WO2017202236A1 - 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统 - Google Patents

利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统 Download PDF

Info

Publication number
WO2017202236A1
WO2017202236A1 PCT/CN2017/084812 CN2017084812W WO2017202236A1 WO 2017202236 A1 WO2017202236 A1 WO 2017202236A1 CN 2017084812 W CN2017084812 W CN 2017084812W WO 2017202236 A1 WO2017202236 A1 WO 2017202236A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
steam
lithium carbonate
temperature steam
condenser
Prior art date
Application number
PCT/CN2017/084812
Other languages
English (en)
French (fr)
Inventor
朱彬元
余昊
彭福明
曾雄
Original Assignee
广州市睿石天琪能源技术有限公司
朱彬元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市睿石天琪能源技术有限公司, 朱彬元 filed Critical 广州市睿石天琪能源技术有限公司
Priority to US15/770,495 priority Critical patent/US10981798B2/en
Publication of WO2017202236A1 publication Critical patent/WO2017202236A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0081Feeding the steam or the vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00078Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method and a system for rapidly preparing lithium carbonate or concentrated brine, in particular to a method and a system for rapidly preparing carbonic acid or concentrated brine in a plateau region.
  • Lithium is the metal element with the smallest atomic weight. It has the special properties of most negative potential, maximum electrochemical equivalent, high specific heat, high electrical conductivity and strong chemical activity. It is ideal for manufacturing disposable batteries, rechargeable power batteries, and aerospace structural materials. metallic material. With the increasing demand for new energy sources to replace traditional ore sources (oil, coal, shale gas, etc.), lithium batteries have served as a hub and core role for new energy generation, power transmission and distribution, and electricity storage. At the same time, the global lithium raw material - lithium carbonate is in short supply, resulting in lithium carbonate in just one year in 2015, the transaction price rose from RMB 40,000 to RMB 160,000.
  • Lithium resources are typical oligopoly strategic resources, most of which are distributed in Chile, China, the United States, Argentina and Peru. China has proven the second largest lithium resource reserves in the world. Lithium is mainly found in salt lake brines in nature, and a small amount is present in spodumene and lithium mica. China's salt lake lithium reserves account for more than 85% of China's industrial reserves.
  • the separation of magnesium and lithium is the core difficulty of various lithium extraction processes.
  • the ion adsorption method has high requirements on the adsorbent, difficulty in granulation, and poor permeation performance.
  • the traditional method of extracting lithium salt from salt lakes is mainly based on the salt-to-salt method. This method is extremely dependent on climate, has a long crystallization cycle, is not high in grade and unstable, and cannot meet the needs of industrial production.
  • a method for rapidly preparing lithium carbonate or concentrated brine using high temperature steam comprising the following steps:
  • the brine is preheated to not lower than 50 ° C and then high temperature steam is introduced into the brine.
  • the content of lithium ions in the brine is not less than 2 g/L.
  • the high temperature steam is superheated steam.
  • the temperature of the high temperature steam is not lower than 250 °C.
  • a system for rapidly preparing lithium carbonate or concentrated brine by using high-temperature steam including a reaction kettle, the reaction kettle is provided with a brine inlet, a steam discharge port is arranged above, and a discharge port is arranged below, and a plurality of steams with openings facing downward are arranged in the reaction kettle
  • the tube and the steam discharge port are connected to the condenser.
  • the outlet end of the steam pipe is arranged obliquely. Further, the outlet end of the steam pipe is obliquely arranged in a ring shape.
  • the steam pipe is provided with means for preventing back suction.
  • the device for preventing back suction is a one-way valve.
  • a mesh cover is provided below the steam discharge port.
  • the condenser is provided with a condensate collector.
  • the condensate collector is provided with a line connected to the irrigator in the reactor.
  • a heater is provided on the line between the condensate collector and the irrigator.
  • a jacket for accommodating a cooling medium is provided outside the condenser.
  • the cooling medium outside the condenser is brine.
  • the method of the invention uses steam to heat the brine, has the advantages of fast heating speed and uniform heating, and is beneficial for reducing the setting of the heating device such as the jacket or the heat exchange tube in the equipment, and avoiding the agglomeration of the salt caused by the excessive temperature difference.
  • the steam While the steam is heated, it can also function to stir the brine, which is beneficial to reduce the setting of the stirring device in the equipment.
  • the generated steam By condensing the steam through the heat exchanger, the generated steam can be automatically sucked out, which reduces the setting of the vacuum pump and helps to reduce the complexity of the equipment.
  • the heat released by steam condensation is recycled as much as possible, and can be used for preheating of brine, preheating other media, and high energy efficiency.
  • the concentration of the brine and the lithium carbonate crystal can be carried out in different reactors or in the same reactor, which is flexible and convenient to use.
  • the method of the invention When used for concentrating brine, it has the characteristics of high concentration speed and good concentration effect, and can meet the demand for concentrated brine in batch continuous production.
  • the brine can be heated rapidly, and the brine is vigorously boiled while evaporating a large amount of water, and the generated steam is rapidly reduced after being condensed by the condenser, so that the steam can be quickly extracted.
  • the precipitation amount of lithium carbonate far exceeds the evaporation amount of the brine, and unexpectedly excessive precipitation.
  • the introduction of steam plays a certain agitation effect on the brine, which can further simplify the components of the reactor, and is conducive to saving equipment investment.
  • the system of the invention has simple structure, can realize steam self-discharging to a certain extent, and realize self-stirring of brine, effectively avoids formation of salt scale on the inner wall of the reaction kettle, prolongs the service life of the equipment, and helps reduce Energy consumption, especially for highland areas.
  • the system of the invention can be used for both the concentration of brine and the preparation of lithium carbonate, and can be conveniently adjusted according to needs to meet the needs of different production conditions.
  • the system of the invention can produce a large amount of fresh water by-product while preparing lithium carbonate or concentrated brine, and is particularly suitable for highland areas where fresh water is scarce.
  • the condenser can preheat the brine while cooling the steam, greatly improving the utilization of heat energy, reducing heat emissions, and helping to maintain the ecology of the salt lake region.
  • Figure 1 is a schematic view showing the structure of the system of the present invention.
  • a method for rapidly preparing lithium carbonate or concentrated brine using high temperature steam comprising the following steps:
  • the brine is preheated to not lower than 50 ° C and then high-temperature steam is introduced into the brine.
  • the content of lithium ions in the brine is not less than 2 g/L, so that the overall cost is relatively economical.
  • the lithium ion content can be concentrated by 0.1 g/L.
  • the high temperature steam of the present invention includes saturated high temperature steam and superheated steam.
  • the temperature of the high temperature steam is not lower than 250 °C.
  • the temperature of steam in the prior art is preferably between 250 ° C and 350 ° C.
  • the high temperature steam is stopped, and the heat is kept for at least one hour.
  • the heat preservation can fully precipitate the lithium carbonate, and at the same time, the impurity salt therein can be dissolved back as much as possible, thereby reducing the content of impurities in the final product.
  • a system for rapidly preparing lithium carbonate or concentrated brine by using high-temperature steam comprising a reactor 1, a reaction tank 1 is provided with a brine inlet 11, a steam discharge port 13 is arranged above, and a discharge port 12 is provided below, and the reaction vessel 1 is provided.
  • a plurality of steam pipes 14 having openings facing downward are provided, and the steam discharge ports 13 are connected to the condenser 2.
  • the outlet end of the steam pipe is arranged obliquely; the outlet end of the further steam pipe is obliquely arranged in a ring shape. In this way, when the steam is introduced, the brine can be better driven to achieve better agitation.
  • the steam pipe is provided with means for preventing back suction.
  • the device for preventing back suction is a one-way valve. This can effectively prevent the brine from sucking back, further improving the safety of the equipment.
  • a mesh cover 15 is provided below the steam discharge port 13.
  • the function of the net cover is to prevent the bubbles generated in the kettle from directly entering the steam discharge port, which helps to keep the pipeline open and improve the stability of production.
  • the condenser 2 is provided with a condensed water collector 21. This effectively collects the condensed water, which can be further utilized, greatly reducing the consumption of fresh water.
  • the condensate collector 21 is provided with a line connected to the irrigator 22 in the reaction vessel 1, and a heater is provided on the line between the condensate collector and the irrigator. This makes it easy to reheat the condensate and rinse the reactor.
  • a jacket for accommodating a cooling medium is provided outside the condenser.
  • the cooling medium outside the condenser is brine.
  • the brine temperature in the plateau area generally does not exceed 10 ° C, and the cooling effect is excellent.
  • the temperature of the brine rises after the heat absorption, reducing the energy consumption of the preheated brine.
  • the cooling medium outside the condenser is not limited to brine, and can be adjusted as needed, such as using fresh water as a condensing medium.
  • Example 2 The same as in Example 1, except that the jacket was heated at 90 ° C and the water in the brine was evaporated to 340 kg in about 30 hours, after which the lithium carbonate crystals were collected by filtration. Finally, 5.48 Kg of lithium carbonate solid was obtained, the grade was 81.9%, and the lithium precipitation rate reached 15.0%.
  • the high temperature steam preferably uses superheated steam.
  • the salt lake area has a high altitude and a lower boiling point of water. It generally boils between 75 and 80 ° C. Therefore, in the plateau area, a large amount of water can be evaporated with a large reduction in energy consumption for better results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统。该方法包括步骤:1)将卤水引入反应釜内;2)将200℃以上的高温蒸汽引入卤水中,对卤水进行加热,同时将釜内产生的蒸汽排出;3)将排出的蒸汽通过冷凝器冷却并收集其中的冷凝水;4)待卤水浓缩至预定值或析出足量碳酸锂后,停止通入高温蒸汽。该系统包括:反应釜(1),反应釜设有卤水进口(11)、上方设有蒸汽排出口(13),下方设有出料口(12),反应釜内设有开口朝下的多根蒸汽管(14),蒸汽排出口与冷凝器(2)相连。该方法使用高温蒸汽直接加热卤水,同时利用冷凝器将产生的蒸汽排出,可以高效地将卤水浓缩或制备碳酸锂结晶,同时副产淡水,具有加热速度快,加热均匀的优势,有利于减少夹套、换热管、搅拌装置,真空泵等的设置,有利于降低设备的复杂程度。

