WO2014199906A1 - 太陽光反射用パネル - Google Patents

太陽光反射用パネル Download PDF

Info

Publication number
WO2014199906A1
WO2014199906A1 PCT/JP2014/065038 JP2014065038W WO2014199906A1 WO 2014199906 A1 WO2014199906 A1 WO 2014199906A1 JP 2014065038 W JP2014065038 W JP 2014065038W WO 2014199906 A1 WO2014199906 A1 WO 2014199906A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
film
solar
panel
Prior art date
Application number
PCT/JP2014/065038
Other languages
English (en)
French (fr)
Inventor
蔵方 慎一
田中 克彦
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014199906A1 publication Critical patent/WO2014199906A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar reflective panel, and more particularly, to a solar reflective panel having a sealing member at an end and excellent in durability (corrosion resistance).
  • the problem that the energy density of the solar energy itself described in the item (1) is low can be solved by collecting sunlight using a huge condensing device.
  • This condensing device is exposed to ultraviolet rays contained in sunlight, heat in the environment where it is installed, wind and rain, sandstorms, etc., so conventionally, from the viewpoint of durability, a solar reflective panel equipped with a glass mirror is used. Has been. However, glass mirrors are highly durable to the environment, but the light collector is easily damaged during transportation, and the mirror itself has a considerable load. There is a problem that construction costs are high.
  • Patent Document 1 a method of replacing a glass mirror with a resin reflection sheet has been studied (for example, see Patent Document 1). Also, a method of providing a hard coat layer on a resin mirror has been disclosed in order to impart high scratch resistance and weather resistance to the resin mirror (see, for example, Patent Document 2).
  • JP 2005-59382 A International Publication No. 2011/096309 Japanese Patent No. 3311172 International Publication No. 2010/128126
  • the present invention has been made in view of the above problems, and a problem to be solved is to provide a solar reflective panel having cleaning resistance and weather resistance.
  • the present inventor is a solar reflective panel having a solar reflective layer unit including at least a metal reflective layer on a substrate, and a side surface of the solar reflective panel. And the entire region composed of at least one of the upper surface end portion and the lower surface end portion is covered with a continuous resin resin material, and the covering structure has a thickness of 0.5 mm or less.
  • a solar reflective panel having excellent washing resistance and weather resistance can be provided by the solar reflective panel characterized in that the width of the upper end or the lower end is 0.5 to 2.0 mm. And found the present invention.
  • a solar reflective panel having a solar reflective layer unit including at least a metal reflective layer on a substrate, A region including all side portions and at least one of all upper surface end portions and all lower surface end portions is covered with a continuous structure formed of a coating resin material.
  • a solar reflective panel characterized by being 0.5 mm or less and having a width of 0.5 to 2.0 mm at the upper end or the lower end.
  • the coating resin material is at least one resin selected from silicone resin, urethane resin, and acrylic resin.
  • the solar reflective panel of the present invention having the above configuration is a configuration in which the portion where the solar reflective layer is exposed is reliably covered with a sealing material, and the metal of the solar reflective layer is corroded. There is nothing.
  • by optimizing the thickness of the coating with the sealing material it is resistant to high-pressure cleaning and brush cleaning used for cleaning solar reflective panels, etc. The amount of dirt can be kept to a minimum, the solar reflection area is not reduced, and the power generation efficiency is not lowered.
  • a solar reflective area can be enlarged by making coating
  • Sectional drawing which shows an example of a structure of the solar reflective panel of this invention provided with the continuous sealing structure by the resin material for coating
  • cover The schematic perspective view which shows an example of a structure of the panel for sunlight reflection of this invention
  • Sectional drawing which shows an example of the layer structure of the sunlight reflection layer unit which comprises the panel for sunlight reflection of this invention
  • Schematic which shows an example of the method of forming the continuous sealing structure in the edge part of this invention
  • FIG. 4A is a side view showing an example of a method for forming the sealing structure shown in FIG. 4A.
  • Schematic which shows an example of the other method of forming the continuous sealing structure by the liquid spray system in the edge part of this invention
  • Schematic which shows an example of the method of forming the independent sealing structure only in the edge part of a comparative example
  • the solar reflective panel of the present invention is a solar reflective panel having a solar reflective layer unit including at least a metal reflective layer on a substrate, and includes all side portions, all upper end portions and all. A region including at least one of the lower surface end portions of the upper surface end portion is covered with a continuous structure formed of a coating resin material, the covering structure has a thickness of 0.5 mm or less, and the upper surface end portion or The width of the lower end is in the range of 0.5 to 2.0 mm.
  • This feature is a technical feature common to the inventions according to claims 1 to 3.
  • the coating resin material is at least one resin selected from a silicone resin, a urethane resin, and an acrylic resin, from the viewpoint that the intended effect of the present invention can be further expressed. It is preferable from a viewpoint with higher adhesion affinity with the surface side member, back surface side member, and side part which comprise the solar light reflection panel.
  • an embodiment having a hard coat layer containing a polymer having a metalloxane skeleton on the outermost surface on the sunlight incident surface side realizes high surface hardness, and has excellent resistance to sand and surface cleaning in the external environment, for example, deserts. It is preferable from the viewpoint of obtaining rubbing properties.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the solar reflective panel of the present invention has a solar reflective layer unit including at least a metal reflective layer on a substrate, and includes at least one of all side surfaces, all upper surface ends, and all lower surface ends. Are covered with a continuous structure formed of a resin material for coating, the covering structure has a thickness of 0.5 mm or less, and the width of the upper surface end or lower surface end is 0. The range is from 5 to 2.0 mm.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the solar reflective panel of the present invention having a continuous sealing structure made of a coating resin material.
  • a solar reflective panel 1 has a configuration having a solar reflective layer unit 3 and a hard coat layer 4 as an outermost layer on a substrate 2 (hereinafter, this configuration group is also referred to as a mirror panel unit U). It is.
  • a resin base material is preferably applied, but for the purpose of imparting rigidity to the mirror panel, it is applied by being bonded to a glass base material or a metal base material via an adhesive layer or an adhesive layer. You can also
  • the cross section of the solar reflective layer unit 3 is exposed, and due to harmful gases such as oxygen, water vapor or hydrogen sulfide from the external environment, There is a possibility that the metal constituting the sunlight reflecting layer unit 3, for example, a silver film or the like is corroded.
  • a region including all the side surface portions Z constituting the end portion of the mirror panel unit U and at least one of all the upper surface end portions X and all the lower surface end portions Y is covered. It is characterized in that the sealing structure 5 covered with an integrated seamless structure is formed by the resin material for use.
  • the U-shaped sealing structure 5 is formed in the entire region of the side surface portion Z, the upper surface end portion X, and the lower surface end portion Y. Or it may be the L-shaped sealing structure 5 comprised from the area
  • FIG. 1 a side surface portion Z, an upper surface end portion X, and a lower surface end portion Y of a peripheral portion of a mirror panel unit U having a configuration in which a sunlight reflecting layer unit 3 and a hard coat layer 4 as an outermost layer are provided on a base material 2.
  • the sealing structure composed of the sealing member 5 that seals the peripheral portion of the mirror panel unit U has a thickness of 0.5 mm or less, and an upper surface end or lower surface.
  • the width of the end portion is in the range of 0.5 to 2.0 mm.
  • the thickness is preferably in the range of 0.1 to 0.5 mm, more preferably in the range of 0.3 to 0.5 mm, and the width is in the range of 0.8 to 0.5 mm. It is preferably in the range of 2.0 mm, more preferably in the range of 1.2 to 2.0 mm.
  • the thickness (mm) referred to in the present invention refers to the larger one of X H and Y H shown in FIG.
  • the width was measured at intervals of 5 mm over the entire length of the upper surface end X and the lower surface end Y of the formed sealing structure, and the respective average values were defined as the width X L and the width Y L.
  • the thickness was measured at intervals of 5 mm over the entire length of the upper surface end X and the lower surface end Y of the formed sealing structure, and the average values thereof were determined as the thickness X H and the thickness Y H, respectively. It was.
  • variety and thickness measured the cross-sectional shape using the commercially available laser displacement sensor, and computed it using the surface of the base material 1 of a sunlight reflective panel as a reference plane.
  • FIG. 2 is a schematic perspective view showing an example of the configuration of the solar reflective panel of the present invention.
  • FIG. 2 is a perspective view of the solar reflective panel 1 having the sealing structure 5 shown in FIG. 1, in which the entire peripheral region of the mirror panel unit U including the hard coat layer 4 is integrated with a coating resin material. 5 is formed.
  • an L-shaped configuration in which a region including the entire peripheral portion and one of the upper surface end X and the lower surface end Y is sealed may be used.
  • FIG. 3 An example of the layer structure of the sunlight reflection layer unit 3 which comprises the panel 1 for sunlight reflection of this invention is shown.
  • the ultraviolet absorption layer 9 includes an ultraviolet absorbent, an acrylic resin film containing a HALS agent, an ultraviolet reflective multilayer film, and the like.
  • an undercoat layer 10 can be provided on the back side of the metal reflective layer 6.
  • the laminated body which is composed of at least the base material 2 and the sunlight reflecting layer unit 3 and before the sealing structure 5 is provided is defined as “mirror panel unit U”.
  • a structure in which a sealing structure 5 is formed in a region constituted by all side surfaces Z of the mirror panel unit U and all upper surface ends X and all lower surface ends Y, or “mirror panel unit U ” is bonded to the metal substrate through the adhesive layer, and then sealed in a region composed of all side surfaces Z and all upper surface end portions X and all lower surface end portions Y.
  • a structure in which the structure 5 is formed is defined as a “sunlight reflecting panel”.
  • a region formed by covering with a resin material for coating with an integrated continuous structure 5 is referred to as “sealing structure” or “sealing portion”.
  • region means that all the regions are formed in a single integrated process in a state where all the regions are continuous without a joint.
  • ⁇ Constituent material of solar reflective panel ⁇ [Resin material for coating: sealing part forming member]
  • a region constituted by all the side surface portions Z of the mirror panel unit U and at least one of all the upper surface end portions X and all the lower surface end portions Y has a continuous structure with the coating resin material.
  • a sealing structure is formed by coating, the covering structure has a thickness of 0.5 mm or less, and the width of the upper end or lower end is in the range of 0.5 to 2.0 mm.
  • the resin material for coating according to the present invention is not particularly limited, but from the viewpoint of ease of formation, gas barrier properties as a sealing material, durability, etc., a general curable resin, for example, thermosetting A resin, an active energy ray-curable resin, or a thermoplastic resin can be appropriately selected and used.
  • thermoplastic resin examples include polyethylene, polypropylene, ABS resin, PMMA (polymethyl methacrylate), polystyrene, polycarbonate, polycycloolefin (ZEONOR of Nippon Zeon Co., Ltd., Arton of JSR Corp., TOPAS of Polyplastic Corp., Mitsui) Apel manufactured by Kagaku Co.), polylactic acid, cellulose ester, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyphenylene oxide, polycaprolactone, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polypropylene terephthalate, Polybutylene succinate, poly [3-hydroxybutyrate], polyarylate, nylon, aramid, thermoplastic elastomer Tomah, such as silicone, and the like.
  • thermosetting resin examples include an epoxy resin, a melamine resin, an unsaturated polyester resin, and a phenol resin.
  • examples of the active energy ray curable resin include epoxy acrylate resin, urethane acrylate resin, polyester acrylate and the like.
  • Adekaoptomer KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by ADEKA Corporation), Koeihard A -101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8, MAG -1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam's PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10, DP- 20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, manufactured by Dainichi Seika Kogyo Co., Ltd.), KRM70 3, KRM7039, KRM7130, KRM71, K
  • acrylic resin adhesives acrylic resin anaerobic adhesives, acrylic resin emulsion adhesives, ⁇ -olefin adhesives, two-component mixed urethane resin adhesives, two-component mixed types
  • Epoxy resin adhesive chloroprene rubber adhesive, cyanoacrylate adhesive, silicone adhesive, reactive hot melt adhesive, modified silicone adhesive, polyamide adhesive, polyurethane resin hot melt adhesive, polyolefin
  • silicone adhesive reactive hot melt adhesive
  • modified silicone adhesive polyamide adhesive
  • polyurethane resin hot melt adhesive polyolefin
  • examples thereof include a resin hot melt adhesive and a melamine resin adhesive.
  • sealants such as sealants made by Shin-Etsu Silicone, sealants 45, 4588, 4515, 40N, seal masters 300, 300LS, poor sealants S, KE-3418, KE-42, and the like. it can.
  • the material constituting the coating resin according to the present invention described above is at least one resin selected from silicone resin, urethane resin and acrylic resin, in particular, the surface side constituting the solar reflective panel It is preferable from the viewpoint of higher adhesion affinity with the member, the back surface side member, and the side surface portion.
  • the covering resin material described above includes all side surfaces of the mirror panel unit U and at least one of all upper surface ends and all lower surface ends.
  • the continuous sealing structure formed of the resin material for coating is formed in the region to be included.
  • Examples of the method for applying the coating resin material 5A to the upper surface end X, the lower surface end Y and the side surface Z of the mirror panel unit U include, for example, a roll coating method, a dip method, a casting method, an ink jet method, a spray method, and printing.
  • a coating method using a dispenser a coating method such as a slot method using a slit die coater, and the like can be given.
  • a pre-weighing type in which a coating solution is applied is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy of coating, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, it is preferable that it is a closed system from a viewpoint of suppression of the exposure of a coating liquid, suppression of a change in concentration, maintenance of cleanliness, and prevention of contamination by foreign matters. Therefore, among the above coating methods, a roll coating method, a dip method, a spray method, and an ink jet method are preferable. From the viewpoint of applicability, a coating solution diluted with a solvent or the like may be used as necessary.
  • FIGS. 4A and 4B illustrate an example of a method in which a coating resin material is simultaneously applied to all regions of the upper surface end X, the lower surface end Y, and the side surface Z of the mirror panel unit U by the dip method. It is shown.
  • a coating liquid 5A containing a coating resin material is stored in a liquid receiving pan 11 and kept at a constant temperature.
  • the dip coater is configured to have a pair of outer rollers 12A and an inner roller 12B between them. While rotating, the coating liquid 5A containing the coating resin material is applied to the upper surface end X and the lower surface end Y of the mirror panel unit U. And it supplies to the side part Z, and the sealing structure 5 is formed.
  • the film thickness of the sealing structure formed on the upper surface end X and the lower surface end Y is adjusted by the distance H1 between the pair of outer rollers 12A, the width of the upper surface end X and the lower surface end Y, and the side surface portion.
  • the thickness of Z can be adjusted by the installation position of the internal roller 12B.
  • FIG. 4B is a side view when viewed from the direction of the cutting plane AA in the diagram shown in FIG. 4A. While the mirror panel unit U is transported from the left to the right of the page, the coating resin material is The coating liquid 5A containing is applied by the dip method to form the sealing structure 5. From the viewpoint of controlling the film thickness and the like more accurately, the film thickness is set on the upstream side where the coating liquid is applied to the mirror panel unit U. It is preferable to provide a scraping blade 13 to be controlled.
  • the applied coating resin material when the applied coating resin material is a thermoplastic resin, it may be solidified by supplying cold air from the energy applying unit 14. Heat to cure.
  • the coating resin material when the coating resin material is an actinic ray curable resin, it can be cured by applying an actinic ray such as ultraviolet rays from the energy applying unit 14.
  • an actinic ray such as ultraviolet rays from the energy applying unit 14.
  • a dry wind can be supplied from the energy provision part 14, and a coating film can be dried, and a sealing structure can be formed.
  • FIGS. 4A and 4B an example in which a sealing structure is simultaneously applied to all surfaces of the upper surface end X, the lower surface end Y, and the side surface Z of the mirror panel unit U is shown.
  • a sealing structure is simultaneously applied to all surfaces of the upper surface end X, the lower surface end Y, and the side surface Z of the mirror panel unit U is shown.
  • FIG. 5 shows an example of another method for simultaneously applying the coating resin material to the upper surface end, the lower surface end and the side surface of the mirror panel unit U.
  • FIG. 5 shows an example in which a liquid spray method, for example, an ink jet method or a spray method is used as a method for applying the coating resin material.
  • a liquid spray method for example, an ink jet method or a spray method is used as a method for applying the coating resin material.
  • the coating liquid 5A containing the coating resin material stored in the preparation kettle 16 is supplied to an ink jet head (not shown) or a spray spraying device (not shown) constituting the coating device 15 via the pipe 18 and fixed.
  • the continuous sealing structure 5 is simultaneously formed on the upper surface end portion, the lower surface end portion and the side surface portion at the same time to the entire upper surface end portion, lower surface end portion and side surface portion of the mirror panel unit U. Is the method.
  • Reference numeral 17 denotes a partition wall for preventing the coating liquid from flying outside the predetermined area.
  • the sealing structure integrated at the same time can be formed on the upper surface end, the lower surface end and the side surface of the mirror panel unit U.
  • the base material 2 applicable to the solar reflective panel of the present invention is not particularly limited as long as it is a material capable of holding the solar reflective layer unit 3 including a metal reflective layer and the like.
  • the type of plastic is not particularly limited, and it may be transparent or opaque.
  • the transparent substrate preferably used include glass, quartz, and a transparent resin film.
  • a particularly preferable substrate is a resin film capable of providing flexibility.
  • a resin film suitable as a base material various publicly known resin films can be used.
  • polyester-based film or a cellulose ester-based film are films manufactured by a solution casting film forming method even if they are films manufactured by a melt casting film forming method. May be.
  • the thickness of the resin base material is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m, preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the solar reflective layer unit 3 includes a metal reflective layer 6 that serves as a mirror, and is composed of functional layers having various characteristics.
  • the metal reflective layer 6 (also referred to as a reflective layer) according to the present invention is a reflective layer made of a metal having a function of reflecting sunlight.
  • the surface reflectance of the metal reflective layer is preferably 80% or more, more preferably 90% or more.
  • the metal reflective layer may be on the sunlight incident side (front side) or on the opposite side (back side), but it prevents the base material, especially the resin base material, from being deteriorated by sunlight. For this purpose, it is preferably arranged on the light incident side.
  • the thickness of the metal reflective layer is preferably in the range of 10 to 200 nm, more preferably in the range of 30 to 150 nm, from the viewpoint of reflectivity and the like. If the thickness of the reflective layer is 10 nm or more, it is preferable because the film thickness is sufficient, light is not transmitted, and the reflectance in the visible light region of the film mirror can be sufficiently secured. Moreover, if it is 200 nm or less, a reflectance will also become large in proportion to a film thickness. However, when the film thickness is 200 nm or more, the reflectance does not depend on the film thickness.
  • the surface roughness Ra of the metal reflective layer is preferably in the range of 0.01 to 0.1 ⁇ m, more preferably in the range of 0.02 to 0.07 ⁇ m. Since the surface roughness Ra of the metal reflective layer is 0.01 ⁇ m or more, the film mirror surface also becomes rough due to the roughness, and the roll-to-roll method for continuously forming a film in the production stage of the film mirror is used. Even in such a case, sticking such as blocking in the reflective layer of the film mirror and the adjacent layer on the incident light side can be prevented. Further, when the surface becomes rough, the reflected light may be scattered. However, since the film mirror having the metal reflection layer has a concave shape, the film mirror should be used if the surface roughness Ra is 0.1 ⁇ m or less. Decreasing the reflection efficiency can be prevented by forming the concave shape.
  • the metal reflective layer is preferably formed of a material containing at least one element selected from aluminum, silver, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth and gold.
  • aluminum or silver is preferably the main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. By doing so, the reflectance from the visible light region to the infrared region of the film mirror can be increased, and the dependency of the reflectance on the incident angle can be reduced.
  • the visible light region to the infrared region means a wavelength region of 400 to 2500 nm.
  • the incident angle here means an angle with respect to a line (normal line) perpendicular to the film surface.
  • the metal reflection layer is particularly preferably a silver reflection layer mainly composed of silver.
  • Both the wet method and the dry method can be applied as the method for forming the metal reflection layer according to the present invention.
  • the wet method used for forming the metal reflective layer in the present invention is a generally referred to plating method, which is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method used for forming the metal reflective layer in the present invention is typically a vacuum film-forming method, and specific methods include a resistance heating vacuum deposition method and an electron beam heating vacuum deposition method. , Ion plating method, ion beam assisted vacuum deposition method, sputtering method and the like.
  • a vapor deposition method capable of a roll-to-roll method of continuously forming a film is preferably used. That is, in the present invention, a production method including a step of forming a metal reflective layer, for example, a silver reflective layer by silver vapor deposition is a preferred embodiment.
  • the sunlight reflection layer unit according to the present invention is preferably provided with a corrosion prevention layer 7 as shown in FIG.
  • the corrosion prevention layer 7 is preferably provided adjacent to the metal reflection layer 6.
  • the corrosion prevention layer 7 when the metal reflective layer 6 is a silver reflective layer.
  • the corrosion prevention layer 7 is provided adjacent to the metal reflection layer 6 on the light incident side.
  • the corrosion prevention layer contains a corrosion inhibitor.
  • a corrosion inhibitor having an adsorptive group for metals, particularly silver and a corrosion inhibitor having an antioxidant function (also referred to as an antioxidant) are preferably used.
  • the corrosion prevention layer preferably contains at least one of a corrosion inhibitor and an antioxidant having an adsorptive group for metals, particularly silver.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • Resin can be used for a corrosion prevention layer as a binder holding a corrosion inhibitor.
  • the following resins can be used.
  • acrylic resins such as resins, fluororesins, nylons, and polymethylmethacrylates. Of these, acrylic resins are preferred.
  • the corrosion prevention layer preferably has a thickness in the range of 30 nm to 1 ⁇ m.
  • the optimum content of the corrosion inhibitor in the corrosion prevention layer varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole It is desirable to be selected from at least one of a ring-containing compound, a copper chelate compound, a thiourea, a mercapto group-containing compound, a naphthalene-based compound, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N-dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate , Diisopropyl ammonium benzoate, diisopropyl ammonium nai Light, cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexy
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl- 3,4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3-methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3- Triazole, benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2, 4-triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'- Droxy-5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzo Examples include thiazole and the like, or a mixture thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, and 1-benzyl-2.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and mixtures thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • Examples of the compound having a mercapto group include 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole exemplified above.
  • mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 2-mercaptobenzo Examples include thiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, and the like, or a mixture thereof.
  • naphthalene compounds examples include thionalide.
  • the adhesive layer 8 illustrated in FIG. 3 is not particularly limited as long as it has a function of improving the adhesion between the corrosion prevention layer 7 and the ultraviolet absorbing layer 9.
