压蒸发结晶器、抽真空装置、卤水预热装置和卤水冷却装置。上述方法和系统能够高效、环保地从盐湖卤水中提取锂盐。

Description

一种快速提取盐湖水中碳酸锂的方法及系统
技术领域
本发明涉及一种从盐湖中提取碳酸锂的方法及系统,特别涉及一种快速提取盐湖水中碳酸锂的方法及系统。
背景技术
盐湖中含有多种矿物盐,是矿物盐的一个重要来源。但是盐湖中的矿物盐含量普遍较低,大规模开采利用难度较大。近年来的开采工艺主要是盐湖水晒盐法、矿床开采等方法,其中晒盐法是最环保的开采方法,但因其效率太低严重制约着它的进一步发展,所以能够提高蒸发结晶效率的方法具有重要的战略价值。
锂是原子量最小的金属元素,具有电位最负、电化当量最大、高比热、高电导率和化学活性强等特殊性能,是制造一次性电池、充电动力电池、航空航天用结构材料等的理想金属材料,被誉为21世纪能源金属。
锂在自然界中主要以锂辉石、锂云母等伟晶岩矿石和以锂离子形式存在于盐湖卤水、地下卤水和海水中。盐湖锂资源占世界锂资源工业储量的69%以上,我国盐湖锂资源占锂资源工业储量的85%。从盐湖卤水中提锂具有工艺简单、能耗少、成本低等特点,已逐渐取代从锂矿石生产锂。目前盐湖提锂的方法有很多,如离子交换法、吸附法、碳化法、沉淀法、萃取法,但这些方法或者还不够成熟,或者成本高,或者环保要求不能满足,难以实现工业化生产。
而目前国内盐湖工业化生产锂盐大多采用盐田工艺,卤水在冬季通过晒池蒸发使锂得到富集,然后灌入太阳池中进行蓄热保温,待温度达到30~50℃后,由于碳酸锂在卤水中的溶解度随温度升高而降低,因此使较多的碳酸锂达到饱和结晶析出。然后经进一步化学加工,获得工业级碳酸锂产品。该工艺虽然利用了高原太阳能和冷能的资源优势,但是生产周期太长,其中晒卤阶段需要4~6个月,结晶阶段需要2~4个月,每年只有一次收成,生产效率非常低,导致每年收益甚微。并且,太阳池的修建需要耗费大量物资,其中池底铺设的保温用土工膜,成本高,防渗漏效果差,每年因为膜渗漏问题而导致大量卤水流失,严重影响产能和经济效益。
卤水成分十分复杂,锂含量相对于钠、钾含量很少,因此要想提锂时使锂盐品位高需要先进行浓缩锂。由于碳酸锂在水中的溶解度随着温度升高而降低,该性质称为逆溶解度特性,实验表明其在卤水中的溶解度也具有类似性质,而钠盐、钾盐具有正溶解度特性,因此,可利用冷冻方式使钠盐钾盐在低温大量析出,锂在卤水中得到初步富集,然后直接加热富锂卤水,从而达到提取高品位碳酸锂的目的。而有关实验表明,急速冷冻比普通冷冻可以使钠盐钾盐析出得更快。因此利用急速冷冻技术使锂富集效率更高。但是,如果一定温度下卤水中碳酸锂浓度未达到饱和浓度,即使卤水温度较高,碳酸锂也不结晶,因此需要保温较长时间使锂盐达到饱和浓度,才会使锂盐饱和析出。为了缩短保温时间,加快浓缩卤水中锂浓度,可以采取减压蒸发方式。
减压蒸发是提高蒸发速率的一种高效方式。在密闭容器中,对于含水溶液或含易挥发溶剂的溶液,其液相与液表面气相保持平衡状态。当体系压力降低时,即液表面气相被抽走后,气液平衡被打破,液相中的水或易挥发溶质趋于蒸发出来补充气相,维护气液平衡。因此导致溶液沸点降低。不断将蒸发出来的气相抽走,则液相会持续沸腾蒸发 ,溶质被不断浓缩,当溶质浓度达到该温度下的饱和浓度时,便会结晶析出。
国内外报道了不少用于从盐湖卤水中提取Li2CO3的装置和方法,例如:《从盐湖卤水中提取锂的吸附技术及研究进展》(盐业与化工,2007年第36卷第3期)、《利用盐湖卤水萃取液制备碳酸锂》(盐湖研究,2006年第14卷第2期)、《国内外从盐湖卤水中提锂工艺技术研究进展》(世界科技研究与进展,2006年第28卷第5期)、《溶剂浮选法富集盐湖卤水中锂的研究》(盐业与化工,2011年第40卷第1期)等文献。这些装置和方法的特点是:吸附法利用离子筛型氧化物对锂的优良的选择性吸附,对锂的选择系数可高达104~105, 能有效的应用于盐湖卤水提锂,其机械强度和化学稳定性优良;溶剂萃取法适用于氯化镁含量较高的盐湖卤水,其特点在于工艺简单、产品纯度高、能耗较小;碳酸盐沉淀法工艺简单、可靠性高,适用于低镁锂比的盐湖卤水。它们的不足之处在于:离子筛吸附剂的实际吸附量与理论吸附量还有较大差距, 另外吸附剂的渗透性能差、造粒困难等性能限制了这种方法的工业化应用;溶剂萃取法也存在设备易被腐蚀且萃取剂的溶损较严重等问题;普通沉淀法也存在着提取效率较低的缺点。以上方法都不能在保护环境的前提下获得较高的生产效率。
现有技术中缺乏一种可以高效、环保地从盐湖卤水中提取锂盐的结晶方法和装置。
发明内容
本发明的目的在于针对化学法提锂成本高、不环保和盐田工艺提锂生产周期长的缺点,提供一种加速盐湖卤水中碳酸锂结晶的方法及系统。
本发明所采取的技术方案是:
一种快速提取盐湖水中碳酸锂的方法,包括如下步骤:
1) 将富锂卤水导入减压蒸发结晶器,减压蒸发使富锂卤水中碳酸锂过饱和析出;
2) 将尾液排出,收集结晶器中沉淀,烘干得到碳酸锂结晶。
作为本发明的进一步改进,减压蒸发的过程中,保持减压蒸发结晶器压力为25~45 kPa。
作为本发明的进一步改进,减压蒸发的温度为60~80℃。
作为本发明的进一步改进,富锂卤水在导入减压蒸发结晶器前先进行预热。
作为本发明的进一步改进,富锂卤水的制备工艺为:将盐湖卤水冷却至-40℃~-20℃,使卤水中的钠、钾盐析出,固液分离,得到富锂卤水。
一种快速提取盐湖水中碳酸锂的系统,包括减压蒸发结晶器、抽真空装置、卤水预热装置和卤水冷却装置,减压蒸发结晶器具有外壁、内胆和上盖,外壁和内胆之间设有加热器,上盖上部设有蒸汽排出口和卤水入口,上盖下部设置有若干可拆卸的翅片,蒸汽排出口连接有抽真空装置;抽真空装置连接至卤水预热装置,卤水预热装置通过管道与卤水冷却装置相连。
作为本发明的进一步改进,翅片上设有沟槽。
作为本发明的进一步改进,加热器环环绕设置在内胆外。
作为本发明的进一步改进,卤水预热装置通与卤水冷却装置之间设有用于预冷盐湖卤水的热交换器。
作为本发明的进一步改进,加热器为电加热器。
本发明的有益效果是:
1) 利用高原地区充足的太阳能发电急速冷冻卤水,随后加热卤水,能源清洁,绿色环保;
2) 充分利用碳酸锂的逆溶解度特性和钠钾盐的正溶解度特性,创造性地应用先急冷后急热技术,使卤水钠钾盐在极低温下迅速析出,而锂富集在卤水中,达到分离杂质并浓缩锂的效果;
3) 在减压蒸发结晶操作中,通过控制温度和压力恒定,不仅能够使卤水持续沸腾蒸发浓缩,易于使碳酸锂达到过饱和析出,而且添加的翅片装置增大了碳酸锂非均匀形核面积,并且翅片沟槽中残留的碳酸锂可以作为下次形核的核心,有利于碳酸锂快速形核结晶;
4) 经过本发明方法获得的碳酸锂品位特别高,达到95%以上,并且碳酸锂的析出率能达到99%。因此排出的尾液中几乎不含锂,卤水利用率高;
5) 本发明属于纯物理过程,不含化工用品的使用,绿色环保。可实现连续式生产,并全程可实现机械化和自动化,降低人工使用成本。
本发明的装置,可以很好地促进水分蒸发,充分利用热量,具有加速效果好,结晶效率高的优点,加速过程为纯物理过程,对环境友好,绿色环保;结晶得到的碳酸锂大部分附着在翅片上,易于收集;在加速碳酸锂结晶的同时,还可以生成淡水,特别适用于偏远的盐湖矿区。
翅片上设有沟槽,进一步增加了Li2CO3的非均匀形核面积,有助于促进Li2CO3的形核结晶,提高Li2CO3的结晶效率。
连接抽真空装置后,可进一步降低卤水表面的蒸汽压,加速结晶。回收的蒸汽进入卤水预热装置,可以更为有效利用能源。
加热器环环绕设置在内胆外,使得加热后的盐湖卤水产生自循环,形成对流,加热更为均匀,同时避免碳酸锂在内胆壁上结垢,影响加热效率。
卤水预热装置通与卤水冷却装置之间设有用于预冷盐湖卤水的热交换器,既可以有效地将盐湖卤水进行预冷,同时又可以将富锂卤水升温,同时减少冷却和预热的能耗。
附图说明
图1是本发明装置的结构示意图;
图2是本发明装置的翅片的结构示意图。
具体实施方式
下面结合附图和实施例,进一步说明本发明。
参照图1~2,一种快速提取盐湖水中碳酸锂的系统,包括减压蒸发结晶器、抽真空装置5、卤水预热装置6和卤水冷却装置7,减压蒸发结晶器具有外壁1、内胆2和上盖3,外壁1和内胆2之间设有加热器4,上盖3上部设有蒸汽排出口31和卤水入口32,上盖3下部设置有若干可拆卸的翅片33,蒸汽排出口31连接有抽真空装置5;抽真空装置5连接至卤水预热装置6,卤水预热装置6通过管道与卤水冷却装置7相连。
作为本发明的进一步改进,翅片33上设有沟槽。
作为本发明的进一步改进,加热器4环环绕设置在内胆2外。特别的,加热器为电加热器。
作为本发明的进一步改进,卤水预热装置通与卤水冷却装置之间设有用于预冷盐湖卤水的热交换器。
本系统所使用的电能来自太阳能电站。在偏远的高原地区,可以有效地利用丰富的太阳能资源,绿色环保。
翅片上设有沟槽,进一步增加了Li2CO3的非均匀形核面积,有助于促进Li2CO3的形核结晶,提高Li2CO3的结晶效率。
连接抽真空装置后,可进一步降低卤水表面的蒸汽压,加速结晶。回收的蒸汽进入卤水预热装置,可以更为有效利用能源。
加热器环环绕设置在内胆外,使得加热后的盐湖卤水产生自循环,形成对流,加热更为均匀,同时避免碳酸锂在内胆壁上结垢,影响加热效率。
使用时,盐湖卤水进入卤水冷却装置7进行冷却,过滤得到的富锂卤水优选通过热交换器将盐湖卤水预冷,同时提高富锂卤水的温度,之后再进入卤水预热装置6预热,之后通过卤水入口32进入减压蒸发结晶器的内胆2,启动抽真空装置5降低盐湖卤水表面的蒸汽压,以加速结晶,抽出的蒸汽进入卤水预热装置6冷凝,冷凝水通过管道8排出,收集得到淡水。
实施例1:
1) 取扎布耶盐湖北湖夏季卤水,其锂离子浓度为0.78g/L,卤水初始温度为5℃,经工业冷冻系统冷却到-40℃,析出氯化钠、氯化钾和钾芒硝后,固液分离得到富锂卤水;
2) 将该富锂卤水经加热箱预热后分别输运到减压蒸发结晶器内,每个结晶器内卤水量为30L;
3) 快速加热至温度为60℃,经过5min后,器内压力平衡在26kPa,持续2小时后,结晶器底部已经沉积约2mm厚的富锂混盐,排出尾卤。
得到的混盐中碳酸锂的品位达到95.2%,锂盐析出率达到99.0%。
按此操作连续运行7天,清理减压蒸发结晶器中析出盐,得到碳酸锂品味为95.2%混盐3.55吨,平均每吨碳酸锂混盐生产所需时间为1.97天。
实施例2:
1) 取扎布耶盐湖南湖夏季卤水,其锂离子浓度为0.54g/L,卤水初始温度为8℃,经工业冷冻系统冷却到-30℃,析出氯化钠、氯化钾和钾芒硝后,固液分离得到富锂卤水;
2) 将该富锂卤水经加热箱预热后分别输运到减压蒸发结晶器内,每个结晶器内卤水量为30L;
3) 快速加热至温度为70℃,经过5min后,器内压力平衡在36kPa,持续2小时后,结晶器底部已经沉积约2mm厚的富锂混盐,排出尾卤。
得到的混盐中碳酸锂的品位达到95.8%,锂盐析出率达到99.6%。
按此操作连续运行7天,清理减压蒸发结晶器中析出盐,得到碳酸锂品味为95.8%混盐3.80吨,平均每吨碳酸锂混盐生产所需时间为1.84天。
实施例3:
1) 取扎布耶盐湖晒田中经晒过10天卤水,其锂离子浓度为1.2g/L,卤水初始温度为5℃,经工业冷冻系统冷却到-20℃,析出氯化钠、氯化钾和钾芒硝后,固液分离得到富锂卤水;
2) 将该富锂卤水经加热箱预热后分别输运到减压蒸发结晶器内,每个结晶器内卤水量为30L;
3) 快速加热至温度为75℃,经过5min后,器内压力平衡在40kPa,持续2小时后,结晶器底部已经沉积约4mm厚的富锂混盐,排出尾卤。
得到的混盐中碳酸锂的品位达到96.6%,锂盐析出率达到99.0%。
按此操作连续运行7天,清理减压蒸发结晶器中析出盐,得到碳酸锂品味为96.6%混盐4.01吨,平均每吨碳酸锂混盐生产所需时间为1.75天。
实施例4:
1) 取扎布耶盐湖晒田中经晒过60天的卤水,其锂离子浓度为2.1g/L,卤水初始温度为12℃,预冷后经工业冷冻系统冷却到-20℃,析出氯化钠、氯化钾和钾芒硝后,固液分离得到富锂卤水;
2) 将该富锂卤水经加热箱预热后分别输运到减压蒸发结晶器内,每个结晶器内卤水量为30L;
3) 快速加热至温度为80℃,经过5min后,器内压力平衡在45kPa,持续2小时后,结晶器底部已经沉积约5 mm厚的富锂混盐,排出尾卤。
得到的混盐中碳酸锂的品位达到97.3%,锂盐析出率达到99.8%。
按此操作连续运行7天,清理减压蒸发结晶器中析出盐,得到碳酸锂品味为97.3%混盐4.28吨,平均每吨碳酸锂混盐生产所需时间为1.63天。
由上述实施例的数据可知,可以快速、高效地从盐湖卤水中提取出碳酸锂。经过本发明方法获得的碳酸锂品位特别高,达到95%以上,并且碳酸锂的析出率能达到99%。
本发明的装置,可以很好地促进水分蒸发,充分利用热量,具有加速效果好,结晶效率高的优点,加速过程为纯物理过程,对环境友好,绿色环保;结晶得到的碳酸锂大部分附着在翅片上,易于收集;在加速碳酸锂结晶的同时,还可以生成淡水,特别适用于偏远的盐湖矿区。

Claims (10)

  1. 一种快速提取盐湖水中碳酸锂的方法,包括如下步骤:
    1) 将富锂卤水导入减压蒸发结晶器,减压蒸发使富锂卤水中碳酸锂过饱和析出;
    2) 将尾液排出,收集结晶器中沉淀,烘干得到碳酸锂结晶。
  2. 根据权利要求1所述的方法,其特征在于:减压蒸发的过程中,保持减压蒸发结晶器压力为25~45 kPa。
  3. 根据权利要求1或2所述的方法,其特征在于:减压蒸发的温度为60~80℃。
  4. 根据权利要求1或2所述的方法,其特征在于:富锂卤水在导入减压蒸发结晶器前先进行预热。
  5. 根据权利要求1或2所述的方法,其特征在于:富锂卤水的制备工艺为:将盐湖卤水冷却至-40℃~-20℃,使卤水中的钠、钾盐析出,固液分离,得到富锂卤水。
  6. 一种实现权利要求1所述方法的系统,其特征在于:所述系统包括减压蒸发结晶器、抽真空装置、卤水预热装置和卤水冷却装置,减压蒸发结晶器具有外壁、内胆和上盖,外壁和内胆之间设有加热器,上盖上部设有蒸汽排出口和卤水入口,上盖下部设置有若干可拆卸的翅片,蒸汽排出口连接有抽真空装置;抽真空装置连接至卤水预热装置,卤水预热装置通过管道与卤水冷却装置相连。
  7. 根据权利要求6所述的装置,其特征在于:翅片上设有沟槽。
  8. 根据权利要求6或7所述的装置,其特征在于:加热器环环绕设置在内胆外。
  9. 根据权利要求6或7所述的装置,其特征在于:卤水预热装置通与卤水冷却装置之间设有用于预冷盐湖卤水的热交换器。
  10. 根据权利要求6或7所述的装置,其特征在于:加热器为电加热器。
PCT/CN2014/080224 2013-06-20 2014-06-18 一种快速提取盐湖水中碳酸锂的方法及系统 WO2014202005A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/896,148 US9714175B2 (en) 2013-06-20 2014-06-18 System for extracting lithium carbonate from saline lake water
US15/638,511 US9932241B2 (en) 2013-06-20 2017-06-30 Method for quickly extracting lithium carbonate from saline lake water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310247499.1 2013-06-20
CN201310247499.1A CN103318928B (zh) 2013-06-20 2013-06-20 一种快速提取盐湖水中碳酸锂的方法及系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/896,148 A-371-Of-International US9714175B2 (en) 2013-06-20 2014-06-18 System for extracting lithium carbonate from saline lake water
US15/638,511 Division US9932241B2 (en) 2013-06-20 2017-06-30 Method for quickly extracting lithium carbonate from saline lake water

Publications (1)

Publication Number Publication Date
WO2014202005A1 true WO2014202005A1 (zh) 2014-12-24

Family

ID=49188029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080224 WO2014202005A1 (zh) 2013-06-20 2014-06-18 一种快速提取盐湖水中碳酸锂的方法及系统

Country Status (4)

Country Link
US (2) US9714175B2 (zh)
CN (1) CN103318928B (zh)
CL (1) CL2015003393A1 (zh)
WO (1) WO2014202005A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217701A (zh) * 2018-04-11 2018-06-29 宜春市鼎鑫高能科技有限公司 一种碳酸锂生产装置
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
CN112607754A (zh) * 2020-12-23 2021-04-06 中南大学 一种环保型用锂辉石和盐湖矿石混合生产单水氢氧化锂的工艺

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318928B (zh) 2013-06-20 2014-12-03 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN105217660B (zh) * 2014-06-27 2017-07-25 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法
WO2017028162A1 (zh) * 2015-08-17 2017-02-23 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法
CN105836768B (zh) * 2016-05-26 2017-12-12 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
CN106435227B (zh) * 2016-09-09 2018-10-02 中国科学院青海盐湖研究所 一种卤水中铀元素的富集方法
CN107973326B (zh) * 2016-10-21 2023-11-17 广州市睿石天琪能源技术有限公司 一种浓缩卤水并除盐的物理方法及系统
WO2018089932A1 (en) 2016-11-14 2018-05-17 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
EP3661619A4 (en) 2017-08-02 2021-05-05 Lilac Solutions, Inc. LITHIUM EXTRACTION WITH POROUS ION EXCHANGE BEADS
EP3661620A4 (en) * 2017-08-02 2021-05-12 Lilac Solutions, Inc. ION EXCHANGE SYSTEM FOR EXTRACTION OF LITHIUM
KR101839460B1 (ko) * 2017-10-24 2018-03-16 성일하이텍㈜ 리튬 함유 용액으로부터 고순도의 탄산리튬 회수방법
KR101871178B1 (ko) * 2017-10-25 2018-06-26 성일하이텍㈜ 리튬 함유 용액에서 증발농축을 이용한 고순도 탄산리튬 제조방법
US20220212144A1 (en) * 2017-10-26 2022-07-07 International Battery Metals, Ltd. Renewable energy powered modular extraction system
US10648090B2 (en) 2018-02-17 2020-05-12 Lilac Solutions, Inc. Integrated system for lithium extraction and conversion
MA52428A (fr) 2018-02-28 2021-06-02 Lilac Solutions Inc Réacteur d'échange d'ions à piège à particules pour extraction de lithium
CN108203114A (zh) * 2018-04-11 2018-06-26 宜春市鼎鑫高能科技有限公司 一种适用于工业自动化生产的卤水结晶碳酸锂的系统
CN108619775A (zh) * 2018-06-30 2018-10-09 贵州中伟资源循环产业发展有限公司 废旧锂电池中锂金属提取用锂盐反萃液过滤烘干设备
CN110451536A (zh) * 2019-08-26 2019-11-15 新中天环保股份有限公司 一种从电池级碳酸锂母液中回收锂的方法
EP4087825A4 (en) 2020-01-09 2024-01-24 Lilac Solutions Inc PROCESS FOR SEPARATING UNWANTED METALS
CN111268704B (zh) * 2020-02-13 2022-11-11 青海盐湖工业股份有限公司 一种沉锂母液处理的方法和装置
JP2023524467A (ja) 2020-04-28 2023-06-12 1エス1 エナジー インコーポレイテッド リチウム塩の選択抽出のための含酸素金属化合物及びその使用方法
EP4162087A1 (en) 2020-06-09 2023-04-12 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
CN112097464B (zh) * 2020-09-07 2021-12-07 衡阳百赛化工实业有限公司 一种硫酸锌真空冷却装置
CN112239814A (zh) * 2020-11-11 2021-01-19 陕西省膜分离技术研究院有限公司 一种采集锂铷的分级加热恒温吸附设备及方法
CN112210665B (zh) * 2020-11-11 2024-03-01 陕西省膜分离技术研究院有限公司 一种适于采集锂铷的节能恒温吸附设备及方法
EP4247759A1 (en) 2020-11-20 2023-09-27 Lilac Solutions, Inc. Lithium production with volatile acid
KR20240014047A (ko) 2021-04-23 2024-01-31 리락 솔루션즈, 인크. 리튬 추출을 위한 이온 교환 장치
CN113336249B (zh) * 2021-05-28 2022-02-25 中国地质科学院矿产资源研究所 一种提锂太阳池及提锂方法
CN113526593B (zh) * 2021-07-30 2023-05-02 江苏沃德托普热力科技有限公司 一种工业三效含盐废水蒸发结晶器及压力平衡方法
CN115198112B (zh) * 2022-07-21 2023-05-02 江西金辉锂业有限公司 一种沉淀法快速提锂设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963914A (zh) * 2012-11-27 2013-03-13 西藏金浩投资有限公司 一种从盐湖卤水中制取高纯碳酸锂的方法
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN103482660A (zh) * 2013-09-13 2014-01-01 西藏金睿资产管理有限公司 高纯度碳酸锂的制备方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093517C (zh) * 1999-04-20 2002-10-30 中国地质科学院盐湖与热水资源研究发展中心 从碳酸盐型卤水中提取锂盐方法
JP3646806B2 (ja) * 2003-03-18 2005-05-11 三井造船株式会社 回分式二重効用缶およびこれを用いた製塩方法
CN102372295A (zh) * 2010-08-11 2012-03-14 张慧媛 一种从卤水中分离镁和浓缩锂的方法
CN103086404B (zh) * 2011-11-08 2014-09-17 唐梓 以镁离子参与反应的从卤水中提取碳酸锂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963914A (zh) * 2012-11-27 2013-03-13 西藏金浩投资有限公司 一种从盐湖卤水中制取高纯碳酸锂的方法
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN103482660A (zh) * 2013-09-13 2014-01-01 西藏金睿资产管理有限公司 高纯度碳酸锂的制备方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, YUANYI ET AL.: "Experiments on the Preparation of Mixed Salt with High-Content Li2C03 in Solar Pan of Zhabuye Saline Lake, Tibet, and Its Significance", ACTA GEOSCIENTICA SINICA, vol. 5, no. 24, 31 October 2003 (2003-10-31), pages 459 - 462 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217701A (zh) * 2018-04-11 2018-06-29 宜春市鼎鑫高能科技有限公司 一种碳酸锂生产装置
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
US11634789B2 (en) 2019-09-16 2023-04-25 InCoR Lithium Selective lithium extraction from brines
CN112607754A (zh) * 2020-12-23 2021-04-06 中南大学 一种环保型用锂辉石和盐湖矿石混合生产单水氢氧化锂的工艺

