WO2014192753A1 - 無段変速機 - Google Patents

無段変速機 Download PDF

Info

Publication number
WO2014192753A1
WO2014192753A1 PCT/JP2014/063990 JP2014063990W WO2014192753A1 WO 2014192753 A1 WO2014192753 A1 WO 2014192753A1 JP 2014063990 W JP2014063990 W JP 2014063990W WO 2014192753 A1 WO2014192753 A1 WO 2014192753A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
shaft
switching mechanism
output
input
Prior art date
Application number
PCT/JP2014/063990
Other languages
English (en)
French (fr)
Inventor
内野 智司
敦司 藤川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to MX2015015991A priority Critical patent/MX2015015991A/es
Priority to DE112014002579.8T priority patent/DE112014002579T5/de
Priority to BR112015028781A priority patent/BR112015028781A2/pt
Priority to CN201480025773.3A priority patent/CN105190101B/zh
Priority to US14/894,200 priority patent/US10030749B2/en
Priority to JP2015519872A priority patent/JP5922843B2/ja
Publication of WO2014192753A1 publication Critical patent/WO2014192753A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/025CVT's in which the ratio coverage is used more than once to produce the overall transmission ratio coverage, e.g. by shift to end of range, then change ratio in sub-transmission and shift CVT through range once again
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/026CVT layouts with particular features of reversing gear, e.g. to achieve compact arrangement

Definitions

  • the present invention relates to a continuously variable transmission in which a speed reduction mechanism and a speed increasing mechanism are combined with a belt type continuously variable transmission mechanism.
  • a continuously variable transmission that increases the overall gear ratio by combining a mode in which driving force is transmitted from one pulley to a second pulley and a mode in which driving force is transmitted from the second pulley to the first pulley is as follows. This is known from US Pat.
  • a first clutch and a second clutch are disposed at both ends of the input shaft connected to the engine, and the driving force of the input shaft is increased by the engagement of the first clutch.
  • This application establishes the LOW mode by transmitting to the first pulley, and establishing the HI mode by transmitting the driving force of the input shaft to the second pulley of the belt-type continuously variable transmission mechanism by engaging the second clutch.
  • PCT / JP2012 / 063029 International Publication No. WO2013 / 175568
  • the embodiment shown in FIG. 20 has the driving force of the engine E when the first clutch is engaged and the LOW mode is established. It is transmitted from the input shaft through the path of the first clutch ⁇ the first pulley ⁇ the endless belt ⁇ the second pulley ⁇ the dog clutch (output switching mechanism) supported on the input shaft ⁇ the differential gear. Since the torque transmitted in the LOW mode is larger than that in the HI mode, the dog clutch needs to be firmly supported so that it can withstand the large torque. However, since the dog clutch is not directly supported by the transmission case but supported via the input shaft, it is necessary to thicken the input shaft that does not transmit a large torque in order to firmly support the dog clutch, which increases the weight. There is a problem.
  • the present invention has been made in view of the above circumstances, and an object thereof is to directly support an output switching mechanism that is supported on the outer periphery of an input shaft and transmits a large torque in a LOW mode by a transmission case to increase support rigidity. .
  • an input shaft to which a driving force from a driving source is input a belt-type continuously variable transmission mechanism including a first pulley, a second pulley, and an endless belt
  • An output shaft that outputs the driving force shifted by the belt-type continuously variable transmission mechanism, a first input path that transmits the driving force from the driving source to the first pulley, and the driving force from the driving source.
  • a first input switching mechanism that switches to the first input path side, a speed reduction mechanism that is disposed in the first input path and decelerates an input to the first pulley, and a driving force from the driving source is applied to the second pulley.
  • a continuously variable transmission comprising: an output switching mechanism; and a second output switching mechanism that is disposed in the second output path and switches the driving force from the first pulley to the output shaft side.
  • the second pulley is a second fixed pulley and a second movable pulley
  • the first fixed pulley and the second fixed pulley are arranged at diagonal positions with respect to each other
  • the first movable pulley and the second movable pulley are arranged diagonally to each other
  • the first input switching mechanism is arranged on the input shaft or on the rotating shaft on the back surface of the first movable pulley of the first pulley
  • Second input switching The structure is disposed on the rotation shaft on the back surface of the second fixed pulley of the second pulley or on the input shaft, and the first output switching mechanism rotates relative to the outer periphery of the input shaft on the first output path.
  • the first feature is that the second output switching mechanism and the output shaft are disposed on a rotating shaft on the back surface of the first fixed pulley of the first pulley.
  • a continuously variable transmission is proposed.
  • the first output switching mechanism selectively selects the first drive gear and the second drive gear, which are rotatably supported by the sub shaft, as the sub shaft.
  • the first drive gear is connected to a driven gear provided on the output shaft
  • the second drive gear is connected to a driven gear provided on the output shaft via an idle shaft.
  • the first output switching mechanism is disposed at a position partially overlapping with the second output switching mechanism when viewed in the radial direction.
  • a continuously variable transmission having the third characteristic is proposed.
  • the gear ratio of the speed reduction mechanism is i red
  • the gear ratio of the speed increasing mechanism is i ind
  • the main input shaft 13 of the embodiment corresponds to the input shaft of the present invention
  • the LOW friction clutch 24A of the embodiment corresponds to the first input switching mechanism of the present invention
  • the HI friction clutch 24B of the embodiment corresponds to the second input switching mechanism of the present invention
  • the first reduction gear 25 and the second reduction gear 26 of the embodiment correspond to the reduction mechanism of the present invention
  • the first induction gear 27 and the second induction gear of the embodiment corresponds to the driven gear of the present invention.
  • the reverse drive gear 34 of the embodiment corresponds to the second drive gear of the present invention
  • the third reduction gear 39, the fourth reduction gear 40 of the embodiment, 5 reduction gear 29 and the sixth reduction gear 30 corresponds to a reduction gear of the present invention
  • the engine E of the embodiment corresponds to the drive source of the present invention.
  • the driving force from the driving source is calculated as follows: input shaft ⁇ first input switching mechanism and deceleration mechanism (or deceleration mechanism and first input switching mechanism) ⁇ first pulley ⁇ endless belt ⁇ first. 2 pulley ⁇ first output switching mechanism arranged in the first output path ⁇ transmitted through the path of the output shaft to establish the LOW mode, and the driving force from the drive source is input shaft ⁇ speed increasing mechanism and second input
  • the HI mode is established by transmission through a switching mechanism (or second input switching mechanism and speed increasing mechanism) ⁇ second pulley ⁇ endless belt ⁇ first pulley ⁇ second output switching mechanism ⁇ output shaft path.
  • the secondary shaft is disposed on the outer periphery of the input shaft so as to be relatively rotatable, and the first output switching mechanism is disposed on the secondary shaft.
  • the input shaft and the countershaft have a double pipe structure, and the subshaft that transmits large torque is placed on the outer periphery of the double pipe and directly supported by the transmission case, so that the first output can be achieved without any special reinforcement.
  • the switching mechanism can be supported with high rigidity.
  • the first input switching mechanism is disposed on the input shaft or the rotating shaft on the back surface of the first movable pulley of the first pulley
  • the second input switching mechanism is the rotating shaft on the back surface of the second fixed pulley of the second pulley.
  • the first output switching mechanism is disposed on the auxiliary shaft that is relatively rotatably fitted to the outer periphery of the input shaft on the first output path
  • the second output switching mechanism and the output shaft are disposed on the input shaft. Is arranged on the rotating shaft on the back surface of the first fixed pulley of the first pulley, so that the second input switching mechanism, the second By arranging the two-output switching mechanism and the output shaft, the continuously variable transmission can be reduced in size.
  • the first output switching mechanism is a dog clutch that can selectively couple the first drive gear and the second drive gear, which are rotatably supported on the sub shaft, to the sub shaft. Since the first drive gear is connected to the driven gear provided on the output shaft and the second drive gear is connected to the driven gear provided on the output shaft via the idle shaft, the LOW mode and An RVS mode can be selectively established.
  • the first output switching mechanism is disposed at a position where the first output switching mechanism partially overlaps the second output switching mechanism as viewed in the radial direction.
  • the continuously variable transmission can be reduced in size by arranging the output switching mechanism in a compact manner.
  • the gear ratio of the speed reduction mechanism is i red
  • the gear ratio of the speed increasing mechanism is i ind
  • the minimum ratio between the first pulley and the second pulley is i min
  • the gear ratio of the reduction gear arranged in one output path is i sec
  • the relationship i red ⁇ i min i ind
  • FIG. 1 is a skeleton diagram of a continuously variable transmission.
  • FIG. 2 is a torque flow diagram in the LOW mode.
  • FIG. 3 is a torque flow diagram in the transition mode 1.
  • FIG. 4 is a torque flow diagram in the transition mode 2.
  • FIG. 5 is a torque flow diagram in the HI mode.
  • FIG. 6 is a torque flow diagram in the reverse mode.
  • FIG. 7 is a torque flow diagram in the direct connection LOW mode.
  • FIG. 8 is a torque flow diagram in the direct connection HI mode.
  • FIG. 9 is an explanatory diagram of transition between the LOW mode and the HI mode.
  • FIG. 10 is a diagram showing the relationship between the gear ratio of the belt type continuously variable transmission mechanism and the overall gear ratio.
  • FIG. 11 is an explanatory diagram of the difference in overall transmission ratio between the present invention and the comparative example.
  • a continuously variable transmission T mounted on a vehicle is arranged in parallel to a main input shaft 13 connected to a crankshaft 11 of an engine E via a torque converter 12 and to the main input shaft 13.
  • the first auxiliary input shaft 13A, the second auxiliary input shaft 13B, the auxiliary shaft 14, the output shaft 15 and the idle shaft 16 are provided.
  • the cylindrical auxiliary shaft 14 is fitted on the outer periphery of the main input shaft 13 so as to be relatively rotatable.
  • the cylindrical output shaft 15 is fitted to the outer periphery of the first auxiliary input shaft 13A so as to be relatively rotatable.
  • the countershaft 14 is supported by the transmission case via bearings 17 and 17.
  • the belt-type continuously variable transmission mechanism 20 disposed between the first sub input shaft 13A and the second sub input shaft 13B includes a first pulley 21 provided on the first sub input shaft 13A and a second sub input shaft 13B.
  • a provided second pulley 22 and an endless belt 23 wound around the first and second pulleys 21 and 22 are provided.
  • the groove widths of the first and second pulleys 21 and 22 are increased or decreased in opposite directions by hydraulic pressure, and the gear ratio between the first auxiliary input shaft 13A and the second auxiliary input shaft 13B can be continuously changed.
  • the first pulley 21 includes a first fixed pulley 21A fixed to the first auxiliary input shaft 13A and a first movable pulley 21B that can approach and leave the first fixed pulley 21A.
  • the second pulley 22 includes a second fixed pulley 22A fixed to the second auxiliary input shaft 13B and a second movable pulley 22B that can approach and leave the second fixed pulley 22A.
  • the third reduction gear 39 fixed to the second input shaft 13B meshes with the fourth reduction gear 40 fixed to the auxiliary shaft 14, and the fifth reduction gear 29 and the fifth reduction gear 29 supported relatively rotatably on the auxiliary shaft 14 are output.
  • the sixth reduction gear 30 fixed to the shaft 15 meshes, and the final drive gear 31 integral with the sixth reduction gear 30 and the final driven gear 32 provided on the differential gear 33 mesh.
  • a reverse drive gear 34 rotatably supported on the countershaft 14 meshes with a reverse idle gear 35 fixed to the idle shaft 16, and a reverse driven gear 36 fixed to the idle shaft 16 meshes with the sixth reduction gear 30. .
  • a first output switching mechanism 37 composed of a dog clutch is provided on the outer periphery of the countershaft 14.
  • the first output switching mechanism 37 can switch between a neutral position, a right movement position, and a left movement position.
  • the fifth reduction gear 29 is coupled to the countershaft 14, and when it moves left from the neutral position, the reverse drive.
  • a gear 34 is coupled to the countershaft 14.
  • a second output switching mechanism 38 composed of a dog clutch is provided on the outer periphery of the first auxiliary input shaft 13A. The second output switching mechanism 38 can switch between a neutral position and a right movement position.
  • the sixth reduction gear 30 and the final drive gear 31 are coupled to the first sub input shaft 13A.
  • the rotation of the main input shaft 13 is decelerated by the first and second reduction gears 25 and 26 and transmitted to the first sub input shaft 13A.
  • the rotation of the main input shaft 13 is accelerated by the first and second induction gears 27 and 28 and transmitted to the second sub input shaft 13B.
  • the first reduction gear 25 and the second reduction gear 26 constitute a first input path IP1 of the present invention
  • the first induction gear 27 and the second induction gear 28 constitute a second input path IP2 of the present invention.
  • the third reduction gear 39, the fourth reduction gear 40, the fifth reduction gear 29, and the sixth reduction gear 30 constitute the first output path OP1 of the present invention, and between the first pulley 21 and the second output switching mechanism 38.
  • the first auxiliary input shaft 13A constitutes the second output path OP2 of the present invention.
  • the gear ratio from the first reduction gear 25 to the second reduction gear 26 is i red
  • the gear ratio from the first induction gear 27 to the second induction gear 28 is i ind
  • i sec i red / i ind gear A ratio
  • FIG. 2 shows the LOW mode of the continuously variable transmission T.
  • the LOW friction clutch 24A is engaged
  • the HI friction clutch 24B is disengaged
  • the first output switching mechanism 37 is operated to the right movement position (LOW position)
  • the second output switching mechanism 38 is in the neutral position. To be operated.
  • the driving force of the engine E is crankshaft 11 ⁇ torque converter 12 ⁇ main input shaft 13 ⁇ LOW friction clutch 24A ⁇ first reduction gear 25 ⁇ second reduction gear 26 ⁇ first auxiliary input shaft 13A ⁇ first pulley 21. ⁇ Endless belt 23 ⁇ Second pulley 22 ⁇ Second auxiliary input shaft 13B ⁇ Third reduction gear 39 ⁇ Fourth reduction gear 40 ⁇ Sub shaft 14 ⁇ First output switching mechanism 37 ⁇ Fifth reduction gear 29 ⁇ Sixth reduction gear 30 ⁇ output shaft 15 ⁇ final drive gear 31 ⁇ final driven gear 32 is transmitted to the differential gear 33 through a path.
  • the belt type continuously variable transmission mechanism 20 transmits driving force from the first auxiliary input shaft 13A side to the second auxiliary input shaft 13B side, and the overall transmission of the continuously variable transmission T is changed in accordance with the change of the transmission gear ratio. The ratio is changed.
  • FIG. 3 shows the first transition mode 1 in which the LOW mode shifts to the HI mode described later.
  • the transition mode 1 the LOW friction clutch 24A is engaged, the HI friction clutch 24B is disengaged, the first output switching mechanism 37 is operated to the right movement position (LOW position), and the second output switching mechanism 38 is moved to the right.
  • the moving position HI position
  • the above-described LOW mode and a direct connection LOW mode see FIG. 7 described later are simultaneously established.
  • FIG. 4 shows a transition mode 2 in the latter half of the transition from the LOW mode to the HI mode described later.
  • the transition mode 2 the LOW friction clutch 24A is disengaged, the HI friction clutch 24B is engaged, the first output switching mechanism 37 is operated to the right movement position (LOW position), and the second output switching mechanism 38 is moved to the right.
  • the moving position (HI position) an HI mode (see FIG. 5) described later and a direct connection HI mode (see FIG. 8) described later are simultaneously established.
  • Transition mode 1 and transition mode 2 are for smooth transition from the LOW mode to the HI mode, details of which will be described later.
  • FIG. 5 shows the HI mode of the continuously variable transmission T.
  • the LOW friction clutch 24A is disengaged, the HI friction clutch 24B is engaged, the first output switching mechanism 37 is operated to the neutral position, and the second output switching mechanism 38 is moved to the right position (HI position). To be operated.
  • the driving force of the engine E is: crankshaft 11 ⁇ torque converter 12 ⁇ main input shaft 13 ⁇ first induction gear 27 ⁇ second induction gear 28 ⁇ HI friction clutch 24B ⁇ second auxiliary input shaft 13B ⁇ second pulley 22 It is transmitted to the differential gear 33 through the path of the endless belt 23, the first pulley 21, the first auxiliary input shaft 13 A, the second output switching mechanism 38, the output shaft 15, the final drive gear 31, and the final driven gear 32.
  • the belt-type continuously variable transmission mechanism 20 transmits driving force from the second auxiliary input shaft 13B side to the first auxiliary input shaft 13A side, and the overall transmission of the continuously variable transmission T is changed in accordance with the change of the transmission gear ratio. The ratio is changed.
  • FIG. 6 shows the reverse mode of the continuously variable transmission T.
  • the reverse mode the LOW friction clutch 24A is engaged, the HI friction clutch 24B is disengaged, the first output switching mechanism 37 is operated to the left movement position (RVS position), and the second output switching mechanism 38 is in the neutral position. To be operated.
  • the driving force of the engine E is crankshaft 11 ⁇ torque converter 12 ⁇ main input shaft 13 ⁇ LOW friction clutch 24A ⁇ first reduction gear 25 ⁇ second reduction gear 26 ⁇ first auxiliary input shaft 13A ⁇ first pulley 21. ⁇ Endless belt 23 ⁇ second pulley 22 ⁇ second auxiliary input shaft 13B ⁇ third reduction gear 39 ⁇ fourth reduction gear 40 ⁇ sub shaft 14 ⁇ first output switching mechanism 37 ⁇ reverse drive gear 34 ⁇ reverse idle gear 35 ⁇ It is transmitted in reverse rotation to the differential gear 33 through the path of the idle shaft 16 ⁇ the reverse driven gear 36 ⁇ the sixth reduction gear 30 ⁇ the output shaft 15 ⁇ the final drive gear 31 ⁇ the final driven gear 32.
  • the belt-type continuously variable transmission mechanism 20 transmits driving force from the first auxiliary input shaft 13A side to the second auxiliary input shaft 13B side, and the overall transmission of the continuously variable transmission T is changed according to the change in the transmission gear ratio. The ratio is changed.
  • FIG. 7 shows the direct connection LOW mode of the continuously variable transmission T.
  • the direct connection LOW mode the LOW friction clutch 24A is engaged, the HI friction clutch 24B is disengaged, the first output switching mechanism 37 is operated to the neutral position, and the second output switching mechanism 38 is moved to the right position (HI position). ).
  • the driving force of the engine E is crankshaft 11 ⁇ torque converter 12 ⁇ main input shaft 13 ⁇ LOW friction clutch 24A ⁇ first reduction gear 25 ⁇ second reduction gear 26 ⁇ first auxiliary input shaft 13A ⁇ second output switching. It is transmitted to the differential gear 33 through the path of the mechanism 38 ⁇ the output shaft 15 ⁇ the final drive gear 31 ⁇ the final driven gear 32.
  • the belt-type continuously variable transmission mechanism 20 does not operate, and the overall transmission ratio of the continuously variable transmission T is constant.
  • FIG. 8 shows the direct connection HI mode of the continuously variable transmission T.
  • the direct connection HI mode the LOW friction clutch 24A is disengaged, the HI friction clutch 24B is engaged, the first output switching mechanism 37 is operated to the right movement position (LOW position), and the second output switching mechanism 38 is neutral. Manipulated into position.
  • the driving force of the engine E is crankshaft 11 ⁇ torque converter 12 ⁇ main input shaft 13 ⁇ first induction gear 27 ⁇ second induction gear 28 ⁇ HI friction clutch 24B ⁇ second auxiliary input shaft 13B ⁇ third reduction gear.
  • the belt-type continuously variable transmission mechanism 20 does not operate and the overall transmission ratio of the continuously variable transmission T is constant.
  • the overall transmission ratio of the continuously variable transmission T is the same, thereby preventing a shift shock from occurring when the LOW mode is switched to the HI mode.
  • the second output switching mechanism 38 moves rightward to the HI position during the transition from the LOW mode to the transition mode 1
  • the LOW friction clutch 24A and the HI friction clutch 24B are interchanged during the transition from the transition mode 1 to the transition mode 2.
  • the first output switching mechanism 37 moves leftward to the neutral position at the time of transition from the transition mode 2 to the HI mode, the first output switching mechanism 37 and the second output switching mechanism 38 are prevented from causing differential rotation.
  • the LOW friction clutch 24A and the HI friction clutch 24B can be smoothly operated.
  • the gear ratio i red from the first reduction gear 25 to the second reduction gear 26 is 1.5 and the gear ratio i ind from the first induction gear 27 to the second induction gear 28 is assumed. Is set to 0.75, the minimum transmission ratio i min from the first pulley 21 to the second pulley 22 of the belt-type continuously variable transmission mechanism 20 is set to 0.5, the third reduction gear 39 to the fourth reduction gear 40 and the fifth The gear ratio i sec to the sixth reduction gear 30 through the reduction gear 29 is set to 2.0, and the rotation speed of the main input shaft 13 is set to 1500 rpm.
  • the power transmission path in the transition mode 1 includes a power transmission path in the LOW mode and a power transmission path in the direct connection LOW mode.
  • the HI mode power transmission path and the direct connection HI power transmission path coexist in the transition mode 2 power transmission path.
  • the second sub-transmission path is used.
  • the main input shaft 13, the first sub input shaft 13A, the second sub input shaft 13B, the sub shaft 14 and the output shaft. 15 does not change at all, and the speed ratio of the belt type continuously variable transmission mechanism 20 is maintained at i min , so that the first output switching mechanism 37, the second output switching mechanism 38, the LOW friction clutch 24A and the HI
  • the friction clutch 24B can be operated smoothly without any differential rotation.
  • the belt type continuously variable transmission mechanism 20 transmits power from the first pulley 21 to the second pulley 22 to the second pulley 22 to the first pulley 21.
  • torque transmission is temporarily interrupted to switch to the state.
  • the direct connection LOW mode and the direct connection HI mode are established and torque is transmitted, so that it is possible to prevent the occurrence of shock due to the interruption of torque transmission.
  • the belt-type continuously variable transmission mechanism 20 includes the first reduction gear 25, the second reduction gear 26, the third reduction gear 39, the fourth reduction gear 40, and the fifth reduction gear 29.
  • a single belt-type continuously variable transmission mechanism is obtained by combining a speed reduction mechanism including the first induction gear 27 and the second induction gear 28 and a speed reduction mechanism including the sixth reduction gear 30.
  • both the LOW-side transmission ratio and the OD-side transmission ratio can be expanded to realize a large overall transmission ratio of 10 or more (see FIG. 11).
  • the overall transmission ratio when the transmission ratio of the belt-type continuously variable transmission mechanism 20 is 1.0 is the overall transmission ratio at the OD end of the single belt-type continuously variable transmission mechanism. It can be seen that the effect of increasing the gear ratio on the OD side is particularly remarkable.
  • the first output switching mechanism 37 has a double tube structure in which the cylindrical auxiliary shaft 14 is fitted to the outer periphery of the inner output shaft 15, and the auxiliary shaft 14 that transmits a large torque is connected to the outer periphery of the double tube.
  • the first output switching mechanism 37 can be provided without any special reinforcement by supporting the main input shaft 13 that is disposed on the side and directly supported by the transmission case, and that supports the main input shaft 13 that transmits a relatively small torque via the auxiliary shaft 14. It becomes possible to support with high rigidity.
  • the first output switching mechanism 37 is constituted by a dog clutch capable of selectively coupling the fifth reduction gear 29 and the reverse drive gear 34 supported on the auxiliary shaft 14 to be rotatable relative to the auxiliary shaft 14.
  • the drag resistance can be reduced as compared with the case of using the LOW mode, and the LOW mode and the RVS mode can be selectively established only by operating the first output switching mechanism 37 with a single actuator.
  • the structure can be simplified.
  • first fixed pulley 21A of the first pulley 21 and the second fixed pulley 22A of the second pulley 22 are arranged at diagonal positions
  • the second movable pulley 21B of the first pulley 21 and the second of the second pulley 22 are second.
  • the movable pulley 22B is disposed at a diagonal position
  • the HI friction clutch 24B and the second induction gear 28 are disposed on the back side of the second fixed pulley 22A
  • the second output switching mechanism is disposed on the back side of the first fixed pulley 21A.
  • 38 and the output shaft 15 are disposed
  • the first output switching mechanism 37 is disposed at a position partially overlapping with the second output switching mechanism 38 when viewed in the radial direction.
  • the size of the continuously variable transmission T can be reduced by effectively utilizing the dead space formed on the back side of the 22A.
  • the LOW friction clutch 24A is disposed on the main input shaft 13 and the HI friction clutch 24B is disposed on the second sub input shaft 13B.
  • the LOW friction clutch 24A is disposed on the first sub input shaft 13A.
  • the HI friction clutch 24 ⁇ / b> B may be disposed on the main input shaft 13.
  • the drive source of the present invention is not limited to the engine E, and may be another type of drive source such as a motor / generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Structure Of Transmissions (AREA)

Abstract

無段変速機において、駆動源(E)からの駆動力は、入力軸(13)→第1入力切換機構(24A)→第1リダクションギヤ(25)→第2リダクションギヤ(26)→第1副入力軸(13A)→第1プーリ(21)→無端ベルト(23)→第2プーリ(22)→第2副入力軸(13B)→第3リダクションギヤ(39)→第4リダクションギヤ(40)→第1出力切換機構(37)→第5リダクションギヤ(29)→第6リダクションギヤ(30)→出力軸(15)の経路で伝達されてLOWモードが確立する。LOWモードにおいて伝達される大きいトルクは第1出力切換機構(37)を通過するが、副軸(14)が入力軸(13)の外周に相対回転自在に配置され、かつ第1出力切換機構(37)が副軸(14)上に配置されるので、大きいトルクを伝達する副軸(14)を二重管の外周側に配置して直接ミッションケースで支持し、比較的に小さいトルクを伝達する入力軸(13)を副軸(14)を介して支持することで、特別の補強を施すことなく第1出力切換機構(37)を高剛性で支持することが可能となる。

Description

無段変速機
 本発明は、ベルト式無段変速機構に減速機構および増速機構を組み合わせた無段変速機に関する。
 入力軸と、出力軸と、第1プーリおよび第2プーリを無端ベルトで接続したベルト式無段変速機構と、入力軸および第1プーリをギヤ列を介して接続するクラッチと、入力軸および第2プーリをギヤ列を介して接続するクラッチと、出力軸および第1プーリをギヤ列を介して接続するクラッチと、出力軸および第2プーリをギヤ列を介して接続するクラッチとを備え、第1プーリから第2プーリに駆動力を伝達するモードと、第2プーリから第1プーリに駆動力を伝達するモードとを組み合わせることで、オーバーオール変速比の拡大を図った無段変速機が、下記特許文献1により公知である。
 また、かかる無段変速機において、エンジンに接続された入力軸の両端に第1クラッチおよび第2クラッチを配置し、第1クラッチの係合により入力軸の駆動力をベルト式無段変速機構の第1プーリに伝達してLOWモードを確立し、第2クラッチの係合により入力軸の駆動力をベルト式無段変速機構の第2プーリに伝達してHIモードを確立するものが、本出願人により出願されたPCT/JP2012/063029(国際公開第WO2013/175568号公報)で提案されている。
日本特表2010-530503号公報
 ところで、上記PCT/JP2012/063029により提案された無段変速機のうち、図20に示される実施の形態は、第1クラッチを係合してLOWモードを確立したとき、エンジンEの駆動力が入力軸から第1クラッチ→第1プーリ→無端ベルト→第2プーリ→入力軸上に支持されたドグクラッチ(出力切換機構)→ディファレンシャルギヤの経路で伝達される。LOWモードではHIモードに比べて伝達されるトルクが大きくなるため、前記ドグクラッチは大きなトルクに耐え得るように強固に支持する必要がある。しかしながら、ドグクラッチは直接ミッションケースに支持されずに入力軸を介して支持されるため、ドグクラッチを強固に支持するためには大きなトルクを伝達しない入力軸を太くする必要が有り、そのために重量が増加してしまう問題がある。
 本発明は前述の事情に鑑みてなされたもので、入力軸の外周に支持されてLOWモードで大きなトルクを伝達する出力切換機構を直接ミッションケースで支持して支持剛性を高めることを目的とする。
 上記目的を達成するために、本発明によれば、駆動源からの駆動力が入力される入力軸と、第1プーリ、第2プーリおよび無端ベルトで構成されるベルト式無段変速機構と、前記ベルト式無段変速機構で変速された駆動力を出力する出力軸と、前記駆動源からの駆動力を前記第1プーリに伝達する第1入力経路と、前記駆動源からの駆動力を前記第1入力経路側に切り換える第1入力切換機構と、前記第1入力経路に配置されて前記第1プーリへの入力を減速する減速機構と、前記駆動源からの駆動力を前記第2プーリに伝達する第2入力経路と、前記駆動源からの駆動力を前記第2入力経路側に切り換える第2入力切換機構と、前記第2入力経路に配置されて前記第2プーリへの入力を増速する増速機構と、前記第2プーリからの駆動力を出力する第1出力経路と、前記第1プーリからの駆動力を出力する第2出力経路と、前記第1出力経路に配置されて第2プーリからの駆動力を前記出力軸側に切り換える第1出力切換機構と、前記第2出力経路に配置されて第1プーリからの駆動力を前記出力軸側に切り換える第2出力切換機構とを備える無段変速機であって、前記第1プーリは第1固定プーリおよび第1可動プーリからなり、前記第2プーリは第2固定プーリおよび第2可動プーリからなり、前記第1固定プーリおよび第2固定プーリは相互に対角位置に配置され、前記第1可動プーリおよび第2可動プーリは相互に対角位置に配置され、前記第1入力切換機構は、前記入力軸上あるいは前記第1プーリの第1可動プーリの背面の回転軸上に配置され、前記第2入力切換機構は、前記第2プーリの第2固定プーリの背面の回転軸上あるいは前記入力軸上に配置され、前記第1出力切換機構は、前記第1出力経路上において前記入力軸の外周に相対回転自在に嵌合する副軸上に配置され、前記第2出力切換機構および前記出力軸は、前記第1プーリの第1固定プーリの背面の回転軸上に配置されることを第1の特徴とする無段変速機が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記第1出力切換機構は、前記副軸に相対回転自在に支持した第1ドライブギヤおよび第2ドライブギヤを該副軸に選択的に結合可能なドグクラッチで構成され、前記第1ドライブギヤは前記出力軸に設けたドリブンギヤに接続され、前記第2ドライブギヤはアイドル軸を経由して前記出力軸に設けたドリブンギヤに接続されることを第2の特徴とする無段変速機が提案される。
 また本発明によれば、前記第1または第2の特徴に加えて、前記第1出力切換機構は径方向に見て前記第2出力切換機構と一部がオーバーラップする位置に配置されることを第3の特徴とする無段変速機が提案される。
 また本発明によれば、前記第1~第3の何れか1つの特徴に加えて、前記減速機構のギヤ比をired とし、前記増速機構のギヤ比をiind とし、前記第1プーリおよび前記第2プーリ間の最小レシオをimin とし、前記第1出力経路に配置されるリダクションギヤのギヤ比をisec としたとき、ired ×imin =iind の関係と、isec =ired /iind の関係とが成立することを第4の特徴とする無段変速機が提案される。
 尚、実施の形態の主入力軸13は本発明の入力軸に対応し、実施の形態のLOW摩擦クラッチ24Aは本発明の第1入力切換機構に対応し、実施の形態のHI摩擦クラッチ24Bは本発明の第2入力切換機構に対応し、実施の形態の第1リダクションギヤ25および第2リダクションギヤ26は本発明の減速機構に対応し、実施の形態の第1インダクションギヤ27および第2インダクションギヤ28は本発明の増速機構に対応し、実施の形態の第5リダクションギヤ29は本発明の第1ドライブギヤに対応し、実施の形態の第6リダクションギヤ30は本発明のドリブンギヤに対応し、実施の形態のリバースドライブギヤ34は本発明の第2ドライブギヤに対応し、実施の形態の第3リダクションギヤ39、第4リダクションギヤ40、第5リダクションギヤ29および第6リダクションギヤ30は本発明のリダクションギヤに対応し、実施の形態のエンジンEは本発明の駆動源に対応する。
 本発明の第1の特徴によれば、駆動源からの駆動力は、入力軸→第1入力切換機構および減速機構(あるいは減速機構および第1入力切換機構)→第1プーリ→無端ベルト→第2プーリ→第1出力経路に配置された第1出力切換機構→出力軸の経路で伝達されてLOWモードが確立し、また駆動源からの駆動力は、入力軸→増速機構および第2入力切換機構(あるいは第2入力切換機構および増速機構)→第2プーリ→無端ベルト→第1プーリ→第2出力切換機構→出力軸の経路で伝達されてHIモードが確立する。
 LOWモードにおいて伝達される大きいトルクは第1出力切換機構を通過するが、副軸が入力軸の外周に相対回転自在に配置され、かつ第1出力切換機構が副軸上に配置されるので、入力軸および副軸が二重管構造になり、大きいトルクを伝達する副軸を二重管の外周側に配置して直接ミッションケースで支持することで、特別の補強を施すことなく第1出力切換機構を高剛性で支持することが可能となる。
 しかも第1入力切換機構は、入力軸上あるいは第1プーリの第1可動プーリの背面の回転軸上に配置され、第2入力切換機構は、第2プーリの第2固定プーリの背面の回転軸上あるいは前記入力軸上に配置され、第1出力切換機構は、第1出力経路上において入力軸の外周に相対回転自在に嵌合する副軸上に配置され、第2出力切換機構および出力軸は、第1プーリの第1固定プーリの背面の回転軸上に配置されるので、第1、第2固定プーリの背面側に形成されるデッドスペースを有効利用して第2入力切換機構、第2出力切換機構および出力軸を配置することで、無段変速機の小型化を図ることができる。
 また本発明の第2の特徴によれば、第1出力切換機構は、副軸に相対回転自在に支持した第1ドライブギヤおよび第2ドライブギヤを該副軸に選択的に結合可能なドグクラッチで構成され、第1ドライブギヤは出力軸に設けたドリブンギヤに接続され、第2ドライブギヤはアイドル軸を経由して出力軸に設けたドリブンギヤに接続されるので、第1出力切換機構によりLOWモードおよびRVSモードを選択的に確立することができる。
 また本発明の第3の特徴によれば、第1出力切換機構は径方向に見て第2出力切換機構と一部がオーバーラップする位置に配置されるので、第1出力切換機構および第2出力切換機構をコンパクトに配置して無段変速機の小型化を図ることができる。
 また本発明の第4の特徴によれば、減速機構のギヤ比をired とし、増速機構のギヤ比をiind とし、第1プーリおよび第2プーリ間の最小レシオをimin とし、第1出力経路に配置されるリダクションギヤのギヤ比をisec としたとき、ired ×imin =iind の関係と、isec =ired /iind の関係とが成立するので、LOWモードおよびHIモード間の移行時に第1出力切換機構および第2出力切換機構を差回転のない状態でスムーズに作動させることができる。
図1は無段変速機のスケルトン図である。(第1の実施の形態) 図2はLOWモードのトルクフロー図である。(第1の実施の形態) 図3は移行モード1のトルクフロー図である。(第1の実施の形態) 図4は移行モード2のトルクフロー図である。(第1の実施の形態) 図5はHIモードのトルクフロー図である。(第1の実施の形態) 図6は後進モードのトルクフロー図である。(第1の実施の形態) 図7は直結LOWモードのトルクフロー図である。(第1の実施の形態) 図8は直結HIモードのトルクフロー図である。(第1の実施の形態) 図9はLOWモードおよびHIモード間の移行の説明図である。(第1の実施の形態) 図10はベルト式無段変速機構の変速比とオーバーオール変速比との関係を示す図である。(第1の実施の形態) 図11は本願発明および比較例のオーバーオール変速比の違いの説明図である。(第1の実施の形態)
13    主入力軸(入力軸)
14    副軸
15    出力軸
16    アイドル軸
20    ベルト式無段変速機構
21    第1プーリ
21A   第1固定プーリ
21B   第1可動プーリ
22    第2プーリ
22A   第2固定プーリ
22B   第2可動プーリ
23    無端ベルト
24A   LOW摩擦クラッチ(第1入力切換機構)
24B   HI摩擦クラッチ(第2入力切換機構)
25    第1リダクションギヤ(減速機構)
26    第2リダクションギヤ(減速機構)
27    第1インダクションギヤ(増速機構)
28    第2インダクションギヤ(増速機構)
29    第5リダクションギヤ(第1ドライブギヤあるいはリダクションギヤ)
30    第6リダクションギヤ(ドリブンギヤあるいはリダクションギヤ)
34    リバースドライブギヤ(第2ドライブギヤ)
37    第1出力切換機構
38    第2出力切換機構
39    第3リダクションギヤ(リダクションギヤ)
40    第4リダクションギヤ(リダクションギヤ)
E     エンジン(駆動源)
IP1   第1入力経路
IP2   第2入力経路
OP1   第1出力経路
OP2   第2出力経路
 以下、図1~図11に基づいて本発明の実施の形態を説明する。
第1の実施の形態
 図1に示すように、車両に搭載される無段変速機TはエンジンEのクランクシャフト11にトルクコンバータ12を介して接続された主入力軸13と、主入力軸13に対して平行に配置された第1副入力軸13A、第2副入力軸13B、副軸14、出力軸15およびアイドル軸16とを備え、筒状の副軸14は主入力軸13の外周に相対回転自在に嵌合し、筒状の出力軸15は第1副入力軸13Aの外周に相対回転自在に嵌合する。副軸14はベアリング17,17を介してミッションケースに支持される。
 主入力軸13に相対回転自在に支持した第1リダクションギヤ25と、第1副入力軸13Aに固設した第2リダクションギヤ26とが噛合しており、第1リダクションギヤ25はLOW摩擦クラッチ24Aを介して主入力軸13に結合可能である。また主入力軸13に固設した第1インダクションギヤ27と第2副入力軸13Bに相対回転自在に支持した第2インダクションギヤ28とが噛合しており、第2インダクションギヤ28はHI摩擦クラッチ24Bを介して第2副入力軸13Bに結合可能である。
 第1副入力軸13Aおよび第2副入力軸13B間に配置されたベルト式無段変速機構20は、第1副入力軸13Aに設けられた第1プーリ21と、第2副入力軸13Bに設けられた第2プーリ22と、第1、第2プーリ21,22に巻き掛けられた無端ベルト23とを備える。第1、第2プーリ21,22の溝幅は油圧によって相互に逆方向に増減し、第1副入力軸13Aおよび第2副入力軸13B間の変速比を連続的に変化させることができる。第1プーリ21は、第1副入力軸13Aに固定された第1固定プーリ21Aと、第1固定プーリ21Aに対して接近・離反可能な第1可動プーリ21Bとで構成される。また第2プーリ22は、第2副入力軸13Bに固定された第2固定プーリ22Aと、第2固定プーリ22Aに対して接近・離反可能な第2可動プーリ22Bとで構成される。
 また第2入力軸13Bに固設した第3リダクションギヤ39と副軸14に固設した第4リダクションギヤ40とが噛合し、副軸14に相対回転自在に支持した第5リダクションギヤ29と出力軸15に固設した第6リダクションギヤ30とが噛合し、第6リダクションギヤ30と一体のファイナルドライブギヤ31とディファレンシャルギヤ33に設けたファイナルドリブンギヤ32とが噛合する。副軸14に相対回転自在に支持したリバースドライブギヤ34とアイドル軸16に固設したリバースアイドルギヤ35とが噛合し、アイドル軸16に固設したリバースドリブンギヤ36が第6リダクションギヤ30に噛合する。
 副軸14の外周にドグクラッチよりなる第1出力切換機構37が設けられる。第1出力切換機構37は中立位置、右動位置および左動位置を切り換え可能であり、中立位置から右動すると第5リダクションギヤ29が副軸14に結合され、中立位置から左動するとリバースドライブギヤ34が副軸14に結合される。第1副入力軸13Aの外周にドグクラッチよりなる第2出力切換機構38が設けられる。第2出力切換機構38は中立位置および右動位置を切り換え可能であり、中立位置から右動すると第6リダクションギヤ30およびファイナルドライブギヤ31が第1副入力軸13Aに結合される。
 第1、第2リダクションギヤ25,26により、主入力軸13の回転は減速して第1副入力軸13Aに伝達される。一方、第1、第2インダクションギヤ27,28により、主入力軸13の回転は増速して第2副入力軸13Bに伝達される。第1リダクションギヤ25および第2リダクションギヤ26は本発明の第1入力経路IP1を構成し、第1インダクションギヤ27および第2インダクションギヤ28は本発明の第2入力経路IP2を構成する。また第3リダクションギヤ39、第4リダクションギヤ40、第5リダクションギヤ29および第6リダクションギヤ30は本発明の第1出力経路OP1を構成し、第1プーリ21および第2出力切換機構38間の第1副入力軸13Aは本発明の第2出力経路OP2を構成する。
 第1リダクションギヤ25から第2リダクションギヤ26へのギヤ比をired とし、第1インダクションギヤ27から第2インダクションギヤ28へのギヤ比をiind とし、ベルト式無段変速機構20の第1プーリ21から第2プーリ22への最小変速比をimin とすると、ired ×imin =iind となるように各ギヤ比が設定される。また第3リダクションギヤ39から第4リダクションギヤ40および第5リダクションギヤ29を経て第6リダクションギヤ30へのギヤ比をisec としたとき、isec =ired /iind となるように各ギヤ比が設定される。
 図2には、無段変速機TのLOWモードが示される。LOWモードでは、LOW摩擦クラッチ24Aが係合し、HI摩擦クラッチ24Bが係合解除し、第1出力切換機構37が右動位置(LOW位置)に操作され、第2出力切換機構38が中立位置に操作される。
 その結果、エンジンEの駆動力はクランクシャフト11→トルクコンバータ12→主入力軸13→LOW摩擦クラッチ24A→第1リダクションギヤ25→第2リダクションギヤ26→第1副入力軸13A→第1プーリ21→無端ベルト23→第2プーリ22→第2副入力軸13B→第3リダクションギヤ39→第4リダクションギヤ40→副軸14→第1出力切換機構37→第5リダクションギヤ29→第6リダクションギヤ30→出力軸15→ファイナルドライブギヤ31→ファイナルドリブンギヤ32の経路でディファレンシャルギヤ33に伝達される。
 LOWモードにおいて、ベルト式無段変速機構20は第1副入力軸13A側から第2副入力軸13B側に駆動力を伝達し、その変速比の変更に応じて無段変速機Tのオーバーオール変速比が変更される。
 図3には、前記LOWモードから後記HIモードに移行する前半の移行モード1が示される。移行モード1では、LOW摩擦クラッチ24Aが係合し、HI摩擦クラッチ24Bが係合解除し、第1出力切換機構37が右動位置(LOW位置)に操作され、第2出力切換機構38が右動位置(HI位置)に操作され、前述したLOWモードと後述する直結LOWモード(図7参照)とが同時に確立する。
 図4には、前記LOWモードから後記HIモードに移行する後半の移行モード2が示される。移行モード2では、LOW摩擦クラッチ24Aが係合解除し、HI摩擦クラッチ24Bが係合し、第1出力切換機構37が右動位置(LOW位置)に操作され、第2出力切換機構38が右動位置(HI位置)に操作され、後述するHIモード(図5参照)と後述する直結HIモード(図8参照)とが同時に確立する。
 移行モード1および移行モード2はLOWモードからHIモードへの移行をスムーズに行うためのものであり、その詳細は後述する。
 図5には、無段変速機TのHIモードが示される。HIモードでは、LOW摩擦クラッチ24Aが係合解除し、HI摩擦クラッチ24Bが係合し、第1出力切換機構37が中立位置に操作され、第2出力切換機構38が右動位置(HI位置)に操作される。
 その結果、エンジンEの駆動力はクランクシャフト11→トルクコンバータ12→主入力軸13→第1インダクションギヤ27→第2インダクションギヤ28→HI摩擦クラッチ24B→第2副入力軸13B→第2プーリ22→無端ベルト23→第1プーリ21→第1副入力軸13A→第2出力切換機構38→出力軸15→ファイナルドライブギヤ31→ファイナルドリブンギヤ32の経路でディファレンシャルギヤ33に伝達される。
 HIモードにおいて、ベルト式無段変速機構20は第2副入力軸13B側から第1副入力軸13A側に駆動力を伝達し、その変速比の変更に応じて無段変速機Tのオーバーオール変速比が変更される。
 図6には、無段変速機Tの後進モードが示される。後進モードでは、LOW摩擦クラッチ24Aが係合し、HI摩擦クラッチ24Bが係合解除し、第1出力切換機構37が左動位置(RVS位置)に操作され、第2出力切換機構38が中立位置に操作される。
 その結果、エンジンEの駆動力はクランクシャフト11→トルクコンバータ12→主入力軸13→LOW摩擦クラッチ24A→第1リダクションギヤ25→第2リダクションギヤ26→第1副入力軸13A→第1プーリ21→無端ベルト23→第2プーリ22→第2副入力軸13B→第3リダクションギヤ39→第4リダクションギヤ40→副軸14→第1出力切換機構37→リバースドライブギヤ34→リバースアイドルギヤ35→アイドル軸16→リバースドリブンギヤ36→第6リダクションギヤ30→出力軸15→ファイナルドライブギヤ31→ファイナルドリブンギヤ32の経路でディファレンシャルギヤ33に逆回転で伝達される。
 後進モードにおいて、ベルト式無段変速機構20は第1副入力軸13A側から第2副入力軸13B側に駆動力を伝達し、その変速比の変更に応じて無段変速機Tのオーバーオール変速比が変更される。
 図7には、無段変速機Tの直結LOWモードが示される。直結LOWモードでは、LOW摩擦クラッチ24Aが係合し、HI摩擦クラッチ24Bが係合解除し、第1出力切換機構37が中立位置に操作され、第2出力切換機構38が右動位置(HI位置)に操作される。
 その結果、エンジンEの駆動力はクランクシャフト11→トルクコンバータ12→主入力軸13→LOW摩擦クラッチ24A→第1リダクションギヤ25→第2リダクションギヤ26→第1副入力軸13A→第2出力切換機構38→出力軸15→ファイナルドライブギヤ31→ファイナルドリブンギヤ32の経路でディファレンシャルギヤ33に伝達される。
 直結LOWモードにおいて、ベルト式無段変速機構20は作動せず、無段変速機Tのオーバーオール変速比は一定である。
 図8には、無段変速機Tの直結HIモードが示される。直結HIモードでは、LOW摩擦クラッチ24Aが係合解除し、HI摩擦クラッチ24Bが係合し、第1出力切換機構37が右動位置(LOW位置)に操作され、第2出力切換機構38が中立位置に操作される。
 その結果、エンジンEの駆動力はクランクシャフト11→トルクコンバータ12→主入力軸13→第1インダクションギヤ27→第2インダクションギヤ28→HI摩擦クラッチ24B→第2副入力軸13B→第3リダクションギヤ39→第4リダクションギヤ40→副軸14→第1出力切換機構37→第5リダクションギヤ29→第6リダクションギヤ30→出力軸15→ファイナルドライブギヤ31→ファイナルドリブンギヤ32の経路でディファレンシャルギヤ33に伝達される。
 直結HIモードにおいて、ベルト式無段変速機構20は作動せず、無段変速機Tのオーバーオール変速比は一定である。
 次に、LOWモードからHIモードへの移行時の作用を説明する。
 図9に示すように、図2に示すLOWモードでベルト式無段変速機構20の第1プーリ21から第2プーリ22への変速比が次第に減少して最小変速比imin に達したときに、それまで中立位置にあった第2出力切換機構38を右動位置(HI位置)に操作し、図3に示す移行モード1とする。続いて、LOW摩擦クラッチ24AおよびHI摩擦クラッチ24Bの係合関係を入れ換えて図4に示す移行モード2とした後、右動位置(LOW位置)にあった第1出力切換機構37を中立位置に操作し、図5に示すHIモードとする。
 LOWモードの最後およびHIモードの最初において、無段変速機Tのオーバーオール変速比は一致しており、これによりLOWモードからHIモードに切り換わるときの変速ショックの発生が防止される。LOWモードから移行モード1への移行時に第2出力切換機構38がHI位置に右動するとき、移行モード1から移行モード2への移行時にLOW摩擦クラッチ24AおよびHI摩擦クラッチ24Bが入れ代わって係合するとき、移行モード2からHIモードへの移行時に第1出力切換機構37が中立位置に左動するとき、差回転が発生しないようにして第1出力切換機構37、第2出力切換機構38、LOW摩擦クラッチ24AおよびHI摩擦クラッチ24Bのスムーズな作動を可能にしている。
 これを詳しく説明するために、仮に、第1リダクションギヤ25から第2リダクションギヤ26へのギヤ比ired を1.5とし、第1インダクションギヤ27から第2インダクションギヤ28へのギヤ比iind を0.75とし、ベルト式無段変速機構20の第1プーリ21から第2プーリ22への最小変速比imin を0.5とし、第3リダクションギヤ39から第4リダクションギヤ40および第5リダクションギヤ29を経て第6リダクションギヤ30へのギヤ比isec を2.0とし、主入力軸13の回転数を1500rpmとする。
 移行モード1の動力伝達経路には、LOWモードの動力伝達経路と直結LOWモードの動力伝達路とが併存するが、LOWモードの動力伝達経路では、主入力軸13が1500rpmで回転すると、第1副入力軸13Aは第1、第2リダクションギヤ25,26によりired =1.5で減速されて1000rpmとなり、第2副入力軸13Bはベルト式無段変速機構20によりimin =0.5で増速されて2000rpmとなり、出力軸15は第3リダクションギヤ39、第4リダクションギヤ40、第5リダクションギヤ29および第6リダクションギヤ30によりiind =2.0で減速されて1000rpmで回転する。一方、直結LOWモードの動力伝達経路では、主入力軸13が1500rpmで回転すると、第1副入力軸13Aは第1、第2リダクションギヤ25,26によりiRED =1.5で減速されて1000rpmとなり、第1副入力軸13Aに直結された出力軸15は1000rpmで回転する。
 移行モード2の動力伝達経路には、HIモードの動力伝達経路と直結HIの動力伝達経路とが併存するが、HIモードの動力伝達経路では、主入力軸13が1500rpmで回転すると、第2副入力軸13Bは第1、第2インダクションギヤ27,28によりiind=0.75で増速されて2000rpmとなり、第1副入力軸13Aはベルト式無段変速機構20により1/imin =2.0で減速されて1000rpmとなり、第1副入力軸13Aに直結された出力軸15は1000rpmで回転する。一方、直結HIモードの動力伝達経路では、主入力軸13が1500rpmで回転すると、第2副入力軸13Bは第1、第2インダクションギヤ27,28によりiind =0.75で増速されて2000rpmとなり、出力軸15は第3リダクションギヤ39、第4リダクションギヤ40、第5リダクションギヤ29および第6リダクションギヤ30によりiind =2.0で減速されて1000rpmで回転する。
 以上のように、LOWモード、移行モード1、移行モード2およびHIモードの間で変速するとき、主入力軸13、第1副入力軸13A、第2副入力軸13B、副軸14および出力軸15の回転数は全く変化せず、またベルト式無段変速機構20の変速比もimin に維持されるため、第1出力切換機構37、第2出力切換機構38、LOW摩擦クラッチ24AおよびHI摩擦クラッチ24Bの作動を差回転のない状態でスムーズに行うことができる。
 また移行モード1から移行モード2への移行時に、ベルト式無段変速機構20は第1プーリ21→第2プーリ22への動力伝達状態から、第2プーリ22→第1プーリ21への動力伝達状態へと切り換わるため、一時的にトルク伝達が途切れる瞬間がある。しかしながら、その瞬間には直結LOWモードおよび直結HIモードが成立してトルクを伝達するため、トルク伝達の途切れによるショックの発生を防止することができる。
 以上のように、本実施の形態によれば、ベルト式無段変速機構20に第1リダクションギヤ25、第2リダクションギヤ26、第3リダクションギヤ39、第4リダクションギヤ40、第5リダクションギヤ29および第6リダクションギヤ30よりなる減速機構と、第1インダクションギヤ27および第2インダクションギヤ28よりなる増速機構とを組み合わせたことにより、図10に示すように、単独のベルト式無段変速機構(オーバーオール変速比=6~7程度)に比べて、LOW側の変速比およびOD側の変速比を共に拡大し、10以上の大きなオーバーオール変速比を実現することができる(図11参照)。また本実施の形態の無段変速機Tでは、ベルト式無段変速機構20の変速比が1.0のときのオーバーオール変速比が、単独のベルト式無段変速機構のOD端のオーバーオール変速比に近い値になっており、特にOD側の変速比拡大効果が著しいことが分かる。
 またLOWモードでは、エンジンEの回転が大きな変速比で減速されてディファレンシャルギヤ33に伝達されるため、その動力伝達経路に配置された第1出力切換機構37に大きなトルクが作用する。しかしながら、第1出力切換機構37は、内側の出力軸15の外周に筒状の副軸14を嵌合させた二重管構造になり、大きいトルクを伝達する副軸14を二重管の外周側に配置して直接ミッションケースで支持し、比較的に小さいトルクを伝達する主入力軸13を副軸14を介して支持することで、特別の補強を施すことなく第1出力切換機構37を高剛性で支持することが可能となる。
 また第1出力切換機構37は、副軸14に相対回転自在に支持した第5リダクションギヤ29およびリバースドライブギヤ34を該副軸14に選択的に結合可能なドグクラッチで構成されるので、摩擦クラッチを用いる場合に比べて引きずり抵抗を低減することができるだけでなく、単一のアクチュエータで第1出力切換機構37を操作するだけでLOWモードおよびRVSモードを選択的に確立することが可能となり、その構造を簡素化することができる。
 また第1プーリ21の第1固定プーリ21Aおよび第2プーリ22の第2固定プーリ22Aは相互に対角位置に配置され、第1プーリ21の第1可動プーリ21Bおよび第2プーリ22の第2可動プーリ22Bは相互に対角位置に配置され、第2固定プーリ22Aの背面側にHI摩擦クラッチ24Bおよび第2インダクションギヤ28が配置され、第1固定プーリ21Aの背面側に第2出力切換機構38および出力軸15が配置され、第1出力切換機構37は径方向に見て第2出力切換機構38と一部がオーバーラップする位置に配置されるので、第1、第2固定プーリ21A,22Aの背面側に形成されるデッドスペースを有効利用して無段変速機Tの小型化を図ることができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、実施の形態ではLOW摩擦クラッチ24Aを主入力軸13上に配置し、HI摩擦クラッチ24Bを第2副入力軸13B上に配置しているが、LOW摩擦クラッチ24Aを第1副入力軸13A上に配置し、HI摩擦クラッチ24Bを主入力軸13上に配置しても良い。
 また本発明の駆動源はエンジンEに限定されず、モータ・ジェネレータ等の他種の駆動源であっても良い。

Claims (4)

  1.  駆動源(E)からの駆動力が入力される入力軸(13)と、第1プーリ(21)、第2プーリ(22)および無端ベルト(23)で構成されるベルト式無段変速機構(20)と、前記ベルト式無段変速機構(20)で変速された駆動力を出力する出力軸(15)と、前記駆動源(E)からの駆動力を前記第1プーリ(21)に伝達する第1入力経路(IP1)と、前記駆動源(E)からの駆動力を前記第1入力経路(IP1)側に切り換える第1入力切換機構(24A)と、前記第1入力経路(IP1)に配置されて前記第1プーリ(21)への入力を減速する減速機構(25,26)と、前記駆動源(E)からの駆動力を前記第2プーリ(22)に伝達する第2入力経路(IP2)と、前記駆動源(E)からの駆動力を前記第2入力経路(IP2)側に切り換える第2入力切換機構(24B)と、前記第2入力経路(IP2)に配置されて前記第2プーリ(22)への入力を増速する増速機構(27,28)と、前記第2プーリ(22)からの駆動力を出力する第1出力経路(OP1)と、前記第1プーリ(21)からの駆動力を出力する第2出力経路(OP2)と、前記第1出力経路(OP1)に配置されて第2プーリ(22)からの駆動力を前記出力軸(15)側に切り換える第1出力切換機構(37)と、前記第2出力経路(OP2)に配置されて第1プーリ(21)からの駆動力を前記出力軸(15)側に切り換える第2出力切換機構(38)とを備える無段変速機であって、
     前記第1プーリ(21)は第1固定プーリ(21A)および第1可動プーリ(21B)からなり、前記第2プーリ(22)は第2固定プーリ(22A)および第2可動プーリ(22B)からなり、前記第1固定プーリ(21A)および第2固定プーリ(22A)は相互に対角位置に配置され、前記第1可動プーリ(21B)および第2可動プーリ(22B)は相互に対角位置に配置され、
     前記第1入力切換機構(24A)は、前記入力軸(13)上あるいは前記第1プーリ(21)の第1可動プーリ(21B)の背面の回転軸上に配置され、前記第2入力切換機構(24B)は、前記第2プーリ(22)の第2固定プーリ(22A)の背面の回転軸上あるいは前記入力軸(13)上に配置され、
     前記第1出力切換機構(37)は、前記第1出力経路(OP1)上において前記入力軸(13)の外周に相対回転自在に嵌合する副軸(14)上に配置され、前記第2出力切換機構(38)および前記出力軸(15)は、前記第1プーリ(21)の第1固定プーリ(21A)の背面の回転軸上に配置されることを特徴とする無段変速機。
  2.  前記第1出力切換機構(37)は、前記副軸(14)に相対回転自在に支持した第1ドライブギヤ(29)および第2ドライブギヤ(34)を該副軸(14)に選択的に結合可能なドグクラッチで構成され、前記第1ドライブギヤ(29)は前記出力軸(15)に設けたドリブンギヤ(30)に接続され、前記第2ドライブギヤ(34)はアイドル軸(16)を経由して前記出力軸(15)に設けたドリブンギヤ(30)に接続されることを特徴とする、請求項1に記載の無段変速機。
  3.  前記第1出力切換機構(37)は径方向に見て前記第2出力切換機構(38)と一部がオーバーラップする位置に配置されることを特徴とする、請求項1または請求項2に記載の無段変速機。
  4.  前記減速機構(25,26)のギヤ比をired とし、前記増速機構(27,28)のギヤ比をiind とし、前記第1プーリ(21)および前記第2プーリ(22)間の最小レシオをimin とし、前記第1出力経路(OP1)に配置されるリダクションギヤ(39,40,29,30)のギヤ比をisec としたとき、ired ×imin =iind の関係と、isec =ired /iind の関係とが成立することを特徴とする、請求項1~請求項3の何れか1項に記載の無段変速機。
PCT/JP2014/063990 2013-05-28 2014-05-27 無段変速機 WO2014192753A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2015015991A MX2015015991A (es) 2013-05-28 2014-05-27 Transmisión continuamente variable.
DE112014002579.8T DE112014002579T5 (de) 2013-05-28 2014-05-27 Stufenlos variables Getriebe
BR112015028781A BR112015028781A2 (pt) 2013-05-28 2014-05-27 transmissão continuamente variável
CN201480025773.3A CN105190101B (zh) 2013-05-28 2014-05-27 无级变速器
US14/894,200 US10030749B2 (en) 2013-05-28 2014-05-27 Continuously variable transmission
JP2015519872A JP5922843B2 (ja) 2013-05-28 2014-05-27 無段変速機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112031 2013-05-28
JP2013112031 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192753A1 true WO2014192753A1 (ja) 2014-12-04

Family

ID=51988782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063990 WO2014192753A1 (ja) 2013-05-28 2014-05-27 無段変速機

Country Status (7)

Country Link
US (1) US10030749B2 (ja)
JP (1) JP5922843B2 (ja)
CN (1) CN105190101B (ja)
BR (1) BR112015028781A2 (ja)
DE (1) DE112014002579T5 (ja)
MX (1) MX2015015991A (ja)
WO (1) WO2014192753A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024051435A (ja) * 2022-09-30 2024-04-11 株式会社Subaru 無段変速機
US10088025B2 (en) * 2013-09-24 2018-10-02 Jatco Ltd Automatic transmission for electric vehicle
US10054202B2 (en) 2013-09-25 2018-08-21 Jatco Ltd Torque cam device and belt-type continuously variable transmission
KR101828191B1 (ko) 2013-10-08 2018-02-09 쟈트코 가부시키가이샤 부변속기를 구비한 무단 변속기의 제어 장치
EP3056773A4 (en) * 2013-10-08 2017-01-25 Jatco Ltd Control device for continuously variable transmission equipped with auxiliary transmission
CN108138927B (zh) * 2015-10-30 2020-10-23 爱信艾达株式会社 自动变速器
US11465496B2 (en) * 2019-08-29 2022-10-11 Kawasaki Motors, Ltd. Power unit of utility vehicle
CN113685527B (zh) * 2021-09-07 2024-01-26 芜湖万里扬变速器有限公司 一种纵置无级变速器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113850A (ja) * 1983-11-03 1985-06-20 ゼネラル モーターズ コーポレーシヨン 無段変速機
DE4207093A1 (de) * 1992-03-06 1993-04-01 Daimler Benz Ag Wechselgetriebe fuer den antrieb eines fahrzeuges
DE4234629A1 (de) * 1991-10-25 1993-04-29 Volkswagen Ag Stufenloses getriebe fuer kraftfahrzeuge
DE19631072A1 (de) * 1996-08-01 1998-02-05 Zahnradfabrik Friedrichshafen Wechselgetriebe für den Antrieb eines Fahrzeuges
JP2000320630A (ja) * 1999-05-12 2000-11-24 Fuji Heavy Ind Ltd 無段変速装置
EP1347209A2 (de) * 2002-03-22 2003-09-24 Audi Ag Geschwindigkeits-Wechselgetriebe
JP2008208854A (ja) * 2007-02-23 2008-09-11 Toyota Central R&D Labs Inc 変速装置
JP2009503379A (ja) * 2005-07-23 2009-01-29 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 無段調節可能な変速比を有する複数の変速比範囲を備えた出力分岐式の伝動装置
JP2010261544A (ja) * 2009-05-11 2010-11-18 Honda Motor Co Ltd 動力伝達装置
JP2011122684A (ja) * 2009-12-11 2011-06-23 Jatco Ltd 無段変速機
WO2013175568A1 (ja) * 2012-05-22 2013-11-28 本田技研工業株式会社 無段変速機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344042A1 (de) * 1983-12-06 1985-06-27 Claas Ohg, 4834 Harsewinkel Stufenloses getriebe
DE3786996T2 (de) 1986-11-21 1993-12-23 Shimadzu Corp Stufenloses Getriebe.
DE4119291A1 (de) * 1991-06-12 1992-12-17 Hoehn Bernd Robert Prof Dr Ing Stufenloses getriebe
US5207617A (en) 1991-06-27 1993-05-04 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for continuously variable power transmitting system including reversing gear device and auxiliary transmission
JP3475613B2 (ja) 1995-11-24 2003-12-08 アイシン・エィ・ダブリュ株式会社 無段変速機
JP2004144138A (ja) 2002-10-22 2004-05-20 Honda Motor Co Ltd 車両用変速機
CN200999844Y (zh) 2007-01-22 2008-01-02 南京理工大学 功率分流式无级变速器
WO2008154897A2 (de) 2007-06-21 2008-12-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fahrzeuggetriebe mit stufenlos veränderbarer übersetzung
US8771116B2 (en) 2008-06-17 2014-07-08 Schaeffler Technologies Gmbh & Co. Kg Vehicle transmission having continuously variable gear ratios
CN101526123B (zh) 2009-03-31 2012-01-25 湖南中德汽车自动变速器股份有限公司 一种汽车复合传动双离合器变速器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113850A (ja) * 1983-11-03 1985-06-20 ゼネラル モーターズ コーポレーシヨン 無段変速機
DE4234629A1 (de) * 1991-10-25 1993-04-29 Volkswagen Ag Stufenloses getriebe fuer kraftfahrzeuge
DE4207093A1 (de) * 1992-03-06 1993-04-01 Daimler Benz Ag Wechselgetriebe fuer den antrieb eines fahrzeuges
DE19631072A1 (de) * 1996-08-01 1998-02-05 Zahnradfabrik Friedrichshafen Wechselgetriebe für den Antrieb eines Fahrzeuges
JP2000320630A (ja) * 1999-05-12 2000-11-24 Fuji Heavy Ind Ltd 無段変速装置
EP1347209A2 (de) * 2002-03-22 2003-09-24 Audi Ag Geschwindigkeits-Wechselgetriebe
JP2009503379A (ja) * 2005-07-23 2009-01-29 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 無段調節可能な変速比を有する複数の変速比範囲を備えた出力分岐式の伝動装置
JP2008208854A (ja) * 2007-02-23 2008-09-11 Toyota Central R&D Labs Inc 変速装置
JP2010261544A (ja) * 2009-05-11 2010-11-18 Honda Motor Co Ltd 動力伝達装置
JP2011122684A (ja) * 2009-12-11 2011-06-23 Jatco Ltd 無段変速機
WO2013175568A1 (ja) * 2012-05-22 2013-11-28 本田技研工業株式会社 無段変速機

Also Published As

Publication number Publication date
CN105190101A (zh) 2015-12-23
DE112014002579T5 (de) 2016-03-17
BR112015028781A2 (pt) 2017-07-25
JPWO2014192753A1 (ja) 2017-02-23
US10030749B2 (en) 2018-07-24
MX2015015991A (es) 2016-10-26
US20160102741A1 (en) 2016-04-14
JP5922843B2 (ja) 2016-05-24
CN105190101B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
JP5922843B2 (ja) 無段変速機
JP6014968B2 (ja) 無段変速機
JP5832002B2 (ja) 無段変速機
KR101847312B1 (ko) 자동 변속기
JP5800088B2 (ja) 車両用動力伝達装置
JP5861778B2 (ja) 車両用動力伝達装置
JP4983301B2 (ja) 変速装置
JP2010261544A (ja) 動力伝達装置
JP2013104559A (ja) 自動化手動変速機
JP2012202473A (ja) 自動変速機
WO2013175584A1 (ja) 車両用動力伝達装置
KR20210156930A (ko) 전기차 파워트레인
JP5329477B2 (ja) 変速機
KR101836508B1 (ko) 자동화 수동변속기
KR101371721B1 (ko) 자동화 수동 변속기
JP6665567B2 (ja) 多段変速機
JP2010144894A (ja) 動力伝達装置
JP6379218B2 (ja) 無段変速機
JP2009051262A (ja) 動力出力装置
JP2014185742A (ja) 変速装置
JP2014101953A (ja) 自動変速機
JP2016089946A (ja) 自動変速機
JP2016180474A (ja) 車両用動力伝達装置
JP2016164419A (ja) 自動変速機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025773.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015991

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14894200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002579

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028781

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14803444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015028781

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151117