CN102774074B - 基于双轴织构金属基带的新型复合隔离层及制备方法 - Google Patents

基于双轴织构金属基带的新型复合隔离层及制备方法 Download PDF

Info

Publication number
CN102774074B
CN102774074B CN201210242021.5A CN201210242021A CN102774074B CN 102774074 B CN102774074 B CN 102774074B CN 201210242021 A CN201210242021 A CN 201210242021A CN 102774074 B CN102774074 B CN 102774074B
Authority
CN
China
Prior art keywords
separation layer
base band
metal base
radio
coating process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210242021.5A
Other languages
English (en)
Other versions
CN102774074A (zh
Inventor
徐达
刘林飞
李贻杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SUPERCONDUCTING TECHNOLOGY Co Ltd
Original Assignee
SHANGHAI SUPERCONDUCTING TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI SUPERCONDUCTING TECHNOLOGY Co Ltd filed Critical SHANGHAI SUPERCONDUCTING TECHNOLOGY Co Ltd
Priority to CN201210242021.5A priority Critical patent/CN102774074B/zh
Publication of CN102774074A publication Critical patent/CN102774074A/zh
Application granted granted Critical
Publication of CN102774074B publication Critical patent/CN102774074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于双轴织构金属基带的新型复合隔离层及制备方法,采用三层结构,上层为锆酸镧(La2Zr2O7)隔离层,中间层为钇稳定氧化锆(YSZ)隔离层,下层为氧化铈(CeO2)隔离层。本发明用锆酸镧(La2Zr2O7)代替传统CeO2/YSZ/CeO2和CeO2/YSZ/Y2O3三层复合隔离层结构中的CeO2帽子层,并采用射频磁控溅射镀膜技术制备高质量的La2Zr2O7隔离层。该方法具有高的稳定性,重复可靠性及高的沉积速率,其制备得到的La2Zr2O7隔离层致密均匀,与YSZ隔离层结合力强。本发明基于金属基带的La2Zr2O7/YSZ/CeO2复合隔离层具有单一的(00/)取向,高的面内和面外织构,表面光洁度好,适合于在其上外延生长高性能的稀土氧化物超导层。

Description

基于双轴织构金属基带的新型复合隔离层及制备方法
技术领域
本发明涉及新型氧化物高温超导领域,具体是一种基于双轴织构金属基带的新型复合隔离层及制备方法,更为明确的是一种基于双轴织构金属基带的La2Zr2O7/YSZ/CeO2复合隔离层及La2Zr2O7隔离层的制备方法。
背景技术
近百年来,超导材料由于其独特的物理性能(无阻、抗磁等),一直吸引着众多科学家的注意。利用超导带材制备的超导电缆、超导变压器和超导限流器等器件与设备具有体积小、重量轻、效率高和能耗低等优点,在电力、能源、医疗设备、国防装备等多个领域具有广泛的应用前景。在20世纪90年代末期,采用粉末套管技术制备的基于Bi2Sr2Ca2Cu3O10(Bi2223)体系的第一代高温超导带材已经实现了商业化生产。但是第一代高温超导带材成本昂贵以及由于其物理上的本征特性导致的该材料不能在液氮温区有稍强一点的磁场的环境下应用,大大限制了其可能的应用范围。而基于YBa2Cu3O7-x(YBCO)体系的第二代高温超导带材具有在液氮温区高的不可逆场、高的载流能力、低的交流损耗等优点,引起了人们的极大兴趣。
第二代超导带材由金属基带、种子层、隔离层、帽子层、YBCO超导层以及保护层等组成。其中柔软金属基带的作用是使稀土氧化物超导层获得支撑和使第二代高温超导带材具有优良的机械性能。目前,金属基带主要使用镍钨合金带。制备具有立方织构的镍钨金属基带主要有三种工艺路线:轧制辅助双轴织构基底技术(RABiTS)、离子束辅助沉积技术(IBAD)、基底倾斜沉积技术(ISD)。其中,RABiTS技术是将金属材料通过大加工量轧制变形,形成带材,然后经过适当的退火处理,基带本身会形成强立方织构。在第二代高温超导带材中,隔离层必须是一个连续的、平整的、化学性质稳定、晶格结构匹配的过渡层。隔离层在第二代高温超导带材中起到的作用有:(1)将金属基带的织构继承下来,为超导层的外延生长提供条件,把金属基带的立方织构传递给超导层;(2)阻止基带中的金属原子向超导层扩散,阻止超导层制备过程中基带的氧化;(3)隔离层要有比较好的机械稳定性,还要能够和超导层、基带结合良好。因此,选择隔离层材料的时候,必须考虑该材料是否满足化学匹配、晶格匹配和热膨胀系数匹配三个条件。一般情况下,隔离层为三层复合结构:种子层(下层)能够获得更好的立方织构和表面;中间层阻止金属元素在基带和超导层之间的扩散;帽子层(上层)与YBCO超导层晶格常数相匹配,易于在其上生长高性能的超导层。目前,通常采用的氧化物隔离层有CeO2/YSZ/CeO2和CeO2/YSZ/Y2O3
近年来,锆酸镧(La2Zr2O7)作为YBCO涂层导体的一种可供选择的隔离层,由于其与基带和YBCO超导层结构兼容,受到人们的极大关注。La2Zr2O7是立方烧绿石结构,它的晶格常数为与Ni的晶格失配度为7.6%(考虑45度旋转生长在镍钨基带上),与正交晶系YBCO()晶格失配度为0.5%和1.8%。而且,La2Zr2O7可以很好地阻挡金属元素的扩散。目前美国橡树岭等国家实验室开始使用化学溶液沉积法制备La2Zr2O7隔离层,可大大降低第二代高温超导带材成本。
然而,在传统三层复合隔离层结构中,当氧化铈(CeO2)的厚度超过100纳米的时候,CeO2薄膜会出现破裂。采用La2Zr2O7帽子层代替CeO2帽子层可以有效地阻止裂纹的出现。在镍钨金属基带上制备La2Zr2O7隔离层大多采用化学溶液沉积法。采用化学溶液沉积法制备第二代高温超导带材隔离层可大大降低镀膜成本,提高第二代高温超导带材性价比。然而,采用化学溶液沉积法制备的La2Zr2O7薄膜,织构度差,表面形貌差,不利于在其上生长高性能的稀土氧化物超导层。
发明内容
本发明针对上述现有技术中存在的不足,提供一种基于双轴织构金属基带的La2Zr2O7/YSZ/CeO2复合隔离层,与传统的CeO2/YSZ/CeO2和CeO2/YSZ/Y2O3复合隔离层相比,避免了CeO2薄膜容易出现破裂的问题,性能更加优越。
本发明还提供一种制备La2Zr2O7隔离层的方法,使用射频磁控溅射镀膜方法代替化学溶液沉积法制备镍钨金属基带上的La2Zr2O7隔离层,具有更高的工艺稳定性、重复性和可靠性。
为达到上述目的,本发明所采用的技术方案如下:
一种基于双轴织构金属基带的La2Zr2O7/YSZ/CeO2复合隔离层,该复合隔离层采用三层结构,上层为La2Zr2O7隔离层,中间层为钇稳定YSZ(氧化锆)隔离层,下层为CeO2隔离层。
所述La2Zr2O7隔离层的厚度为50-150nm,所述YSZ隔离层厚度为20-60nm,所述CeO2隔离层的厚度为30-80nm。
一种制备La2Zr2O7隔离层的方法,包括以下步骤:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好的YSZ隔离层和CeO2隔离层的金属基带固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将一挡板置于等离子体正上方,用于遮挡等离子体。
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中所述的挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
所述步骤3中,抽真空后达到的腔内真空度为1×10-4-5×10-4帕。
所述步骤4中,La2Zr2O7隔离层镀膜工艺所需的温度值为550-750°C。
所述步骤5中,氩气质量流量计的流量为30-45SCCM,氧气质量流量计的流量为5-10SCCM;在氩-氧混合气体中氩气的比例为75%-90%,氧气的比例为10%-25%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为3-15帕。
所述步骤6中,La2Zr2O7隔离层镀膜工艺所需的射频电流值为100-150毫安,射频电压值为0.5-1.0千伏,射频功率为50-150瓦。
所述步骤7中,La2Zr2O7靶材表面预溅射过程的时间为5-10分钟。
所述步骤8中,挡板与La2Zr2O7靶材表面的距离为2-4厘米。
所述步骤10中,La2Zr2O7隔离层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为5-10厘米。
所述步骤11中,La2Zr2O7隔离层镀膜工艺所需的样品托的转速为5-15转每分钟。
所述步骤12中,La2Zr2O7隔离层镀膜工艺所需的镀膜时间为3-6小时。
所述制备La2Zr2O7隔离层的射频磁控溅射镀膜方法,不仅适合于在轧制辅助双轴织构金属基底上生长La2Zr2O7隔离层,而且适合于在基于离子束辅助沉积技术的金属基带上生长La2Zr2O7隔离层。
本发明采用的La2Zr2O7/YSZ/CeO2复合隔离层结构可代替传统的CeO2/YSZ/CeO2和CeO2/YSZ/Y2O3复合隔离层结构,避免了CeO2薄膜容易出现破裂的问题,因而性能更加优越。
与化学溶液技术相比,本发明的制备La2Zr2O7隔离层的射频磁控溅射镀膜方法具有以下优点:
(1)靶材成本低且利用率高,可达90%以上;
(2)稳定性好,工艺可重复性和可靠性高;
(3)镀膜过程所需基带稳定低;
(4)可精确控制薄膜厚度;
(5)形成的薄膜结合力强;
(6)其制备的复合隔离层化学性质稳定,具有单一(00/)取向,织构度高,表面光洁度好,适合于在其上生长高性能的稀土氧化物超导层。
附图说明
图1是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的实施例结构示意图;
图2是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的X射线θ-2θ衍射谱图;
图3是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的X射线ω扫描的衍射谱图;
图4是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的X射线φ扫描的衍射谱图;
图5是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的X射线三维极图;
图6是本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层的表面形貌图。
具体实施方式
以下结合附图和具体实施例对本发明的技术方案做详细的说明:
实施例1
如图1所示,本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层实施例结构示意图,是基于双轴织构镍钨金属基带4上制备的La2Zr2O7/YSZ/CeO2复合隔离层。该复合隔离层采用三层结构,上层为La2Zr2O7隔离层1,中间层为YSZ隔离层2,下层为CeO2隔离层3。其中,La2Zr2O7隔离层1的厚度为50nm,YSZ隔离层2厚度为60nm,CeO2隔离层3的厚度为80nm。
本发明采用了射频磁控溅射镀膜方法来制备La2Zr2O7隔离层,该方法包含以下步骤:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好YSZ隔离层和CeO2隔离层的双轴织构镍-钨金属基带放置固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
抽真空后达到的腔内真空度为1×10-4帕。
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的温度值为550°C。
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
氩气质量流量计的流量为30SCCM,氧气质量流量计的流量为10SCCM;在氩-氧混合气体中氩气的比例为75%,氧气的比例为25%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为15帕。
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的射频电流值为100毫安,射频电压值为0.5千伏,射频功率为50瓦。
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
La2Zr2O7靶材表面预溅射过程的时间为5分钟。
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将挡板置于等离子体正上方,用于遮挡等离子体。
挡板与La2Zr2O7靶材表面的距离为2厘米。
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为10厘米。
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
La2Zr2O7隔离层镀膜工艺所需的样品托的转速为5转每分钟。
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
La2Zr2O7隔离层镀膜工艺所需的镀膜时间为3小时。
实施例2
如图1所示,本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层实施例结构示意图,是基于双轴织构镍钨金属基带4上制备的La2Zr2O7/YSZ/CeO2复合隔离层。该复合隔离层采用三层结构,上层为La2Zr2O7隔离层1,中间层为YSZ隔离层2,下层为CeO2隔离层3。其中,La2Zr2O7隔离层1的厚度为150nm,YSZ隔离层2厚度为20nm,CeO2隔离层3的厚度为30nm。
本发明采用了射频磁控溅射镀膜方法来制备La2Zr2O7隔离层,该方法包含以下步骤:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好YSZ隔离层和CeO2隔离层的双轴织构镍-钨金属基带放置固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
抽真空后达到的腔内真空度为5×10-4帕。
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的温度值为750°C。
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
氩气质量流量计的流量为45SCCM,氧气质量流量计的流量为5SCCM;在氩-氧混合气体中氩气的比例为90%,氧气的比例为10%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为3帕。
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的射频电流值为150毫安,射频电压值为1.0千伏,射频功率为150瓦。
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
La2Zr2O7靶材表面预溅射过程的时间为10分钟。
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将挡板置于等离子体正上方,用于遮挡等离子体。
挡板与La2Zr2O7靶材表面的距离为4厘米。
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为5厘米。
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
La2Zr2O7隔离层镀膜工艺所需的样品托的转速为15转每分钟。
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
La2Zr2O7隔离层镀膜工艺所需的镀膜时间为6小时。
实施例3
如图1所示,本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层实施例结构示意图,是基于双轴织构镍钨金属基带4上制备的La2Zr2O7/YSZ/CeO2复合隔离层。该复合隔离层采用三层结构,上层为La2Zr2O7隔离层1,中间层为YSZ隔离层2,下层为CeO2隔离层3。其中,La2Zr2O7隔离层1的厚度为90nm,YSZ隔离层2厚度为50nm,CeO2隔离层3的厚度为60nm。
本发明采用了射频磁控溅射镀膜方法来制备La2Zr2O7隔离层,该方法包含以下步骤:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好YSZ隔离层和CeO2隔离层的双轴织构镍-钨金属基带放置固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
抽真空后达到的腔内真空度为4×10-4帕。
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的温度值为600°C。
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
氩气质量流量计的流量为40SCCM,氧气质量流量计的流量为10SCCM;在氩-氧混合气体中氩气的比例为80%,氧气的比例为20%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为10帕。
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的射频电流值为120毫安,射频电压值为0.7千伏,射频功率为84瓦。
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
La2Zr2O7靶材表面预溅射过程的时间为8分钟。
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将挡板置于等离子体正上方,用于遮挡等离子体。
挡板与La2Zr2O7靶材表面的距离为3厘米。
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为8厘米。
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
La2Zr2O7隔离层镀膜工艺所需的样品托的转速为10转每分钟。
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
La2Zr2O7隔离层镀膜工艺所需的镀膜时间为4小时。
实施例4
如图1所示,本发明提供的La2Zr2O7/YSZ/CeO2复合隔离层实施例结构示意图,是基于双轴织构镍钨金属基带4上制备的La2Zr2O7/YSZ/CeO2复合隔离层。该复合隔离层采用三层结构,上层为La2Zr2O7隔离层1,中间层为YSZ隔离层2,下层为CeO2隔离层3。其中,La2Zr2O7隔离层1的厚度为120nm,YSZ隔离层2厚度为30nm,CeO2隔离层3的厚度为40nm。
本发明采用了射频磁控溅射镀膜方法来制备La2Zr2O7隔离层,该方法包含以下步骤:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好YSZ隔离层和CeO2隔离层的双轴织构镍-钨金属基带放置固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
抽真空后达到的腔内真空度为3×10-4帕。
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的温度值为700°C。
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
氩气质量流量计的流量为35SCCM,氧气质量流量计的流量为5SCCM;在氩-氧混合气体中氩气的比例为87.5%,氧气的比例为12.5%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为5帕。
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的射频电流值为140毫安,射频电压值为0.8千伏,射频功率为112瓦。
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
La2Zr2O7靶材表面预溅射过程的时间为7分钟。
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将挡板置于等离子体正上方,用于遮挡等离子体。
挡板与La2Zr2O7靶材表面的距离为3.5厘米。
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
La2Zr2O7隔离层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为7厘米。
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
La2Zr2O7隔离层镀膜工艺所需的样品托的转速为12转每分钟。
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
La2Zr2O7隔离层镀膜工艺所需的镀膜时间为5小时。
图2所示为在双轴织构镍钨金属基带上制备的La2Zr2O7/YSZ/CeO2复合隔离层的X射线θ-2θ衍射谱图。在图2中,只有CeO2(200)、YSZ(200)、La2Zr2O7(400)的峰出现,证明La2Zr2O7/YSZ/CeO2复合隔离层具有单一取向,无其他杂相。
图3所示为在双轴织构镍钨金属基带上制备的La2Zr2O7/YSZ/CeO2复合隔离层的ω扫描的衍射谱图。图3中,La2Zr2O7/YSZ/CeO2复合隔离层的面外织构度为3度。
图4所示为在双轴织构镍钨金属基带上制备的La2Zr2O7/YSZ/CeO2复合隔离层的φ扫描的衍射谱图。图4中每隔90度出现一个衍射峰,证明La2Zr2O7/YSZ/CeO2复合隔离层具有四重对称性。图4中,La2Zr2O7/YSZ/CeO2复合隔离层的面内织构度为5度。
图5所示为采用射频磁控溅射镀膜方法在双轴织构镍钨金属基带上制备的La2Zr2O7/YSZ/CeO2复合隔离层的X射线三维极图,可以看出La2Zr2O7/YSZ/CeO2复合隔离层具有立方结构。
图6所示为采用射频磁控溅射镀膜方法在双轴织构镍钨金属基带上制备的La2Zr2O7/YSZ/CeO2复合隔离层的原子力显微表面形貌图。La2Zr2O7/YSZ/CeO2复合隔离层的表面光滑,在25平方微米的区域均方根表面粗糙度为1.5nm。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应该认识到上述描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代是将显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (12)

1.一种基于双轴织构金属基带的复合隔离层,其特征在于,该复合隔离层采用三层结构,上层为La2Zr2O7隔离层,中间层为YSZ隔离层,下层为CeO2隔离层,所述La2Zr2O7隔离层采用射频磁控溅射方法来制备。
2.如权利要求1所述的基于双轴织构金属基带的复合隔离层,其特征在于,所述La2Zr2O7隔离层的厚度为50-150nm,所述YSZ隔离层厚度为20-60nm,所述CeO2隔离层的厚度为30-80nm。
3.一种制备权利要求1所述的基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述上层La2Zr2O7隔离层的制备步骤如下:
步骤1、将纯度为4N的La2Zr2O7靶材装入射频磁控溅射镀膜系统内;
步骤2、将已经用脉冲激光沉积方法制备好YSZ隔离层和CeO2隔离层的金属基带放置固定在射频磁控溅射镀膜系统样品托上;
步骤3、对射频磁控溅射镀膜系统腔体进行抽真空处理,使得腔内真空度达到10-3帕以下;
步骤4、将加热器温度调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤5、向射频磁控溅射镀膜系统腔内通入氩气和氧气,开启氩气和氧气质量流量计,通过控制分子泵闸板阀门,将氩-氧混合气体的总气压调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤6、启动射频溅射控制电源,将射频电流和射频电压调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤7、等加热温度、腔内气压、射频电流、射频电压稳定后,打开射频溅射开关,开始La2Zr2O7靶材表面预溅射过程;
步骤8、等磁控溅射形成的椭球状等离子体稳定后,将挡板置于等离子体正上方,用于遮挡等离子体;
步骤9、将装有步骤2中所述的金属基带的样品托置于步骤8中挡板正上方;
步骤10、将金属基带与La2Zr2O7靶材之间的距离调节到La2Zr2O7隔离层镀膜工艺所需的值;
步骤11、将步骤8中的挡板移开,并启动样品托旋转系统,开始La2Zr2O7隔离层镀膜过程;
步骤12、经过La2Zr2O7隔离层镀膜工艺所需的镀膜时间后,降低射频电流和射频电压到零,关闭射频磁控溅射系统,关闭加热器,关闭氧气和氩气气体质量流量计阀门。
4.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤3中,抽真空后达到的腔内真空度为1×10-4-5×10-4帕。
5.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤4中,La2Zr2O7隔离层镀膜工艺所需的温度值为550-750℃。
6.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤5中,氩气质量流量计的流量为30-45SCCM,氧气质量流量计的流量为5-10SCCM;在氩-氧混合气体中氩气的流量比例为75%-90%,氧气的流量比例为10%-25%;La2Zr2O7隔离层镀膜工艺所需的氩-氧混合气体的总气压值为3-15帕。
7.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤6中,La2Zr2O7隔离层镀膜工艺所需的射频电流值为100-150毫安,射频电压值为0.5-1.0千伏,射频功率为50-150瓦。
8.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤7中,La2Zr2O7靶材表面预溅射过程的时间为5-10分钟。
9.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤8中,挡板与La2Zr2O7靶材表面的距离为2-4厘米。
10.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤10中,La2Zr2O7层镀膜工艺所需的金属基带与La2Zr2O7靶材之间的距离为5-10厘米。
11.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤11中,La2Zr2O7隔离层镀膜工艺所需的样品托的转速为5-15转每分钟。
12.如权利要求3所述的制备基于双轴织构金属基带的复合隔离层的方法,其特征在于,所述的步骤12中,La2Zr2O7隔离层镀膜工艺所需的镀膜时间为3-6小时。
CN201210242021.5A 2012-07-13 2012-07-13 基于双轴织构金属基带的新型复合隔离层及制备方法 Active CN102774074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210242021.5A CN102774074B (zh) 2012-07-13 2012-07-13 基于双轴织构金属基带的新型复合隔离层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210242021.5A CN102774074B (zh) 2012-07-13 2012-07-13 基于双轴织构金属基带的新型复合隔离层及制备方法

Publications (2)

Publication Number Publication Date
CN102774074A CN102774074A (zh) 2012-11-14
CN102774074B true CN102774074B (zh) 2015-09-09

Family

ID=47119278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210242021.5A Active CN102774074B (zh) 2012-07-13 2012-07-13 基于双轴织构金属基带的新型复合隔离层及制备方法

Country Status (1)

Country Link
CN (1) CN102774074B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN103255369B (zh) * 2013-06-07 2016-06-22 上海超导科技股份有限公司 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
CN105970171B (zh) * 2016-06-08 2019-07-26 扬州君禾薄膜科技有限公司 一种采用磁控溅射制备柔性稀土氧化物薄膜的方法
CN107604334A (zh) * 2017-09-21 2018-01-19 中国建筑材料科学研究总院 氧化镍钨薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015819A1 (de) * 2004-08-05 2006-02-16 Trithor Gmbh Verfahren zur herstellung hochtexturierter, bandförmiger hochtemperatur-supraleiter
CN101333655A (zh) * 2008-05-20 2008-12-31 上海大学 高温超导涂层导体La2Zr2O7缓冲层薄膜制备工艺
CN102306702A (zh) * 2011-05-31 2012-01-04 上海交通大学 适合于连续化制备高温超导带材的方法
CN102409297A (zh) * 2011-11-18 2012-04-11 上海超导科技股份有限公司 第二代高温超导带材用的简化CeO2/LaZrO3复合隔离层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015819A1 (de) * 2004-08-05 2006-02-16 Trithor Gmbh Verfahren zur herstellung hochtexturierter, bandförmiger hochtemperatur-supraleiter
CN101333655A (zh) * 2008-05-20 2008-12-31 上海大学 高温超导涂层导体La2Zr2O7缓冲层薄膜制备工艺
CN102306702A (zh) * 2011-05-31 2012-01-04 上海交通大学 适合于连续化制备高温超导带材的方法
CN102409297A (zh) * 2011-11-18 2012-04-11 上海超导科技股份有限公司 第二代高温超导带材用的简化CeO2/LaZrO3复合隔离层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
在Ni片上制备YSZ/CeO2阻挡层和YBCO超导膜;石东奇等;《低温物理学报》;19990228;第21卷(第1期);35-38页 *

Also Published As

Publication number Publication date
CN102774074A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
Goyal et al. The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors
US20070238619A1 (en) Superconductor components
CN102610322B (zh) 高温超导涂层导体双层缓冲层结构及其动态沉积方法
JPH01163058A (ja) 超電導薄膜およびその作製方法
CN102774074B (zh) 基于双轴织构金属基带的新型复合隔离层及制备方法
CN103695859B (zh) 超导带材用双面LaMnO3缓冲层的制备方法
CN100469940C (zh) 金属氧化物薄膜的制备方法
CN102751040B (zh) 高温超导双面带材的制备方法
US20040026118A1 (en) Oxide superconducting wire
US11488746B2 (en) Superconductor with improved flux pinning at low temperatures
Selvamanickam et al. High-current Y-Ba-Cu-O coated conductor using metal organic chemical-vapor deposition and ion-beam-assisted deposition
EP1908128A2 (en) Structure for improved high critical current densities in ybco coatings
CN102409297B (zh) 第二代高温超导带材用的简化CeO2/LaZrO3复合隔离层及其制备方法
Ohmatsu et al. Development of in-plane aligned YBCO tapes fabricated by inclined substrate deposition
WO2007040567A2 (en) Method for improving performance of high temerature superconductors within a magnetic field
CN104992777B (zh) 一种双轴织构缓冲层结构
CN103215546A (zh) 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN101162626A (zh) 一种双面高温超导薄膜多层结构及其制备方法
CN102251219B (zh) 制备ysz缓冲层的多通道激光镀膜方法
CN101299452A (zh) 在单晶衬底上制备CeO2隔离层薄膜的方法
Xie et al. Etching Sr3Al2O6 sacrificial layer to prepare freestanding GBCO films with high critical current density
CN103233205A (zh) 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法
CN103922738B (zh) 一种La2Zr2O7过渡层梯度薄膜结构、制备及应用
CN110257792B (zh) 生长第二代高温超导带材阻挡层复合膜的镀膜机构及装置
CN202871869U (zh) 一种具有多层复合结构的ybco超导膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant