KR102284519B1 - 양방향 광 송수신 모듈 - Google Patents

양방향 광 송수신 모듈 Download PDF

Info

Publication number
KR102284519B1
KR102284519B1 KR1020150075776A KR20150075776A KR102284519B1 KR 102284519 B1 KR102284519 B1 KR 102284519B1 KR 1020150075776 A KR1020150075776 A KR 1020150075776A KR 20150075776 A KR20150075776 A KR 20150075776A KR 102284519 B1 KR102284519 B1 KR 102284519B1
Authority
KR
South Korea
Prior art keywords
optical
prism
incident
transmission
optical fiber
Prior art date
Application number
KR1020150075776A
Other languages
English (en)
Other versions
KR20160139891A (ko
Inventor
황월연
최진수
권윤구
송세용
신봉기
김민형
Original Assignee
(주) 라이트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 라이트론 filed Critical (주) 라이트론
Priority to KR1020150075776A priority Critical patent/KR102284519B1/ko
Publication of KR20160139891A publication Critical patent/KR20160139891A/ko
Application granted granted Critical
Publication of KR102284519B1 publication Critical patent/KR102284519B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

본 발명에 따른 양방향 광 송수신 모듈은, 기존 스플리터를 사용한 양방향 광 송수신 모듈에 비해 링크 버짓을 개선할 수 있도록, 송신신호를 출력하는 광 송신부; 광섬유로부터 전송되는 수신신호를 입력받는 광 수신부; 및 상기 광 송신부로부터 출력된 송신신호를 경계면에서 굴절시켜 상기 송신신호의 일부를 상기 광섬유의 수광각 이내로 입사시키고, 상기 광섬유로부터 전송된 수신신호의 전부 또는 일부는 상기 경계면에서 전반사시켜 상기 광 수신부로 입사시키는 프리즘;을 포함하며, 상기 프리즘은, 상기 광섬유의 수광각 이내로 입사시키는 상기 송신신호의 프리즘 내부 광경로와 상기 광 수신부로 입사시키는 상기 수신신호의 프리즘 내부 광경로가 서로 상이하도록 상기 경계면의 각도와 굴절률을 갖는 것을 특징으로 한다. 본 발명에 의하면, 광 송신부에서 출력되어 광섬유로 입사되는 송신신호와 광섬유로부터 전송되어 광 수신부에 입사되는 수신신호가 프리즘 내에서 서로 다른 광경로를 갖게 됨으로써, 사용되는 전체 파장대역 내에서 송수신 신호를 분리하는 데 있어 송수신 신호의 파장간격(guard band)에 대한 이론적 제약이 없어지게 된다.

Description

양방향 광 송수신 모듈{BIDIRECTIONAL OPTICAL TRANSMITTING/RECEIVING MODULE}
본 발명은 양방향 광 송수신 모듈에 관한 것으로, 보다 상세하게는 광 송신부에서 출력되어 광섬유로 입사되는 송신신호의 광경로와 광섬유로부터 전송되어 광 수신부로 입사되는 수신신호의 광경로가 프리즘 내에서 서로 상이하도록 구성된 양방향 광 송수신 모듈에 관한 것이다.
최근들어 증가하는 데이터 트래픽에 대한 요구, 스마트 모바일 폰, 고성능 텔레비전(HDTV, 3D TV, 스마트 TV), 전자상거래 및 주문형 비디오(VOD: Video On Demand) 등의 다양한 멀티미디어 서비스에 대한 요구를 충족시키기 위해서는 현존하는 광 통신망의 용량 확장이 요구된다.
이러한 이유로 인해 현재까지 제안된 다양한 광통신 시스템 기술 중 파장분할 다중방식(WDM: Wavelength-Division Multiplexing) 기술이 궁극적인 대안으로 인식되고 있다.
WDM 기술은 광섬유 한 가닥을 통해 서로 다른 파장의 빛을 묶어서 보내는 파장분할 다중방식으로서, 각 가입자에게 고유의 독립적인 파장 할당을 통해 점대점(point-to-point)의 전용채널을 제공하며, 가입자마다 고유의 광 파장을 사용하기 때문에 지금까지 나온 기술 중 가장 높은 속도를 제공할 수 있다.
예를 들어, WDM-PON(PON: Passive Optical Network) 기술은 E-PON(Ethernet-PON) 및 G-PON(Gigabit-PON) 등과 같은 시간분할방식인 TDM(Time-Division Multiplexing)-PON에 비해 많은 파장을 사용하므로 양방향 대칭형 서비스를 보장하고, 독립적으로 대역폭을 할당하며, 해당 가입자만 서로 다른 파장의 신호를 수신하므로 보장성이 우수한 장점을 가지고 있다.
이러한 WDM-PON 기술에서 가장 중요한 요구사항 중 하나는 광 단말장치들이 사용되는 송수신 광 파장을 선택적으로 보내고 받아들일 수 있어야 한다는 것이다. 이러한 요구사항을 만족시키기 위해서, 종래에는 일반적으로 광 단말장치의 내부 또는 외부에 파장 선택적인 광필터를 사용하고 있었다.
하지만 사용하는 파장수가 많아지고, 송수신 파장의 상호간격(guard band)이 좁아질수록 가격 및 필터 삽입손실, 아이솔레이션 등에서 필요한 특성을 만족시키기 어려워지며, 이는 광 단말장치의 설계 및 버짓(budget) 확보에 큰 어려움을 가져오게 한다.
도 1은 종래의 광스플리터를 사용한 양방향 광 송수신 모듈(한국등록특허 제1285766호)을 나타낸 개략도이다.
도 1에 나타낸 종래의 양방향 광 송수신 모듈은 송신신호를 출력하는 광 송신부(10)와 수신신호를 입력받는 광 수신부(20), 광 송신부(10)로부터 출력된 송신신호의 입사방향에 대하여 경사지게 설치되어 상기 송신신호는 광섬유(40)로 입사시키고, 광섬유(40)로부터 전송되는 수신신호는 수신 반사하는 스플리터(30)를 포함하여 구성되어 있다.
이러한 광스플리터를 사용한 종래 기술은, 비교적 간격이 좁은(약 13nm 이내) 파장대역 내의 신호를 분리하고자 할 때에는 45도 WDM 필터를 사용하지 못하기 때문에 그에 대한 대안으로 스플리터(30)를 사용하고 있다.
스플리터(30)를 사용한 양방향 광 송수신 모듈에서 송수신신호의 배분 비율은 일반적으로 2:8~5:5까지 적용되며, 송수신신호의 배분 비율이 예를 들어 2:8이라고 한다면, 송신신호의 경우에는 80%(약 7dB)에 달하는 광 손실이 발생하게 되고, 수신신호의 경우에는 20%(약 1dB)의 광 손실이 불가피하게 발생하게 된다.
기존 양방향 광 송수신 모듈은 광 송신부에서 출력되어 광섬유에 입사되는 송신신호와 광섬유로부터 전송되어 광 수신부에 입력되는 수신신호의 물리적 광경로가 이론적으로 일치하기 때문에, 45도 WDM 필터를 사용하여 파워 버짓(power budget)의 손실을 최소화하면서 신호를 분리하거나, 45도 WDM 필터로 분리할 수 없을 만큼 파장대역의 간격이 좁은 경우에는 상기와 같은 광스플리터를 사용하여 링크 버짓(link buget)의 손해를 감수하면서까지 광 송수신 신호를 분리하였다.
한편, 광스플리터를 사용함에 따른 광 손실을 피하고 링크 버짓을 개선하기 위한 방안으로 듀플렉서(duplexer) 광 모듈을 고려해볼 수 있지만, 이러한 듀플렉서 광 모듈은 송신단과 수신단에 각각 광섬유를 사용해야 한다는 단점이 존재한다.
한국등록특허 제1285766호(2013.07.08)
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 한 가닥의 광섬유를 가지고 양방향 광 송수신을 수행하되, 기존 스플리터를 사용한 양방향 광 송수신 모듈에 비해 링크 버짓을 개선할 수 있도록 구성된 광 송수신 모듈을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명에 의한 양방향 광 송수신 모듈은, 송신신호를 출력하는 광 송신부; 광섬유로부터 전송되는 수신신호를 입력받는 광 수신부; 및 상기 광 송신부로부터 출력된 송신신호를 경계면에서 굴절시켜 상기 송신신호의 일부를 상기 광섬유의 수광각 이내로 입사시키고, 상기 광섬유로부터 전송된 수신신호의 전부 또는 일부는 상기 경계면에서 전반사시켜 상기 광 수신부로 입사시키는 프리즘;을 포함하며, 상기 프리즘은, 상기 광섬유의 수광각 이내로 입사시키는 상기 송신신호의 프리즘 내부 광경로와 상기 광 수신부로 입사시키는 상기 수신신호의 프리즘 내부 광경로가 서로 상이하도록 상기 경계면의 각도와 굴절률을 갖는 것을 특징으로 한다.
본 발명에 의한 양방향 광 송수신 모듈은, 상기 광 송신부와 상기 프리즘 사이에 배치되어, 상기 광 송신부로부터 출력된 송신신호를 굴절시켜 상기 프리즘에 입사시키는 광경로 조정프리즘을 더 포함할 수 있다.
여기서, 상기 광 송신부로부터 출력되는 송신신호의 편광방향은 입사면에 평행한 P편광인 것을 특징으로 한다.
본 발명에 의한 양방향 광 송수신 모듈은, 상기 광섬유와 상기 프리즘 사이에, 상기 광섬유와 상기 프리즘을 접합시키는 에폭시를 더 포함하고, 상기 에폭시는 상기 광섬유의 굴절률과 상기 프리즘의 굴절률 사이의 굴절률을 갖는 것을 특징으로 한다.
본 발명에 의한 양방향 광 송수신 모듈은, 상기 프리즘의 경계면에서 전반사된 수신신호 중에서 상기 광 수신부에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 신호만을 통과시키는 광 필터부를 더 포함할 수 있다.
본 발명에 의한 양방향 광 송수신 모듈은, 상기 프리즘의 경계면에서 전반사된 수신신호의 신호 형태를 평행광으로 변환시켜 출력하는 평행광 렌즈를 더 포함하고, 상기 광 필터부는 상기 평행광 렌즈를 통해 출력된 수신신호 중에서 상기 광 수신부에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 신호만을 통과시키는 것을 특징으로 한다.
본 발명에 의하면, 광 송신부에서 출력되어 광섬유로 입사되는 송신신호와 광섬유로부터 전송되어 광 수신부에 입사되는 수신신호가 프리즘 내에서 서로 다른 광경로를 갖게 됨으로써, 사용되는 전체 파장대역 내에서 송수신 신호를 분리하는 데 있어 송수신 신호의 파장간격(guard band)에 대한 이론적 제약이 없어진다. 즉, 0.4~1.6nm 간격의 표준 DWDM 파장 간격을 이용할 수 있음은 물론, 그보다 근접한 파장 간격에도 대응 가능하다. 또한, 광통신에서 레일리 산란(Rayleigh scattering; 광섬유를 통한 광통신 시 광 송신부에서 출력되어 광섬유로 입사되는 송신신호가 광섬유의 구성 입자를 맞고 산란하여 광 송신부로 되돌아가는 현상으로서, 선로 잡음 발생의 원인으로 작용함)이 문제되지 않을 경우에는 동일한 파장을 갖고도 광의 송수신이 가능하다.
종래 광스플리터를 사용한 DWDM 통신용 양방향 광 송수신 모듈은 송수신 간 링크 버짓 관계가 제로섬 관계(송신 버짓이 이득이면 수신 버짓이 손실이거나, 그 역인 관계)이나, 본 발명에 의하면 광의 송수신이 개별 프리즘 내부 광경로를 통해 이루어지기 때문에 링크 버짓이 상대적으로 개선될 수 있다.
또한, 본 발명에 의하면 파장 분리용 반사필터(즉, 45도 WDM 필터)가 필요 없기 때문에 송수신 파장 종류별로 반사필터를 일일이 제작할 필요가 없어, 제품군의 단일화를 이룰 수 있다.
도 1은 종래의 광스플리터를 사용한 양방향 광 송수신 모듈을 나타낸 개략도이다.
도 2는 본 발명의 제 1 실시예에 따른 양방향 광 송수신 모듈의 개략적인 구성을 나타낸 도면이다.
도 3a는 도 2에 나타낸 양방향 광 송수신 모듈에서 광섬유로부터 전송되는 수신신호가 프리즘의 경계면에서 전반사되는 모습을 나타낸 도면이다.
도 3b는 도 2에 나타낸 양방향 광 송수신 모듈에서 광 송신부로부터 출력된 송신신호가 프리즘의 경계면에서 굴절되어 광섬유의 수광각 이내로 입사되는 모습을 나타낸 도면이다.
도 4a는 광섬유로부터 전송되는 수신신호(파장: 1550nm)가 프리즘의 경계면에 입사될 때, 입사각도(θi)에 따른 반사율(R1)을 나타낸 그래프이다.
도 4b는 광섬유로부터 전송되는 수신신호가 프리즘의 경계면에 입사될 때, 수신신호의 파장에 따른 반사율(R1)을 나타낸 그래프이다.
도 5a는 광 송신부로부터 출력된 송신신호(파장: 1550nm)가 프리즘의 경계면에 입사될 때, 입사각도(θ'i)에 따른 반사율(R2)을 나타낸 그래프이다.
도 5b는 광 송신부로부터 출력된 송신신호가 프리즘의 경계면에 입사될 때, 송신신호의 파장에 따른 반사율(R2)을 나타낸 그래프이다.
도 6은 프리즘의 경계면에서 전반사된 수신신호가 광 필터부에 입사되는 모습을 나타낸 도면이다.
도 7은 평행광과 발산광에 대한 광 필터부의 필터 투과 특성을 나타낸 그래프이다.
도 8은 본 발명의 제 2 실시예에 따른 양방향 광 송수신 모듈의 개략적인 구성을 도시한 도면이다.
도 9a는 광 송신부로부터 출력된 송신신호(파장: 1550nm)가 광경로 조정프리즘의 경계면에 입사될 때, 입사각도(θ"i)에 따른 반사율(R3)을 나타낸 그래프이다.
도 9b는 광 송신부로부터 출력된 송신신호가 광경로 조정 프리즘의 경계면에 입사될 때, 송신신호의 파장에 따른 반사율(R3)을 나타낸 그래프이다.
이하, 첨부한 도면들을 참조하여 본 발명에 의한 양방향 광 송수신 모듈에 대하여 상세하게 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않고 다른 형태로 구체화될 수 있다.
또한, 도면들 중 동일한 구성요소들은 동일한 부호들을 나타내며, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략하기로 한다.
도 2는 본 발명의 제 1 실시예에 따른 양방향 광 송수신 모듈의 개략적인 구성을 나타낸 도면이다. 도 3a는 도 2에 나타낸 양방향 광 송수신 모듈에서 광섬유로부터 전송되는 수신신호가 프리즘의 경계면에서 전반사되는 모습을 나타낸 도면이며, 도 3b는 도 2에 나타낸 양방향 광 송수신 모듈에서 광 송신부로부터 출력된 송신신호가 프리즘의 경계면에서 굴절되어 광섬유의 수광각 이내로 입사되는 모습을 나타낸 도면이다.
본 발명에 따른 양방향 광 송수신 모듈은 상기 도면들에 나타낸 바와 같이, 광 송신부(110), 광섬유(120), 광 수신부(130) 및 프리즘(140)을 포함하여 구성될 수 있다.
광 송신부(110)는 레이저 다이오드(LD)와 같은 발광소자 및 광 집속렌즈를 포함하여 이루어질 수 있으며, 송신신호를 출력하는 구성이다.
광섬유(120)는 송신신호 및 수신신호가 입출력되는 통로로서의 기능을 한다.
광 수신부(130)는 포토 다이오드(PD)와 같은 수광소자 및 광 집속렌즈를 포함하여 이루어질 수 있으며, 광섬유(120)로부터 전송되는 수신신호를 입력받는 구성이다.
파장분할 다중방식 중 CWDM의 경우에는 일반적으로 중심파장 1270nm부터 1610nm까지의 범위 내에서 20nm 간격(총 18개 채널)으로 신호를 분리하여야 하고, DWDM의 경우에는 그보다 좁은 파장 간격(약 0.4~1.6nm)으로 신호를 분리하여 광통신이 이루어지도록 하여야 한다.
이를 위하여, 프리즘(140)은 광 송신부(110)로부터 출력된 송신신호를 경계면(145)에서 굴절시켜 송신신호의 일부를 광섬유(120)의 수광각 이내로 입사시키고, 광섬유(120)로부터 전송되는 수신신호의 전부 또는 일부를 상기 경계면(145)에서 전반사시켜 광 수신부(130)로 입사시킨다.
이 때, 프리즘(140)은 광섬유(120)의 수광각 이내로 입사시키는 상기 송신신호의 프리즘 내부 광경로와, 광섬유(120)로부터 전송되어 광 수신부(130)로 입사시키는 상기 수신신호의 프리즘 내부 광경로가 서로 상이하도록 경계면(145)의 각도(θprism; 프리즘(140)의 상면과 경계면(145)의 연장면이 이루는 각도) 및 굴절률을 갖는다.
본 발명에 따른 양방향 광 송수신 모듈은 이와 같이 프리즘(140) 내부에서 송신신호의 광경로와 수신신호의 광경로가 서로 상이하도록 구성되어 파장대역의 간격이 좁은 송수신 신호도 손쉽게 분리해낼 수 있고, 그와 함께 광의 송수신 시 발생하는 광 손실은 감소시킬 수 있어 광스플리터를 사용한 종래의 광 송수신 모듈에 비해 링크 버짓을 크게 개선시킬 수 있다.
광섬유(120)로부터 전송되는 수신신호는 도 3a에 자세히 나타낸 바와 같이, 통상 5°이내의 방사각(radiation angle)을 갖고 경계면(145)에 입사되며, 프리즘(140)은 상기 경계면(145)에 입사되는 수신신호의 전부 또는 일부를 전반사시켜 이를 광 수신부(130)에 입사시킨다.
광섬유(120)로부터 전송되는 수신신호가 경계면(145)에서 전반사되어 광 수신부(130)에 입사되기 위해서는 전반사 조건(광신호가 굴절률이 큰 매질(프리즘, 굴절률 n1)에서 굴절률이 작은 매질(공기, 굴절률 n2)로 이동할 때, 광신호의 입사각이 전반사 임계각보다 크거나 같아야 함)을 만족시켜야 하며, 이를 위해 프리즘(140)은 광섬유(120)로부터 전송되는 수신신호의 전부 또는 일부가 경계면(145)에서 전반사될 수 있는 경계면(145)의 각도(θprism) 및 굴절률(n1)을 갖는다.
반사율(R1)은 프레넬 방정식에서 반사계수의 제곱으로 표현되며, 광 수신부(130) 입장에서는 광섬유(120)로부터 전송되는 수신신호가 경계면(145)에서 투과율이 0%(즉, 반사율이 100%)일 경우에 최적의 조건이 된다.
S편광(TE 모드)은 경계면(145)에 입사되는 수신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 수직한 방향을 가리키며, 이 S편광 조건에서의 반사율 R1S는 다음 식에 의해 계산될 수 있다(θi: 수신신호의 입사각, θt: 수신신호의 투과각).
Figure 112015051819026-pat00001
P편광(TM 모드)은 경계면(145)에 입사되는 수신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 평행한 방향을 가리키며, 이 P편광 조건에서의 반사율 R1P는 다음 식에 의해 계산될 수 있다(θi: 수신신호의 입사각, θt: 수신신호의 투과각).
Figure 112015051819026-pat00002
도 4a는 광섬유로부터 전송되는 수신신호(파장: 1550nm)가 프리즘의 경계면에 입사될 때, 입사각도(θi)에 따른 반사율(R1)을 나타낸 그래프이다.
구체적으로 도 4a는 프리즘(140)의 굴절률(n1)은 1.5, 공기의 굴절률(n2)은 1.0이고, 경계면(145)의 각도(θprism)는 45°이며, 수신신호의 파장이 1550nm일 때, 광섬유(120)로부터 전송되는 수신신호가 경계면(145)에 입사되는 각도(θi)에 따른 경계면(145)에서의 반사율(R1)을 나타낸 것이다.
도 4a에 의하면, 수신신호가 경계면(145)에서 전반사되는 입사각도(즉, 임계각)는 41.8도임을 알 수 있으며, 입사각도가 이보다 클 경우에는 수신신호가 경계면(145)에서 전반사되고, 입사각도가 이보다 작을 경우에는 편광 상태(S편광과 P편광)에 따라 반사율에 차이가 있다는 것을 알 수 있다.
이와 같이, 프리즘(140)은 광섬유(120)로부터 전송되는 수신신호가 경계면(145)에서 전부 또는 일부 전반사될 수 있는 경계면(145)의 각도(θprism) 및 굴절률(n1)을 구비한다. 만일, 프리즘(140)의 굴절률이 상기 예로 든 굴절률과 다를 경우에는 경계면(145)에서 전반사가 일어나는 수신신호의 입사각도가 달라지게 되므로 경계면(145)의 각도를 달리 설정할 필요가 있으며, 경계면(145)의 각도가 상기 예로 든 각도와 다를 경우에는 프리즘(140)의 굴절률을 달리 설정할 필요가 있다.
도 4b는 광섬유로부터 전송되는 수신신호가 프리즘의 경계면에 입사될 때, 수신신호의 파장에 따른 반사율(R1)을 나타낸 그래프이다.
구체적으로, 도 4b는 프리즘(140)을 구성하는 물질이 SiO2이고, 경계면(145)의 각도(θprism)는 45°이며, 단일모드 광섬유로부터 전송되는 수신신호의 중심광이 경계면(145)에 45°의 각도(즉, 도 3a에서 θi2=45°)로 입사될 때, 수신신호의 파장에 따른 경계면(145)에서의 반사율(R1)을 광학 시뮬레이션을 통해 얻은 결과이다.
도 4b에 의하면, 수신신호가 S편광 상태로 입사되는 경우에는 반사율이 약 85% 정도로서 P편광 상태에 비해 비교적 높은 반사율을 나타낸다는 것을 알 수 있다. 이에 따라, 경계면(145)에서의 반사율을 높이기 위해서는 광섬유(120)로부터 전송되는 수신신호의 편광 상태가 입사면(YZ 평면)에 수직한 S편광인 것이 바람직하나, 상기 수신신호의 편광은 외부(광섬유)로부터 전송되는 신호이기 때문에 편광 상태를 임의로 조절할 수는 없다.
한편, 광 송신부(110)에서 출력되는 송신신호는 도 3b에 자세히 나타낸 바와 같이, 통상 7°이내의 방사각을 갖고 경계면(145)에 입사되며, 프리즘(140)은 상기 경계면(145)에 입사되는 송신신호를 굴절시켜 그 일부를 광섬유(120)의 수광각 이내로 입사시킨다.
이 때, 광 송신부(110)에서 출력되는 송신신호가 최대한 광섬유(120)의 수광각 이내로 입사되기 위해서는 광 송신부(110)가 광섬유(120)의 수평축과 동일축상에 배치될 수는 없고, 도 2 및 도 3b에 나타낸 바와 같이 광섬유(120)의 수평축을 기준으로 일정 각도 회전되어 배치될 것이 요구된다.
광 송신부(110)에서 출력되는 송신신호가 경계면(145)에서 굴절되어 그 송신신호의 일부가 광섬유(120)의 수광각 이내로 입사될 때 광섬유(120)에 결합되는 송신신호를 최대로 하기 위해서는 경계면(145)에서의 반사율(R2)이 최소가 되어야 한다. 즉, 송신신호가 굴절률이 작은 매질(공기, 굴절률 n2)에서 굴절률이 큰 매질(프리즘, 굴절률 n1)로 이동할 때 경계면(145)에서의 반사율(R2)이 가능한 작아질 수 있도록 경계면(145)에 입사되도록 하는 것이 바람직하다.
반사율(R2)은 프레넬 방정식에서 반사계수의 제곱으로 표현되며, 광 송신부(110) 입장에서는 그로부터 출력되는 송신신호가 경계면(145)에서의 반사율이 0%(즉, 투과율이 100%)일 경우에 최적의 조건이 된다.
S편광과 P편광은 입사면인 YZ 평면에 대하여 광 송신부(110)에서 출력되는 송신신호의 방향, 즉 발광소자(레이저 다이오드 칩 등)가 YZ 평면에 대하여 어떻게 놓이느냐에 따라 결정된다.
S편광은 경계면(145)에 입사되는 송신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 수직한 방향을 가리키며, 이 S편광 조건에서의 반사율 R2S는 다음 식에 의해 계산될 수 있다(θ'i: 송신신호의 입사각, θ't: 송신신호의 투과각).
Figure 112015051819026-pat00003
P편광은 경계면(145)에 입사되는 송신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 평행한 방향을 가리키며, 이 P편광 조건에서의 반사율 R2P는 다음 식에 의해 계산될 수 있다(θ'i: 송신신호의 입사각, θ't: 송신신호의 투과각).
Figure 112015051819026-pat00004
도 5a는 광 송신부로부터 출력된 송신신호(파장: 1550nm)가 프리즘의 경계면에 입사될 때, 입사각도(θ'i)에 따른 반사율(R2)을 나타낸 그래프이다.
구체적으로 도 5a는 공기의 굴절률(n2)은 1.0, 프리즘(140)의 굴절률(n1)은 1.5이고, 경계면(145)의 각도(θprism)는 45°이며, 송신신호의 파장이 1550nm일 때, 광 송신부(110)에서 출력되는 송신신호가 경계면(145)에 입사되는 각도(θ'i)에 따른 경계면(145)에서의 반사율(R2)을 나타낸 것이다.
도 5a에 의하면, 송신신호가 경계면(145)에서 모두 투과되는 입사각도(즉, 브루스터 각)는 송신신호가 P편광 상태일 때 56.3°임을 알 수 있으며, 입사각도가 이보다 작거나 클 경우에는 편광 상태(S편광과 P편광)에 따라 반사율(R2)에 차이가 있다는 것을 알 수 있고, 특히 입사각도(θ'i)가 커지는 경우에는 반사율(R2)이 급격하게 높아진다는 것을 알 수 있다.
도 5b는 광 송신부로부터 출력된 송신신호가 프리즘의 경계면에 입사될 때, 송신신호의 파장에 따른 반사율(R2)을 나타낸 그래프이다.
구체적으로, 도 5b는 프리즘(140)을 구성하는 물질이 SiO2이고, 경계면(145)의 각도(θprism)는 45°이며, 송신신호의 중심광이 경계면(145)에 입사되는 각도가 71.5°(즉, 도 3b에서 θ'i2=71.5°)일 때, 송신신호의 파장에 따른 경계면(145)에서의 반사율(R2)을 광학 시뮬레이션을 통해 얻은 결과이다.
도 5b에 의하면, 송신신호가 P편광 상태로 입사되는 경우에는 반사율(R2)이 약 6% 정도로서 S편광 상태에 비해 비교적 낮은 반사율을 나타낸다는 것을 알 수 있으며, 이에 따라 경계면(145)에서의 투과율을 높이기 위해서는 광 송신부(110)에서 출력되는 송신신호의 편광 상태가 입사면(YZ 평면)에 평행한 P편광인 것이 바람직하다는 것을 확인할 수 있다.
상기에서 설명한 바와 같이, 프리즘(140)은 광섬유(120)로부터 전송되는 수신신호가 경계면(145)에서 전부 또는 일부 전반사될 수 있는 경계면(145)의 각도 및 굴절률을 구비하며, 광 송신부(110)는 송신신호가 경계면(145)에서 굴절되어 광섬유(120)의 수광각 이내로 최대한 입사될 수 있도록 P편광 상태의 송신신호를 출력하고, 상기 출력된 송신신호는 경계면(145)에 대하여 브루스터 각도 부근으로 입사되도록 함이 바람직하다.
다만, 본 발명에 의한 양방향 광 송수신 모듈 설계 시 프리즘(140)의 크기, 광 송신부(110)의 위치, 광섬유(120)의 수광각, 모듈 제작의 용이성 등을 고려하여 송신신호가 경계면(145)에 입사되는 각도는 다양하게 설정될 수 있다.
본 발명의 제 1 실시예에 따른 양방향 광 송수신 모듈은 프리즘(140)을 이용하여, 광 송신부(110)에서 출력되어 프리즘(140)의 경계면(145)에서 굴절된 뒤 광섬유의 수광각 이내로 입사되는 송신신호의 프리즘 내부 광경로와, 광섬유(120)로부터 전송되어 프리즘(140)의 경계면(145)에서 전반사된 뒤 광 수신부(130)로 입사되는 수신신호의 프리즘 내부 광경로를 서로 다르게 함으로써, 송수신신호의 파장을 분리하는데 있어 송수신 파장간격에 대한 이론적 제약이 없어지도록 구성된다.
이에 따라, 본 발명은 종래 스플리터를 사용한 양방향 광 송수신 모듈이 갖는 장점인 간격이 좁은 파장대역 내의 신호를 분리해낼 수 있을 뿐만 아니라, 그 신호 분리 과정에서 광손실은 줄여 종래 스플리터를 사용한 양방향 광 송수신 모듈에 비해 링크 버짓을 크게 개선시킬 수 있다.
본 발명에 의한 양방향 광 송수신 모듈은 반사 손실을 줄이기 위해 광섬유(120)와 프리즘(140)이 서로 마주하는 각각의 면들 및 광 수신부(130)와 마주하는 프리즘(140) 면에 AR(anti-reflection) 코팅을 하는 것이 바람직하다.
또는, 광섬유(120)와 프리즘(140)이 서로 마주하는 각각의 면들에 AR 코팅을 하는 대신, 광섬유(120)와 프리즘(140) 사이에 광섬유(120)와 프리즘(140)을 접합시키는 에폭시(150)를 구비하는 것이 바람직하다. 이 때, 상기 에폭시(150)가 광섬유(120)의 굴절률과 프리즘(140)의 굴절률 사이의 굴절률을 가질 경우에는, 광섬유(120)와 프리즘(140) 사이에서 반사되는 수신신호의 비율을 최소화할 수 있으며, 에폭시(150)는 AR 코팅에 비해 가격이 저렴하여 비용 절감의 효과도 가질 수 있다.
본 발명에 의한 양방향 광 송수신 모듈은 프리즘(140)에 의해 광 송신부(110)에서 출력되는 송신신호와 광섬유(120)로부터 전송되는 수신신호의 광 경로가 서로 상이하도록 구성되어 있지만, 경계면(145)에서 반사되는 송신신호 및 경계면(145)에서 투과되는 수신신호(내부 반사신호)가 광 수신부(130)로 입력되거나, 광섬유(120)에 입사되는 송신신호가 선로 반사 또는 레일리 역산란(외부 반사신호) 등에 의해 광 수신부(130)로 입력될 수 있다.
이러한 내,외부 반사신호는 광 수신부(130)에 할당된 파장 값이 아닌 노이즈에 해당한다. 이에 따라, 본 발명에서는 프리즘(140)의 경계면(145)에서 전반사된 수신신호 중에서 광 수신부(130)에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 수신신호만을 수신신호로서 통과시키고 상기 내,외부 반사신호는 차단시키는 광 필터부(170)를 구비할 수 있다.
즉, 광 필터부(170)는 수신신호의 파장 값을 포함한 기 설정된 파장 범위 내의 수신신호만을 통과시키는 대역통과필터(BPF: Band Pass Filter)의 특성을 갖는다.
광 필터부(170)는 도 2에 도시된 바와 같이 양방향 광 송수신 모듈에 내장형으로 구비되거나, 또는 외장형으로 구비될 수 있다.
도 6은 프리즘의 경계면에서 전반사된 수신신호가 광 필터부에 입사되는 모습을 나타낸 도면으로서, 이하에서는 도 6을 참고하여 광 필터부(170)의 필터 차단 특성을 효과적으로 개선시키기 위해서 광 필터부(170)에 입사되는 광의 형태에 따른 특성을 살펴보기로 한다.
광섬유(120)를 통해서 프리즘(140)에 입사되는 수신신호는, 보통 시판되는 단일모드 광섬유의 경우 공기 중에서 7~8도의 반치각으로 발산한다. 반치각 7~8도를 갖고 발산하는 광이 광 필터부(170)에 입사될 때 그 입사되는 광의 각도는 입사각으로 불리며, 이 입사각은 법선방향에 대한 입력 광의 기울어진 각도로 정의된다.
도 6은 광섬유(120)로부터 전송되는 발산광이 프리즘(140)을 거쳐 광 필터부(170)에 입사될 때 발산광의 중심에서 벗어난 위치에 따른 광 입사각의 변화를 나타낸 도면이다. 도 6에 도시된 바와 같이, 발산광이 광 필터부(170)에 입사될 경우 외곽으로 갈수록 입사각이 커지게 된다.
이러한 발산광과 비교하여, 전체 입사각이 0도인 평행광이 광 필터부(170)에 입사되는 경우, 광 필터부(170)의 필터 투과 특성에 어떠한 영향이 있는지 도 7을 참조하여 살펴보도록 한다.
도 7은 평행광과 발산광에 대한 광 필터부의 필터 투과 특성을 나타내는 그래프이다.
도 7에 나타낸 바와 같이, 광 필터부(170)가 광 차단 정도를 나타내는 광 아이솔레이션(isolation) 값으로 30dB를 갖기 위해서는, 1355nm 기준 파장에서 발산광의 경우 최소 14nm의 가드 밴드(guard band)를 가져야 하나, 평행광의 경우에는 단지 3nm의 가드 밴드만을 요구한다.
여기서, 가드 밴드는 광 아이솔레이션 값을 만족시키기 위해 필요한 최소 파장 간격을 의미하며, 광 통신망에서 광 송수신 채널을 위한 파장 간격을 좁혀 정보량의 집적도를 높이기 위해서는 이 가드 밴드가 좁아져야 한다.
따라서, 발산광의 경우에 비해 평행광으로 광 필터부(170)에 광이 입력되는 경우에 이 가드 밴드를 좁힐 수 있는 특성을 고려하여, 본 발명은 광 필터부(140)에 입사광의 형태가 평행광이 되도록 하기 위하여 평행광 렌즈(160)를 포함할 수 있다. 평행광 렌즈(160)는 프리즘(140)의 경계면(145)에서 전반사된 수신신호의 신호 형태를 평행광으로 변환시켜 출력하는 동작을 수행한다.
이 평행광 렌즈(160)를 통해 광 필터부(170)에 입사되는 광은 평행광이 되므로, 앞서 살펴본 바와 같이 기 설정된 광 아이솔레이션 값을 만족시키기 위해 필요한 가드 밴드가 발산광에 비해 매우 큰 폭으로 좁아지게 되어, 통신 채널의 집적도를 크게 향상시킬 수 있다.
도 8은 본 발명의 제 2 실시예에 따른 양방향 광 송수신 모듈의 개략적인 구성을 도시한 도면이다.
도 8에 도시된 본 발명의 제 2 실시예는 도 2에 도시된 제 1 실시예와 동일하게 광 송신부(110), 광섬유(120), 광 수신부(130) 및 프리즘(140)을 포함하여 구성된다. 또한, 광섬유(120)와 프리즘(140) 사이에 구비되는 에폭시(150), 프리즘(140)의 경계면(145)에서 전반사된 수신신호의 신호 형태를 평행광으로 변환시켜 출력하는 평행광 렌즈(160), 그리고 프리즘(140)의 경계면(145)에서 전반사된 수신신호 중에서 광 수신부(130)에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 신호만을 통과시키고 내,외부 반사신호는 차단하는 광 필터부(170)와 같은 구성들의 동작들도 동일하므로 여기서는 상기 구성들에 대한 설명은 생략하기로 한다.
본 발명의 제 2 실시예는 광경로 조정프리즘(240)을 포함한다. 광경로 조정 프리즘(240)은 광 송신부(110)와 프리즘(140) 사이에 배치되어, 광 송신부(110)에서 출력된 송신신호(의 전부 또는 일부)를 굴절시켜 프리즘(140)에 입사시키는 동작을 수행하는 구성이다.
도 2에 도시된 본 발명의 제 1 실시예의 경우에, 광 송신부(110)에서 출력된 송신신호를 프리즘(140)을 통해 광섬유(120)의 수광각 이내로 입사시키기 위해서는 광 송신부(110)가 광섬유(120)의 수평축과 동일축상에 위치할 수 없다. 이와 같은 경우에는 광 송수신 모듈 제작에 어려움을 발생시킬 수 있기 때문에, 도 8에 나타낸 바와 같이 광경로 조정프리즘(240)을 구비함으로써 광 송신부(110)의 위치를 변경시킬 수 있도록 하는 것이 바람직하다.
광경로 조정프리즘(240)은 광 송신부(110)에서 출력되는 송신신호를 경계면(245)에서 굴절시켜 프리즘(140)에 입사시키고, 상기 프리즘(140)에 입사된 송신신호는 앞선 제 1 실시예에서 설명한 바와 같이 경계면(145)에서 굴절되어 송신신호의 일부가 광섬유(120)의 수광각 이내로 입사하게 된다.
광 송신부(110)에서 출력되는 송신신호가 경계면(245)에서 굴절되어 프리즘(140)에 최대의 투과량으로 입사되기 위해서는, 상기 경계면(245)에서의 반사율(R3)이 최소가 되어야 한다. 즉, 송신신호가 굴절률이 높은 매질(광경로 조정프리즘, 굴절률 n3)에서 굴절률이 낮은 매질(공기, 굴절률 n2)로 이동할 때, 상기 송신신호는 경계면(245)에서의 반사율(R3)이 가능한 최소가 되는 각도로 경계면(245)에 입사되는 것이 바람직하다.
반사율(R3)은 프레넬 방정식에서 반사계수의 제곱으로 표현되며, 광 송신부(110) 입장에서는 그로부터 출력되는 송신신호가 경계면(245)에서의 반사율이 0%(즉, 투과율이 100%)일 경우에 최적의 조건이 된다.
S편광과 P편광은 입사면인 YZ 평면에 대하여 광 송신부(110)에서 출력되는 송신신호의 방향, 즉 발광소자(레이저 다이오드 칩 등)가 YZ 평면에 대하여 어떻게 놓이느냐에 따라 결정된다.
S편광은 경계면(245)에 입사되는 송신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 수직한 방향을 가리키며, 이 S편광 조건에서의 반사율 R3S는 다음 식에 의해 계산될 수 있다(θ"i: 송신신호의 입사각, θ"t: 송신신호의 투과각).
Figure 112015051819026-pat00005
P편광은 경계면(245)에 입사되는 송신신호의 편광(전기장) 방향이 입사면인 YZ 평면에 평행한 방향을 가리키며, 이 P편광 조건에서의 반사율 R3P는 다음 식에 의해 계산될 수 있다(θ"i: 송신신호의 입사각, θ"t: 송신신호의 투과각).
Figure 112015051819026-pat00006
도 9a는 광 송신부로부터 출력된 송신신호(파장: 1550nm)가 광경로 조정프리즘의 경계면에 입사될 때, 입사각도(θ"i)에 따른 반사율(R3)을 나타낸 그래프이다.
구체적으로 도 9a는, 광경로 조정프리즘(240)의 굴절률(n3)은 1.5, 공기의 굴절률(n2)은 1.0이고, 광경로 조정 프리즘의 경계면(245)의 각도(θ'prism; 광경로 조정프리즘(240)의 하면과 경계면(245)의 연장면이 이루는 각도)는 38.5°이며, 송신신호의 파장이 1550nm이고, 광 송신부(110)가 광섬유(120)의 수평축과 동일축상에 위치한 경우, 광 송신부(110)에서 출력되는 송신신호가 경계면(245)에 입사되는 각도(θ"i)에 따른 경계면(245)에서의 반사율(R3)을 나타낸 것이다.
도 9a에 의하면, 송신신호가 경계면(245)에서 모두 투과되는 입사각도(θ"i)는 송신신호가 P편광 상태일 때 33.7°임을 알 수 있으며, 입사각이 이보다 작거나 클 경우에는 편광 상태(S편광과 P편광)에 따라 반사율에 차이가 있다는 것을 알 수 있고, 특히 입사각이 41.8°(즉, 전반사가 일어나는 임계각)보다 클 경우에는 송신신호가 경계면(245)에서 전반사가 일어나 투과가 일어나지 않는다는 것을 알 수 있다.
광경로 조정프리즘(240)은 광 송신부(110)에서 출력되는 송신신호의 경로를 조정하기 위하여, 송신신호가 경계면(245)에서 굴절될 수 있는 경계면(245)의 각도(θ'prism) 및 굴절률(n3)을 구비한다. 만일, 광경로 조정프리즘(240)의 굴절률이 상기 예로 든 굴절률과 다를 경우에는 경계면(245)에서 굴절이 일어나는 송신신호의 입사각도가 달라지게 되므로 상기 경계면(245)의 각도를 달리 설정할 수 있으며, 경계면(245)의 각도가 상기 예로 든 각도와 다를 경우에는 광경로 조정프리즘(240)의 굴절률을 달리 설정할 수 있다.
도 9b는 광 송신부로부터 출력된 송신신호가 광경로 조정 프리즘의 경계면에 입사될 때, 송신신호의 파장에 따른 반사율(R3)을 나타낸 그래프이다.
구체적으로, 도 9b는 광경로 조정프리즘(240)을 구성하는 물질이 SiO2이고, 경계면(245)의 각도(θ'prism)는 51.5°이며, 송신신호의 중심광이 경계면(245)에 입사되는 각도가 38.5°(즉, 도 8에서 θ"i2=38.5°)일 때, 송신신호의 파장에 따른 경계면(245)에서의 반사율(R3)을 광학 시뮬레이션을 통해 얻은 결과이다.
도 9b에 의하면, 송신신호가 P편광 상태로 입사되는 경우에는 반사율이 약 2% 정도로서 S편광 상태에 비해 비교적 낮은 반사율을 나타낸다는 것을 알 수 있으며, 이에 따라 경계면(245)에서의 투과율을 높이기 위해서는 광 송신부(110)에서 출력되는 송신신호의 편광 상태가 입사면인 YZ 평면에 평행한 P편광인 것이 바람직하다는 것을 확인할 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 기술적 사상은 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명의 기술적 사상의 범주에 속한다고 할 것이다.
110: 광 송신부
120: 광섬유
130: 광 수신부
140: 프리즘
145: 프리즘의 경계면
150: 에폭시
160: 평행광 렌즈
170: 광 필터부
240: 광경로 조정프리즘
245: 광경로 조정프리즘의 경계면

Claims (6)

  1. 송신신호를 출력하는 광 송신부;
    광섬유로부터 전송되는 수신신호를 입력받는 광 수신부; 및
    상기 광 송신부로부터 출력된 송신신호를 경계면에서 굴절시켜 상기 송신신호의 일부를 상기 광섬유의 수광각 이내로 입사시키고, 상기 광섬유로부터 전송된 수신신호의 전부 또는 일부는 상기 경계면에서 전반사시켜 상기 광 수신부로 입사시키는 프리즘;을 포함하며,
    상기 광섬유는 상기 송신신호 및 상기 수신신호가 입출력되는 통로로서의 기능을 수행하고,
    상기 광 송신부로부터 출력되어 상기 프리즘의 경계면에 입사되는 송신신호의 입사각은 45°보다 큰 것을 특징으로 하는 양방향 광 송수신 모듈.
  2. 제 1 항에 있어서,
    상기 광 송신부와 상기 프리즘 사이에 배치되어, 상기 광 송신부로부터 출력된 송신신호를 굴절시켜 상기 프리즘에 입사시키는 광경로 조정프리즘을 더 포함하는 양방향 광 송수신 모듈.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 광 송신부로부터 출력되는 송신신호의 편광방향은 입사면에 평행한 P편광인 것을 특징으로 하는 양방향 광 송수신 모듈.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 광섬유와 상기 프리즘 사이에, 상기 광섬유와 상기 프리즘을 접합시키는 에폭시를 더 포함하고,
    상기 에폭시는 상기 광섬유의 굴절률과 상기 프리즘의 굴절률 사이의 굴절률을 갖는 것을 특징으로 하는 양방향 광 송수신 모듈.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 프리즘의 경계면에서 전반사된 수신신호 중에서 상기 광 수신부에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 신호만을 통과시키는 광 필터부를더 포함하는 양방향 광 송수신 모듈.
  6. 제 5 항에 있어서,
    상기 프리즘의 경계면에서 전반사된 수신신호의 신호 형태를 평행광으로 변환시켜 출력하는 평행광 렌즈를 더 포함하고,
    상기 광 필터부는 상기 평행광 렌즈를 통해 출력된 수신신호 중에서 상기 광 수신부에 할당된 파장 값을 포함한 기 설정된 파장 범위 내의 신호만을 통과시키는 것을 특징으로 하는 양방향 광 송수신 모듈.
KR1020150075776A 2015-05-29 2015-05-29 양방향 광 송수신 모듈 KR102284519B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150075776A KR102284519B1 (ko) 2015-05-29 2015-05-29 양방향 광 송수신 모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150075776A KR102284519B1 (ko) 2015-05-29 2015-05-29 양방향 광 송수신 모듈

Publications (2)

Publication Number Publication Date
KR20160139891A KR20160139891A (ko) 2016-12-07
KR102284519B1 true KR102284519B1 (ko) 2021-08-03

Family

ID=57573246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150075776A KR102284519B1 (ko) 2015-05-29 2015-05-29 양방향 광 송수신 모듈

Country Status (1)

Country Link
KR (1) KR102284519B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017224B1 (ko) * 2017-04-17 2019-09-02 서강대학교산학협력단 자유공간 광통신을 위한 모노스태틱 양방향 집광 및 수광 광학계
KR102041589B1 (ko) * 2018-07-26 2019-11-27 (주)코셋 파장다중 양방향 광송수신 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982018B1 (ko) * 2008-10-02 2010-09-14 한국전자통신연구원 양방향 광송수신 장치
KR101176950B1 (ko) * 2010-09-17 2012-08-30 주식회사 유나이브 부품의 수동 정렬을 구현하는 광 송수신 장치 및 부품의 수동 정렬방법
KR101285766B1 (ko) 2012-05-18 2013-07-19 에스케이텔레콤 주식회사 양방향 광 송수신 모듈

Also Published As

Publication number Publication date
KR20160139891A (ko) 2016-12-07

Similar Documents

Publication Publication Date Title
US8303195B2 (en) Optical transceiver module
US9838130B2 (en) Bi-directional optical transceiver module
KR101726650B1 (ko) 듀얼 대역통과 wdm 커플러가 내장된 광 송수신 모듈
CN102279445B (zh) 一种单纤双向双端口光收发一体组件
KR20200059356A (ko) 멀티채널 양방향 광통신 모듈
JP2009151106A (ja) 一芯双方向光デバイス
KR101771161B1 (ko) 양방향 광 송수신 모듈
US20140044436A1 (en) Optical transmitter and optical transceiver comprising optical transmitter
KR102284519B1 (ko) 양방향 광 송수신 모듈
KR20110114395A (ko) 파장 분할 다중화 시스템용 양방향 전송 광송수신 모듈
CN201608423U (zh) 激光器和光收发机
CN104823392A (zh) 一种双向光组件
KR101115463B1 (ko) 양방향 광송수신 모듈
WO2023040536A1 (zh) 一种单纤多向光收发装置及光模块
CN201716439U (zh) 一种单纤双向双端口光收发一体组件
KR100626984B1 (ko) 일체형 트리플렉서 광모듈
CN201740889U (zh) 一种单纤双向双端口光收发一体组件
KR101687788B1 (ko) 광개구수를 이용한 파장다중 양방향 광송수신모듈
KR102046439B1 (ko) 입사 각도를 줄여주는 굴절률분포형렌즈를 구성한 양방향 광송수신장치
KR101435589B1 (ko) 양방향 통신용 광모듈 패키지 구조
KR101626785B1 (ko) 수신 광 경로 확장 렌즈형 반사기를 포함하는 양 방향 광 서브어셈블리
CN220105430U (zh) 光信号合束结构、发端光器件及光模块
JPS60214316A (ja) 双方向伝送用光モジユ−ル
US10788633B2 (en) Complementary reverse order filters
KR101674006B1 (ko) 저손실 파장다중 양방향 광송수신모듈

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant