WO2017028162A1 - 一种快速浓缩卤水制取碳酸锂的方法 - Google Patents

一种快速浓缩卤水制取碳酸锂的方法 Download PDF

Info

Publication number
WO2017028162A1
WO2017028162A1 PCT/CN2015/087254 CN2015087254W WO2017028162A1 WO 2017028162 A1 WO2017028162 A1 WO 2017028162A1 CN 2015087254 W CN2015087254 W CN 2015087254W WO 2017028162 A1 WO2017028162 A1 WO 2017028162A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
lithium carbonate
salt
total volume
pressure
Prior art date
Application number
PCT/CN2015/087254
Other languages
English (en)
French (fr)
Inventor
余昊
易丹青
Original Assignee
西藏金浩投资有限公司
朱彬元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西藏金浩投资有限公司, 朱彬元 filed Critical 西藏金浩投资有限公司
Priority to PCT/CN2015/087254 priority Critical patent/WO2017028162A1/zh
Publication of WO2017028162A1 publication Critical patent/WO2017028162A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates

Definitions

  • the invention relates to a method for extracting lithium carbonate, in particular to a method for rapidly concentrating brine to prepare lithium carbonate.
  • the salt lake contains a variety of mineral salts and is an important source of mineral salts.
  • the mineral salt content in the salt lake is generally low, and a variety of mineral salts are mixed, which is difficult to obtain and separate on a large scale.
  • the mining process is mainly the salt lake water salt method, mineral deposit mining and other methods.
  • the salt drying method is the most environmentally friendly mining method, but because its efficiency is too low, the production cycle usually ranges from several months to several years, which seriously restricts it. Further development, so the method of improving the efficiency of evaporation crystallization has important strategic value.
  • the brine composition is very complicated.
  • concentration of the target salt for example, the lithium content in the brine is small relative to the sodium and potassium content, and the concentrated solution becomes a necessary process.
  • the adsorption method utilizes the excellent selective adsorption of lithium by the ion sieve type oxide, and the selectivity coefficient for lithium can be as high as 104-105. It can be effectively applied to lithium extraction in salt lake brine, and its mechanical strength and chemical stability are excellent.
  • Solvent extraction method is suitable for salt lake brine with high magnesium chloride content, which is characterized by simple process, high product purity and low energy consumption;
  • the precipitation method is simple in process and high in reliability, and is suitable for salt lake brine with low magnesium to lithium ratio.
  • Their shortcomings are: the actual adsorption amount of the ion sieve adsorbent is still far from the theoretical adsorption amount.
  • the poor permeability of the adsorbent and the difficulty of granulation limit the industrial application of this method; the solvent extraction method also has problems such as easy corrosion of the equipment and serious damage of the extractant; the extraction efficiency also exists in the common precipitation method. Lower disadvantages. None of the above methods can achieve high production efficiency under the premise of protecting the environment.
  • a method for rapidly concentrating brine to prepare lithium carbonate comprises the following steps:
  • the temperature is raised by at least 10 ° C, and the salt is precipitated by heat preservation.
  • the temperature of the lithium carbonate brine is raised to 80 ° C or higher before the gas pressure in the sealed container is lowered.
  • the lithium carbonate content in the lithium carbonate brine is not less than 6 g/L.
  • the pressure reduction is stopped.
  • the evaporation amount of water within 3 minutes is not less than 8% of the total volume of the brine.
  • the brine when the salt is precipitated, the brine is allowed to stand.
  • the brine is sufficiently stirred before the salt is precipitated.
  • the inventors unexpectedly found in the experiment that by rapidly reducing the pressure in the closed container, the boiling point of the internal brine is rapidly lowered and boiling vigorously, the reaction can be accelerated, and the lithium carbonate in the brine is excessively precipitated, and the evaporation amount of water is the same.
  • the precipitation of lithium carbonate under rapid decompression and vigorous boiling can be more than twice that of slow boiling evaporation.
  • the heat energy consumed by discharging the same amount of solvent is also greatly reduced, which is more energy efficient.
  • the method of the invention can quickly concentrate the brine to obtain a mixed salt, greatly reduce the time used for production, and can produce lithium carbonate which may be produced in a limited time.
  • the lithium carbonate mixed salt obtained by vigorous boiling has a small particle size and uniform particles, and the impurity salt can be dissolved by simple further heat treatment, and the lithium carbonate salt having higher purity can be easily purified.
  • a method for rapidly concentrating brine to prepare lithium carbonate comprises the following steps:
  • the violent boiling referred to in the method of the present invention means that after the pressure in the closed container is lowered, the brine starts to boil, 3
  • the evaporation amount of water in min is not less than 5% of the total volume of the brine, preferably not less than 6%, 7%, 8%, 10%, and 11%.
  • the evaporation amount of water in min accounts for 5 to 15%, preferably 8 to 15%, of the total volume of the brine.
  • the temperature is raised by at least 10 ° C, and the salt is precipitated by heat preservation. Further heating can significantly increase the purity of lithium carbonate, which is conducive to subsequent production purification.
  • the temperature of the lithium carbonate brine is raised to 80 ° C or higher before the gas pressure in the sealed container is lowered.
  • the increase in temperature contributes to the precipitation of lithium carbonate, and at the same time, the purity of lithium carbonate is somewhat improved.
  • the lithium carbonate brine used is preferably a concentrated brine.
  • the mass percentage of lithium carbonate in the lithium carbonate brine is not less than 6 g/L (corresponding to a lithium ion concentration of 1.13 g/L), preferably 6.5 to 10 g/L.
  • the brine directly taken from the salt lake can also be used directly, but it needs to evaporate a large amount of solvent, which inevitably prolongs the operation time.
  • the pressure reduction is stopped. In this case, as much lithium carbonate as possible can be produced under relatively economic conditions.
  • the brine when the salt is precipitated, the brine is allowed to stand.
  • the brine is sufficiently stirred before the salt is precipitated.
  • the main methods to increase the boiling degree of brine are:
  • the concentration of the brine can be carried out using a time to prolong the vigorous boiling or any known method.
  • the lithium carbonate brine used in the following examples unless otherwise specified, the initial content of lithium carbonate in the brine is 7.0. g/L, the initial temperature of the brine is 30 ° C for comparison.
  • the heating brine consumes a total of 0.98 Kwh of electrical energy.
  • the heating brine consumes a total of 0.94 Kwh of electrical energy.
  • the heating brine consumes a total of 1.41 Kwh of electrical energy.
  • Example 5 Comparing the particle sizes of the lithium carbonate mixed salt obtained in Example 5 and Comparative Example 1 and Comparative Example 2, it was found that the particles of Example 5 were significantly smaller than those of Comparative Examples 1 and 2, and the lithium carbonate mixed salt obtained in Example 5 was more soluble. In water, it is easier to purify.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种快速浓缩卤水制取碳酸锂的方法,包括:将碳酸锂卤水置于密闭容器内;将密闭容器内的气压降低,使卤水沸腾并将产生的水蒸汽排出,3min内水的蒸发量不低于卤水总体积的5%;待至少蒸发卤水总体积10%的水后,停止减压,使盐析出;待盐析出后,排出上清液,得到碳酸锂混盐。该方法可以大幅减少生产时间和热能消耗。

