WO2014184931A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2014184931A1
WO2014184931A1 PCT/JP2013/063693 JP2013063693W WO2014184931A1 WO 2014184931 A1 WO2014184931 A1 WO 2014184931A1 JP 2013063693 W JP2013063693 W JP 2013063693W WO 2014184931 A1 WO2014184931 A1 WO 2014184931A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
expansion tank
low
oil return
Prior art date
Application number
PCT/JP2013/063693
Other languages
English (en)
French (fr)
Inventor
寛也 石原
純 三重野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13884714.0A priority Critical patent/EP2998665B1/en
Priority to JP2015516841A priority patent/JP6116684B2/ja
Priority to PCT/JP2013/063693 priority patent/WO2014184931A1/ja
Publication of WO2014184931A1 publication Critical patent/WO2014184931A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to a refrigeration apparatus that suppresses oil from staying in an expansion tank.
  • the expansion tank is connected between the suction side of the low-side evaporator and the accumulator (for example, Patent Document 1).
  • a capillary and a check valve are installed between the expansion tank and the refrigeration cycle (for example, Patent Document 2).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration apparatus that can quickly return oil even when oil enters the expansion tank.
  • the refrigeration apparatus includes a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and refrigerant that circulates, and expansion that collects the refrigerant and lowers the pressure of the refrigeration cycle
  • an adjustment valve provided in the oil return pipe for controlling the flow of the refrigerant by opening and closing
  • the oil return pipe connects the suction side of the compressor and the lower part of the expansion tank.
  • the oil return pipe is connected to the lower part of the expansion tank, even when oil enters the expansion tank, the oil can be returned quickly, so that the oil in the refrigeration cycle Insufficiency and further compressor damage can be avoided.
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. It is a principal part enlarged view of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. It is a principal part enlarged view of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 2 of this invention. It is a principal part enlarged view of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 3 of this invention. It is a principal part enlarged view of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 4 of this invention. It is a principal part enlarged view of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 5 of this invention. It is a refrigerant circuit figure of the freezing apparatus which concerns on Embodiment 7 of this invention. It is a refrigerant circuit figure of the freezing apparatus which concerns on Embodiment 8 of this invention.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the compressor 101, the condenser 102, the expansion valve 103, the evaporator 104, and the gas-liquid separator 105 are sequentially connected by piping, and the refrigerant circulates. Yes.
  • an expansion tank 107 is connected by an oil return pipe 108 between the suction side of the compressor 101 of the refrigeration cycle 100 and the gas-liquid separator 105, and an electromagnetic valve (regulating valve) 106 is connected to the oil return pipe 108. Is provided.
  • the compressor 101 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the condenser 102 exchanges heat between air supplied from a blower (not shown) and the refrigerant, for example, and evaporates or condenses the refrigerant.
  • the expansion valve 103 expands the refrigerant by decompressing it.
  • the evaporator 104 performs heat exchange between air supplied from an air blower (not shown) and the refrigerant, and condensates or evaporates the refrigerant.
  • the gas-liquid separator 105 has a function of separating the refrigerant that has flowed into a gas refrigerant and a liquid refrigerant.
  • the electromagnetic valve (regulating valve) 106 controls the flow of the refrigerant by opening and closing.
  • the expansion tank 107 is used to prevent the pressure from exceeding the allowable pressure by collecting the refrigerant even if the refrigerant of the refrigeration cycle 100 is completely gasified. If the refrigeration apparatus is operable, the refrigerant temperature can be lowered by cooling with another cooling heat source (for example, cooling water), and the pressure of the refrigeration cycle 100 can be lowered. However, for example, at the time of a power failure, the refrigeration apparatus cannot be operated, and it is impossible to operate other cooling heat sources.
  • another cooling heat source for example, cooling water
  • the expansion tank 107 is used in an emergency such as a power failure as another means for reducing the pressure of the refrigeration cycle 100 so as not to exceed the allowable pressure.
  • the oil return pipe 108 is for returning the refrigerant collected in the expansion tank 107 and the oil staying in the expansion tank 107 to the refrigeration cycle 100.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the condenser 102, for example, exchanges heat with the outside air to be condensed and liquefied to become a high-pressure liquid refrigerant.
  • This high-pressure liquid refrigerant is decompressed by the expansion valve 103 and flows into the evaporator 104 as a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 104 is heated, for example, by the internal air of the freezer warehouse (cools the internal air of the freezer warehouse) and evaporates to become a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant that has flowed out of the evaporator 104 flows into the compressor 101 and is compressed again. Since the gas-liquid separator 105 is provided on the suction side of the compressor 101, even if the refrigerant flowing out of the evaporator 104 is in a low-pressure gas-liquid two-phase state, the liquid refrigerant is stored in the gas-liquid separator 105. In this case, only the gas refrigerant can flow into the compressor 101.
  • movement to the expansion tank 107 in the refrigeration apparatus which concerns on this Embodiment 1 is demonstrated.
  • the solenoid valve (regulation valve) 106 is opened when no power is supplied, the solenoid valve (regulation valve) 106 is opened because the solenoid valve (regulation valve) 106 is not energized during a power failure.
  • the volume of the refrigerant flow path is increased by the oil return pipe 108 and the expansion tank 107 (the volume of the refrigeration cycle 100 is temporarily increased), and the refrigerant in the refrigeration cycle 100 enters the expansion tank 107, The pressure of the refrigeration cycle 100 decreases.
  • the solenoid valve (regulating valve) 106 is closed because the energized state is established when power is restored.
  • the electromagnetic valve (regulating valve) is collected after the refrigerant in the expansion tank 107 is recovered (after a certain time has elapsed after power recovery). ) 106 is closed.
  • FIG. 2 is an enlarged view of a main part of the refrigerant circuit of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the oil return pipe 108 is connected to the lower part of the expansion tank 107 as shown in FIG. By doing so, the oil level from the oil return pipe 108 can be increased, and the oil return speed is also increased.
  • oil since oil has a higher specific gravity than refrigerant and tends to accumulate in the lower part of the expansion tank 107, it is possible to collect the oil accumulated in the lower part by installing an oil return pipe 108 in the lower part of the expansion tank 107. Become. Therefore, oil return from the expansion tank 107 can be performed quickly and reliably, oil can be prevented from staying in the expansion tank 107, and compressor damage can be avoided.
  • connection position between the refrigeration cycle 100 and the expansion tank 107 generates a pressure difference between the refrigeration cycle 100 and the expansion tank 107, and the compressor is operated so that oil return from the expansion tank 107 to the refrigeration cycle 100 is performed quickly.
  • 101 is the low pressure side (suction side).
  • FIG. FIG. 3 is an enlarged view of a main part of the refrigerant circuit of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the second embodiment will be described, but those overlapping with the first embodiment will be omitted.
  • the reference numeral 100 in the first embodiment is changed to the 200 series in the second embodiment.
  • the connection position between the refrigeration cycle 200 and the expansion tank 107 is a gas-liquid separator 205 as shown in FIG.
  • FIG. FIG. 4 is an enlarged view of a main part of the refrigerant circuit of the refrigeration apparatus according to Embodiment 3 of the present invention.
  • the third embodiment will be described, but the description overlapping with the first and second embodiments will be omitted.
  • the reference number 100 in the first embodiment is changed to the 300th in the third embodiment.
  • a trap having a hole 309a formed in the lower portion in the oil return pipe 308 connecting the gas-liquid separator 305 and the expansion tank 307 as shown in FIG. 309 is provided. By doing so, when oil enters the oil return pipe 308, the oil is retained by the trap 309, and the oil is discharged from the hole 309a below the trap 309, thereby preventing the oil from entering the expansion tank 307. Further suppression is possible.
  • FIG. FIG. 5 is an enlarged view of a main part of the refrigerant circuit of the refrigeration apparatus according to Embodiment 4 of the present invention.
  • the fourth embodiment will be described, but the description overlapping with the first to third embodiments will be omitted.
  • the reference numeral 100 in the first embodiment is changed to the 400 series in the fourth embodiment.
  • an oil return pipe 408 connecting a gas-liquid separator 405 and an expansion tank 407 is connected in parallel with an electromagnetic valve (regulating valve) 406.
  • a check valve 410 is provided.
  • the diameter of the oil return pipe 408 on the side where the solenoid valve (regulation valve) 406 is provided that is, the side on which oil enters the expansion tank 407 is narrowed, and the check valve 410 of the oil return pipe 408 is provided.
  • the diameter of the side that returns oil from the expansion tank 407 is increased. By doing so, it is possible to further suppress the oil intrusion into the expansion tank 407, and at the same time, it is possible to increase the amount of oil return, so that the oil return can be performed more quickly.
  • FIG. FIG. 6 is an enlarged view of a main part of the refrigerant circuit of the refrigeration apparatus according to Embodiment 5 of the present invention.
  • the fifth embodiment will be described, but the description overlapping with the first to fourth embodiments will be omitted.
  • the reference number 100 in the first embodiment is changed to the 500th in the fifth embodiment.
  • an evaporation pressure regulating valve (EPR) 506 is provided instead of the electromagnetic valve (regulating valve) as shown in FIG.
  • the evaporating pressure adjusting valve 506 is a valve that does not open until a certain pressure difference is generated between the two sides, so that the control of the electromagnetic valve (regulating valve) can be simplified.
  • Embodiment 6 FIG.
  • the oil return pipe is connected to the lower part of the expansion tank, as in the first embodiment.
  • FIG. 7 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 7 of the present invention.
  • the seventh embodiment will be described, but those overlapping with the first to sixth embodiments will be omitted.
  • the reference numeral 100 in the first embodiment is changed to the 600 series in the seventh embodiment.
  • the refrigeration cycle 600 of the refrigeration apparatus is a two-way refrigeration cycle, and includes a high-side refrigeration cycle 600a and a low-side refrigeration cycle 600b.
  • the high-side compressor 601a, the condenser 602, the high-side expansion valve 603a, and the high-side flow path of the cascade heat exchanger 611 are sequentially connected by piping, and the refrigerant circulates.
  • a low-source side refrigeration cycle 600b a low-side compressor 601b, a low-side channel of the cascade heat exchanger 611, a low-side expansion valve 603b, an evaporator 604, and a gas-liquid separator 605 are sequentially connected by piping.
  • a refrigerant for example, carbon dioxide or R23
  • an expansion tank 607 is connected by an oil return pipe 608 between the suction side of the low original side compressor 601b of the low original side refrigeration cycle 600b and the gas-liquid separator 605, and an electromagnetic valve is connected to the oil return pipe 608. (Regulating valve) 606 is provided.
  • the high-temperature and high-pressure vapor refrigerant discharged from the high-side compressor 601a of the high-side refrigeration cycle 600a flows into the condenser 602, for example, heat-exchanges with outside air to condense and liquefy, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed by the high-end side expansion valve 603a and becomes a low-pressure gas-liquid two-phase refrigerant and flows into the high-end side flow path of the cascade heat exchanger 611.
  • the high-side refrigerant in the low-pressure gas-liquid two-phase state is heated and evaporated by the refrigerant flowing through the low-side flow path in the cascade heat exchanger 611 to become a low-pressure gas refrigerant. It flows into the compressor 601a and is compressed again.
  • the high-temperature and high-pressure gas refrigerant discharged from the low-side compressor 601b flows into the low-side channel of the cascade heat exchanger 611 and flows through the high-side channel. It is cooled to condensate and becomes high-pressure liquid refrigerant.
  • This high-pressure liquid refrigerant flows into the low-side expansion valve 603b.
  • the high-pressure liquid refrigerant that has flowed into the low-side expansion valve 603b is decompressed and becomes a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 604.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 604 is heated, for example, by the internal air of the freezer warehouse (cools the internal air of the freezer warehouse) and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant that has flowed out of the evaporator 31 flows into the low-side compressor 601b and is compressed again. Since the gas-liquid separator 605 is provided on the suction side of the low-source compressor 601b, the liquid refrigerant is separated into gas and liquid even if the refrigerant flowing out of the evaporator 604 is in a low-pressure gas-liquid two-phase state. Only the gas refrigerant can be allowed to flow into the low-side compressor 601b.
  • the refrigerant that is in a supercritical state within the low element side design temperature since the amount can be reduced as compared with the air-cooled unit refrigeration cycle, the absolute value of the oil retention amount in the expansion tank 607 can be reduced as compared with the air-cooled unit refrigeration cycle.
  • the reason why the refrigeration cycle can reduce the amount of refrigerant that becomes supercritical within the design temperature compared to the air-cooled unit refrigeration cycle is that This is because the cascade heat exchanger 611 is used in the heat exchanger portion, and the amount of refrigerant can be reduced as compared with a unit cycle using an air-cooled condenser. Therefore, it is possible to reduce the oil filling amount (the cascade heat exchanger (plate heat exchanger) 611 requires less refrigerant than the air-cooled condenser), and the absolute amount is reduced. Therefore, even when the oil enters the expansion tank 607, oil can be prevented from staying in the expansion tank 607.
  • tetrafluoropropene such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) or a mixed refrigerant containing this tetrafluoropropene may be used.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • a mixed refrigerant containing this tetrafluoropropene may be used.
  • FIG. 8 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 8 of the present invention.
  • the eighth embodiment will be described, but the description overlapping with the first to seventh embodiments will be omitted.
  • the reference numeral 100 in the first embodiment is changed to the 700 series in the eighth embodiment.
  • two low-side expansion valves 703b1 and 703b2 are connected in series to the low-side refrigeration cycle 700b.
  • Embodiments 1 to 8 may be combined as appropriate, as in Embodiments 1 and 7, or Embodiments 2 and 8, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)

Abstract

 圧縮機101、凝縮器102、膨張弁103、及び蒸発器104が順次配管接続され、冷媒が循環している冷凍サイクル100と、冷媒を回収し、冷凍サイクル100の圧力を下げる膨張タンク107と、膨張タンク107へ回収した冷媒、及び膨張タンク107内に滞留した油を冷凍サイクル100へ戻す返油管108と、返油管108に設けられ、開閉により冷媒の流れを制御する調整弁106と、を備え、返油管108は、圧縮機101の吸入側と、膨張タンク107の下部とを接続するものである。

Description

冷凍装置
 本発明は、膨張タンク内に油が滞留するのを抑制する冷凍装置に関するものである。
 従来の冷凍装置において、膨張タンクを低元側蒸発器の吸込側とアキュムレータとの間に接続している(例えば特許文献1)。
 また、膨張タンクと冷凍サイクルとの間にキャピラリーと逆止弁とを設置している(例えば特許文献2)。
特許第3270706号公報 実公昭60-15083号公報
 上記の従来の冷凍装置における膨張タンクの設置方法では、膨張タンク内へ油が浸入して滞留する可能性がある。そして、膨張タンク内に油が滞留すると冷凍サイクル内の油が不足し、最悪の場合は圧縮機損傷に至るという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、膨張タンク内へ油が浸入した場合でも、素早く返油することができる冷凍装置を提供することを目的としている。
 本発明に係る冷凍装置は、圧縮機、凝縮器、膨張弁、及び蒸発器が順次配管接続され、冷媒が循環している冷凍サイクルと、前記冷媒を回収し、前記冷凍サイクルの圧力を下げる膨張タンクと、前記膨張タンクへ回収した前記冷媒、及び前記膨張タンク内に滞留した油を前記冷凍サイクルへ戻す返油管と、前記返油管に設けられ、開閉により前記冷媒の流れを制御する調整弁と、を備え、前記返油管は、前記圧縮機の吸入側と、前記膨張タンクの下部とを接続するものである。
 本発明に係る冷凍装置によれば、返油管が膨張タンクの下部に接続されているため、膨張タンク内へ油が浸入した場合でも、素早く返油することができるので、冷凍サイクル内の油が不足すること、さらには圧縮機損傷を回避することができる。
本発明の実施の形態1に係る冷凍装置の冷媒回路図である。 本発明の実施の形態1に係る冷凍装置の冷媒回路の要部拡大図である。 本発明の実施の形態2に係る冷凍装置の冷媒回路の要部拡大図である。 本発明の実施の形態3に係る冷凍装置の冷媒回路の要部拡大図である。 本発明の実施の形態4に係る冷凍装置の冷媒回路の要部拡大図である。 本発明の実施の形態5に係る冷凍装置の冷媒回路の要部拡大図である。 本発明の実施の形態7に係る冷凍装置の冷媒回路図である。 本発明の実施の形態8に係る冷凍装置の冷媒回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路図である。
 本発明の実施の形態1に係る冷凍装置の冷凍サイクル100は、圧縮機101、凝縮器102、膨張弁103、蒸発器104、及び気液分離器105が順次配管接続され、冷媒が循環している。
 また、冷凍サイクル100の圧縮機101の吸入側と気液分離器105との間には、膨張タンク107が返油管108で接続されており、返油管108には電磁弁(調整弁)106が設けられている。
 圧縮機101は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものである。
 凝縮器102は、例えば図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化するものである。
 膨張弁103は、冷媒を減圧して膨張させるものである。
 蒸発器104は、例えば図示省略の送風手段から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化または蒸発ガス化するものである。
 気液分離器105は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有するものである。
 電磁弁(調整弁)106は、開閉により冷媒の流れを制御するものである。
 膨張タンク107は、冷凍サイクル100の冷媒が完全にガス化しても、冷媒を回収することで、その圧力が許容圧力を越えないようにするためのものである。冷凍装置が運転可能の状態であれば、他冷却熱源(例えば、冷却水)による冷却によって冷媒温度を下げることが可能であり、冷凍サイクル100の圧力を下げることが可能である。しかし、例えば停電時においては冷凍装置が運転不可能の状態であり、他冷却熱源を運転することも不可能である。そこで、膨張タンク107は、許容圧力を越えないように冷凍サイクル100の圧力を下げるその他の手段として、停電時などの緊急時に用いられる。
 返油管108は、膨張タンク107へ回収した冷媒、及び膨張タンク107内に滞留した油を冷凍サイクル100へ戻すためのものである。
 次に、本実施の形態1に係る冷凍装置における動作について説明する。
 圧縮機101より吐出された高温高圧のガス冷媒は、凝縮器102へ流入し、例えば外気と熱交換して凝縮液化して高圧の液冷媒となる。この高圧の液冷媒は、膨張弁103で減圧され、低圧の気液二相冷媒となって蒸発器104に流入する。蒸発器104に流入した低圧の気液二相冷媒は、例えば冷凍倉庫の庫内空気によって加熱され(冷凍倉庫の庫内空気を冷却し)、蒸発して低圧のガス冷媒となる。そして、蒸発器104を流出した低圧のガス冷媒は、圧縮機101へ流入し、再び圧縮される。
 なお、圧縮機101の吸入側に気液分離器105が設けられているため、蒸発器104を流出した冷媒が低圧の気液二相状態であっても、液冷媒を気液分離器105内に溜め、ガス冷媒のみを圧縮機101へ流入させることができる。
 次に、本実施の形態1に係る冷凍装置における、膨張タンク107への冷媒回収動作について説明する。
 まず、冷凍装置が無通電時に電磁弁(調整弁)106が開となるように設定しておくと、停電時に無通電状態となるので電磁弁(調整弁)106が開となる。すると、冷媒流路の容積が返油管108及び膨張タンク107の分だけ増加し(冷凍サイクル100の体積が一時的に増加し)、冷凍サイクル100内の冷媒が膨張タンク107へ侵入することで、冷凍サイクル100の圧力が低下する。
 また、冷凍装置が通電時に電磁弁(調整弁)106が閉となるように設定しておくと、復電時に通電状態になるので電磁弁(調整弁)106が閉となる。このとき、膨張タンク107内には冷媒が溜っていることが想定されるため、膨張タンク107内の冷媒を回収してから(復電後、一定時間経過してから)、電磁弁(調整弁)106が閉となるように設定する。
 以上のように動作させることで、停電時などの緊急時に冷凍サイクル100が圧力上昇した場合でも、その圧力を下げることができる。
 図2は、本発明の実施の形態1に係る冷凍装置の冷媒回路の要部拡大図である。
 本実施の形態1では、図2に示すように返油管108が膨張タンク107の下部に接続されている。こうすることにより、返油管108からの油の液面高さを稼ぐことができるため、返油速度も上がる。加えて、油は冷媒よりも比重が高く、膨張タンク107の下部に溜まる傾向があるため、膨張タンク107の下部に返油管108を設置することで下部に溜まった油を回収することが可能となる。そのため、膨張タンク107からの返油を素早く確実に行うことができ、膨張タンク107内に油が滞留するのを抑制でき、圧縮機損傷を回避することができる。
 なお、冷凍サイクル100と膨張タンク107との接続位置は、冷凍サイクル100と膨張タンク107との圧力差を発生させ、膨張タンク107から冷凍サイクル100への返油が素早く行われるように、圧縮機101の低圧側(吸入側)とする。
 実施の形態2.
 図3は、本発明の実施の形態2に係る冷凍装置の冷媒回路の要部拡大図である。
 以下、本実施の形態2について説明するが、本実施の形態1と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態2では200番台に変更している。
 本実施の形態2では、図3に示すように冷凍サイクル200と膨張タンク107との接続位置が、気液分離器205である。
 こうすることにより、気液分離器205で分離されたガス冷媒を膨張タンク207へ回収することが可能である。そのため、膨張タンク107内への油の浸入が少なくなり、膨張タンク207への油の滞留を回避できる。さらに、膨張タンク207から気液分離器205へ冷媒を戻すことによる、圧縮機201への冷媒液戻りを抑制する効果がある。
 実施の形態3.
 図4は、本発明の実施の形態3に係る冷凍装置の冷媒回路の要部拡大図である。
 以下、本実施の形態3について説明するが、本実施の形態1~2と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態3では300番台に変更している。
 本実施の形態3では、本実施の形態2に加え、図4に示すように気液分離器305と膨張タンク307とを接続している返油管308に、下部に穴309aが形成されたトラップ309が設けられている。
 こうすることにより、油が返油管308に侵入してきた場合に、トラップ309で油を滞留させ、トラップ309の下部の穴309aからその油を排出することによって、膨張タンク307内への油侵入をさらに抑制することが可能である。
 実施の形態4.
 図5は、本発明の実施の形態4に係る冷凍装置の冷媒回路の要部拡大図である。
 以下、本実施の形態4について説明するが、本実施の形態1~3と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態4では400番台に変更している。
 本実施の形態4では、本実施の形態3に加え、図5に示すように気液分離器405と膨張タンク407とを接続している返油管408に、電磁弁(調整弁)406と並列に逆止弁410が設けられている。また、返油管408の電磁弁(調整弁)406が設けられている側、つまり、膨張タンク407へ油が浸入する側の径を細くし、返油管408の逆止弁410が設けられている側、つまり、膨張タンク407から返油する側の径を太くする。
 こうすることにより、膨張タンク407への油侵入をさらに抑制することが可能であると同時に、返油量を増やせるため、返油をさらに素早く行うことが可能である。
 実施の形態5.
 図6は、本発明の実施の形態5に係る冷凍装置の冷媒回路の要部拡大図である。
 以下、本実施の形態5について説明するが、本実施の形態1~4と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態5では500番台に変更している。
 本実施の形態5では、本実施の形態4に加え、図6に示すように電磁弁(調整弁)の代わりに蒸発圧力調整弁(EPR)506が設けられている。
 こうすることにより、蒸発圧力調整弁506は両側に一定圧力差が発生するまで開とならない弁であるため、電磁弁(調整弁)の制御を簡略化することが可能である。
 実施の形態6.
 以下、本実施の形態6について説明するが、本実施の形態1~5と重複するものについては省略する。
 本実施の形態6では、本実施の形態2~5において、図示省略するが本実施の形態1と同様に、返油管が膨張タンクの下部に接続されている。
 こうすることにより、実施の形態2~5の効果に加え、実施の形態1の効果も得ることが可能である。
 実施の形態7.
 図7は、本発明の実施の形態7に係る冷凍装置の冷媒回路図である。
 以下、本実施の形態7について説明するが、本実施の形態1~6と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態7では600番台に変更している。
 本実施の形態7では、冷凍装置の冷凍サイクル600が二元冷凍サイクルとなっており、高元側冷凍サイクル600aと低元側冷凍サイクル600bとで構成されている。
 高元側冷凍サイクル600aは、高元側圧縮機601a、凝縮器602、高元側膨張弁603a、及びカスケード熱交換器611の高元側流路が順次配管接続され、冷媒が循環している。
 低元側冷凍サイクル600bは、低元側圧縮機601b、カスケード熱交換器611の低元側流路、低元側膨張弁603b、蒸発器604、及び気液分離器605が順次配管接続され、設計温度内で超臨界状態となる冷媒(例えば、二酸化炭素やR23)が循環している。
 また、低元側冷凍サイクル600bの低元側圧縮機601bの吸入側と気液分離器605との間には、膨張タンク607が返油管608で接続されており、返油管608には電磁弁(調整弁)606が設けられている。
 次に、本実施の形態7に係る冷凍装置における動作について説明する。
 高元側冷凍サイクル600aの高元側圧縮機601aより吐出された高温高圧の蒸気冷
媒は、凝縮器602へ流入し、例えば外気と熱交換して凝縮液化し、高圧の液冷媒となる。この高圧の液冷媒は、高元側膨張弁603aで減圧され、低圧の気液二相冷媒となってカスケード熱交換器611の高元側流路に流入する。この低圧の気液二相状態となった高元側の冷媒は、カスケード熱交換器611内で低元側流路を流れる冷媒によって加熱されて蒸発し、低圧のガス冷媒となって高元側圧縮機601aへ流入し、再び圧縮される。
 一方、低元側冷凍サイクル600bでは、低元側圧縮機601bより吐出された高温高圧のガス冷媒は、カスケード熱交換器611の低元側流路へ流入し、高元側流路を流れる冷媒に冷却されて凝縮液化し、高圧の液冷媒となる。この高圧の液冷媒は、低元側膨張弁603bに流入する。低元側膨張弁603bに流入した高圧の液冷媒は、減圧されて低圧の気液二相冷媒となって蒸発器604に流入する。蒸発器604に流入した低圧で気液二相状態の冷媒は、例えば冷凍倉庫の庫内空気によって加熱され(冷凍倉庫の庫内空気を冷却し)、蒸発して低圧のガス冷媒となる。蒸発器31を流出した低圧のガス冷媒は、低元側圧縮機601bへ流入し、再び圧縮される。
 なお、低元側圧縮機601bの吸入側に気液分離器605が設けられているため、蒸発器604を流出した冷媒が低圧の気液二相状態であっても、液冷媒を気液分離器605内に溜め、ガス冷媒のみを低元側圧縮機601bへ流入させることができる。
 上記のように、低元側冷凍サイクル600bに設計温度内で超臨界状態となる冷媒を用いた二元冷凍サイクルを採用することで、低元側の設計温度内で超臨界状態となる冷媒の量を空気冷却式単元冷凍サイクルに比べて削減可能となるため、膨張タンク607への油滞留量の絶対値を空気冷却式単元冷凍サイクルに比べて削減することができる。
 ここで、二元冷凍サイクルが、空気冷却式単元冷凍サイクルに比べて設計温度内で超臨界状態となる冷媒量を減らすことができる理由は、二元冷凍サイクルでは低元側と高元側の熱交換器部分にカスケード熱交換器611を用いており、空気冷却式凝縮器を用いた単元サイクルと比べ、冷媒量を削減することが可能となるためである。
 よって、油充填量を削減することが可能となり(空気冷却式凝縮器よりもカスケード熱交換器(プレート式熱交換器)611の方が、冷媒量が少なくて済む。)、絶対量として削減することができるため、膨張タンク607へ浸入した場合でも膨張タンク607内への油の滞留を回避できる。
 なお、高元側冷凍サイクル600aを循環する冷媒として、例えば2,3,3,3-テトラフルオロプロペン(HFO-1234yf)等のテトラフルオロプロペン、またはこのテトラフルオロプロペンを含む混合冷媒を用いるとよい。
 実施の形態8.
 図8は、本発明の実施の形態8に係る冷凍装置の冷媒回路図である。
 以下、本実施の形態8について説明するが、本実施の形態1~7と重複するものについては省略する。なお、本実施の形態1の符号100番台は本実施の形態8では700番台に変更している。
 本実施の形態8では、本実施の形態7に加え、図8に示すように低元側冷凍サイクル700bに低元側膨張弁703b1、703b2が2つ直列に配管接続されている。
 このように、低元側膨張弁703b1、703b2を2段構成とすることによって、従来は配管内で液単相状態として存在していた部分の冷媒を、気液二相状態として存在させることができるようになる。気液二相状態で存在することによって、液単相状態で存在する場合よりも密度が低くなり、結果としてサイクル全体の冷媒量を削減可能となる。そのため、膨張タンク707内に油が滞留するのをさらに抑制できる。
 なお、例えば本実施の形態1と7、または本実施の形態2と8のように、本実施の形態1~8を適宜組み合わせてもよい。
 100 冷凍サイクル、101 圧縮機、102 凝縮器、103 膨張弁、104 蒸発器、105 気液分離器、106 電磁弁(調整弁)、107 膨張タンク、108 返油管、200 冷凍サイクル、201 圧縮機、205 気液分離器、206 電磁弁(調整弁)、207 膨張タンク、208 返油管、301 圧縮機、305 気液分離器、306 電磁弁(調整弁)、307 膨張タンク、308 返油管、309 トラップ、309a 穴、401 圧縮機、405 気液分離器、406 電磁弁(調整弁)、407 膨張タンク、408 返油管、409 トラップ、409a 穴、410 逆止弁、501 圧縮機、505 気液分離器、506 蒸発圧力調整弁(EPR)、507 膨張タンク、508 返油管、509 トラップ、509a 穴、510 逆止弁、600 冷凍サイクル、600a 高元側冷凍サイクル、600b 低元側冷凍サイクル、601a 高元側圧縮機、601b 低元側圧縮機、602 凝縮器、603a 高元側膨張弁、603b 低元側膨張弁、604 蒸発器、605 気液分離器、606 電磁弁(調整弁)、607 膨張タンク、608 返油管、611 カスケード熱交換器、700 冷凍サイクル、700a 高元側冷凍サイクル、700b 低元側冷凍サイクル、701a 高元側圧縮機、701 低元側圧縮機、702 凝縮器、703a 高元側膨張弁、703b1 低元側膨張弁、703b2 低元側膨張弁、704 蒸発器、705 気液分離器、706 電磁弁(調整弁)、707 膨張タンク、708 返油管、711 カスケード熱交換器。

Claims (11)

  1.  圧縮機、凝縮器、膨張弁、及び蒸発器が順次配管接続され、冷媒が循環している冷凍サイクルと、
     前記冷媒を回収し、前記冷凍サイクルの圧力を下げる膨張タンクと、
     前記膨張タンクへ回収した前記冷媒、及び前記膨張タンク内に滞留した油を前記冷凍サイクルへ戻す返油管と、
     前記返油管に設けられ、開閉により前記冷媒の流れを制御する調整弁と、を備え、
     前記返油管は、
     前記圧縮機の吸入側と、前記膨張タンクの下部とを接続する
     ことを特徴とする冷凍装置。
  2.  高元側圧縮機、凝縮器、高元側膨張弁、及びカスケード熱交換器の高元側流路が順次配管接続され、冷媒が循環している高元側冷凍サイクルと、
     低元側圧縮機、カスケード熱交換器の低元側流路、低元側膨張弁、及び蒸発器が順次配管接続され、冷媒が循環している低元側冷凍サイクルと、
     で構成される冷凍サイクルと、
     前記低元側冷凍サイクルを循環する冷媒を回収し、前記冷凍サイクルの圧力を下げる膨張タンクと、
     前記膨張タンクへ回収した前記低元側冷凍サイクルを循環する冷媒、及び前記膨張タンク内に滞留した油を前記冷凍サイクルへ戻す返油管と、
     前記返油管に設けられ、開閉により前記低元側冷凍サイクルを循環する冷媒の流れを制御する調整弁と、を備え、
     前記返油管は、
     前記低元側圧縮機の吸入側と前記膨張タンクの下部とを接続した
     ことを特徴とする冷凍装置。
  3.  前記低元側冷凍サイクルを循環する冷媒は、設計温度内で超臨界状態となる
     ことを特徴とする請求項2に記載の冷凍装置。
  4.  前記低元側冷凍サイクルを循環する冷媒は、
     二酸化炭素またはR23である
     ことを特徴とする請求項3に記載の冷凍装置。
  5.  前記低元側膨張弁が、二つ直列に設けられた
     ことを特徴とする請求項2~4のいずれか一項に記載の冷凍装置。
  6.  気液分離器が前記圧縮機の吸入側に設けられ、
     前記返油管は、
     前記気液分離器と、前記膨張タンクの下部とを接続する
     ことを特徴とする請求項1に記載の冷凍装置。
  7.  気液分離器が前記低元側圧縮機の吸入側に設けられ、
     前記返油管は、
     前記気液分離器と、前記膨張タンクの下部とを接続する
     ことを特徴とする請求項2~5のいずれか一項に記載の冷凍装置。
  8.  前記返油管は、下部に穴が形成されたトラップが設けられ、
     前記返油管に侵入してきた前記油を前記トラップで滞留させ、前記穴からその油を排出する
     ことを特徴とする請求項6または7に記載の冷凍装置。
  9.  前記返油管に、前記調整弁と並列に逆止弁が設けられ、
     前記調整弁が設けられている側の径を細くし、前記逆止弁が設けられている側の径を太くした
     ことを特徴とする請求項1~8のいずれか一項に記載の冷凍装置。
  10.  前記調整弁は、無通電時に開となるように設定され、通電時に閉となるように設定され、
     前記膨張タンク内の前記冷媒を回収してから、または復電後、一定時間経過してから閉となるように設定された
     ことを特徴とする請求項1~9のいずれか一項に記載の冷凍装置。
  11.  前記調整弁は、両側に一定圧力差が発生するまで開とならない蒸発圧力調整弁である
     ことを特徴とする請求項1~9のいずれか一項に記載の冷凍装置。
PCT/JP2013/063693 2013-05-16 2013-05-16 冷凍装置 WO2014184931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13884714.0A EP2998665B1 (en) 2013-05-16 2013-05-16 Refrigeration device
JP2015516841A JP6116684B2 (ja) 2013-05-16 2013-05-16 冷凍装置
PCT/JP2013/063693 WO2014184931A1 (ja) 2013-05-16 2013-05-16 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063693 WO2014184931A1 (ja) 2013-05-16 2013-05-16 冷凍装置

Publications (1)

Publication Number Publication Date
WO2014184931A1 true WO2014184931A1 (ja) 2014-11-20

Family

ID=51897937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063693 WO2014184931A1 (ja) 2013-05-16 2013-05-16 冷凍装置

Country Status (3)

Country Link
EP (1) EP2998665B1 (ja)
JP (1) JP6116684B2 (ja)
WO (1) WO2014184931A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023888A (ja) * 2014-07-23 2016-02-08 株式会社富士通ゼネラル 空気調和機
EP3054238A1 (en) * 2015-02-03 2016-08-10 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
CN108731311A (zh) * 2018-07-12 2018-11-02 珠海凌达压缩机有限公司 一种压缩机组件及其空调系统
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
JP2021011985A (ja) * 2019-07-08 2021-02-04 富士電機株式会社 二元冷凍機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679222A (zh) * 2016-12-12 2017-05-17 广东志高空调有限公司 一种空调器简易换热装置及其工作方法
JP2019007694A (ja) * 2017-06-26 2019-01-17 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN109532144B (zh) 2018-11-29 2021-01-12 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法
CN113932504B (zh) * 2021-12-21 2022-03-01 中国飞机强度研究所 一种飞机测试充注系统及充注方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015083Y2 (ja) 1980-01-14 1985-05-13 ダイキン工業株式会社 低温冷凍装置
JPH03263556A (ja) * 1990-03-12 1991-11-25 Sanyo Electric Co Ltd 多元冷凍装置
JP3270706B2 (ja) 1997-03-24 2002-04-02 三菱電機株式会社 多元冷凍装置
JP2003185285A (ja) * 2001-12-14 2003-07-03 Ebara Corp 製氷用冷凍装置
JP2003279202A (ja) * 2002-03-26 2003-10-02 Mayekawa Mfg Co Ltd 低元冷凍サイクルの冷媒ガスの回収方法とその装置
JP2003287292A (ja) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd 冷凍装置
JP2004308972A (ja) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2冷凍機
JP2006290042A (ja) * 2005-04-06 2006-10-26 Calsonic Kansei Corp 車両用空調装置
JP2007303792A (ja) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd 冷凍装置
JP2009156531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp 冷凍装置
JP2010007987A (ja) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd 冷却装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589263A (en) * 1984-04-12 1986-05-20 Hussmann Corporation Multiple compressor oil system
JP3882841B2 (ja) * 2005-04-28 2007-02-21 ダイキン工業株式会社 空気調和装置、熱源ユニット、及び空気調和装置の更新方法
JP4726600B2 (ja) * 2005-10-06 2011-07-20 三菱電機株式会社 冷凍空調装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015083Y2 (ja) 1980-01-14 1985-05-13 ダイキン工業株式会社 低温冷凍装置
JPH03263556A (ja) * 1990-03-12 1991-11-25 Sanyo Electric Co Ltd 多元冷凍装置
JP3270706B2 (ja) 1997-03-24 2002-04-02 三菱電機株式会社 多元冷凍装置
JP2003185285A (ja) * 2001-12-14 2003-07-03 Ebara Corp 製氷用冷凍装置
JP2003279202A (ja) * 2002-03-26 2003-10-02 Mayekawa Mfg Co Ltd 低元冷凍サイクルの冷媒ガスの回収方法とその装置
JP2003287292A (ja) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd 冷凍装置
JP2004308972A (ja) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2冷凍機
JP2006290042A (ja) * 2005-04-06 2006-10-26 Calsonic Kansei Corp 車両用空調装置
JP2007303792A (ja) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd 冷凍装置
JP2009156531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp 冷凍装置
JP2010007987A (ja) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd 冷却装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
JP2016023888A (ja) * 2014-07-23 2016-02-08 株式会社富士通ゼネラル 空気調和機
EP3054238A1 (en) * 2015-02-03 2016-08-10 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
CN108731311A (zh) * 2018-07-12 2018-11-02 珠海凌达压缩机有限公司 一种压缩机组件及其空调系统
CN108731311B (zh) * 2018-07-12 2024-05-10 珠海凌达压缩机有限公司 一种压缩机组件及其空调系统
JP2021011985A (ja) * 2019-07-08 2021-02-04 富士電機株式会社 二元冷凍機
JP7524523B2 (ja) 2019-07-08 2024-07-30 富士電機株式会社 二元冷凍機

Also Published As

Publication number Publication date
EP2998665A4 (en) 2017-05-31
JP6116684B2 (ja) 2017-04-19
EP2998665A1 (en) 2016-03-23
JPWO2014184931A1 (ja) 2017-02-23
EP2998665B1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6116684B2 (ja) 冷凍装置
JP3988779B2 (ja) 冷凍装置
JP6343156B2 (ja) 圧縮式冷凍機
KR101220583B1 (ko) 냉동장치
JP5323023B2 (ja) 冷凍装置
CN104321598A (zh) 冷冻装置
KR20160091107A (ko) 냉장고용 냉각사이클장치
JP2008057807A (ja) 冷凍サイクル及びそれを用いた空気調和機、冷蔵庫
JP2011133209A (ja) 冷凍装置
KR101220741B1 (ko) 냉동장치
JP5783783B2 (ja) 熱源側ユニット及び冷凍サイクル装置
JP5759076B2 (ja) 冷凍装置
JP6253370B2 (ja) 冷凍サイクル装置
JP2018204805A (ja) 冷凍ユニット、冷凍システム、および冷媒回路の制御方法
JP5975706B2 (ja) アキュムレータ及び冷凍サイクル装置
KR20170117501A (ko) 히트 펌프
KR102008710B1 (ko) 공기 조화기 및 그 제어방법
KR102017405B1 (ko) 히트 펌프
JP2013053757A (ja) 冷媒回路システム
JP6288942B2 (ja) 冷凍装置
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
JP2021116940A (ja) 冷凍装置および冷凍装置の使用方法
WO2013073070A1 (ja) 冷凍サイクル装置
JP5089759B2 (ja) 冷凍装置
JP2015132422A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013884714

Country of ref document: EP