  • the layer thickness of the adhesive layer 8 is preferably in the range of 0.01 to 10.0 ⁇ m, more preferably in the range of 0.1 to 6.0 ⁇ m from the viewpoints of adhesion, smoothness, reflectance of the metal reflective layer, and the like. Is within.
  • the resin material is not particularly limited as long as it satisfies the above conditions of adhesion and smoothness.
  • polyester resin, acrylic resin, melamine Resin, epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the point of weather resistance, polyester resin and melamine resin are mixed. Resins are preferred.
  • a thermosetting resin mixed with a curing agent such as isocyanate is one of the more preferable adhesives.
  • wet coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be applied.
  • the adhesive layer is composed of a metal oxide
  • a layer composed of silicone oxide, aluminum oxide, silicone nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like can be formed by various vacuum film forming methods. More specifically, it can be formed by resistance heating vacuum deposition, electron beam heating vacuum deposition, ion plating, ion beam assisted vacuum deposition, sputtering, or the like.
  • the ultraviolet absorbing layer contains an ultraviolet absorber for the purpose of preventing deterioration of the sunlight reflecting mirror due to sunlight or ultraviolet rays.
  • the ultraviolet absorbing layer is preferably provided on the light incident side with respect to the base material, and as shown in FIG. 3, when the corrosion preventing layer is provided, it is preferably provided on the light incident side with respect to the corrosion preventing layer.
  • a resin can be used as a binder for holding the ultraviolet absorber.
  • the following resins can be used.
  • acrylic resins such as resins, fluororesins, nylons, and polymethylmethacrylates. Of these, acrylic resins are preferred.
  • the layer thickness of the ultraviolet absorbing layer is preferably in the range of 1 to 200 ⁇ m.
  • the ultraviolet absorbing agent is further added to any one of the constituent layers provided on the light incident side from the substrate 2 to absorb ultraviolet rays.
  • the structure which provides performance may be sufficient.
  • positioned at the outermost layer side mentioned later is also preferable.
  • UV absorbers examples include organic UV absorbers such as benzophenone, benzotriazole, phenyl salicylate, and triazine, and inorganic UV absorbers include titanium oxide, zinc oxide, cerium oxide, and oxide. Iron etc. are mentioned.
  • benzophenone ultraviolet absorbers examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4' -Tetrahydroxy-benzophenone and the like.
  • benzotriazole ultraviolet absorbers examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole. 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole and the like.
  • phenyl salicylate ultraviolet absorber examples include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy- 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5 Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphen
  • the ultraviolet absorber in addition to the above, a compound having a function of converting the energy held by ultraviolet rays into vibration energy in the molecule and releasing the vibration energy as heat energy can also be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
  • the amount of the ultraviolet absorber used is in the range of 0.1 to 20% by mass, preferably in the range of 1 to 15% by mass, more preferably relative to the total mass of the ultraviolet absorbing layer 9 or the layer to which the ultraviolet absorber is added. Is in the range of 3 to 10% by mass. By making the amount used within these ranges, it is possible to improve the weather resistance while maintaining good adhesion to other constituent layers.
  • the undercoat layer 10 as shown in FIG. 3 is a layer that has a resin as a binder and is provided to bring the substrate 2 and the metal reflective layer 6 into close contact with each other. Therefore, the undercoat layer 10 has adhesiveness for bringing the base material 2 and the metal reflective layer 6 into close contact, heat resistance that can withstand the processing temperature when the metal reflective layer is formed by a vacuum deposition method, and the metal reflective layer. It is required that the layer has a function such as smoothness to bring out the high reflection performance inherent in the layer.
  • the resin used for the formation of the undercoat layer is not particularly limited as long as it can achieve the above-mentioned quality required for adhesion, heat resistance, and smoothness.
  • polyester resin, acrylic resin Resin, melamine resin, epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used alone or in combination.
  • Polyester resin and melamine can be used from the viewpoint of weather resistance.
  • a mixed resin of a polyester resin or a mixed resin of a polyester resin and an acrylic resin is preferable. It is also one of the preferable specifications to make a thermosetting resin mixed with a curing agent such as isocyanate.
  • the layer thickness of the undercoat layer is preferably in the range of 0.01 to 3.0 ⁇ m, more preferably in the range of 0.1 to 2.0 ⁇ m.
  • the undercoat layer preferably contains a corrosion inhibitor used in the corrosion prevention layer.
  • an undercoat layer can use conventionally well-known wet coating methods, such as a gravure coat method, a reverse coat method, and a die coat method.
  • a gas barrier layer In addition to the functional layers described above, for example, a gas barrier layer, an antifouling layer, an antistatic layer, and the like may be provided as long as the object and effects of the present invention are not impaired.
  • the gas barrier layer is for preventing deterioration of humidity, particularly deterioration of various functional elements protected by the resin base material and the resin base material due to high humidity. As long as the above characteristics are maintained, various types of gas barrier layers can be provided. In the present invention, a configuration in which a gas barrier layer is provided on the upper side of the metal reflective layer is preferable.
  • the solar reflective panel of the present invention has a metalloxane skeleton having a metal-oxygen-metal bond as a skeleton on the outermost surface of the film mirror for the purpose of preventing dirt and scratches on the surface of the film mirror installed outdoors. It is a preferred embodiment to provide a hard coat layer 4 containing a polymer.
  • the polymer having the metalloxane skeleton exhibits an effect excellent in light resistance and weather resistance.
  • the adhesion between the constituent material of the hard coat layer and the sealing member may be low, and it is difficult to uniformly apply the sealing material.
  • a sealing structure by forming a sealing structure by applying a coating resin material to the entire surface of the side surface portion Z of the mirror panel unit U and at least the entire surface composed of the upper surface end portion X, Even when the hard coat layer 4 containing a polymer having a metalloxane skeleton is used, a sealing structure can be uniformly formed in the end region.
  • the hard coat layer containing a material having a metalloxane skeleton is represented by polymetalloxane such as silicon, titanium, zirconium, and aluminum, or polysilazane, perhydropolysilazane, alkoxysilane, alkylalkoxysilane, and the following general formula (1). It can be formed by applying and drying polysiloxane having a structure.
  • R 11 and R 12 may be the same or different and each represents a hydrogen atom, an alkyl group or an aryl group.
  • p is an integer of 1 or more.
  • the hard coat layer according to the present invention is disposed on the outermost side on the light source side of the metal reflective layer, has a contact angle with water in the range of 80 to 170 °, and has a dynamic friction coefficient of 0.10 to 0.35. It is preferable to be within the range.
  • the surface energy can be lowered and the contact angle of the hard coat layer with water can be within the range specified above.
  • the dynamic friction coefficient is preferably in the range of 0.10 to 0.35, more preferably in the range of 0.15 to 0.25.
  • the dynamic friction coefficient between the film surfaces should be controlled within the range specified above. Can do.
  • the contact angle with water can be measured by using a contact angle CA-W manufactured by Kyowa Interface Science and dropping 3 ⁇ l of water on the surface of the mirror panel unit U in an environment of 23 ° C. and 55% RH.
  • the dynamic friction coefficient is determined by using a surface property measuring machine (HEIDON-14D) manufactured by Shinto Kagaku Co., Ltd., attaching one mirror panel unit U with the outermost layer on the sample table, and another one on the indenter. Are mounted so that the outermost surfaces of the two mirror panel units U are in contact with each other, and a load of about 160 g / cm 2 is applied thereon and 10 times at a speed of 3 m / min. It can be reciprocated and calculated as an average dynamic friction coefficient of 10 reciprocations.
  • the total thickness of the film mirror unit according to the present invention is preferably in the range of 75 to 250 ⁇ m, more preferably in the range of 90 to 230 ⁇ m, from the viewpoint of mirror deflection prevention, regular reflectance, handling properties, and the like. And particularly preferably in the range of 100 to 220 ⁇ m.
  • the solar reflective panel of the present invention having the configuration shown in FIG. 1 can be used mainly for the purpose of collecting sunlight.
  • an adhesive layer is preferably formed on the lowermost layer as viewed from the light incident side of the solar reflective panel, and the solar reflective surface is sealed on another base material, particularly on a metal base material. After affixing the panel, a sealing structure is given and used as a solar reflective panel.
  • the reflecting device When used as a solar power generation reflecting device, the reflecting device is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member.
  • the form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form.
  • flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector.
  • the solar reflective mirror of the present invention is particularly preferably used.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • polyester resin urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, etc. are used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out a roller method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed and the like.
  • Metal substrate that can be used when the solar reflective panel of the present invention is attached via an adhesive layer to hold the solar reflective mirror
  • the metal substrate that can be used when the solar reflective panel of the present invention is attached via an adhesive layer to hold the solar reflective mirror
  • the metal substrate include, for example, a steel plate, a copper plate, an aluminum plate, and an aluminum plated steel plate.
  • a metal material having high thermal conductivity such as an aluminum alloy plated steel plate, a copper plated steel plate, a tin plated steel plate, a chrome plated steel plate, or a stainless steel plate can be used.
  • a plated steel plate In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
  • a silver reflective layer having a thickness of 80 nm was formed as a metal reflective layer on the formed adhesive layer by a vacuum deposition method.
  • the polyester resin and the TDI-based isocyanate were mixed at a resin solid content ratio of 10: 2, and coated by a gravure coating method to form an adjacent layer having a thickness of 0.1 ⁇ m.
  • bar coating was performed using a 3% perhydropolysilazane liquid in dibutyl ether (NL120 manufactured by AZ Electric Materials Co., Ltd.) so that the film thickness after drying was 500 nm. After drying, it was annealed in an oven at 90 ° C. for 30 minutes to provide a hard coat layer. Further, a water-repellent agent (Aquanolan manufactured by AZ Electric Materials Co., Ltd.) was bar coated on the hard coat layer to form an antifouling layer, and a film laminate was produced.
  • the mirror film unit 1 was produced by pasting on an aluminum plate having a length of 5 mm and a length of 100 mm ⁇ width of 100 mm.
  • a silicone sealant (KE-4921-B manufactured by Shin-Etsu Silicone Co., Ltd.) is applied to the upper end X, the lower end Y and the mirror film unit 1 using the dip type end applicator.
  • a solar sealing panel 1 was produced by forming a sealing structure having a continuous structure on the entire surface of each of the side surfaces Z by batch application. The thickness and width of the sealing structure in the solar reflective panel 1 are as shown in Table 1.
  • the solar reflective panels 1 to 10 of the present invention are sealed with a configuration in which the entire upper surface end X, lower surface end Y and side surface Z are integrated. Therefore, it can be seen that it has excellent weather resistance and also has cleaning resistance during brush cleaning.
  • the solar reflective panel 1 using a silicone resin as the sealing material has a practical strength, that is, a high durability even after bending equivalent to practical use.
  • the solar reflective panels 11 to 14 as comparative examples peeling occurred at the end of the sealing member due to cleaning, and the quality was not practical.
  • the solar reflective panel which provided the hard-coat layer is exhibiting the outstanding weather resistance and washing
  • the solar reflective panel of the present invention seals the constituent members of the solar reflective panel with a continuous sealing structure, and cuts off the influence from the external environment, so that sunlight of oxygen, water vapor, or harmful gas is emitted.
  • the reflection panel By preventing the reflection panel from entering, it is a solar reflection panel having high weather resistance and washing resistance, and can be suitably used for a solar power generation reflection device that collects sunlight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明の課題は、耐候性及び耐洗浄性を有する太陽光反射用パネルを提供することである。 本発明の太陽光反射用パネルは、基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有する太陽光反射用パネルであって、全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域が、被覆用樹脂材料により形成された連続した構造で被覆されており、被覆構造が、厚さHが0.5mm以下であり、かつ前記上面端部又は下面端部の幅Lが0.5~2.0mmの範囲であることを特徴とする。

Description

太陽光反射用パネル
 本発明は、太陽光反射用パネルに関し、更に詳しくは、端部に封止部材を具備し、耐久性(耐腐食性)に優れた太陽光反射用パネルに関する。
 発展途上国の急激な経済成長に伴い、全世界的にエネルギー需要が増大し、かつては無尽蔵と考えられていた石油、天然ガス等の化石燃料の枯渇が現実味を帯びてきている。
 このような状況を踏まえ、化石燃料の代替エネルギーとして、供給が最も安定しており、かつ豊富な自然エネルギーとして、太陽エネルギーが注目されており、現在、その太陽エネルギーを活用するための様々な検討が精力的に進められている。特に、世界のサンベルト地帯と言われている赤道近くには、広大な砂漠が広がっており、ここに降りそそぐ太陽エネルギーは、まさに無尽蔵といえる。また、米国南西部に広がる砂漠のわずか数%の面積における太陽エネルギーを活用すれば、実に7,000GWものエネルギーを得ることが可能であると考えられている。また、アラビア半島、北アフリカの砂漠のわずか数%の面積に照射される太陽エネルギーを活用すれば、全人類が必要とする全エネルギーを賄うことができるとも考えられている。
 このように、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを実際に活用する段階では、(1)太陽エネルギー自身のエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であること等が、問題になると考えられる。
 上記問題のうち、(1)項に記載の太陽エネルギー自身のエネルギー密度が低いという問題に関しては、巨大な集光装置を用いて太陽光を集めることによって解決することが可能とされている。
 この集光装置は、太陽光に含まれる紫外線や、設置する環境における熱、風雨、砂嵐等に晒されるため、従来、耐久性の観点から、ガラス製ミラーを具備した太陽光反射用パネルが用いられてきた。しかし、ガラス製ミラーは環境に対する耐久性は高いが、集光装置が輸送時に破損しやすいこと、ミラー自身がかなりの荷重を有しているため、設置する架台に対しても強度を持たせる必要があり、建設費がかさむといった問題を抱えている。
 上記問題を解決するために、ガラス製ミラーを、樹脂製反射シートに置き換える方法の検討がなされている(例えば、特許文献1参照。)。また、樹脂製ミラーに高い耐傷性及び耐候性を付与するため、樹脂製ミラーにハードコート層を設ける方法が開示されている(例えば、特許文献2参照。)。
 しかしながら、樹脂製ミラーの反射層に銀等の金属膜を用いると、1)反射面または反射面と相対する面の樹脂層を介して、あるいは2)端部における反射層と外部との界面を介して、樹脂製ミラー内に酸素、水蒸気、あるいは硫化水素等が透過し、反射層を腐食してしまうといった問題が生じ、樹脂製ミラーの実用化に対する障害となっていた。
 上記問題に対し、反射面又は反射面と相対する面の樹脂層を介しての反射層に対する腐食を抑制する方法としては、反射層よりも光源側に、バリアー層として無機酸化物層を設ける方法(例えば、特許文献3参照。)により、ある程度の対応は可能とされている。
 一方、端部から反射層への酸素、水蒸気、あるいは硫化水素等の浸入による反射層の腐食に関しては、一般的には、封止テープ等により保護する等の対策が講じられている。しかしながら、太陽光反射パネルは、雨、塵、埃等の影響で表面が汚染され反射率が低下することを防止するため洗浄が実施され、高圧洗浄だけでは落しきれず、強固な汚れについては物理洗浄(ブラシ洗浄)が行われているため、封止テープでは剥離が懸念される。
 また、封止部が光源側にある際には、封止テープ厚さによる段差が大きいと塵/埃も堆積し洗浄も困難になり、太陽光反射面積も縮小し多大な効率ロスを発生する懸念がある。
 基材の側面部と、上面端部あるいは下面端部の何れか一方とを含む領域が、被覆用樹脂材料により被覆されている太陽光反射用パネルとしては、特許文献4に記載があるが、未だ封止効果としては充分であるとは言い難いのが現状である。
特開2005-59382号公報 国際公開第2011/096309号 特許第3311172号公報 国際公開第2010/128126号
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、耐洗浄性及び耐候性を有する太陽光反射用パネルを提供することにある。
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有する太陽光反射用パネルであって、太陽光反射用パネルの側面部と、全ての上面端部及び下面端部の少なくとも一方とから構成される全領域が、被覆用樹脂材料により連続した構造で被覆され、当該被覆構造が、厚さが0.5mm以下であり、かつ前記上面端部又は下面端部の幅が0.5~2.0mmであることを特徴とする太陽光反射用パネルにより、耐洗浄性及び耐候性に優れる太陽光反射用パネルを提供できることを見出し、本発明に至った。
 すなわち、本発明の上記課題は、下記の手段により解決される。
 1.基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有する太陽光反射用パネルであって、
 全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域が、被覆用樹脂材料により形成された連続した構造で被覆されており、被覆構造が、厚さが0.5mm以下であり、かつ前記上面端部又は下面端部の幅が0.5~2.0mmの範囲であることを特徴とする太陽光反射用パネル。
 2.前記被覆用樹脂材料が、シリコーン樹脂、ウレタン樹脂及びアクリル樹脂から選ばれる少なくとも1種の樹脂であることを特徴とする第1項に記載の太陽光反射用パネル。
 3.太陽光入射面側の最表面に、メタロキサン骨格を有するポリマーを含有するハードコート層を有することを特徴とする第1項又は第2項に記載の太陽光反射用パネル。
 上記の構成からなる本発明の太陽光反射パネルは、太陽光反射層が暴露されている部位を確実に封止材にて被覆している構成であり、太陽光反射層の金属が腐食されることがない。さらに、封止材による被覆の厚さを最適化することで、太陽光反射用パネルの洗浄などに使用される高圧洗浄、ブラシ洗浄に対する耐性がありながら、被覆端部の段差を小さくすることで、汚れの付着量を最小限にとどめることができ、太陽光反射面積の縮小が少なく、発電効率の低下が少ない。
 本発明で規定する構成により、封止機能を損なわない範囲で被覆幅を小さくすることで、太陽光反射面積を大きくすることができ、発電効率の高い太陽光反射用パネルを提供することができる。
被覆用樹脂材料により連続した封止構造を備えた本発明の太陽光反射用パネルの構成の一例を示す断面図 本発明の太陽光反射用パネルの構成の一例を示す概略斜視図 本発明の太陽光反射用パネルを構成する太陽光反射層ユニットの層構成の一例を示す断面図 本発明の端部に連続した封止構造を形成する方法の一例を示す概略図 図4Aに示した封止構造を形成する方法の一例を示す側面図 本発明の端部に、液体噴霧方式により連続した封止構造を形成する他の方法の一例を示す概略図 比較例の端部のみに独立した封止構造を形成する方法の一例を示す概略図
 本発明の太陽光反射用パネルは、基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有する太陽光反射用パネルであって、全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域が、被覆用樹脂材料により形成された連続した構造で被覆されており、被覆構造が、厚さが0.5mm以下であり、かつ前記上面端部又は下面端部の幅が0.5~2.0mmの範囲であることを特徴とする。この特徴は、請求項1から請求項3に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記被覆用樹脂材料が、シリコーン樹脂、ウレタン樹脂及びアクリル樹脂から選ばれる少なくとも1種の樹脂であることが、太陽光反射用パネルを構成する表面側部材、裏面側部材及び側面部との密着親和性がより高い観点から好ましい。
 また、太陽光入射面側の最表面に、メタロキサン骨格を有するポリマーを含有するハードコート層を有する態様が、高い表面硬度を実現し、外部環境、例えば、砂漠における砂や表面清掃に対する優れた耐擦性を得ることができる観点から好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態及び態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《太陽光反射用パネルの基本構成》
 本発明の太陽光反射用パネルは、基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有し、全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域が、被覆用樹脂材料により形成された連続した構造で被覆されており、被覆構造が、厚さが0.5mm以下であり、かつ前記上面端部又は下面端部の幅が0.5~2.0mmの範囲であることを特徴とする。
 図1は、被覆用樹脂材料により連続した封止構造を備えた本発明の太陽光反射用パネルの構成の一例を示す断面図である。
 図1において、太陽光反射用パネル1は、基材2上に、太陽光反射層ユニット3と最表層としてハードコート層4を有する構成(以下、この構成群をミラーパネルユニットUともいう。)である。
 基材2としては、樹脂基材が好ましく適用されているが、ミラーパネルに剛性を付与する目的からは、粘着層や接着層を介して、ガラス基材あるいは金属基材と貼り合わせて適用することもできる。
 図1に記載の構成からなるミラーパネルユニットUの端部においては、太陽光反射層ユニット3の断面部が露出した状態にあり、外部環境からの酸素、水蒸気あるいは硫化水素等の有害ガスにより、太陽光反射層ユニット3を構成している金属、例えば、銀膜等が腐食する恐れがある。
 本発明では、上記問題を踏まえ、このミラーパネルユニットUの端部を構成する全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とを含む領域を、被覆用樹脂材料により、一体化した繋ぎ目のない構造で被覆した封止構造5を形成することを特徴としている。
 本発明においては、図1及び後述の図2で例示するように、側面部Z、上面端部X及び下面端部Yの全領域に対し、コ字型の封止構造5を形成する態様であっても、あるいは、全ての側面部Zと、上面端部X及び下面端部Yのいずれか一方とを含む領域から構成されるL字型の封止構造5であっても良い。
 図1においては、基材2上に、太陽光反射層ユニット3と最表層としてハードコート層4を有する構成のミラーパネルユニットUの周辺部の側面部Z、上面端部X及び下面端部Yの全領域に対し封止部材5を形成した例を示したが、更に、ミラーパネルユニットUを、粘着層を介して金属基材上に貼りつけた後に、その周辺部に封止部材5を形成する構成であってもよい。
 本発明の太陽光反射パネル1では、ミラーパネルユニットUの周辺部を封止する封止部材5から構成される封止構造として、厚さが0.5mm以下であり、かつ上面端部又は下面端部の幅が0.5~2.0mmの範囲内であることを特徴とする。さらに、本発明においては、厚さは0.1~0.5mmの範囲内であることが好ましく、さらに好ましくは0.3~0.5mmの範囲内である、また、幅は0.8~2.0mmの範囲内であることが好ましく、1.2~2.0mmの範囲内であることがさらに好ましい。
 以下、図1を用いて、本発明で規定する封止構造における「厚さ」及び「幅」について説明する。
 本発明でいう厚さ(mm)とは、図1で示すXH及びYHのうち、数値の大きい方をいう。
 また、上面端部又は下面端部の幅とは、図1で示すXL及びYLのうち、数値の大きい方をいう。
 〈封止構造の厚さ及び幅の測定方法〉
 幅は、形成した封止構造の上面端部X及び下面端部Yの全長にわたり、5mmの間隔で幅を測定し、それぞれの平均値を、幅XL及び幅YLとした。
 また、厚さは、形成した封止構造の上面端部X及び下面端部Yの全長にわたり、5mmの間隔で厚さを測定し、それぞれの平均値を、厚さXH及び厚さYHとした。
 なお、上記幅及び厚さの測定は、市販のレーザー変位センサーを用いて断面形状を測定し、太陽光反射パネルの基材1の表面を基準面として算出した。
 図2は、本発明の太陽光反射用パネルの構成の一例を示す概略斜視図である。
 図1で示した封止構造5を有する太陽光反射用パネル1の斜視図で、ハードコート層4を含むミラーパネルユニットUの全周辺部領域を、被覆用樹脂材料により一体化した封止構造5を形成している。前述のように、全周辺部と、上面端部X及び下面端部Yのいずれか一方とを含む領域を封止したL型構成であってもよい。
 《太陽光反射層ユニットの基本構成》
 図3に、本発明の太陽光反射用パネル1を構成する太陽光反射層ユニット3の層構成の一例を示す。
 本発明に係る太陽光反射層ユニット3の好ましい基本構成としては、金属反射層6の上に、各機能層として、金属反射層の金属の腐食防止を目的とした腐食防止層7、接着層8及び紫外線吸収層(UV吸収層)9が積層されている。紫外線吸収層9は、紫外線による金属反射層6や基材2へのダメージを抑制するため、紫外線吸収剤を含有する他、HALS剤を含有するアクリル樹脂フィルムや紫外線反射多層膜等が適用される。
 また、金属反射層6の裏面側には、アンダーコート層10を設けることができる。
 上記のような構成において、本発明では、少なくとも基材2及び太陽光反射層ユニット3から構成され、封止構造5を設ける前の積層体を、「ミラーパネルユニットU」と定義し、この「ミラーパネルユニットU」の全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とから構成される領域に封止構造5を形成したもの、あるいは「ミラーパネルユニットU」を、接着層を介して金属基板上に貼合した後、全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とから構成される領域に封止構造5を形成したものを「太陽光反射用パネル」と定義する。
 また、ミラーパネルユニットUの端部を構成する上面端部、下面端部及び側面部の全領域、あるいは全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とから構成される領域を被覆用樹脂材料により、一体化した連続構造5で被覆して形成したものを「封止構造」又は「封止部」という。
 また、本発明でいう全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とから構成される領域が、被覆用樹脂材料により連続して被覆されている構造とは、当該領域が、つなぎ目が存在しない状態で、すべての領域が連続した一体構成で、1回のプロセスで形成されることをいう。
 《太陽光反射用パネルの構成材料》
 〔被覆用樹脂材料:封止部形成部材〕
 本発明においては、ミラーパネルユニットUの全ての側面部Zと、全ての上面端部X及び全ての下面端部Yの少なくとも一方とから構成される領域が、被覆用樹脂材料により連続した構造により被覆されて封止構造を形成し、被覆構造が、厚さが0.5mm以下であり、かつ前記上面端部又は下面端部の幅が0.5~2.0mmの範囲であることを特徴とする。
 本発明に係る被覆用樹脂材料としては、特に制限はないが、形成の容易性、封止材料としてのガス遮断性、耐久性等の観点から、一般的な硬化性樹脂、例えば、熱硬化性樹脂、活性エネルギー線硬化性樹脂や、熱可塑性樹脂から適宜選択して用いることができる。
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ABS樹脂、PMMA(ポリメチルメタクリレート)、ポリスチレン、ポリカーボネート、ポリシクロオレフィン(日本ゼオン社のゼオノア、JSR社製のアートン、ポリプラスチック社製のTOPAS、三井化学社製のアペル等)、ポリ乳酸、セルロースエステル、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリカプロラクトン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンサクシネート、ポリ[3-ヒドロキシブチレート]、ポリアリレート、ナイロン、アラミド、熱可塑性エラストマー、シリコーンなどが挙げられる。
 また、熱硬化性樹脂としては、例えば、エポキシ樹脂、メラミン樹脂、不飽和ポリエステル樹脂、フェノール樹脂等が挙げられる。
 また、活性エネルギー線硬化性樹脂としては、例えば、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステルアクリレート等が挙げられる。
 具体的には、アデカオプトマーKR、BYシリーズのKR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、(株)ADEKA製)、コーエイハードのA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、DIC(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H-601(三洋化成工業(株)製)、SP-1509、SP-1507(以上、昭和高分子(株)製)、RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成(株)製)、又はその他の市販のものから適宜選択して利用することができる。
 また、接着剤という分類からは、アクリル樹脂系接着剤、アクリル樹脂嫌気性接着剤、アクリル樹脂エマルジョン接着剤、α-オレフィン系接着剤、二液混合型のウレタン樹脂系接着剤、二液混合型のエポキシ樹脂系接着剤、クロロプレンゴム系接着剤、シアノアクリレート系接着剤、シリコーン系接着剤、反応性ホットメルト接着剤、変性シリコーン系接着剤、ポリアミド系接着剤、ポリウレタン樹脂ホットメルト接着剤、ポリオレフィン樹脂ホットメルト接着剤、メラミン樹脂系接着剤等を挙げることができる。
 また、その他には、シーリング材、例えば、信越シリコーン社製のシーリング材、シーラント45、4588、4515,40N、シーリングマスター300、300LS、プアシーラントS、KE-3418、KE-42等も挙げることができる。
 上記説明した本発明に係る被覆用樹脂を構成する材料としては、特に、シリコーン樹脂、ウレタン樹脂及びアクリル樹脂から選ばれる少なくとも1種の樹脂であることが、太陽光反射用パネルを構成する表面側部材、裏面側部材及び側面部との密着親和性がより高い観点から好ましい。
 (被覆用樹脂材料の付与方法)
 本発明においては、上記説明した被覆用樹脂材料を、図1及び図2に示すようにミラーパネルユニットUの全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域に、被覆用樹脂材料により形成された連続した封止構造を形成することを特徴とする。
 ミラーパネルユニットUの上面端部X、下面端部Y及び側面部Zへ被覆用樹脂材料5Aを付与する方法としては、例えば、ロールコート法、ディップ法、キャスト法、インクジェット法、スプレー法、印刷法に代表されるようなウェットプロセスの他、ディスペンサーを用いた塗布方法、スリット型ダイコーターを用いたスロット法等の塗布方法を挙げることができる。
 被覆用樹脂材料を塗布する方法として、必要な膜厚の塗布膜を形成するのに必要な量より余分に塗布液を塗布し、その後、余剰分を除去する後計量型と、必要な量だけ塗布液を塗布する前計量型とが知られている。何れの塗布方法も適用可能であるが、塗布の高精度、高速化、薄膜化、塗布膜の品質向上、積層への適性等の観点から、前計量型が好ましい。また、塗布液の曝露抑制、濃度変化の抑制、クリーン度の維持、異物の混入防止という観点から、密閉系であることが好ましい。そのため、上記塗布方法のなかでも、ロールコート法、ディップ法、スプレー法、インクジェット法が好ましい。また、塗布性の観点から、必要に応じて溶媒等を用いて希釈した塗布液を用いても良い。
 図4A及び図4Bは、ディップ法により、一例として、ミラーパネルユニットUの上面端部X、下面端部Y及び側面部Zの全ての領域に、同時に被覆用樹脂材料を付与する方法の一例を示してある。
 図4Aにおいて、被覆用樹脂材料を含む塗布液5Aを、液受けパン11に貯留し、一定の温度で保温する。ディップコーターは、一対の外側ローラー12Aと、その間に内部ローラー12Bを有する構成で、回転しながら、被覆用樹脂材料を含む塗布液5Aを、ミラーパネルユニットUの上面端部X、下面端部Y及び側面部Zに供給して、封止構造5を形成する。
 この時、上面端部X及び下面端部Yに形成する封止構造の膜厚は、一対の外側ローラー12A間の距離H1で調整し、上面端部X及び下面端部Yの幅及び側面部Zの厚さは、内部ローラー12Bの設置位置により調整することができる。
 図4Bは、上記図4Aで示した図の切断面A-A方向から見たときの側面図であり、ミラーパネルユニットUを、紙面の左から右方向に搬送させながら、被覆用樹脂材料を含む塗布液5Aをディップ法により付与して、封止構造5を形成するが、膜厚等をより正確に制御する観点から、塗布液をミラーパネルユニットUに付与する上流側には膜厚を制御するかきとりブレード13を設けることが好ましい。
 また、下流側には、付与した被覆用樹脂材料が熱可塑性樹脂である場合には、エネルギー付与部14より冷風を供給して固化してもよく、又熱硬化性樹脂であれば、ここで加熱して硬化させる。また、被覆用樹脂材料が活性光線硬化性樹脂である場合には、エネルギー付与部14より紫外線等の活性光線を付与して、硬化させることができる。また、溶媒等で樹脂を溶解した塗布液を用いる場合には、エネルギー付与部14より乾燥風を供給して塗膜を乾燥して、封止構造を形成することができる。
 図4A及び図4Bにおいては、ミラーパネルユニットUの上面端部X、下面端部Y及び側面部Zの全ての面に同時に封止構造を付与する例を示したが、全ての側面部と、上面端部及び下面端部の少なくとも一方とを含む領域に付与して、L字型の封止構造を形成する場合には、図4A及び図4Bに示す一対の外側ローラー12Aのいずれか一方と、内部ローラー12Bを用いて形成すればよい。
 図5は、ミラーパネルユニットUの上面端部、下面端部及び側面部へ、同時に被覆用樹脂材料を付与する他の方法の一例を示してある。
 図5では、被覆用樹脂材料の付与方法として、液体噴霧方式、例えば、インクジェット法あるいはスプレー法を用いた場合の例を示してある。
 調製釜16に貯留している被覆用樹脂材料を含む塗布液5Aを、配管18を経由して塗布装置15を構成するインクジェットヘッド(不図示)あるいはスプレー噴射装置(不図示)に供給し、一定の吐出量でミラーパネルユニットUの上面端部、下面端部及び側面部の全面に対し同時に付与して、上面端部、下面端部及び側面部に、連続した封止構造5を同時に形成する方法である。なお、17は、塗布液の所定区域以外への飛翔を防止するための隔壁である。
 以上のような方法により、ミラーパネルユニットUの上面端部、下面端部及び側面部へ、同時に一体化した封止構造を形成することができる。
 〔基材〕
 本発明の太陽光反射用パネルに適用可能な基材2としては、金属反射層等を含む太陽光反射層ユニット3を保持することができる材料であれば特に制限はなく、例えば、ガラス基材、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、可撓性を与えることが可能な樹脂フィルムである。
 本発明に係る基材として好適な樹脂フィルムとしては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。
 特に、ポリエステル系フィルム、セルロースエステル系フィルムを用いることが好ましく、これらのフィルムは、溶融流延製膜法で製造されたフィルムであっても、溶液流延製膜法で製造されたフィルムであってもよい。
 樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内であり、好ましくは20~200μm、さらに好ましくは30~100μmの範囲内である。
 〔太陽光反射層ユニット3〕
 本発明に係る太陽光反射層ユニット3としては、図3に示すように、ミラーとしての役割を果たす金属反射層6を有し、そのほかに様々な特性を備えた機能層により構成されている。
 (金属反射層6)
 本発明に係る金属反射層6(反射層ともいう。)は、太陽光を反射する機能を有する金属からなる反射層である。金属反射層の表面反射率は、好ましくは80%以上、より好ましくは90%以上である。金属反射層は太陽光入射側(表面側)にあっても、その反対側(裏面側)にあってもよいが、基材、特に樹脂基材が、太陽光線により劣化してしまうことを防止する目的から、光入射側に配置することが好ましい。
 金属反射層の厚さは、反射率等の観点から、10~200nmの範囲内が好ましく、より好ましくは30~150nmの範囲内である。反射層の膜厚が10nm以上であれば、膜厚が充分であり、光を透過してしまうことがなく、フィルムミラーの可視光領域での反射率を十分確保できるため好ましい。また、200nm以下であれば、膜厚に比例して反射率も大きくなる。ただし、膜厚が200nm以上になると、反射率は膜厚に依存しない。
 金属反射層の表面粗さRaは、0.01~0.1μmの範囲内であることが好ましく、より好ましくは0.02~0.07μmの範囲内である。金属反射層の表面粗さRaが0.01μm以上であるため、その粗さに起因してフィルムミラー表面も粗くなり、フィルムミラーの生産段階において、連続的に製膜するロールトゥロール方式を用いた場合でも、フィルムミラーの反射層とその入射光側の隣接層におけるブロッキングなどの貼りつきを防止することができる。また、表面が粗くなると反射光が散乱する恐れがあるが、金属反射層を有するフィルムミラーは凹面状の形状を有しているので、表面粗さRaが0.1μm以下であればフィルムミラーを凹面状の形状にすることによって反射効率の低下を防止することができる。
 金属反射層は、アルミニウム、銀、クロム、ニッケル、チタン、マグネシウム、ロジウム、プラチナ、パラジウム、スズ、ガリウム、インジウム、ビスマス及び金から選ばれる少なくとも1種の元素を含む材料で形成されることが好ましい。中でも、反射率及び耐食性の観点からアルミニウムまたは銀を主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしてもよい。そうすることにより、フィルムミラーの可視光領域から赤外域での反射率を高め、入射角による反射率の依存性を低減できる。可視光領域から赤外域とは、400~2500nmの波長領域を意味する。ここでいう入射角とは、膜面に対して垂直な線(法線)に対する角度を意味する。
 本発明においては、金属反射層としては、特に、銀を主成分とする銀反射層とすることが好ましい。
 本発明に係る金属反射層の形成方法としては、湿式法及び乾式法のどちらも適用することができる。
 本発明でいう金属反射層の形成に用いる湿式法とは、一般的に言われているめっき法であり、溶液から金属を析出させ膜を形成する方法である。具体例としては、銀鏡反応等が挙げられる。
 一方、本発明でいう金属反射層の形成に用いる乾式法とは、その代表例が真空成膜法であり、具体的な方法としては、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法等が挙げられる。特には、連続的に成膜するロール・ツー・ロール方式が可能な蒸着法が好ましく用いられる。すなわち、本発明においては、金属反射層、例えば、銀反射層を銀蒸着によって形成する工程を有する製造方法が好ましい態様である。
 (腐食防止層7)
 本発明に係る太陽光反射層ユニットには、金属反射層の腐食を防止する目的から、図3に示すような腐食防止層7を設けることが好ましい。
 図3に示すように、腐食防止層7は、金属反射層6に隣接して設けられることが好ましい。特に、金属反射層6が銀反射層である場合に腐食防止層7を設けることが好ましい。さらには、腐食防止層7が金属反射層6に対し光入射側に隣接して設けられている構成であることがより好ましい。また、金属反射層の両側に腐食防止層を設けてもよい。
 腐食防止層は、腐食防止剤を含有している。腐食防止剤としては、大別して、金属、特に銀に対する吸着性基を有する腐食防止剤と、酸化防止機能を有する腐食防止剤(酸化防止剤ともいう)が好ましく用いられる。腐食防止層は、金属、特に銀に対する吸着性基を有する腐食防止剤と酸化防止剤の少なくとも一方を含有していることが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。
 腐食防止層には、腐食防止剤を保持するバインダーとして樹脂を用いることができる。例えば、以下の樹脂を用いることができる。ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。中でも、アクリル系樹脂が好ましい。腐食防止層は、厚さが30nm~1μmの範囲内であることが好ましい。
 なお、腐食防止層における腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/m2の範囲内であることが好ましい。
 次に、腐食防止剤の詳細について説明する。
 〈腐食防止剤〉
 銀に対する吸着性基を有する腐食防止剤としては、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系化合物の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
 アミン類及びその誘導体としては、例えば、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。
 ピロール環を有する化合物としては、例えば、N-ブチル-2,5-ジメチルピロール,N-フェニル-2,5ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール,N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。
 トリアゾール環を有する化合物としては、例えば、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。
 ピラゾール環を有する化合物としては、例えば、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。
 チアゾール環を有する化合物としては、例えば、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。
 イミダゾール環を有する化合物としては、例えば、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。
 インダゾール環を有する化合物としては、例えば、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。
 銅キレート化合物類としては、例えば、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。
 チオ尿素類としては、例えば、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。
 メルカプト基を有する化合物としては、上記例示した3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾールに加え、例えば、メルカプト酢酸、チオフェノール、1,2‐エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。
 ナフタレン系化合物としては、例えば、チオナリド等が挙げられる。
 (接着層8)
 図3に例示した接着層8は、腐食防止層7と紫外線吸収層9との接着性を高める機能があるものであれば特に限定はない。
 接着層8の層厚は、密着性、平滑性、金属反射層の反射率等の観点から、0.01~10.0μmの範囲内が好ましく、より好ましくは0.1~6.0μmの範囲内である。
 接着層が樹脂により形成される場合、樹脂材料(バインダー)としては、上記の密着性、平滑性の条件を満足するものであれば特に制限はなく、例えば、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましい。一方、イソシアネート等の硬化剤を混合した熱硬化型樹脂もより好ましい接着剤の一つである。本発明における接着層の形成方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のウェットコーティング方式が適用できる。
 接着層が金属酸化物により構成される場合、例えば、酸化シリコーン、酸化アルミニウム、窒化シリコーン、窒化アルミニウム、酸化ランタン、窒化ランタン等により構成される層を、各種真空製膜法により製膜することができ、更に詳しくは、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などによって形成できる。
 (紫外線吸収層9)
 紫外線吸収層には、太陽光や紫外線による太陽光反射用ミラーの劣化を防止する目的で紫外線吸収剤を含有している。紫外線吸収層は、基材よりも光入射側に設けることが好ましく、図3に示すように、腐食防止層を有する場合はその腐食防止層よりも光入射側に設けることが好ましい。
 紫外線吸収層には、紫外線吸収剤を保持するバインダーとして樹脂を用いることができる。例えば、以下の樹脂を用いることができる。ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。中でも、アクリル系樹脂が好ましい。なお、紫外線吸収層の層厚は、1~200μmの範囲内であることが好ましい。
 また、太陽光反射層ユニット3に紫外線吸収層9を設ける以外に、基材2よりも光入射側に設けられた構成層のうちの何れか一層に上記紫外線吸収剤をさらに添加し、紫外線吸収能を付与する構成であってもよい。また、後述する最表層側に配置されるハードコート層4中に紫外線吸収剤を添加する方法も好ましい。
 紫外線吸収剤としては、有機系紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられ、また無機系紫外線吸収剤として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。
 ベンゾフェノン系紫外線吸収剤としては、例えば、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール等が挙げられる。
 サリチル酸フェニル系紫外線吸収剤としては、例えば、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。
 トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。
 また、紫外線吸収剤としては、上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギーとして放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。
 通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。
 紫外線吸収剤の使用量は、紫外線吸収層9あるいは紫外線吸収剤を添加する層の全質量に対し、0.1~20質量%の範囲内、好ましくは1~15質量%の範囲内、より好ましくは3~10質量%の範囲内である。使用量をこれらの範囲内にすることで、他の構成層との密着性を良好に保ちつつ、耐候性を向上させることが可能となる。
 (アンダーコート層10)
 図3に示すようなアンダーコート層10は、バインダーとしての樹脂を有し、基材2と金属反射層6とを密着させるために設けられる層である。従って、アンダーコート層10は、基材2と金属反射層6とを密着させるための密着性、金属反射層を真空蒸着法等で形成する時の処理温度にも耐え得る耐熱性、及び金属反射層が本来有する高い反射性能を引き出すための平滑性等の機能を有していることが要求される。
 アンダーコート層の形成に使用される樹脂は、上記の密着性、耐熱性、及び平滑性の要求される品質を達成することができるものであれば特に制限はなく、例えば、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂又はポリエステル系樹脂とアクリル系樹脂の混合樹脂が好ましい。また、イソシアネート等の硬化剤を混合した熱硬化型樹脂とすることも好ましい仕様の一つである。
 アンダーコート層の層厚は、0.01~3.0μmの範囲内が好ましく、より好ましくは0.1~2.0μmの範囲内である。この層厚条件を満たすことにより、密着性を保ちつつ、例えば、樹脂フィルム基材表面の凹凸を覆い隠すことができ、平滑性を良好に保つことができ、アンダーコート層の硬化も十分に行えるため、結果としてフィルムミラーとしての反射率を高めることが可能となる。
 また、アンダーコート層には、上記腐食防止層で用いる腐食防止剤を含有させることが好ましい。
 なお、アンダーコート層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のウェットコーティング方法が使用できる。
 (その他の構成層)
 上記説明した各機能層の他に、例えば、ガスバリアー層、防汚層や帯電防止層等を、本発明の目的効果を損なわない範囲で、設けても良い。
 本発明において、ガスバリアー層は、湿度の変動、特に高湿度による樹脂基材及び樹脂基材で保護される各種機能素子等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであっても良く、上記特徴を維持する限りにおいて、種々の態様のガスバリアー層を設けることができる。本発明においては、金属反射層の上側に、ガスバリアー層を設ける構成が好ましい。
 〔ハードコート層〕
 本発明の太陽光反射用パネルにおいては、屋外に設置されるフィルムミラー表面の汚れや傷を防止する目的で、フィルムミラーの最表面に、金属-酸素-金属結合を骨格として有するメタロキサン骨格を有するポリマーを含有するハードコート層4を設けることが好ましい態様である。当該メタロキサン骨格を有するポリマーは、耐光性及び耐候性に優れた効果を発現する。
 従来の太陽光反射用パネルにおいては、ハードコート層の構成材料と封止部材との間の密着性が低い場合があり、封止材料を均一に付与することは難しかった。
 本発明で規定するように、ミラーパネルユニットUの側面部Zの全面と、少なくとも上面端部Xから構成される領域の全面に被覆用樹脂材料を付与して封止構造を形成することにより、メタロキサン骨格を有するポリマーを含有するハードコート層4を用いた場合でも、均一に端部領域に封止構造を形成することが可能となった。
 メタロキサン骨格を有する材料を含有するハードコート層は、ケイ素、チタン、ジルコニウム、アルミ等のポリメタロキサン、またはポリシラザン、パーヒドロポリシラザン、アルコキシシラン、アルキルアルコキシシラン、下記一般式(1)で表される構造を有するポリシロキサン等を塗布乾燥して形成することができる。
Figure JPOXMLDOC01-appb-C000001
 式中、R11、R12は同一であっても異なっていてもよく、水素原子、アルキル基又はアリール基を表す。pは、1以上の整数である。
 本発明に係るハードコート層としては、金属反射層よりも光源側の最外側に配置され、水に対する接触角が80~170°の範囲内であり、動摩擦係数が0.10~0.35の範囲内であることが好ましい。
 フッ素化合物及びケイ素化合物の混合ガス、またフッ素及びケイ素を有する化合物を用いた蒸着により、表面エネルギーを低くし、ハードコート層の水に対する接触角を上記で規定する範囲内とすることができる。
 また、最表層においては、耐傷性を向上する観点から、動摩擦係数としては0.10~0.35の範囲内であることが好ましく、より好ましくは0.15~0.25の範囲である。
 上記ケイ素、チタン、ジルコニウム、アルミ等のポリメトキサン、ポリシラザン、パーヒドロポリシラザン、アルコキシシラン、アルキルアルコキシシラン、ポリシロキサン等を用いることで、フィルム表面同士の動摩擦係数を上記で規定する範囲内に制御することができる。
 上記水に対する接触角は、協和界面科学製接触角CA-Wを用い、23℃、55%RHの環境下で、3μlの水滴をミラーパネルユニットU表面に滴下して測定できる。また、上記動摩擦係数は、新東科学社製表面性測定機(HEIDON-14D)を用い、試料台に最表層を上にして1枚のミラーパネルユニットUを貼り付け、圧子に他の1枚の同じミラーパネルユニットUを取り付け、2枚のミラーパネルユニットUの最表面同士が接触するように重ね合わせ、その上に約160g/cm2の荷重を加えて、3m/minの速度で10回往復摺動させ、10往復の平均動摩擦係数として算出することができる。
 (フィルムミラーユニットUの厚さ)
 本発明に係るフィルムミラーユニット全体の厚さは、ミラーのたわみ防止、正反射率、取り扱い性等の観点から、75~250μmの範囲内であることが好ましく、さらに好ましくは90~230μmの範囲内であり、特に好ましくは100~220μmの範囲内である。
 《太陽光反射用パネル》
 図1に示す構成からなる本発明の太陽光反射用パネルは、主には、太陽光を集光する目的で使用することができる。太陽光反射用パネルとしては、好ましくは太陽光反射用パネルの光入射側から見て最下層に粘着層を形成し、他の基材上、特に金属基材上に、封止した太陽光反射用パネルを貼り付けたのち、封止構造を付与して太陽光反射用パネルとして用いることである。
 太陽熱発電用反射装置として用いる場合、反射装置の形状を樋状(半円筒状)として、半円の中心部分に内部に流体を有する筒状部材を設け、筒状部材に太陽光を集光させることで内部の流体を加熱し、その熱エネルギーを変換して発電する形態が一形態として挙げられる。また、平板状の反射装置を複数個所に設置し、それぞれの反射装置で反射された太陽光を一枚の反射鏡(中央反射鏡)に集光させて、反射鏡により反射して得られた熱エネルギーを発電部で変換することで発電する形態も一形態として挙げられる。特に後者の形態においては、用いられる反射装置に高い正反射率が求められる為、本発明の太陽光反射用ミラーが特に好適に用いられる。
 〈粘着層〉
 粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。
 例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。
 ラミネート方法は特に制限されず、例えば、ローラー式で連続的に行うのが経済性及び生産性の点から好ましい。
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μmの範囲内であることが好ましい。
 〈金属基材〉
 本発明の太陽光反射用パネルを、接着層を介して貼り付けて太陽光反射用ミラーを保持する際に用いることのできる金属基材としては、例えば、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板等熱伝導率の高い金属材料を用いることができる。
 本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板等にすることが好ましい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 《太陽光反射用パネルの作製》
 〔太陽光反射用パネル1の作製〕
 樹脂基材として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、(1)ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、(2)メラミン樹脂(スーパーベッカミンJ-820 DIC社製)、(3)TDI系イソシアネート(2,4-トリレンジイソシアネート)、(4)HDMI系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を、樹脂固形分比率で、(1):(2):(3):(4)=20:1:1:2(質量比)となる条件で、固形分濃度として10質量%となるようにトルエン中に混合した樹脂溶液を、グラビアコート法によりコーティングして、厚さ0.1μmの接着層を形成した。
 次いで、形成した接着層上に、金属反射層として、真空蒸着法により厚さ80nmの銀反射層を形成した。次いで、この銀反射層上に、前記ポリエステル樹脂と前記TDI系イソシアネートを樹脂固形分比率で10:2に混合し、グラビアコート法によりコーティングして、厚さ0.1μmの隣接層を形成した。さらに、上記形成した隣接層上に、ジブチルエーテル中の3%パーヒドロポリシラザン液(AZエレクトリックマテリアル社製 NL120)を用いて、乾燥後の膜厚が500nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間アニールし、ハードコート層を設けた。さらにハードコート層上に撥水化剤(AZエレクトリックマテリアル社製アクアノラン)をバーコーティングして防汚層を形成して、フィルム積層体を作製した。
 続いて、上記作製したフィルム積層体を縦100mm×横100mmに切り出し、ポリエステルフィルムの金属反射層を形成した面とは反対側の面に、厚さ3μmの粘着層を介して、厚さ0.5mmで縦100mm×横100mmのアルミ板に貼り付け、ミラーフィルムユニット1を作製した。
 その後、図4A及び図4Bに示すディップ方式の端部塗布装置を用いて、シリコーンシーラント(信越シリコーン社製 KE-4921-B)を、ミラーフィルムユニット1の上面端部X、下面端部Y及び側面部Zのそれぞれの全面に、一括して付与して連続構造からなる封止構造を形成し、太陽光反射用パネル1を作製した。太陽光反射用パネル1における封止構造の厚さ及び幅は、表1に記載のとおりである。
 〔太陽光反射用パネル2の作製〕
 上記太陽光反射用パネル1の作製において、封止構造の形成材料として、シリコーンシーラント(信越シリコーン社製 KE-4921-B)に代えて、エポキシ樹脂(スリーボンド社製2081D)を用いた以外は同様にして、太陽光反射用パネル2を作製した。
 〔太陽光反射用パネル3の作製〕
 上記太陽光反射用パネル1の作製において、封止構造の形成材料として、シリコーンシーラント(信越シリコーン社製 KE-4921-B)に代えて、ウレタン樹脂(エムシー工業社製ハイブレン XLL-6051A)を用いた以外は同様にして、太陽光反射用パネル3を作製した。
 〔太陽光反射用パネル4の作製〕
 上記太陽光反射用パネル1の作製において、封止構造の形成材料として、シリコーンシーラント(信越シリコーン社製 KE-4921-B)に代えて、アクリル樹脂(スリーボンド社製3017D)を用い、高圧水銀ランプを用いて、照射距離15cm、積算照度30kJ/m2で硬化させた以外は同様にして、太陽光反射用パネル4を作製した。
 〔太陽光反射用パネル5~9の作製〕
 上記太陽光反射用パネル1の作製において、封止構造の厚さ及び幅を、表1に記載の条件に変更した以外は同様にして、太陽光反射用パネル5~9を作製した。
 〔太陽光反射用パネル10の作製〕
 上記太陽光反射用パネル1の作製において、ハードコート層及び防汚層の形成を行わなかった以外は同様にして、太陽光反射用パネル10を作製した。
 〔太陽光反射用パネル11~14の作製〕
 上記太陽光反射用パネル1の作製において、封止構造の厚さ及び幅を、表1に記載の条件に変更した以外は同様にして、太陽光反射用パネル11~14を作製した。
 《太陽光反射用パネルの評価》
 上記作製した各太陽光反射用パネルについて、下記の評価を行った。
 〔耐候性の評価:塩水浸漬試験〕
 上記作製した各太陽光反射用パネルについて、3本のローラーを用いて、1.7mm/100mmで湾曲させた。その後、3.5質量%塩水に、湾曲した太陽光反射用パネルを48時間浸漬した後、太陽光反射用パネルの金属反射層端部における銀腐食の状態を目視観察し、下記の基準に従って耐候性の評価を行った。
 5:浸漬前後で、金属反射層端部における色味の変化は全く観察されない
 4:浸漬前後で、金属反射層端部における色味の変化がわずかに認められるが、問題のない品質である
 3:浸漬前後で、金属反射層端部における色味の変化がやや観察されるが、実用上許容される品質である
 2:浸漬前に対し、金属反射層端部で明らかな色味の変化が認められ、実用上問題となる品質である
 1:浸漬前に対し、金属反射層端部で激しい色味の変化が認められ、実用に耐えない品質である
 〔耐洗浄性の評価:ブラシ洗浄試験〕
 日本紛体工業技術協会 JIS試験用紛体1の11種を1質量%となる条件で純水に混合した汚染用の水10mlを準備し、この汚染用の水を、上記作製した各太陽光反射用パネルの太陽光反射層付き基材の表面(ハードコート層形成面側)に噴霧した後、回転ブラシ(ポリプロピレン線径φ3mm、長さ60mm)を回転数600rpmで押しあてながら端部の封止部材上を100回往復運動した後、端部の封止部材の状態を目視観察し、下記基準に従って、耐洗浄性を評価した。
 5:全く封止部材に変化は認められない
 4:封止部材の表面に、わずかに傷が認められる
 3:封止部材の表面に、弱い傷の発生は認められるが、実用上は許容される品質である
 2:封止部材の端部で部材の剥がれが認められ、実用上懸念される品質である
 1:封止部材の端部で明らかな部材の剥がれが認められ、実用に耐えない品質である
 以上により得られた結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に記載の結果より明らかなように、本発明の太陽光反射用パネル1~10は、上面端部X、下面端部Y及び側面部Zの全面が、一体化された構成で封止されているため、優れた耐候性を有するとともに、ブラシ洗浄時の耐洗浄性を有していることがわかる。
 特に、封止材料としてシリコーン樹脂を用いた太陽光反射用パネル1は、実用可能な強度、即ち、実用同等の湾曲後においても高い耐久性が得られていることが分かる。一方、比較例である太陽光反射用パネル11~14では、洗浄による封止部材の端部で剥がれが発生し、実用に耐えない品質であった。
 また、本発明の太陽光反射用パネルにおいては、ハードコート層を設けた太陽光反射用パネルが優れた耐候性及び耐洗浄性を発揮していることが分かる。
 本発明の太陽光反射用パネルは、太陽光反射用パネルの構成部材を連続した封止構造で封止し、外部環境からの影響を遮断することにより、酸素、水蒸気、あるいは有害ガスの太陽光反射用パネルの浸入を防止することにより、高い耐候性及び耐洗浄性を備えた太陽光反射用パネルであり、太陽光を集光する太陽熱発電用反射装置に好適に利用できる。
 1 太陽光反射用パネル
 2 基材
 3 太陽光反射層ユニット
 4 ハードコート層
 5 封止部材
 5A 覆用樹脂材料を含む塗布液
 6 金属反射層
 7 腐食防止層
 8 接着層
 9 紫外線吸収層(UV吸収層)
 10 アンダーコート層
 11 液受けパン
 12A 外側ローラー
 12B 内側ローラー
 13 かきとりブレード
 14 エネルギー付与部
 15 噴射式塗布装置
 16 調整釜
 17 隔壁
 18 配管
 U ミラーパネルユニット
 X 上面端部
 XL 上面端部の幅
 XH 上面端部の厚さ
 Y 下面端部
 YL 下面端部の幅
 YH 下面端部の厚さ
 Z 側面部

Claims (3)

  1.  基材上に、少なくとも金属反射層を含む太陽光反射層ユニットを有する太陽光反射用パネルであって、
     全ての側面部と、全ての上面端部及び全ての下面端部の少なくとも一方とを含む領域が、被覆用樹脂材料により形成された連続した構造で被覆されており、被覆構造が、厚さHが0.5mm以下であり、かつ前記上面端部又は下面端部の幅Lが0.5~2.0mmの範囲であることを特徴とする太陽光反射用パネル。
  2.  前記被覆用樹脂材料が、シリコーン樹脂、ウレタン樹脂及びアクリル樹脂から選ばれる少なくとも1種の樹脂であることを特徴とする請求項1に記載の太陽光反射用パネル。
  3.  太陽光入射面側の最表面に、メタロキサン骨格を有するポリマーを含有するハードコート層を有することを特徴とする請求項1又は請求項2に記載の太陽光反射用パネル。
PCT/JP2014/065038 2013-06-12 2014-06-06 太陽光反射用パネル WO2014199906A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123319 2013-06-12
JP2013123319A JP2016148689A (ja) 2013-06-12 2013-06-12 太陽光反射用パネル

Publications (1)

Publication Number Publication Date
WO2014199906A1 true WO2014199906A1 (ja) 2014-12-18

Family

ID=52022202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065038 WO2014199906A1 (ja) 2013-06-12 2014-06-06 太陽光反射用パネル

Country Status (2)

Country Link
JP (1) JP2016148689A (ja)
WO (1) WO2014199906A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014221A1 (ja) * 2015-07-22 2017-01-26 コニカミノルタ株式会社 光学パネル、光学パネルの製造方法、空中映像表示デバイスおよび空中映像表示デバイスの製造方法
WO2017026375A1 (ja) * 2015-08-10 2017-02-16 富士フイルム株式会社 積層フィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010394A1 (ja) * 2015-07-10 2017-01-19 富士フイルム株式会社 積層フィルムおよび積層フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140012A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 表示パネル
JP2009111136A (ja) * 2007-10-30 2009-05-21 Kyocera Corp 太陽電池モジュール
WO2010100948A1 (ja) * 2009-03-06 2010-09-10 株式会社アルバック フレームレス太陽電池パネル及びその製造方法
WO2011096309A1 (ja) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 フィルムミラー、その製造方法及び太陽光反射用ミラー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140012A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 表示パネル
JP2009111136A (ja) * 2007-10-30 2009-05-21 Kyocera Corp 太陽電池モジュール
WO2010100948A1 (ja) * 2009-03-06 2010-09-10 株式会社アルバック フレームレス太陽電池パネル及びその製造方法
WO2011096309A1 (ja) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 フィルムミラー、その製造方法及び太陽光反射用ミラー

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014221A1 (ja) * 2015-07-22 2017-01-26 コニカミノルタ株式会社 光学パネル、光学パネルの製造方法、空中映像表示デバイスおよび空中映像表示デバイスの製造方法
JPWO2017014221A1 (ja) * 2015-07-22 2017-08-03 コニカミノルタ株式会社 光学パネルの製造方法よび空中映像表示デバイスの製造方法
WO2017026375A1 (ja) * 2015-08-10 2017-02-16 富士フイルム株式会社 積層フィルム
KR20180030583A (ko) * 2015-08-10 2018-03-23 후지필름 가부시키가이샤 적층 필름
JPWO2017026375A1 (ja) * 2015-08-10 2018-05-24 富士フイルム株式会社 積層フィルム
KR102036644B1 (ko) 2015-08-10 2019-10-25 후지필름 가부시키가이샤 적층 필름

Also Published As

Publication number Publication date
JP2016148689A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2012176650A1 (ja) 太陽光集光用ミラー及び当該太陽光集光用ミラーを有する太陽熱発電システム
WO2012105351A1 (ja) 太陽光集光用ミラー及び当該太陽光集光用ミラーを有する太陽熱発電システム
WO2013015112A1 (ja) 太陽光反射用ミラー、太陽熱発電用反射装置、機能性フィルム及び屋外用の帯電防止組成物
EP2667226A1 (en) Film mirror and reflecting apparatus for solar power generation
WO2011096151A1 (ja) フィルムミラー、その製造方法及び太陽光集光用ミラー
JP2011158751A (ja) フィルムミラー、その製造方法、それを用いた太陽熱発電用反射装置
WO2011158677A1 (ja) 太陽光反射用フィルムミラー及び太陽熱発電用反射装置
WO2014199906A1 (ja) 太陽光反射用パネル
JP2011128501A (ja) フィルムミラー、フィルムミラーの製造方法及び太陽光集光用ミラー
JPWO2012057004A1 (ja) フィルムミラー、フィルムミラーの製造方法及び太陽熱発電用反射装置
JP2015087625A (ja) 反射体及びその製造方法
JP2015121806A (ja) フィルムミラー、その製造方法、及び太陽光集光用フィルムミラー
JP5794232B2 (ja) 太陽熱発電用フィルムミラー、その製造方法及び太陽熱発電用反射装置
JPWO2013015190A1 (ja) 太陽光集光用ミラー及び当該太陽光集光用ミラーを有する太陽熱発電システム
JP2011203553A (ja) フィルムミラー、その製造方法及び太陽光反射用ミラー
JPWO2012026311A1 (ja) フィルムミラー、フィルムミラーの製造方法及び太陽熱発電用反射装置
JPWO2011096248A1 (ja) 太陽熱発電用光反射フィルム、その製造方法、及びそれを用いた太陽熱発電用反射装置
JP2011158752A (ja) フィルムミラー、その製造方法及び太陽熱発電用反射装置
WO2011114861A1 (ja) 太陽光集光用ミラー、それを用いたトラフ式太陽熱発電装置及びトラフ式太陽光発電装置
WO2012057005A1 (ja) 太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法および太陽熱発電用反射装置
JP2012251695A (ja) 太陽光集光システム及びミラー
JP2013015612A (ja) 太陽光集光用ミラーの製造方法、太陽光集光用ミラー及びそれを有する太陽熱発電システム
JP2012053382A (ja) 太陽熱発電用光反射フィルム及び太陽熱発電用反射装置
JP2015161826A (ja) フィルムミラーおよび太陽熱発電用反射装置
JP5593970B2 (ja) 太陽熱発電用反射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP