WO2014199977A1 - 包装体及び保存方法 - Google Patents
包装体及び保存方法 Download PDFInfo
- Publication number
- WO2014199977A1 WO2014199977A1 PCT/JP2014/065323 JP2014065323W WO2014199977A1 WO 2014199977 A1 WO2014199977 A1 WO 2014199977A1 JP 2014065323 W JP2014065323 W JP 2014065323W WO 2014199977 A1 WO2014199977 A1 WO 2014199977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- package
- polyamide resin
- resin
- acid
- polyester resin
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2565/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D2565/38—Packaging materials of special type or form
- B65D2565/381—Details of packaging materials of special type or form
- B65D2565/387—Materials used as gas barriers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a packaging body and an article storage method. Specifically, the present invention relates to a package that can suppress oxidative deterioration of the contents from the initial stage of storage, has excellent visibility of the contents, and is suitable for storing articles such as foods, beverages, and pharmaceuticals, and a method for storing the articles.
- Polyesters typified by polyethylene terephthalate (PET) have characteristics such as transparency, mechanical performance, melt stability, fragrance retention, recyclability, etc., so various types of films, sheets, hollow containers, etc. Widely used in packaging materials. However, since polyester has insufficient gas barrier properties against oxygen, carbon dioxide gas, etc., the range of use of packaging containers made of polyester has been limited.
- PET polyethylene terephthalate
- thermoplastic resin having a high gas barrier property examples include polyamides represented by nylon 6, nylon 66 and the like.
- Polymetaxylylene adipamide (MXD6) obtained by polymerizing a diamine component mainly composed of metaxylylenediamine and a dicarboxylic acid component mainly composed of adipic acid is a polyamide particularly excellent in gas barrier properties.
- the glass transition temperature, melting point and crystallinity of MXD6 are similar to those of PET that is particularly widely used among polyesters, the processability of the polyesters is not impaired. From this, the mixture of PET and MXD6 can be processed by applying the molding process conditions of PET almost as it is, and is therefore applied to various packaging materials such as films and bottles.
- MXD6 containing a transition metal such as cobalt has oxygen absorption ability in addition to gas barrier properties, and is therefore widely used for food packaging materials and the like for the purpose of suppressing oxidative deterioration of the contents.
- the oxygen absorption capacity includes generation of radicals caused by the extraction of hydrogen atoms from the methylene chain adjacent to the MXD6 arylene group by transition metals, generation of peroxy radicals by addition of oxygen molecules to the radicals, and It is considered to be expressed by a series of reactions (oxidation reaction) of drawing out hydrogen atoms by oxy radicals (Patent Document 1).
- MXD6 Since a phosphorus compound is generally added during the production of MXD6 for the purpose of promoting a polymerization reaction, MXD6 usually contains about several hundred ppm of phosphorus. However, it is known that when the phosphorus content in MXD6 is large, phosphorus acts as a reducing agent in the above-described oxidation reaction of MXD6, and as a result, the induction time until the oxygen absorption ability is expressed becomes longer (Patent Document 2). .
- a packaging material containing cobalt which is based on a compound containing poly (ethylene terephthalate) and a polyamide obtained by the condensation reaction of m-xylylenediamine and adipic acid, contains phosphorus in the polyamide. It discloses that the amount can be less than a certain amount, and the induction time until the oxygen absorption ability can be shortened.
- JP 2003-341747 A Japanese Patent Laid-Open No. 6-41422
- the object of the present invention is to preserve the packaging body and the article which can suppress the oxidative deterioration of the contents from the initial stage of storage and is excellent in the visibility of the contents, regardless of the phosphorus content in the polyamide resin used for the packaging body. It is to provide a method.
- a packaging body comprising a resin composition containing a polyester resin, a polyamide resin, and an oxidation reaction accelerator, wherein the packaging body satisfies a predetermined condition as described above. It was found that can be solved. Further, in the method of filling and storing an article in a package containing a polyester resin, a polyamide resin, and an oxidation reaction accelerator, the inventors set the content of the polyamide resin in the package to a predetermined range, And it discovered that the said subject could be solved by the oxygen permeability with time of this package satisfying a predetermined condition. The present invention has been completed based on such findings.
- a package comprising a resin composition containing a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C), wherein the package thickness is d ( ⁇ m),
- the major axis average value of the dispersed particles of the polyamide resin (B) is L ( ⁇ m)
- the minor axis average value is W ( ⁇ m)
- the volume fraction is Vf
- An article storage method that satisfies the following formula (1B) when the package capacity is V [L] and the package mass is M [g].
- the packaging body and storage method of the present invention can suppress oxidative deterioration of the contents from the initial stage of storage and are excellent in the visibility of the contents, regardless of the phosphorus content in the polyamide resin used in the packaging body. Therefore, it is used suitably for preservation
- the package of the present invention is a package comprising a resin composition containing a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C), and the package thickness is d ( ⁇ m),
- the following formula (1A) is satisfied when the average major axis of the dispersed particles of the polyamide resin (B) in the package is L ( ⁇ m), the average minor axis is W ( ⁇ m), and the volume fraction is Vf.
- the oxygen permeability after 100 hours from the body preparation is 0.01 [cc / (package ⁇ day ⁇ 0.21 atm)] or less and the haze value is 8% or less.
- the package of this invention consists of a resin composition containing a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C).
- the polyester resin (A) is used as a main component of the package.
- the polyester resin (A) preferably contains an aromatic dicarboxylic acid unit and an aliphatic diol unit from the viewpoints of crystallinity, mechanical properties, and the like.
- the aromatic dicarboxylic acid unit is preferably at least 70 mol%, more preferably at least 80 mol%, still more preferably from the viewpoint of drying before use. 90-100 mol% is contained.
- the aliphatic diol unit preferably contains an aliphatic glycol unit having 2 to 4 carbon atoms in an amount of 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 to 100 mol%.
- aromatic dicarboxylic acids that can be used in addition to terephthalic acid and its derivatives that can constitute the aromatic dicarboxylic acid unit of the polyester resin (A) include aromatics such as benzene, naphthalene, diphenyl, oxydiphenyl, sulfonyldiphenyl, and methylenediphenyl. Dicarboxylic acids having a nucleus and derivatives thereof can be used.
- isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, naphthalenedicarboxylic acid such as 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid Acids and the like and derivatives thereof are preferred, and among these, isophthalic acid, 2,6-naphthalenedicarboxylic acid and derivatives thereof are more preferably used, and isophthalic acid and derivatives thereof are more preferably used. You may use these individually by 1 type or in combination of 2 or more types.
- the ratio (ratio of isophthalic acid units) is preferably 1 to It is 10 mol%, more preferably 1 to 8 mol%, still more preferably 1 to 6 mol%.
- a copolymer resin using isophthalic acid as a dicarboxylic acid component in the above proportion has low crystallinity and can improve moldability.
- a dicarboxylic acid having an aromatic nucleus in which a sulfonic acid metal base is bonded to a benzene, naphthalene, diphenyl, oxydiphenyl, sulfonyldiphenyl, or methylenediphenyl nucleus can also be used as a dicarboxylic acid component which comprises a polyester resin (A).
- the metal ion of the sulfonate is an alkali metal ion such as lithium, sodium or potassium; an alkaline earth metal ion such as magnesium or calcium; a metal ion selected from zinc ion or the like, and the aromatic acid nucleus is sulfophthalic acid, Examples thereof include compounds selected from sulfoterephthalic acid, sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid and derivatives thereof.
- metal salts of sulfoisophthalic acid such as sodium 5-sulfoisophthalate, lithium 5-sulfoisophthalate, zinc 5-sulfoisophthalate and derivatives thereof are preferable.
- -Alkali metal salts of sulfoisophthalic acid such as sodium sulfoisophthalate are more preferred. You may use these individually by 1 type or in combination of 2 or more types.
- the proportion is 0.01 to 2 mol% with respect to the total amount of the dicarboxylic acid units.
- compatibility with a polyamide resin (B) can be improved, without impairing the characteristic of a polyester resin (A).
- the polyamide resin (B) can be finely dispersed in the polyester resin (A) by setting the ratio of the above compound in this range, the transparency of the package can be improved.
- aliphatic dicarboxylic acids such as adipic acid, azelaic acid and sebacic acid as dicarboxylic acids constituting the polyester resin (A); monocarboxylic acids such as benzoic acid, propionic acid and butyric acid; Polycarboxylic acids such as trimellitic acid and pyromellitic acid; carboxylic acid anhydrides such as trimellitic anhydride and pyromellitic anhydride; and the like can be used.
- the diol capable of constituting the diol unit of the polyester resin (A) is preferably an aliphatic diol, and preferably at least one glycol selected from aliphatic glycols having 2 to 4 carbon atoms.
- the glycol ethylene glycol or butylene glycol is preferably used, and ethylene glycol is particularly preferably used. These diols may be used alone or in combination of two or more.
- the diol component that can be used in addition to the aliphatic glycol having 2 to 4 carbon atoms include 1,4-cyclohexanedimethanol, 1,6-hexanediol, and the like, and ester-forming derivatives thereof.
- monoalcohols such as butyl alcohol, hexyl alcohol and octyl alcohol; polyhydric alcohols such as trimethylolpropane, glycerin and pentaerythritol; a diol component having a cyclic acetal skeleton; and the like are used as long as the effects of the present invention are not impaired. You can also.
- the polyester resin (A) is obtained by polymerizing a dicarboxylic acid and a diol, preferably an aromatic dicarboxylic acid and an aliphatic diol, and is produced by a known direct esterification method or transesterification.
- the law can be applied.
- the polycondensation catalyst during the production of the polyester resin (A) include known antimony compounds such as antimony trioxide and antimony pentoxide, and germanium compounds such as germanium oxide.
- polyester resins in the present invention include polyethylene terephthalate, ethylene terephthalate-isophthalate copolymer, ethylene terephthalate-sulfoisophthalic acid metal salt copolymer, ethylene terephthalate-isophthalate-sulfoisophthalic acid metal salt copolymer, ethylene 1,4-cyclohexanedimethylene-terephthalate copolymer, polyethylene-2,6-naphthalene dicarboxylate, ethylene-2,6-naphthalene dicarboxylate-terephthalate copolymer, ethylene-terephthalate-4,4′- Biphenyl dicarboxylate copolymer and the like.
- Particularly preferred polyester resin is at least one selected from polyethylene terephthalate, ethylene terephthalate-isophthalate copolymer, ethylene terephthalate-sulfoisophthalic acid metal salt copolymer, and ethylene terephthalate-isophthalate-sulfoisophthalic acid metal salt copolymer. It is a seed.
- the said polyester resin (A) may be used individually by 1 type or in combination of 2 or more types.
- the polyester resin (A) is preferably dried to a moisture content of 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less before use.
- the polyamide resin (B) is used for improving the gas barrier property of the package and further imparting oxygen absorbing ability to the package by combining with an oxidation reaction accelerator (C) described later.
- the mechanism of the oxygen absorption ability expression by the polyamide resin (B) and the oxidation reaction accelerator (C) is as follows. First, the oxidation reaction accelerator (C) extracts hydrogen atoms in the polyamide resin (B) to generate radicals. An oxygen molecule is added to this radical to form a peroxy radical. Furthermore, a radical chain reaction (hereinafter also simply referred to as “oxidation reaction”) occurs in which hydrogen atoms are again extracted from the polyamide resin (B) by the peroxy radical. As described above, since radicals generated due to the action of the polyamide resin (B) and the oxidation reaction accelerator (C) capture oxygen molecules, the oxygen absorbing ability of the package is developed.
- the diamine unit in the polyamide resin (B) preferably contains a xylylenediamine unit from the viewpoint of gas barrier properties.
- the xylylenediamine unit contained in the diamine unit is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 to 100 mol%.
- the gas barrier property of the obtained polyamide resin can be efficiently improved.
- xylylenediamine metaxylylenediamine, paraxylylenediamine or a mixture thereof is preferable from the viewpoint of gas barrier properties, oxygen absorption capacity, and mechanical properties.
- xylylenediamine units are metaxylylenediamine units. More preferably, it is a range amine unit.
- Diamines having an alicyclic structure such as bis (aminomethyl) tricyclodecane; tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine
- the dicarboxylic acid unit in the polyamide resin (B) is preferably an ⁇ , ⁇ -aliphatic dicarboxylic acid unit from the viewpoint of gas barrier properties and crystallinity.
- the dicarboxylic acid unit preferably contains an ⁇ , ⁇ -aliphatic dicarboxylic acid unit of 70 mol% or more, more preferably 75 mol% or more, and still more preferably 80 to 100 mol%.
- the ⁇ , ⁇ -aliphatic dicarboxylic acid constituting the ⁇ , ⁇ -aliphatic dicarboxylic acid unit includes oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Examples include 1,10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, and adipic acid and sebacic acid are preferably used, and adipic acid is more preferable.
- dicarboxylic acids other than ⁇ , ⁇ -aliphatic dicarboxylic acids include alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and xylylene dicarboxylic acid.
- alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and xylylene dicarboxylic acid.
- aromatic dicarboxylic acids such as acid and naphthalenedicarboxylic acid, but are not limited thereto.
- the above dicarboxylic acids may be used alone or in combination of two or more.
- the structural units of the polyamide resin (B) may be lactams such as ⁇ -caprolactam and laurolactam as long as the effects of the present invention are not impaired; aminocaproic acid, aminoundecanoic acid, etc. And a structural unit derived from an aliphatic aminocarboxylic acid such as p-aminomethylbenzoic acid;
- the polyamide resin (B) used in the present invention contains polymetaxylylene adipamide from the viewpoint of imparting high oxygen absorption ability to the package and from the viewpoint of molding processability when blended with the polyester resin (A). Is preferred.
- the content of polymetaxylylene adipamide in the polyamide resin (B) is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90 to 100% by mass.
- melt polycondensation method examples include a method in which a salt composed of diamine and dicarboxylic acid is heated in the presence of water and under pressure, and polymerized in a molten state while removing added water and condensed water.
- melt polycondensation method examples include a method in which a salt composed of diamine and dicarboxylic acid is heated in the presence of water and under pressure, and polymerized in a molten state while removing added water and condensed water.
- melt polycondensation method examples include a method in which a salt composed of diamine and dicarboxylic acid is heated in the presence of water and under pressure, and polymerized in a molten state while removing added water and condensed water.
- melt polycondensation method examples include a method in which a salt composed of diamine and dicarboxylic acid is heated in the presence of water and under pressure, and polymerized in a molten state while removing added water and condensed water.
- it can
- diamine is continuously added to the dicarboxylic acid, while the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide.
- the polycondensation proceeds.
- a phosphorus atom-containing compound can be added in order to obtain an effect of promoting an amidation reaction and an effect of preventing coloring during polycondensation.
- Phosphorus atom-containing compounds include dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, calcium hypophosphite, ethyl hypophosphite, phenyl Phosphonous acid, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite, phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate , Diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate, potassium ethylphosphon
- metal hypophosphites such as sodium hypophosphite, potassium hypophosphite, and lithium hypophosphite are particularly preferred because they are highly effective in promoting the amidation reaction and have excellent anti-coloring effects.
- sodium hypophosphite is preferred, but the phosphorus atom-containing compounds that can be used in the present invention are not limited to these compounds.
- the phosphorus atom-containing compounds may be used alone or in combination of two or more.
- the amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide resin (B) is preferably such that the phosphorus atom concentration in the finally obtained polyamide resin (B) is 5 to 500 ppm, More preferred is an amount of 10 to 400 ppm, still more preferred is an amount of 10 to 300 ppm, and particularly preferred is an amount of 10 to 150 ppm.
- the phosphorus atom acts as a reducing agent for the oxidation reaction of the polyamide resin (B) in the package, and thus inhibits the oxygen absorption ability.
- the phosphorus atom in the polyamide resin (B) used in the package Regardless of the phosphorus content, both the storage stability and visibility of the contents can be achieved.
- the amidation reaction is not accelerated and the polymerization reaction is not prolonged, and the polyamide resin (B) during polycondensation is prevented from being colored and the polyamide resin
- the gelation of (B) can be suppressed and the appearance of the molded product can be kept good.
- an alkali metal compound such as an alkali metal compound or an alkaline earth metal compound in combination with the phosphorus atom-containing compound.
- the alkali metal compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, and other alkali metal / alkaline earth metal hydroxides.
- alkali metal / alkaline earth metal acetates such as lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, and barium acetate, but are limited to these compounds. Can be used without any problem. You may use the said alkali metal compound individually by 1 type or in combination of 2 or more types.
- the value obtained by dividing the number of moles of the compound by the number of moles of the phosphorus atom-containing compound should be 0.5 to 2.0. Is more preferable, more preferably 0.5 to 1.8, still more preferably 0.6 to 1.5. By setting it as the above-mentioned range, it becomes possible to suppress the formation of gel while obtaining the amidation reaction promoting effect by the phosphorus atom-containing compound.
- the polyamide resin (B) obtained by melt polycondensation is once taken out, pelletized, and dried before use.
- solid phase polymerization may be performed.
- a heating device used in drying or solid phase polymerization a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum type heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer
- a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these.
- a batch-type heating device is preferable among the above-mentioned devices because the inside of the system can be sealed and the polycondensation can easily proceed in a state where oxygen that causes coloring is removed. Used.
- the relative viscosity of the polyamide resin (B) is preferably 1.5 to 4.2, more preferably 1.6 to 3.5, and still more preferably 1.7 to 3.0. By setting the relative viscosity of the polyamide resin (B) within the above range, molding processability is stabilized and a good appearance can be obtained.
- the number average molecular weight (Mn) of the polyamide resin (B) is preferably from 8,000 to 50,000, more preferably from 10,000 to 50,000, from the viewpoint of compatibility with the polyester resin (A) and molding processability. It is in the range of 30,000.
- the number average molecular weight of a polyamide resin (B) can be specifically measured by the method as described in an Example.
- the phosphorus atom concentration in the polyamide resin (B) is preferably 5 to 500 ppm, more preferably 10 to 400 ppm, and more preferably 10 to 300 ppm for the same reason as described above. More preferred is an amount of 10 to 150 ppm.
- the phosphorus atom concentration in the polyamide resin (B) can be measured by using a known method, for example, ICP emission spectroscopic analysis, ICP mass spectrometry, fluorescent X-ray analysis, etc., specifically, the method described in the examples. Can be measured.
- the content of the polyamide resin (B) in the package of the present invention is preferably 2.0 to 3.5% by mass.
- the content of the polyamide resin (B) is 2.0% by mass or more, the induction time until the oxygen absorption ability is expressed can be shortened, so that the storage stability of the contents is improved. Moreover, if it is 3.5 mass% or less, the visibility of the content will become favorable.
- the content of the polyamide resin (B) in the package is more preferably 2.2% by mass or more, and further preferably 2.5% by mass or more.
- the content of the polyamide resin (B) in the package is more preferably 3.2% by mass or less, and still more preferably 3.0% by mass or less.
- a resin other than the polyester resin (A) and the polyamide resin (B) may be contained within a range not impairing the effects of the present invention.
- examples of such other resins include nylon 6 and nylon 66, various polyamides such as amorphous nylon using aromatic dicarboxylic acid as a monomer, modified resins thereof, polyolefin and modified resins thereof, and styrene in the skeleton. And the like.
- the content of the resin components other than the polyester resin (A) and the polyamide resin (B) is preferably 10% by mass or less, more preferably 5 from the point of expressing the effect of the present invention. It is not more than mass%, more preferably not more than 2 mass%, particularly preferably 0 mass%.
- the oxidation reaction accelerator (C) is used for the purpose of inducing an oxidation reaction of the polyamide resin (B) in the packaging body of the present invention to express oxygen absorption ability as described above. Thereby, the oxidative deterioration of the contents can be suppressed and the storage stability can be improved.
- the oxidation reaction accelerator (C) is not particularly limited as long as it exhibits the above-mentioned effect, but is preferably one containing a transition metal element from the viewpoint of promoting the oxidation reaction of the polyamide resin (B).
- the transition metal element is preferably at least one selected from Group VIII transition metals of the Periodic Table of Elements, manganese, copper, and zinc, and cobalt, iron, manganese, and nickel from the viewpoint of expressing oxygen absorption ability. At least one selected from is more preferable, and cobalt is more preferable.
- Such an oxidation reaction accelerator (C) is used in the form of a low-valent oxide, inorganic acid salt, organic acid salt, or complex salt containing the above-mentioned metal in addition to the above-mentioned simple metal.
- inorganic acid salts include halides such as chlorides and bromides, carbonates, sulfates, nitrates, phosphates, silicates, and the like.
- examples of the organic acid salt include a carboxylate, a sulfonate, and a phosphonate. Transition metal complexes with ⁇ -diketone or ⁇ -keto acid ester can also be used. In particular, in the present invention, it is preferable to use at least one selected from carboxylates, carbonates, acetylacetonate complexes, oxides and halides containing the above metal atoms, since oxygen absorption ability is well expressed in the present invention.
- oxidation reaction accelerator (C) may be used alone or in combination of two or more.
- the oxidation reaction accelerator (C) contains a transition metal element
- the content promotes the oxidation reaction of the polyamide resin (B) to increase the oxygen absorption capacity of the package and improve the storage stability of the contents.
- the transition metal concentration in the package is preferably 10 to 1,000 ppm, more preferably 20 to 500 ppm, still more preferably 40 to 300 ppm, and particularly preferably 50 to 100 ppm.
- the transition metal concentration in the package can be measured using a known method, for example, ICP emission spectroscopic analysis, ICP mass spectrometry, fluorescent X-ray analysis, etc., and specifically can be measured by the method described in the examples. .
- the oxidation reaction accelerator (C) described above not only promotes the oxidation reaction of the polyamide resin (B) but also an oxidation reaction of an organic compound having an unsaturated carbon bond or a compound having secondary or tertiary hydrogen in the molecule. It also functions as a catalyst. Therefore, in order to further improve the shelf life of the contents, the package used in the present invention is not limited to the above-mentioned oxidation reaction accelerator (C), but is also a polymer of unsaturated hydrocarbons such as polybutadiene and polyisoprene.
- Various compounds exemplified by those oligomers, compounds having xylylenediamine as a skeleton, or compounds having a functional group added to enhance the compatibility between the compounds and the polyester can also be blended.
- the resin composition constituting the package of the present invention includes an antioxidant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a nucleating agent, a plasticizer, a difficulty, and the like as long as the effects of the present invention are not impaired.
- Additives such as flame retardants, antistatic agents, anti-coloring agents, lubricants, anti-gelling agents, clays such as layered silicates, nanofillers and the like can also be blended.
- the package of this invention consists of a resin composition containing the said polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C).
- the total content of the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C) in the resin composition constituting the package is preferably 75 to 100 from the viewpoint of achieving the effect of the present invention. % By mass, more preferably 80 to 100% by mass, still more preferably 95 to 100% by mass.
- the package of the present invention may have a single layer structure made of the resin composition or may have a multilayer structure in which two or more layers made of the resin composition are laminated.
- the shape of the package is not particularly limited as long as it can be filled with an article and sealed, and examples thereof include bottles, cups, pouches, bag-like shapes, etc. You can choose. From the viewpoint of storing a liquid article, a bottle is preferable.
- the method for producing the package is not particularly limited, and any method can be used.
- a mixture obtained by dry blending the polyester resin (A), polyamide resin (B), oxidation reaction accelerator (C), and various additives is put into an injection molding machine, and injection molding is performed. It can be obtained by injecting the resin composition melted in the machine into a mold to produce a preform, and then heating to a stretching temperature and blow-stretching.
- the polyester resin (A), the polyamide resin (B), the oxidation reaction accelerator (C), and various additives are melt-kneaded in an extruder to prepare a resin composition.
- the cup-shaped package can be obtained by injecting a molten resin composition into a mold from an injection molding machine and molding the sheet by a molding method such as vacuum molding or pressure molding. .
- the package of the present invention can be manufactured through various methods regardless of the above-described manufacturing method.
- the method for producing the resin composition is not particularly limited.
- a polyester resin (A), a polyamide resin (B), an oxidation reaction accelerator (C), and various additives used as necessary can be melt-kneaded in an extruder to obtain a desired resin composition.
- a conventionally known method can be used for mixing the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C). Examples thereof include a method in which a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C) are mixed in a mixer such as a tumbler or a mixer.
- the polyester resin (A) and / or the polyamide resin (B) using a viscous liquid as a spreading agent in order to prevent classification after mixing.
- a method of adding and mixing the oxidation reaction accelerator (C) after adhering to can also be employed.
- the oxidation reaction accelerator (C) is dissolved in an organic solvent, the solution is mixed with the polyester resin (A) and / or the polyamide resin (B), and the organic solvent is removed by heating at the same time or later, and the polyester.
- a method of adhering to the resin (A) and / or the polyamide resin (B) can also be adopted.
- the oxidation reaction accelerator (C) can be added to the extruder using a supply device different from the polyester resin (A) and / or the polyamide resin (B). .
- a resin composition in which the polyester resin (A) and the oxidation reaction accelerator (C) are melt-kneaded in advance may be prepared, and this may be melt-kneaded with the polyamide resin (B).
- a polyester resin (A) or polyamide resin (B) and an oxidation reaction accelerator (C) are melt-kneaded in advance to prepare a master batch, and this, polyester resin (A) and polyamide resin (B) are mixed. You may melt-knead.
- the packaging body of the present invention has a packaging body thickness of d ( ⁇ m), a long particle average value of dispersed particles of the polyamide resin (B) in the package L ( ⁇ m), a short diameter average value of W ( ⁇ m), and a volume fraction.
- the rate is Vf
- the following formula (1A) is satisfied. 10 ⁇ d ⁇ L ⁇ Vf / 2W ⁇ 120 (1A)
- the upper limit of the value calculated by the above formula (1A) is less than 120, preferably less than 100, more preferably less than 50.
- the lower limit of the value calculated by the formula (1A) is greater than 10, preferably greater than 12, and more preferably greater than 15.
- the value calculated by the formula (1A) is 10 or less, the balance between the storage stability and the visibility of the contents tends to be impaired. Moreover, when the value calculated by the formula (1A) is 120 or more, the haze value and YI value of the package tend to be high, and the visibility of the contents is lowered. In addition, when the above formula (1A) is satisfied, the gas barrier property of the package itself is improved by increasing the path length of the gas such as oxygen molecules that permeate the package as will be described later. The induction time until the absorption ability is expressed does not depend on the phosphorus content in the polyamide resin (B).
- a polyamide resin (B) having a relatively high phosphorus content (for example, 100 ppm or more) can also be used as a raw material of the package.
- a polyamide resin (B) having a relatively high phosphorus content for example, 100 ppm or more
- a polyamide resin with less coloring is obtained. Therefore, even a polyamide resin (B) having a relatively high phosphorus content can be used.
- the package has a low YI value and good visibility of the contents.
- Formula (1A) is demonstrated.
- the gas barrier property of a package depends on the speed at which a gas such as oxygen passes through the package. Therefore, if the thickness d of the package is increased, the gas permeation path becomes longer and it takes time for the gas to permeate, so that the gas barrier property of the package is improved.
- the polyamide resin (B) in the case of a package comprising a resin composition in which a polyamide resin (B) is blended with a polyester resin (A) as a main component, the polyamide resin (B) is in a state of dispersed particles in the package. Exists.
- FIG. 1 shows a schematic diagram of the path of oxygen molecules when oxygen molecules move (permeate) from the outside to the inside of the package.
- 1 is a cross section of the package in the thickness direction
- 2 is a dispersed particle of the polyamide resin (B) in the package
- 3 is a path of oxygen molecules passing through the package.
- L1 represents the long diameter of the dispersed particles 2
- W1 represents the short diameter of the dispersed particles 2.
- L / 2W represents the aspect ratio of the dispersed particles 2 of the polyamide resin (B) in the package 1.
- the path of oxygen molecules becomes longer as the volume fraction Vf of the dispersed particles 2 in the package 1 increases, and the gas barrier property of the package 1 improves. Furthermore, when the volume fraction Vf of the dispersed particles 2 in the package 1 is the same, the longer diameter average value L can be increased as the shorter diameter average value W of the dispersed particles 2 is shorter. The journey becomes longer. Further, since the number of dispersed particles 2 (total number of barrier layers) that can exist in the thickness d of the package increases, the gas barrier property of the package 1 is improved.
- the formula (1A) indicates that the path length of gas such as oxygen molecules that permeate the package 1 is “d ⁇ L ⁇ It means that only "Vf / 2W" is added. Therefore, if the value calculated by the formula (1A) exceeds 10, the storage stability of the contents will be good. Moreover, if the value calculated by Formula (1A) is less than 120, even if the dispersed particles 2 are present in the package 1, the haze value and YI value of the package are not excessively high. Visibility can be maintained.
- the major axis average value L ( ⁇ m) and minor axis average value W ( ⁇ m) of the dispersed particles of the polyamide resin (B) can be determined by observation with a transmission electron microscope (TEM). For example, the cross section of the package is cut out and observed with a TEM, and the major axis and the minor axis are measured for the dispersed particles of the polyamide resin (B) present in 5 ⁇ m length and 5 ⁇ m width (area 25 ⁇ m 2 ). By calculating the average value of the major axis and minor axis of all the dispersed particles, the major axis average value L ( ⁇ m) and the minor axis average value W ( ⁇ m) can be obtained.
- TEM transmission electron microscope
- the average length L of the dispersed particles of the polyamide resin (B) is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m, still more preferably 0.2 from the viewpoint of gas barrier properties and appearance of the package. ⁇ 1.5 ⁇ m.
- the average minor axis W is preferably 0.01 to 0.5 ⁇ m, more preferably 0.02 to 0.2 ⁇ m, and still more preferably 0.04 to 0.15 ⁇ m, from the viewpoint of gas barrier properties of the package. is there.
- the major axis average value L ( ⁇ m) and the minor axis average value W ( ⁇ m) can be specifically measured by the method described in Examples.
- the major axis average value L and the minor axis average value W of the dispersed particles of the polyamide resin (B) can be adjusted by the composition and melt viscosity of the resin composition used for the package, the manufacturing conditions of the package, and the like.
- a preform is manufactured by injecting a resin composition containing the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C).
- the manufacturing conditions for manufacturing the preform, the stretching conditions for blow-drawing using the preform, or both conditions The major axis average value L and the minor axis average value W can be adjusted.
- the volume fraction Vf of the dispersed particles of the polyamide resin (B) is that the dispersed particles of the polyamide resin (B) in the resin composition are 1 when the total volume of the resin composition constituting the package is 1. This refers to the volume ratio.
- the volume fraction Vf can be calculated from the mass and density values of each component such as the polyester resin (A) and the polyamide resin (B) contained in the resin composition. Specifically, the density of each component can be measured by the method described in Examples.
- the oxygen transmission rate after 100 hours has elapsed after the package is produced is 0.01 [cc / (package ⁇ day ⁇ 0.21 atm)] or less, and 0.006 [cc / ( package ⁇ day ⁇ 0.21 atm)] or less, more preferably 0.005 [cc / (package ⁇ day ⁇ 0.21 atm)] or less, and 0.003 [cc / (package ⁇ day). 0.21 atm)] or less, more preferably 0.001 [cc / (package ⁇ day ⁇ 0.21 atm)] or less.
- the oxygen transmission rate [cc / (package ⁇ day ⁇ 0.21 atm)] after 100 hours from the production of the package is 100% RH inside the package and 50% outside humidity under the condition of oxygen partial pressure 0.21 atm. It is a value measured under the conditions of RH and a temperature of 23 ° C., and can be specifically measured by the method described in the examples.
- “after 100 hours have passed after the package is produced” means that the time when the package has been formed into a final form is “0 hours after the package is produced”, and means that 100 hours have elapsed since then. To do.
- the time after 100 hours from the time when it is finally molded into the shape of the bottle to be used is defined as “after 100 hours have passed since the package is produced”, and the bottle is formed via a preform. Even when the preform is produced, it is not assumed that it is the starting point of “0 hours after the production of the package”.
- the package of the present invention has a haze value of 8% or less, preferably 7.5% or less, and more preferably 6% or less from the viewpoint of the visibility of the contents.
- drum shall be 8% or less from the point of the visibility of the contents.
- the YI value of the package is preferably 10 or less, more preferably 8 or less, and even more preferably 7.5 or less.
- drum is the said range from the point of the visibility of the contents.
- the haze value and the YI value can be measured by the methods described in Examples.
- the capacity of the package of the present invention is preferably 0.1 to 2.0 L, more preferably 0.2 to 1.5 L, from the viewpoint of the storage stability of the contents, and 0.3 to 1. More preferably, it is 0L.
- the capacity of the package is large, the oxygen permeability per package increases, so that the contents tend to be oxidatively deteriorated and the storage stability tends to decrease. Since it has oxygen absorption ability and the gas barrier property of the package itself is high, the preservability of the contents can be maintained even when the package capacity is large to some extent.
- the thickness d of the package of the present invention can be adjusted as appropriate depending on the shape of the package, the type of contents, etc., but preferably 200 to 400 ⁇ m, more preferably from the viewpoint of achieving both storage stability and visibility of the contents. It is preferably in the range of 220 to 380 ⁇ m, more preferably 250 to 350 ⁇ m. Further, the mass of the package of the present invention can be adjusted as appropriate depending on the shape of the package, the type of contents, etc., but from the viewpoint of mechanical strength as a package and storage stability of the contents, it is 10 g or more. It is preferably, more preferably 12 g or more, and still more preferably 14 g or more.
- save method of the 1st and 2nd aspect is demonstrated.
- the method for preserving an article according to the first aspect of the present invention is characterized by using the package of the present invention.
- save method The method of filling the package which concerns on the goods used as preservation
- articles to be stored such as milk, dairy products, juice, coffee, tea, alcoholic beverages; liquid seasonings such as sauces, soy sauce, dressings, soups, stews, curries, infants Cooked foods, cooked foods such as nursing foods; pasty foods such as jam and mayonnaise; marine products such as tuna and fish shellfish; dairy products such as cheese and butter; processed meat products such as meat, salami, sausage and ham Vegetables such as carrots, potatoes, eggs, noodles, processed rice products such as cooked rice, cooked rice, rice bran, powdered seasonings, powdered coffee, infant milk powder, powdered diet food, dried Dry foods such as vegetables and rice crackers; Chemicals such as agricultural chemicals and insecticides; Pharmaceuticals; Cosmetics; Pet foods; Miscellaneous goods such as shampoos, rinses and detergents; Semiconductor integrated circuits and electronic devices Scan; and the like. In particular, it can be suitably used for storing articles such as foods, beverages, and pharmaceuticals.
- liquid seasonings such as sauces,
- the package and the content can be sterilized in a form suitable for the content item.
- Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, electromagnetic wave sterilization such as ultraviolet rays, microwaves, gamma rays, And gas sterilization such as hydrogen peroxide and hypochlorous acid.
- goods of 2nd aspect of this invention is polyester resin (A), polyamide resin (B), and oxidation reaction accelerator (C).
- save method of 2nd aspect is polyester resin (A), polyamide resin (B), and oxidation reaction accelerator (C).
- the article is filled and stored, and the content of the polyamide resin (B) in the package is 2.0 to 3.5% by mass, and the package is produced.
- the oxygen permeability of the package after 100 hours later is X [cc / (package ⁇ day ⁇ 0.21 atm)]
- the package volume is V [L]
- the package mass is M [g]
- the expression (1B) is satisfied.
- the package used in the storage method of the second aspect of the present invention contains a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C).
- the polyester resin (A), polyamide resin (B), oxidation reaction accelerator (C), and preferred embodiments thereof are the same as described above except for the content of the polyamide resin (B) in the package of the present invention. It is.
- the content of the polyamide resin (B) in the package used in the storage method of the second aspect of the present invention is 2.0 to 3.5% by mass, preferably 2.0 to 3.0% by mass. More preferably, it is 2.2 to 2.8% by mass.
- the content of the polyamide resin (B) in the package is less than 2.0% by mass, the induction time until the oxygen absorption ability is expressed becomes long, and the effect of suppressing the oxidative deterioration of the contents from the initial stage of storage cannot be obtained.
- the content of the polyamide resin (B) in the package exceeds 3.5% by mass, the haze value of the package increases and the YI value tends to increase, so the visibility of the contents decreases. .
- the induction time until the expression of oxygen absorption capacity is reduced to the phosphorus content in the polyamide resin (B). Do not depend.
- a polyamide resin (B) having a relatively high phosphorus content for example, 100 ppm or more
- the package used in the storage method of the second aspect of the present invention contains the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C). And a package comprising a resin composition containing (C) to (C).
- the total content of the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C) in the resin composition constituting the package is preferably 75 to 100 from the viewpoint of achieving the effect of the present invention. % By mass, more preferably 80 to 100% by mass, still more preferably 95 to 100% by mass.
- the package used in the storage method of the second aspect of the present invention may have a single-layer structure made of the resin composition, and at least one of the layers made of the resin composition may have another thermoplastic resin layer (for example, Polyester resin layer or adhesive resin layer) may be laminated, or may have a multilayer structure in which two or more layers made of the resin composition are laminated.
- the shape of the package is not particularly limited as long as it can be filled with an article and sealed, and examples thereof include bottles, cups, pouches, bag-like shapes, etc. Although it can be selected, it is preferably a bottle.
- the method for producing the package used in the storage method of the second aspect of the present invention is not particularly limited, and any method can be used.
- a mixture obtained by dry blending the polyester resin (A), polyamide resin (B), oxidation reaction accelerator (C), and various additives is put into an injection molding machine, and injection molding is performed. It can be obtained by injecting the resin composition melted in the machine into a mold to produce a preform, and then heating to a stretching temperature and blow-stretching.
- the polyester resin (A), the polyamide resin (B), the oxidation reaction accelerator (C), and various additives are melt-kneaded in an extruder to prepare a resin composition.
- the molten resin composition After the molten resin composition is injected to produce a preform, it can be obtained by heating to a stretching temperature and blow-drawing.
- the cup-shaped package can be obtained by injecting a molten resin composition into a mold from an injection molding machine and molding the sheet by a molding method such as vacuum molding or pressure molding. .
- the package used in the storage method of the second aspect of the present invention can be manufactured through various methods regardless of the above-described manufacturing method.
- the method for producing the resin composition is not particularly limited.
- a polyester resin (A), a polyamide resin (B), an oxidation reaction accelerator (C), and various additives used as necessary can be melt-kneaded in an extruder to obtain a desired resin composition.
- a conventionally known method can be used for mixing the polyester resin (A), the polyamide resin (B), and the oxidation reaction accelerator (C). Examples thereof include a method in which a polyester resin (A), a polyamide resin (B), and an oxidation reaction accelerator (C) are mixed in a mixer such as a tumbler or a mixer.
- the polyester resin (A) and / or the polyamide resin (B) using a viscous liquid as a spreading agent in order to prevent classification after mixing.
- a method of adding and mixing the oxidation reaction accelerator (C) after adhering to can also be employed.
- the oxidation reaction accelerator (C) is dissolved in an organic solvent, the solution is mixed with the polyester resin (A) and / or the polyamide resin (B), and the organic solvent is removed by heating at the same time or later, and the polyester.
- a method of adhering to the resin (A) and / or the polyamide resin (B) can also be adopted.
- the oxidation reaction accelerator (C) can be added to the extruder using a supply device different from the polyester resin (A) and / or the polyamide resin (B). .
- a resin composition in which the polyester resin (A) and the oxidation reaction accelerator (C) are previously melt-kneaded may be prepared, and this may be melt-kneaded with the polyamide resin (B).
- a polyester resin (A) or polyamide resin (B) and an oxidation reaction accelerator (C) are melt-kneaded in advance to prepare a master batch, and this, polyester resin (A) and polyamide resin (B) are mixed. You may melt-knead.
- the package used in the storage method according to the second aspect of the present invention has an oxygen permeability of 100 [cc / (package ⁇ day ⁇ 0.21 atm)] after 100 hours from the preparation of the package, and the package capacity.
- the mass of the package is M [g]
- the following formula (1B) is satisfied.
- save method of the 2nd aspect of this invention can suppress the oxidative deterioration of the content from the preservation
- the oxygen permeation amount of the package is determined by the surface area and average thickness of the portion through which oxygen permeates.
- the “portion through which oxygen passes” means, for example, when the package is a bottle, the barrel portion excluding the cap and bottom of the bottle, and the surface area and average thickness of the barrel portion are the oxygen transmission amount. Affect.
- (M-8) corresponds to the mass of the bottle body obtained by subtracting the mass corresponding to the cap and the bottom of the bottle from the mass M of the bottle.
- the oxygen transmission rate X of the bottle is proportional to the square of the bottle capacity V.
- the average thickness of the barrel increases as the mass (M-8) of the bottle barrel increases, and the value of the oxygen permeability X decreases. Therefore, the oxygen transmission rate X of the bottle is inversely proportional to the mass (M-8) of the bottle body.
- the coefficient “2.5” is a correction coefficient that is set so that the value of the formula (1B) when the package is made of only the polyester resin (A) is 1.0.
- the value calculated by the above formula (1B) is less than 0.3, preferably less than 0.2, more preferably less than 0.15, still more preferably less than 0.1, and still more preferably less than 0.05. It is.
- the value calculated by the formula (1B) is 0.3 or more, the induction time until the oxygen absorption capacity of the package is developed is long, and particularly, the contents are significantly oxidized and deteriorated at the initial storage stage, and the storage stability is lowered.
- the volume V of the package used in the storage method of the second aspect of the present invention is preferably 0.1 to 2.0 L, preferably 0.2 to 1.5 L from the viewpoint of storage stability of the contents. Is more preferably 0.3 to 1.0 L.
- the capacity of the package is large, the oxygen permeability per package increases, so that the contents tend to be oxidatively deteriorated and the storage stability tends to decrease. Since it has an oxygen absorption capacity, the preservability of the contents can be maintained even when the package capacity is large to some extent.
- the thickness of the package used in the storage method of the second aspect of the present invention can be adjusted as appropriate depending on the shape of the package, the type of contents, etc., from the viewpoint of achieving both the preservation and visibility of the contents.
- the thickness is preferably 0.10 to 1.00 mm, more preferably 0.15 to 0.70 mm, and still more preferably 0.20 to 0.50 mm.
- the mass M of the package used in the storage method of the second aspect of the present invention can be appropriately adjusted depending on the shape of the package, the type of contents, etc., the mechanical strength and contents as the package From the viewpoint of storage stability, it is preferably 10 g or more, more preferably 12 g or more, and still more preferably 14 g or more.
- the oxygen transmission rate X of the package after 100 hours has elapsed from the preparation of the package is preferably 0.01 [cc / (package ⁇ day ⁇ 0.21 atm)] or less from the viewpoint of storage stability of the contents, It is more preferably 0.006 [cc / (package ⁇ day ⁇ 0.21 atm)] or less, further preferably 0.005 [cc / (package ⁇ day ⁇ 0.21 atm)] or less, and 003 [cc / (package ⁇ day ⁇ 0.21 atm)] or less is more preferable, and 0.001 [cc / (package ⁇ day ⁇ 0.21 atm)] or less is more preferable.
- the package used in the storage method of the second aspect of the present invention preferably has a haze value of 8% or less, more preferably 6% or less, from the viewpoint of the visibility of the contents, and more preferably 5% or less. More preferably.
- the YI value of the package is preferably 10 or less, more preferably 8 or less, and even more preferably 7.5 or less.
- the haze value and the YI value can be measured by the methods described in Examples.
- drum are the said range from the point of the visibility of the contents.
- the package is filled with an article and stored.
- save object There is no restriction
- it can be suitably used for storing articles such as foods, beverages, and pharmaceuticals.
- the package and the content can be sterilized in a form suitable for the content item.
- the sterilization method is the same as that exemplified in the storage method of the first aspect.
- the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
- the material and packaging body (bottle) used by the Example and the comparative example analyzed and evaluated by the following method.
- Terminal carboxyl group concentration ([COOH] ⁇ eq / g) 0.5 g of the polyamide resin (B) was precisely weighed, and the polyamide was dissolved in 30 mL of benzyl alcohol with stirring at 160 to 180 ° C. in a nitrogen stream. After the polyamide resin (B) was completely dissolved, it was cooled to 80 ° C. under a nitrogen stream, 10 mL of methanol was added with stirring, and neutralization titration with an N / 100 aqueous sodium hydroxide solution was performed. Next, the number average molecular weight of the polyamide resin (B) was determined by the following formula from the quantitative values of the terminal amino group concentration and the terminal carboxyl group concentration.
- YI value The YI value of the bottle body produced in the examples and comparative examples was cut out into 5 cm ⁇ 5 cm according to JIS K7373, and a color / turbidity simultaneous measuring device (Nippon Denshoku Industries Co., Ltd.) (Trade name: COH-400). If the YI value is 10 or less, there is little coloring, which is preferable in terms of the visibility of the contents.
- Oxygen permeability An oxygen permeability measuring device (manufactured by MOCON, trade name: OX-TRAN 2/61) was used.
- Bottle body thickness d The thickness d of the bottle body produced in the examples and comparative examples was measured as follows. The thickness at a position of 70 mm from the bottom of the bottle is measured in four directions (0 °, 90 °, 180 °, 270 °) using a magnetic thickness gauge (manufactured by Olympus Corporation, trade name: MAGNAMICE8500), The average value was defined as the thickness d of the bottle body. However, since there is almost no unevenness in the thickness between the bottles at this position, each bottle has a thickness of 300 ⁇ m.
- Dispersion particle diameter of polyamide resin (B) The major axis average value L ( ⁇ m) and minor axis average value W ( ⁇ m) of the dispersion particles of the polyamide resin (B) in the bottles prepared in Examples and Comparative Examples are as follows. Was measured as follows. The body part of the bottle produced by the Example and the comparative example was cut out, and it embedded in the epoxy resin so that the thickness direction of a bottle and MD direction might become a cross section. Next, an ultrathin film for observation having a thickness of about 0.1 ⁇ m was cut out from the embedded sample using an ultramicrotome (trade name: CR-X Power Tome XL, manufactured by Boeckler Instruments).
- the prepared ultrathin section was stained with ruthenium chloride and then observed on an electron microscope on a copper mesh.
- the dispersion state was observed by the density of the dyed polyamide resin (B) and the polyester resin (A).
- the major axis and minor axis of the dispersed particles of the polyamide resin (B) were measured as follows. First, with respect to any one dispersed particle of the polyamide resin (B), a tangent line aa ′ was drawn at both ends of the longest portion, and the distance between the tangent lines was defined as a major axis L0.
- the average length L ( ⁇ m) and the average length W ( ⁇ m) of the dispersed particles of the polyamide resin (B) are 5 ⁇ m in length and 5 ⁇ m in width (area 25 ⁇ m 2 ) of the polyamide resin (B).
- the major axis and minor axis of each of the dispersed particles were measured, and the average value of the major axis and minor axis of all the dispersed particles was calculated as the major axis average value L ( ⁇ m) and minor axis average value W ( ⁇ m).
- Electron microscope Surface observation electron microscope S4800 manufactured by Hitachi High-Technologies Corporation Acceleration voltage: 30 kV Current: 10mA Measurement magnification: 25000 times Measurement mode: TEM Moreover, the said measured value was substituted for said Formula (1A), and the value calculated by Formula (1A) was computed.
- Vitamin C (L-ascorbic acid) storage rate 500 mL of a 10% aqueous solution of vitamin C (L-ascorbic acid) was filled from the opening of the bottle, and the opening was sealed by heat welding with an aluminum foil laminated film. After storage for 10 days in an environment of 23 ° C. and 50% RH, the content solution was taken out, 10 mL of the content solution was put into a 10 mL capacity tall beaker, and then 5 mL of a mixed aqueous solution of metaphosphoric acid and acetic acid and 40 mL of distilled water were added.
- vitamin C preservation rate was determined from the result.
- save rate of vitamin C is high, it means that it is excellent in the effect which suppresses the oxidative deterioration of the content, and if the preservation
- Examples 1-1 to 1-12, 2-1 to 2-6 and Comparative Examples 1-1 to 1-3 and 2-1 to 2-7 the polyester resin (A) and the oxidation reaction accelerator (C)
- PET1 The following product (PET1) was used. In use, pellets dried at 150 ° C. for 6 hours in a dehumidifying dryer were used.
- PET1 manufactured by Invista, sulfoisophthalic acid-isophthalic acid-modified PET (ethylene terephthalate-isophthalate-sulfoisophthalic acid metal salt copolymer), trade name: “PolyShield 2300K”, limiting viscosity: 0.82 dl / g, cobalt metal Content: 80 ppm, sulfoisophthalic acid metal salt modification rate: 0.1 mol%, isophthalic acid modification rate: 3.6 mol%
- PET2 the following product (PET2) was used as the polyester resin (A). In use, pellets dried at 150 ° C. for 6 hours in a dehumidifying dryer were used.
- PET2 manufactured by Nippon Unipet Co., Ltd., isophthalic acid-modified PET copolymer (ethylene terephthalate-isophthalate copolymer), trade name: “BK2180”, intrinsic viscosity: 0.83 dl / g, isophthalic acid modification rate: 1 .5 mol%
- the sulfoisophthalic acid metal salt modification rate and the isophthalic acid modification rate both refer to the modification rate with respect to 100 mol% of the dicarboxylic acid used in PET1 or PET2.
- PA1 polyamide resin
- the physical property values of the obtained polyamide resin PA1 are as follows.
- Examples 1-2 to 1-5 A single-layer bottle was prepared and evaluated in the same manner as in Example 1-1 except that the types and blending amounts of the polyester resin (A) and the polyamide resin (B) were changed as shown in Table 1. The results are shown in Table 1.
- a single-layer bottle was produced and evaluated in the same manner as in Example 1-1 using the obtained pellet mixture except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 290 ° C Resin channel temperature in mold: 290 ° C Mold cooling water temperature: 15 ° C
- Example 1-7 A single-layer bottle was produced and evaluated in the same manner as in Example 1-6 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 298 ° C Resin channel temperature in mold: 298 ° C Mold cooling water temperature: 15 ° C
- Example 1-8 A single-layer bottle was produced and evaluated in the same manner as in Example 1-6 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 305 ° C Resin channel temperature in mold: 305 ° C Mold cooling water temperature: 15 ° C
- a single-layer bottle was produced and evaluated in the same manner as in Example 1-1 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 285 ° C Resin channel temperature in mold: 285 ° C Mold cooling water temperature: 15 ° C
- a single-layer bottle was produced and evaluated in the same manner as in Example 1-1 using the obtained pellet mixture except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 293 ° C Resin channel temperature in mold: 293 ° C Mold cooling water temperature: 15 ° C
- Example 1-11 A single-layer bottle was produced and evaluated in the same manner as in Example 1-10 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 298 ° C Resin channel temperature in mold: 298 ° C Mold cooling water temperature: 15 ° C
- Example 1-12 A single-layer bottle was produced and evaluated in the same manner as in Example 1-10 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 1. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 265 ° C Resin channel temperature in mold: 265 ° C Mold cooling water temperature: 15 ° C
- a single-layer bottle was produced and evaluated in the same manner as in Example 1-1 using the obtained pellet mixture except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 2. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 280 ° C Resin channel temperature in mold: 280 ° C Mold cooling water temperature: 15 ° C
- Comparative Example 1-2 A single-layer bottle was produced and evaluated in the same manner as Comparative Example 1-1 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 2. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 270 ° C Resin channel temperature in mold: 270 ° C Mold cooling water temperature: 15 ° C
- a single-layer bottle was produced and evaluated in the same manner as in Example 1-1 using the obtained pellet mixture except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 2. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 280 ° C Resin channel temperature in mold: 280 ° C Mold cooling water temperature: 15 ° C
- Comparative Example 1-5 A single-layer bottle was produced and evaluated in the same manner as Comparative Example 1-4 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 2. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 290 ° C Resin channel temperature in mold: 290 ° C Mold cooling water temperature: 15 ° C
- Comparative Example 1-6 A single-layer bottle was produced and evaluated in the same manner as Comparative Example 1-4 except that the single-layer preform molding conditions were changed as follows. The results are shown in Table 2. ⁇ Single-layer preform molding conditions> Injection cylinder temperature: 300 ° C Resin channel temperature in mold: 300 ° C Mold cooling water temperature: 15 ° C
- the haze value of the bottle body is 8% or less, and the YI value is low, so that the contents are highly visible.
- the oxygen permeability after 100 hours from the bottle production is 0.01 [cc / (package ⁇ day ⁇ 0.21 atm)] or less, and the induction time until the oxygen absorption ability is expressed is short.
- save rate is high, it turns out that the oxidative degradation of the content can be suppressed and it is excellent also in preservability. That is, the package of the present invention can achieve both the storage stability and the visibility of the contents regardless of the phosphorus content in the polyamide resin (B) used in the package.
- Example 1-1 to 1-5 Example 2-1, Comparative Examples 2-1 to 2-7: Storage method
- Example 1-1 to 1-5 The single-layer bottle obtained as described above was evaluated and the value of the formula (1B) was calculated. The results are shown in Table 3.
- Example 2-1 Comparative examples 2-1 to 2-7
- a single-layer bottle was prepared and evaluated in the same manner as in Example 1-1 except that the type and blending amount of the polyamide resin (B) were changed as shown in Table 3, and the value of the formula (1B) was calculated. did. The results are shown in Table 3.
- the storage method of the present invention is not dependent on the phosphorus content in the polyamide resin (B) used in the package (bottle), and the haze value and YI value of the package are low. It has excellent visibility, and since the oxygen permeability of the package after 100 hours has passed since the package is produced, the induction time until the oxygen absorption ability is short and the vitamin C preservation rate is high, so that the content is oxidatively deteriorated. It can be suppressed and the storage stability is also excellent. That is, according to the preservation
- the packaging body and storage method of the present invention can suppress oxidative deterioration of the contents from the initial stage of storage and are excellent in the visibility of the contents, regardless of the phosphorus content in the polyamide resin used in the packaging body. . Therefore, it is used suitably for preservation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Wrappers (AREA)
- Packages (AREA)
- Polyamides (AREA)
- Food Science & Technology (AREA)
Abstract
Description
メタキシリレンジアミンを主成分とするジアミン成分とアジピン酸を主成分とするジカルボン酸成分とを重合して得られるポリメタキシリレンアジパミド(MXD6)は、特にガスバリア性に優れるポリアミドである。またMXD6のガラス転移温度、融点、結晶性は、ポリエステルの中でも特に広く利用されているPETと近似していることから、ポリエステルの加工性を損なうことがない。このことからPETとMXD6との混合物はPETの成形加工条件をほぼそのまま適用して加工できるため、フィルムやボトル等、様々な包装材料に適用されている。
また本発明者らは、ポリエステル樹脂、ポリアミド樹脂、及び酸化反応促進剤を含有する包装体に物品を充填して保存する方法において、該包装体中のポリアミド樹脂の含有量を所定の範囲とし、かつ該包装体の経時的な酸素透過率が所定の条件を満たすことで、上記課題を解決できることを見出した。
本発明は、このような知見に基づき完成するに至ったものである。
[1]ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する樹脂組成物からなる包装体であって、包装体厚みをd(μm)、包装体中のポリアミド樹脂(B)の分散粒子の長径平均値をL(μm)、短径平均値をW(μm)、体積分率をVfとした際に下記式(1A)を満たし、
包装体作製後100時間経過後の酸素透過率が0.01[cc/(package・day・0.21atm)]以下であり、かつヘイズ値が8%以下である包装体。
10<d×L×Vf/2W<120 ・・・(1A)
[2]ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する包装体に物品を充填して保存する方法であって、該包装体中のポリアミド樹脂(B)の含有量が2.0~3.5質量%であり、かつ該包装体作製後100時間経過後の包装体の酸素透過率をX[cc/(package・day・0.21atm)]、包装体容量をV[L]、包装体質量をM[g]とした場合に下記式(1B)を満たす、物品の保存方法。
X/{2.5×V2/(M-8)}<0.3 ・・・(1B)
本発明の包装体は、ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する樹脂組成物からなる包装体であって、包装体厚みをd(μm)、包装体中のポリアミド樹脂(B)の分散粒子の長径平均値をL(μm)、短径平均値をW(μm)、体積分率をVfとした際に下記式(1A)を満たし、包装体作製後100時間経過後の酸素透過率が0.01[cc/(package・day・0.21atm)]以下であり、かつヘイズ値が8%以下であることを特徴とする。
10<d×L×Vf/2W<120・・・ (1A)
なお、[cc/(package・day・0.21atm)]とは、酸素分圧0.21atmの条件下で、包装体1個につき透過する1日あたりの酸素量を表す単位である。
本発明の包装体は、ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する樹脂組成物からなる。
ポリエステル樹脂(A)は、包装体の主成分として用いられる。ポリエステル樹脂(A)は、結晶性、機械的特性等の観点から、芳香族ジカルボン酸単位と脂肪族ジオール単位を含むことが好ましい。芳香族ジカルボン酸単位は、ポリエステル樹脂(A)の結晶性、及び使用前の乾燥の容易さの観点から、テレフタル酸単位を好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含む。また、脂肪族ジオール単位は、同様の観点から、炭素数2~4の脂肪族グリコール単位を好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含む。
なお、ポリエステル樹脂(A)の芳香族ジカルボン酸単位を構成するジカルボン酸成分としてイソフタル酸を使用する場合、その割合(イソフタル酸単位の割合)はジカルボン酸単位の総量に対して、好ましくは1~10モル%、より好ましくは1~8モル%、更に好ましくは1~6モル%である。イソフタル酸をジカルボン酸成分として上記割合で用いた共重合樹脂は結晶性が低くなり、成形性を向上させることが可能となる。
例えば、スルホン酸塩の金属イオンがリチウム、ナトリウム、カリウム等のアルカリ金属イオン;マグネシウム、カルシウム等のアルカリ土類金属イオン;亜鉛イオン等から選ばれる金属イオンであり、芳香族酸核がスルホフタル酸、スルホテレフタル酸、スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸及びそれらの誘導体等から選ばれる化合物が挙げられる。その中でも、ポリアミド樹脂(B)との相溶性の点から、5-スルホイソフタル酸ナトリウム、5-スルホイソフタル酸リチウム、5-スルホイソフタル酸亜鉛等のスルホイソフタル酸金属塩及びその誘導体が好ましく、5-スルホイソフタル酸ナトリウム等のスルホイソフタル酸アルカリ金属塩がより好ましい。これらは1種を単独で、又は2種以上を組み合わせて用いてもよい。
ポリエステル樹脂(A)を構成するジカルボン酸成分として上記化合物を使用する場合、その割合(上記化合物に由来する単位の割合)はジカルボン酸単位の総量に対して0.01~2モル%であることが好ましく、より好ましくは0.03~1.5モル%であり、更に好ましくは0.05~1.0モル%である。この範囲とすることでポリエステル樹脂(A)の特性を損なうことなく、ポリアミド樹脂(B)との相溶性を高めることができる。また、上記化合物の割合をこの範囲とすることでポリアミド樹脂(B)をポリエステル樹脂(A)中に微分散することができるため、包装体の透明性を向上させることができる。
炭素数2~4の脂肪族グリコール以外に使用できるジオール成分としては、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。更に本発明の効果を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類;トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類;環状アセタール骨格を有するジオール成分;等を用いることもできる。
上記ポリエステル樹脂(A)は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
ポリエステル樹脂(A)の極限粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比の混合溶媒中、25℃で測定した値)には、特に制限はないが、通常0.6~2.0dl/g、好ましくは0.7~1.8dl/gであることが好ましい。極限粘度が0.6~2.0dl/gの範囲であると、ポリエステル樹脂の分子量が十分に高くかつ溶融時の粘度が高すぎないために、包装体を容易に製造でき、かつ構造物として必要な機械的特性を発現することができる。
ポリアミド樹脂(B)は、包装体のガスバリア性を改善し、更に後述する酸化反応促進剤(C)と組み合わせることで包装体に酸素吸収能を付与するために用いられる。
ポリアミド樹脂(B)と酸化反応促進剤(C)による酸素吸収能発現の機構は以下の通りである。まず酸化反応促進剤(C)により、ポリアミド樹脂(B)中の水素原子が引き抜かれてラジカルが発生する。このラジカルに酸素分子が付加してパーオキシラジカルとなる。更に、このパーオキシラジカルにより再びポリアミド樹脂(B)から水素原子が引き抜かれるというラジカル連鎖反応(以下単に「酸化反応」ともいう)が起こる。以上のように、ポリアミド樹脂(B)と酸化反応促進剤(C)との作用に起因して発生するラジカルが酸素分子を捕捉するため、包装体の酸素吸収能が発現する。
α,ω-脂肪族ジカルボン酸単位を構成するα,ω-脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等が挙げられるが、アジピン酸やセバシン酸が好ましく用いられ、アジピン酸がより好ましい。
α,ω-脂肪族ジカルボン酸以外のジカルボン酸としては、1,3-シクロヘキサンジカルボン酸や1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸等が例示できるが、これらに限定されるものではない。
上記ジカルボン酸は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
上記リン原子含有化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
リン原子は、包装体中のポリアミド樹脂(B)の前記酸化反応に対し還元剤として作用するため酸素吸収能発現を阻害するが、本発明においては、包装体に用いるポリアミド樹脂(B)中のリン含有量によらず、内容物の保存性及び視認性を両立することができる。
また、上記範囲内でリン原子含有化合物を添加すれば、アミド化反応が促進されて重合反応が長くなることがなく、かつ、重縮合中のポリアミド樹脂(B)の着色を防止するとともにポリアミド樹脂(B)のゲル化を抑制し、成形品の外観を良好に保つことができる。
上記アルカリ金属化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
なお、ここでいう相対粘度は、ポリアミド樹脂0.2gを96質量%硫酸20mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96質量%硫酸そのものの落下時間(t0)との比であり、次式で示される。相対粘度は、具体的には実施例に記載の方法により測定できる。
相対粘度=t/t0
ポリアミド樹脂(B)中のリン原子濃度は、公知の方法、例えばICP発光分光分析、ICP質量分析、蛍光X線分析等を用いて測定することができ、具体的には実施例に記載の方法により測定できる。
包装体中の樹脂成分のうち、ポリエステル樹脂(A)及びポリアミド樹脂(B)以外の樹脂成分の含有量は、本発明の効果を発現する点から、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下、特に好ましくは0質量%である。
酸化反応促進剤(C)は、本発明の包装体において前述のようにポリアミド樹脂(B)の酸化反応を誘起させ、酸素吸収能を発現させる目的で用いられる。これにより内容物の酸化劣化を抑制し、保存性を向上させることができる。
酸化反応促進剤(C)は、上記効果を奏するものであればよいが、ポリアミド樹脂(B)の酸化反応を促進する観点から、遷移金属元素を含むものが好ましい。該遷移金属元素としては、元素周期律表の第VIII族の遷移金属、マンガン、銅及び亜鉛から選ばれる少なくとも1種が好ましく、酸素吸収能を発現させる観点から、コバルト、鉄、マンガン、及びニッケルから選ばれる少なくとも1種がより好ましく、コバルトが更に好ましい。
このような酸化反応促進剤(C)としては、上記金属単体の他、上述の金属を含む低価数の酸化物、無機酸塩、有機酸塩又は錯塩の形で使用される。無機酸塩としては、塩化物や臭化物等のハロゲン化物、炭酸塩、硫酸塩、硝酸塩、リン酸塩、ケイ酸塩等が挙げられる。一方、有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩等が挙げられる。また、β-ジケトン又はβ-ケト酸エステル等との遷移金属錯体も利用することができる。
特に本発明では酸素吸収能が良好に発現することから、上記金属原子を含むカルボン酸塩、炭酸塩、アセチルアセトネート錯体、酸化物及びハロゲン化物から選ばれる少なくとも1種を使用することが好ましく、オクタン酸塩、ネオデカン酸塩、ナフテン酸塩、ステアリン酸塩、酢酸塩、炭酸塩及びアセチルアセトネート錯体から選ばれる少なくとも1種を使用することがより好ましく、オクタン酸コバルト、ナフテン酸コバルト、酢酸コバルト、ステアリン酸コバルト等のコバルトカルボキシレート類を使用することが更に好ましい。
上記酸化反応促進剤(C)は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
包装体中の遷移金属濃度は、公知の方法、例えばICP発光分光分析、ICP質量分析、蛍光X線分析等を用いて測定することができ、具体的には実施例に記載の方法により測定できる。
本発明の包装体を構成する樹脂組成物には、本発明の効果を損なわない範囲で酸化防止剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、滑剤、ゲル化防止剤等の添加剤、層状珪酸塩等のクレイやナノフィラー等を配合することもできる。
本発明の包装体は、前記樹脂組成物からなる単層構造であってもよく、前記樹脂組成物からなる層を2層以上積層した多層構造を有するものでもよい。
包装体の形状としては、物品を充填して密閉できるものであれば特に制限はなく、例えば、ボトル、カップ、パウチ、袋状等が挙げられ、内容物となる物品の種類等に応じて適宜選択できる。液体状の物品を保存する観点からは、ボトルであることが好ましい。
包装体を製造する方法は特に限定されず、任意の方法を用いることができる。例えば、ボトル形状の包装体については、前記ポリエステル樹脂(A)、ポリアミド樹脂(B)、酸化反応促進剤(C)、及び各種添加剤をドライブレンドした混合物を射出成型機に投入し、射出成型機内で溶融した樹脂組成物を金型中に射出してプリフォームを製造後、延伸温度まで加熱してブロー延伸することにより得ることができる。同様に、前記ポリエステル樹脂(A)、ポリアミド樹脂(B)、酸化反応促進剤(C)、及び各種添加剤を押出機内で溶融混練して樹脂組成物を調製し、射出成形機から金型中に溶融した樹脂組成物を射出してプリフォームを製造後、延伸温度まで加熱してブロー延伸することにより得ることができる。また、カップ形状の包装体は、射出成形機から金型中に溶融した樹脂組成物を射出して製造する方法や、シートを真空成形や圧空成形等の成形法によって成形して得ることができる。
本発明の包装体は上述の製造方法によらず、様々な方法を経て製造することが可能である。
ポリエステル樹脂(A)、ポリアミド樹脂(B)及び酸化反応促進剤(C)の混合には、従来公知の方法を用いることができる。例えば、タンブラーやミキサー等の混合機にポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を入れて混合する方法等が挙げられる。
その際、酸化反応促進剤(C)が固体又は粉体であれば、混合後の分級を防止するために粘性のある液体を展着剤としてポリエステル樹脂(A)及び/又はポリアミド樹脂(B)に付着させた後、酸化反応促進剤(C)を添加、混合する方法を採ることもできる。
また酸化反応促進剤(C)を有機溶媒に溶解し、この溶液とポリエステル樹脂(A)及び/又はポリアミド樹脂(B)とを混合し、同時に又は後に加熱することによって有機溶媒を除去し、ポリエステル樹脂(A)及び/又はポリアミド樹脂(B)に付着させる方法を採ることもできる。さらに押出機を用いて溶融混練する場合は、ポリエステル樹脂(A)及び/又はポリアミド樹脂(B)とは別の供給装置を用いて押出機内に酸化反応促進剤(C)を添加することもできる。
本発明の包装体は、包装体厚みをd(μm)、包装体中のポリアミド樹脂(B)の分散粒子の長径平均値をL(μm)、短径平均値をW(μm)、体積分率をVfとした際に下記式(1A)を満たすことを特徴とする。
10<d×L×Vf/2W<120 ・・・(1A)
上記式(1A)で計算される値の上限値は120未満であり、好ましくは100未満、より好ましくは50未満である。また、式(1A)で計算される値の下限値は10より大きく、好ましくは12より大きく、より好ましくは15より大きい値である。式(1A)で計算される値が10以下であると、内容物の保存性及び視認性のバランスが損なわれる傾向がある。また、式(1A)で計算される値が120以上であると、包装体のヘイズ値及びYI値が高くなる傾向があり、内容物の視認性が低下する。
また、上記式(1A)を満たす場合には、後述するように包装体を透過する酸素分子等のガスの行路長が長くなることで包装体自体のガスバリア性が向上するので、包装体の酸素吸収能発現までの誘導時間がポリアミド樹脂(B)中のリン含有量に依存しない。このため、包装体の原料としてリン含有量が比較的多い(例えば100ppm以上の)ポリアミド樹脂(B)を用いることもできる。前述のように、ポリアミド樹脂の重縮合時にリン原子含有化合物を添加すると着色の少ないポリアミド樹脂が得られるため、リン含有量が比較的多いポリアミド樹脂(B)であっても使用可能な本発明の包装体は、YI値が低く、内容物の視認性が良好なものとなる。
一般に、包装体のガスバリア性は、該包装体を酸素等のガスが透過する速さに依存する。よって包装体の厚みdを厚くすれば、ガスの透過行路が長くなりガスが透過するのに時間を要するため、包装体のガスバリア性は向上する。
また本発明のように、主成分であるポリエステル樹脂(A)にポリアミド樹脂(B)をブレンドした樹脂組成物からなる包装体の場合、ポリアミド樹脂(B)は包装体中に分散粒子の状態で存在する。ポリアミド樹脂(B)はガスバリア性を有するため、包装体外部に存在するガスは該包装体中のポリアミド樹脂(B)の分散粒子を回避しながら包装体内部方向に移動する。
図1に、酸素分子が包装体の外部から内部方向に移動(透過)する際の、酸素分子の行路の概略図を示す。図1において、1は包装体の厚み方向の断面であり、2は包装体中のポリアミド樹脂(B)の分散粒子、3は包装体を透過する酸素分子の行路を示す。L1は分散粒子2の長径、W1は分散粒子2の短径を示す。
包装体1中にポリアミド樹脂(B)の分散粒子2が存在しない場合には、酸素分子の行路長は包装体の厚みdと同じである。一方、包装体1中に分散粒子2が存在する場合、図1に示すように、酸素分子はポリアミド樹脂(B)の分散粒子を回避するので、その分酸素分子の行路が長くなる。
ここで、式(1A)において、L/2Wは包装体1中のポリアミド樹脂(B)の分散粒子2のアスペクト比を表す。そして、長径平均値Lが長いほど、包装体1を透過するまでの酸素分子の行路が長くなる。その結果、包装体1のガスバリア性が向上する。同様に、包装体1中の分散粒子2の体積分率Vfが増加するほど酸素分子の行路が長くなり、包装体1のガスバリア性が向上する。さらに、包装体1中の分散粒子2の体積分率Vfが同じ場合には、分散粒子2の短径平均値Wが短いほど長径平均値Lを長くすることができるので、その分酸素分子の行路が長くなる。また包装体の厚みd中に存在できる分散粒子2の数(バリア層の総数)も増えるため、包装体1のガスバリア性が向上する。
すなわち式(1A)は、包装体1中に分散粒子2が存在する場合に、包装体1を透過する酸素分子等のガスの行路長が、包装体1の厚みdに対し「d×L×Vf/2W」分だけ加算されることを意味する。したがって、式(1A)で計算される値が10を超える値であれば、内容物の保存性が良好になる。
また、式(1A)で計算される値が120未満であれば、包装体1中に分散粒子2が存在していても包装体のヘイズ値及びYI値が過度に高くならず、内容物の視認性を維持できる。
ポリアミド樹脂(B)の分散粒子の長径平均値Lは、包装体のガスバリア性及び外観性の観点から、好ましくは0.05~5μm、より好ましくは0.1~2μm、更に好ましくは0.2~1.5μmである。また、短径平均値Wは、包装体のガスバリア性の観点から、好ましくは0.01~0.5μm、より好ましくは0.02~0.2μm、更に好ましくは0.04~0.15μmである。
長径平均値L(μm)、短径平均値W(μm)は、具体的には実施例に記載の方法により測定できる。
包装体作製後100時間経過後の酸素透過率[cc/(package・day・0.21atm)]は、酸素分圧0.21atmの条件下で、包装体内部湿度100%RH、外湿度50%RH、温度23℃の条件にて測定される値であり、具体的には実施例に記載の方法により測定できる。
ここで「包装体作製後100時間経過後」とは、包装体が最終的な形態に成形された時点を「包装体作製後0時間」とし、ここから100時間経過した時点を意味するものとする。例えば包装体がボトル形状である場合、最終的に使用されるボトルの形状に成形された時点から100時間経過後を「包装体作製後100時間経過後」とし、ボトルの成形においてプリフォームを経由したとしても、プリフォーム作製時は「包装体作製後0時間」の起点とはならないものとする。
また、内容物の視認性の観点から、包装体のYI値は10以下であることが好ましく、8以下であることがより好ましく、7.5以下であることが更に好ましい。なお、包装体がボトル形状である場合には、内容物の視認性の点から、ボトル胴部のYI値が上記範囲であることが好ましい。
ヘイズ値及びYI値は、具体的には実施例に記載の方法により測定できる。
また、本発明の包装体の質量は、包装体の形状や内容物の種類等により適宜調整することができるが、包装体としての機械的強度及び内容物の保存性の観点から、10g以上であることが好ましく、より好ましくは12g以上であり、更に好ましくは14g以上である。
次に、第一及び第二の態様の保存方法について説明する。
本発明の第一の態様の物品の保存方法は、前記本発明の包装体を用いることを特徴とする。保存方法には特に制限はなく、保存対象となる物品を本発明の包装体に充填し、保存する方法が挙げられる。
保存対象となる物品としては特に制限はなく、例えば、牛乳、乳製品、ジュース、コーヒー、茶類、アルコール飲料等の;ソース、醤油、ドレッシング等の液体調味料、スープ、シチュー、カレー、乳幼児用調理食品、介護調理食品等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター等の乳加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも等の野菜類;卵;麺類;調理前の米類、調理された炊飯米、米粥等の加工米製品;粉末調味料、粉末コーヒー、乳幼児用粉末ミルク、粉末ダイエット食品、乾燥野菜、せんべい等の乾燥食品;農薬、殺虫剤等の化学品;医薬品;化粧品;ペットフード;シャンプー、リンス、洗剤等の雑貨品;半導体集積回路並びに電子デバイス;等が挙げられる。特に、食品、飲料、医薬品等の物品の保存に好適に用いることができる。
X/{2.5×V2/(M-8)}<0.3 ・・・(1B)
なお、[cc/(package・day・0.21atm)]とは、前記と同じであり、酸素分圧0.21atmの条件下で、包装体1個につき透過する1日あたりの酸素量を表す単位である。
以下、本発明の第二の態様の保存方法に用いる包装体について詳細を説明する。
また、包装体中のポリアミド樹脂(B)の含有量が2.0~3.5質量%の範囲であると、酸素吸収能発現までの誘導時間がポリアミド樹脂(B)中のリン含有量に依存しない。このため、リン含有量が比較的多い(例えば100ppm以上の)ポリアミド樹脂(B)を用いることもできる。また、保存初期から内容物の酸化劣化抑制が得られ、内容物の視認性とも両立できるという効果を奏する。
本発明の第二の態様の保存方法に用いる包装体は、前記樹脂組成物からなる単層構造であってもよく、前記樹脂組成物からなる層の少なくとも一方に他の熱可塑性樹脂層(例えばポリエステル樹脂層や接着性樹脂層)を積層してもよく、前記樹脂組成物からなる層を2層以上積層した多層構造を有するものでもよい。
包装体の形状としては、物品を充填して密閉できるものであれば特に制限はなく、例えば、ボトル、カップ、パウチ、袋状等が挙げられ、内容物となる物品の種類等に応じて適宜選択できるが、ボトルであることが好ましい。
本発明の第二の態様の保存方法に用いられる包装体は上述の製造方法によらず、様々な方法を経て製造することが可能である。
ポリエステル樹脂(A)、ポリアミド樹脂(B)及び酸化反応促進剤(C)の混合には、従来公知の方法を用いることができる。例えば、タンブラーやミキサー等の混合機にポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を入れて混合する方法等が挙げられる。
その際、酸化反応促進剤(C)が固体又は粉体であれば、混合後の分級を防止するために粘性のある液体を展着剤としてポリエステル樹脂(A)及び/又はポリアミド樹脂(B)に付着させた後、酸化反応促進剤(C)を添加、混合する方法を採ることもできる。
また酸化反応促進剤(C)を有機溶媒に溶解し、この溶液とポリエステル樹脂(A)及び/又はポリアミド樹脂(B)とを混合し、同時に又は後に加熱することによって有機溶媒を除去し、ポリエステル樹脂(A)及び/又はポリアミド樹脂(B)に付着させる方法を採ることもできる。さらに押出機を用いて溶融混練する場合は、ポリエステル樹脂(A)及び/又はポリアミド樹脂(B)とは別の供給装置を用いて押出機内に酸化反応促進剤(C)を添加することもできる。
本発明の第二の態様の保存方法に用いる包装体は、包装体作製後100時間経過後の包装体の酸素透過率をX[cc/(package・day・0.21atm)]、包装体容量をV[L]、包装体質量をM[g]とした場合に下記式(1B)を満たすものであることを特徴とする。これにより、本発明の第二の態様の保存方法は保存初期から内容物の酸化劣化を抑制することができ、保存性が良好なものとなる。
X/{2.5×V2/(M-8)}<0.3 ・・・(1B)
包装体の酸素透過量は、酸素が透過する部分の表面積及び平均厚みで決まる。例えば「酸素が透過する部分」とは、例えば包装体がボトルである場合には、ボトルの口栓部と底部を除いた胴部をいい、該胴部の表面積及び平均厚みが酸素透過量に影響する。そして、式(1B)における(M-8)とは、ボトルの質量Mからボトルの口栓部と底部に相当する質量を差し引いた、ボトル胴部の質量に相当する。
ここで、(M-8)の値が一定である場合には、ボトル容量Vが倍になると胴部の平均厚みは半分になり、胴部の表面積が倍になる。したがって、ボトルの酸素透過率Xはボトル容量Vの2乗に比例する。
一方、ボトル容量Vを一定とした場合には、ボトル胴部の質量(M-8)が増えると胴部の平均厚みが増し、酸素透過率Xの値は低くなる。したがって、ボトルの酸素透過率Xはボトル胴部の質量(M-8)に反比例する。なお、係数「2.5」は、ポリエステル樹脂(A)のみで包装体を作製した場合の式(1B)の値が1.0となるように設定した補正係数である。
すなわち式(1B)は、酸素透過率Xを{2.5×V2/(M-8)}で除した値が一定値未満(0.3未満)であれば、保存初期から内容物の酸化劣化を抑制することができ、保存性が良好であることを示すものである。
一般に、包装体の容量が大きいと1包装体あたりの酸素透過率が高くなるため内容物の酸化劣化が生じやすく、保存性が低下する傾向にあるが、本発明では包装体が前述のような酸素吸収能を有しているため、包装体容量がある程度大きい場合であっても内容物の保存性を維持できる。
また、本発明の第二の態様の保存方法に用いる包装体の質量Mは、包装体の形状や内容物の種類等により適宜調整することができるが、包装体としての機械的強度及び内容物の保存性の観点から、10g以上であることが好ましく、より好ましくは12g以上であり、さらに好ましくは14g以上である。
包装体作製後100時間経過後の包装体の酸素透過率X[cc/(package・day・0.21atm)]は、酸素分圧0.21atmの条件下で、包装体内部湿度100%RH、外湿度50%RH、温度23℃の条件にて測定される値であり、具体的には実施例に記載の方法により測定できる。
ポリアミド樹脂(B)0.2gを精秤し、96質量%硫酸20mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96質量%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
相対粘度=t/t0
まず、ポリアミド樹脂(B)の末端アミノ基濃度と末端カルボキシル基濃度を下記方法により測定した。
(a)末端アミノ基濃度([NH2]μeq/g)
ポリアミド樹脂(B)0.5gを精秤し、フェノール/エタノール=4/1容量溶液30mLにポリアミドを撹拌下に溶解した。ポリアミド樹脂が完全に溶解した後、N/100塩酸で中和滴定して求めた。
(b)末端カルボキシル基濃度([COOH]μeq/g)
ポリアミド樹脂(B)0.5gを精秤し、ベンジルアルコール30mLに窒素気流下160~180℃でポリアミドを撹拌下に溶解した。ポリアミド樹脂(B)が完全に溶解した後、窒素気流下80℃まで冷却し、撹拌しながらメタノール10mLを加え、N/100水酸化ナトリウム水溶液で中和滴定して求めた。
次に、ポリアミド樹脂(B)の数平均分子量を、末端アミノ基濃度及び末端カルボキシル基濃度の定量値から次式により求めた。
数平均分子量=2×1,000,000/([NH2]+[COOH])
[NH2]:末端アミノ基濃度(μeq/g)
[COOH]:末端カルボキシル基濃度(μeq/g)
ポリアミド樹脂(B)中のリン原子濃度の測定は、ポリアミド樹脂(B)を濃硫酸で湿式分解後、走査型蛍光X線装置((株)リガク製、商品名:ZSX primus)を用い、波長213.618nmにて定量した。
実施例及び比較例で作製したボトル胴部のヘイズは、JIS K7105に準じて、ボトル胴部を5cm×5cmに切出し、色彩・濁度同時測定器(日本電色工業(株)製、商品名:COH-400)を用いて測定した。ヘイズが8%以下であれば内容物の視認性が良好であることを示す。
実施例及び比較例で作製したボトル胴部のYI値は、JIS K7373に準じて、ボトル胴部を5cm×5cmに切出し、色彩・濁度同時測定器(日本電色工業(株)製、商品名:COH-400)を用いて測定した。YI値が10以下であれば着色が少なく、内容物の視認性の点でも好ましい。
酸素透過率測定装置(MOCON社製、商品名:OX-TRAN 2/61)を使用した。ボトル作製後100時間経過後の酸素透過率[cc/(package・day・0.21atm)]は、作製した容量500mLのボトルに水を100mL充填し、酸素分圧0.21atmの条件下で、ボトル内部湿度100%RH、外湿度50%RH、温度23℃の条件にて、ボトル内部に1atmの窒素を20mL/minで流通し、クーロメトリックセンサーにてボトル内部を流通後の窒素中に含まれる酸素を検出することで測定した。
実施例及び比較例で作製したボトル胴部の厚みdは、次のように測定した。
ボトル底部から70mmの位置の厚みを、磁気式厚さ計(オリンパス株式会社製、商品名:MAGNAMIKE8500)を用いて4方向(0°、90°、180°、270°)の厚みを測定し、その平均値をボトル胴部の厚みdとした。但しこの位置の厚みはボトル間の厚みのムラがほとんどないため、いずれのボトルも厚み300μmとした。
実施例及び比較例で作製したボトル中のポリアミド樹脂(B)の分散粒子の長径平均値L(μm)と短径平均値W(μm)は次のように測定した。
実施例及び比較例で作製したボトルの胴部を切り出し、ボトルの厚み方向、且つMD方向が断面となるようにエポキシ樹脂に包埋した。次にウルトラミクロトーム(Boeckeler Instruments製、商品名:CR-X Power Tome XL)を用いて、包埋した試料から、厚み約0.1μmの観察用超薄片を切り出した。作製した超薄切片を塩化ルテニウムで染色した後、銅メッシュ上で電子顕微鏡観察した。染色されたポリアミド樹脂(B)とポリエステル樹脂(A)の濃淡により、分散状態を観察した。
次にポリアミド樹脂(B)の分散粒子の長径と短径は次のように測定した。まず、任意の1つのポリアミド樹脂(B)の分散粒子について、一番長い部分の両端に接線a-a'を引き、その接線間の距離を長径L0とした。次に長径L0に対して垂線を引き、その垂線のうち一番長い垂線の長さを測定し、その長さを短径W0とした。
ポリアミド樹脂(B)の分散粒子の長径平均値L(μm)と短径平均値W(μm)は、ボトル胴部の縦5μm、横5μm(面積25μm2)中に存在するポリアミド樹脂(B)の分散粒子について長径及び短径を測定し、その全分散粒子の長径及び短径の平均値を算出して長径平均値L(μm)と短径平均値W(μm)とした。
<観察条件>
電子顕微鏡:日立ハイテクノロジーズ(株)製表面観察型電子顕微鏡S4800
加速電圧:30kV
電流:10mA
測定倍率:25000倍
測定モード:TEM
また、上記測定値を前記式(1A)に代入し、式(1A)で計算される値を算出した。
押出機、Tダイ、冷却ロール、引き取り機等からなるシート成形装置を用い、厚さが約1mmの単層シートを成形した。次いでシートから縦50mm×横50mmの試験片を切削して、真比重計により真比重(密度)を求めた。実施例及び比較例で用いたポリエステル樹脂(PET1、PET2)の密度は1.5(g/cm3)であり、製造例1~4で製造したポリアミド樹脂PA1~PA4の密度は1.2(g/cm3)であった。
ボトルの開口部からビタミンC(L-アスコルビン酸)10%水溶液を500mL充填し、アルミ箔積層フィルムで熱溶着して開口部を密封した。23℃、50%RHの環境下に10日間保存したのち、内容液を取り出し、10mL容量のトールビーカーに内容液10mLを入れ、次いでメタリン酸と酢酸の混合水溶液5mLと蒸留水40mLを加えた。次いで、0.05mol/Lのヨウ素溶液を滴定液とし、電位差滴定装置を用いて変曲点検出法により滴定を行い、その結果からビタミンC保存率を求めた。なお、ビタミンC保存率が高ければ内容物の酸化劣化を抑制する効果に優れていることを意味し、ビタミンC保存率が90%以上であれば保存性は良好である。
PET1;インビスタ社製、スルホイソフタル酸-イソフタル酸-変性PET(エチレンテレフタレート-イソフタレート-スルホイソフタル酸金属塩共重合体)、商品名:「PolyShield2300K」、極限粘度:0.82dl/g、コバルト金属含有量:80ppm、スルホイソフタル酸金属塩変性率:0.1mol%、イソフタル酸変性率:3.6mol%
比較例1-4~1-8では、ポリエステル樹脂(A)として下記製品(PET2)を使用した。使用に際しては、除湿乾燥機にて150℃6時間乾燥したペレットを用いた。
PET2;日本ユニペット株式会社製、イソフタル酸-変性PET共重合体(エチレンテレフタレート-イソフタレート共重合体)、商品名:「BK2180」、極限粘度:0.83dl/g、イソフタル酸変性率:1.5mol%
なお、PET1、PET2において、スルホイソフタル酸金属塩変性率、イソフタル酸変性率とは、いずれも、PET1又はPET2に使用されるジカルボン酸100mol%に対する変性率をいう。
攪拌機、分縮器、冷却器、滴下槽、及び窒素ガス導入管を備えたジャケット付きの50L反応缶にアジピン酸15.000kg(102.64モル)、次亜燐酸ナトリウム一水和物13.06g(0.123モル)、酢酸ナトリウム6.88g(0.084モル)を仕込み、十分窒素置換した。さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶解させた。系内を攪拌しつつ、メタキシリレンジアミン(三菱ガス化学株式会社製)13.812kg(101.41モル)を、170分かけて滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器及び冷却器を通して系外に除いた。
メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。
次に、上記の操作にて得たポリマーを加熱ジャケット、窒素ガス導入管、真空ラインを備えた250L回転式タンブラーに入れ、回転させつつ系内を減圧にした後、純度99容量%以上の窒素で常圧にする操作を3回行った。その後、窒素流通下にて系内を140℃まで昇温させた。次に系内を減圧にし、190℃まで150分かけて昇温し、さらに80分保持した。窒素を導入して系内を常圧に戻した後、冷却してポリアミド樹脂(PA1)を得た。得られたポリアミド樹脂PA1の物性値は以下の通りである。なお、PA1中のリン原子濃度は137ppmであった。
相対粘度=2.21、末端カルボキシル基濃度=108μeq/g、末端アミノ基濃度=5μeq/g、数平均分子量=17699。
次亜燐酸ナトリウム一水和物の添加量を8.65g(0.082モル)とし、酢酸ナトリウムの添加量を4.55g(0.055モル)とした以外は、製造例1と同様にしてポリアミド樹脂PA2を得た。得られたポリアミド樹脂PA2の物性値は前記PA1と同じである。なお、PA2中のリン原子濃度は95ppmであった。
次亜燐酸ナトリウム一水和物の添加量を4.33g(0.041モル)とし、酢酸ナトリウムの添加量を2.28g(0.028モル)とした以外は、製造例1と同様にして、ポリアミド樹脂PA3を得た。得られたポリアミド樹脂PA3の物性値は前記PA1と同じである。なお、PA3中のリン原子濃度は49ppmであった。
次亜燐酸ナトリウム一水和物の添加量を0.95g(0.00899モル)とし、酢酸ナトリウムの添加量を0.49g(0.0060モル)とした以外は、製造例1と同様にして、ポリアミド樹脂PA4を得た。得られたポリアミド樹脂PA4の物性値は前記PA1と同じである。なお、PA4中のリン原子濃度は11ppmであった。
次亜燐酸ナトリウム一水和物の添加量を14.88g(0.140モル)とし、酢酸ナトリウムの添加量を7.83g(0.095モル)とした以外は、製造例1と同様にして、ポリアミド樹脂PA5を得た。得られたポリアミド樹脂PA5の物性値は前記PA1と同じである。なお、PA5中のリン原子濃度は172ppmであった。
ポリアミド樹脂(B)として製造例1で得られたポリアミド樹脂PA1を用い、酸化反応促進剤(C)としてステアリン酸コバルトを用いた。ポリアミド樹脂(B)に対してコバルト金属含有量が4000ppmとなるようにステアリン酸コバルトをドライブレンドし、φ32mmのフルフライトスクリューを備えた2軸押出機で、回転数80rpm、265℃で溶融混合した。これをストランド状に押出し、空冷したのちペレタイズして、マスターバッチ1(MB1)のペレットを得た。得られたMB1中に含まれるコバルト金属含有量は、コバルト金属濃度として4025ppmであった。
実施例1-1
ポリエステル樹脂として、予めコバルト金属を80ppm含有するPET1を使用し、ポリアミド樹脂として製造例1で得られたPA1を使用した。PET1は使用前に150℃で6時間乾燥させたのち、PET1とPA1をPET1/PA1=97.5/2.5の質量比で添加し、室温で10分間混合してペレットを作製した。
次いで、射出成形機(住友重機械工業製、型式:SE-130DU-CI、2個取り)を用いて、上記の混合したペレットを下記条件により射出成形し、単層プリフォーム(全長95mm、外径22mm、肉厚3.0mm)を得た。
<単層プリフォーム成形条件>
射出シリンダー温度:280℃
金型内樹脂流路温度:280℃
金型冷却水温度 :15℃
(二軸延伸ブロー成形条件)
プリフォーム加熱温度:103℃
延伸ロッド用圧力:0.5MPa
一次ブロー圧力:0.5MPa
二次ブロー圧力:2.5MPa
一次ブロー遅延時間:0.32sec
一次ブロー時間:0.28sec
二次ブロー時間:2.0sec
ブロー排気時間:0.6sec
金型温度:30℃
上記のようにして得られた単層ボトルについて、前記評価を行った。結果を表1に示す。
ポリエステル樹脂(A)、ポリアミド樹脂(B)の種類及び配合量を表1に示すとおりに変更した以外は、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
ポリエステル樹脂(A)としてPET1を使用し、ポリアミド樹脂(B)としてPA1を使用した。また、PET1とPA1をPET1/PA1=98.0/2.0の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、得られたペレット混合物を用いて、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:290℃
金型内樹脂流路温度:290℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、実施例1-6と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:298℃
金型内樹脂流路温度:298℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、実施例1-6と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:305℃
金型内樹脂流路温度:305℃
金型冷却水温度 :15℃
ポリエステル樹脂(A)としてPET1を使用し、ポリアミド樹脂(B)としてPA1を使用した。また、PET1とPA1をPET1/PA1=96.6/3.4の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:285℃
金型内樹脂流路温度:285℃
金型冷却水温度 :15℃
ポリエステル樹脂(A)としてPET1を使用し、ポリアミド樹脂(B)としてPA1を使用した。また、PET1とPA1をPET1/PA1=96.5/3.5の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、得られたペレット混合物を用いて、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:293℃
金型内樹脂流路温度:293℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、実施例1-10と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:298℃
金型内樹脂流路温度:298℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、実施例1-10と同様にして単層ボトルの作製及び評価を行った。結果を表1に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:265℃
金型内樹脂流路温度:265℃
金型冷却水温度 :15℃
ポリエステル樹脂(A)としてPET1を使用し、ポリアミド樹脂(B)としてPA4を使用した。また、PET1とPA4をPET1/PA4=95.0/5.0の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、得られたペレット混合物を用いて、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:280℃
金型内樹脂流路温度:280℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、比較例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:270℃
金型内樹脂流路温度:270℃
金型冷却水温度 :15℃
ポリエステル樹脂(A)としてPET1を使用し、ポリアミド樹脂(B)としてPA4を使用した。また、PET1とPA4をPET1/PA4=98.2/1.8の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、得られたペレット混合物を用いて、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:280℃
金型内樹脂流路温度:280℃
金型冷却水温度 :15℃
ポリエステル樹脂(A)としてコバルト金属を含有しないPET2、ポリアミド樹脂(B)として製造例1で得られたPA1、酸化反応促進剤を含むマスターバッチとして製造例6で得られたマスターバッチ1(MB1)を使用した。PET2/PA1/MB1=97.0/1.0/2.0の質量比で添加し、室温で10分間混合してペレットを作製した。
単層プリフォーム成形条件を下記のように変更した以外は、得られたペレット混合物を用いて、実施例1-1と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:280℃
金型内樹脂流路温度:280℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、比較例1-4と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:290℃
金型内樹脂流路温度:290℃
金型冷却水温度 :15℃
単層プリフォーム成形条件を下記のように変更した以外は、比較例1-4と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
<単層プリフォーム成形条件>
射出シリンダー温度:300℃
金型内樹脂流路温度:300℃
金型冷却水温度 :15℃
PET2、MB1を、PET2/MB1=98.3/1.7の質量比で添加し、室温で10分間混合してペレットを作製した。
次いで、比較例1-4と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
PET2、PA1、MB1を、PET2/PA1/MB1=95.0/3.0/2.0の質量比で添加し、室温で10分間混合してペレットを作製した。
次いで、比較例1-4と同様にして単層ボトルの作製及び評価を行った。結果を表2に示す。
すなわち本発明の包装体は、包装体に用いるポリアミド樹脂(B)中のリン含有量によらず、内容物の保存性と視認性を両立できる。
実施例1-1~1-5
前述のようにして得られた単層ボトルについて、前記評価を行い、式(1B)の値を算出した。結果を表3に示す。
ポリアミド樹脂(B)の種類及び配合量を表3に示すとおりに変更した以外は、実施例1-1と同様にして単層ボトルの作製及び評価を行い、並びに式(1B)の値を算出した。結果を表3に示す。
2 ポリアミド樹脂(B)の分散粒子
3 包装体を透過する酸素分子の行路
Claims (15)
- ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する樹脂組成物からなる包装体であって、
包装体の包装体厚みをd(μm)、包装体中のポリアミド樹脂(B)の分散粒子の長径平均値をL(μm)、短径平均値をW(μm)、体積分率をVfとした際に下記式(1A)を満たし、
包装体作製後100時間経過後の酸素透過率が0.01[cc/(package・day・0.21atm)]以下であり、かつヘイズ値が8%以下である包装体。
10<d×L×Vf/2W<120 ・・・(1A) - 前記包装体厚みdが200~400μmである、請求項1に記載の包装体。
- ポリアミド樹脂(B)がキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含む、請求項1又は2に記載の包装体。
- ポリアミド樹脂(B)がポリメタキシリレンアジパミドを含む、請求項1~3のいずれかに記載の包装体。
- 前記包装体中のポリアミド樹脂(B)の含有量が2.0~3.5質量%である、請求項1~4のいずれかに記載の包装体。
- ポリエステル樹脂(A)が芳香族ジカルボン酸単位と脂肪族ジオール単位とを含み、芳香族ジカルボン酸単位がテレフタル酸単位を70モル%以上含み、かつ脂肪族ジオール単位が炭素数2~4の脂肪族グリコール単位を70モル%以上含む、請求項1~5のいずれかに記載の包装体。
- ポリエステル樹脂(A)がジカルボン酸単位としてさらにスルホイソフタル酸金属塩に由来する単位を0.01~2モル%含む、請求項6に記載の包装体。
- 酸化反応促進剤(C)が遷移金属元素を含む、請求項1~7のいずれかに記載の包装体。
- 前記遷移金属元素がコバルト、鉄、マンガン、及びニッケルから選ばれる少なくとも1種である、請求項8に記載の包装体。
- 前記包装体の容量が0.1~2.0Lである、請求項1~9のいずれかに記載の包装体。
- 前記包装体のYI値が10以下である、請求項1~10のいずれかに記載の包装体。
- 前記包装体がボトルである、請求項1~11のいずれかに記載の包装体。
- ポリエステル樹脂(A)、ポリアミド樹脂(B)、及び酸化反応促進剤(C)を含有する包装体に物品を充填して保存する方法であって、該包装体中のポリアミド樹脂(B)の含有量が2.0~3.5質量%であり、かつ該包装体作製後100時間経過後の包装体の酸素透過率をX[cc/(package・day・0.21atm)]、包装体容量をV[L]、包装体質量をM[g]とした場合に下記式(1B)を満たす、物品の保存方法。
X/{2.5×V2/(M-8)}<0.3 ・・・(1B) - 前記包装体がボトルである、請求項13に記載の保存方法。
- 前記物品が食品、飲料、及び医薬品から選ばれる、請求項13又は14に記載の保存方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/897,335 US20160107783A1 (en) | 2013-06-12 | 2014-06-10 | Packaging body and storage method |
JP2015522783A JP6432510B2 (ja) | 2013-06-12 | 2014-06-10 | 包装体 |
EP14811569.4A EP3009375B1 (en) | 2013-06-12 | 2014-06-10 | Packaging body and storage method |
KR1020157034996A KR102165724B1 (ko) | 2013-06-12 | 2014-06-10 | 포장체 및 보존방법 |
CN201480033635.XA CN105283390B (zh) | 2013-06-12 | 2014-06-10 | 包装体及保存方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013123929 | 2013-06-12 | ||
JP2013-123929 | 2013-06-12 | ||
JP2013164303 | 2013-08-07 | ||
JP2013-164303 | 2013-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014199977A1 true WO2014199977A1 (ja) | 2014-12-18 |
Family
ID=52022269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065323 WO2014199977A1 (ja) | 2013-06-12 | 2014-06-10 | 包装体及び保存方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160107783A1 (ja) |
EP (1) | EP3009375B1 (ja) |
JP (1) | JP6432510B2 (ja) |
KR (1) | KR102165724B1 (ja) |
CN (1) | CN105283390B (ja) |
TW (1) | TWI646021B (ja) |
WO (1) | WO2014199977A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107048145A (zh) * | 2015-12-23 | 2017-08-18 | Ems专利股份公司 | 储存和运送聚酰胺颗粒的方法和容器、相应储存或运送的聚酰胺颗粒和由其制备的模塑制品 |
JP2020509125A (ja) * | 2017-02-24 | 2020-03-26 | トレビラ ホールディングス ゲーエムベーハー | 改良された性能を有するポリエチレンテレフタレート容器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2947502T3 (es) | 2014-11-18 | 2023-08-10 | Plastipak Packaging Inc | Poliaminometilbenciloxalamidas y composiciones y métodos relacionados con las mismas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0641422A (ja) | 1991-01-08 | 1994-02-15 | Solvay & Cie | バリヤー性を有する高分子配合物及びこれらの配合物から製造された包装材料 |
JP2003285879A (ja) * | 2002-03-28 | 2003-10-07 | Yoshino Kogyosho Co Ltd | ポリエチレンテレフタレート系樹脂製容器 |
JP2003341747A (ja) | 2002-05-28 | 2003-12-03 | Mitsubishi Gas Chem Co Inc | 包装容器 |
JP2007270141A (ja) * | 2006-03-10 | 2007-10-18 | Mitsubishi Gas Chem Co Inc | ポリエステル樹脂組成物の製造法 |
JP2009108153A (ja) * | 2007-10-29 | 2009-05-21 | Nippon Parison Kk | 樹脂組成物、単層樹脂成形品、及び、多層樹脂成形品 |
JP2011037136A (ja) * | 2009-08-11 | 2011-02-24 | Mitsubishi Gas Chemical Co Inc | ポリエステル系容器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040070275A (ko) * | 2001-12-25 | 2004-08-06 | 도요 세이칸 가부시키가이샤 | 기체 차단성이 우수한 다층 구조체 |
WO2006063032A2 (en) * | 2004-12-06 | 2006-06-15 | Constar International Inc. | Blends of oxygen scavenging polyamides with polyesters which contain zinc and cobalt |
US8293373B2 (en) * | 2007-02-20 | 2012-10-23 | Zeon Corporation | Oxygen-absorbing resin composition, oxygen-absorbing shaped article, packaging material and packaging container |
ES2533494T3 (es) * | 2010-06-30 | 2015-04-10 | Clariant Masterbatches (Italia) S.P.A. | Material plástico depurador del oxígeno |
WO2013002070A1 (ja) * | 2011-06-27 | 2013-01-03 | 三菱瓦斯化学株式会社 | フィルム及びフィルム包装容器 |
EP2752233A4 (en) * | 2011-09-01 | 2015-11-18 | Mitsubishi Gas Chemical Co | COMPOSITION ABSORBING OXYGEN AND PACKAGING ABSORBING OXYGEN USING THE SAME |
EP2957514B1 (en) * | 2013-02-13 | 2021-08-04 | Mitsubishi Gas Chemical Company, Inc. | Multi-layer bottle and method for producing same |
-
2014
- 2014-06-10 KR KR1020157034996A patent/KR102165724B1/ko active IP Right Grant
- 2014-06-10 WO PCT/JP2014/065323 patent/WO2014199977A1/ja active Application Filing
- 2014-06-10 JP JP2015522783A patent/JP6432510B2/ja active Active
- 2014-06-10 CN CN201480033635.XA patent/CN105283390B/zh active Active
- 2014-06-10 US US14/897,335 patent/US20160107783A1/en not_active Abandoned
- 2014-06-10 EP EP14811569.4A patent/EP3009375B1/en active Active
- 2014-06-12 TW TW103120390A patent/TWI646021B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0641422A (ja) | 1991-01-08 | 1994-02-15 | Solvay & Cie | バリヤー性を有する高分子配合物及びこれらの配合物から製造された包装材料 |
JP2003285879A (ja) * | 2002-03-28 | 2003-10-07 | Yoshino Kogyosho Co Ltd | ポリエチレンテレフタレート系樹脂製容器 |
JP2003341747A (ja) | 2002-05-28 | 2003-12-03 | Mitsubishi Gas Chem Co Inc | 包装容器 |
JP2007270141A (ja) * | 2006-03-10 | 2007-10-18 | Mitsubishi Gas Chem Co Inc | ポリエステル樹脂組成物の製造法 |
JP2009108153A (ja) * | 2007-10-29 | 2009-05-21 | Nippon Parison Kk | 樹脂組成物、単層樹脂成形品、及び、多層樹脂成形品 |
JP2011037136A (ja) * | 2009-08-11 | 2011-02-24 | Mitsubishi Gas Chemical Co Inc | ポリエステル系容器 |
Non-Patent Citations (2)
Title |
---|
SCHMID, MARKUS ET AL.: "Temperature-dependent Oxygen Permeation through PET/MXD6-Barrier Blend Bottles with and without Oxygen Absorber", POSTER PRESENTATION AT THE 5TH INTERNATIONAL SYMPOSIUM ON FOOD PACKAGING, 14 November 2012 (2012-11-14), BERLIN, XP008181816, Retrieved from the Internet <URL:http://www.ilsi.org/europe/documents/131.pdf> [retrieved on 20140731] * |
See also references of EP3009375A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107048145A (zh) * | 2015-12-23 | 2017-08-18 | Ems专利股份公司 | 储存和运送聚酰胺颗粒的方法和容器、相应储存或运送的聚酰胺颗粒和由其制备的模塑制品 |
JP2020509125A (ja) * | 2017-02-24 | 2020-03-26 | トレビラ ホールディングス ゲーエムベーハー | 改良された性能を有するポリエチレンテレフタレート容器 |
Also Published As
Publication number | Publication date |
---|---|
TW201509755A (zh) | 2015-03-16 |
JP6432510B2 (ja) | 2018-12-05 |
US20160107783A1 (en) | 2016-04-21 |
CN105283390A (zh) | 2016-01-27 |
EP3009375A4 (en) | 2017-04-05 |
TWI646021B (zh) | 2019-01-01 |
EP3009375A1 (en) | 2016-04-20 |
JPWO2014199977A1 (ja) | 2017-02-23 |
EP3009375B1 (en) | 2019-05-15 |
KR20160018547A (ko) | 2016-02-17 |
CN105283390B (zh) | 2018-03-16 |
KR102165724B1 (ko) | 2020-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6168261B1 (ja) | 多層容器及びその製造方法、単層容器の製造方法、並びに、再生ポリエステル樹脂の製造方法 | |
KR102621631B1 (ko) | 드라이블렌드 혼합물 | |
EP2824145B1 (en) | Polyester-based resin composition, method for producing same, and molding using resin composition | |
TWI525126B (zh) | 聚醯胺樹脂組成物 | |
JP2016169027A (ja) | 多層ボトル及びその製造方法 | |
KR102200506B1 (ko) | 폴리에스테르계 수지조성물 및 이 수지조성물을 이용한 성형체 | |
JP6432510B2 (ja) | 包装体 | |
CN107922781A (zh) | 具有基于呋喃的聚酯的聚合物共混物 | |
JP5928254B2 (ja) | ポリアミド樹脂組成物及びその製造方法 | |
JP2003251775A (ja) | 多層構造体 | |
JP6834977B2 (ja) | ポリエステル系樹脂組成物及びその製造方法、成形体及びその製造方法、並びに、マスターバッチ | |
JP2012046584A (ja) | 2軸延伸フィルム | |
JP5983396B2 (ja) | 着色ポリアミド樹脂組成物及びその製造方法 | |
RU2415164C2 (ru) | Сложнополиэфирная полимерная композиция, способ ее получения и формованное изделие | |
JP5076565B2 (ja) | 二軸延伸中空容器 | |
JP6816470B2 (ja) | ポリエステル系樹脂組成物の製造方法、成形体の製造方法、並びに樹脂組成物 | |
JP2023177894A (ja) | 多層射出成形体及び容器 | |
JP2023177897A (ja) | 多層体及び容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480033635.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14811569 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015522783 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014811569 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157034996 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14897335 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |