WO2014194445A1 - 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法 - Google Patents

一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法 Download PDF

Info

Publication number
WO2014194445A1
WO2014194445A1 PCT/CN2013/001060 CN2013001060W WO2014194445A1 WO 2014194445 A1 WO2014194445 A1 WO 2014194445A1 CN 2013001060 W CN2013001060 W CN 2013001060W WO 2014194445 A1 WO2014194445 A1 WO 2014194445A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal base
barrier layer
base tape
channel
coating
Prior art date
Application number
PCT/CN2013/001060
Other languages
English (en)
French (fr)
Inventor
李贻杰
刘林飞
肖桂娜
Original Assignee
上海超导科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超导科技股份有限公司 filed Critical 上海超导科技股份有限公司
Publication of WO2014194445A1 publication Critical patent/WO2014194445A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides

Definitions

  • the invention relates to the field of yttrium copper oxynitride (YBCO) second generation high temperature superconducting tape, in particular to a simplified barrier layer suitable for IBAD-MgO growth on a metal base tape and a preparation method thereof.
  • YBCO yttrium copper oxynitride
  • the lanthanide ( ⁇ ⁇ 3 0 7 _ ⁇ , referred to as YBCO) coated conductor has high critical current density (J e ;), magnetic field (J e -B) characteristics and low price Features, therefore, have great application prospects in the fields of electricity, energy, transportation, and information, such as motors, motors, transformers, current limiters, magnets, superconducting energy storage, magnetic resonance imaging, etc., so high temperature superconducting technology is widely considered It is a strategic technology in the 21st century. It is an energy, material and military technology supported by developed countries such as Europe, the United States and Japan. It is also included in China's national medium- and long-term science and technology development plan.
  • the preparation of lanthanide coated conductors primarily uses thin film deposition techniques.
  • the lanthanide superconducting film needs to have an excellent biaxial texture, that is, the alignment of the crystal grains of the lanthanide superconducting film in the two directions of the c-axis and the a/b axis needs to be as uniform as possible.
  • the biaxial texture is the core of the preparation of the lanthanide coated conductor.
  • the biaxial texture can be produced during the preparation of the transition layer or during the preparation of the metal substrate.
  • IBAD technology is to deposit a film of cubic oxide material such as MgO, YSZ, Ce0 2 by ion beam sputtering on a metal substrate without biaxial texture, while using several hundred electron volts (eV) energy.
  • the ion beam bombards the film being deposited from a particular direction (typically the face-to-face or diagonal direction of the cubic system), thereby guiding the film to form a biaxial texture.
  • Iijima et al. of Fujikura Corporation of Japan began to use IBAD technology to prepare lanthanide coated conductors, which was solved for the first time.
  • the problem of preparing a high-performance lanthanide-based superconducting thin film on a biaxially textured metal substrate is to prepare a YSZ film having a biaxial texture using IBAD.
  • the thickness of the YSZ film needs to be above 1000 nm to have an in-plane texture of less than 15 degrees, and the film preparation rate is only 0.1 nm/second, so this process is not suitable for industrial applications.
  • JR Grooves changed the film material to MgO, and found that about 10 nm thick MgO film can have very good in-plane texture, so using MgO as a buffer layer greatly reduces the preparation time of the coated conductor, thus making IBAD
  • the process can be effectively applied to the preparation of YBCO coated conductors.
  • the basic structure of the lanthanide coated conductor prepared by the IBAD technology route is shown in Fig. 1.
  • the basic structure of the lanthanide coated conductor is metal base tape, barrier layer, IBAD-MgO layer, buffer layer and superconducting layer from bottom to top.
  • the standard lanthanide-coated conductor structure based on the IBAD technology route is metal base tape/A1 2 0 3 barrier layer/Y 2 0 3 barrier layer/IBAD-MgO layer/MgO buffer layer LaMn0 3 or SrRu0 3 or SrTi0 3 or SrRu0. 3 and SrTi0 3 mixture buffer layer and YBCO superconducting layer.
  • the barrier layer comprises two layers, and the first layer is an inactive oxide material A1 2 0 3 barrier layer, which acts to block the diffusion of atoms of the metal base tape to other layers on the one hand, and to improve the surface quality of the metal base tape on the other hand, and to reduce
  • the surface roughness of the base tape is 100-1000 nm
  • the second layer is a non-crystalline oxide material Y 2 0 3 barrier layer, which serves to provide a nucleation layer for the IBAD-MgO layer, and has a thickness of 5-100 nm.
  • the optimum thickness range is 20-40 nm.
  • the barrier layer is formed of A1 2 0 3 and Y 2 0 3 of two layers, ⁇ 1 2 0 3 and ⁇ 2 0 3 layers may be deposited using pulsed laser light, a magnetron It is prepared by various thin film deposition techniques such as sputtering deposition, electron beam evaporation, chemical vapor deposition, ion beam sputtering, and molecular beam epitaxy.
  • Preparation ⁇ 1 2 0 3 and ⁇ 2 0 3 layers can be used in two ways, one way is to use the same target change or replace the device begin to speak precursor solution, which increases the cost of the cost of the target or the precursor solution, and The preparation time is increased; the other way is to use different equipment, prepare ⁇ 1 2 0 3 layers in the first equipment, and prepare ⁇ 2 0 3 layers in the second equipment, which will increase the cost of the equipment and increase The cost of preparation. Disclosure of invention
  • the invention provides a simplified barrier layer suitable for IBAD-MgO growth on a metal base tape and a preparation method thereof, which can not only block the diffusion of atoms in the metal baseband to other layers and improve the surface roughness of the metal base tape, but also become IBAD-MgO.
  • a simplified barrier layer of the nucleation layer which can obtain excellent IBAD-MgO crystal orientation by using a single barrier layer, and can be prepared by reducing the number of layers of the barrier layer. The process is simple and low cost.
  • the present invention provides a simplified barrier layer suitable for the growth of IBAD-MgO on a metal base tape, the simplified barrier layer being disposed on a metal base tape, the simplified barrier layer being a single YA10 barrier layer.
  • the single YA10 barrier layer has a thickness of 50-500 nm.
  • the present invention also provides a method of preparing a single YA10 barrier layer on a metal base tape using a multi-channel pulsed laser coating technique, the method comprising the steps of:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on the target holder in the cavity; Step 2. Winding the metal base tape in the multi-channel pulse laser coating system;
  • Step 3 Close the door of the coating system and evacuate to the required vacuum
  • Step 4 Introduce oxygen to adjust the gas pressure to the pressure value required for the YA10 barrier coating process
  • Step 5 Start the laser target rotation and scanning system, and start the excimer laser energy and frequency to rise to the value required for the YA10 barrier coating process;
  • Step 6 After the air pressure, the laser energy, and the laser frequency are stabilized, the laser light path switch is turned on to start the surface pre-sputtering process of the target surface;
  • Step 7 After the ellipsoidal plasma formed by the laser evaporation is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to a desired value, and the coating is performed, and the metal base belt is wound by multiple times. Passing the coating area multiple times on the roller shaft of the passage transmission;
  • Step 8 After the coating is completed, turn off the oxygen, the stepping motor and the laser light path switch and the laser, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. .
  • the step 2 described includes the following steps:
  • Step 2.1 winding one end of the metal base tape onto the first reel
  • Step 2.2 The traction metal base tape is wound on the roller shaft of the multi-channel transmission device multiple times to form a multi-channel metal base belt region between the roller shafts;
  • Step 2.3 Fix the other end of the metal base tape on the second reel.
  • the encoder and stepper motor control the metal base belt travel speed so that the metal base tape is wound through the roller shaft of the multi-channel transmission and passes through the heater multiple times.
