JP2010113157A - 光受信装置 - Google Patents
光受信装置 Download PDFInfo
- Publication number
- JP2010113157A JP2010113157A JP2008285696A JP2008285696A JP2010113157A JP 2010113157 A JP2010113157 A JP 2010113157A JP 2008285696 A JP2008285696 A JP 2008285696A JP 2008285696 A JP2008285696 A JP 2008285696A JP 2010113157 A JP2010113157 A JP 2010113157A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- photoelectric conversion
- incident
- buffer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Light Receiving Elements (AREA)
Abstract
【課題】多波長間における光のクロストークを大幅に改善する。
【解決手段】入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記各光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられる2個の反射ミラーとを有し、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記2個の反射ミラーで反射されて前記光電変換素子に入射される。
【選択図】図2
【解決手段】入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記各光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられる2個の反射ミラーとを有し、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記2個の反射ミラーで反射されて前記光電変換素子に入射される。
【選択図】図2
Description
本発明は、光受信装置に係り、特に、光通信における信号受信用フォトダイオード、それを用いた受信モジュールに利用して有効な技術に関する。
化合物半導体を用いた半導体受光素子は、光通信用素子などに広く用いられている。この光通信用受光素子の一例として、InGaAsを吸収層に用いたPINフォトダイオード(photodiode)(以下、PIN PDという)、または、アバランシェフォトダイオード(Avalanche photodiode)(以下、APDという)が知られている。
PIN PDは、p型半導体、アンドーブ半導体、n型半導体から構成される。PIN PDに光が入射されると、バイアス電界のかかったアンドープの半導体層で吸収された後、電子と正孔に変換され、電気信号として検出される。
APDは、PIN PDに加えて、なだれ光増幅層が含まれており、光の増幅機能を有し、長距離伝送システム用の受光素子として用いられている。
近年、通信容量の増大が急速に進み、光通信の伝送容量の増大が求められている。現在、光通信容量の拡大のために用いられている主な光通信システムは、波長多重(Wavelength Division Multiplexing:WDM)光通信システムである。
本システムでは、信号は複数のチャネルに分けられて伝送される。各チャネルには異なる波長が割り当てられ、異なる複数の波長の光が1本の光ファイバで伝送される。受信側には、フロントエンドインターフェースとして、分波器と、フォトダイオードと、増幅回路を含む受信回路とから構成される受信モジュールがある。
送られてきた光信号は、まず分波器で、チャネル(波長)ごとに空間的に分割され、各チャネルの信号はそれぞれ異なるフォトダイオードに入力され、電気信号に変換された後、受信回路へ送られる。
PIN PDは、p型半導体、アンドーブ半導体、n型半導体から構成される。PIN PDに光が入射されると、バイアス電界のかかったアンドープの半導体層で吸収された後、電子と正孔に変換され、電気信号として検出される。
APDは、PIN PDに加えて、なだれ光増幅層が含まれており、光の増幅機能を有し、長距離伝送システム用の受光素子として用いられている。
近年、通信容量の増大が急速に進み、光通信の伝送容量の増大が求められている。現在、光通信容量の拡大のために用いられている主な光通信システムは、波長多重(Wavelength Division Multiplexing:WDM)光通信システムである。
本システムでは、信号は複数のチャネルに分けられて伝送される。各チャネルには異なる波長が割り当てられ、異なる複数の波長の光が1本の光ファイバで伝送される。受信側には、フロントエンドインターフェースとして、分波器と、フォトダイオードと、増幅回路を含む受信回路とから構成される受信モジュールがある。
送られてきた光信号は、まず分波器で、チャネル(波長)ごとに空間的に分割され、各チャネルの信号はそれぞれ異なるフォトダイオードに入力され、電気信号に変換された後、受信回路へ送られる。
なお、本願発明に関連する先行技術文献としては以下のものがある。
特開2002−33503号公報
光通信の消費電力の削減ならびに低コスト化のためには、受信モジュールの小型化、低コスト化が要求される。WDM光通信システムに用いられる受信モジュールの小型化には、小型の分波器を用いること必須となる。
通常の小型の分波器は、波長分割のアイソレーションが悪く、次のような課題が生じる。例えば、図1に示すように、異なる4波長(λ1,λ2、λ3,λ4)を用いるWDM光通信システムを考える。同一の光ファイバで伝送されてきた4波長の信号は、まず、図1(b)に示す分波器12に入射し、その後、分波器12の異なるポート(PT#1〜PT#4)から出射される。即ち、空間的に分割される。
空間的に分割された各波長の信号は、異なるフォトダイオード(PD#1〜PD#4)に入射され、電気信号に変換される。
理想的なアイソレーションの優れた分波器が存在すれば、各フォトダイオード(PD#1〜PD#4)に入射される波長は異なる波長となる。
しかしながら、特に、小型の分波器の場合、図1(a)に示すように、分波器のポート間(特に、隣接ポート間)のアイソレーション特性は良くない。その結果、例えば、ポート(PT#1)について考えると、主信号のλ1の波長以外に、λ2の波長の信号もフォトダイオード(PD#1)に受信され、電気信号に変換される。当然、この信号は、フォトダイオード(PD#1)で受信した信号の中で雑音となる。これを光のクロストークという。なお、図1(a)において、Tは透過率を示している。
光のクロストークの問題は、前述したように、小型の分波器を用いる時に顕著となる。また、より伝送容量を増大するために、波長間隔を狭くし、波長の多重度を上げたWDMシステムの場合にも顕著になる。
通常の小型の分波器は、波長分割のアイソレーションが悪く、次のような課題が生じる。例えば、図1に示すように、異なる4波長(λ1,λ2、λ3,λ4)を用いるWDM光通信システムを考える。同一の光ファイバで伝送されてきた4波長の信号は、まず、図1(b)に示す分波器12に入射し、その後、分波器12の異なるポート(PT#1〜PT#4)から出射される。即ち、空間的に分割される。
空間的に分割された各波長の信号は、異なるフォトダイオード(PD#1〜PD#4)に入射され、電気信号に変換される。
理想的なアイソレーションの優れた分波器が存在すれば、各フォトダイオード(PD#1〜PD#4)に入射される波長は異なる波長となる。
しかしながら、特に、小型の分波器の場合、図1(a)に示すように、分波器のポート間(特に、隣接ポート間)のアイソレーション特性は良くない。その結果、例えば、ポート(PT#1)について考えると、主信号のλ1の波長以外に、λ2の波長の信号もフォトダイオード(PD#1)に受信され、電気信号に変換される。当然、この信号は、フォトダイオード(PD#1)で受信した信号の中で雑音となる。これを光のクロストークという。なお、図1(a)において、Tは透過率を示している。
光のクロストークの問題は、前述したように、小型の分波器を用いる時に顕著となる。また、より伝送容量を増大するために、波長間隔を狭くし、波長の多重度を上げたWDMシステムの場合にも顕著になる。
前述した光のクロストークを低減するための方法として、前述の特許文献1に記載されているように、フォトダイオードに光学フィルタ(波長選択フィルタ)を設ける方法が考えられる。
光フィルタとしては、屈折率の異なる2つの材料を周期的に積層したDistributed Bragg Reflector(DBR)が知られている。この光学フィルタを用いることで、ある波長帯の光を反射し、その他の光を透過させることができる。
従って、例えば、図1に示す例において、フォトダイオード(PD#1)に設けた光学フィルタ(DBR)で、λ1の波長の光を透過させ、λ2の波長の光を反射することで雑音(λ2の波長の信号)を低減することができる。しかし、フォトダイオードに作り込む光学フィルタ(DBR)では、膜形成時間の制限から、層数をそれほど増やすことはできない。その結果、高反射領域の反射率を上げることは容易でない。
本発明は、前記従来技術の問題点を解決するためになされたものであり、本発明の目的は、光受信装置において、多波長間における光のクロストークを大幅に改善することが可能となる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
光フィルタとしては、屈折率の異なる2つの材料を周期的に積層したDistributed Bragg Reflector(DBR)が知られている。この光学フィルタを用いることで、ある波長帯の光を反射し、その他の光を透過させることができる。
従って、例えば、図1に示す例において、フォトダイオード(PD#1)に設けた光学フィルタ(DBR)で、λ1の波長の光を透過させ、λ2の波長の光を反射することで雑音(λ2の波長の信号)を低減することができる。しかし、フォトダイオードに作り込む光学フィルタ(DBR)では、膜形成時間の制限から、層数をそれほど増やすことはできない。その結果、高反射領域の反射率を上げることは容易でない。
本発明は、前記従来技術の問題点を解決するためになされたものであり、本発明の目的は、光受信装置において、多波長間における光のクロストークを大幅に改善することが可能となる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
(1)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記各光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられる2個の反射ミラーとを有し、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記2個の反射ミラーで反射されて前記光電変換素子に入射される。
(2)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧4)個の第1の反射ミラーと、前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、前記mとnは、ともに2の倍数で、かつ、m−n=2であり、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(3)(1)または(2)において、前記バッファ層の前記光電変換素子が設けられる面に設けられる集光レンズを有し、前記各波長の光は、前記集光レンズを介して入射される。
(1)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記各光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられる2個の反射ミラーとを有し、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記2個の反射ミラーで反射されて前記光電変換素子に入射される。
(2)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧4)個の第1の反射ミラーと、前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、前記mとnは、ともに2の倍数で、かつ、m−n=2であり、前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(3)(1)または(2)において、前記バッファ層の前記光電変換素子が設けられる面に設けられる集光レンズを有し、前記各波長の光は、前記集光レンズを介して入射される。
(4)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧2)個の第1の反射ミラーと、前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、前記mとnは、ともに2の倍数で、かつ、m=nであり、前記各波長の光は、前記m個の第1の反射ミラーが設けられた面から前記基板に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(5)(4)において、前記基板の前記第1の反射ミラーが設けられた面に設けられる集光レンズを有し、前記各波長の光は、前記集光レンズを介して入射される。
(5)(4)において、前記基板の前記第1の反射ミラーが設けられた面に設けられる集光レンズを有し、前記各波長の光は、前記集光レンズを介して入射される。
(6)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧3)個の第1の反射ミラーと、前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、前記nは、2の倍数で、かつ、m−n=1であり、前記各波長の光は、前記基板の端面から前記基板に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(7)入力光を各波長毎に分波する分波器と、前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、前記光電変換部は、基板と、前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、前記波長選択フィルタ上に設けられるバッファ層と、前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧2)個の第1の反射ミラーと、
前記バッファ層および前記コンタクト層の前記光電変換素子が設けられる面に設けられるn(n≧1)個の第2の反射ミラーとを有し、前記mは、2の倍数で、かつ、m−n=1であり、前記各波長の光は、前記バッファ層の端面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(8)(1)ないし(7)の何れかにおいて、前記各波長の光は、前記波長選択フィルタに平行な方向に対して垂直な方向から10°以内の角度で前記波長選択フィルタに入射される。
(9)(1)ないし(8)の何れかにおいて、前記波長選択フィルタは、屈折率の異なる2つの層が周期的に積層されて構成される。
前記バッファ層および前記コンタクト層の前記光電変換素子が設けられる面に設けられるn(n≧1)個の第2の反射ミラーとを有し、前記mは、2の倍数で、かつ、m−n=1であり、前記各波長の光は、前記バッファ層の端面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射される。
(8)(1)ないし(7)の何れかにおいて、前記各波長の光は、前記波長選択フィルタに平行な方向に対して垂直な方向から10°以内の角度で前記波長選択フィルタに入射される。
(9)(1)ないし(8)の何れかにおいて、前記波長選択フィルタは、屈折率の異なる2つの層が周期的に積層されて構成される。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。
本発明の光受信装置によれば、多波長間における光のクロストークを大幅に改善することが可能となる。
本発明の光受信装置によれば、多波長間における光のクロストークを大幅に改善することが可能となる。
以下、図面を参照して本発明の実施例を詳細に説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
[実施例1]
図2は、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる表面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例のフォトダイオードは、例えば、鉄がドープされたInP基板1の表面に形成された波長選択フィルタ(以下、光学フィルタという)5と、光学フィルタ5上に形成されたバッファ層16と、バッファ層16上に形成されたコンタクト層17と、コンタクト層17に形成された光電変換素子2およびn電極4と、光電変換素子2に形成されたp電極3と、基板1の表面(光学フィルタ5が形成された面と反対側の面)に形成された複数の第1の反射ミラー6Aと、バッファ層16の表面(光学フィルタ5が形成された面と反対側の面)に形成された複数の第2の反射ミラー6Bとから構成される。
ここで、光電変換素子2は、クラッド層20、吸収層21、クラッド層22の多層構造とされる。なお、図2において、バッファ層16はInP、コンタクト層17はn+InP、クラッド層20はp+InGaAsP、吸収層21はInGaAs、クラッド層22はn+InGaAsPで構成される。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
[実施例1]
図2は、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる表面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例のフォトダイオードは、例えば、鉄がドープされたInP基板1の表面に形成された波長選択フィルタ(以下、光学フィルタという)5と、光学フィルタ5上に形成されたバッファ層16と、バッファ層16上に形成されたコンタクト層17と、コンタクト層17に形成された光電変換素子2およびn電極4と、光電変換素子2に形成されたp電極3と、基板1の表面(光学フィルタ5が形成された面と反対側の面)に形成された複数の第1の反射ミラー6Aと、バッファ層16の表面(光学フィルタ5が形成された面と反対側の面)に形成された複数の第2の反射ミラー6Bとから構成される。
ここで、光電変換素子2は、クラッド層20、吸収層21、クラッド層22の多層構造とされる。なお、図2において、バッファ層16はInP、コンタクト層17はn+InP、クラッド層20はp+InGaAsP、吸収層21はInGaAs、クラッド層22はn+InGaAsPで構成される。
図2に示す表面入射型フォトダイオードでは、バッファ層16の表面から入射した光7は、複数の反射ミラー(6A,6B)により光路8の方向を変えながら、光学フィルタ5を複数回(図2では4回)透過した後、最後に光電変換素子2に入射される。
なお、図2では、光学フィルタ5を4回透過させているが、光学フィルタ5を最低2回以上透過させるものであればよい。光学フィルタ5を最低2回以上透過させる場合には、基板1の表面に2つの第1の反射ミラー6Aを形成する必要がある。さらに、本実施例において、光学フィルタ5を6回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をmとするとき、m、nはともに2の倍数で、m−n=2とする必要がある。
また、光電変換素子2は、PIN構造でも、アバランシェフォトダイオード構造でもどちらでもよい。
なお、図2では、光学フィルタ5を4回透過させているが、光学フィルタ5を最低2回以上透過させるものであればよい。光学フィルタ5を最低2回以上透過させる場合には、基板1の表面に2つの第1の反射ミラー6Aを形成する必要がある。さらに、本実施例において、光学フィルタ5を6回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をmとするとき、m、nはともに2の倍数で、m−n=2とする必要がある。
また、光電変換素子2は、PIN構造でも、アバランシェフォトダイオード構造でもどちらでもよい。
図2示す光学フィルタ5は、例えば、InPとInGaAlAs(あるいは、InGaAs)の屈折率の異なる材料を周斯的に積層することによって形成される。各層の厚さは、λc/4nである、ここで、nは各層の材料の屈折率、λcは反射させたい波長(雑音の波長)が高反射領域に、透過させたい信号が高透過領域になるように決定する。
このような光学フィルタ(所謂、DBR型フィルタ)では、図6(a)に示すように、光学フィルタに垂直に入射する光に対しては、図6(b)に示すように、TE偏光、TM偏光の光に対して同じ透過特性を示す。ここで、垂直とは、光学フィルタを構成する層表面に対して垂直であることを示す。
一方、図7(a)に示すように、光学フィルタに斜めに入射する光に対しては、図7(b)に示すように、TH偏光と、TM扁光とは、異なる透過特性を有する。そのため、光学フィルタのフィルタ特性に偏光依存性が生じ、ファイバを透過する際に偏光方向が変化する光ファイバ通信システムでは欠点となる。
入射角は、±5度以内であれば、光フィルタ特性の偏光依存性比は無視できるほど小さい。よって、反射ミラー(6A,6B)による光路8の方向の変換角度は90度±5度であることが望ましい。なお、図6、図7において、Tは透過率、λは波長を示している。
このような光学フィルタ(所謂、DBR型フィルタ)では、図6(a)に示すように、光学フィルタに垂直に入射する光に対しては、図6(b)に示すように、TE偏光、TM偏光の光に対して同じ透過特性を示す。ここで、垂直とは、光学フィルタを構成する層表面に対して垂直であることを示す。
一方、図7(a)に示すように、光学フィルタに斜めに入射する光に対しては、図7(b)に示すように、TH偏光と、TM扁光とは、異なる透過特性を有する。そのため、光学フィルタのフィルタ特性に偏光依存性が生じ、ファイバを透過する際に偏光方向が変化する光ファイバ通信システムでは欠点となる。
入射角は、±5度以内であれば、光フィルタ特性の偏光依存性比は無視できるほど小さい。よって、反射ミラー(6A,6B)による光路8の方向の変換角度は90度±5度であることが望ましい。なお、図6、図7において、Tは透過率、λは波長を示している。
本実施例の反射ミラー(6A,6B)は、結晶方位によるエッチングレートの異方性によるエッチング技術を用いて形成することができ、その角度は、45度±1度以内の精度である。ここで、角度は、図2の光学フィルタの層に平行な方向から測った反射ミラー(6A,6B)の角度である。このエッチング技術を用いれば、反射ミラー(6A,6B)を用いて、光学フィルタ5に偏光依存性が無視できるほど小さくなるような角度で光を入射させることができる。
この反射ミラー(6A,6B)において、エッチングにより形成したあと、ミラー表面を金属膜をコーティングすること、反射率の向上、並びに機械的強度をあげることができる。
p電極3は、反射ミラーの機能も有するように、半導体と金属膜(例えば、Ti/Pt/Ti/Pt/Au)の間にSiN並びにSiO2などの誘電体膜を挟むことで高反射率を実現する(コンタクト部分(金属と半導体が接する部分)の反射率は下がる)。この反射ミラーによりフォトダイオードの受光感度を向上させることができる。
また、n電極4は、金属膜(例えば、AuGe/Ni/Ti/Pt/Au)で構成される。
この反射ミラー(6A,6B)において、エッチングにより形成したあと、ミラー表面を金属膜をコーティングすること、反射率の向上、並びに機械的強度をあげることができる。
p電極3は、反射ミラーの機能も有するように、半導体と金属膜(例えば、Ti/Pt/Ti/Pt/Au)の間にSiN並びにSiO2などの誘電体膜を挟むことで高反射率を実現する(コンタクト部分(金属と半導体が接する部分)の反射率は下がる)。この反射ミラーによりフォトダイオードの受光感度を向上させることができる。
また、n電極4は、金属膜(例えば、AuGe/Ni/Ti/Pt/Au)で構成される。
図1に示す例を用いて、本実施例を用いた場合の光のクロストークの低減の効果について説明する。
光学フィルタ5を1回透過した時のλ1の波長の光の透過率を0.9、λ2の波長の光の透過率を0.1とする。簡単のために、λ1の波長とλ2の波長の光の入射時、λ1の波長とλ2の波長の信号レベルが同じであるとする。この場合、光学フィルタを1回透過した後に、フォトダイオード(PD#1)に入射したとすると、λ2の波長の信号は、λ1の波長の信号の1/9となる。しかし、同じ光学フィルタ5をn回透過した後に、フォトダイオード(PD#1)に入射した場合、λ2の波長の信号は、λ1の波長の信号の(1/9)nとなる。
n=2の場合、λ2の波長の信号は、λ1の波長の信号の1/81、n=3の場合、λ2の波長の信号は、λ1の波長の信号の1/729となる。
このように、複数回、同一の光学フィルタ5を透過することにより、アイソレーションを飛躍的に改善させることができる。
したがって、本実施例によれば、多波長間における光のクロストークを大幅に改善できるため、光のアイソレーション特性の良くない小型の分波器を用いることができ、受信モジュールの小型化が可能である。さらに、光のアイソレーション特性の良くない低価格な分波器を用いることができ、受信モジュールの低コスト化か可能となる。
光学フィルタ5を1回透過した時のλ1の波長の光の透過率を0.9、λ2の波長の光の透過率を0.1とする。簡単のために、λ1の波長とλ2の波長の光の入射時、λ1の波長とλ2の波長の信号レベルが同じであるとする。この場合、光学フィルタを1回透過した後に、フォトダイオード(PD#1)に入射したとすると、λ2の波長の信号は、λ1の波長の信号の1/9となる。しかし、同じ光学フィルタ5をn回透過した後に、フォトダイオード(PD#1)に入射した場合、λ2の波長の信号は、λ1の波長の信号の(1/9)nとなる。
n=2の場合、λ2の波長の信号は、λ1の波長の信号の1/81、n=3の場合、λ2の波長の信号は、λ1の波長の信号の1/729となる。
このように、複数回、同一の光学フィルタ5を透過することにより、アイソレーションを飛躍的に改善させることができる。
したがって、本実施例によれば、多波長間における光のクロストークを大幅に改善できるため、光のアイソレーション特性の良くない小型の分波器を用いることができ、受信モジュールの小型化が可能である。さらに、光のアイソレーション特性の良くない低価格な分波器を用いることができ、受信モジュールの低コスト化か可能となる。
[実施例2]
図3を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる集光レンズを有する表面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の表面入射型フォトダイオードは、バッファ層16の表面に形成される集光レンズ9を有する点で、前述の実施例の表面入射型フォトダイオードと相違する。以下、前述の実施例との相違点を中心に本実施例について説明する。
本実施例では、バッファ層16の表面から入射した光7は、まず、集光レンズ9を介してバッファ層16に入射し、それから複数の反射ミラー(6A,6B)により光路8の方向を変えながら、光学フィルタ5を複数回(図3では、4回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
光路8の長さ(光路長)が長くなると光電変換素子2に入射される光のビームスポット径が大きくなるが、集光レンズ9により、光路8の長さ(光路長)が長くなった場合にも、光電変換素子2に入射される光のビームスポット径を小さくできるので、光結合トレランスを大幅に改善できる。
さらに、反射ミラーとしても機能するp電極3において、前述の実施例1で記載した誘電体膜と金属膜からなる高反射膜領域にビームを集中させることで、反射率をさらに上げて、受光感度のさらなる改善が期待される。
なお、図3では、光学フィルタ5を4回透過させているが、最低2回(この場合、基板1の裏面に2つの反射ミラー6を形成する)以上透過させるようにすればよい。
図3を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる集光レンズを有する表面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の表面入射型フォトダイオードは、バッファ層16の表面に形成される集光レンズ9を有する点で、前述の実施例の表面入射型フォトダイオードと相違する。以下、前述の実施例との相違点を中心に本実施例について説明する。
本実施例では、バッファ層16の表面から入射した光7は、まず、集光レンズ9を介してバッファ層16に入射し、それから複数の反射ミラー(6A,6B)により光路8の方向を変えながら、光学フィルタ5を複数回(図3では、4回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
光路8の長さ(光路長)が長くなると光電変換素子2に入射される光のビームスポット径が大きくなるが、集光レンズ9により、光路8の長さ(光路長)が長くなった場合にも、光電変換素子2に入射される光のビームスポット径を小さくできるので、光結合トレランスを大幅に改善できる。
さらに、反射ミラーとしても機能するp電極3において、前述の実施例1で記載した誘電体膜と金属膜からなる高反射膜領域にビームを集中させることで、反射率をさらに上げて、受光感度のさらなる改善が期待される。
なお、図3では、光学フィルタ5を4回透過させているが、最低2回(この場合、基板1の裏面に2つの反射ミラー6を形成する)以上透過させるようにすればよい。
[実施例3]
図4を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる集光レンズを有する集光レンズを有する裏面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の裏面入射型フォトダイオードは、基板1の表面に形成される集光レンズ9を有する点と、入力光が基板1の表面から入射される点で、前述の実施例1の表面入射型フォトダイオードと相違する。以下、前述の実施例1との相違点を中心に本実施例について説明する。
本実施例では、基板1の表面から入射した光7は、まず集光レンズ9を介して基板1に入射され、それから複数の反射ミラー(6A,6B)により光路8の万向を変えながら、光学フィルタ5を複数回(図4では3回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
なお、図4では、光学フィルタ5を3回透過しているが、さらに反射ミラー6の数を増やすことで、光学フィルタ5を5回以上透過させるようにしてもよい。本実施例において、光学フィルタ5を5回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をmとするとき、m、nはともに2の倍数で、m=nとする必要がある。
図4を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる集光レンズを有する集光レンズを有する裏面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の裏面入射型フォトダイオードは、基板1の表面に形成される集光レンズ9を有する点と、入力光が基板1の表面から入射される点で、前述の実施例1の表面入射型フォトダイオードと相違する。以下、前述の実施例1との相違点を中心に本実施例について説明する。
本実施例では、基板1の表面から入射した光7は、まず集光レンズ9を介して基板1に入射され、それから複数の反射ミラー(6A,6B)により光路8の万向を変えながら、光学フィルタ5を複数回(図4では3回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
なお、図4では、光学フィルタ5を3回透過しているが、さらに反射ミラー6の数を増やすことで、光学フィルタ5を5回以上透過させるようにしてもよい。本実施例において、光学フィルタ5を5回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をmとするとき、m、nはともに2の倍数で、m=nとする必要がある。
[実施例4]
図5を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる端面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の端面入射型フォトダイオードは、基板1の端面から入射した光7が入射される点で、前述の実施例1の表面入射型フォトダイオードと相違する。以下、前述の実施例1との相違点を中心に本実施例について説明する。
本実施例の端面入射型フォトダイオードでは、基板1の端面側から入射した光7は、複数の反射ミラー(6A,6B)により光路8の方向を変えながら、光学フィルタ5を複数回(図5では、3回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
なお、図5では、光学フィルタ5を3回透過させているが、さらに反射ミラー6の数を増やすことで、光学フィルタを5回以上透過させるようにしてもよい。本実施例において、光学フィルタ5を5回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をnとするとき、nは2の倍数で、m−n=1とする必要がある。
さらに、本実施例において、基板1の端面側から光を入射させる代わりに、バッファ層16の端面側から光を入射させるようにすることも可能である。この場合、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をnとするとき、mは2の倍数で、m−n=1とする必要がある。
図5を用いて、本発明の光受信装置における、入力光を波長選択フィルタに複数回入射させることで光のクロストークを低減させることができる端面入射型フォトダイオード(本発明の光電変換部)の実施例について説明する。
本実施例の端面入射型フォトダイオードは、基板1の端面から入射した光7が入射される点で、前述の実施例1の表面入射型フォトダイオードと相違する。以下、前述の実施例1との相違点を中心に本実施例について説明する。
本実施例の端面入射型フォトダイオードでは、基板1の端面側から入射した光7は、複数の反射ミラー(6A,6B)により光路8の方向を変えながら、光学フィルタ5を複数回(図5では、3回)透過した後、最後に光電変換素子2に入射される。光電変換素子2は、PIN構造でもアバランシェフォトダイオード構造でもどちらでもよい。
なお、図5では、光学フィルタ5を3回透過させているが、さらに反射ミラー6の数を増やすことで、光学フィルタを5回以上透過させるようにしてもよい。本実施例において、光学フィルタ5を5回以上透過させる場合には、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をnとするとき、nは2の倍数で、m−n=1とする必要がある。
さらに、本実施例において、基板1の端面側から光を入射させる代わりに、バッファ層16の端面側から光を入射させるようにすることも可能である。この場合、第1の反射ミラー6Aの数をm、第2の反射ミラー6Bの数をnとするとき、mは2の倍数で、m−n=1とする必要がある。
[実施例5]
図8を用いて、本発明の光受光装置として、波長多重光通信システム用受信モジュールについて説明する。
図8に示す波長多重光通信システム用受信モジュールは、光ファイバ10から伝送された入射した光7を集光する集光レンズ11と、入射した光7を分波する分波器12と、それぞれ分波された光を集光する集光レンズアレイ13と、それぞれ分波された光を受光する前述の実施例1から実施例4に記載のフォトダイオードから溝成されるフォトダイオードアレイ14と、フォトダイオードアレイ14で光電変換された電気信号を増幅するための受信ICアンプL5とから構成される。なお、この図8では、例として4波多重通信システム用受信モジュールを想定している。
波長多重光通信システムにおいて、受信モジュールの小型化と低価格化は必須である。受信モジュールの小型化には、小型の分波器を用いる必要がある。しかし、従来の小型の分波器を用いた場合、各波長(チャネル)間のアイソレーションが十分大きくとれないという課題があった。また、アイソレーションのよい分波器を用いる場合、受信モジュールの低コスト化が困難になる。
しかしながら、本実施例のフォトダイオードを用いることにより、従来の分波器(または低価格な分波器)を用いても、受信モジュールとしてのアイソレーションにおいて、良好な性能を維持することができる。また、伝送容量が増大し、チャネル数が増え、チャネル間隔が小さくなってとしても、本実施例のフォトダイオードを用いることにより、良好なアイソレーションを維持することができる。
以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
図8を用いて、本発明の光受光装置として、波長多重光通信システム用受信モジュールについて説明する。
図8に示す波長多重光通信システム用受信モジュールは、光ファイバ10から伝送された入射した光7を集光する集光レンズ11と、入射した光7を分波する分波器12と、それぞれ分波された光を集光する集光レンズアレイ13と、それぞれ分波された光を受光する前述の実施例1から実施例4に記載のフォトダイオードから溝成されるフォトダイオードアレイ14と、フォトダイオードアレイ14で光電変換された電気信号を増幅するための受信ICアンプL5とから構成される。なお、この図8では、例として4波多重通信システム用受信モジュールを想定している。
波長多重光通信システムにおいて、受信モジュールの小型化と低価格化は必須である。受信モジュールの小型化には、小型の分波器を用いる必要がある。しかし、従来の小型の分波器を用いた場合、各波長(チャネル)間のアイソレーションが十分大きくとれないという課題があった。また、アイソレーションのよい分波器を用いる場合、受信モジュールの低コスト化が困難になる。
しかしながら、本実施例のフォトダイオードを用いることにより、従来の分波器(または低価格な分波器)を用いても、受信モジュールとしてのアイソレーションにおいて、良好な性能を維持することができる。また、伝送容量が増大し、チャネル数が増え、チャネル間隔が小さくなってとしても、本実施例のフォトダイオードを用いることにより、良好なアイソレーションを維持することができる。
以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
1 基板
2 光電変換素子
3 p電極
4 n電極
5 波長選択フィルタ(光学フィルタ)
6A,6B 反射ミラー
7 入射光
8 光路
9,11 集光レンズ
10 光ファイバ
12 分波器
13 集光レンズアレイ
14 フォトダイオードアレイ
15 受信ICアンプ
16 バッファ層
17 コンタクト層
20,22 クラッド層
21 吸収層
2 光電変換素子
3 p電極
4 n電極
5 波長選択フィルタ(光学フィルタ)
6A,6B 反射ミラー
7 入射光
8 光路
9,11 集光レンズ
10 光ファイバ
12 分波器
13 集光レンズアレイ
14 フォトダイオードアレイ
15 受信ICアンプ
16 バッファ層
17 コンタクト層
20,22 クラッド層
21 吸収層
Claims (9)
- 入力光を各波長毎に分波する分波器と、
前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、
前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、
前記各光電変換部は、基板と、
前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、
前記波長選択フィルタ上に設けられるバッファ層と、
前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、
前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられる2個の反射ミラーとを有し、
前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記2個の反射ミラーで反射されて前記光電変換素子に入射されることを特徴とする光受信装置。 - 入力光を各波長毎に分波する分波器と、
前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、
前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、
前記光電変換部は、基板と、
前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、
前記波長選択フィルタ上に設けられるバッファ層と、
前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、
前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧4)個の第1の反射ミラーと、
前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、
前記mとnは、ともに2の倍数で、かつ、m−n=2であり、
前記各波長の光は、前記光電変換素子が設けられた面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射されることを特徴とする光受信装置。 - 前記バッファ層の前記光電変換素子が設けられる面に設けられる集光レンズを有し、
前記各波長の光は、前記集光レンズを介して入射されることを特徴とする請求項1または請求項2に記載の光受信装置。 - 入力光を各波長毎に分波する分波器と、
前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、
前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、
前記光電変換部は、基板と、
前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、
前記波長選択フィルタ上に設けられるバッファ層と、
前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、
前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧2)個の第1の反射ミラーと、
前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、
前記mとnは、ともに2の倍数で、かつ、m=nであり、
前記各波長の光は、前記m個の第1の反射ミラーが設けられた面から前記基板に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射されることを特徴とする光受信装置。 - 前記基板の前記第1の反射ミラーが設けられた面に設けられる集光レンズを有し、
前記各波長の光は、前記集光レンズを介して入射されることを特徴とする請求項4に記載の光受信装置。 - 入力光を各波長毎に分波する分波器と、
前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、
前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、
前記光電変換部は、基板と、
前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、
前記波長選択フィルタ上に設けられるバッファ層と、
前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、
前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧3)個の第1の反射ミラーと、
前記バッファ層の前記光電変換素子が設けられる面に設けられるn(n≧2)個の第2の反射ミラーとを有し、
前記nは、2の倍数で、かつ、m−n=1であり、
前記各波長の光は、前記基板の端面から前記基板に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射されることを特徴とする光受信装置。 - 入力光を各波長毎に分波する分波器と、
前記分波器で分波された各波長の光が入射され、当該入射された各波長の光を電気信号に変換する複数の光電変換部と、
前記各光電変換部から出力される電気信号を増幅する増幅部とを有する光受信装置であって、
前記光電変換部は、基板と、
前記基板上に設けられ、前記各波長の光を透過させる波長選択フィルタと、
前記波長選択フィルタ上に設けられるバッファ層と、
前記バッファ層上に設けられ、前記各波長の光を電気信号に変換する光電変換素子と、
前記基板の前記波長選択フィルタが設けられる面と反対側の面に設けられるm(m≧2)個の第1の反射ミラーと、
前記バッファ層および前記コンタクト層の前記光電変換素子が設けられる面に設けられるn(n≧1)個の第2の反射ミラーとを有し、
前記mは、2の倍数で、かつ、m−n=1であり、
前記各波長の光は、前記バッファ層の端面から前記バッファ層に入射された後、前記第1の反射ミラーと前記第2の反射ミラーで反射されて前記光電変換素子に入射されることを特徴とする光受信装置。 - 前記各波長の光は、前記波長選択フィルタに平行な方向に対して垂直な方向から10°以内の角度で前記波長選択フィルタに入射されることを特徴とする請求項1ないし請求項7のいずれか1項に記載の光受信装置。
- 前記波長選択フィルタは、屈折率の異なる2つの層が周期的に積層されて構成されることを特徴とする請求項1ないし請求項8のいずれか1項に記載の光受信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008285696A JP2010113157A (ja) | 2008-11-06 | 2008-11-06 | 光受信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008285696A JP2010113157A (ja) | 2008-11-06 | 2008-11-06 | 光受信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010113157A true JP2010113157A (ja) | 2010-05-20 |
Family
ID=42301759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008285696A Pending JP2010113157A (ja) | 2008-11-06 | 2008-11-06 | 光受信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010113157A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015106006A (ja) * | 2013-11-29 | 2015-06-08 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 光モジュール及び光モジュール製造方法。 |
JP2017097072A (ja) * | 2015-11-19 | 2017-06-01 | 日本電信電話株式会社 | 光分波器、光受信モジュールおよびその製造方法 |
WO2018016076A1 (ja) * | 2016-07-22 | 2018-01-25 | 三菱電機株式会社 | 光受信モジュール |
WO2023026572A1 (ja) * | 2021-08-26 | 2023-03-02 | 株式会社村田製作所 | 光学部品 |
-
2008
- 2008-11-06 JP JP2008285696A patent/JP2010113157A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015106006A (ja) * | 2013-11-29 | 2015-06-08 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 光モジュール及び光モジュール製造方法。 |
US9927576B2 (en) | 2013-11-29 | 2018-03-27 | International Business Machines Corporation | Optical modules for wavelength multiplexing |
JP2017097072A (ja) * | 2015-11-19 | 2017-06-01 | 日本電信電話株式会社 | 光分波器、光受信モジュールおよびその製造方法 |
WO2018016076A1 (ja) * | 2016-07-22 | 2018-01-25 | 三菱電機株式会社 | 光受信モジュール |
JPWO2018016076A1 (ja) * | 2016-07-22 | 2018-08-09 | 三菱電機株式会社 | 光受信モジュール |
WO2023026572A1 (ja) * | 2021-08-26 | 2023-03-02 | 株式会社村田製作所 | 光学部品 |
JP7533797B2 (ja) | 2021-08-26 | 2024-08-14 | 株式会社村田製作所 | 光学部品 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6061481A (en) | Optoelectronic circuit | |
CN105717589B (zh) | 一种单光口多路并行光发射组件 | |
US7184622B2 (en) | Integrated volume holographic optical circuit apparatus | |
JP7169708B2 (ja) | 単芯双方向光送受信アセンブリ | |
JP6318468B2 (ja) | 導波路型半導体受光装置及びその製造方法 | |
CN213659025U (zh) | 一种光接收组件及光模块 | |
CN102713703A (zh) | 具有通带波长滤波的波导光学前置放大检测器 | |
US12100926B2 (en) | Photodetector chip, optical receiving and transceiver components, optical module, and communications device | |
WO2011147380A2 (zh) | 光发射机、光探测器和无源光网络系统 | |
JP2002267998A (ja) | 波長分散補償モジュール、光受信回路、及び光通信システム | |
JP2010113157A (ja) | 光受信装置 | |
JP5390474B2 (ja) | 光受信器 | |
US20080137178A1 (en) | Reflection-type optical modulator module | |
WO2020213436A1 (ja) | 受光装置および光受信器 | |
WO2012106886A1 (zh) | 分光装置、光复用装置及方法、光分插复用设备 | |
JP6527451B2 (ja) | 光分波器、光受信モジュールおよびその製造方法 | |
CN109802745B (zh) | 一种用于200g/400g光收发模块的8通道波分复用/解复用器件 | |
JP2010191106A (ja) | 光波長多重信号監視装置 | |
JP3331828B2 (ja) | 光送受信モジュ−ル | |
CN220105430U (zh) | 光信号合束结构、发端光器件及光模块 | |
JP5278428B2 (ja) | 半導体受光素子及びその製造方法 | |
US20230370754A1 (en) | Integrated optical transceiver apparatus and optical line terminal | |
WO2023214573A1 (ja) | 光検出装置及び光レシーバ | |
JP2011165848A (ja) | 面入射型フォトダイオード | |
JP2003243674A (ja) | 半導体受光素子 |