WO2014190473A1 - 滤波器、滤波器的制造方法和激光波长监控装置 - Google Patents

滤波器、滤波器的制造方法和激光波长监控装置 Download PDF

Info

Publication number
WO2014190473A1
WO2014190473A1 PCT/CN2013/076273 CN2013076273W WO2014190473A1 WO 2014190473 A1 WO2014190473 A1 WO 2014190473A1 CN 2013076273 W CN2013076273 W CN 2013076273W WO 2014190473 A1 WO2014190473 A1 WO 2014190473A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
plane
planes
transmitting
Prior art date
Application number
PCT/CN2013/076273
Other languages
English (en)
French (fr)
Inventor
周敏
王磊
林华枫
廖振兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016515586A priority Critical patent/JP6047811B2/ja
Priority to AU2013391380A priority patent/AU2013391380B2/en
Priority to RU2015156205A priority patent/RU2660761C2/ru
Priority to CN201380000659.0A priority patent/CN104380160B/zh
Priority to MX2015016214A priority patent/MX347531B/es
Priority to PCT/CN2013/076273 priority patent/WO2014190473A1/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2913482A priority patent/CA2913482C/en
Priority to EP13885863.4A priority patent/EP2995979B1/en
Priority to ES13885863T priority patent/ES2710558T3/es
Priority to KR1020157036426A priority patent/KR101807684B1/ko
Publication of WO2014190473A1 publication Critical patent/WO2014190473A1/zh
Priority to US14/952,688 priority patent/US9678277B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Definitions

  • the present invention relates to the field of optical fiber communication technologies, and in particular, to a filter, a method of manufacturing the filter, and a laser wavelength monitoring device. Background technique
  • the optical module acts as the physical realization body of the transceiver system, and its function is crucial, and the laser acts as a transmitting device for the communication light wave, and its role is even more important.
  • the laser in the optical module is usually accompanied by a semiconductor refrigerator or a heating diaphragm for adjusting the wavelength, and a laser wavelength monitoring device is required to implement feedback adjustment.
  • a conventional laser wavelength monitoring device includes a collimating lens 1, a first focusing lens 2, and an FP etalon 3 (ie, etalon, also known as Etheron, which is an etalon comprising two surfaces.
  • etalon also known as Etheron, which is an etalon comprising two surfaces.
  • the two optical beamsplitters 4a, 4b, the two light receivers 5a, 5b and the two second focusing lenses 6a 6b wherein the FP etalon 3 functions as a comb filter, and the two beam splitters 4a, 4b are respectively optical splitters having a fixed split ratio.
  • the light emitted by the laser 7 passes through the collimator lens 1 and becomes collimated light.
  • the optical beam splitter 4a separates the collimated light according to a certain ratio, and a part of the light passes through the second focusing lens 6a and is received by the optical receiver 5a.
  • a part of the light passes through the optical beam splitter 4a and is incident on the FP etalon 3, and the optical beam splitter 4b separates the transmitted light passing through the FP etalon 3 by a certain ratio, and a part of the light passes through the second focusing lens 6b and is received by the optical receiver.
  • 5b receives, another part of the light passes through the beam splitter 4b, and then passes The first focusing lens 2 is then incident on the incident port 8 of the transmission fiber.
  • PD10 and PD20 be the initial calibration optical powers of the two optical receivers 5a, 5b, respectively
  • PD1 and PD2 are the actual received optical power of the two optical receivers 5a, 5b, respectively, and the actual reception of the optical receiver 5b and the optical receiver 5a.
  • Optical power ratio A PD2 / PD1.
  • the variation of the laser wavelength can be defined based on the wavelength shift amount ⁇ .
  • Embodiments of the present invention provide a filter, a method of manufacturing the filter, and a laser wavelength monitoring device to reduce the volume and cost of the laser wavelength monitoring device, and further improve the monitoring accuracy.
  • a filter comprising: two light transmissive bodies, each of the light transmissive bodies having a first plane, a second plane forming a wedge angle with the first plane, and a third plane intersecting the first plane and the second plane, wherein the first planes of the two light transmissive bodies are parallel to each other, and the second planes of the two light transmissive bodies are parallel to each other;
  • the light splitting film has two side surfaces respectively combined with the first planes of the two light transmissive bodies; two sets of reflective film systems are respectively combined with the second planes of the two light transmissive bodies.
  • the wedge angle is 45° ⁇ 1 , wherein the tolerance is set.
  • the third planes of the two light transmissive bodies are parallel or non-parallel.
  • one of the two light transmissive bodies includes: at least two light transmissive substrates disposed between two adjacent the light transmissive substrates Enhanced Membrane.
  • a method of manufacturing a filter according to any of the preceding embodiments comprising: plating a reflective film system on a second plane of two light transmissive bodies, respectively, and a flat plated light splitting film;
  • the first plane of the other light transmissive body is integrated with the optical splitting film.
  • the first plane of the other light transmissive body is integrated with the optical splitting film, specifically:
  • the first plane of the other light transmissive body is bonded to the optical splitting film in one body.
  • a laser wavelength monitoring apparatus comprising: two optical receivers, and the filter according to any one of the foregoing aspects, wherein
  • the two sets of the reflective films of the filter are respectively facing the transmitting port of the laser and the incident port of the transmitting fiber, and the two third planes of the filter respectively face the receiving ports of the two optical receivers.
  • the laser wavelength monitoring device further comprises: a collimating lens between the transmitting port of the laser and the reflective film system of the filter facing the facing.
  • one side of the collimating lens is planar and combined with the reflective film system of the facing filter.
  • the laser wavelength monitoring device further includes: a first focusing lens located between the incident port of the transmission fiber and the reflective film system of the filter facing the facing .
  • one side of the first focus lens is planar and combined with the reflective film system of the facing filter.
  • the laser wavelength monitoring device further includes two second focusing lenses respectively located at the two third planes of the filter and the facing optical receivers Between the receiving ports.
  • the filter includes at least two transparent
  • the light transmissive body of the optical substrate is located on the side of the optical splitting film adjacent to the incident port of the transmission fiber.
  • the wavelength monitoring optical path of the laser wavelength monitoring device is greatly shortened compared with the prior art, and the laser wavelength monitoring device is The smaller the size, the smaller package can be realized, which greatly reduces the packaging cost of the product.
  • the laser wavelength monitoring device with the filter can perform transmission power monitoring and reflected power monitoring, the monitoring accuracy of the wavelength offset is improved. Times, therefore, has higher monitoring accuracy than the prior art.
  • 1 is a schematic structural view of a conventional laser wavelength monitoring device
  • FIG. 2a is a schematic structural diagram of a first implementation manner of a filter according to a first embodiment of the present invention
  • FIG. 2b is a schematic structural diagram of a second implementation manner of a filter according to a first embodiment of the present invention
  • Schematic diagram of the manufacturing method of the device
  • FIG. 4 is a schematic diagram of a manufacturing process of a filter according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a laser wavelength monitoring device according to a seventh embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a laser wavelength monitoring device according to an eighth embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a laser wavelength monitoring device according to a ninth embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a laser wavelength monitoring device according to a tenth embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a laser wavelength monitoring device according to an eleventh embodiment of the present invention. detailed description
  • embodiments of the present invention provide a filter, a filter manufacturing method, and a laser wavelength monitoring device.
  • the optical splitting film is built in between the first planes of the two transparent bodies, which makes the wavelength monitoring optical path of the laser wavelength monitoring device greatly shortened compared with the prior art, and the laser wavelength monitoring device Small size, small size package, low package cost; and laser wavelength monitoring device with this filter for transmission power monitoring and reflected power monitoring, wave
  • the monitoring accuracy of the long offset is doubled, and therefore, the monitoring accuracy is higher than that of the prior art laser wavelength monitoring device.
  • the filter of the first embodiment of the present invention includes:
  • each light transmissive body 9 having a first plane 10, a second plane 11 forming a wedge angle with the first plane 10, and a third plane intersecting the first plane 10 and the second plane 11, respectively 12, the first planes 10 of the two light transmissive bodies 9 are parallel to each other, and the second planes 11 of the two light transmissive bodies 9 are parallel to each other;
  • the light splitting film 13 is combined with the first plane 10 of the two light transmissive bodies 9 respectively; the two sets of reflective film systems 14 are combined with the second planes 11 of the two light transmissive bodies 9, respectively.
  • the light transmissive body may be an etalon (also known as an etalon or an ethereal) light transmissive body.
  • the light-transmitting body 9 may contain only one light-transmitting substrate, and may also contain two or more light-transmitting substrates.
  • one of the two light-transmissive bodies 9 includes: at least two light-transmitting substrates 16, and an anti-reflection film 17 is disposed between two adjacent light-transmitting substrates 16.
  • the anti-reflection film 17 can be provided to reduce the light loss.
  • the material of the light-transmitting substrate 16 is not limited, and a material such as glass can be used.
  • the cross-sectional shape of the light-transmitting substrate can be triangular, trapezoidal or the like.
  • the first planes 10 of the two light transmitting bodies 9 are parallel to each other, and the second planes 11 of the two light transmitting bodies 9 are parallel to each other.
  • the light splitting film 13 has a fixed splitting ratio, and the incident laser light can be proportionally split, partially reflected, and partially transmitted.
  • the first plane 10 of one of the light transmissive bodies 9 may be first plated with the optical splitting film 13, and then the first plane 10 of the other light transmissive body 9 is bonded to the optical splitting film 13 to ensure filtering.
  • a stable parallel interference resonance can be formed inside the device.
  • the reflective film system 14 generally includes a plurality of film layers having different thicknesses and alternately distributed. These film layers may be a silicon dioxide film layer, ruthenium dioxide, etc., and the specific structural design thereof belongs to the prior art, and details are not described herein again.
  • the specific value of the wedge angle is not limited.
  • the wedge angle is 45° ⁇ , where 1 is a set allowable error, for example, 1. . Selecting the wedge angle in the range of values can make the optical path design of the filter simpler and facilitate the layout of the internal structural components of the laser wavelength monitoring device.
  • the third planes 12 of the two light transmitting bodies 9 are not parallel.
  • the third planes 12 of the two light transmitting bodies 9 are parallel.
  • the parallel arrangement of the third planes 12 of the two light-transmissive bodies 9 allows the two light receivers of the laser wavelength monitoring device to be disposed in a symmetrical position, which is more advantageous for the optical path design and the compactness and miniaturization of the product, and is more advantageous. Reduce the packaging cost of the product.
  • a method for manufacturing a filter according to a fifth embodiment of the present invention includes: Step 101: respectively plating a reflective film system on a second plane of two light-transmitting bodies, and transmitting light in one of the two transparent bodies The first plane of the body is plated with a light splitting film;
  • Step 102 Combine the first plane of the other light transmissive body with the optical splitting film.
  • the step 102 integrally combines the first plane of the other light transmitting body with the light splitting film by a bonding technique. It is preferred to use a photo-adhesive bonding technique.
  • the photo-gluing bonding is to closely bond together two homogenous or heterogeneous materials after a series of surface treatments, form a photo-glue at room temperature, and then heat-treat them. Permanent bonding is achieved without the need for additional binders and high pressures. This technology not only greatly improves the laser thermal performance and beam quality in laser applications, but also facilitates the integration of laser systems.
  • a laser wavelength monitoring apparatus includes: two optical receivers 5a, 5b and a filter 15 according to any of the foregoing embodiments, wherein
  • the two sets of reflective film systems 14 of the filter 15 face the transmit port of the laser 7 and the incident port 8 of the transmission fiber, respectively, and the two third planes 12 of the filter 15 face the receive ports of the two optical receivers 5a, 5b, respectively.
  • the photoreceivers 5a, 5b can employ photodiodes for detecting the power of the received laser light.
  • the laser wavelength monitoring device further includes: a collimating lens 1 located between the transmitting port of the laser 7 and the reflecting film system 14 of the facing filter 15, and The first focusing lens 2 between the incident port 8 of the optical fiber and the reflective film system 14 of the facing filter 15 is transmitted.
  • the collimator lens 1 and the first focus lens 2 can also be respectively designed in the structure of the laser 7 and the incident port 8 of the transmission fiber, but the size of the incident port 8 of the laser 7 and the transmission fiber is larger, and the structure is slightly more complicated. And the positions of the collimator lens 1 and the first focus lens 2 are not It will be adjusted.
  • the laser wavelength monitoring device further includes: two second focusing lenses 6a, 6b respectively located at the two third planes 12 of the filter 15 and the facing optical receivers 5a. , between 5b's receiving ports.
  • the second focus lenses 6a, 6b can also be designed in the structures of the light receivers 5a, 5b, respectively. It is to be noted that, if the receiving surface area of the light receivers 5a, 5b satisfies certain conditions, the arrangement of the second focus lenses 6a, 6b can be omitted.
  • the laser wavelength monitoring apparatus of the ninth embodiment of the present invention As shown in Fig. 7, in the laser wavelength monitoring apparatus of the ninth embodiment of the present invention, one side of the collimator lens 1 is flat and combined with the reflecting film system 14 of the facing filter 15. At this time, the laser wavelength monitoring device has a small package size, and the position of the first focus lens 2 can be freely adjusted.
  • the laser wavelength monitoring apparatus of the tenth embodiment of the present invention As shown in Fig. 8, in the laser wavelength monitoring apparatus of the tenth embodiment of the present invention, one side of the first focus lens 2 is flat and combined with the reflection film system 14 of the filter 15. At this time, the laser wavelength monitoring device has a small package size, and the position of the collimating lens can be freely adjusted.
  • one side of the collimator lens 1 is planar and combined with the reflective film system 14 of the facing filter 15, the first focus One side of the lens 2 is planar and combined with the reflective film system 14 of the filter 15.
  • the package size of the laser wavelength monitoring device is the smallest, and the positions of the collimator lens and the first focus lens are not freely adjustable.
  • the light-transmitting body 9 including at least two light-transmitting substrates 16 is preferably designed on the light splitting film 13 Near the entrance port 8 side of the transmission fiber.
  • the working principle of the laser wavelength monitoring device is as follows:
  • the laser light emitted by the laser 7 passes through the collimator lens 1 and becomes collimated light, and the collimated light is reflected from the side of the filter 15
  • the system 14 is incident, and the optical splitting film 13 splits the received laser light in proportion, one of which is reflected and emitted from the filter 15 to the first photoreceiver 5a, and partially transmitted to the reflective film system 14 on the other side of the filter 15.
  • it is partially reflected back to the optical splitting film 13, and the optical splitting film 13 again splits the received laser light, and a part of it reflects and exits the filter 15 to reach the second optical receiver 5b.
  • the optical splitting film is built in between the first planes of the two light transmissive bodies, this enables laser wavelength monitoring
  • the wavelength monitoring optical path of the device is greatly shortened compared with the prior art, and the laser wavelength monitoring device has a small volume, which can realize small-scale packaging and greatly reduce the packaging cost of the product.
  • the wavelength monitoring device of the prior art generally uses an XMD package, and the package cost is high, and the wavelength monitoring device of the solution can use the TO package, which greatly saves the packaging cost.
  • PD1 and PD2 be the actual received optical power of the two optical receivers 5a, 5b respectively.
  • the overall reflected optical power of the filter 15 is Pf
  • the overall transmitted optical power is Pt.
  • the filter The overall transmitted light power of 15 is Pt + ⁇ .
  • the wavelength of the laser light is blue-shifted
  • the overall reflected light power of the filter 15 is Pf - ⁇
  • PD1 does not change with the change of the laser wavelength, and the wavelength shift amount:

Abstract

一种滤波器、滤波器的制造方法和一种激光波长监控装置,滤波器包括:两个透光体,每个透光体具有第一平面、与第一平面形成楔角的第二平面,以及与第一平面和第二平面分别相交的第三平面,两个透光体的第一平面相互平行,两个透光体的第二平面相互平行;光分束膜,两侧表面分别与两个透光体的第一平面相结合;两组反射膜系,分别与两个透光体的第二平面相结合。本方案激光波长监控装置的波长监控光路较现有技术大大缩短,激光波长监控装置的体积较小,可以实现小型化封装,大大降低了产品的封装成本,且具有较高的监控精度。

Description

滤波器、 滤波器的制造方法和激光波长监控装置 技术领域
本发明涉及光纤通信技术领域, 特别是涉及一种滤波器、 滤波器的制造 方法和一种激光波长监控装置。 背景技术
随着用户对带宽需求的不断增长, 传统的铜线宽带接入系统越来越面临 带宽瓶颈, 与此同时, 带宽容量巨大的光纤通信技术日益成熟, 光纤接入网 成为下一代宽带接入网的有力竟争者, 尤其以 PON ( Passive Optical Network, 无源光网络, 简称 PON ) 系统更具竟争力。
在 PON系统中, 光模块作为收发系统的物理实现主体, 其作用是至关重 要的, 而激光器作为通信光波的发射装置, 其作用更是重中之重。 在 PON领 域的许多应用场合, 我们需要将激光器的发射波长稳定在一定的数值, 以确 保符合光通信标准或满足物理传输上的技术指标。 因此, 在许多应用场景中, 光模块中的激光器通常附带有用来调节波长的半导体制冷器或者加热膜片, 并需要利用激光波长监控装置来实现反馈调节。
如图 1所示, 现有的一种激光波长监控装置包括准直透镜 1、 第一聚焦透 镜 2、 F-P标准具 3 (即 etalon, 也称以太龙, 是一种标准具, 包含两片表面镀 反射膜的玻璃, 当两个表面平行时, 光在镀膜面间反复反射形成干涉)、 两个 光分束器 4a、 4b、 两个光接收器 5a、 5b和两个第二聚焦透镜 6a、 6b, 其中, F-P标准具 3起到梳状滤波器的作用, 两个光分束器 4a、 4b分别为固定分光 比的光分束器。 激光器 7发出的光经过准直透镜 1后变为准直光, 光分束器 4a按照一定比例将该准直光分开,其中一部分光经过第二聚焦透镜 6a后被光 接收器 5a接收, 另一部分光经过光分束器 4a后射入 F-P标准具 3 , 光分束器 4b将经过 F-P标准具 3后的透射光按一定比例分开, 其中一部分光经过第二 聚焦透镜 6b后被光接收器 5b接收, 另一部分光经过光分束器 4b, 然后经过 第一聚焦透镜 2后射入传输光纤的入射端口 8。
设 PD10和 PD20分别为两个光接收器 5a、 5b的初始校准光功率, PD1 和 PD2分别为两个光接收器 5a、 5b的实际接收光功率, 光接收器 5b和光接 收器 5a 的实际接收光功率比 A=PD2/PD1。 当激光的波长发生红移时, PD2=PD20 + ΔΡ, 当激光的波长发生蓝移时, PD2=PD20 - ΔΡ, 而 PD1不随 激光波长的变化而变化, 则波长偏移量:
△Α= +ΔΡ/ΡΌ10 (红移 ) , ΔΑ= - ΔΡ/PDIO (蓝移 ) ( 1 ) 因此, 可以根据波长偏移量 ΔΑ来界定激光器波长的变化情况。
本专利申请的发明人发现, 两个光分束器使得激光波长监控装置的整体 封装尺寸较大, 封装成本较高, 不符合当前小型化、 低成本的发展趋势, 并 且, 该结构的激光波长监控装置的监控精度也不够高。 发明内容
本发明实施例提供了一种滤波器、 滤波器的制造方法和一种激光波长监 控装置, 以减少激光波长监控装置的体积和成本, 进一步提高监控精度。
本发明的第一方面, 提供了一种滤波器, 包括: 两个透光体, 每个所述 透光体具有第一平面、 与所述第一平面形成楔角的第二平面, 以及与所述第 一平面和所述第二平面分别相交的第三平面, 所述两个透光体的第一平面相 互平行, 所述两个透光体的第二平面相互平行;
光分束膜, 两侧表面分别与所述两个透光体的第一平面相结合; 两组反射膜系, 分别与所述两个透光体的第二平面相结合。
在第一方面的一种可能的实现方式中, 所述楔角为 45° ± 1 , 其中, 为设 定的允许误差。
在第一方面的一种可能的实现方式中, 所述两个透光体的第三平面平行 或者不平行。
在第一方面的一种可能的实现方式中, 两个所述透光体中, 其中一个所 述透光体包括: 至少两个透光基质, 相邻两个所述透光基质之间设置有增透 膜。
本发明的第二方面, 提供了一种前述任一实施例滤波器的制造方法, 包 括: 分别在两个透光体的第二平面镀上反射膜系, 并在其中一个透光体的第 一平面镀上光分束膜;
将另一个透光体的第一平面与光分束膜结合为一体。
在第二方面的一种可能的实现方式中, 所述将另一个透光体的第一平面 与光分束膜结合为一体, 具体为:
将所述另一个透光体的第一平面与光分束膜键合为一体。
本发明的第三方面, 提供了一种激光波长监控装置, 包括: 两个光接收 器和前述任一技术方案所述的滤波器, 其中,
所述滤波器的两组所述反射膜系分别面向激光器的发射端口和传输光纤 的入射端口, 所述滤波器的两个所述第三平面分别面向两个所述光接收器的 接收端口。
在第三方面的一种可能的实现方式中, 激光波长监控装置还包括: 位于 所述激光器的发射端口和相面对的所述滤波器的所述反射膜系之间的准直透 镜。
在第三方面的一种可能的实现方式中, 所述准直透镜的一侧为平面且与 相面对的所述滤波器的所述反射膜系相结合。
在第三方面的一种可能的实现方式中, 激光波长监控装置还包括: 位于 所述传输光纤的入射端口和相面对的所述滤波器的所述反射膜系之间的第一 聚焦透镜。
在第三方面的一种可能的实现方式中, 所述第一聚焦透镜的一侧为平面 且与相面对的所述滤波器的所述反射膜系相结合。
在第三方面的一种可能的实现方式中, 激光波长监控装置还包括两个第 二聚焦透镜, 分别位于所述滤波器的两个所述第三平面与相面对的所述光接 收器的接收端口之间。
在第三方面的一种可能的实现方式中, 所述滤波器中, 包含至少两个透 光基质的透光体位于光分束膜的靠近所述传输光纤的入射端口一侧。
在本发明实施例技术方案中, 由于光分束膜内置于两个透光体的第一平 面之间, 这使得激光波长监控装置的波长监控光路较现有技术大大缩短, 激 光波长监控装置的体积较小, 可以实现小型化封装, 大大降低了产品的封装 成本; 并且, 由于具有该滤波器的激光波长监控装置可以进行透射功率监控 和反射功率监控, 波长偏移量的监控精度提升了一倍, 因此, 相比现有技术 具有较高的监测精度。 附图说明
图 1为现有激光波长监控装置结构示意图;
图 2a为本发明第一实施例滤波器第一种实现方式的结构示意图; 图 2b为本发明第一实施例滤波器第二种实现方式的结构示意图; 图 3为本发明第五实施例滤波器的制造方法流程示意图;
图 4为本发明实施例滤波器制造过程示意图;
图 5为本发明第七实施例激光波长监控装置结构示意图;
图 6为本发明第八实施例激光波长监控装置结构示意图;
图 7为本发明第九实施例激光波长监控装置结构示意图;
图 8为本发明第十实施例激光波长监控装置结构示意图;
图 9为本发明第十一实施例激光波长监控装置结构示意图。 具体实施方式
为了减少激光波长监控装置的体积和成本, 进一步提高监控精度, 本发 明实施例提供了一种滤波器、 滤波器的制造方法和一种激光波长监控装置。 在本发明实施例的技术方案中, 光分束膜内置于两个透光体的第一平面之间, 这使得激光波长监控装置的波长监控光路较现有技术大大缩短, 激光波长监 控装置的体积较小, 可以实现小型化封装, 具有较低的封装成本; 并且, 具 有该滤波器的激光波长监控装置可以进行透射功率监控和反射功率监控, 波 长偏移量的监控精度提升了一倍, 因此, 相比现有技术激光波长监控装置还 具有较高的监测精度。 为使本发明的目的、 技术方案和优点更加清楚, 以下 举具体实施例对本发明作进一步详细说明。
如图 2a所示, 本发明第一个实施例的滤波器, 包括:
两个透光体 9 , 每个透光体 9具有第一平面 10、 与第一平面 10形成楔角 的第二平面 11 , 以及与第一平面 10和第二平面 11分别相交的第三平面 12 , 两个透光体 9的第一平面 10相互平行, 两个透光体 9的第二平面 11相互平 行;
光分束膜 13 , 两侧表面分别与两个透光体 9的第一平面 10相结合; 两组反射膜系 14, 分别与两个透光体 9的第二平面 11相结合。
在本发明各实施例中, 透光体可以为 etalon (也称标准具或以太龙)透光 体。 透光体 9 可以只包含一个透光基质, 也可以包含两个或两个以上的透光 基质。 如图 2b所示实施例, 两个透光体 9中, 其中一个透光体 9包括: 至少 两个透光基质 16, 相邻两个透光基质 16之间设置有增透膜 17。 设置增透膜 17可以减少光线损失, 透光基质 16的材质不限, 可以选用玻璃等材质, 透光 基质的截面形状可以为三角形, 梯形等。
为了利用平行干涉共振模式(包括但不限于 F-P干涉和 G-T干涉) 实现 滤波功能, 两个透光体 9的第一平面 10相互平行, 两个透光体 9的第二平面 11相互平行。光分束膜 13具有固定的分光比,可以将射入的激光按比例分开, 一部分反射, 一部分透射。 可以先在其中一个透光体 9的第一平面 10镀上光 分束膜 13 , 然后再将另一个透光体 9的第一平面 10与光分束膜 13键合为一 体, 以保证滤波器内部能够形成稳定的平行干涉共振。 反射膜系 14通常包括 厚度不同且交替分布的多个膜层, 这些膜层可以为二氧化硅膜层、 二氧化钽 等等, 其具体结构设计属于现有技术, 这里不再详细赘述。
楔角的具体数值不限,在本发明第二个实施例的滤波器中,楔角为 45° ± , 其中, 1为设定的允许误差, 例如为 1。。 选用该数值范围内的楔角可以使得 滤波器的光路设计较为简便, 有利于激光波长监控装置的内部结构件布局。 在本发明第三个实施例的滤波器中,两个透光体 9的第三平面 12不平行。 在本发明第四个实施例的滤波器中, 两个透光体 9的第三平面 12平行。 将两 个透光体 9的第三平面 12平行设置可以使得激光波长监控装置的两个光接收 器设置在对称的位置, 这样更加有利于光路设计及产品的紧凑化、 小型化, 更加有利于降低产品的封装成本。
如图 3和图 4所示, 本发明第五个实施例滤波器的制造方法, 包括: 步骤 101、分别在两个透光体的第二平面镀上反射膜系, 并在其中一个透 光体的第一平面镀上光分束膜;
步骤 102、 将另一个透光体的第一平面与光分束膜结合为一体。
在本发明第六个实施例滤波器的制造方法中, 步骤 102具体通过键合技 术将另一个透光体的第一平面与光分束膜结合为一体。 优选釆用光胶键合技 术, 光胶键合是将两块同质或异质材料经过一系列表面处理后紧密的贴在一 起, 在室温下形成光胶, 然后再对其进行热处理, 在无须其他粘结剂和高压 的情况下形成永久性键合。 该技术在激光应用方面不仅可以大大改善激光热 性能和光束质量, 而且有利于激光系统的集成化。
如图 5 所示, 本发明第七个实施例的激光波长监控装置, 包括: 两个光 接收器 5a、 5b和前述任一实施例所述的滤波器 15 , 其中,
滤波器 15的两组反射膜系 14分别面向激光器 7的发射端口和传输光纤 的入射端口 8, 滤波器 15的两个第三平面 12分别面向两个光接收器 5a、 5b 的接收端口。
光接收器 5a、 5b可以釆用光电二极管, 用以检测所接收的激光的功率。 请参照图 6 所示的第八个优选实施例, 激光波长监控装置还包括: 位于 激光器 7的发射端口和相面对的滤波器 15的反射膜系 14之间的准直透镜 1 , 以及位于传输光纤的入射端口 8和相面对的滤波器 15的反射膜系 14之间的 第一聚焦透镜 2。准直透镜 1和第一聚焦透镜 2也可分别设计在激光器 7和传 输光纤的入射端口 8的结构中, 但这样激光器 7和传输光纤的入射端口 8的 尺寸会较大, 结构稍复杂些, 并且准直透镜 1和第一聚焦透镜 2的位置也不 便调节。
请继续参照图 6所示的优选实施例, 激光波长监控装置还包括: 两个第 二聚焦透镜 6a、 6b, 分别位于滤波器 15的两个第三平面 12与相面对的光接 收器 5a、 5b的接收端口之间。 同理, 第二聚焦透镜 6a、 6b也可以分别设计在 光接收器 5a、 5b的结构中。 需要说明的是, 如果光接收器 5a、 5b的接收面面 积满足一定条件时, 也可以省去第二聚焦透镜 6a、 6b的设置。
如图 7 所示, 本发明第九个实施例的激光波长监控装置中, 准直透镜 1 的一侧为平面且与相面对的滤波器 15的反射膜系 14相结合。 这时, 激光波 长监控装置具有较小的封装尺寸, 第一聚焦透镜 2的位置可以自由调节。
如图 8所示, 本发明第十个实施例的激光波长监控装置中, 第一聚焦透 镜 2的一侧为平面且与滤波器 15的反射膜系 14相结合。 这时, 激光波长监 控装置具有较小的封装尺寸, 准直透镜的位置可以自由调节。
如图 9所示, 本发明第十一个实施例的激光波长监控装置中, 准直透镜 1 的一侧为平面且与相面对的滤波器 15的反射膜系 14相结合,第一聚焦透镜 2 的一侧为平面且与滤波器 15的反射膜系 14相结合。 这时, 相比第九和第十 个实施例, 激光波长监控装置的封装尺寸最小, 准直透镜和第一聚焦透镜的 位置不可以自由调节。
滤波器 15中, 当其中一个透光体 9包含至少两个透光基质 16时, 为减 少入射光损失, 优选将包含至少两个透光基质 16的透光体 9设计在光分束膜 13的靠近所述传输光纤的入射端口 8—侧。
以图 6 所示的实施例为例, 激光波长监控装置的工作原理为: 激光器 7 发射的激光经过准直透镜 1后变为准直光, 该准直光从滤波器 15的一侧反射 膜系 14射入, 光分束膜 13将接收的激光按比例分开, 其中一部分反射并射 出滤波器 15到达第一个光接收器 5a, —部分透射至滤波器 15另一侧的反射 膜系 14然后再部分反射回来至光分束膜 13 , 光分束膜 13再次将接收的激光 按比例分开, 其中一部分反射并射出滤波器 15到达第二个光接收器 5b。
由于光分束膜内置于两个透光体的第一平面之间, 这使得激光波长监控 装置的波长监控光路较现有技术大大缩短, 激光波长监控装置的体积较小, 可以实现小型化封装, 大大降低了产品的封装成本。 例如, 现有技术的波长 监控装置通常釆用 XMD封装,封装成本较高, 而本方案的波长监控装置可釆 用 TO封装, 大大的节约了封装成本。
设 PD1和 PD2分别为两个光接收器 5a、 5b的实际接收光功率, 滤波器 15的整体反射光功率为 Pf, 整体透射光功率为 Pt, 则当激光的波长发生红移 时, 滤波器 15的整体透射光功率为 Pt + ΔΡ, 当激光的波长发生蓝移时, 滤 波器 15的整体反射光功率为 Pf - ΔΡ, 而 PD1不随激光波长的变化而变化, 则波长偏移量:
ΔΑ= + 2ΔΡ/( Pf+Pt ) (红移), ΔΑ= - 2ΔΡ/( Pf+Pt ) (蓝移 ) ( 2 ) 对于滤波器整体而言, Pf+Pt=P0, P0为恒定值, 不随激光波长的变化而 变化, 因此, 同样可以根据波长偏移量 ΔΑ来界定激光器波长的变化情况。
将(2 ) 式与现有技术的 (1 ) 式相比, 可以看到, 由于该激光波长监控 装置可以进行透射功率监控和反射功率监控, 波长偏移量的监控精度提升了 一倍, 因此, 相比现有技术具有较高的监测精度, 激光波长监控装置具有更 高的监控性能。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种滤波器, 其特征在于, 包括:
两个透光体, 每个所述透光体具有第一平面、 与所述第一平面形成楔角 的第二平面, 以及与所述第一平面和所述第二平面分别相交的第三平面, 所 述两个透光体的第一平面相互平行, 所述两个透光体的第二平面相互平行; 光分束膜, 两侧表面分别与所述两个透光体的第一平面相结合; 两组反射膜系, 分别与所述两个透光体的第二平面相结合。
2、 如权利要求 1所述的滤波器, 其特征在于, 所述楔角为 45° ± 1 , 其中, 1为设定的允许误差。
3、 如权利要求 1或 2所述的滤波器, 其特征在于, 所述两个透光体的第 三平面平行或者不平行。
4、 如权利要求 3所述的滤波器, 其特征在于, 两个所述透光体中, 其中 一个所述透光体包括: 至少两个透光基质, 相邻两个所述透光基质之间设置 有增透膜。
5、 一种如权利要求 1~4任一项所述滤波器的制造方法, 其特征在于, 包 括:
分别在两个透光体的第二平面镀上反射膜系, 并在其中一个透光体的第 一平面镀上光分束膜;
将另一个透光体的第一平面与光分束膜结合为一体。
6、 如权利要求 5所述的制造方法, 其特征在于, 所述将另一个透光体的 第一平面与光分束膜结合为一体, 具体为:
将所述另一个透光体的第一平面与光分束膜键合为一体。
7、 一种激光波长监控装置, 其特征在于, 包括: 两个光接收器和如权利 要求 1~4任一项所述的滤波器, 其中,
所述滤波器的两组所述反射膜系分别面向激光器的发射端口和传输光纤 的入射端口的管口, 所述滤波器的两个所述第三平面分别面向两个所述光接 收器的接收端口。
8、 如权利要求 7所述的激光波长监控装置, 其特征在于, 还包括: 位于 所述激光器的发射端口和相面对的所述滤波器的所述反射膜系之间的准直透 镜。
9、 如权利要求 8所述的激光波长监控装置, 其特征在于, 所述准直透镜 的一侧为平面且与相面对的所述滤波器的所述反射膜系相结合。
10、 如权利要求 7~9任一项所述的激光波长监控装置, 其特征在于, 还 包括: 位于所述传输光纤的入射端口的管口和相面对的所述滤波器的所述反 射膜系之间的第一聚焦透镜。
11、 如权利要求 10所述的激光波长监控装置, 其特征在于, 所述第一聚 焦透镜的一侧为平面且与相面对的所述滤波器的所述反射膜系相结合。
12、 如权利要求 7 所述的激光波长监控装置, 其特征在于, 还包括两个 第二聚焦透镜, 分别位于所述滤波器的两个所述第三平面与相面对的所述光 接收器的接收端口之间。
13、 如权利要求 7 所述的激光波长监控装置, 其特征在于, 所述滤波器 中, 包含至少两个透光基质的透光体位于光分束膜的靠近所述传输光纤的入 射端口一侧。
PCT/CN2013/076273 2013-05-27 2013-05-27 滤波器、滤波器的制造方法和激光波长监控装置 WO2014190473A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2013391380A AU2013391380B2 (en) 2013-05-27 2013-05-27 Filter and manufacturing method thereof, and laser wavelength monitoring device
RU2015156205A RU2660761C2 (ru) 2013-05-27 2013-05-27 Устройство контроля длины волны лазера
CN201380000659.0A CN104380160B (zh) 2013-05-27 2013-05-27 滤波器、滤波器的制造方法和激光波长监控装置
MX2015016214A MX347531B (es) 2013-05-27 2013-05-27 Filtro, metodo para producir un filtro y aparato de monitoreo de longitud de onda de laser.
PCT/CN2013/076273 WO2014190473A1 (zh) 2013-05-27 2013-05-27 滤波器、滤波器的制造方法和激光波长监控装置
JP2016515586A JP6047811B2 (ja) 2013-05-27 2013-05-27 フィルタ、フィルタを製作する方法、およびレーザ波長監視装置
CA2913482A CA2913482C (en) 2013-05-27 2013-05-27 Filter, method for producing filter, and laser wavelength monitoring apparatus
EP13885863.4A EP2995979B1 (en) 2013-05-27 2013-05-27 Filter and manufacturing method thereof, and laser wavelength monitoring device
ES13885863T ES2710558T3 (es) 2013-05-27 2013-05-27 Filtro y método de fabricación de aquel y dispositivo de monitoreo de longitud de onda de láser
KR1020157036426A KR101807684B1 (ko) 2013-05-27 2013-05-27 필터, 필터 제조 방법, 및 레이저 파장 모니터링 장치
US14/952,688 US9678277B2 (en) 2013-05-27 2015-11-25 Filter, method for producing filter, and laser wavelength monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076273 WO2014190473A1 (zh) 2013-05-27 2013-05-27 滤波器、滤波器的制造方法和激光波长监控装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/952,688 Continuation US9678277B2 (en) 2013-05-27 2015-11-25 Filter, method for producing filter, and laser wavelength monitoring apparatus

Publications (1)

Publication Number Publication Date
WO2014190473A1 true WO2014190473A1 (zh) 2014-12-04

Family

ID=51987837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076273 WO2014190473A1 (zh) 2013-05-27 2013-05-27 滤波器、滤波器的制造方法和激光波长监控装置

Country Status (11)

Country Link
US (1) US9678277B2 (zh)
EP (1) EP2995979B1 (zh)
JP (1) JP6047811B2 (zh)
KR (1) KR101807684B1 (zh)
CN (1) CN104380160B (zh)
AU (1) AU2013391380B2 (zh)
CA (1) CA2913482C (zh)
ES (1) ES2710558T3 (zh)
MX (1) MX347531B (zh)
RU (1) RU2660761C2 (zh)
WO (1) WO2014190473A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995979B1 (en) * 2013-05-27 2018-11-14 Huawei Technologies Co., Ltd. Filter and manufacturing method thereof, and laser wavelength monitoring device
CN104730655B (zh) * 2015-03-27 2017-01-04 青岛海信宽带多媒体技术有限公司 一种光学器件及收发一体光器件
CN108873159B (zh) * 2018-06-19 2021-01-01 武汉电信器件有限公司 一种用于掺饵光纤放大器的集成器件
CN109151664B (zh) * 2018-09-11 2021-04-20 陕西千山航空电子有限责任公司 一种双模式导光型音频监控器
KR102537400B1 (ko) 2020-12-31 2023-05-30 주식회사씨아이티시스템 자돈을 위한 보온시스템
WO2023037510A1 (ja) * 2021-09-10 2023-03-16 三菱電機株式会社 波長ロッカー、モニタフォトダイオード、ビームスプリッタおよび波長ロッカーの調芯方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2583691Y (zh) * 2002-07-02 2003-10-29 中国科学院长春光学精密机械与物理研究所 光学群组滤波器
US20040109166A1 (en) * 2002-12-09 2004-06-10 Fibera, Inc. Wavelength Locker With Confocal Cavity
US20050094685A1 (en) * 2002-11-12 2005-05-05 Colin Sylvain M. Simple and compact laser wavelength locker
CN101726872A (zh) * 2009-12-31 2010-06-09 招远招金光电子科技有限公司 一种可切换的低色散光梳状滤波器及方法
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074930A (en) * 1976-01-28 1978-02-21 The United States Of America As Represented By The Secretary Of The Air Force Coaxial optical system
JPS57130001A (en) 1981-02-05 1982-08-12 Canon Inc Low polalization achromatic beam splitter
US4431258A (en) * 1981-12-15 1984-02-14 Gte Laboratories Incorporated Optical fiber transmission system and dichroic beam splitter therefor
US4627688A (en) * 1983-07-01 1986-12-09 Sano Kiko Co., Ltd. Beam splitter
JPS6069614A (ja) * 1983-09-27 1985-04-20 Mitsubishi Electric Corp 集光装置、及この装置を利用した光学式情報記録、または再生装置
FR2580414B1 (fr) * 1985-04-12 1987-06-05 Telecommunications Sa Dispositif multiplexeur demultiplexeur pour fibres optiques et son procede de fabrication
US4844584A (en) * 1986-06-26 1989-07-04 Fuji Photo Film Co., Ltd. Semiconductor laser beam splitting device
US4859029A (en) * 1986-07-03 1989-08-22 Durell William E Variable ratio beam splitter and beam launcher
US4733926A (en) * 1986-11-10 1988-03-29 Lockheed Missiles & Space Company, Inc. Infrared polarizing beamsplitter
JPH0777038B2 (ja) * 1986-12-25 1995-08-16 ソニー株式会社 光学ピツクアツプ装置
JPH02123321A (ja) * 1988-11-02 1990-05-10 Shojiro Kawakami 光アイソレータの製造方法および同製造方法に用いられる偏光素子アレイ並びに同製造方法で得られた光アイソレータを一体化した光学モジュール
JP2781987B2 (ja) 1989-05-23 1998-07-30 株式会社小松製作所 波長検出装置
JPH04110916A (ja) * 1990-08-31 1992-04-13 Sony Corp 半導体レーザ用合波装置
GB2256725B (en) * 1991-06-10 1995-01-18 Alps Electric Co Ltd Polarising light separation element and light receiving optical device using same
US5164857A (en) * 1991-06-24 1992-11-17 Nanometrics, Incorporated Wide band non-coated beam splitter
US5400179A (en) * 1992-02-18 1995-03-21 Asahi Kogaku Kogyo Kabushiki Kaisha Optical multilayer thin film and beam splitter
JPH06138413A (ja) * 1992-10-29 1994-05-20 Canon Inc プレート型偏光分離装置及び該偏光分離装置を用いた偏光照明装置
US5457558A (en) * 1993-06-30 1995-10-10 Nec Corporation Optical waveguide multiplexer for optical fiber amplifiers
JPH0774343A (ja) * 1993-08-31 1995-03-17 Fujitsu Ltd 集積化光装置及びその製造方法
US5790306A (en) * 1995-06-16 1998-08-04 Global Surgical Corporation Microscope beamsplitter
JP3538987B2 (ja) * 1995-08-17 2004-06-14 富士通株式会社 光レベル監視モジュール及び光レベル監視回路
US5883730A (en) * 1995-12-29 1999-03-16 Lucent Technologies Inc. Optical transceiver for multi-directional and multi-wavelength applications
US6487014B2 (en) * 1996-08-12 2002-11-26 National Research Council Of Canada High isolation optical switch, isolator or circulator having thin film polarizing beam-splitters
US6097521A (en) * 1997-09-26 2000-08-01 Siemens Aktiengesellschaft Optoelectronic module for bidirectional optical data transmission
US6212014B1 (en) * 1997-09-29 2001-04-03 Lsa, Inc. MWIR polarizing beamsplitter cube and method of making the same
US6190014B1 (en) * 1998-03-02 2001-02-20 Nikon Corporation Projection display apparatus
US6320993B1 (en) * 1998-06-05 2001-11-20 Astarte Fiber Networks, Inc. Optical switch pathway configuration using control signals
US6421176B1 (en) * 1998-09-18 2002-07-16 3M Innovative Properties Company Optical isolator
JP3698393B2 (ja) * 1998-12-11 2005-09-21 富士通株式会社 光送受信モジュールの構造及びその製法
DE60000525T2 (de) * 1999-01-29 2003-03-27 Nec Tokin Corp Optischer isolator mit einem faraday-rotator
JP3924104B2 (ja) * 2000-01-28 2007-06-06 信越化学工業株式会社 光ファイバ付きフェルール接続型光アイソレータ
US6587214B1 (en) * 2000-06-26 2003-07-01 Jds Uniphase Corporation Optical power and wavelength monitor
EP1417458A2 (en) * 2001-03-26 2004-05-12 Koninklijke Philips Electronics N.V. Transceiver device for cooperation with an optical fiber
US6621580B2 (en) * 2001-05-08 2003-09-16 Precision Photonics Corporation Single etalon wavelength locker
US7116479B1 (en) * 2001-07-19 2006-10-03 Wavesplitter Technologies, Inc. Array polarization beamsplitter and combiner
JP2003045063A (ja) * 2001-07-27 2003-02-14 Olympus Optical Co Ltd 光学ヘッド
US6571033B2 (en) * 2001-09-28 2003-05-27 Corning Incorporated Optical signal device
DE10225176C1 (de) * 2002-05-31 2003-12-24 Infineon Technologies Ag Vorrichtung zum Demultiplexen optischer Signale einer Vielzahl von Wellenlängen
JP4062073B2 (ja) * 2002-07-05 2008-03-19 日本ビクター株式会社 色分解及び色合成光学系
US7039278B1 (en) * 2002-07-10 2006-05-02 Finisar Corporation Single-fiber bi-directional transceiver
US6654178B1 (en) * 2002-08-14 2003-11-25 Agilent Technologies, Inc. Immersed non-polarizing beamsplitters
JP2004234818A (ja) * 2003-01-07 2004-08-19 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2004233484A (ja) * 2003-01-29 2004-08-19 Oki Electric Ind Co Ltd 光モジュール
US7145727B2 (en) * 2003-03-07 2006-12-05 Optoplex Corporation Unpolarized beam splitter having polarization-independent phase difference when used as an interferometer
JP4393094B2 (ja) * 2003-04-10 2010-01-06 キヤノン株式会社 光学系
US6922294B2 (en) * 2003-05-02 2005-07-26 International Business Machines Corporation Optical communication assembly
JP2005049821A (ja) * 2003-07-11 2005-02-24 Omron Corp 光合分波器、光集積回路及びそれらを用いた光送受信器
JP4461272B2 (ja) * 2003-12-02 2010-05-12 富士通オプティカルコンポーネンツ株式会社 波長分離素子および光モジュール
JP2005235276A (ja) * 2004-02-18 2005-09-02 Tdk Corp 光ヘッド、光再生装置及び光記録再生装置
WO2005119669A1 (ja) * 2004-06-03 2005-12-15 Matsushita Electric Industrial Co., Ltd. 光記録再生装置用光ヘッド
JP2006195301A (ja) * 2005-01-17 2006-07-27 Konica Minolta Opto Inc 光学素子
US7529029B2 (en) * 2005-07-29 2009-05-05 3M Innovative Properties Company Polarizing beam splitter
JP4348636B2 (ja) * 2005-12-16 2009-10-21 並木精密宝石株式会社 光アイソレータ付きレセプタクルおよびその製造方法
US20070154218A1 (en) * 2005-12-30 2007-07-05 Bookham Technology, Plc Optical discriminators and systems and methods
KR100754641B1 (ko) * 2006-03-02 2007-09-05 삼성전자주식회사 모니터들을 구비한 다파장 양방향 광송수신기
JP2007249129A (ja) * 2006-03-20 2007-09-27 Epson Toyocom Corp 波長分離素子、波長分離素子の製造方法及び光モジュール
WO2007129375A1 (ja) * 2006-04-26 2007-11-15 Okamoto Glass Co., Ltd. 光学素子コンポーネント
CN101689746B (zh) * 2007-03-19 2012-02-29 金定洙 一种自立式平行板分束器及其制作方法
US8643948B2 (en) * 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
JP2009105106A (ja) * 2007-10-22 2009-05-14 Hitachi Ltd 光送受信モジュール
KR20120039067A (ko) * 2009-08-10 2012-04-24 크로마 테크놀러지 코포레이션 마이크로스코프 큐브
JP5796934B2 (ja) * 2010-04-13 2015-10-21 日本オクラロ株式会社 偏波ダイバーシティ光学系装置、復調器及び送受信機
US8705975B2 (en) * 2011-02-24 2014-04-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Single wavelength bidirectional fiber optical link with beam-splitting element
EP2995979B1 (en) * 2013-05-27 2018-11-14 Huawei Technologies Co., Ltd. Filter and manufacturing method thereof, and laser wavelength monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2583691Y (zh) * 2002-07-02 2003-10-29 中国科学院长春光学精密机械与物理研究所 光学群组滤波器
US20050094685A1 (en) * 2002-11-12 2005-05-05 Colin Sylvain M. Simple and compact laser wavelength locker
US20040109166A1 (en) * 2002-12-09 2004-06-10 Fibera, Inc. Wavelength Locker With Confocal Cavity
CN101726872A (zh) * 2009-12-31 2010-06-09 招远招金光电子科技有限公司 一种可切换的低色散光梳状滤波器及方法
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995979A4 *

Also Published As

Publication number Publication date
CN104380160A (zh) 2015-02-25
CA2913482C (en) 2018-05-15
ES2710558T3 (es) 2019-04-25
KR20160013160A (ko) 2016-02-03
RU2015156205A (ru) 2017-06-28
MX2015016214A (es) 2016-03-11
EP2995979A1 (en) 2016-03-16
MX347531B (es) 2017-05-02
AU2013391380A1 (en) 2015-12-24
KR101807684B1 (ko) 2017-12-11
CA2913482A1 (en) 2014-12-04
US9678277B2 (en) 2017-06-13
CN104380160B (zh) 2017-12-05
JP2016520218A (ja) 2016-07-11
EP2995979A4 (en) 2016-06-29
JP6047811B2 (ja) 2016-12-21
EP2995979B1 (en) 2018-11-14
AU2013391380B2 (en) 2016-06-23
US20160085028A1 (en) 2016-03-24
RU2660761C2 (ru) 2018-07-09

Similar Documents

Publication Publication Date Title
US9678277B2 (en) Filter, method for producing filter, and laser wavelength monitoring apparatus
WO2017185789A1 (zh) 一种单光口多路并行光发射组件
JP7169708B2 (ja) 単芯双方向光送受信アセンブリ
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
US9645315B2 (en) Multiplexer
CN109061814B (zh) 一种基于环形器的单纤双向收发器
CN111613969B (zh) 半导体激光合束装置
WO2016112576A1 (zh) 波分复用/解复用器以及光发射组件
JP2010191231A (ja) 光モジュール
WO2016201625A1 (zh) 一种准直透镜以及包括其的光模块
CN112782862A (zh) 一种多波长合波的光学模组
WO2020015159A1 (zh) 基于垂直发射激光器和多模光纤的短波波段有源光学组件
WO2012106886A1 (zh) 分光装置、光复用装置及方法、光分插复用设备
KR20170075167A (ko) 양방향 광 송수신 모듈
GB2413858A (en) Optical beam-splitter with plano convex lens
KR102284519B1 (ko) 양방향 광 송수신 모듈
CN113391413A (zh) 一种单纤双向的光模块
CN220105430U (zh) 光信号合束结构、发端光器件及光模块
CN219871872U (zh) 一种Combo PON光引擎
JP2018066888A (ja) 光モジュール
CN211149096U (zh) 一种多波长合波的光学模组
WO2014000311A1 (zh) 一种外腔激光器
JPS60214316A (ja) 双方向伝送用光モジユ−ル
CN118050861A (zh) 一种光组件及其工作方法
KR100469751B1 (ko) 분포 궤환 레이저 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2913482

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/016214

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016515586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013885863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157036426

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013391380

Country of ref document: AU

Date of ref document: 20130527

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015156205

Country of ref document: RU

Kind code of ref document: A