Description

利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
技术领域
本发明涉及一种快速制备碳酸锂或浓缩卤水的方法及系统,特别是适用于高原地区的快速制备碳酸或浓缩卤水的方法及系统。
背景技术
锂是原子量最小的金属元素,具有电位最负、电化当量最大、高比热、高电导率和化学活性强等特殊性能,是制造一次性电池、充电动力电池、航空航天用结构材料等的理想金属材料。随着全球对新能源替代传统矿石源(石油、煤炭、页岩气等)的要求越来越紧迫,锂电池充当了新能源发电、输变电、储电的枢纽与核心角色。同时全球锂原料-碳酸锂的供不应求,造成了碳酸锂在2015年短短一年内,交易价格由人民币4万元上涨到了人民币16万元。
锂资源是典型的寡头垄断战略性资源,绝大多数分布于智利、中国、美国、阿根廷与玻利维亚,中国已探明锂资源储量位居全球第二。锂在自然界主要存在于盐湖卤水中,少量存在于锂辉石和锂云母中。中国的盐湖锂资源储量占中国工业储量的85%以上。
在各种传统盐湖提锂的方法中,由于普遍共生的镁元素和锂元素位于元素周期表对角,拥有极其接近的物理和化学特性,镁锂的分离是各种提锂工艺的核心难点。传统镁锂分离的方法中,离子吸附法对吸附剂要求高,造粒困难,渗透性能差,在吸附和脱吸的过程中,吸附剂易于损耗,锂的损耗量超过50%;煅烧法因运行温度高,能耗高,结块严重,设备腐蚀严重;萃取法的萃取和反萃取工艺流程长,药剂消耗量大,毒性大,对环境不友好;因此,尽管中国坐拥优势盐湖锂资源,但是成熟的工业化盐湖提锂技术仍处于小规模范围或停滞状态,在此背景下,锂的上下游产业链被严重制约,中国的新能源产业如电池、汽车等,不得不被迫承受原材料疯涨之痛。
传统从盐湖中提取锂盐的方法以晒盐法为主,这种方法极为依赖气候,结晶周期长,品位不高且不稳定,无法满足工业化生产的需要。
发明内容
本发明的目的在于提供一种利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统。
本发明所采取的技术方案是:
利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法,包括如下步骤:
1) 将卤水引入反应釜内;
2) 将200℃以上的高温蒸汽引入卤水中,对卤水进行加热,同时将釜内产生的蒸汽排出;
3) 将排出的蒸汽通过冷凝器冷却并收集其中的冷凝水;
4) 待卤水浓缩至预定值或析出足量碳酸锂后,停止通入高温蒸汽。
作为上述方法的进一步改进,将卤水预热至不低于50℃再向卤水中引入高温蒸汽。
作为上述方法的进一步改进,卤水中锂离子的含量不低于2g/L。
作为上述方法的进一步改进,高温蒸汽为过热蒸汽。
作为上述方法的进一步改进,高温蒸汽的温度不低于250℃。
利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统,包括反应釜,反应釜设有卤水进口、上方设有蒸汽排出口,下方设有出料口,反应釜内设有开口朝下的多根蒸汽管,蒸汽排出口与冷凝器相连。
作为上述系统的进一步改进,蒸汽管的出口端倾斜排布。更进一步的蒸汽管的出口端倾斜排布成环状。
作为上述系统的进一步改进,蒸汽管设有用于防止倒吸的装置。更进一步的,防止倒吸的装置为单向阀。
作为上述系统的进一步改进,蒸汽排出口下方设有网罩。
作为上述系统的进一步改进,冷凝器设有冷凝水收集器。
作为上述系统的进一步改进,冷凝水收集器设有连接至反应釜内冲洗器的管路。
作为上述系统的进一步改进,冷凝水收集器与冲洗器之间的管路上设有加热器。
作为上述系统的进一步改进,冷凝器外设有容纳冷却介质的夹套。冷凝器外部的冷却介质为卤水。
本发明的有益效果是:
本发明方法使用蒸汽对卤水进行加热,具有加热速度快,加热均匀的优势,有利于减少设备中的夹套或换热管等加热装置的设置,避免温差过大引起盐的结块。蒸汽在加热的同时,还可以起到搅拌卤水的作用,有利于减少设备中的搅拌装置的设置。通过将蒸汽通过热交换机冷凝,可以将产生的蒸汽自动吸出,减少了真空泵的设置,有利于降低设备的复杂程度。蒸汽冷凝释放的热被尽可能的回收利用,既可以用于卤水的预热,也可以用于预热其他介质,能源利用率高。卤水的浓缩和碳酸锂结晶既可以在不同的反应釜进行,也可以同一反应釜内进行,使用灵活方便。
本发明方法用于浓缩卤水时,具有浓缩速度快,浓缩效果好的特点,可以满足批量连续生产时对浓缩卤水的需求。
本发明方法用于碳酸锂制备时,可以快速加热卤水,在蒸发大量水的同时使卤水剧烈沸腾,产生的蒸汽通过冷凝器冷凝后体积迅速减少,使得蒸汽可以快速被抽出。在这一过程中,碳酸锂的析出量远超卤水的蒸发量,出乎意料地超量析出。同时,蒸汽的引入对卤水起到了一定的搅拌作用,可以进一步简化反应釜的部件,有利于节约设备投资。
本发明的系统,结构简单,在一定程度上可以实现蒸汽自排,同时实现了卤水的自我搅拌,有效避免了在反应釜内壁上形成盐垢,延长了设备的使用寿命,同时有助于减少能耗,特别适用于高原地区。
本发明系统既可以用于卤水的浓缩,又可以用于碳酸锂的制备,可以方便地根据需要调整其用途,满足不同生产条件的需要。
本发明系统,在制备碳酸锂或浓缩卤水的同时,可以副产大量的淡水,特别适用于淡水缺乏的高原地区。冷凝器在冷却水蒸汽的同时,可以将卤水预热,大大提高了热能的利用率,减少了热排放,有利于维持盐湖地区的生态。
附图说明
图1是本发明系统的结构示意图。
具体实施方式
利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法,包括如下步骤:
1) 将卤水引入反应釜内;
2) 将200℃以上的高温蒸汽引入卤水中,对卤水进行加热,同时将釜内产生的蒸汽排出;
3) 将排出的蒸汽通过冷凝器冷却并收集其中的冷凝水;
4) 待卤水浓缩至预定值或析出足量碳酸锂后,停止通入高温蒸汽。
为避免使用蒸汽加热低温卤水时引入过多的水,作为上述方法的进一步改进,将卤水预热至不低于50℃再向卤水中引入高温蒸汽。卤水预热的温度越高,使卤水沸腾所需要的高温蒸汽就越少,可以更快地使卤水剧烈沸腾。
在制备碳酸锂时,为保证碳酸锂在加热的过程中可以更快析出,卤水中锂离子的含量较高是比较有利的。作为上述方法的进一步改进,卤水中锂离子的含量不低于2g/L,这样整体的成本比较经济。当用于卤水浓缩时,对卤水中锂离子的含量无特殊要求,锂离子含量达0.1g/L即可进行浓缩。
本发明所述的高温蒸汽,包括饱和高温蒸汽和过热蒸汽。蒸汽的温度越高,就可以在尽可少引入水的同时尽可能多的使卤水沸腾蒸发,作为上述方法的进一步改进,高温蒸汽的温度不低于250℃。考虑到经济性、安全性和材料的可选性,现有技术下蒸汽的温度在250℃~350℃之间是较佳的选择。
作为上述方法的进一步改进,制备碳酸锂时,停止通入高温蒸汽后,继续保温至少1小时。保温可以使碳酸锂充分地沉淀,同时使其中的杂质盐尽可能多的回溶,减少终产品中杂质的含量。
下面结合附图,进一步说明本发明的系统。参照图1,利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统,包括反应釜1,反应釜1设有卤水进口11、上方设有蒸汽排出口13,下方设有出料口12,反应釜1内设有开口朝下的多根蒸汽管14,蒸汽排出口13与冷凝器2相连。
作为上述系统的进一步改进,蒸汽管的出口端倾斜排布;更进一步的蒸汽管的出口端倾斜排布成环状。这样,在通入蒸汽的时候就可以更好地带动卤水,起到更好的搅拌作用。
作为上述系统的进一步改进,蒸汽管设有用于防止倒吸的装置。更进一步的,防止倒吸的装置为单向阀。这样可以有效避免卤水倒吸,进一步提高了设备的安全性。
作为上述系统的进一步改进,蒸汽排出口13下方设有网罩15。网罩的作用在于防止釜内产生的气泡直接进入蒸汽排出口,有助于保持管路畅通,提高生产的稳定性。
作为上述系统的进一步改进,冷凝器2设有冷凝水收集器21。这样可以有效地将冷凝水收集起来,冷凝水可进一步被利用,大大减少了淡水的消耗。
作为上述系统的进一步改进,冷凝水收集器21设有连接至反应釜1内冲洗器22的管路,冷凝水收集器与冲洗器之间的管路上设有加热器。这样可以方便地将冷凝水再加热,对反应釜进行冲洗。
作为上述系统的进一步改进,冷凝器外设有容纳冷却介质的夹套。冷凝器外部的冷却介质为卤水。高原地区的卤水水温一般不超过10℃,冷却效果极佳。卤水在吸热之后温度上升,减少了预热卤水的能耗。冷凝器外部的冷却介质并不局限于卤水,也可以根据需要进行相应的调整,如使用淡水作为冷凝介质也是可以的。
下面结合实施例,进一步说明本发明技术方案。
以下实施例和对比例均在低海拔地区进行,当地水的沸点约为100℃。
实施例1:
1) 将3082 L(3822 Kg)卤水A泵至反应釜内,将卤水预热至80℃,卤水A富含碳酸根,锂离子浓度为1.82g/L;
2) 将250℃以上的过热蒸汽泵入反应釜卤水中,产生的蒸汽通过冷凝器冷凝自然排出,经过19min后,至卤水重量稳定显示3481Kg;
3) 将卤水回到初始温度,排出上清液,将碳酸锂结晶转移至下反应釜并用冷凝纯净水进行擦洗,得到白色呈冰淇淋状的含水碳酸锂;
4) 将上述含水碳酸锂烘干,得到碳酸锂固体24.89Kg,品位达到95.2%,锂析出率达到79.4%。
对比例1:
同实施例1,不同之处在于使用夹套加热的方式,保温于90℃,耗时约30小时将卤水中的水蒸发340kg,之后过滤收集其中的碳酸锂结晶。最终得到碳酸锂固体5.48Kg,品位为81.9%,锂析出率达到15.0%。
实施例2:
1) 将2216L(2592Kg)卤水B泵至反应釜内,将卤水预热至80℃,卤水B富含碳酸根,锂离子浓度为2.55g/L;
2) 将250℃以上的过热蒸汽泵入反应釜卤水中,经过15min后,至卤水重量稳定显示2343Kg;
3) 将卤水回到初始温度,排出上清液,将碳酸锂结晶转移至下反应釜并用冷凝纯净水进行擦洗,得到白色呈冰淇淋状的含水碳酸锂;
4) 将上述含水碳酸锂烘干,得到碳酸锂固体27.41kg,品位达到99.47%,锂析出率达到90.7%。
对比例2:
同实施例2,不同之处在于使用夹套加热的方式,保温于90℃,耗时约30小时将卤水中的水蒸发250kg,之后过滤收集其中的碳酸锂结晶。最终得到碳酸锂固体5.79Kg,品位为86.7%,锂析出率达到16.7%。
通过对比实施例和对比例的结果可以清楚地看出,通入高温蒸汽使卤水剧烈沸腾,可以显著提高碳酸锂的析出量,其析出量远高于常规加热方式,具有意料之外的效果。
使用过热蒸汽对卤水进行加热,可以进一步提高卤水中锂的析出率,同时也可以得到纯度更高的碳酸锂结晶。因此,在加热卤水的过程中,高温蒸汽优选使用过热蒸汽。
盐湖地区的海拔高,水的沸点更低,一般在75~80℃之间就会沸腾,因此,在高原地区可以在大幅减少能耗的情况下蒸发出大量的水,获得更佳的结果。

Claims (10)

  1. 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法,包括如下步骤:
    1) 将卤水引入反应釜内;
    2) 将200℃以上的高温蒸汽引入卤水中,对卤水进行加热,同时将釜内产生的蒸汽排出;
    3) 将排出的蒸汽通过冷凝器冷却并收集其中的冷凝水;
    4) 待卤水浓缩至预定值或析出足量碳酸锂后,停止通入高温蒸汽。
  2. 根据权利要求1所述的方法,其特征在于:将卤水预热至不低于50℃再向卤水中引入高温蒸汽。
  3. 根据权利要求1或2所述的方法,其特征在于:高温蒸汽为过热蒸汽。
  4. 根据权利要求1~3任一项所述的方法,其特征在于:高温蒸汽的温度不低于250℃。
  5. 根据权利要求1~4任一项所述的方法,其特征在于:制备碳酸锂时,停止通入高温蒸汽后,继续保温至少1小时。
  6. 利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统,包括反应釜,反应釜设有卤水进口、上方设有蒸汽排出口,下方设有出料口,其特征在于:反应釜内设有开口朝下的多根蒸汽管,蒸汽排出口与冷凝器相连。
  7. 根据权利要求6所述的系统,其特征在于:蒸汽管的出口端倾斜排布。
  8. 根据权利要求6或7所述的系统,其特征在于:冷凝器设有冷凝水收集器。
  9. 根据权利要求8所述的系统,其特征在于:冷凝水收集器设有连接至反应釜内冲洗器的管路。
  10. 根据权利要求6~9任一项所述的系统,其特征在于:冷凝器外部的冷却介质为卤水。
PCT/CN2017/084812 2016-05-26 2017-05-18 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统 WO2017202236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,495 US10981798B2 (en) 2016-05-26 2017-05-18 Method and system for rapidly preparing lithium carbonate or concentrated brine using high-temperature steam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610364149.7 2016-05-26
CN201610364149.7A CN105836768B (zh) 2016-05-26 2016-05-26 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统

Publications (1)

Publication Number Publication Date
WO2017202236A1 true WO2017202236A1 (zh) 2017-11-30

Family

ID=56595828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084812 WO2017202236A1 (zh) 2016-05-26 2017-05-18 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统

Country Status (4)

Country Link
US (1) US10981798B2 (zh)
CN (1) CN105836768B (zh)
CL (1) CL2018002575A1 (zh)
WO (1) WO2017202236A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836768B (zh) * 2016-05-26 2017-12-12 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
CN110217807A (zh) * 2019-07-18 2019-09-10 长沙有色冶金设计研究院有限公司 一种碳酸锂生产中的沉锂系统及沉锂工艺
CN112316876A (zh) * 2020-11-12 2021-02-05 湖北鼎晖耐火材料有限公司 一种用于多晶莫来石纤维的反应釜
CN113198194B (zh) * 2021-05-11 2022-09-09 江苏峰业环境科技集团股份有限公司 一种节能环保型三效蒸发器
RU2766950C2 (ru) * 2021-09-06 2022-03-16 Общество с ограниченной ответственностью "Экостар-Наутех" Способ получения пресной воды из водных солевых растворов на производствах, использующих природные литиеносные рассолы для получения литиевой продукции в условиях высокой солнечной активности и аридного климата, и установка для его осуществления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN105217660A (zh) * 2014-06-27 2016-01-06 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法
CN205170408U (zh) * 2015-12-08 2016-04-20 汕头市泛世矿业有限公司 制备高纯碳酸锂的三合一系统装置
CN105836768A (zh) * 2016-05-26 2016-08-10 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
CN205773394U (zh) * 2016-05-26 2016-12-07 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140039A1 (en) * 2012-03-19 2013-09-26 Outotec Oyj Method for recovering lithium carbonate
CN103657135A (zh) * 2012-08-28 2014-03-26 丁建人 内热式蒸发结晶罐
CN104828846B (zh) * 2014-06-27 2017-11-28 广州市睿石天琪能源技术有限公司 利用高温卤水纯化和分离碳酸锂混盐的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN105217660A (zh) * 2014-06-27 2016-01-06 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法
CN205170408U (zh) * 2015-12-08 2016-04-20 汕头市泛世矿业有限公司 制备高纯碳酸锂的三合一系统装置
CN105836768A (zh) * 2016-05-26 2016-08-10 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
CN205773394U (zh) * 2016-05-26 2016-12-07 广州市睿石天琪能源技术有限公司 利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统

Also Published As

Publication number Publication date
CN105836768A (zh) 2016-08-10
CN105836768B (zh) 2017-12-12
CL2018002575A1 (es) 2018-11-23
US10981798B2 (en) 2021-04-20
US20190055134A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017202236A1 (zh) 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
CN108275819B (zh) 一种三元前驱体洗涤废水回收的方法
WO2014202005A1 (zh) 一种快速提取盐湖水中碳酸锂的方法及系统
CN112811444B (zh) 一种pta焚烧锅炉灰渣溶液分盐结晶工艺
WO2020207223A1 (zh) 一种氢氧化锂的制备方法
CN105174290A (zh) 浓盐水中钾钠盐的分离工艺
CN101214931A (zh) 硫酸法生产钛白粉过程中稀硫酸的浓缩除杂方法
CN111908535B (zh) 硫酸镁生产废水零排放资源化处理系统及处理方法
CN115010150B (zh) 一种mvr热法提硝工艺
CN101708870A (zh) 一种硫酸铵废液的浓缩结晶工艺
CN110846443A (zh) 安赛蜜糖水反萃优化结晶的方法
CN110723756A (zh) 钛液连续真空结晶制取七水硫酸亚铁的新工艺及装置
CN102267717B (zh) 一种蒸发结晶法制备硫酸锌的工艺
CN218665442U (zh) 从富锂盐湖中提取高纯度氯化锂及氯化钠的装置
CN114949893B (zh) 从盐湖卤水中生产氯化锂的蒸发结晶工艺及装置
CN205773394U (zh) 利用高温蒸汽快速制备碳酸锂或浓缩卤水的系统
CN109319812A (zh) 以铯矾为原料制备碳酸铯的方法
CN112624178B (zh) 一种一水硫酸锌和七水硫酸锌联产的生产工艺
CN113816401A (zh) 一种从卤水中提取氯化锂的方法及装置
AU2017442939B2 (en) Method for preparing lithium hydroxide and method for preparing lithium carbonate
CN221093975U (zh) 一种三元高镍正极废水零排放处理系统
CN221662635U (zh) 一种硅材料生产过程中高盐废水处理系统
CN217498701U (zh) 一水硫酸亚铁生产装置
CN115350499B (zh) 一种硫酸钠提纯处理系统及其处理工艺
CN112390266A (zh) 一种硼酸复合萃取剂、以及从盐湖老卤中回收硼酸、镁、锂的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802082

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 01.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802082

Country of ref document: EP

Kind code of ref document: A1