Also Published As

Publication number Publication date
US20170313593A1 (en) 2017-11-02
CN103318928B (zh) 2014-12-03
CN103318928A (zh) 2013-09-25
US9714175B2 (en) 2017-07-25
US20160115040A1 (en) 2016-04-28
CL2015003393A1 (es) 2017-02-03
US9932241B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2014202005A1 (zh) 一种快速提取盐湖水中碳酸锂的方法及系统
WO2016029614A1 (zh) 脱硫铅膏净化处理后滤液回收无水硫酸钠的方法及其装置
WO2017202236A1 (zh) 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
WO2023087799A1 (zh) 一种从高钙锂比盐湖卤水中除钙富集锂的方法
RU2013142931A (ru) Селективное извлечение солей из смешанного солевого рассола
WO2016119644A1 (zh) 一种磷化锂粉体的制备方法
CN112374512A (zh) 一种锂云母熟料除杂制备电池级碳酸锂的方法
CN104291347A (zh) 一种四氟硼酸锂的制备方法
CN108358221B (zh) 一种用硫酸镁亚型盐湖卤水制取氯化锂的工艺
CN109319745A (zh) 一种5n硒生产工艺
CN101837998B (zh) 一种氯化铝溶液的蒸发浓缩结晶方法
CN102786059B (zh) 一种电子束诱导定向凝固除杂的方法
CN102267717B (zh) 一种蒸发结晶法制备硫酸锌的工艺
CN203612977U (zh) 一种适用于工业自动化生产的卤水结晶碳酸锂的装置
CN106241839B (zh) 一种从盐湖老卤中分离镁、降低镁锂比的方法
CN105905929B (zh) 从高原碳酸盐型卤水中制备碳酸锂的方法
CN111592017A (zh) 一种锂辉石压浸制备电池级氯化锂的方法
CN107973326B (zh) 一种浓缩卤水并除盐的物理方法及系统
CN110668472A (zh) 六氟磷酸锂合成母液结晶方法及装置
CN1313373C (zh) 用高镁含锂卤水生产碳酸锂、氧化镁和盐酸的方法
CN105417819B (zh) 一种高效处理稀土硫酸铵废水的工艺
CN114405053A (zh) 一种基于乙醇法使硫酸锰溶液结晶的方法
CN106185991B (zh) 利用太阳热能从卤水中提取高纯氯化钾的装置与方法
WO2017028162A1 (zh) 一种快速浓缩卤水制取碳酸锂的方法
CN111153917A (zh) 一种双草酸硼酸锂的纯化工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14896148

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813539

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14813539

Country of ref document: EP

Kind code of ref document: A1