WO2014183237A1 - 基于IBAD-MgO金属基带的简化隔离层及其制备方法 - Google Patents

基于IBAD-MgO金属基带的简化隔离层及其制备方法 Download PDF

Info

Publication number
WO2014183237A1
WO2014183237A1 PCT/CN2013/001059 CN2013001059W WO2014183237A1 WO 2014183237 A1 WO2014183237 A1 WO 2014183237A1 CN 2013001059 W CN2013001059 W CN 2013001059W WO 2014183237 A1 WO2014183237 A1 WO 2014183237A1
Authority
WO
WIPO (PCT)
Prior art keywords
ibad
isolation layer
metal base
mgo
base tape
Prior art date
Application number
PCT/CN2013/001059
Other languages
English (en)
French (fr)
Inventor
李贻杰
刘林飞
肖桂娜
Original Assignee
上海超导科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超导科技股份有限公司 filed Critical 上海超导科技股份有限公司
Publication of WO2014183237A1 publication Critical patent/WO2014183237A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the invention relates to a novel oxide high-temperature superconducting field, and relates to a simplified isolation layer based on IBAD-MgO metal base tape and a preparation method thereof, in particular to a single-layer Ce0 2 isolation layer based on IBAD-MgO metal base tape and preparation method thereof .
  • Background technique
  • High-temperature superconducting materials have zero resistance and complete anti-magnetic properties, and have broad application prospects in the fields of power transmission, transportation, medical equipment, and new energy. And commercialization
  • BSCCO Bi 2 Sr 2 Ca 2 Cu 3 O y
  • YBCO High irreversible field and magnetic field download flow capability, low AC loss, etc.
  • the biaxial texture can be provided by a metal substrate or can be produced when the barrier layer is prepared.
  • RABiTS Rolling Assisted Biaxial Textured Substrate
  • IBAD Ion Beam Assisted Deposition
  • the IBAD technology route has no special requirements on the choice of substrate and its texture, and does not need to use a biaxially textured substrate with a certain orientation, and the lattice constant of the substrate does not need to match the superconducting film, and the IBAD technology can be used. It is possible to grow a cubic textured spacer layer directly on a non-textured polycrystalline metal substrate or even an amorphous substrate, such as Hastelloy, stainless steel, or the like, as a base material.
  • the IBAD technique utilizes a high-energy ion beam to bombard the target, evaporate it and deposit it onto a non-textured metal baseband, while simultaneously using a certain orientation of the auxiliary ion beam to bombard the growing film during deposition.
  • This technology has proven to be one of the most effective methods for manually controlling film orientation and texture, and is also one of the most promising technical routes for preparing second-generation high-temperature superconducting long strips.
  • the commonly used materials for the texture layer are YSZ (yttrium stabilized zirconia), GZO (Gd 2 Zr 2 0 7 ), and MgO.
  • the former two require 500-1000 nm thickness to obtain a better biaxial texture. Degree, slow, not applicable For commercial production.
  • MgO only needs about 10 nm, and its in-plane texture is preferably 6-7°, which makes the speed of the isolation layer prepared by IBAD technology route nearly 100 times, which can meet the second generation high temperature superconducting long belt. Continuous, rapid, batch production requirements.
  • the isolation layer can effectively solve this problem, such as Ce0 2 , LaMn0 3 (LMO), SrTi0 3 and so on.
  • the oxide isolation layer commonly used at home and abroad is a two-layer composite structure, such as: RF-LaMn0 3 /RF-MgO/IBAD-MgO,
  • PLD-Ce0 2 RF-MgO/IBAD-MgO and PLD-Ce0 2 /RF-LaMn0 3 /IB AD-MgO ie firstly homoepitaxial MgO on IBAD-MgO metal base tape by RF magnetron sputtering (RF) technology Separation layer or heteroepitaxial LaMn0 3 isolation layer, then RF magnetron sputtering method to prepare LaMn0 3 isolation layer or pulsed laser deposition (PLD) to prepare CeO separation layer.
  • RF RF magnetron sputtering
  • an oxide barrier layer is deposited on the metal base strip
  • a BAD-MgO base strip is deposited on the oxide barrier layer
  • a MgO layer and an LMO (LaMn0 3 ) layer are sequentially epitaxially grown on the BAD-MgO base strip by magnetron sputtering. And depositing a superconducting layer on the LMO layer.
  • the three composite separators LaMn0 3 /MgO, Ce0 2 /MgO and Ce0 2 /LaMn0 3 have a two-layer structure, which makes the preparation process complicated, which is not conducive to the control of film quality, and is not conducive to cost reduction.
  • the optimum thickness of each layer in the composite isolation layer structure is only tens to hundreds of nanometers, the stability of the coating process is required in the industrial production of the kilometer-long strip. From the aspect of process development, if the structure of the composite isolation layer can be simplified and the number of isolation layers can be reduced, the coating cost will be greatly reduced, and the cost performance of the second generation high-temperature superconducting tape will be improved. Disclosure of invention
  • the present invention provides a simplified method of preparation and isolation layer metal baseband IBAD-MgO-based IBAD-MgO in the metal strip group, the use of a simplified single-layer structure in place of Ce0 2 spacer complex LaMn0 3 / MgO, Ce0 2
  • the /MgO and Ce0 2 /LaMn0 3 double-layer composite isolation layer structure simplifies the composite isolation layer structure, reduces the number of isolation layers, and greatly reduces the coating cost.
  • the present invention provides a simplified separation layer based on metallic substrate tape IBAD-MgO, which simplifies the isolation layer is a single layer Ce0 2 spacer layer, the thickness of the single layer Ce0 2 spacer layer is 50-500 nm.
  • the present invention also provides a method of preparing a simplified isolation layer based on an IBAD-MgO metal base tape, which uses a radio frequency magnetron sputtering method to prepare a single-layer CeO 2 isolation layer on an IBAD-MgO metal base tape, the method comprising the steps of:
  • Step 1 The Ce0 2 target with a purity of 99.9% is loaded into the RF magnetron sputtering coating system; Step 2.
  • the metal base tape of the MgO textured layer has been fixed by ion beam assisted deposition of IBAD in the coating chamber. On the sample rack;
  • Step 3 Close the cavity of the RF magnetron sputtering coating system, and then turn on the mechanical pump and the molecular pump to vacuum, so that the vacuum in the cavity reaches the coating requirement;
  • Step 4 Start the heater, set the heater temperature to the value required for the Ce0 2 isolation coating process, and perform the heating process;
  • Step 5 After the temperature of the heater is stabilized, the argon gas and oxygen flow rate indicator are turned on, and a certain proportion of argon gas and oxygen gas are introduced into the cavity body, and the total gas pressure of the mixed gas is adjusted to Ce0 by controlling the plug valve of the molecular pump. 2 the value required for the isolation coating process;
  • Step 6 Turn on the RF sputter power switch to adjust the RF current and RF voltage to the values required for the Ce0 2 isolation coating process;
  • Step 7 After the temperature, the air pressure, the RF current, and the RF voltage are stabilized, the RF sputtering switch is turned on, and the surface of the Ce0 2 target is pre-sputtered;
  • Step 8 Adjust the distance between the target and the metal base tape to a desired value. After the target surface glow is stabilized, the flapper valve of the sample holder is opened to start coating;
  • Step 9 After the time required for the Ce0 2 isolation coating process, the coating is finished, the RF sputtering switch is turned off, the RF current and RF voltage are adjusted to zero, the heater is turned off, argon and oxygen are turned off, and the magnetron sputtering is turned off. Instrument, after the sample is naturally cooled to room temperature, the sample is taken out.
  • the background vacuum degree in the cavity is lxlO ⁇ xlO ⁇ P ⁇ , and the temperature value required for the Ce0 2 isolation layer coating process is 600-800 °C.
  • the flow rate of the gas is controlled by a mass flow meter, the flow rate of the argon gas is 10-20 sccm, the flow rate of the oxygen gas is 5-10 sccm , and the proportion of the argon gas in the mixed gas is 50%-80%.
  • the proportion of oxygen is 20%-50%; the total pressure value required for the Ce ⁇ 2 barrier coating process is 3-24 Pa.
  • the RF current value of the Ce0 2 isolation layer coating process is 100-160 mA
  • the RF voltage value is 0.5-1.0 kV
  • the RF power value is 50-160 W.
  • the surface of the Ce0 2 target is pre-sputtered for 5-10 min.
  • the distance between the target and the metal base tape is 3-7 cm.
  • the coating time required for the Ce0 2 isolation coating process is 2-5 h.
  • the present invention replaces the conventional RF-LaMn0 3 /RF-MgO with a simplified simplified isolation layer,
  • the isolation layer has a simple structure and the preparation process is easy to control
  • the obtained film has high quality, smooth surface, good compactness and strong bonding force
  • the particle size of the obtained film is controllable.
  • 1 is a schematic view showing the structure of a LaMnO 3 /MgO double-layer isolation layer based on an IBAD-MgO metal base tape in the background art;
  • FIG. 2 is a schematic view showing the structure of a simplified isolation layer based on an IBAD-MgO metal base tape provided by the present invention
  • FIG. 3 is a three-dimensional AFM photograph of a simplified isolation layer based on an IBAD-MgO metal base tape provided by the present invention
  • Figure 6 is an X-ray ⁇ scan diffraction spectrum of a simplified isolation layer based on an IBAD-MgO metal substrate provided by the present invention. The best way to implement the invention
  • a method of preparing a simplified isolation layer based on an IBAD-MgO metal base tape comprising Next steps:
  • Step 1 The Ce0 2 target with a purity of 99.9% is loaded into the RF magnetron sputtering coating system; Step 2.
  • the sample of the metal base tape on which the MgO has been prepared by ion beam assisted deposition (IBAD) is fixed in the coating chamber.
  • IBAD ion beam assisted deposition
  • Step 3 Close the cavity, and then turn on the mechanical pump and the molecular pump to vacuum, so that the vacuum in the cavity reaches lxl (T 4 Pa ;
  • Step 4 Start the heater, set the heater temperature to 800 °C, and perform the heating process.
  • Step 5. After the heater temperature is stable, turn on the argon and oxygen flow indicator, and introduce argon and oxygen into the chamber.
  • the flow rate of the gas is controlled by a mass flow meter.
  • the flow rate of argon gas is 20 sccm
  • the flow rate of oxygen is 5 SC cm
  • the proportion of argon gas in the mixed gas is 80%
  • the proportion of oxygen is 20%.
  • the plug of the pump is wide, and the total gas pressure of the mixed gas is adjusted to 24 Pa;
  • Step 6 Turn on the RF sputter power switch, adjust the RF current to 160 mA, adjust the RF voltage to 1.0 VV, and the RF power value is 160 W.
  • Step 7 After the temperature, the air pressure, the RF current, and the RF voltage are stabilized, the RF sputtering switch is turned on, and the surface of the Ce0 2 target is pre-sputtered for 5 min;
  • Step 8 Adjust the distance between the target and the metal base tape to 7 cm. After the target surface glow is stable, open the baffle of the sample holder and start coating.
  • Step 9 ⁇ 2 h after the film, the coating is finished, turn off the RF sputtering, adjust the RF current and RF voltage to zero, turn off the heater, turn off the argon and oxygen, turn off the magnetron sputtering instrument, and let the sample cool naturally. Remove to room temperature.
  • a method of preparing a simplified isolation layer based on an IBAD-MgO metal substrate comprising the steps of:
  • Step 1 the purity of 99.9% ( ⁇ 0 2 target is loaded into the RF magnetron sputtering coating system;
  • Step 2 the metal base tape which has been prepared by ion beam assisted deposition (IBAD) method is fixed in the coating chamber On the sample rack;
  • IBAD ion beam assisted deposition
  • Step 3 Close the cavity, and then turn on the mechanical pump and the molecular pump to perform vacuum treatment, so that the vacuum in the cavity reaches ⁇ lO ⁇ Pa;
  • Step 4 Start the heater, set the heater temperature to 600 °C, and perform the heating process.
  • Step 5. After the heater temperature is stable, turn on the argon and oxygen flow indicator to the cavity. Argon gas and oxygen are introduced, and the flow rate of the gas is controlled by a mass flow meter.
  • the flow rate of argon gas is 10 sccm
  • the flow rate of oxygen is 10 sccm
  • the proportion of argon gas in the mixed gas is 50%
  • the proportion of oxygen is 50.
  • % by controlling the plug-in valve of the molecular pump, the total gas pressure of the mixed gas is adjusted to 3Pa ;
  • Step 6 Turn on the RF sputter power switch, adjust the RF current to 100 mA, adjust the RF voltage to RF voltage value of 0.5 kV, and the RF power value is 50W.
  • Step 7 After the temperature, the air pressure, the RF current, and the RF voltage are stabilized, the RF sputtering switch is turned on, and the surface of the Ce0 2 target is pre-sputtered for 10 min;
  • Step 8 Adjust the distance between the target and the metal base tape to 3 cm. After the target surface glow is stable, open the flapper valve of the sample holder to start coating.
  • Step 9 After coating for 5 h, the coating is finished, the RF sputtering switch is turned off, the RF current and RF voltage are adjusted to zero, the heater is turned off, argon and oxygen are turned off, the magnetron sputtering device is turned off, and the sample is naturally cooled to room temperature. take out.
  • a method of preparing a simplified isolation layer based on an IBAD-MgO metal substrate comprising the steps of:
  • Step 1 The Ce0 2 target with a purity of 99.9% is loaded into the RF magnetron sputtering coating system; Step 2.
  • the sample of the metal base tape on which the MgO has been prepared by ion beam assisted deposition (IBAD) is fixed in the coating chamber.
  • IBAD ion beam assisted deposition
  • Step 3 close the cavity, and then turn on the mechanical pump and the molecular pump for vacuum treatment, so that the vacuum in the cavity reaches 3x10 - 4 Pa;
  • Step 4 Start the heater, set the heater temperature to 700 °C, and perform the heating process.
  • Step 5. After the heater temperature is stable, turn on the argon and oxygen flow indicator, and introduce argon and oxygen into the chamber.
  • the flow rate of the gas is controlled by a mass flow meter.
  • the flow rate of argon gas is 12 sccm
  • the flow rate of oxygen is 8 SC cm
  • the proportion of argon gas in the mixed gas is 60%
  • the proportion of oxygen is 40%.
  • the plug-in valve of the pump adjusts the total gas pressure of the mixed gas to 12 Pa ;
  • Step 6 Turn on the RF sputter power switch, adjust the RF current to 130 mA, adjust the RF voltage to RF voltage value of 0.8 kV, and the RF power value is 104 W.
  • Step 7 After the temperature, the air pressure, the RF current, and the RF voltage are stabilized, the RF sputtering switch is turned on, and the surface of the Ce0 2 target is pre-sputtered for 8 min;
  • Step 8 Adjust the distance between the target and the metal base tape to 5 cm. After the target surface glow is stable, The flapper valve of the sample holder is opened to start coating;
  • Step 9 After coating for 3 h, the coating is finished, the RF sputtering switch is turned off, the RF current and RF voltage are adjusted to zero, the heater is turned off, argon and oxygen are turned off, the magnetron sputtering instrument is turned off, and the sample is naturally cooled to room temperature. take out.
  • a method of preparing a simplified isolation layer based on an IBAD-MgO metal substrate comprising the steps of:
  • Step 1 The 00 2 target with a purity of 99.9% is loaded into the RF magnetron sputtering coating system; Step 2.
  • the sample of the metal base tape on which the MgO has been prepared by ion beam assisted deposition (IBAD) is fixed in the coating chamber.
  • IBAD ion beam assisted deposition
  • Step 3 Close the cavity, and then turn on the mechanical pump and the molecular pump to perform vacuum treatment, so that the vacuum in the cavity reaches 5xl (T 4 Pa ;
  • Step 4 start the heater, set the heater temperature to 750 °C, and carry out the temperature rising process; Step 5.
  • argon gas and oxygen flow rate display device argon gas is introduced into the cavity and The flow rate of oxygen and gas is controlled by a mass flow meter.
  • the flow rate of argon gas is 14 sccm
  • the flow rate of oxygen is 6 SC cm
  • the proportion of argon gas in the mixed gas is 70%
  • the proportion of oxygen is 30%.
  • a plug-in valve of the molecular pump adjusting the total gas pressure of the mixed gas to 18 Pa;
  • Step 6 Turn on the RF sputter power switch, adjust the RF current to 120 mA, adjust the RF voltage to the RF voltage value of 0.7 kV, and the RF power value is 84 W.
  • Step 7 After the temperature, the air pressure, the RF current, and the RF voltage are stabilized, the RF sputtering switch is turned on, and the surface of the Ce0 2 target is pre-sputtered for 5 min;
  • Step 8 Adjust the distance between the target and the metal base tape to 5 cm. After the target surface glow is stable, open the flapper valve of the sample holder to start coating.
  • Step 9 After coating for 4 h, the coating is finished, the RF sputtering switch is turned off, the RF current and RF voltage are adjusted to zero, the heater is turned off, argon and oxygen are turned off, the magnetron sputtering device is turned off, and the sample is naturally cooled to room temperature. take out.
  • FIG. 2 it is a schematic diagram of a simplified isolation layer structure based on an IBAD-MgO metal base tape provided by the present invention.
  • An oxide barrier layer 2 is deposited on the metal base tape 1
  • an IBAD-MgO baseband layer 3 is deposited on the oxide barrier layer 2, IBAD.
  • -MgO baseband layer 3 deposits Ce0 2 buffer layer 4
  • Ce0 2 buffer layer 4 deposits superconducting layer 5
  • the present invention provides a simplified isolation based on IBAD-MgO metal base strip
  • the layer, the simplified isolation layer is a single layer of Ce0 2 isolation layer, the single layer (the thickness of the ⁇ 2 2 isolation layer is 50-500 nm.
  • Figure 3 shows an atomic force microscope (AFM) three-dimensional photograph of a CeO 2 spacer prepared on an IBAD-MgO metal base tape. It can be seen from Fig. 3 that ( ⁇ 0 2 has a uniform particle size, an average size of about 200 nm, and a smooth surface, and the root mean square surface roughness of the region of 20 ⁇ 20 ⁇ 2 is 4.9 nm.
  • AFM atomic force microscope
  • Figure 4 shows the X-ray ⁇ -2 ⁇ diffraction spectrum of the CeO 2 spacer layer prepared on the IBAD-MgO metal base tape.
  • Fig. 4 except for the peaks of the metal basebands Ni (111) and Ni (002), only the Ce0 2 (002) peak was observed, and it was very strong, demonstrating that the Ce0 2 spacer has a single c-axis perpendicular to the surface of the baseband. Epitaxial orientation, no other miscellaneous phases.
  • Figure 5 shows an X-ray ⁇ -scan diffraction spectrum of a CeO 2 spacer prepared on an IBAD-MgO metal base tape.
  • the (0 0 2 spacer layer has an out-of-plane texture of 1.39 degrees, and it is seen that it has a high out-of-plane texture.
  • Figure 6 shows an X-ray ⁇ -scan diffraction spectrum of a CeO 2 spacer layer prepared on an IBAD-MgO metal base tape.
  • a diffraction peak appears every 90 degrees, which proves that the Ce0 2 spacer has four-fold symmetry and its in-plane texture is 5.29 degrees.
  • the invention is completed on a static coating equipment, but the process scheme and process parameters are scaled up to be equally applicable to large-scale industrial dynamic coating equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种基于IBAD-MgO金属基带的简化隔离层,该简化隔离层为沉积在IBAD-MgO金属基带上的单层CeO2隔离层,其厚度为50-500nm。还包括所述隔离层的制备方法。

Description

基于 IBAD-MgO金属基带的简化隔离层及其制备方法 技术领域
本发明涉及新型氧化物高温超导领域,涉及一种基于 IBAD-MgO金属基 带的简化隔离层及其制备方法,尤其涉及一种基于 IBAD-MgO金属基带的单 层 Ce02隔离层及其制备方法。 背景技术
高温超导材料具有零电阻和完全抗磁性等特点,在电力传输、交通运输、 医疗设备、 新能源等领域有着广阔的应用前景。 与商业化的铋系
(Bi2Sr2Ca2Cu3Oy,简称 BSCCO)第一代高温超导线材相比,钇系 (YBa2Cu307.x, 简称 YBCO)第二代高温超导带材具有较高的不可逆场和磁场下载流能力、较 低的交流损耗等, 在强电领域有着潜在的产业化应用前景。
在第二代高温超导涂层导体的研制中, 如何获得具有双轴织构特性的带 材是关键。 双轴织构可以通过金属基底提供, 也可以在制备隔离层时产生。 目前有 2种主要技术路线: 轧制辅助双轴织构基带技术 (Rolling Assisted Biaxial Textured Substrate, 简称为 RABiTS)和离子束辅助沉积技术 (Ion Beam Assisted Deposition, 简称为 IBAD)。 其中, IBAD技术路线对基底的选择及 其织构无特殊要求, 不需使用具有一定取向的双轴织构基底, 且基底的晶格 常数也不要求与超导薄膜相匹配, 利用 IBAD技术可以直接在非织构多晶金 属基底甚至非晶基底上生长具有立方织构的隔离层, 如哈氏合金、 不锈钢等 都可以作为基底材料。
IBAD技术是利用高能离子束轰击靶材, 使其蒸发并沉积到无织构的金 属基带上, 在沉积过程中同时利用一定取向的辅助离子束去轰击正在生长的 薄膜。 该技术已被证明是人工控制薄膜取向和织构度最有效的方法之一, 也 是制备第二代高温超导长带带材一种最有前景的技术路线。 IBAD技术路线 中, 织构层常用的材料有 YSZ (钇稳定氧化锆)、 GZO (Gd2Zr207)、 MgO, 前两者需要 500-1000 nm 厚度才能获得较好的双轴织构度, 效率慢, 不适用 确认本 于商业化生产。 而 MgO只需 10 nm左右, 其面内织构度最好已达到了 6-7°, 这使得 IBAD技术路线制备隔离层的速度提高了近百倍, 能满足第二代高温 超导长带带材连续、 快速、 批量化生产的要求。
然而, IBAD-MgO织构层和 REBCO超导层之间存在较大的晶格失配度 ( 7.6%), 通过引入与超导层的晶格常数、 化学性质、 热膨胀系数相匹配的 材料作为隔离层可以有效解决这个问题, 如 Ce02、 LaMn03 (LMO)、 SrTi03 等。 目前, 在 IBAD-MgO金属基带上, 国内外通常采用的氧化物隔离层为双 层复合结构, 比如: RF-LaMn03/RF-MgO/IBAD-MgO、
PLD-Ce02 RF-MgO/IBAD-MgO和 PLD-Ce02/RF-LaMn03/IB AD-MgO, 即先 利用射频磁控溅射(RF)技术在 IBAD-MgO金属基带上同质外延 MgO隔离 层或异质外延 LaMn03隔离层, 然后再采用射频磁控溅射法制备 LaMn03隔 离层或脉冲激光沉积法 (PLD) 制备 CeO^ 离层。
如图 1所示, 金属基带上沉积氧化物阻挡层, 氧化物阻挡层上沉积 BAD-MgO基带,在 BAD-MgO基带上采用磁控溅射方法依次外延生长 MgO 层和 LMO (LaMn03) 层, 再在 LMO层上沉积超导层。
然而, LaMn03/MgO、 Ce02/MgO和 Ce02/LaMn03这三种复合隔离层均 采用双层结构, 使得制备工艺复杂, 不利于成膜质量的控制, 也不利于降低 成本。另外, 由于复合隔离层结构中每一层的最佳厚度只需几十到几百纳米, 所以在公里级长带的工业化生产中对鍍膜工艺的稳定性要求较高。 单从工艺 研发方面, 若能简化复合隔离层结构, 减少隔离层数, 将会大大降低镀膜成 本, 提高第二代高温超导带材的性价比。 发明的公开
本发明提供一种基于 IBAD-MgO金属基带的简化隔离层及其制备方法, 在 IBAD-MgO金属基带上, 采用经简化了的单层 Ce02隔离层结构代替复杂 的 LaMn03/MgO、 Ce02/MgO和 Ce02/LaMn03双层复合隔离层结构, 简化了 复合隔离层结构, 减少了隔离层层数, 大大降低了镀膜成本。
为了达到上述目的,本发明提供一种基于 IBAD-MgO金属基带的简化隔 离层,该简化隔离层为单层 Ce02隔离层,该单层 Ce02隔离层的厚度为 50-500 nm。 本发明还提供一种制备基于 IBAD-MgO金属基带的简化隔离层的方法, 该方法使用射频磁控溅射方法在 IBAD-MgO金属基带上制备单层 Ce02隔离 层, 该方法包含以下步骤:
步骤 1、 将纯度为 99.9%的 Ce02靶材装入射频磁控溅射镀膜系统内; 步骤 2、将已经用离子束辅助沉积 IBAD方法制备了 MgO织构层的金属 基带固定在镀膜室内的样品架上;
步骤 3、 关好射频磁控溅射镀膜系统的腔体, 先后开启机械泵和分子泵 进行抽真空, 使腔体内真空度达到镀膜所需;
步骤 4、启动加热器, 将加热器温度设定为 Ce02隔离层镀膜工艺所需的 值, 进行升温过程;
步骤 5、 待加热器温度稳定后, 打开氩气和氧气流量显示仪, 向腔体内 通入一定比例的氩气和氧气, 通过控制分子泵的插板阀, 将混合气体的总气 压调节到 Ce02隔离层镀膜工艺所需的值;
步骤 6、 幵启射频溅射电源开关, 将射频电流和射频电压调节到 Ce02 隔离层镀膜工艺所需的值;
步骤 7、 等温度、 气压、 射频电流、 射频电压稳定后, 打开射频溅射开 关, 开始对 Ce02靶材表面进行预溅射处理;
步骤 8、 将靶材与金属基带之间的距离调节到所需值, 等靶面辉光稳定 后, 将样品架的挡板阀打开, 开始镀膜;
步骤 9、 经过 Ce02隔离层镀膜工艺所需的时间后, 镀膜结束, 关闭射频 溅射开关, 将射频电流和射频电压调至零, 关闭加热器, 关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自然冷却至室温后, 取出样品。
所述的步骤 3中, 抽真空后腔体内的背景真空度为 lxlO^xlO^P^ 所述的步骤 4中, Ce02隔离层镀膜工艺所需的温度值为 600-800 °C。 所述的步骤 5中, 气体的流量由质量流量计来控制, 氩气流量为 10-20 sccm, 氧气流量为 5-10 sccm; 混合气体中氩气所占的比例为 50%-80%, 氧 气所占的比例为 20%-50%; Ce〇2隔离层镀膜工艺所需的总气压值为 3-24 Pa。
所述的步骤 6中, Ce02隔离层镀膜工艺所需的射频电流值为 100-160 mA, 射频电压值为 0.5-1.0 kV, 射频功率值为 50-160 W。
所述的步骤 7中, Ce02靶材表面预溅射的时间为 5-10 min。 所述的步骤 8中, 靶材与金属基带之间的距离为 3-7 cm。
所述的步骤 9中, Ce02隔离层镀膜工艺所需的镀膜时间为 2-5 h。
本发明采用经简化了的简化隔离层代替传统的 RF-LaMn03/RF-MgO、
PLD-Ce02/RF-MgO和 PLD-Ce02/RF-LaMn03双层复合隔离层结构。
与国内外采用的复合隔离层相比, 本发明提供的简化隔离层以及其制备 方法具有以下优点:
1、 隔离层结构简单, 制备工艺容易控制;
2、 所需设备价格较低廉, 大大降低制备成本;
3、 设备稳定性好, 工艺可重复性和可靠性高;
4、 所得薄膜的质量高、 表面光滑、 致密性好、 结合力强;
5、 所得薄膜的颗粒大小均勾可控。 附图的简要说明
图 1是背景技术中基于 IBAD-MgO金属基带的 LaMn03/MgO双层隔离 层结构示意图;
图 2是本发明提供的基于 IBAD-MgO金属基带的简化隔离层结构示意 图;
图 3是本发明提供的基于 IBAD-MgO金属基带的简化隔离层的三维 AFM照片;
图 4是本发明提供的基于 IBAD-MgO金属基带的简化隔离层的 X射线 Θ-2Θ衍射谱图;
图 5是本发明提供的基于 IBAD-MgO金属基带的简化隔离层的 X射线 ω 扫描衍射谱图;
图 6是本发明提供的基于 IBAD-MgO金属基带的简化隔离层的 X射线 φ扫 描衍射谱图。 实现本发明的最佳方式
以下根据图 2〜图 6, 具体说明本发明的较佳实施例。
实施例 1
一种制备基于 IBAD-MgO金属基带的简化隔离层的方法,该方法包含以 下步骤:
步骤 1、 将纯度为 99.9%的 Ce02靶材装入射频磁控溅射镀膜系统内; 步骤 2、 将已经用离子束辅助沉积 (IBAD) 方法制备了 MgO的金属基 带固定在镀膜室内的样品架上;
步骤 3、 关好腔体, 先后开启机械泵和分子泵进行抽真空, 使腔体内真 空度达到 lxl(T4Pa;
步骤 4、 启动加热器, 将加热器温度设定为 800 °C, 进行升温过程; 步骤 5、 待加热器温度稳定后, 打开氩气和氧气流量显示仪, 向腔体内 通入氩气和氧气, 气体的流量由质量流量计来控制, 氩气流量为 20 sccm, 氧气流量为 5 SCcm, 混合气体中氩气所占的比例为 80%, 氧气所占的比例为 20%, 通过控制分子泵的插板阔, 将混合气体的总气压调节到 24 Pa;
步骤 6、 开启射频溅射电源开关, 将射频电流调节到 160 mA, 将射频电 压调节到射频电压值为 1.0kV, 射频功率值为 160 W;
步骤 7、 等温度、 气压、 射频电流、 射频电压稳定后, 打开射频溅射开 关, 开始对 Ce02靶材表面进行时间为 5 min的预溅射;
步骤 8、 将靶材与金属基带的距离调节到 7 cm, 等靶面辉光稳定后, 将 样品架的挡板 打开, 开始镀膜;
步骤 9、 ^膜 2 h后, 镀膜结束, 关闭射频溅射幵关, 将射频电流和射频 电压调至零, 关闭加热器, 关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自 然冷却至室温取出。
实施例 2
一种制备基于 IBAD-MgO金属基带的简化隔离层的方法,该方法包含以 下步骤:
步骤 1、 将纯度为 99.9%的 (^02靶材装入射频磁控溅射镀膜系统内; 步骤 2、 将已经用离子束辅助沉积 (IBAD) 方法制备了 MgO的金属基 带固定在镀膜室内的样品架上;
步骤 3、 关好腔体, 先后开启机械泵和分子泵进行抽真空处理, 使腔体 内真空度达到 ^lO^Pa;
步骤 4、 启动加热器, 将加热器温度设定为 600 °C, 进行升温过程; 步骤 5、 待加热器温度稳定后, 打开氩气和氧气流量显示仪, 向腔体内 通入氩气和氧气, 气体的流量由质量流量计来控制, 氩气流量为 lO sccm, 氧气流量为 lO sccm, 混合气体中氩气所占的比例为 50%, 氧气所占的比例 为 50%, 通过控制分子泵的插板阀, 将混合气体的总气压调节到 3Pa;
步骤 6、 开启射频溅射电源开关, 将射频电流调节到 100 mA, 将射频电 压调节到射频电压值为 0.5 kV, 射频功率值为 50W;
步骤 7、 等温度、 气压、 射频电流、 射频电压稳定后, 打开射频溅射开 关, 开始对 Ce02靶材表面进行时间为 lO min的预溅射;
步骤 8、 将靶材与金属基带的距离调节到 3 cm, 等靶面辉光稳定后, 将 样品架的挡板阀打开, 开始镀膜;
步骤 9、镀膜 5 h后, 镀膜结束, 关闭射频溅射开关, 将射频电流和射频 电压调至零, 关闭加热器, 关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自 然冷却至室温取出。
实施例 3
一种制备基于 IBAD-MgO金属基带的简化隔离层的方法,该方法包含以 下步骤:
步骤 1、 将纯度为 99.9%的 Ce02靶材装入射频磁控溅射镀膜系统内; 步骤 2、 将已经用离子束辅助沉积 (IBAD) 方法制备了 MgO的金属基 带固定在镀膜室内的样品架上;
步骤 3、 关好腔体, 先后开启机械泵和分子泵进行抽真空处理, 使腔体 内真空度达到 3xlO—4 Pa;
步骤 4、 启动加热器, 将加热器温度设定为 700 °C, 进行升温过程; 步骤 5、 待加热器温度稳定后, 打开氩气和氧气流量显示仪, 向腔体内 通入氩气和氧气, 气体的流量由质量流量计来控制, 氩气流量为 12 sccm, 氧气流量为 8 SCcm, 混合气体中氩气所占的比例为 60%, 氧气所占的比例为 40%, 通过控制分子泵的插板阀, 将混合气体的总气压调节到 12Pa;
步骤 6、 开启射频溅射电源开关, 将射频电流调节到 130 mA, 将射频电 压调节到射频电压值为 0.8 kV, 射频功率值为 104 W;
步骤 7、 等温度、 气压、 射频电流、 射频电压稳定后, 打开射频溅射开 关, 开始对 Ce02靶材表面进行时间为 8 min的预溅射;
步骤 8、 将靶材与金属基带的距离调节到 5 cm, 等靶面辉光稳定后, 将 样品架的挡板阀打开, 开始镀膜;
步骤 9、镀膜 3 h后, 镀膜结束, 关闭射频溅射开关, 将射频电流和射频 电压调至零, 关闭加热器, 关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自 然冷却至室温取出。
实施例 4
一种制备基于 IBAD-MgO金属基带的简化隔离层的方法,该方法包含以 下步骤:
步骤 1、 将纯度为 99.9%的 002靶材装入射频磁控溅射镀膜系统内; 步骤 2、 将已经用离子束辅助沉积 (IBAD) 方法制备了 MgO的金属基 带固定在镀膜室内的样品架上;
步骤 3、 关好腔体, 先后开启机械泵和分子泵进行抽真空处理, 使腔体 内真空度达到 5xl(T4Pa;
步骤 4、 启动加热器, 将加热器温度设定为 750 °C, 进行升温过程; 步骤 5、 待加热器温度稳定后, 打幵氩气和氧气流量显示仪, 向腔体内 通入氩气和氧气, 气体的流量由质量流量计来控制, 氩气流量为 14 sccm, 氧气流量为 6 SCcm, 混合气体中氩气所占的比例为 70%, 氧气所占的比例为 30%, 通过控制分子泵的插板阀, 将混合气体的总气压调节到 18 Pa;
步骤 6、 开启射频溅射电源开关, 将射频电流调节到 120 mA, 将射频电 压调节到射频电压值为 0.7 kV, 射频功率值为 84 W;
步骤 7、 等温度、 气压、 射频电流、 射频电压稳定后, 打开射频溅射开 关, 开始对 Ce02靶材表面进行时间为 5 min的预溅射;
步骤 8、 将靶材与金属基带的距离调节到 5 cm, 等靶面辉光稳定后, 将 样品架的挡板阀打开, 开始镀膜;
步骤 9、镀膜 4 h后, 镀膜结束, 关闭射频溅射开关, 将射频电流和射频 电压调至零, 关闭加热器, 关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自 然冷却至室温取出。
如图 2所示,是本发明提供的基于 IBAD-MgO金属基带的简化隔离层结 构示意图, 金属基带 1上沉积氧化物阻挡层 2, 氧化物阻挡层 2上沉积 IBAD-MgO基带层 3, IBAD-MgO基带层 3沉积 Ce02缓冲层 4, Ce02缓冲 层 4上沉积超导层 5, 本发明提供一种基于 IBAD-MgO金属基带的简化隔离 层, 该简化隔离层为单层 Ce02隔离层, 该单层 (^02隔离层的厚度为 50-500 nm。
图 3所示为在 IBAD-MgO金属基带上制备的 Ce02隔离层的原子力显微 镜(AFM)三维照片。 从图 3中可以看出, (^02颗粒大小均匀, 平均大小约 为 200 nm,且其表面光滑,在 20x20 μηι2区域的均方根表面粗糙度为 4.9 nm。
图 4所示为在 IBAD-MgO金属基带上制备的 Ce02隔离层的 X射线 Θ-2Θ 衍射谱图。 在图 4中, 除了金属基带 Ni ( 111 )和 Ni (002) 的峰外, 只观察 到 Ce02 (002)峰, 且非常强, 证明 Ce02隔离层具有单一的 c轴垂直于基带 表面的外延取向, 无其它杂相。
图 5所示为在 IBAD-MgO金属基带上制备的 Ce02隔离层的 X射线 ω扫 描衍射谱图。 在图 5中, (^02隔离层的面外织构度为 1.39度, 可见具有高 的面外织构度。
图 6所示为在 IBAD-MgO金属基带上制备的 Ce02隔离层的 X射线 φ扫 描衍射谱图。 在图 6中, 每隔 90度出现一个衍射峰, 证明 Ce02隔离层具有 四重对称性, 且其面内织构度为 5.29度。
本发明是在静态镀膜设备上完成的, 但工艺方案和工艺参数按比例放大 后同样适用于大规模工业化动态镀膜设备。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一种基于 IBAD-MgO 金属基带的简化隔离层, 该简化隔离层沉积在 IBAD- MgO金属基带上,其特征在于,该简化隔离层为单层 Ce02隔离层。
2. 如权利要求 1所述的基于 IBAD-MgO金属基带的简化隔离层, 其特征在 于, 该简化隔离层的厚度为 50-500 nm。
3. 一种制备基于 IBAD-MgO金属基带的简化隔离层的方法, 该方法使用射 频磁控溅射方法在 IBAD-MgO金属基带上制备 Ce02隔离层,其特征在于, 该方法包含以下步骤:
步骤 1、 将纯度为 99.9%的 Ce02靶材装入射频磁控溅射镀膜系统内; 步骤 2、 将己经用离子束辅助沉积 IBAD方法制备了 MgO织构层的金属 基带固定在镀膜室内的样品架上;
步骤 3、 关好射频磁控溅射镀膜系统的腔体, 先后开启机械泵和分子泵进 行抽真空, 使腔体内真空度达到镀膜所需;
步骤 4、 启动加热器, 将加热器温度设定为 Ce02隔离层镀膜工艺所需的 值, 进行升温过程;
步骤 5、 待加热器温度稳定后, 打开氩气和氧气流量显示仪, 向腔体内通 入一定比例的氩气和氧气,通过控制分子泵的插板阀,将混合气体的总气 压调节到 Ce02隔离层镀膜工艺所需的值;
步骤 6、 开启射频溅射电源开关, 将射频电流和射频电压调节到 Ce02隔 离层镀膜工艺所需的值;
步骤 7、等温度、气压、射频电流、射频电压稳定后, 打开射频溅射开关, 开始对 Ce02靶材表面进行预溅射处理;
步骤 8、将靶材与金属基带之间的距离调节到所需值,等靶面辉光稳定后, 将样品架的挡板阀打开, 开始镀膜;
步骤 9、 经过 Ce02隔离层镀膜工艺所需的时间后, 镀膜结束, 关闭射频 溅射开关,将射频电流和射频电压调至零,关闭加热器,关闭氩气和氧气, 关闭磁控溅射仪器, 待样品自然冷却至室温后, 取出样品。
4. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 3 中, 抽真空后腔体内的背景真空度为 lxlO-4-6xl(T4Pa。
5. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 4 中, Ce02隔离层镀膜工艺所需的温度值为 600-800。C。
6. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 5中, 气体的流量由质量流量计来控制, 氩气流 量为 10-20 sccm, 氧气流量为 5-10 sccm; 混合气体中氩气所占的比例为 50%-80%, 氧气所占的比例为 20%-50%; Ce02隔离层镀膜工艺所需的总 气压值为 3-24 Pa。
7. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 6中, Ce02隔离层镀膜工艺所需的射频电流值 为 100-160 mA, 射频电压值为 0.5-1.0 kV, 射频功率值为 50-160 W。
8. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于,所述的步骤 7中, Ce02靶材表面预溅射的时间为 5-10 min。
9. 如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 8中, 靶材与金属基带之间的距离为 3-10 cm。
10.如权利要求 3所述的制备基于 IBAD-MgO金属基带的简化隔离层的方法, 其特征在于, 所述的步骤 9中, Ce02隔离层镀膜工艺所需的镀膜时间为 2-5 h。
PCT/CN2013/001059 2013-05-14 2013-09-12 基于IBAD-MgO金属基带的简化隔离层及其制备方法 WO2014183237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310176921.9 2013-05-14
CN2013101769219A CN103215546A (zh) 2013-05-14 2013-05-14 基于IBAD-MgO金属基带的简化隔离层及其制备方法

Publications (1)

Publication Number Publication Date
WO2014183237A1 true WO2014183237A1 (zh) 2014-11-20

Family

ID=48813689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001059 WO2014183237A1 (zh) 2013-05-14 2013-09-12 基于IBAD-MgO金属基带的简化隔离层及其制备方法

Country Status (2)

Country Link
CN (1) CN103215546A (zh)
WO (1) WO2014183237A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
JP6104757B2 (ja) * 2013-08-27 2017-03-29 昭和電線ケーブルシステム株式会社 酸化物超電導線材及びその製造方法
CN103531305B (zh) * 2013-09-28 2016-02-17 北京工业大学 一种涂层导体用铜基/镍基复合长基带的制备方法
CN106024195B (zh) * 2016-05-20 2017-09-15 陕西国际商贸学院 一种尺寸可控的钨纳米点的制备方法
CN111485213A (zh) * 2020-04-28 2020-08-04 上海超导科技股份有限公司 一种适用于生产二代高温超导带材的工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162626A (zh) * 2006-10-13 2008-04-16 北京有色金属研究总院 一种双面高温超导薄膜多层结构及其制备方法
US20120064266A1 (en) * 2010-09-15 2012-03-15 Hon Hai Precision Industry Co., Ltd. Housing and method for manufacturing housing
CN102774074A (zh) * 2012-07-13 2012-11-14 上海超导科技股份有限公司 基于双轴织构金属基带的新型复合隔离层及制备方法
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN103233205A (zh) * 2013-05-14 2013-08-07 上海超导科技股份有限公司 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395847C (zh) * 2005-05-20 2008-06-18 清华大学 一种高温超导覆膜导体及其制备方法
CN101295560B (zh) * 2007-04-23 2010-06-30 北京有色金属研究总院 金属基带上生长的多层隔离层和ybco涂层导体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162626A (zh) * 2006-10-13 2008-04-16 北京有色金属研究总院 一种双面高温超导薄膜多层结构及其制备方法
US20120064266A1 (en) * 2010-09-15 2012-03-15 Hon Hai Precision Industry Co., Ltd. Housing and method for manufacturing housing
CN102774074A (zh) * 2012-07-13 2012-11-14 上海超导科技股份有限公司 基于双轴织构金属基带的新型复合隔离层及制备方法
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN103233205A (zh) * 2013-05-14 2013-08-07 上海超导科技股份有限公司 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法

Also Published As

Publication number Publication date
CN103215546A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5630941B2 (ja) 超伝導体被覆テープのための二軸配向フィルム堆積
CN103255369B (zh) 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
Paranthaman et al. YBa2Cu3O7-y− coated conductors with high engineering current density
JP2004530046A (ja) 2軸性の集合組織を有する結晶薄膜のバッファ層ならびに構造を作製するための方法及び装置
WO2014183237A1 (zh) 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN103695859B (zh) 超导带材用双面LaMnO3缓冲层的制备方法
CN102610322B (zh) 高温超导涂层导体双层缓冲层结构及其动态沉积方法
CN112981326A (zh) 一种金属基超导带材及其制备方法
JP5292054B2 (ja) 薄膜積層体とその製造方法及び酸化物超電導導体とその製造方法
CN102774074B (zh) 基于双轴织构金属基带的新型复合隔离层及制备方法
CN105648401B (zh) 高性能rebco多层膜、应用及其制备方法
JP2002075079A (ja) 高温超電導厚膜部材およびその製造方法
CN103233205A (zh) 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法
Gilioli et al. Co-evaporated YBCO/doped-CeO2/Ni–W coated conductors oxygen improved using a supersonic nozzle
Zhao et al. MOCVD-derived GdYBCO tapes with smooth surface and low Rs based on a new self-heating technology
JPH01166419A (ja) 超電導薄膜の作製方法
Tsaih et al. Growth of CeO2 films on sapphire and MgO by rf magnetron sputtering
Tang et al. Preparation of double-sided biaxially textured magnesium oxide thin films
Eremeev Review of RF properties of NbN and MgB2 thin coating on Nb samples and cavities
KR970009739B1 (ko) 고온초전도박막의 제조방법
JP3240686B2 (ja) 高品質な酸化物超電導薄膜および超電導接合の作製方法
CN116815108A (zh) 一种双轴织构的氧化镍缓冲层及其制备方法和应用
JPH01177362A (ja) 三層ペロブスカイト構造をもつLaA↓2Cu↓3O↓7↓−xの単結晶薄膜及びLaA↓2Cu↓3O↓7↓−x薄膜の製造法
CN112962075A (zh) 一种三靶共溅射制备第二代高温超导带材的方法
JPH09260733A (ja) 酸化物超電導体薄膜積層体及び酸化物超電導体薄膜積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884618

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13884618

Country of ref document: EP

Kind code of ref document: A1