  • the degree of vacuum is 1 ⁇ 10 ⁇ 6 -6 ⁇ 1 ( ⁇ 6 ⁇ ⁇ ⁇ .
  • the flow rate of oxygen is controlled by the mass flow meter, the flow rate is 10-20 sccm, and the pressure value required for the YALO barrier coating process is l xlO ⁇ xlO ⁇ Tor ⁇
  • the laser energy is 200-450 mJ and the frequency is 40-180 Hz.
  • the pre-sputtering time is 5-10 minutes.
  • the walking speed is 20m/h-200m/h.
  • the invention also provides a single preparation on a metal base tape by using a multi-channel magnetron sputtering technique
  • a method of YA10 barrier layer comprising the following steps:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on the target holder in the cavity; Step 2. Winding the metal base tape in the multi-channel magnetron sputtering coating system;
  • Step 3 Close the door of the coating system and evacuate to the required vacuum
  • Step 4 Open the argon gas and oxygen flow rate display device, and introduce a certain proportion of argon gas and oxygen into the cavity, and adjust the total gas pressure of the mixed gas to the YA10 barrier coating process by controlling the plugging of the molecular pump.
  • Step 5 Turn on the RF sputter power switch to adjust the RF power to the value required for the YA10 barrier coating process.
  • Step 6 After the air pressure and RF power are stabilized, turn on the RF sputtering switch and start pre-sputtering the surface of the YA10 target.
  • Step 7 After the glow is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to a desired value to perform coating, and the metal base belt is wound on the roller shaft of the multi-channel transmission device by multiple times. , passing through the coating area multiple times;
  • Step 8 After the coating is completed, turn off the argon and oxygen, the stepping motor and the sputtering power supply, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. use.
  • the step 2 described includes the following steps:
  • Step 2.1 winding one end of the metal base tape onto the first reel
  • Step 2.2 The traction metal base tape is wound on the roller shaft of the multi-channel transmission device multiple times to form a multi-channel metal base belt region between the roller shafts;
  • Step 2.3 Fix the other end of the metal base tape on the second reel.
  • the roller shaft of the device is wound and passed through the heater multiple times.
  • the degree of vacuum is lxl (T 6 -6 x 10 - 6 Torr.
  • the flow rate of the gas is controlled by the mass flow meter, and the flow rate of the argon gas is
  • oxygen flow rate is 5-10 sccm
  • argon gas in the mixed gas accounts for 50%-80%, oxygen accounts for 20%-50%
  • the RF power value required for the YA10 barrier coating process is 500-2000 w.
  • the surface pre-sputtering time of the YA10 target is 5-10 mine
  • the walking speed is 20m/h-200m/h.
  • the invention adopts multi-channel laser coating technology or multi-channel magnetron sputtering technology to prepare YA10 barrier layer, strictly controls the surface finish and bonding force of YA10 barrier layer by controlling parameters such as air pressure and walking speed, and can prepare on YA10 barrier layer.
  • in-plane texture less than twist
  • the prepared barrier layer has a smooth surface, uniform particles, low roughness and strong bonding force, and a high quality IBAD-MgO layer can be prepared thereon.
  • FIG. 1 is a schematic diagram showing the basic structure of a lanthanide-coated conductor based on the IBAD technology in the prior art
  • FIG. 2 is a schematic diagram showing the basic structure of a lanthanide-coated conductor based on the IBAD technology provided by the present invention
  • FIG. 4 is a schematic view of a multi-channel magnetron sputtering coating system used in the present invention.
  • Figure 7 is a diffraction of X-ray ⁇ -2 ⁇ of IBAD-MgO on the YAIO barrier layer provided by the present invention. Spectrum. Since the IBAD-MgO layer is too thin, the X-ray diffraction signal is too weak to be directly detected. The X-ray diffraction signal is obtained by homoepitaxial growth of a 100 nm thick MgO layer;
  • Figure 8 is a diffraction spectrum of an X-ray ⁇ scan of IBAD-MgO on the YA10 barrier layer provided by the present invention. Since the IBAD-MgO layer is too thin, the X-ray diffraction signal is too weak to be directly detected. The X-ray diffraction signal is obtained by homoepitaxial growth of a 100 nm thick MgO layer. The best way to implement the invention
  • the present invention provides a simplified barrier layer 2 suitable for IBAD-MgO growth on a metal base tape, the simplified barrier layer being disposed on the metal base tape 1, and the IBAD-MgO layer 3 being disposed on the simplified barrier layer 2,
  • a buffer layer 4 is disposed on the IBAD-MgO layer 3, and a superconducting layer 2 is disposed on the buffer layer 4.
  • the thickness of the metal base tape 1 is 50-100 ⁇ m
  • the thickness of the IBAD-MgO layer 3 is 10-50 nm
  • the thickness of the buffer layer 4 The thickness of the superconducting layer 2 is from 1-10 ⁇ m to 50-500 nm.
  • the simplified barrier layer 2 is a single layer YA10 barrier layer.
  • the single layer YA10 barrier layer has a thickness of 50-500 nm.
  • the material of the metal base tape 1 is a metal such as Cu, Ni, Ti, Mo, Nb, Fe, or an alloy thereof which is excellent in strength and heat resistance. Particularly preferred from the viewpoint of corrosion resistance and heat resistance are stainless steel, Hastelloy or other nickel-based (Ni-alloy) base tape.
  • FIG. 3 it is a schematic structural view of a multi-channel laser coating system used in the present invention.
  • the multi-channel laser coating system comprises a first reel 61, a second reel 62, a metal base tape 1, a roller shaft 2, and a cooling plate. 3.
  • the laser evaporates the beam 4 and the target 5.
  • the metal base tape 1 is first wound on the first reel 61, then wound on the two reels 2 a plurality of times, and passed through the cooling plate 3 to form a multi-channel metal base tape region, and finally wound onto the second reel 62, and the laser is evaporated.
  • the bundle 4 is below the base belt 1 and the cooling plate 3, wherein the roller shaft 2 is a component constituting a multi-channel transmission.
  • FIG. 4 it is a schematic structural view of a multi-channel magnetron sputtering coating system used in the present invention.
  • the multi-channel magnetron sputtering coating system comprises a first reel 61, a second reel 62, and a metal base tape 1.
  • the metal base tape 1 is first wound on the first reel 61, then wound on the roller shaft 2 a plurality of times, and passed through the cooling plate 3 to form a multi-channel metal base tape region, and finally wound onto the second reel 62, magnetron plasma 4 in baseband 1 and cooling plate 3 Below, wherein the roller shaft 2 is a component constituting a multi-channel transmission.
  • a single YA10 barrier layer is rapidly fabricated on a metal base tape using a multi-channel laser coating technique.
  • the method comprises the following steps:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on the target holder in the cavity; Step 2. Winding the metal base tape in the multi-channel pulse laser coating system;
  • Step 3 Close the door of the coating system and evacuate to the required degree of vacuum lxl (T 6 T 0 rr ;
  • Step 4 oxygen is introduced, the mass flow meter controls the oxygen flow rate to be lsccm, and the gas pressure of the gas is adjusted to lxl (r 3 T 0 rr by the molecular pump gate valve ;
  • Step 5 Start the laser target rotation and scanning system, start the excimer laser, adjust the laser energy to 200mJ, and the laser frequency is 180Hz;
  • Step 6 After the air pressure, the laser energy, and the laser frequency are stabilized, the laser light path switch is turned on to start the surface pre-sputtering process of the target surface, and the pre-sputtering time is 10 minutes;
  • Step 7 After the ellipsoidal plasma formed by laser evaporation is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to 20 m/h, and the coating is performed, and the metal base belt is wound by multiple times. Passing the coating area multiple times on the roller shaft of the passage transmission;
  • Step 8 After the coating is completed, turn off the oxygen, the stepping motor and the laser light path switch and the laser, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. .
  • a single YAIO barrier layer is rapidly fabricated on a metal base tape using a multi-channel laser coating technique.
  • the method comprises the following steps:
  • Step 1 The YAIO oxide target prepared by high temperature sintering is mounted on the target holder in the cavity; Step 2.
  • the metal base tape is wound in the multi-channel pulsed laser coating system;
  • Step 3 close the door of the coating system, and evacuate to the required vacuum of 3xlO_ 6 Torr ;
  • Step 4 oxygen is supplied, and the flow rate of oxygen is controlled by the mass flow meter to be 15 sccm, and the gas pressure of the gas is adjusted to lxlO' 2 Torr by the molecular pump gate valve ;
  • Step 5 Start the laser target rotation and scanning system, start the excimer laser, adjust the energy to 350mJ, and the frequency is 100Hz;
  • Step 6 After the air pressure, laser energy, and laser frequency are stabilized, turn on the laser light path switch and turn on.
  • Pre-sputtering process of the surface of the target the pre-sputtering time is 8 minutes;
  • Step 7 After the ellipsoidal plasma formed by laser evaporation is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to 100 m/h to carry out coating, and the metal base tape is wound by multiple times. Passing the coating area multiple times on the roller shaft of the passage transmission;
  • Step 8 After the coating is completed, turn off the oxygen, the stepping motor and the laser light path switch and the laser, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. .
  • a single YA10 barrier layer is rapidly fabricated on a metal base tape using a multi-channel laser coating technique.
  • the method comprises the following steps:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on a target holder in the cavity;
  • Step 2 winding the metal base tape in the multi-channel pulsed laser coating system
  • Step 3 Close the door of the coating system and evacuate to the required vacuum level 6 ⁇ 10 ⁇ 6 ⁇ ; Step 4, pass oxygen, the flow rate of oxygen is controlled by the mass flow meter to 20s CC m, by the molecular pump gate The trick adjusts the gas pressure to SX lO ⁇ Toir;
  • Step 5 Start the laser target rotation and scanning system, start the excimer laser, adjust the laser energy to 450mJ, and the frequency is 40Hz;
  • Step 6 After the air pressure, the laser energy, and the laser frequency are stabilized, the laser light path switch is turned on, and the surface pre-sputtering process of the target surface is started, and the pre-sputtering time is 5 minutes;
  • Step 7 After the ellipsoidal plasma formed by laser evaporation is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to 200 m/h, and the coating is performed, and the metal base tape is wound by multiple times. Passing the coating area multiple times on the roller shaft of the passage transmission;
  • Step 8 After the coating is completed, turn off the oxygen, the stepping motor and the laser light path switch and the laser, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. .
  • the method consists of the following steps:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on a target holder in the cavity;
  • Step 2 Winding the metal base tape in a multi-channel magnetron sputtering coating system
  • Step 3 Close the door of the coating system and evacuate to the required vacuum, ie 1 ⁇ 10 ⁇ 6 ⁇ ; Step 4. Turn on the argon and oxygen flow indicator, and introduce argon and oxygen into the chamber.
  • the argon gas flow rate is 10sccm
  • the oxygen flow rate is 10sccm
  • the proportion of argon gas in the mixed gas is 50%
  • the proportion of oxygen is 50%.
  • the gas mixture is controlled by the plug-in valve of the molecular pump. the total pressure was adjusted to l X 10- 3 T Orr;
  • Step 5 Turn on the RF sputter power switch to adjust the RF power to 500W.
  • Step 6 After the air pressure and RF power are stabilized, the RF sputtering switch is turned on, and the surface of the YA10 target is pre-sputtered, and the pre-sputtering time is 10 minutes;
  • Step 7 After the glow is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the traveling speed of the metal base belt is adjusted to 20 m/h to perform coating, and the metal base belt is wound on the roller shaft of the multi-channel transmission device by multiple times. Upper, multiple passes through the coating zone;
  • Step 8 After the coating is completed, turn off the argon and oxygen, the stepping motor and the sputtering power supply, open the nitrogen gas filling valve, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD-MgO. use.
  • a single YA10 barrier layer is rapidly fabricated on a metal base tape using a multi-channel magnetron sputtering method.
  • the method comprises the following steps:
  • Step 1 Mounting the YAIO oxide target prepared by high temperature sintering on a target holder in the cavity;
  • Step 2 Winding the metal base tape in a multi-channel magnetron sputtering coating system
  • Step 3 Close the door of the coating system and evacuate to the required vacuum, ie 3 ⁇ 10 ⁇ 6 ⁇ ; Step 4, turn on the argon and oxygen flow indicator, and introduce argon and oxygen into the chamber.
  • Mass flow Calculate the gas flow rate the argon gas flow rate is 16sccm, the oxygen flow rate is 4sccm, the proportion of argon gas in the mixed gas is 80%, and the proportion of oxygen is 20%.
  • the plug-in valve of the molecular pump it will be mixed.
  • the total gas pressure is adjusted to l X l (T 2 T 0rr;
  • Step 5 Turn on the RF sputter power switch to adjust the RF power to 1000W.
  • Step 6 After the air pressure and the RF power are stabilized, the RF sputtering switch is turned on, and the surface of the YA10 target is pre-sputtered, and the pre-sputtering time is 8 minutes;
  • Step 7 After the glow is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to 100 m/h for coating, and the metal base belt is wound on the roller shaft of the multi-channel transmission device by multiple times. Upper, multiple passes through the coating zone;
  • Step 8 After the coating is completed, turn off the argon gas and oxygen, the stepping motor and the sputtering power supply, open the nitrogen gas filled wide door, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD- Used for MgO.
  • a single YA10 barrier layer is rapidly fabricated on a metal base tape using a multi-channel magnetron sputtering method.
  • the method comprises the following steps:
  • Step 1 Mounting the YA10 oxide target prepared by high temperature sintering on a target holder in the cavity;
  • Step 2 Winding the metal base tape in a multi-channel magnetron sputtering coating system
  • Step 3 Close the door of the coating system and evacuate to the required vacuum level, ie 6 ⁇ 10 ⁇ ⁇ ⁇ ⁇ ; Step 4. Turn on the argon and oxygen flow indicator, and introduce argon and oxygen into the chamber.
  • Mass flow Calculate the gas flow rate, the argon flow rate is 12sccm, the oxygen flow rate is 8sccm, the proportion of argon gas in the mixed gas is 60%, and the proportion of oxygen is 40%.
  • the plug-in valve of the molecular pump it will be mixed.
  • the total gas pressure is adjusted to l X lO ⁇ Toir;
  • Step 5 Turn on the RF sputter power switch to adjust the RF power to 2000W.
  • Step 6 After the air pressure and RF power are stabilized, the RF sputtering switch is turned on, and the surface of the YA10 target is pre-sputtered, and the pre-sputtering time is 5 minutes;
  • Step 7 After the glow is stabilized, the stepping motor switch of the multi-channel transmission device is started, and the walking speed of the metal base belt is adjusted to 200 m/h for coating, and the metal base belt is wound on the roller shaft of the multi-channel transmission device by multiple times. Upper, multiple passes through the coating zone;
  • Step 8 After the coating is completed, turn off the argon gas and oxygen, the stepping motor and the sputtering power supply, open the nitrogen gas filled wide door, fill the vacuum chamber with nitrogen to 1 atmosphere, open the chamber and take out the strip for preparation of IBAD- Used for MgO.
  • Figure 5 shows an atomic force microscope (AFM) three-dimensional scan of a YA10 barrier layer prepared on a metal base tape.
  • Figure 6 shows the YAIO barrier layer prepared on a metal base tape.
  • the YA10 barrier layer has a uniform particle size and a smooth surface, and the root mean square surface roughness in the region of 5 ⁇ 5 ⁇ m 2 is 1.28 nm.
  • Figure 7 shows the X-ray ⁇ -2 ⁇ diffraction spectrum of IBAD-MgO prepared on the YA10 barrier layer.
  • MgO(002) peak appears, demonstrating that IBAD-MgO has a single c-axis orientation with no other phases.
  • Figure 8 shows the diffraction spectrum of the scan of IBAD-MgO prepared on the YA10 barrier layer.
  • the in-plane texture of the IBAD-MgO layer is 5.88 degrees.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法。该简化阻挡层设置在金属基带上,为单层YA10阻挡层。采用多通道脉冲激光镀膜技术或者多通道磁控溅射技术来制备该单层YA10阻挡层。

Description

一种金属基带上适用于 IB AD-MgO生长的简化阻挡层及其制备方法 技术领域
本发明涉及钇钡铜氧 (YBCO)第二代高温超导带材领域,尤其涉及一种金 属基带上适用于 IBAD-MgO生长的简化阻挡层及其制备方法。 背景技术
作为第二代高温超导带材, 钇系 (ΥΒ Οι307_δ, 简称 YBCO) 涂层导体 具有高临界电流密度 (Je;)、 磁场 (Je-B)特性和低价的特点, 因此在电力、 能源、 交通、 信息各领域有着巨大的应用前景, 如电机、 马达、 变压器、 限流器、 磁体、 超导储能、 核磁共振成像等, 从而高温超导技术被广泛认为是 21世纪 的战略技术, 是欧美日等发达国家重点支持的能源、 材料及军事技术, 也被 列入我国国家中长期科技发展规划。
制备钇系涂层导体主要使用薄膜沉积技术。 为了提高超导性能, 钇系超 导薄膜需要具备优良的双轴织构, 即钇系超导薄膜的晶粒在 c轴和 a/b轴 2个 方向的排列需要尽可能的一致。 双轴织构是钇系涂层导体制备的核心。 双轴 织构可以在制备过渡层时产生, 也可以在制备金属基底的过程中产生, 基于 这两种思路, 目前制备钇系涂层导体存在两种主要的技术路线, 它们分别是: 离子束辅助沉积技术 (Ion Beam Assisted Deposition, 简称 IBAD)和轧制辅助 双轴织构基带技术( Rolling Assisted Biaxial Textured Substrate, 简称
RABiTS)。从目前世界范围内钇系涂层导体长带的进展情况可以看到 IBAD技 术路线是多数研发单位的选择,使用 IBAD技术路线的研发单位的产品性能也 处于领先位置。
IBAD技术即是在没有双轴织构的金属基底上,通过离子束溅射的方法沉 积 MgO, YSZ, Ce02等立方晶系的氧化物材料的薄膜, 同时使用几百电子伏 ( eV) 能量的离子束从特定方向(一般为立方晶系的面对角线或体对角线方 向)轰击正在沉积中的薄膜, 从而引导薄膜形成双轴的织构。 1991年, 日本 Fujikura公司的 Iijima等人开始使用 IBAD技术制备钇系涂层导体,首次解决了 在无双轴织构的金属基底上制备高性能的钇系超导薄膜的问题, 采用 IBAD 制备出具有双轴织构的 YSZ薄膜。 然而, YSZ薄膜的厚度需要达到 1000纳米 以上才能具有小于 15度的面内织构度, 并且薄膜的制备速率仅是 0.1纳米 /秒, 因此这个工艺不适合工业应用。在 2001年, J.R.Groves将薄膜材料改成 MgO, 发现大约 10纳米厚 MgO薄膜即可具有非常好的面内织构度, 因而采用 MgO来 作为缓冲层大大减少涂层导体的制备时间,从而使得 IBAD工艺可以有效的运 用于 YBCO涂层导体的制备。
IBAD技术路线制备的钇系涂层导体的基本结构如图 1所示, 该钇系涂层 导体的基本结构从下至上依次为金属基带、 阻挡层、 IBAD-MgO层、 缓冲层 和超导层。目前常用基于 IBAD技术路线的标准钇系涂层导体结构是金属基带 /A1203阻挡层 /Y203阻挡层 /IBAD-MgO层/ MgO缓冲层LaMn03或者 SrRu03或 者 SrTi03或者 SrRu03和 SrTi03混合物缓冲层以及 YBCO超导层。 其中阻挡层 包括两层, 第一层是不活泼的氧化物材料 A1203阻挡层,作用一方面是阻挡金 属基带的原子向其它层扩散, 另一方面是改善金属基带的表面质量, 降低基 带的表面粗糙度,其厚度为 100-1000纳米;第二层是非结晶的氧化物材料 Y203 阻挡层, 作用是为 IBAD-MgO层提供形核层, 其厚度为 5-100纳米, 最佳厚度 范围是 20-40纳米。
在这种标准的钇系涂层导体结构中, 阻挡层由 A1203和 Y203两层组成, Α1203和 Υ203两层都可以利用脉冲光激光沉积、磁控溅射沉积、电子束蒸发、 化学气相沉积、 离子束溅射、 分子束外延等多种薄膜沉积技术制备。 若要制 备 Α1203和 Υ203两层, 可采用两种方式, 一种方式是使用同一设备开腔换靶 或者更换前驱液, 这样会增加靶材的成本或者前驱液的成本, 又增加了制备 时间; 另一种方式是使用不同设备, 在第一台设备中制备 Α1203层, 在到第 二台设备中制备 Υ203层, 这样会增加设备的成本, 也增加了制备成本。 发明的公开
本发明提供一种金属基带上适用于 IBAD-MgO生长的简化阻挡层及其 制备方法, 提供既能够阻挡金属基带中原子向其它层扩散和改善金属基带表 面粗糙度、又能够成为 IBAD-MgO的形核层的简化阻挡层,使用单一阻挡层 就能获得优异的 IBAD-MgO结晶取向性,通过减少阻挡层的层数来实现制备 工艺的简单化和低成本化。
为了达到上述目的,本发明提供一种金属基带上适用于 IBAD-MgO生长 的简化阻挡层,该简化阻挡层设置在金属基带上,该简化阻挡层为单一 YA10 阻挡层。
所述的单一 YA10阻挡层的材料采用 YXA12_X03, x=0〜2。
所述的单一 YA10阻挡层的厚度为 50-500nm。
本发明还提供了一种利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YA10阻挡层的方法, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道脉冲激光镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度;
步骤 4、 通入氧气, 将气体的气压调节到 YA10阻挡层镀膜工艺所需的 气压值;
步骤 5、 启动激光靶旋转与扫描系统, 启动准分子激光器能量和频率升 到 YA10阻挡层镀膜工艺所需的值;
步骤 6、 等气压、 激光能量、 激光频率稳定后, 打开激光光路开关, 开 始靶材表面预溅射过程;
步骤 7、 等激光蒸发形成的椭球状等离子体稳定后, 启动多通道传动装 置的步进电机开关, 并将金属基带的行走速度调到所需值, 进行镀膜, 金属 基带通过多次缠绕在多通道传动装置的辊轴上, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氧气、 步进电机和激光光路开关以及激光器, 打开氮气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体取出带材, 以供制备 IBAD-MgO用。
所述的步骤 2包含以下步骤:
步骤 2.1、 将金属基带的一端缠绕到第一卷盘上;
步骤 2.2、牵引金属基带多次缠绕在多通道传动装置的辊轴上,在辊轴之 间形成多通道金属基带区域;
步骤 2.3、 将金属基带的另一端固定在第二卷盘上。
编码器和步进电机控制金属基带行走速度, 使金属基带通过多通道传动 装置的辊轴缠绕, 多次通过加热器。 所述的步骤 3中, 真空度为 1 χ10·6-6χ1(Γ6ΤΟπ·。
所述的步骤 4中, 氧气的流量由质量流量计来控制, 流量为 10-20sccm, YALO阻挡层镀膜工艺所需的气压值为 l xlO^^xlO^Tor^
所述的步骤 5中, 激光器能量为 200-450mJ, 频率为 40-180Hz。
所述的步骤 6中, 预溅射时间为 5-10分钟。
所述的步骤 7中, 行走速度为 20m/h-200m/h。
本发明还提供了一种利用多通道磁控溅射技术在金属基带上制备单一
YA10阻挡层的方法, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道磁控溅射镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度;
步骤 4、 打开氩气和氧气流量显示仪, 向腔体内通入一定比例的氩气和 氧气, 通过控制分子泵的插板阔, 将混合气体的总气压调节到 YA10阻挡层 镀膜工艺所需的值;
步骤 5、 开启射频溅射电源开关, 将射频功率调节到 YA10阻挡层镀膜 工艺所需的值;
步骤 6、 等气压、 射频功率稳定后, 打开射频溅射开关, 开始对 YA10 靶材表面进行预溅射;
步骤 7、 等辉光稳定后, 启动多通道传动装置的步进电机开关, 并将金 属基带的行走速度调到所需值, 进行镀膜, 金属基带通过多次缠绕在多通道 传动装置的辊轴, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氩气和氧气、 步进电机和溅射电源, 打开氮 气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体取出带材, 以供制 备 IBAD-MgO用。
所述的步骤 2包含以下步骤:
步骤 2.1、 将金属基带的一端缠绕到第一卷盘上;
步骤 2.2、牵引金属基带多次缠绕在多通道传动装置的辊轴上,在辊轴之 间形成多通道金属基带区域;
步骤 2.3、 将金属基带的另一端固定在第二卷盘上。
编码器和步进电机控制金属基带行走速度, 使金属基带通过多通道传动 装置的辊轴缠绕, 多次通过加热器。
所述的步骤 3中, 真空度为 lxl(T6-6xlO-6Torr。
所述的步骤 4中, 气体的流量由质量流量计来控制, 氩气流量为
10-20sccm,氧气流量为 5-10 sccm;混合气体中氩气所占的比例为 50%-80%, 氧气所占的比例为 20%-50%; YA10阻挡层镀膜工艺所需的气压值
l xlO'^x liT'To
所述的步骤 5中, YA10阻挡层镀膜工艺所需的射频功率值为 500-2000 w。
所述的步骤 6中, YA10靶材表面预溅射的时间为 5-10 mine
所述的步骤 7中, 行走速度为 20m/h-200m/h。
本发明采用多通道激光镀膜技术或者多通道磁控溅射技术来制备 YA10 阻挡层, 通过控制气压、 行走速度等参数严格控制 YA10阻挡层的表面光洁 度和结合力, 并能在 YA10阻挡层上制备具有面内织构度小于 Ί度的
IBAD-MgO层。
本发明的优点在于-
1. 减少阻挡层的层数, 采用单层阻挡层结构, 制造工艺简单, 成本低, 适合于工业化生产。
2. 制备出的阻挡层表面光洁、 颗粒均匀、 粗糙度低, 结合力强, 在其上 能够制备出高质量的 IBAD-MgO层。
3.制备方法简单, 生长过程中的工艺参数容易控制, 重复性好、 速度快, 适合于工业化生产。 附图的简要说明
图 1是背景技术中基于 IBAD技术的钇系涂层导体的基本结构示意图; 图 2是本发明提供的基于 IBAD技术的钇系涂层导体的基本结构示意图; 图 3是本发明采用的多通道激光镀膜系统示意图;
图 4是本发明采用的多通道磁控溅射镀膜系统示意图;
图 5是本发明提供的 YA10阻挡层的 AFM三维扫描图片;
图 6是本发明提供的 YA10阻挡层的 AFM线扫描图片;
图 7是本发明提供的 YAIO阻挡层上 IBAD-MgO的 X射线 Θ-2Θ的衍射 谱图。 由于 IBAD-MgO层太薄, 故 X射线衍射信号太弱无法直接检测到。 图中 X射线衍射信号是通过同质外延生长 lOOnm厚 MgO层后获得的;
图 8是本发明提供的 YA10阻挡层上 IBAD-MgO的 X射线 φ扫描的衍射谱 图。 由于 IBAD-MgO层太薄, 故 X射线衍射信号太弱无法直接检测到。 图中 X 射线衍射信号是通过同质外延生长 lOOnm厚 MgO层后获得的。 实现本发明的最佳方式
以下根据图 2〜图 8, 具体说明本发明的较佳实施例。
如图 2所示,本发明提供一种金属基带上适用于 IBAD-MgO生长的简化 阻挡层 2, 该简化阻挡层设置在金属基带 1上, 在简化阻挡层 2上设置 IBAD-MgO层 3, 在 IBAD-MgO层 3上设置缓冲层 4, 在缓冲层 4上设置超 导层 2,金属基带 1的厚度为 50-100μιη, IBAD-MgO层 3的厚度为 10-50nm, 缓冲层 4的厚度为 50-500nm, 超导层 2的厚度为 1-10μιη。
所述的简化阻挡层 2为单层 YA10阻挡层。
所述的单层 YA10阻挡层的材料采用 ΥΧΑ12χ03, χ=0〜2。
所述的单层 YA10阻挡层的厚度为 50-500nm。
所述的金属基带 1的材料为强度和耐热性优异的 Cu、 Ni、 Ti、 Mo、 Nb、 Fe等金属或者它们的合金。从耐腐蚀性和耐热性方面考虑, 特别优选的是不 锈钢、 哈氏合金或者其他镍合金 (Ni-alloy)基带。
如图 3所示, 是本发明所采用的多通道激光镀膜系统的结构示意图, 该 多通道激光镀膜系统包含第一卷盘 61、 第二卷盘 62、 金属基带 1、 辊轴 2、 冷却板 3、 激光蒸发束 4和靶材 5。 金属基带 1先缠绕在第一卷盘 61上, 然 后多次缠绕在两个辊轴 2上, 并且经过冷却板 3, 形成多通道金属基带区域, 最后缠绕到第二卷盘 62上,激光蒸发束 4处于基带 1和冷却板 3的下方,其 中辊轴 2是构成多通道传动装置的部件。
如图 4所示,是本发明所采用的多通道磁控溅射镀膜系统的结构示意图, 该多通道磁控溅射镀膜系统包含第一卷盘 61、 第二卷盘 62、 金属基带 1、 辊 轴 2、冷却板 3、磁控等离子体 4和靶材 5。金属基带 1先缠绕在第一卷盘 61 上, 然后多次缠绕在辊轴 2上, 并且经过冷却板 3, 形成多通道金属基带区 域, 最后缠绕到第二卷盘 62上, 磁控等离子体 4处于基带 1和冷却板 3 的 下方, 其中辊轴 2是构成多通道传动装置的部件。
实施例 1
采用多通道激光镀膜技术在金属基带上快速制备单一 YA10阻挡层, 该 方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道脉冲激光镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度 lxl(T6T0rr;
步骤 4、 通入氧气, 质量流量计控制氧气流量为 lOsccm, 由分子泵闸板 阀门将气体的气压调节到 lxl(r3T0rr;
步骤 5、 启动激光靶旋转与扫描系统, 启动准分子激光器, 调节激光能 量为 200mJ, 激光频率为 180Hz;
步骤 6、 等气压、 激光能量、 激光频率稳定后, 打开激光光路开关, 开 始靶材表面预溅射过程, 预溅射时间为 10分钟;
步骤 7、 等激光蒸发形成的椭球状等离子体稳定后, 启动多通道传动装 置的步进电机开关, 并将金属基带的行走速度调到 20m/h, 进行镀膜, 金属 基带通过多次缠绕在多通道传动装置的辊轴上, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氧气、 步进电机和激光光路开关以及激光器, 打开氮气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体取出带材, 以供制备 IBAD-MgO用。
实施例 2
采用多通道激光镀膜技术在金属基带上快速制备单一 YAIO阻挡层, 该 方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YAIO氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道脉冲激光镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度 3xlO_6Torr;
步骤 4、 通入氧气, 氧气的流量由质量流量计控制为 15sccm, 由分子泵 闸板阀门将气体的气压调节到 lxlO'2Torr;
步骤 5、 启动激光靶旋转与扫描系统, 启动准分子激光器, 调节能量为 350mJ, 频率为 100Hz;
步骤 6、 等气压、 激光能量、 激光频率稳定后, 打开激光光路开关, 开 始靶材表面预溅射过程, 预溅射时间为 8分钟;
步骤 7、 等激光蒸发形成的椭球状等离子体稳定后, 启动多通道传 动装置的步进电机开关, 并将金属基带的行走速度调到 100m/h,进行镀 膜, 金属基带通过多次缠绕在多通道传动装置的辊轴上, 多次通过镀膜 区;
步骤 8、 完成镀膜后, 关闭氧气、 步进电机和激光光路开关以及激 光器, 打开氮气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体 取出带材, 以供制备 IBAD-MgO用。
实施例 3
采用多通道激光镀膜技术在金属基带上快速制备单一 YA10阻挡层, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托 上;
步骤 2、 将金属基带缠绕在多通道脉冲激光镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度 6 Χ 10·6Τοπ·; 步骤 4、 通入氧气, 氧气的流量由质量流量计控制为 20sCCm, 由分 子泵闸板闽门将气体的气压调节到 S X lO^Toir;
步骤 5、 启动激光靶旋转与扫描系统, 启动准分子激光器, 调节激 光能量为 450mJ, 频率为 40Hz;
步骤 6、 等气压、 激光能量、 激光频率稳定后, 打开激光光路开关, 开始靶材表面预溅射过程, 预溅射时间为 5分钟;
步骤 7、 等激光蒸发形成的椭球状等离子体稳定后, 启动多通道传 动装置的步进电机开关,并将金属基带的行走速度调到 200m/h,进行镀 膜, 金属基带通过多次缠绕在多通道传动装置的辊轴上, 多次通过镀膜 区;
步骤 8、 完成镀膜后, 关闭氧气、 步进电机和激光光路开关以及激 光器, 打开氮气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体 取出带材, 以供制备 IBAD-MgO用。
实施例 4
采用多通道磁控溅射方法在金属基带上快速制备单一 YAIO阻挡 层, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托 上;
步骤 2、 将金属基带缠绕在多通道磁控溅射镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度即 1 Χ 10·6Τοιτ; 步骤 4、 打开氩气和氧气流量显示仪, 向腔体内通入氩气和氧气, 质量流量计来控制气体流量, 氩气流量为 10sccm, 氧气流量为 10sccm, 混合气体中氩气所占的比例为 50%, 氧气所占的比例为 50%, 通过控制 分子泵的插板阀, 将混合气体的总气压调节到 l X 10—3TOrr;
步骤 5、 开启射频溅射电源开关, 将射频功率调节到 500W;
步骤 6、等气压、射频功率稳定后,打开射频溅射开关,开始对 YA10 靶材表面进行预溅射, 预溅射时间为 10分钟;
步骤 7、 等辉光稳定后, 启动多通道传动装置的步进电机开关, 并 将金属基带的行走速度调到 20m/h, 进行镀膜, 金属基带通过多次缠绕 在多通道传动装置的辊轴上, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氩气和氧气、 步进电机和溅射电源, 打 开氮气充气阀门,使真空腔内充氮气到 1个大气压,打开腔体取出带材, 以供制备 IBAD-MgO用。
实施例 5
采用多通道磁控溅射方法在金属基带上快速制备单一 YA10阻挡 层, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YAIO氧化物靶材装在腔体中的靶托 上;
步骤 2、 将金属基带缠绕在多通道磁控溅射镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度即 3 Χ 10·6Τοπ·; 步骤 4、 打开氩气和氧气流量显示仪, 向腔体内通入氩气和氧气, 质量流量计来控制气体流量, 氩气流量为 16sccm, 氧气流量为 4sccm, 混合气体中氩气所占的比例为 80%, 氧气所占的比例为 20%, 通过控制 分子泵的插板阀, 将混合气体的总气压调节到 l X l(T2T0rr;
步骤 5、 开启射频溅射电源开关, 将射频功率调节到 1000W; 步骤 6、等气压、射频功率稳定后,打开射频溅射开关,开始对 YA10 靶材表面进行预溅射, 预溅射时间为 8分钟;
步骤 7、 等辉光稳定后, 启动多通道传动装置的步进电机开关, 并 将金属基带的行走速度调到 100m/h,进行镀膜,金属基带通过多次缠绕 在多通道传动装置的辊轴上, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氩气和氧气、 步进电机和溅射电源, 打 开氮气充气阔门,使真空腔内充氮气到 1个大气压,打开腔体取出带材, 以供制备 IBAD-MgO用。
实施例 6
采用多通道磁控溅射方法在金属基带上快速制备单一 YA10阻挡 层, 该方法包含以下步骤:
步骤 1、 把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托 上;
步骤 2、 将金属基带缠绕在多通道磁控溅射镀膜系统内;
步骤 3、 关闭镀膜系统的门, 并抽真空到所需真空度即 6 Χ 10·όΤΟΓΓ; 步骤 4、 打开氩气和氧气流量显示仪, 向腔体内通入氩气和氧气, 质量流量计来控制气体流量, 氩气流量为 12sccm, 氧气流量为 8sccm, 混合气体中氩气所占的比例为 60%, 氧气所占的比例为 40%, 通过控制 分子泵的插板阀, 将混合气体的总气压调节到 l X lO^Toir;
步骤 5、 开启射频溅射电源开关, 将射频功率调节到 2000W;
步骤 6、等气压、射频功率稳定后,打开射频溅射开关,开始对 YA10 靶材表面进行预溅射, 预溅射时间为 5分钟;
步骤 7、 等辉光稳定后, 启动多通道传动装置的步进电机开关, 并 将金属基带的行走速度调到 200m/h,进行镀膜,金属基带通过多次缠绕 在多通道传动装置的辊轴上, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氩气和氧气、 步进电机和溅射电源, 打 开氮气充气阔门,使真空腔内充氮气到 1个大气压,打开腔体取出带材, 以供制备 IBAD-MgO用。
图 5所示为在金属基带上制备的 YA10阻挡层的原子力显微镜 ( AFM) 三维扫描照片。 图 6所示为在金属基带上制备的 YAIO阻挡层 的原子力显微镜(AFM)线扫描照片。 从图 5和图 6中可以看出, YA10 阻挡层表面颗粒大小均匀, 且其表面光滑, 在 5χ5μπι2区域的均方根表 面粗糙度为 1.28 nm。
图 7所示为在 YA10阻挡层上制备的 IBAD-MgO的 X射线 Θ -2 Θ 衍射谱图。 在图 7中, 只有 MgO(002)峰出现, 证明 IBAD-MgO具有单 一 c轴取向, 无其他杂相。
图 8所示为在 YA10阻挡层上制备的 IBAD-MgO的 扫描的衍射谱 图。 图 8中, IBAD-MgO层的面内织构度为 5.88度。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应该 认识到上述描述不应被认为是对本发明的限制。在本领域技术人员阅读 了上述内容后, 对于本发明的多种修改和替代是将显而易见的。 因此, 本发明的保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一种金属基带上适用于 IBAD-MgO生长的简化阻挡层, 该简化阻挡层设 置在金属基带上, 其特征在于, 该简化阻挡层为单一 YA10阻挡层。
2. 如权利要求 1所述的金属基带上适用于 IBAD-MgO生长的简化阻挡层, 其特征在于, 所述的单一 YA10阻挡层的材料采用 YXA12x03, x=0〜2。
3. 如权利要求 2所述的金属基带上适用于 IBAD-MgO生长的简化阻挡层, 其特征在于, 所述的单一 YAIO阻挡层的厚度为 50-500nm。
4. 一种利用多通道脉冲激光镀膜技术在金属基带上制备单一 YA10 阻挡层 的方法, 其特征在于, 该方法包含以下步骤:
步骤 1、把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道脉冲激光镀膜系统内;
步骤 3、 关闭铍膜系统的门, 并抽真空到所需真空度;
步骤 4、 通入氧气, 将气体的气压调节到 YA10阻挡层鍍膜工艺所需 的气压值;
步骤 5、 启动激光靶旋转与扫描系统, 启动准分子激光器能量和频率 升到 YA10阻挡层镀膜工艺所需的值;
步骤 6、 等气压、 激光能量、 激光频率稳定后, 打开激光光路开关, 开始靶材表面预溅射过程;
步骤 7、 等激光蒸发形成的椭球状等离子体稳定后, 启动多通道传动 装置的步进电机开关, 并将金属基带的行走速度调到所需值, 进行镀膜, 金属基带通过多次缠绕在多通道传动装置的辊轴上, 多次通过镀膜区; 步骤 8、 完成镀膜后, 关闭氧气、 步进电机和激光光路开关以及激光 器, 打开氮气充气阀门, 使真空腔内充氮气到 1个大气压,打开腔体取出 带材, 以供制备 IBAD-MgO用。
5. 如权利要求 4所述的利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YAIO阻挡层的方法, 其特征在于, 所述的步骤 2包含以下步骤:
步骤 2.1、 将金属基带的一端缠绕到第一卷盘上;
步骤 2.2、 牵引金属基带多次缠绕在多通道传动装置的辊轴上, 在辊 轴之间形成多通道金属基带区域;
步骤 2.3、 将金属基带的另一端固定在第二卷盘上。
编码器和步进电机控制金属基带行走速度,使金属基带通过多通道传 动装置的辊轴缠绕, 多次通过加热器。
6. 如权利要求 4所述的利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YA10 阻挡层的方法, 其特征在于, 所述的步骤 3 中, 真空度为 l x l(T6-6xlO-6Torr。
7. 如权利要求 4所述的利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YA10阻挡层的方法, 其特征在于, 所述的步骤 4中, 氧气的流量由质 量流量计来控制, 流量为 10-20sccm, YA10阻挡层镀膜工艺所需的气压 值为 l x
Figure imgf000014_0001
8. 如权利要求 4所述的利用多通道脉冲激光铍膜技术在金属基带上制备单 一 YA10阻挡层的方法, 其特征在于, 所述的步骤 5 中, 激光器能量为 200-450mJ, 频率为 40-180Hz。
9. 如权利要求 4 所述的利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YA10阻挡层的方法, 其特征在于, 所述的步骤 6中, 预溅射时间为 5-10分钟。
10.如权利要求 4所述的利用多通道脉冲激光镀膜技术在金属基带上制备单 一 YAIO 阻挡层的方法, 其特征在于, 所述的步骤 7 中, 行走速度为 20m/h-200m/h。
11.一种利用多通道磁控溅射技术在金属基带上制备单一 YA10 阻挡层的方 法, 其特征在于, 该方法包含以下步骤:
步骤 1、把经高温烧结制备的 YA10氧化物靶材装在腔体中的靶托上; 步骤 2、 将金属基带缠绕在多通道磁控溅射镀膜系统内;
步骤 3、 关闭鍍膜系统的门, 并抽真空到所需真空度;
步骤 4、打开氩气和氧气流量显示仪, 向腔体内通入一定比例的氩气 和氧气, 通过控制分子泵的插板阔,将混合气体的总气压调节到 YA10阻 挡层镀膜工艺所需的值;
步骤 5、 开启射频溅射电源开关, 将射频功率调节到 YA10阻挡层镀 膜工艺所需的值; 步骤 6、等气压、射频功率稳定后,打开射频溅射开关, 开始对 YA10 靶材表面进行预溅射;
步骤 7、 等辉光稳定后, 启动多通道传动装置的步进电机开关, 并将 金属基带的行走速度调到所需值,进行镀膜,金属基带通过多次缠绕在多 通道传动装置的辊轴, 多次通过镀膜区;
步骤 8、 完成镀膜后, 关闭氩气和氧气、 步进电机和溅射电源, 打开 氮气充气阀门, 使真空腔内充氮气到 1个大气压, 打开腔体取出带材, 以 供制备 IBAD-MgO用。
如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YA10阻挡层的方法, 其特征在于, 所述的步骤 2包含以下步骤- 步骤 2.1、 将金属基带的一端缠绕到第一卷盘上;
步骤 2.2、 牵引金属基带多次缠绕在多通道传动装置的辊轴上, 在辊 轴之间形成多通道金属基带区域;
步骤 2.3、 将金属基带的另一端固定在第二卷盘上。
编码器和步进电机控制金属基带行走速度,使金属基带通过多通道传 动装置的辊轴缠绕, 多次通过加热器。
如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YA10 阻挡层的方法, 其特征在于, 所述的步骤 3 中, 真空度为 l x 10-6-6xl 0-6Torr。
如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YA10阻挡层的方法, 其特征在于, 所述的步骤 4中, 气体的流量由质量 流量计来控制, 氩气流量为 10-20sccm, 氧气流量为 5-10 sccm; 混合气 体中氩气所占的比例为 50%-80%, 氧气所占的比例为 20%-50%; YA10 阻挡层镀膜工艺所需的气压值 lxlO^ lO^Tor^
如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YA10阻挡层的方法, 其特征在于, 所述的步骤 5中, YA10阻挡层镀膜 工艺所需的射频功率值为 500-2000 W。
如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YAIO阻挡层的方法, 其特征在于, 所述的步骤 6中, YAIO靶材表面预 溅射的时间为 5-10 min。 如权利要求 11 所述的利用多通道磁控溅射技术在金属基带上制备单一 YAIO 阻挡层的方法, 其特征在于, 所述的步骤 7 中, 行走速度为 20m/h-200m/h。
PCT/CN2013/001060 2013-06-07 2013-09-12 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法 WO2014194445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310225367.9A CN103255369B (zh) 2013-06-07 2013-06-07 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
CN201310225367.9 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014194445A1 true WO2014194445A1 (zh) 2014-12-11

Family

ID=48959570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001060 WO2014194445A1 (zh) 2013-06-07 2013-09-12 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法

Country Status (2)

Country Link
CN (1) CN103255369B (zh)
WO (1) WO2014194445A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255369B (zh) * 2013-06-07 2016-06-22 上海超导科技股份有限公司 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
CN103981484B (zh) * 2014-04-25 2019-10-22 赵遵成 一种柔性金属带材表面快速溶液平坦化方法
CN103993277B (zh) * 2014-05-22 2019-10-25 赵遵成 金属基带上适用于rebco超导层生长的模板制备方法
CN104726862B (zh) * 2015-03-10 2018-06-19 电子科技大学 一种带复合绝缘层的金属基薄膜传感器及其制备方法
RU2681587C1 (ru) * 2018-01-22 2019-03-11 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Способ нанесения нанопленочного покрытия на подложку
US11231533B2 (en) * 2018-07-12 2022-01-25 Visera Technologies Company Limited Optical element having dielectric layers formed by ion-assisted deposition and method for fabricating the same
CN112981326B (zh) * 2021-02-10 2022-07-26 上海交通大学 一种金属基超导带材及其制备方法
CN116641037B (zh) * 2023-07-27 2023-10-20 上海超导科技股份有限公司 双面镀制超导带材保护层的设备
CN118086842A (zh) * 2023-07-27 2024-05-28 上海超导科技股份有限公司 用于离子束辅助沉积镀膜装置的镀膜系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217008A (zh) * 2009-09-07 2011-10-12 古河电气工业株式会社 超导线材用带基材和超导线材
CN102251219A (zh) * 2011-07-19 2011-11-23 上海交通大学 制备ysz缓冲层的多通道激光镀膜方法
US20120064266A1 (en) * 2010-09-15 2012-03-15 Hon Hai Precision Industry Co., Ltd. Housing and method for manufacturing housing
CN103255369A (zh) * 2013-06-07 2013-08-21 上海超导科技股份有限公司 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590101C (zh) * 2008-04-18 2010-02-17 北京有色金属研究总院 一种氧化铪掺杂氧化铈栅电介质材料及其制备方法
US8486864B2 (en) * 2009-12-29 2013-07-16 Ut-Battelle, Llc Method for producing microstructured templates and their use in providing pinning enhancements in superconducting films deposited thereon
CN101777590B (zh) * 2010-01-15 2011-08-17 清华大学 一种具有白光光伏效应的异质结薄膜材料及其制备方法
CN102102172B (zh) * 2010-11-18 2013-06-12 清华大学 具有白光光伏效应的异质结薄膜材料及其制备方法
CN102321476A (zh) * 2011-06-03 2012-01-18 北京工业大学 一种近红外量子剪裁透明薄膜及其制备方法
CN102774074B (zh) * 2012-07-13 2015-09-09 上海超导科技股份有限公司 基于双轴织构金属基带的新型复合隔离层及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217008A (zh) * 2009-09-07 2011-10-12 古河电气工业株式会社 超导线材用带基材和超导线材
US20120064266A1 (en) * 2010-09-15 2012-03-15 Hon Hai Precision Industry Co., Ltd. Housing and method for manufacturing housing
CN102251219A (zh) * 2011-07-19 2011-11-23 上海交通大学 制备ysz缓冲层的多通道激光镀膜方法
CN103255369A (zh) * 2013-06-07 2013-08-21 上海超导科技股份有限公司 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法

Also Published As

Publication number Publication date
CN103255369B (zh) 2016-06-22
CN103255369A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2014194445A1 (zh) 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
JP5630941B2 (ja) 超伝導体被覆テープのための二軸配向フィルム堆積
US6265353B1 (en) Device and method for producing a multilayered material
AU2007252693A1 (en) Superconducting thin film material and method of manufacturing the same
US8420575B2 (en) Underlying layer of alignment film for oxide superconducting conductor and method of forming same, and device for forming same
JP2007307904A (ja) 被覆された伝導体及び高温超伝導体層の製造に有用な多結晶質フィルム
WO2011043407A1 (ja) イオンビームアシストスパッタ装置及びイオンビームアシストスパッタ方法
CN104021880A (zh) 一种涂层导体用双面MgO缓冲层的制备方法
WO2014183237A1 (zh) 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
CN105648401B (zh) 高性能rebco多层膜、应用及其制备方法
CN102251219B (zh) 制备ysz缓冲层的多通道激光镀膜方法
JP4033945B2 (ja) 酸化物超電導導体およびその製造方法
CN103233205A (zh) 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法
JP5145109B2 (ja) 多結晶薄膜の製造方法及び酸化物超電導導体の製造方法
US7025826B2 (en) Methods for surface-biaxially-texturing amorphous films
JP2011009106A (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JP5452216B2 (ja) 3回対称MgO膜及び4回対称MgO膜の成膜方法
JP2639544B2 (ja) 三層ペロブスカイト構造をもつLaA▲下2▼Cu▲下3▼O▲下7▼▲下−▼xの単結晶薄膜及びLaA▲下2▼Cu▲下3▼O▲下7▼▲下−▼x薄膜の製造法
JP5481135B2 (ja) 酸化物超電導導体用基材及び酸化物超電導導体
US9023422B1 (en) High rate deposition method of magnetic nanocomposites
JP2005113220A (ja) 多結晶薄膜及びその製造方法、酸化物超電導導体
JP2009221572A (ja) 酸化物超電導線材用の2軸配向薄膜及びその製造方法
JP2704625B2 (ja) 三層ペロブスカイト構造をもつLnA▲下2▼Cu▲下3▼O▲下7▼−xの単結晶薄膜及びLnA▲下2▼Cu▲下3▼O▲下7▼−x薄膜の製造法
JP2010123516A (ja) 酸化物超電導導体用基材の製造方法と酸化物超電導導体の製造方法及び酸化物超電導導体用キャップ層の形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886275

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13886275

Country of ref document: EP

Kind code of ref document: A1