WO2014189110A1 - 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 - Google Patents

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 Download PDF

Info

Publication number
WO2014189110A1
WO2014189110A1 PCT/JP2014/063600 JP2014063600W WO2014189110A1 WO 2014189110 A1 WO2014189110 A1 WO 2014189110A1 JP 2014063600 W JP2014063600 W JP 2014063600W WO 2014189110 A1 WO2014189110 A1 WO 2014189110A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
sealing agent
acrylate
particles
Prior art date
Application number
PCT/JP2014/063600
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
雄一 尾山
永井 康彦
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020157033767A priority Critical patent/KR102164731B1/ko
Priority to CN201480029380.XA priority patent/CN105229525B/zh
Priority to JP2014528732A priority patent/JP6386377B2/ja
Publication of WO2014189110A1 publication Critical patent/WO2014189110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method that has excellent adhesiveness and can suppress the occurrence of seal breaks and liquid crystal contamination. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • Patent Document 1 and Patent Document 2 a method for manufacturing a liquid crystal display element such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from the conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a photocurable resin, a photopolymerization initiator, a thermosetting resin, and a liquid crystal dropping method called a dropping method using a light and heat combined curing type sealant containing a thermosetting agent are being replaced.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing.
  • heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • the liquid crystal Since the uncured sealant comes into contact with the liquid crystal, the liquid crystal is inserted into the sealant, a seal break occurs and the liquid crystal leaks out, or the uncured photocurable resin elutes after the temporary curing process. There was a problem that the liquid crystal may be contaminated.
  • An object of this invention is to provide the sealing agent for liquid crystal dropping methods which is excellent in adhesiveness and can suppress generation
  • the present invention is a liquid crystal dropping method sealing agent used in the production of a liquid crystal display element by a liquid crystal dropping method, wherein the curable resin, the polymerization initiator and / or the thermosetting agent, and the maximum particle size of the liquid crystal display element. It is a sealing compound for liquid crystal dropping method containing 100% or more flexible particles of the cell gap.
  • the present invention is described in detail below.
  • the present inventor blends flexible particles having a maximum particle size of 100% or more of the cell gap of the liquid crystal display element, so that when the substrate of the liquid crystal display element is bonded, the flexible particles are combined with other sealing agent components.
  • the present inventors have found that it is possible to suppress the occurrence of seal break and liquid crystal contamination due to the flow of the liquid sealant component as a barrier between the liquid crystal and the present invention.
  • the sealant for a liquid crystal dropping method of the present invention is used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
  • the sealing agent for liquid crystal dropping method of the present invention contains flexible particles (hereinafter also simply referred to as “soft particles”) having a maximum particle size of 100% or more of the cell gap of the liquid crystal display element.
  • the flexible particles serve as a barrier between the other sealing agent component and the liquid crystal, preventing the liquid crystal from being inserted into the sealing agent and the sealing agent from being eluted into the liquid crystal. Have a role to play. Further, by blending the flexible particles, it is possible to prevent the substrate from being displaced until the sealing agent is cured after the substrates are bonded together.
  • the cell gap of the liquid crystal display element is not limited because it varies depending on the display element, but the cell gap of a general liquid crystal display element is 2 ⁇ m to 10 ⁇ m.
  • the maximum particle diameter of the flexible particles is 100% or more of the cell gap of the liquid crystal display element.
  • the maximum particle size of the flexible particles is 100% or more of the cell gap of the liquid crystal display element, and preferably 5 ⁇ m or more.
  • the preferable upper limit of the maximum particle size of the flexible particles is 20 ⁇ m. If the maximum particle size of the flexible particles exceeds 20 ⁇ m, spring back may occur, and the resulting liquid crystal dropping method sealant may have poor adhesion, or a gap defect may occur in the resulting liquid crystal display element. is there.
  • a more preferable upper limit of the maximum particle size of the flexible particles is 15 ⁇ m.
  • the maximum particle size of the flexible particles is preferably 2.6 times or less of the cell gap.
  • a more preferable upper limit of the maximum particle diameter of the flexible particles is 2.2 times the cell gap, and a more preferable upper limit is 1.7 times the cell gap.
  • the maximum particle size of the flexible particles and the average particle size described below are values obtained by measuring the particles before blending with the sealant using a laser diffraction particle size distribution measuring device. means.
  • the laser diffraction type distribution measuring device Mastersizer 2000 (manufactured by Malvern) or the like can be used.
  • the content ratio of particles having a particle diameter of 5 ⁇ m or more in the particle size distribution of the flexible particles measured by the laser diffraction type distribution measuring device is preferably 60% or more by volume frequency.
  • the content ratio of particles having a particle diameter of 5 ⁇ m or more is less than 60% in terms of volume frequency, seal breakage and liquid crystal contamination may not be sufficiently suppressed.
  • the content ratio of particles having a particle diameter of 5 ⁇ m or more is more preferably 80% or more.
  • the flexible particles contain 100% or more of the cell gap of the liquid crystal display element by 70% or more of the particle size distribution in the entire flexible particles from the viewpoint of further exerting the effect of suppressing the occurrence of seal break and liquid crystal contamination. It is preferable that the liquid crystal display element is composed only of particles having a cell gap of 100% or more.
  • the preferable lower limit of the average particle diameter of the flexible particles is 2 ⁇ m, and the preferable upper limit is 15 ⁇ m. If the average particle size of the flexible particles is less than 2 ⁇ m, the elution of the sealing agent into the liquid crystal may not be sufficiently prevented. When the average particle diameter of the flexible particles exceeds 15 ⁇ m, the obtained sealing agent for liquid crystal dropping method may be inferior in adhesiveness, or a gap defect may occur in the obtained liquid crystal display element.
  • the more preferable lower limit of the average particle diameter of the flexible particles is 4 ⁇ m, and the more preferable upper limit is 12 ⁇ m.
  • two or more kinds of flexible particles having different maximum particle diameters may be mixed and used as long as the overall maximum particle diameter is in the above-described range. That is, a soft particle having a maximum particle diameter of less than 100% of the cell gap of the liquid crystal display element and a soft particle having a maximum particle diameter of 100% or more of the cell gap of the liquid crystal display element may be mixed and used.
  • the coefficient of variation (hereinafter also referred to as “CV value”) of the flexible particles is preferably 30% or less.
  • the CV value of the particle diameter of the flexible particles exceeds 30%, a cell gap defect may be caused.
  • the CV value of the particle diameter of the flexible particles is more preferably 28% or less.
  • the CV value of the particle diameter is a numerical value obtained by the following formula.
  • CV value of particle diameter (%) (standard deviation of particle diameter / average particle diameter) ⁇ 100
  • the maximum particle size, the average particle size, or the CV value is set within the above-mentioned range by classification.
  • flexible particles having a particle size of less than 100% of the cell gap of the liquid crystal display element do not contribute to the suppression of the occurrence of seal break and liquid crystal contamination, and may increase the thixo value when blended with a sealant. It is preferable to remove by classification.
  • the method for classifying the flexible particles include wet classification and dry classification. Of these, wet classification is preferable, and wet sieving classification is more preferable.
  • the above-mentioned flexible particles have a compression displacement from the load value for the origin when the load is applied to the reverse load value as L1, and the unloading displacement from the reverse load value when the load is released to the load value for the origin.
  • L2 / L1 is preferably 80% or less.
  • the recovery rate of the flexible particles exceeds 80%, the function of preventing the sealing agent from eluting into the liquid crystal may be lowered due to a barrier.
  • a more preferable upper limit of the recovery rate of the flexible particles is 70%, and a more preferable upper limit is 60%.
  • grain can be derived
  • the flexible particles preferably have a 1 g strain expressed as a percentage of L3 / Dn as a percentage of 30% or more when the compression displacement when a load of 1 g is applied is L3 and the particle diameter is Dn.
  • the 1 g strain of the flexible particles is less than 30%, the function of preventing the sealing agent from eluting into the liquid crystal may be lowered.
  • a more preferable lower limit of 1 g strain of the flexible particles is 40%.
  • the 1 g strain of the flexible particles can be derived by applying a load of 1 g to each particle using a micro compression tester and measuring the amount of displacement at that time.
  • the flexible particles preferably have a fracture strain expressed as a percentage of L4 / Dn of 50% or more, where L4 is the compression displacement when the particles are broken and Dn is the particle diameter.
  • L4 is the compression displacement when the particles are broken
  • Dn is the particle diameter.
  • the fracture strain of the flexible particles can be derived by applying a load to one particle using a micro compression tester and measuring the displacement at which the particle breaks.
  • the compression displacement L4 is calculated as the time when the particle breaks when the amount of displacement increases discontinuously with respect to the applied load. If the deformation does not break even if the load is increased, the fracture strain is considered to be 100% or more.
  • the flexible particles have a preferable lower limit of the glass transition temperature of ⁇ 200 ° C. and a preferable upper limit of 40 ° C.
  • the lower the glass transition temperature of the flexible particles the better the sealing breakage and liquid crystal contamination.
  • the temperature is lower than -200 ° C, the particles may be handled with difficulty or the sealing agent may be crushed during heating. In some cases, the sealing agent in the middle of curing and the liquid crystal come into contact with each other to cause liquid crystal contamination.
  • the glass transition temperature of the flexible particles exceeds 40 ° C., a gap defect may occur.
  • a more preferable lower limit of the glass transition temperature of the flexible particles is ⁇ 150 ° C., and a more preferable upper limit is 35 ° C.
  • the glass transition temperature of the said flexible particle shows the value measured by the differential scanning calorimetry (DSC) based on "the plastics transition temperature measuring method" of JISK7121.
  • the flexible particles include silicone particles, vinyl particles, urethane particles, fluorine particles, and nitrile particles. Of these, silicone particles and vinyl particles are preferable.
  • the silicone-based particles are preferably silicone rubber particles from the viewpoint of dispersibility in the resin.
  • examples of commercially available silicone particles include KMP-594, KMP-597, KMP-598, KMP-600, KMP-601, KMP-602 (manufactured by Shin-Etsu Silicone), Trefil E-506S. EP-9215 (manufactured by Toray Dow Corning), etc., which can be classified and used.
  • grains may be used independently and 2 or more types may be used together.
  • (Meth) acrylic particles are preferably used as the vinyl particles.
  • the (meth) acrylic particles can be obtained by polymerizing monomers as raw materials by a known method. Specifically, for example, a method in which a monomer is suspension-polymerized in the presence of a radical polymerization initiator, and a seed particle is swollen by absorbing the monomer into a non-crosslinked seed particle in the presence of a radical polymerization initiator. And a seed polymerization method.
  • the “(meth) acryl” means acryl or methacryl.
  • Examples of the monomer that is a raw material for forming the (meth) acrylic particles include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth).
  • Alkyl (meth) such as acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc.
  • oxygen-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc.
  • (meth) nitrile and containing monomers such as acrylonitrile, trifluoromethyl (meth) acrylate, monofunctional monomer such as a fluorine-containing (meth) acrylates such as pentafluoroethyl (meth) acrylate.
  • alkyl (meth) acrylates are preferable because the Tg of the homopolymer is low and the deformation amount when a 1 g load is applied can be increased.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • tetramethylol methane tetra (meth) acrylate tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, trimethylol propane tri (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid
  • the preferable lower limit is 1% by weight and the preferable upper limit is 90% by weight in the whole monomer.
  • the amount of the crosslinkable monomer used is 1% by weight or more, the solvent resistance is improved, and when kneaded with various sealant raw materials, problems such as swelling do not occur and the particles are easily dispersed uniformly.
  • the amount of the crosslinkable monomer used is 90% by weight or less, the recovery rate can be lowered, and problems such as springback are less likely to occur.
  • a more preferable lower limit of the amount of the crosslinkable monomer used is 3% by weight, and a more preferable upper limit is 80% by weight.
  • styrene monomers such as styrene and ⁇ -methylstyrene
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether, vinyl acetate, vinyl butyrate, and laurin.
  • Acid vinyl esters such as vinyl acid and vinyl stearate, unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene, halogen-containing monomers such as vinyl chloride, vinyl fluoride and chlorostyrene, triallyl (iso ) Using monomers such as cyanurate, triallyl trimellitate, divinylbenzene, diallylphthalate, diallylacrylamide, diallyl ether, ⁇ - (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane Good .
  • vinyl particles for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.
  • urethane-based particles examples include Art Pearl (manufactured by Negami Kogyo Co., Ltd.), Dimic Beads (manufactured by Dainichi Seika Kogyo Co., Ltd.), and the like, which can be classified and used. .
  • the preferable lower limit of the hardness of the flexible particles is 10, and the preferable upper limit is 50.
  • the obtained sealing agent for liquid crystal dropping method may be inferior in adhesiveness, or a gap defect may occur in the obtained liquid crystal display element.
  • the more preferable lower limit of the hardness of the soft particles is 20, and the more preferable upper limit is 40.
  • the hardness of the said flexible particle means the durometer A hardness measured by the method based on JISK6253.
  • the content of the flexible particles is preferably 3 parts by weight with respect to 100 parts by weight of the curable resin, and 70 parts by weight with respect to the preferable upper limit. If the content of the flexible particles is less than 3 parts by weight, the sealing agent may not be sufficiently prevented from being eluted into the liquid crystal. When the content of the flexible particles exceeds 70 parts by weight, the obtained liquid crystal dropping method sealing agent may be inferior in adhesiveness.
  • the more preferable lower limit of the content of the flexible particles is 5 parts by weight, the more preferable upper limit is 60 parts by weight, the still more preferable lower limit is 10 parts by weight, and the still more preferable upper limit is 50 parts by weight.
  • the sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth) acrylic resin. Since the sealing agent for liquid crystal dropping method of the present invention can be cured quickly, it contains a (meth) acrylic resin as a curable resin and a radical polymerization initiator described later as a polymerization initiator. Preferably, it becomes possible to quickly cure the liquid crystal dropping method sealing agent of the present invention only by heating, and even in a liquid crystal display element with a narrow frame design, the occurrence of liquid crystal contamination can be sufficiently suppressed, It is more preferable to contain a (meth) acrylic resin and a thermal radical polymerization initiator described later. More preferably, the curable resin contains an epoxy (meth) acrylate.
  • the “(meth) acrylic resin” means a resin having a (meth) acryloyl group
  • the “(meth) acryloyl group” means an acryloyl group or a methacryloyl group.
  • the “epoxy (meth) acrylate” means a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
  • Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin.
  • Hydrogenated bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1001, jER1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
  • As what is marketed among the said bisphenol F-type epoxy resins jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
  • As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include jERYL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by NS Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Den
  • Examples of other (meth) acrylic resins other than the epoxy (meth) acrylate include ester compounds obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and (meth) acrylic acid having a hydroxyl group in isocyanate. Examples thereof include urethane (meth) acrylate obtained by reacting a derivative.
  • examples of monofunctional compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (Meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydroph Furyl (meth) acrylate, benzyl (
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (me ) Acrylate, propylene oxide-added bisphenol A di (meth) acrylate
  • ester compound having three or more functional groups examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri.
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of a compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. Can do.
  • Examples of the isocyanate used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4 ′.
  • MDI Diisocyanate
  • polymeric MDI polymeric MDI
  • 1,5-naphthalene diisocyanate norbornane diisocyanate
  • tolidine diisocyanate xylylene diisocyanate (XDI)
  • hydrogenated XDI lysine diisocyanate
  • triphenylmethane triisocyanate tris (isocyanate) Phenyl) thiophosphate
  • tetramethylxylene diisocyanate 1,6,10-undecane triisocyanate Doors and the like.
  • isocyanate examples include, for example, a reaction between a polyol such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate.
  • a polyol such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate.
  • a polyol such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate.
  • the resulting chain-extended isocyanate compound
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • acrylate and 2-hydroxybutyl (meth) acrylate and dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol Epoxy (meth) acrylates such as mono (meth) acrylate or di (meth) acrylate of trivalent alcohols such as mono (meth) acrylate, trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy acrylate Etc.
  • dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol
  • Epoxy (meth) acrylates such as mono (meth) acrylate or di (meth) acrylate of trivalent alcohols such as mono (meth) acrylate, trimethylolethane
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P,
  • the (meth) acrylic resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing adverse effects on the liquid crystal.
  • the (meth) acrylic resin preferably has 2 to 3 (meth) acryloyl groups in the molecule because of its high reactivity.
  • the said curable resin may contain an epoxy resin further in order to improve the adhesiveness of the sealing compound for liquid crystal dropping methods obtained.
  • said epoxy resin the epoxy resin used as the raw material for synthesize
  • the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy groups. It can be obtained by reacting a part of the epoxy group of the resin having a reaction with (meth) acrylic acid.
  • Examples of commercially available partial (meth) acrylic-modified epoxy resins include UVACURE 1561 (manufactured by Daicel Ornex).
  • a preferable upper limit of the ratio of the epoxy group to the total amount of the (meth) acryloyl group and the epoxy group in the entire curable resin is 50 mol%.
  • the ratio of the epoxy group exceeds 50 mol%, the resulting liquid crystal dropping method sealing agent is highly soluble in liquid crystals, causing liquid crystal contamination, and the resulting liquid crystal display element may be inferior in display performance. is there.
  • a more preferable upper limit of the ratio of the epoxy group is 20 mol%.
  • the sealing agent for liquid crystal dropping method of the present invention contains a polymerization initiator and / or a thermosetting agent. Especially, it is preferable to contain a radical polymerization initiator as a polymerization initiator.
  • the springback is influenced not only by the maximum particle size of the soft particles but also by the curing rate of the sealant. Since the radical polymerization initiator can remarkably increase the curing rate as compared with the thermosetting agent, the effect of suppressing the occurrence of springback that is likely to occur due to the flexible particles by using in combination with the flexible particles. It can be further improved.
  • the radical polymerization initiator examples include a thermal radical polymerization initiator that generates radicals by heating, a photo radical polymerization initiator that generates radicals by light irradiation, and the like.
  • the radical polymerization initiator has a much faster curing rate than the thermosetting agent. Therefore, by using the radical polymerization initiator, it is possible to suppress the occurrence of seal breaks and liquid crystal contamination, and the flexible Springback that is easily generated by particles can also be suppressed.
  • the sealing agent for liquid crystal dropping methods obtained can be hardened
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • a polymer azo initiator composed of a polymer azo compound is preferable.
  • the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the number average molecular weight of the polymer azo initiator is less than 1000, the polymer azo initiator may adversely affect the liquid crystal.
  • the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • GPC gel permeation chromatography
  • Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples include polycondensates of polydimethylsiloxane having a terminal amino group. Specific examples include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are sums). Kogure Pharmaceutical Co., Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
  • Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE OXE01, DAROCUR TPO, p.
  • Examples include methyl ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
  • a photocationic polymerization initiator can be suitably used as the cationic polymerization initiator.
  • the cationic photopolymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be of an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
  • Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts, organometallic complexes such as iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes. Is mentioned.
  • photocationic polymerization initiators examples include Adekaoptomer SP-150 and Adekaoptomer SP-170 (both manufactured by ADEKA).
  • the content of the polymerization initiator is preferably 0.1 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the curable resin. If the content of the polymerization initiator is less than 0.1 parts by weight, the obtained sealing agent for liquid crystal dropping method may not be sufficiently cured. When content of the said polymerization initiator exceeds 30 weight part, the storage stability of the sealing compound for liquid crystal dropping methods obtained may fall.
  • a more preferable lower limit of the content of the polymerization initiator is 1 part by weight, a more preferable upper limit is 10 parts by weight, and a still more preferable upper limit is 5 parts by weight.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • Examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the content of the thermosetting agent is less than 1 part by weight, the resulting sealing agent for liquid crystal dropping method may not be sufficiently cured.
  • content of the said thermosetting agent exceeds 50 weight part, the viscosity of the sealing compound for liquid crystal dropping methods obtained will become high too much, and applicability
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a curing accelerator.
  • the sealing agent can be sufficiently cured without heating at a high temperature.
  • Examples of the curing accelerator include polyvalent carboxylic acids having an isocyanuric ring skeleton and epoxy resin amine adducts. Specific examples include tris (2-carboxymethyl) isocyanurate, tris (2-carboxyl). And ethyl) isocyanurate, tris (3-carboxypropyl) isocyanurate, and bis (2-carboxyethyl) isocyanurate.
  • the content of the curing accelerator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. If the content of the curing accelerator is less than 0.1 parts by weight, the resulting liquid crystal dropping method sealing agent may not be sufficiently cured, or heating at a high temperature may be required for curing. is there. When content of the said hardening accelerator exceeds 10 weight part, the sealing compound for liquid crystal dropping methods obtained may become inferior to adhesiveness.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and improving the moisture resistance of the cured product.
  • the filler examples include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, core shell acrylate Examples thereof include organic fillers such as polymer fine particles. These fillers may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the filler is 10% by weight and the preferable upper limit is 70% by weight with respect to the entire liquid crystal dropping method sealing agent.
  • the content of the filler is less than 10% by weight, effects such as improvement in adhesiveness may not be sufficiently exhibited.
  • content of the said filler exceeds 70 weight%, the viscosity of the sealing compound for liquid crystal dropping methods obtained will become high, and applicability
  • the more preferable lower limit of the content of the filler is 20% by weight, and the more preferable upper limit is 60% by weight.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • -Phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, etc. are preferably used .
  • These silane coupling agents may be used alone or in combination of two or more.
  • the content of the silane coupling agent is such that the preferred lower limit is 0.1% by weight and the preferred upper limit is 20% by weight with respect to the entire liquid crystal dropping method sealing agent. If the content of the silane coupling agent is less than 0.1% by weight, the effect of blending the silane coupling agent may not be sufficiently exhibited. When content of the said silane coupling agent exceeds 20 weight%, the sealing compound for liquid crystal dropping methods obtained may contaminate a liquid crystal.
  • the more preferable lower limit of the content of the silane coupling agent is 0.5% by weight, and the more preferable upper limit is 10% by weight.
  • the sealing agent for liquid crystal dropping method of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal dropping methods of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing light shielding properties to the sealing agent for liquid crystal dropping method of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • a shading agent As the light-shielding agent contained in the liquid crystal dropping method sealing agent of the present invention, a highly insulating material is preferable, and titanium black is also preferable as the highly insulating light-shielding agent.
  • the titanium black preferably has an optical density (OD value) per ⁇ m of 3 or more, more preferably 4 or more.
  • OD value optical density
  • the OD value of the titanium black is not particularly limited, but is usually 5 or less.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display device manufactured using the sealing agent for liquid crystal dropping method of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has a high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m.
  • the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the obtained liquid crystal dropping method sealing agent are greatly increased, and workability may be deteriorated.
  • the primary particle diameter of the light-shielding agent exceeds 5 ⁇ m, the coating property of the obtained liquid crystal dropping method sealing agent on the substrate may be deteriorated.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
  • the content of the light-shielding agent is preferably 5% by weight and preferably 80% by weight with respect to the whole liquid crystal dropping method sealing agent. If the content of the light shielding agent is less than 5% by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent is more than 80% by weight, the adhesion of the obtained sealing agent for liquid crystal dropping method to the substrate and the strength after curing may be lowered, or the drawing property may be lowered.
  • the more preferable lower limit of the content of the light-shielding agent is 10% by weight, the more preferable upper limit is 70% by weight, the still more preferable lower limit is 30% by weight, and the still more preferable upper limit is 60% by weight.
  • the sealing agent for the liquid crystal dropping method of the present invention further includes a reactive diluent for adjusting the viscosity, a spacer such as a polymer bead for adjusting the panel gap, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary.
  • a reactive diluent for adjusting the viscosity for adjusting the viscosity
  • a spacer such as a polymer bead for adjusting the panel gap
  • an antifoaming agent such as a polymer bead for adjusting the panel gap
  • an antifoaming agent such as a leveling agent
  • a polymerization inhibitor if necessary.
  • additives such as other coupling agents may be contained.
  • the method for producing the sealing agent for liquid crystal dropping method of the present invention is not particularly limited, and for example, a curable resin using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll. And a method of mixing a polymerization initiator and / or a thermosetting agent, flexible particles, and an additive such as a silane coupling agent added as necessary.
  • the preferred lower limit of the viscosity measured at 25 ° C. and 1 rpm using an E-type viscometer is 50,000 Pa ⁇ s
  • the preferred upper limit is 500,000 Pa ⁇ s.
  • a more preferable upper limit of the viscosity is 400,000 Pa ⁇ s.
  • a vertical conduction material can be manufactured by mix
  • Such a vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal dropping method of the present invention or the vertical conduction material of the present invention is also one aspect of the present invention.
  • the sealing agent for the liquid crystal dropping method of the present invention is applied to one of two transparent substrates such as a glass substrate with electrodes such as an ITO thin film or a polyethylene terephthalate substrate.
  • the process of forming a rectangular seal pattern by screen printing, dispenser application, etc., the liquid crystal drop method sealing agent of the present invention is uncured, and liquid crystal microdrops are dropped on the entire surface of the transparent substrate and applied immediately.
  • a method of superposing another substrate and a step of heating and curing the sealing agent for liquid crystal dropping method of the present invention is a method for producing the liquid crystal display element of the present invention.
  • irradiating light such as an ultraviolet-ray
  • the sealing agent for liquid crystal dropping methods which is excellent in adhesiveness and can suppress generation
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.
  • Preparation of polymer particles A 750 g of polytetramethylene glycol diacrylate, 250 g of styrene, and 40 g of benzoyl peroxide were mixed and dissolved uniformly to obtain a monomer mixture.
  • the obtained monomer mixture was put into a reaction vessel containing a 1% by weight aqueous solution of polyvinyl alcohol and stirred for 2 to 4 hours to adjust the particle size so that the monomer droplets had a predetermined particle size. . Subsequently, it reacted for 9 hours in 85 degreeC nitrogen atmosphere, and the polymer particle A was obtained. The obtained particles were washed several times with hot water.
  • the obtained polymer particle A had a maximum particle size of 11.4 ⁇ m, an average particle size of 7.8 ⁇ m, a CV value of 26.9%, and a glass transition temperature (Tg) of 33 ° C.
  • Tg glass transition temperature
  • PCT-200 micro-compression tester
  • Preparation of polymer particles B 600 g of polytetramethylene glycol diacrylate, 400 g of ethylhexyl methacrylate, and 40 g of benzoyl peroxide were mixed and dissolved uniformly to obtain a monomer mixture.
  • the obtained monomer mixture was put into a reaction vessel containing a 1% by weight aqueous solution of polyvinyl alcohol and stirred for 2 to 4 hours to adjust the particle size so that the monomer droplets had a predetermined particle size. . Subsequently, it reacted for 9 hours in 85 degreeC nitrogen atmosphere, and the polymer particle B was obtained. The obtained particles were washed several times with hot water.
  • the obtained polymer particle B had a maximum particle size of 11.7 ⁇ m, an average particle size of 8.2 ⁇ m, a CV value of 25.9%, and a glass transition temperature (Tg) of 15 ° C. Further, the recovery rate of the polymer particle B measured in the same manner as for the polymer particle A was 70%, the 1 g strain was 42%, and the fracture strain was 58%.
  • Preparation of polymer particles C 400 g of polytetramethylene glycol diacrylate, 600 g of styrene, and 40 g of benzoyl peroxide were mixed and dissolved uniformly to obtain a monomer mixture.
  • the obtained monomer mixture is put into a reaction vessel containing 5 kg of 1% by weight aqueous solution of polyvinyl alcohol and stirred for 2 to 4 hours to adjust the particle size so that the monomer droplets have a predetermined particle size. went. Subsequently, it reacted for 9 hours in 85 degreeC nitrogen atmosphere, and the polymer particle C was obtained.
  • the obtained particles were washed several times with hot water.
  • the obtained polymer particle C had a maximum particle size of 12.2 ⁇ m, an average particle size of 8.0 ⁇ m, a CV value of 27.0%, and a glass transition temperature (Tg) of 62 ° C. Further, the recovery rate of the polymer particles C measured in the same manner as for the polymer particles A was 78%, the 1 g strain was 32%, and the fracture strain was 55%.
  • Preparation of polymer particles D 500 g of polytetramethylene glycol diacrylate, 450 g of styrene, 50 g of divinylbenzene, and 40 g of benzoyl peroxide were mixed and dissolved uniformly to obtain a monomer mixture.
  • the obtained monomer mixture was put into a reaction vessel containing a 1% by weight aqueous solution of polyvinyl alcohol and stirred for 2 to 4 hours to adjust the particle size so that the monomer droplets had a predetermined particle size. . Subsequently, it reacted for 9 hours in 85 degreeC nitrogen atmosphere, and the polymer particle B was obtained. The obtained particles were washed several times with hot water.
  • the obtained polymer particle D had a maximum particle size of 11.5 ⁇ m, an average particle size of 8.1 ⁇ m, a CV value of 28.1%, and a glass transition temperature (Tg) of 25 ° C. Further, the recovery rate of the polymer particle D measured in the same manner as for the polymer particle A was 76%, the 1 g strain was 28%, and the fracture strain was 55%.
  • the resulting polymer particle E had a maximum particle size of 11.5 ⁇ m, an average particle size of 8.1 ⁇ m, a CV value of 28.1%, and a glass transition temperature (Tg) of ⁇ 60 ° C. Further, the recovery rate of the polymer particles E measured in the same manner as for the polymer particles A was 40%, the 1 g strain was 52%, and the fracture strain was 62%.
  • Polymer particles were produced in the same manner as the polymer particles E.
  • Polymer particles F having a particle size different from that of E were obtained by adjusting the particle size during the reaction and classifying with a sieve after washing.
  • the maximum particle size of the polymer particles F was 8.0 ⁇ m
  • the average particle size was 5.5 ⁇ m
  • the CV value of the particle size was 29.1%
  • the glass transition temperature (Tg) was ⁇ 60 ° C.
  • the recovery rate of the polymer particles F measured in the same manner as for the polymer particles A was 40%, the 1 g strain was 60%, and the fracture strain was 62%.
  • Polymer particles were produced in the same manner as for polymer particles A.
  • Polymer particles G having a particle size different from A were obtained by adjusting the particle size during the reaction and classifying with a sieve after washing.
  • the maximum particle diameter of the polymer particles G was 4.5 ⁇ m
  • the average particle diameter was 3.1 ⁇ m
  • the CV value of the particle diameter was 29.0%
  • the glass transition temperature (Tg) was 35 ° C.
  • the recovery rate of the polymer particles G measured in the same manner as for the polymer particles A was 42%
  • the 1 g strain was 50%
  • the fracture strain was 52%.
  • Example 1 70 parts by weight of bisphenol A type epoxy acrylate (manufactured by Daicel Ornex Co., Ltd., “Evekril 3700”) and 30 parts by weight of bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “jER806”) as a curable resin, and a thermal radical polymerization initiator 7 parts by weight of a polymer azo initiator (“VPE-0201” manufactured by Wako Pure Chemical Industries, Ltd.), 8 parts by weight of sebacic acid dihydrazide (“SDH” manufactured by Otsuka Chemical Co., Ltd.) as a thermosetting agent, and flexible particles 30 parts by weight of polymer particles A, 10 parts by weight of silica (manufactured by Admatechs, “Admafine SO-C2”) as filler, and 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone) as silane coupling agent , “KBM-403
  • Examples 2 to 15, Comparative Examples 1 and 2 In accordance with the blending ratio described in Table 1, each material was mixed using a planetary stirrer (“Shinky Netaro” manufactured by Shinky Co., Ltd.) in the same manner as in Example 1, and then further three rolls were used.
  • the sealing agents for liquid crystal dropping method of Examples 2 to 15 and Comparative Examples 1 and 2 were prepared by mixing.
  • the sealing agent for liquid crystal dropping methods which is excellent in adhesiveness and can suppress generation
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.
PCT/JP2014/063600 2013-05-24 2014-05-22 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 WO2014189110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157033767A KR102164731B1 (ko) 2013-05-24 2014-05-22 액정 적하 공법용 시일제, 상하 도통 재료, 및 액정 표시 소자
CN201480029380.XA CN105229525B (zh) 2013-05-24 2014-05-22 液晶滴下工艺用密封剂、上下导通材料、以及液晶显示元件
JP2014528732A JP6386377B2 (ja) 2013-05-24 2014-05-22 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-109987 2013-05-24
JP2013109987 2013-05-24
JP2013127847 2013-06-18
JP2013-127847 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014189110A1 true WO2014189110A1 (ja) 2014-11-27

Family

ID=51933661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063600 WO2014189110A1 (ja) 2013-05-24 2014-05-22 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子

Country Status (5)

Country Link
JP (1) JP6386377B2 (ko)
KR (1) KR102164731B1 (ko)
CN (1) CN105229525B (ko)
TW (1) TWI620812B (ko)
WO (1) WO2014189110A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218257A (ja) * 2015-05-20 2016-12-22 積水化学工業株式会社 液晶滴下工法用シール剤に用いる硬化性樹脂粒子、液晶滴下工法用シール剤及び液晶表示素子
TWI665294B (zh) * 2014-12-04 2019-07-11 日商積水化學工業股份有限公司 聚矽氧粒子、液晶滴落法用密封劑及液晶顯示元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588717B1 (ko) * 2015-06-02 2023-10-12 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료 및 액정 표시 소자
CN109219773B (zh) * 2017-01-25 2020-08-18 积水化学工业株式会社 液晶显示元件用密封剂、上下导通材料、液晶显示元件和固化物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580343A (ja) * 1991-09-25 1993-04-02 Sekisui Fine Chem Kk Stn型液晶表示素子用球状スペーサーおよびそれを用いたstn型液晶表示素子
JPH05273561A (ja) * 1992-01-24 1993-10-22 Canon Inc 強誘電性液晶素子
JP2000284296A (ja) * 1999-03-31 2000-10-13 Optrex Corp 液晶表示素子
JP2000319309A (ja) * 1999-05-06 2000-11-21 Sekisui Chem Co Ltd 重合体微粒子及びその製造方法、液晶表示素子用スペーサ、導電性微粒子
JP2003238622A (ja) * 2002-02-22 2003-08-27 Soken Chem & Eng Co Ltd 高弾力性定形粒子、その製造方法及びその用途
JP2006215563A (ja) * 2005-02-01 2006-08-17 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
JP2013011879A (ja) * 2011-06-01 2013-01-17 Sekisui Chem Co Ltd 液晶表示素子用遮光シール剤、上下導通材料及び液晶表示素子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP3347925B2 (ja) * 1995-09-14 2002-11-20 シャープ株式会社 液晶表示素子
US6359667B1 (en) * 1998-02-09 2002-03-19 Catalysts & Chemicals Industries Co., Ltd. Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays
TW556020B (en) * 1999-04-21 2003-10-01 Nippon Catalytic Chem Ind Spacer for liquid crystal displays, production process therefor, and liquid crystal display
JP3583326B2 (ja) 1999-11-01 2004-11-04 協立化学産業株式会社 Lcdパネルの滴下工法用シール剤
JP3384397B2 (ja) * 2000-05-25 2003-03-10 セイコーエプソン株式会社 液晶装置、その製造方法および電子機器
KR100906926B1 (ko) 2001-05-16 2009-07-10 세키스이가가쿠 고교가부시키가이샤 경화성 수지 조성물, 표시 소자용 시일제 및 표시 소자용주입구 밀봉제
JP3975753B2 (ja) * 2002-01-21 2007-09-12 カシオ計算機株式会社 光学セル
KR20040087721A (ko) * 2003-04-07 2004-10-15 엘지.필립스 엘시디 주식회사 액정 표시패널
KR20060088191A (ko) * 2005-02-01 2006-08-04 삼성전자주식회사 액정표시패널과 그 제조방법
KR20070070516A (ko) * 2005-12-29 2007-07-04 삼성전자주식회사 표시패널 및 이의 제조방법
JP5180818B2 (ja) * 2006-03-29 2013-04-10 積水化学工業株式会社 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2009198865A (ja) * 2008-02-22 2009-09-03 Seiko Instruments Inc 液晶パネル貼り合わせ方法
JP5257941B2 (ja) * 2009-04-28 2013-08-07 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JP2012053203A (ja) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd 表示素子の製造方法
TWI543992B (zh) * 2011-07-13 2016-08-01 Nippon Kayaku Kk A liquid crystal sealant and a liquid crystal display unit using the liquid crystal sealant
CN104756004B (zh) * 2013-05-15 2016-04-13 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料以及液晶显示元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580343A (ja) * 1991-09-25 1993-04-02 Sekisui Fine Chem Kk Stn型液晶表示素子用球状スペーサーおよびそれを用いたstn型液晶表示素子
JPH05273561A (ja) * 1992-01-24 1993-10-22 Canon Inc 強誘電性液晶素子
JP2000284296A (ja) * 1999-03-31 2000-10-13 Optrex Corp 液晶表示素子
JP2000319309A (ja) * 1999-05-06 2000-11-21 Sekisui Chem Co Ltd 重合体微粒子及びその製造方法、液晶表示素子用スペーサ、導電性微粒子
JP2003238622A (ja) * 2002-02-22 2003-08-27 Soken Chem & Eng Co Ltd 高弾力性定形粒子、その製造方法及びその用途
JP2006215563A (ja) * 2005-02-01 2006-08-17 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
JP2013011879A (ja) * 2011-06-01 2013-01-17 Sekisui Chem Co Ltd 液晶表示素子用遮光シール剤、上下導通材料及び液晶表示素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665294B (zh) * 2014-12-04 2019-07-11 日商積水化學工業股份有限公司 聚矽氧粒子、液晶滴落法用密封劑及液晶顯示元件
JP2016218257A (ja) * 2015-05-20 2016-12-22 積水化学工業株式会社 液晶滴下工法用シール剤に用いる硬化性樹脂粒子、液晶滴下工法用シール剤及び液晶表示素子

Also Published As

Publication number Publication date
JPWO2014189110A1 (ja) 2017-02-23
TW201502259A (zh) 2015-01-16
CN105229525A (zh) 2016-01-06
KR102164731B1 (ko) 2020-10-13
JP6386377B2 (ja) 2018-09-05
CN105229525B (zh) 2020-09-22
KR20160011187A (ko) 2016-01-29
TWI620812B (zh) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5685346B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6404119B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6795400B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6163045B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6386377B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
CN108780249B (zh) 液晶显示元件用密封剂、上下导通材料和液晶显示元件
JP6235766B1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6666682B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2018062166A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2017061255A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7000159B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP2015001616A (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6122724B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6588825B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
CN107683435B (zh) 液晶显示元件用密封剂、上下导通材料及液晶显示元件
WO2016190398A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6266902B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
WO2019221026A1 (ja) 液晶表示素子用シール剤、液晶表示素子、及び、液晶表示素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029380.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014528732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033767

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14800719

Country of ref document: EP

Kind code of ref document: A1