Description

一种快速浓缩卤水制取碳酸锂的方法
技术领域
本发明涉及一种碳酸锂的提取方法,特别涉及一种快速浓缩卤水制取碳酸锂的方法。
背景技术
盐湖中含有多种矿物盐,是矿物盐的一个重要来源。但是盐湖中的矿物盐含量普遍较低,多种矿物盐混合,大规模制取及分离的难度较大。近年来的开采工艺主要是盐湖水晒盐法、矿床开采等方法,其中晒盐法是最环保的开采方法,但因其效率太低,生产周期通常在数月至数年,严重制约着它的进一步发展,所以能够提高蒸发结晶效率的方法具有重要的战略价值。
卤水成分十分复杂,在提取目标盐的浓度较低时,例如卤水中锂含量相对于钠、钾含量很少,浓缩溶液就成了必要工艺。
国内外报道了不少用于从盐湖卤水中提取Li2CO3的装置和方法,例如:《从盐湖卤水中提取锂的吸附技术及研究进展》(盐业与化工,2007年第36卷第3期)、《利用盐湖卤水萃取液制备碳酸锂》(盐湖研究,2006年第14卷第2期)、《国内外从盐湖卤水中提锂工艺技术研究进展》(世界科技研究与进展,2006年第28卷第5期)、《溶剂浮选法富集盐湖卤水中锂的研究》(盐业与化工,2011年第40卷第1期)等文献。这些装置和方法的特点是:吸附法利用离子筛型氧化物对锂的优良的选择性吸附,对锂的选择系数可高达104~105, 能有效的应用于盐湖卤水提锂,其机械强度和化学稳定性优良;溶剂萃取法适用于氯化镁含量较高的盐湖卤水,其特点在于工艺简单、产品纯度高、能耗较小;碳酸盐沉淀法工艺简单、可靠性高,适用于低镁锂比的盐湖卤水。它们的不足之处在于:离子筛吸附剂的实际吸附量与理论吸附量还有较大差距, 另外吸附剂的渗透性能差、造粒困难等性能限制了这种方法的工业化应用;溶剂萃取法也存在设备易被腐蚀且萃取剂的溶损较严重等问题;普通沉淀法也存在着提取效率较低的缺点。以上方法都不能在保护环境的前提下获得较高的生产效率。
现有技术中缺乏一种可以快速浓缩卤水制取碳酸锂的方法。
发明内容
本发明的目的在于提供一种快速浓缩卤水制取碳酸锂的方法。
本发明所采取的技术方案是:
一种快速浓缩卤水制取碳酸锂的方法,包括如下步骤:
1) 将碳酸锂卤水置于密闭容器内;
2) 将密闭容器内的气压降低,使卤水剧烈沸腾并将产生的水蒸汽排出,3 min内水的蒸发量不低于卤水总体积的5%;
3) 待至少蒸发卤水总体积10%的水后,停止减压,使盐析出;
4) 待盐析出后,排出上清液,得到碳酸锂混盐。
优选的,上述方法中,步骤3)中,停止减压后,升温至少10℃,保温使盐析出。
优选的,上述方法中,在降低密闭容器内的气压前,将碳酸锂卤水的温度升温至80℃以上。
优选的,上述方法中,碳酸锂卤水中的碳酸锂含量不低于6g/L。
优选的,上述方法中,待蒸发卤水总体积的10~25%的水后,停止减压。
优选的,上述方法中,3 min内水的蒸发量不低于卤水总体积的8%。
优选的,上述方法中,使盐析出时,保持卤水静置。
优选的,上述方法中,在使盐析出前,对卤水进行充分搅拌。
本发明的有益效果是:
发明人在实验中意外发现,通过快速降低密闭容器内的压力,使其内卤水的沸点快速降低而剧烈沸腾,可以加速反应,致使卤水中的碳酸锂超量析出,在水的蒸发量相同的情况下,快速减压剧烈沸腾下碳酸锂的析出量可达缓慢沸腾蒸发下的2倍以上。同时,排出等量溶剂所消耗的热能也大大降低,更为节能。本发明方法可以快速浓缩卤水得到混盐,大幅减少生产所使用的时间,可以有限的时间内生产出尽产可能多的碳酸锂。
通过剧烈沸腾得到的碳酸锂混盐,粒度小,颗粒均匀,简单进一步加热处理即可使杂质盐溶解,易于纯化获得纯度更高的碳酸锂盐。
具体实施方式
一种快速浓缩卤水制取碳酸锂的方法,包括如下步骤:
1) 将碳酸锂卤水置于密闭容器内;
2) 将密闭容器内的气压降低,使卤水剧烈沸腾并将产生的水蒸汽排出,3 min内水的蒸发量不低于卤水总体积的5%;
3) 待至少蒸发卤水总体积10%的水后,停止减压,使盐析出;
4) 待盐析出后,排出上清液,得到碳酸锂混盐。
本发明方法中所称的剧烈沸腾,指在将密闭容器内的气压降低卤水开始沸腾后,3 min内水的蒸发量不少于卤水总体积的5%,优选不少于6%、7%、8%、10%、11%。沸腾程度越剧烈,碳酸锂析出的越多,收率越好,但当3 min内水的蒸发量超过卤水总体积的15%后,碳酸锂的析出量逐渐达到稳态,经济的蒸发速率为3 min内水的蒸发量占卤水总体积的5~15%,优选为8~15%。
优选的,上述方法中,步骤3)中,停止减压后,升温至少10℃,保温使盐析出。进一步升温可以显著提高碳酸锂的纯度,利于后续的生产纯化。
优选的,上述方法中,在降低密闭容器内的气压前,将碳酸锂卤水的温度升温至80℃以上。温度的升高,有助于碳酸锂的析出,同时可以使碳酸锂的纯度有一定的提高。
为使卤水更易蒸发结晶,所使用的碳酸锂卤水优选为浓缩后的卤水,优选的,上述方法中,碳酸锂卤水中碳酸锂的质量百分含量不低于6 g/L(相当于锂离子浓度1.13 g/L),优选为6.5~10 g/L。当然,直接取自盐湖的卤水的也可以直接使用,只不过需要蒸发大量的溶剂,无形中延长了操作时间。
优选的,上述方法中,待蒸发卤水总体积的10~25%的水后,停止减压。这种情况下可以较为经济的条件生产得到尽可能多的碳酸锂。
优选的,上述方法中,使盐析出时,保持卤水静置。
优选的,上述方法中,在使盐析出前,对卤水进行充分搅拌。
加剧卤水沸腾程度的方法主要有:
1) 使用抽真空将其中的气体排出;
2) 先向密闭容器增压,之后卸压;或结合抽真空使容器内的压力进一步快速降低。
卤水的浓缩可使用延长剧烈沸腾的时间或任何公知的方法进行。
以下实施例中的所使用的碳酸锂卤水,如无特别说明,卤水中碳酸锂的初始含量均为7.0 g/L,,卤水的初始温度为30℃方便进行对比。
实施例1
1) 取碳酸锂卤水6 L,置于容积为10L的密闭容器内,加热至80℃;
2) 通过抽真空装置将密闭容器的压力降低,使卤水剧烈沸腾,3 min内水的蒸发量为卤水总体积的8%,共蒸发卤水总体积15%的水;
3) 停止减压,将得到的盐水混合物进一步升温10℃到90℃,搅拌30 s,之后静置保温2min,排出上清液;
4) 将得到湿盐烘干,得干盐共计17.0g,碳酸锂的百分含量为91.4%,收率为37.0%。
加热卤水共消耗电能0.89Kwh。
实施例2
1) 取碳酸锂卤水6 L,置于容积为10L的密闭容器内,加热至107℃;
2) 通过抽真空装置将密闭容器的压力降低,使卤水剧烈沸腾,3 min内水的蒸发量为卤水总体积的8%,共蒸发卤水总体积15%的水;
3) 停止减压,将得到的盐水混合物进一步升温10℃到117℃,搅拌60 s,之后静置保温2min,排出上清液;
4) 将得到湿盐烘干,得干盐共计17.5g,碳酸锂的百分含量为97.7%,收率为41.2%。
加热卤水共消耗电能0.98Kwh。
实施例3
1) 取碳酸锂卤水6 L,置于容积为10L的密闭容器内,加热至107℃;
2) 通过抽真空装置将密闭容器的压力降低,使卤水剧烈沸腾,3 min内水的蒸发量为卤水总体积的10%,共蒸发卤水总体积15%的水;
3) 停止减压,将得到的盐水混合物进一步升温到117℃,搅拌1 min,之后保温2min,排出上清液;
4) 将得到湿盐烘干,得干盐共计19.1g,碳酸锂的百分含量为94.2%,收率为42.8%。
加热卤水共消耗电能0.94Kwh。
实施例4
1) 取碳酸锂卤水6 L,置于容积为10L的密闭容器内,加热至80℃;
2) 通过抽真空装置将密闭容器的压力降低,使卤水剧烈沸腾,3 min内水的蒸发量为卤水总体积的8%,共蒸发卤水总体积25%的水;
3) 停止减压,将得到的盐水混合物进一步升温到90℃,搅拌60 s,之后保温3 min,排出上清液;
4) 将得到湿盐烘干,得干盐共计26.2g,碳酸锂的百分含量为90.6%,收率为56.5%。
加热卤水共消耗电能1.41Kwh。
实施例5
1) 取碳酸锂卤水6 L,置于容积为10 L的密闭容器内,加热至90℃;
2) 通过抽真空装置将密闭容器的压力降低,使卤水剧烈沸腾,3 min内水的蒸发量为卤水总体积的10%,共蒸发卤水总体积15%的水;
3) 将上清液排出,得到的湿盐烘干,得干盐共计240g,碳酸锂的纯度为7.1%,收率为40.6%。
加热卤水共消耗电能0.87Kwh。
对比例1
1) 取碳酸锂卤水6 L,置于容积为10 L的密闭容器内,加热至117℃;
2) 通过持续补热使卤水缓慢沸腾,3 min内水的蒸发量为卤水总体积的1%,共蒸发卤水总体积15%的水;
3) 将上清液排出,得到的湿盐烘干,得干盐共计90.0g,碳酸锂的纯度为16.5%,收率为35.4%。
加热卤水共消耗电能1.76Kwh。
对比例2
1) 取碳酸锂卤水6 L,置于容积为10 L的密闭容器内,加热至80℃;
2) 通过减压蒸发使卤水缓慢沸腾,3 min内水的蒸发量为卤水总体积的1%,共蒸发卤水总体积15%的水;
3) 停止减压,将上清液排出,得到的湿盐烘干,得干盐共计215g,碳酸锂的纯度为6.7%,收率为34.3%。
加热卤水共消耗电能1.13Kwh。
对比实施例5和对比例1、对比例2得到的碳酸锂混盐的颗粒大小,发现实施例5的颗粒明显小于对比例1和2的,同时,实施例5得到的碳酸锂混盐更易溶于水,也就说更易于纯化。

Claims (8)

  1. 一种快速浓缩卤水制取碳酸锂的方法,包括如下步骤:
    1) 将碳酸锂卤水置于密闭容器内;
    2) 将密闭容器内的气压降低,使卤水沸腾并将产生的水蒸汽排出,3 min内水的蒸发量不低于卤水总体积的5%;
    3) 待至少蒸发卤水总体积10%的水后,停止减压,使盐析出;
    4) 待盐析出后,排出上清液,得到碳酸锂混盐。
  2. 根据权利要求1所述的方法,其特征在于:步骤3)中,停止减压后,升温至少10℃,保温使盐析出。
  3. 根据权利要求1所述的方法,其特征在于:在降低密闭容器内的气压前,将碳酸锂卤水的温度升温至80℃以上。
  4. 根据权利要求1所述的方法,其特征在于:碳酸锂卤水中的碳酸锂含量不低于6g/L。
  5. 根据权利要求1~4任意一项所述的方法,其特征在于:待蒸发卤水总体积的10~25%的水后,停止减压。
  6. 根据权利要求1~4任意一项所述的方法,其特征在于:3 min内水的蒸发量不低于卤水总体积的8%。
  7. 根据权利要求1~4任意一项所述的方法,其特征在于:使盐析出时,保持卤水静置。
  8. 根据权利要求1~4任意一项所述的方法,其特征在于:在使盐析出前,对卤水进行充分搅拌。
PCT/CN2015/087254 2015-08-17 2015-08-17 一种快速浓缩卤水制取碳酸锂的方法 WO2017028162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087254 WO2017028162A1 (zh) 2015-08-17 2015-08-17 一种快速浓缩卤水制取碳酸锂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087254 WO2017028162A1 (zh) 2015-08-17 2015-08-17 一种快速浓缩卤水制取碳酸锂的方法

Publications (1)

Publication Number Publication Date
WO2017028162A1 true WO2017028162A1 (zh) 2017-02-23

Family

ID=58050506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087254 WO2017028162A1 (zh) 2015-08-17 2015-08-17 一种快速浓缩卤水制取碳酸锂的方法

Country Status (1)

Country Link
WO (1) WO2017028162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN203728593U (zh) * 2014-01-10 2014-07-23 朱彬元 一种制备高纯碳酸锂的多功能一体化工业装置
CN105217660A (zh) * 2014-06-27 2016-01-06 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318928A (zh) * 2013-06-20 2013-09-25 西藏金浩投资有限公司 一种快速提取盐湖水中碳酸锂的方法及系统
CN203728593U (zh) * 2014-01-10 2014-07-23 朱彬元 一种制备高纯碳酸锂的多功能一体化工业装置
CN105217660A (zh) * 2014-06-27 2016-01-06 西藏金浩投资有限公司 一种快速浓缩卤水制取碳酸锂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
US11634789B2 (en) 2019-09-16 2023-04-25 InCoR Lithium Selective lithium extraction from brines

Similar Documents

Publication Publication Date Title
WO2014202005A1 (zh) 一种快速提取盐湖水中碳酸锂的方法及系统
US9376364B2 (en) Acid/salt separation
NO166967B (no) Anordning for opphengning av ruteenheter.
CN105906837B (zh) 一种聚苯硫醚合成料浆中n-甲基吡咯烷酮溶剂的回收方法
WO2017202236A1 (zh) 利用高温蒸汽快速制备碳酸锂或浓缩卤水的方法及系统
WO2016119644A1 (zh) 一种磷化锂粉体的制备方法
WO2017028162A1 (zh) 一种快速浓缩卤水制取碳酸锂的方法
EA039483B1 (ru) Извлечение карбоновой кислоты из ее магниевых солей путем осаждения с применением хлористоводородной кислоты, пригодное для выделения продукта реакции из ферментативного бульона
CN111394697A (zh) 一种金属蒸发料的表面处理方法
CN114314672A (zh) 一种铼酸铵的纯化方法
CN103626841A (zh) 一种阿斯巴甜的中和结晶方法
CN103508471A (zh) 无水溴化锂的精制方法
CN105217660B (zh) 一种快速浓缩卤水制取碳酸锂的方法
CN114735724A (zh) 一种从废水中回收低含水量溴化钠的方法
CN114195120A (zh) 一种高纯碳的制备方法
CN101362602A (zh) 铸锭边皮和头料的拉制提纯方法
CN109232410B (zh) 酸化法生产烟酸的洗涤水的回收利用的方法
KR970009073B1 (ko) 소금의 정제 방법
CN110817918A (zh) 一种精细氧化钙制备方法
CN111298710B (zh) 一种皂素分离及稳定化方法
CN107550872A (zh) 一种注射用更昔洛韦冻干粉针剂的制备方法
KR101031921B1 (ko) 함수염화암모늄마그네슘으로부터 고순도 무수염화마그네슘 제조방법
CN108315691A (zh) 一种光激发二氧化钛/四氧化三钴湿敏薄膜的制备方法
KR102046785B1 (ko) 발효 브로스 후처리에 유용한, 염산을 사용하는 침전에 의한 카복실산 마그네슘염으로부터의 카복실산의 회수
CN108103438A (zh) 一种离子注入式氮掺杂氮化碳薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901367

Country of ref document: EP

Kind code of ref document: A1