WO2014184918A1 - 積層型ヘッダー、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダー、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2014184918A1
WO2014184918A1 PCT/JP2013/063611 JP2013063611W WO2014184918A1 WO 2014184918 A1 WO2014184918 A1 WO 2014184918A1 JP 2013063611 W JP2013063611 W JP 2013063611W WO 2014184918 A1 WO2014184918 A1 WO 2014184918A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
plate
channel
flow path
Prior art date
Application number
PCT/JP2013/063611
Other languages
English (en)
French (fr)
Inventor
岡崎 多佳志
石橋 晃
拓也 松田
真哉 東井上
伊東 大輔
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13884722.3A priority Critical patent/EP2998680B1/en
Priority to JP2015516830A priority patent/JP6005268B2/ja
Priority to PCT/JP2013/063611 priority patent/WO2014184918A1/ja
Priority to CN201420245866.4U priority patent/CN203940770U/zh
Publication of WO2014184918A1 publication Critical patent/WO2014184918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner.
  • a first plate-like body in which a plurality of outlet channels and a plurality of inlet channels are formed, and the first plate-like body are laminated to form a first plate-like body.
  • the 2nd plate-like object in which the entrance channel connected with a plurality of exit channels, and the exit channel connected with the plurality of entrance channels formed in the 1st plate-like object were formed. Yes (see, for example, Patent Document 1).
  • JP 2000-161818 (paragraph [0032] to paragraph [0036], FIG. 7 and FIG. 8)
  • the present invention has been made against the background of the above problems, and an object thereof is to obtain a laminated header in which the pressure loss of the refrigerant is reduced. Moreover, an object of this invention is to obtain the heat exchanger provided with such a laminated header. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention is laminated on a first plate-like body in which a plurality of first outlet channels and a plurality of first inlet channels are formed, and on the first plate-like body. At least a part of the distribution channel that distributes the refrigerant flowing in from the inlet channel to the plurality of first outlet channels and flows out, and the refrigerant flowing in from the plurality of first inlet channels merge to form the second outlet
  • a second plate-like body formed with at least a part of a merged flow channel that flows out into the flow channel, and a flow channel area of one of the plurality of first inlet flow channels is It is larger than the flow path area of one flow path communicating with the one flow path among the plurality of first outlet flow paths.
  • one channel area of one of the plurality of first inlet channels is communicated with the one channel of the plurality of first outlet channels. Even if it is used in a situation where the refrigerant in the gas state flows into the plurality of first inlet passages of the first plate-like body, the plurality of first plate-like bodies are large because the flow passage area of the flow passage is large. An increase in refrigerant pressure loss that occurs between the first inlet channel and the second outlet channel of the second plate-like body can be suppressed.
  • FIG. 1 It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 1.
  • FIG. 2 It is a perspective view in the state which decomposed
  • FIG. 3 is a development view of a stacked header of the heat exchanger according to the first embodiment. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied.
  • FIG. 6 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled.
  • FIG. 10 is a perspective view of a modified example-2 of the heat exchanger according to the first embodiment in a state where a stacked header is disassembled.
  • FIG. 10 is a perspective view of a modified example-3 of the heat exchanger according to the first embodiment in a state in which the stacked header is disassembled.
  • FIG. 7 is a perspective view of a main part and a cross-sectional view of the main part in a state in which a stacked header is disassembled in Modification 4 of the heat exchanger according to the first embodiment.
  • FIG. 11 is a perspective view of a modified example-5 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled.
  • FIG. 11 is a perspective view of a modified example-6 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled. It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. It is an expanded view of the laminated header of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied.
  • the laminated header according to the present invention will be described with reference to the drawings.
  • the laminated header according to the present invention distributes the refrigerant flowing into the heat exchanger
  • a refrigerant may be distributed.
  • the configuration, operation, and the like described below are merely examples, and are not limited to such configuration, operation, and the like.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • the “flow channel area” in the present invention means a cross-sectional area of the flow channel when there is one flow channel, and each of the plurality of flow channels when there are a plurality of flow channels. Means the sum of the cross-sectional areas.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 3, a holding member 4, and a plurality of fins 5.
  • the stacked header 2 has a refrigerant inflow portion 2A, a plurality of refrigerant outflow portions 2B, a plurality of refrigerant inflow portions 2C, and a refrigerant outflow portion 2D.
  • a refrigerant pipe is connected to the refrigerant inflow portion 2A of the multilayer header 2 and the refrigerant outflow portion 2D of the multilayer header 2.
  • the first heat transfer tube 3 is a flat tube that has been subjected to hairpin bending.
  • a plurality of first heat transfer tubes 3 are connected between the plurality of refrigerant outflow portions 2B of the multilayer header 2 and the plurality of refrigerant inflow portions 2C of the multilayer header 2.
  • the first heat transfer tube 3 is a flat tube in which a plurality of flow paths are formed.
  • the first heat transfer tube 3 is made of, for example, aluminum. Both ends of the plurality of first heat transfer tubes 3 are connected to the plurality of refrigerant outflow portions 2B and the plurality of refrigerant inflow portions 2C of the stacked header 2 while being held by the plate-like holding members 4.
  • the holding member 4 is made of aluminum, for example.
  • a plurality of fins 5 are joined to the first heat transfer tube 3.
  • the fin 5 is made of, for example, aluminum.
  • the first heat transfer tube 3 and the fins 5 may be joined by brazing.
  • FIG. 1 although the case where the 1st heat exchanger tube 3 is eight is shown, it is not limited to such a case.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 3 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 3.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 3 flows into and joins the stacked header 2 through the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant piping through the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • FIG. 3 is a development view of the stacked header of the heat exchanger according to the first embodiment. In FIG. 3, the illustration of the clad members 24 on both sides is omitted.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate 11 is stacked on the refrigerant outflow side.
  • the first plate-like body 11 has a first plate-like member 21.
  • the first plate-like body 11 is formed with a plurality of first outlet channels 11A and a plurality of first inlet channels 11B.
  • the plurality of first outlet channels 11A correspond to the plurality of refrigerant outflow portions 2B in FIG.
  • the plurality of first inlet channels 11B correspond to the plurality of refrigerant inflow portions 2C in FIG.
  • the first plate member 21 is formed with a plurality of flow paths 21A and a plurality of flow paths 21B.
  • the plurality of flow paths 21 ⁇ / b> A and the plurality of flow paths 21 ⁇ / b> B are through holes having an inner peripheral surface along the outer peripheral surface of the first heat transfer tube 3.
  • the channel area (that is, the cross-sectional area) of one channel 21B among the plurality of channels 21B is the channel area of one channel 21A that communicates with the channel 21B among the plurality of channels 21A ( That is, it is larger than the cross-sectional area.
  • the plurality of channels 21A function as a plurality of first outlet channels 11A
  • the plurality of channels 21B function as a plurality of first inlet channels 11B.
  • the first plate-like member 21 is, for example, about 1 to 10 mm in thickness and made of aluminum.
  • the second plate-like body 12 is laminated on the refrigerant inflow side.
  • the second plate-like body 12 includes a second plate-like member 22 and a plurality of third plate-like members 23_1 to 23_3.
  • a second inlet channel 12A, a distribution channel 12B, a merging channel 12C, and a second outlet channel 12D are formed in the second plate-like body 12.
  • the distribution flow path 12B has a plurality of branch flow paths 12b.
  • the merging channel 12C has a mixing channel 12c.
  • the second inlet channel 12A corresponds to the refrigerant inflow portion 2A in FIG.
  • the second outlet channel 12D corresponds to the refrigerant outflow portion 2D in FIG.
  • a part of the distribution flow path 12B or a part of the merge flow path 12C may be formed in the first plate-like body 11.
  • the first plate-like member 21, the second plate-like member 22, the plurality of third plate-like members 23_1 to 23_3, and the like may be formed with a flow path through which the refrigerant flowing in is turned back.
  • the width of the stacked header 2 A dimension can be made substantially equal to the width dimension of the 1st heat exchanger tube 3, and the heat exchanger 1 is compactized.
  • a flow path 22A and a flow path 22B are formed.
  • the channel 22A and the channel 22B are circular through holes.
  • the channel area (that is, the sectional area) of the channel 22B is larger than the channel area (that is, the sectional area) of the channel 22A.
  • the flow path 22A functions as the second inlet flow path 12A
  • the flow path 22B functions as the second outlet flow path 12D.
  • the second plate-like member 22 has a thickness of about 1 to 10 mm and is made of aluminum.
  • a base or the like is provided on the surface on which the other members of the second plate-like member 22 are not stacked, and a refrigerant pipe is connected to the second inlet channel 12A and the second outlet channel 12D through the base or the like.
  • the inner peripheral surfaces of the second inlet flow channel 12A and the second outlet flow channel 12D are shaped to fit with the outer peripheral surface of the refrigerant pipe, and the second inlet flow channel 12A and the second outlet flow are not used without using a base or the like.
  • a refrigerant pipe may be directly connected to the path 12D. In such a case, parts costs and the like are reduced.
  • a plurality of flow paths 23A_1 to 23A_3 are formed in the plurality of third plate-like members 23_1 to 23_3.
  • the plurality of flow paths 23A_1 to 23A_3 are through grooves having two end portions 23a and 23b.
  • each of the plurality of flow paths 23A_1 to 23A_3 functions as the branch flow path 12b.
  • the plurality of third plate-like members 23_1 to 23_3 are, for example, about 1 to 10 mm in thickness and made of aluminum. In the case where the plurality of flow paths 23A_1 to 23A_3 are formed by pressing or the like, the processing is simplified and the manufacturing cost and the like are reduced.
  • a plurality of flow paths 23B_1 to 23B_3 are formed in the plurality of third plate-like members 23_1 to 23_3.
  • the plurality of flow paths 23B_1 to 23B_3 are rectangular through holes penetrating almost the entire area in the height direction of the third plate-like members 23_1 to 23_3.
  • the channel areas (that is, the cross-sectional areas) of the channels 23B_1 to 23B_3 are larger than the channel areas (that is, the sum of the cross-sectional areas) of the plurality of channels 21A.
  • each of the plurality of flow paths 23B_1 to 23B_3 functions as a part of the mixing flow path 12c.
  • the plurality of flow paths 23B_1 to 23B_3 do not have to be rectangular.
  • the plurality of third plate members 23_1 to 23_3 may be collectively referred to as the third plate member 23 in some cases.
  • the plurality of flow paths 23A_1 to 23A_3 may be collectively referred to as a flow path 23A.
  • the plurality of flow paths 23B_1 to 23B_3 may be collectively referred to as a flow path 23B.
  • the holding member 4 the 1st plate-shaped member 21, the 2nd plate-shaped member 22, and the 3rd plate-shaped member 23 may be named generically, and may be described as a plate-shaped member.
  • the flow path 23A formed in the third plate-like member 23 has a shape that connects the two end portions 23a and 23b via a straight line portion 23c perpendicular to the direction of gravity.
  • the flow path 23A is blocked by a member stacked adjacent to the refrigerant inflow side, except for a part of the area 23d (hereinafter referred to as the opening 23d) between both ends of the linear portion 23c.
  • the branch channel 12b is formed by closing the region other than the end portions 23a and 23b by the member laminated adjacent to the side.
  • the end 23a and the end 23b are positioned at different heights.
  • the opening 23d through the flow path 23A can be reduced without complicating the shape.
  • the straight line connecting the end portion 23a and the end portion 23b is parallel to the longitudinal direction of the third plate-like member 23, it is possible to reduce the dimension in the short direction of the third plate-like member 23, and the component Cost, weight, etc. are reduced.
  • the straight line connecting the end 23a and the end 23b is parallel to the arrangement direction of the first heat transfer tubes 3, the heat exchanger 1 is saved in space.
  • the branch flow path 12b branches the flowing refrigerant into two and flows out. Therefore, when there are eight first heat transfer tubes 3 connected, at least three third plate-like members 23 are required. When there are 16 first heat transfer tubes 3 to be connected, at least four third plate members 23 are required.
  • the number of connected first heat transfer tubes 3 is not limited to a power of 2. In such a case, the branched flow path 12b and the non-branched flow path may be combined. Two first heat transfer tubes 3 may be connected.
  • the stacked header 2 is not limited to one in which the plurality of first outlet channels 11A and the plurality of first inlet channels 11B are arranged along the direction of gravity.
  • the wall-mounted room air conditioner indoor unit The heat exchanger 1 may be used in a case where the heat exchanger 1 is inclined and disposed like a heat exchanger such as an air conditioner outdoor unit or a chiller outdoor unit.
  • the straight part 23 c may be a through groove having a shape that does not become perpendicular to the longitudinal direction of the third plate-like member 23.
  • the flow path 23A may have another shape.
  • the flow path 23A may not have the straight portion 23c.
  • the horizontal portion between the end 23a and the end 23b of the flow path 23A that is substantially perpendicular to the direction of gravity is the opening 23d.
  • the straight portion 23c is provided, it is difficult for the refrigerant to be affected by gravity when the refrigerant branches at the opening 23d.
  • the flow path 23A may be a through groove having a shape in which regions connecting the both ends of the linear portion 23c and the end portions 23a and 23b are branched.
  • a region connecting each of both ends of the straight line portion 23c and each of the end portion 23a and the end portion 23b may be a straight line or a curved line.
  • a brazing material for joining may be supplied by using a double-sided clad material obtained by rolling a brazing material on both sides for all plate-like members or every other plate-like member.
  • a brazing material for joining may be supplied to all the plate-like members by using a one-side clad material in which the brazing material is rolled on one side.
  • the brazing material sheet may be supplied by laminating brazing material sheets between the plate-like members.
  • the brazing material may be supplied by applying a pasty brazing material between the plate members.
  • the brazing material may be supplied by laminating clad materials obtained by rolling the brazing material on both sides between the plate-like members.
  • the plate-like members are laminated without gaps, leakage of the refrigerant is suppressed, and pressure resistance is ensured.
  • the occurrence of brazing defects is further suppressed.
  • processing that promotes the formation of fillets, such as formation of ribs is performed at locations where refrigerant leakage is likely to occur, the occurrence of brazing defects is further suppressed.
  • the first heat transfer tube 3 and the fins 5 are made of the same material (for example, made of aluminum), it is possible to braze and join together. , Productivity is improved.
  • the first heat transfer tubes 3 and the fins 5 may be brazed.
  • only the first plate 11 may be brazed to the holding member 4 first, and the second plate 12 may be brazed afterwards.
  • the brazing material is supplied by laminating a platy member in which the brazing material is rolled on both sides, that is, clad materials on both sides, between the respective platy members.
  • a plurality of clad members 24_1 to 24_5 are laminated between the plate-like members.
  • the plurality of both-side clad materials 24_1 to 24_5 may be collectively referred to as the both-side clad material 24.
  • both-side clad material 24 a flow path 24A and a flow path 24B penetrating the both-side clad material 24 are formed.
  • the flow path 24A and the flow path 24B are formed by pressing or the like, the processing is simplified and the manufacturing cost and the like are reduced.
  • all the members to be brazed including the clad members 24 are made of the same material (for example, made of aluminum), it is possible to collectively braze and improve productivity.
  • the flow path 24A formed in the both-side clad material 24 laminated on the second plate-like member 22 and the third plate-like member 23 is a circular through hole.
  • the flow path 24B formed in the both-side clad material 24 laminated on the third plate-like members 23_1 and 23_2 is a rectangular through-hole penetrating almost the entire area of the both-side clad material 24 in the height direction.
  • the flow path 24B may not be rectangular.
  • the channel area (that is, the cross-sectional area) of the channel 24B is larger than the channel area (that is, the sum of the cross-sectional areas) of the plurality of channels 21A.
  • the plurality of flow paths 24B formed in the both-side clad material 24_4 laminated between the third plate-like member 23_3 and the first plate-like member 21 are rectangular through holes.
  • the plurality of flow paths 24B may not be rectangular.
  • the channel area (that is, the cross-sectional area) of one channel 24B among the plurality of channels 24B is the flow of one channel 21A communicated with the one channel 24B among the plurality of channels 21A. Larger than the road area (ie, cross-sectional area).
  • the plurality of flow paths 24A and the plurality of flow paths 24B formed in the both-side clad material 24_5 laminated between the first plate member 21 and the holding member 4 have an inner peripheral surface that is the outer peripheral surface of the first heat transfer tube 3. It is a through-hole of a shape along.
  • the channel area (that is, the cross-sectional area) of one channel 24B among the plurality of channels 24B is the channel area of one channel 21A communicated with the channel 24B among the plurality of channels 21A ( That is, it is larger than the cross-sectional area.
  • the flow path 24A functions as a refrigerant isolation flow path for the first outlet flow path 11A, the distribution flow path 12B, and the second inlet flow path 12A. It functions as a refrigerant isolation channel for the inlet channel 11B, the merging channel 12C, and the second outlet channel 12D.
  • the coolant isolation channel By forming the coolant isolation channel by the clad members 24 on both sides, the coolant is reliably isolated.
  • the clad material 24 may be laminated between some plate-like members, and the brazing material may be supplied between other plate-like members by other methods.
  • the end portion of the first heat transfer tube 3 protrudes from the surface of the holding member 4, both side clad materials 24_5 are laminated on the holding member 4, and the flow paths 24A and 24B of the both side clad materials 24_5 are formed on the outer peripheral surface of the end portions.
  • the first heat transfer tube 3 is connected to the first outlet channel 11A and the first inlet channel 11B.
  • the first outlet channel 11A, the first inlet channel 11B, and the first heat transfer tube 3 are, for example, fitted with a convex portion formed in the holding member 4 and a concave portion formed in the first plate-like body 11 or the like.
  • the end portion of the first heat transfer tube 3 may not protrude from the surface of the holding member 4.
  • the holding member 4 may not be provided, and the first heat transfer tube 3 may be directly connected to the first outlet channel 11A and the first inlet channel 11B. In such a case, parts costs and the like are reduced.
  • the refrigerant that has flowed into the opening 23d of the flow path 23A formed in the third plate-like member 23_2 hits the surface of the adjacent laminated member, and is divided into two toward each of both ends of the linear portion 23c. Branch.
  • the branched refrigerant reaches the end portions 23a and 23b of the flow path 23A and flows into the opening 23d of the flow path 23A formed in the third plate member 23_3.
  • the refrigerant that has flowed into the opening 23d of the flow path 23A formed in the third plate-like member 23_3 hits the surface of the adjacent laminated member, and is divided into two toward each of both ends of the linear portion 23c. Branch.
  • the branched refrigerant reaches the end portions 23 a and 23 b of the flow path 23 ⁇ / b> A, passes through the flow path 21 ⁇ / b> A of the first plate-like member 21, and flows into the first heat transfer tube 3.
  • the refrigerant that has flowed out of the flow path 21A of the first plate-like member 21 and passed through the first heat transfer tube 3 flows into the flow path 21B of the first plate-like member 21.
  • the refrigerant that has flowed into the flow path 21 ⁇ / b> B of the first plate-shaped member 21 flows into the flow path 23 ⁇ / b> B formed in the third plate-shaped member 23 and is mixed therewith.
  • the mixed refrigerant passes through the flow path 22B of the second plate-like member 22 and flows out to the refrigerant pipe.
  • FIG. 4 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 1 is applied.
  • the air conditioner 51 includes a compressor 52, a four-way valve 53, a heat source side heat exchanger 54, an expansion device 55, a load side heat exchanger 56, a heat source side fan 57, A load-side fan 58 and a control device 59.
  • the compressor 52, the four-way valve 53, the heat source side heat exchanger 54, the expansion device 55, and the load side heat exchanger 56 are connected by refrigerant piping to form a refrigerant circulation circuit.
  • a compressor 52, a four-way valve 53, a throttle device 55, a heat source side fan 57, a load side fan 58, various sensors, and the like are connected to the control device 59.
  • the heat source side heat exchanger 54 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the load side heat exchanger 56 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the heat source side heat exchanger 54 via the four-way valve 53 and condenses by heat exchange with the outside air supplied by the heat source side fan 57. It becomes a high-pressure liquid refrigerant and flows out of the heat source side heat exchanger 54.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 54 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 55 flows into the load-side heat exchanger 56 and evaporates by heat exchange with the indoor air supplied by the load-side fan 58, thereby causing a low-pressure gas state. And flows out of the load-side heat exchanger 56.
  • the low-pressure gaseous refrigerant flowing out from the load-side heat exchanger 56 is sucked into the compressor 52 through the four-way valve 53.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the load-side heat exchanger 56 through the four-way valve 53 and condenses by heat exchange with the indoor air supplied by the load-side fan 58. And becomes a high-pressure liquid refrigerant and flows out of the load-side heat exchanger 56.
  • the high-pressure liquid refrigerant flowing out of the load-side heat exchanger 56 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant that flows out of the expansion device 55 flows into the heat source side heat exchanger 54 and evaporates by heat exchange with the outside air supplied by the heat source side fan 57, so that the low-pressure gas state It becomes a refrigerant and flows out of the heat source side heat exchanger 54.
  • the low-pressure gaseous refrigerant flowing out from the heat source side heat exchanger 54 is sucked into the compressor 52 through the four-way valve 53.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the heat exchanger 1 when the heat exchanger 1 acts as an evaporator, the refrigerant flows into the first heat transfer tube 3 from the distribution flow path 12 ⁇ / b> B of the stacked header 2, and the stacked header 2 is transferred from the first heat transfer tube 3. It is connected so that the refrigerant flows into the merging flow path 12C. That is, when the heat exchanger 1 acts as an evaporator, a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12B of the multilayer header 2 and flows from the first heat transfer tube 3 to the multilayer header 2.
  • the refrigerant in the gas state flows into the merging channel 12C. Further, when the heat exchanger 1 acts as a condenser, a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12 ⁇ / b> C of the laminated header 2, and the distribution flow path of the laminated header 2 from the first heat transfer tube 3. Liquid refrigerant flows into 12B.
  • the flow area of one first inlet flow path 11B among the plurality of first inlet flow paths 11B is equal to the first inlet flow path 11B of the plurality of first outlet flow paths 11A. It is larger than the channel area of one first outlet channel 11A communicated.
  • the flow passage area of the mixing flow passage 12c is larger than the flow passage areas of the plurality of first outlet flow passages 11A. Therefore, even if it is used in a situation in which a gaseous refrigerant flows into the plurality of first inlet channels 11B of the first plate-like body 11, the plurality of first inlet channels 11B of the first plate-like body 11 The increase in the pressure loss of the refrigerant generated between the second plate-like body 12 and the second outlet channel 12D can be suppressed.
  • the flow passage area of the second outlet flow passage 12D is larger than the flow passage area of the second inlet flow passage 12A. Therefore, the plurality of first inlet flows of the first plate-like body 11 Even if it is used in a situation where a gaseous refrigerant flows into the passage 11B, an increase in refrigerant pressure loss that occurs in the second outlet channel 12D of the second plate 12 can be suppressed.
  • the heat exchanger 1 acts as an evaporator and the refrigerant in the gas state flowing out from the laminated header 2 is sucked into the compressor 52, the refrigerant whose increase in pressure loss is suppressed is As a result, it is suppressed that the suction pressure of the compressor 52 decreases and the work amount of the compressor 52 increases, for example, the air conditioner 51 and the like have high performance. Is done.
  • the circumferential direction is perpendicular to the refrigerant inflow direction.
  • the stacked header 2 does not have to be enlarged in the entire circumferential direction perpendicular to the refrigerant inflow direction, and the heat exchanger 1 is saved in space.
  • the heat transfer tube when the heat transfer tube is changed from a circular tube to a flat tube, the flow passage cross-sectional area in the heat transfer tube is reduced, and the pressure loss generated in the heat transfer tube increases.
  • the laminated header 2 is not limited to the case where the first heat transfer tube 3 is a flat tube.
  • FIG. 5 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the periphery of the flow path 23B may be enlarged so as to be close to the periphery of the flow path 23A.
  • the pressure loss is reduced. Therefore, the flow path 23B penetrates a region that does not overlap with all the flow paths 23A.
  • the flow paths 24B of the clad members 24 laminated between the second plate member 22 and the third plate member 23_3 have the same shape.
  • FIG. 6 is a perspective view of a modified example-2 of the heat exchanger according to the first embodiment in a state where the stacked header is disassembled.
  • a plurality of flow paths 22 ⁇ / b> A are formed in the second plate-shaped member 22, that is, a plurality of second inlet flow paths 12 ⁇ / b> A are formed in the second plate-shaped body 12.
  • the number of 23 sheets may be reduced. By being configured in this way, parts cost, weight, etc. are reduced.
  • the channel area (that is, the sectional area) of the channel 22B is larger than the channel area (that is, the sum of the sectional areas) of the plurality of channels 22A.
  • FIG. 7 is a perspective view of Modified Example-3 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • a plurality of flow paths 22 ⁇ / b> B and flow paths 23 ⁇ / b> B may be formed in the second plate-like member 22 and the third plate-like member 23. That is, the merging channel 12C may have a plurality of mixing channels 12c.
  • the plurality of flow paths 24B of the both-side clad material 24 laminated between the second plate-shaped member 22 and the third plate-shaped member 23_3 have the same shape as the plurality of flow paths 23B.
  • the channel area (that is, the sum of the cross-sectional areas) of the plurality of channels 22B is larger than the channel area (that is, the cross-sectional area) of the channel 22A.
  • the flow path areas of the plurality of flow paths 23B are larger than the flow path areas of the plurality of flow paths 21A (that is, the sum of the cross-sectional areas).
  • the flow area (that is, the sum of the cross-sectional areas) of the plurality of flow paths 24B is larger than the flow area (that is, the sum of the cross-sectional areas) of the plurality of flow paths 21A.
  • FIG. 8 is a perspective view of a main part and a cross-sectional view of the main part in a state in which the stacked header is disassembled in Modification 4 of the heat exchanger according to the first embodiment.
  • 8A is a perspective view of the main part in a state where the laminated header is disassembled
  • FIG. 8B is a third plate-like member taken along line AA of FIG. 8A.
  • any of the flow paths 23A formed in the third plate-like member 23 may be a bottomed groove. In such a case, a circular through hole 23e is formed in each of the end 23a and the end 23b on the bottom surface of the groove of the flow path 23A.
  • both sides of the clad material 24 do not have to be laminated between the plate-like members in order to interpose the flow path 24A functioning as the refrigerant isolation flow path between the branch flow paths 12b, and production Efficiency is improved.
  • 8 shows the case where the refrigerant outflow side of the flow path 23A is the bottom face, the refrigerant inflow side of the flow path 23A may be the bottom face. In such a case, a through hole may be formed in a region corresponding to the opening 23d.
  • FIG. 9 is a perspective view of Modified Example-5 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the flow path 22A functioning as the second inlet flow path 12A is formed in a laminated member other than the second plate-like member 22, that is, other plate-like members, both-side clad members 24, and the like. May be.
  • the flow path 22A may be, for example, a through hole that penetrates from the side surface of another plate-like member to the surface on the side where the second plate-like member 22 is present.
  • FIG. 10 is a perspective view of Modified Example-6 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the flow path 22B functioning as the second outlet flow path 12D is formed in other plate-like members other than the second plate-like member 22 of the second plate-like body 12, both-side clad material 24, and the like. May be.
  • a cutout that communicates a part of the flow path 23B or the flow path 24B with the side surfaces of the third plate-like member 23 or the clad members 24 may be formed.
  • the flow path 22B which functions as 2nd exit flow path 12D may be formed in the 1st plate-shaped member 21 by folding the mixing flow path 12c.
  • FIG. 11 is a diagram illustrating a configuration of the heat exchanger according to the second embodiment.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 3, a plurality of second heat transfer tubes 6, a holding member 4, and a plurality of fins 5.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 3, a plurality of second heat transfer tubes 6, a holding member 4, and a plurality of fins 5.
  • the laminated header 2 has a plurality of refrigerant folding portions 2E. Similar to the first heat transfer tube 3, the second heat transfer tube 6 is a flat tube that has been subjected to hairpin bending. A plurality of first heat transfer tubes 3 are connected between the plurality of refrigerant outflow portions 2B and the plurality of refrigerant folding portions 2E of the multilayer header 2, and the plurality of refrigerant folding portions 2E and the plurality of refrigerant inflows of the multilayer header 2 are connected. A plurality of second heat transfer tubes 6 are connected between the portion 2C.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 3 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 3.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 3 flows into the plurality of refrigerant folding portions 2 ⁇ / b> E of the stacked header 2, is turned back, and flows out to the plurality of second heat transfer tubes 6.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of second heat transfer tubes 6.
  • the refrigerant that has passed through the plurality of second heat transfer tubes 6 flows into and joins the stacked header 2 through the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant pipe through the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 12 is a perspective view of the heat exchanger according to Embodiment 2 in a state where the stacked header is disassembled.
  • FIG. 13 is a development view of the stacked header of the heat exchanger according to the second embodiment. In FIG. 13, the illustration of the clad material 24 on both sides is omitted.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate body 11 is formed with a plurality of first outlet channels 11A, a plurality of first inlet channels 11B, and a plurality of folded channels 11C.
  • the plurality of folding channels 11C correspond to the plurality of refrigerant folding sections 2E in FIG.
  • a plurality of flow paths 21 ⁇ / b> C are formed in the first plate-like member 21.
  • the plurality of flow paths 21 ⁇ / b> C have through-holes whose inner peripheral surfaces surround the outer peripheral surface of the refrigerant outflow side end of the first heat transfer tube 3 and the outer peripheral surface of the end of the second heat transfer tube 6 on the refrigerant inflow side. It is.
  • the plurality of channels 21C function as the plurality of folded channels 11C.
  • the brazing material is supplied by laminating the clad material 24 on both sides of which the brazing material is rolled on both sides between the plate-like members.
  • the flow path 24C formed in the both-side clad material 24_5 laminated between the holding member 4 and the first plate-like member 21 has an inner peripheral surface that is the outer peripheral surface of the end portion on the refrigerant outflow side of the first heat transfer tube 3. And a through hole having a shape surrounding the outer peripheral surface of the end of the second heat transfer tube 6 on the refrigerant inflow side.
  • the refrigerant that has flowed into the flow path 21 ⁇ / b> B of the first plate-shaped member 21 flows into the flow path 23 ⁇ / b> B formed in the third plate-shaped member 23 and is mixed therewith.
  • the mixed refrigerant passes through the flow path 22B of the second plate-like member 22 and flows out to the refrigerant pipe.
  • FIG. 14 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the refrigerant flows into the first heat transfer tube 3 from the distribution flow path 12 ⁇ / b> B of the stacked header 2, and the stacked header 2 from the second heat transfer tube 6. It is connected so that the refrigerant flows into the merging flow path 12C.
  • a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12B of the multilayer header 2 and flows from the second heat transfer pipe 6 to the multilayer header 2.
  • the refrigerant in the gas state flows into the merging channel 12C.
  • a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12 ⁇ / b> C of the laminated header 2, and the distribution flow path of the laminated header 2 from the first heat transfer tube 3. Liquid refrigerant flows into 12B.
  • the heat exchanger 1 acts as a condenser
  • the first heat transfer tube 3 is compared with the second heat transfer tube 6 on the upstream side (windward side) of the airflow generated by the heat source side fan 57 or the load side fan 58. )
  • the heat exchanger 1 is disposed. That is, the refrigerant flow from the second heat transfer tube 6 to the first heat transfer tube 3 and the airflow face each other.
  • the refrigerant of the first heat transfer tube 3 has a lower temperature than the refrigerant of the second heat transfer tube 6.
  • the airflow generated by the heat source side fan 57 or the load side fan 58 has a lower temperature on the upstream side of the heat exchanger 1 than on the downstream side of the heat exchanger 1.
  • the refrigerant can be supercooled (so-called SC) with a low-temperature airflow flowing upstream of the heat exchanger 1, and the condenser performance is improved.
  • SC supercooled
  • the heat source side fan 57 and the load side fan 58 may be provided on the leeward side or may be provided on the leeward side.
  • the heat exchange amount is increased without changing the area of the heat exchanger 1 as viewed from the front, the spacing between the fins 5, and the like. It is possible to make it.
  • the number of rows of heat transfer tubes becomes two, the amount of heat exchange increases by about 1.5 times or more. Note that the number of rows of heat transfer tubes may be three or more.
  • the area of the heat exchanger 1 as viewed from the front, the interval between the fins 5 and the like may be changed.
  • a header (laminated header 2) is provided only on one side of the heat exchanger 1.
  • the header (stacked header 2) is provided only on one side of the heat exchanger 1 as in the stacked header 2, even if the end is shifted for each row of heat transfer tubes, only the end on one side
  • the degree of freedom in design and production efficiency can be improved. In particular, it is possible to bend the heat exchanger 1 after joining the members of the heat exchanger 1, and the production efficiency is further improved.
  • the first heat transfer tube 3 is located on the windward side compared to the second heat transfer tube 6.
  • headers are provided on both sides of the heat exchanger, it is difficult to improve the condenser performance by giving a temperature difference of the refrigerant for each row of heat transfer tubes.
  • the first heat transfer tube 3 and the second heat transfer tube 6 are flat tubes, unlike a circular tube, the degree of freedom of bending is low, so that a temperature difference of the refrigerant is given to each row of heat transfer tubes. It is difficult to realize by deforming the refrigerant flow path.
  • Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or a part of each embodiment, each modification, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 本発明に係る積層型ヘッダー2は、複数の第1出口流路11Aと、複数の第1入口流路11Bと、が形成された第1板状体11と、第1板状体11に積層され、第2入口流路から流入する冷媒を複数の第1出口流路11Aに分配して流出する分配流路の少なくとも一部と、複数の第1入口流路11Bから流入する冷媒を合流して第2出口流路に流出する合流流路の少なくとも一部と、が形成された第2板状体12と、を備え、複数の第1入口流路11Bのうちの1つの第1入口流路11Bの流路面積は、複数の第1出口流路11Aのうちのその1つの第1入口流路11Bに連通される1つの第1出口流路11Aの流路面積と比較して大きいものである。

Description

積層型ヘッダー、熱交換器、及び、空気調和装置
 本発明は、積層型ヘッダーと熱交換器と空気調和装置とに関するものである。
 従来の積層型ヘッダーとして、複数の出口流路と、複数の入口流路と、が形成された第1板状体と、第1板状体に積層され、第1板状体に形成された複数の出口流路と連通する入口流路と、第1板状体に形成された複数の入口流路と連通する出口流路と、が形成された第2板状体と、を備えるものがある(例えば、特許文献1参照)。
特開2000-161818号公報(段落[0032]~段落[0036]、図7、図8)
 このような積層型ヘッダーでは、例えば、第1板状体の複数の入口流路にガス状態の冷媒が流入すると、第1板状体の複数の入口流路と第2板状体の出口流路との間で生じる冷媒の圧力損失が増大する。そして、圧力損失が増大した冷媒が、第2板状体の出口流路から圧縮機に流入すると、圧縮機の吸入圧力が低下して、圧縮機の仕事量が増大してしまう。つまり、従来の積層型ヘッダーでは、冷媒の圧力損失が大きいという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、冷媒の圧力損失が低減された積層型ヘッダーを得ることを目的とする。また、本発明は、そのような積層型ヘッダーを備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダーは、複数の第1出口流路と、複数の第1入口流路と、が形成された第1板状体と、前記第1板状体に積層され、第2入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路の少なくとも一部と、前記複数の第1入口流路から流入する冷媒を合流して第2出口流路に流出する合流流路の少なくとも一部と、が形成された第2板状体と、を備え、前記複数の第1入口流路のうちの1つの流路の流路面積は、前記複数の第1出口流路のうちの該1つの流路に連通される1つの流路の流路面積と比較して大きいものである。
 本発明に係る積層型ヘッダーでは、複数の第1入口流路のうちの1つの流路の流路面積が、複数の第1出口流路のうちのその1つの流路に連通される1つの流路の流路面積と比較して大きいため、第1板状体の複数の第1入口流路にガス状態の冷媒が流入するような状況で使用されても、第1板状体の複数の第1入口流路と第2板状体の第2出口流路との間で生じる冷媒の圧力損失の増大を抑制することができる。
実施の形態1に係る熱交換器の、構成を示す図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-4の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。 実施の形態1に係る熱交換器の変形例-5の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-6の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、構成を示す図である。 実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 以下、本発明に係る積層型ヘッダーについて、図面を用いて説明する。
 なお、以下では、本発明に係る積層型ヘッダーが、熱交換器に流入する冷媒を分配するものである場合を説明しているが、本発明に係る積層型ヘッダーが、他の機器に流入する冷媒を分配するものであってもよい。また、以下で説明する構成、動作等は、一例にすぎず、そのような構成、動作等に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
 また、本発明における「流路面積」は、流路が1つである場合には、その流路の断面積を意味し、流路が複数である場合には、その複数の流路のそれぞれの断面積の総和を意味する。
実施の形態1.
 実施の形態1に係る熱交換器について説明する。
<熱交換器の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
 図1は、実施の形態1に係る熱交換器の、構成を示す図である。
 図1に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管3と、保持部材4と、複数のフィン5と、を有する。
 積層型ヘッダー2は、冷媒流入部2Aと、複数の冷媒流出部2Bと、複数の冷媒流入部2Cと、冷媒流出部2Dと、を有する。積層型ヘッダー2の冷媒流入部2A及び積層型ヘッダー2の冷媒流出部2Dには、冷媒配管が接続される。第1伝熱管3は、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと積層型ヘッダー2の複数の冷媒流入部2Cとの間に、複数の第1伝熱管3が接続される。
 第1伝熱管3は、複数の流路が形成された扁平管である。第1伝熱管3は、例えば、アルミニウム製である。複数の第1伝熱管3の両端は、板状の保持部材4によって保持された状態で、積層型ヘッダー2の複数の冷媒流出部2Bと複数の冷媒流入部2Cとに接続される。保持部材4は、例えば、アルミニウム製である。第1伝熱管3には、複数のフィン5が接合される。フィン5は、例えば、アルミニウム製である。第1伝熱管3とフィン5との接合は、ロウ付け接合であるとよい。なお、図1では、第1伝熱管3が8本である場合を示しているが、そのような場合に限定されない。
<熱交換器における冷媒の流れ>
 以下に、実施の形態1に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管3に流出する。冷媒は、複数の第1伝熱管3において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管3を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの構成について説明する。
 図2は、実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図3は、実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。なお、図3では、両側クラッド材24の図示が省略されている。
 図2及び図3に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11は、冷媒の流出側に積層される。第1板状体11は、第1板状部材21を有する。第1板状体11には、複数の第1出口流路11Aと、複数の第1入口流路11Bと、が形成される。複数の第1出口流路11Aは、図1における複数の冷媒流出部2Bに相当する。複数の第1入口流路11Bは、図1における複数の冷媒流入部2Cに相当する。
 第1板状部材21には、複数の流路21Aと、複数の流路21Bと、が形成される。複数の流路21A及び複数の流路21Bは、内周面が第1伝熱管3の外周面に沿う形状の貫通穴である。複数の流路21Bのうちの1つ流路21Bの流路面積(つまり断面積)は、複数の流路21Aのうちのその流路21Bに連通される1つの流路21Aの流路面積(つまり断面積)と比較して大きい。第1板状部材21が積層されると、複数の流路21Aは、複数の第1出口流路11Aとして機能し、複数の流路21Bは、複数の第1入口流路11Bとして機能する。第1板状部材21は、例えば、厚さ1~10mm程度であり、アルミニウム製である。複数の流路21A、21Bが、プレス加工等で形成される場合には、加工が簡略化され、製造コストが削減される。
 第2板状体12は、冷媒の流入側に積層される。第2板状体12は、第2板状部材22と、複数の第3板状部材23_1~23_3と、を有する。第2板状体12には、第2入口流路12Aと、分配流路12Bと、合流流路12Cと、第2出口流路12Dと、が形成される。分配流路12Bは、複数の分岐流路12bを有する。合流流路12Cは、混合流路12cを有する。第2入口流路12Aは、図1における冷媒流入部2Aに相当する。第2出口流路12Dは、図1における冷媒流出部2Dに相当する。
 なお、分配流路12Bの一部又は合流流路12Cの一部が、第1板状体11に形成されてもよい。そのような場合には、第1板状部材21、第2板状部材22、複数の第3板状部材23_1~23_3等に、流入する冷媒を折り返して流出する流路が形成されればよい。流入する冷媒を折り返して流出する流路が形成されず、分配流路12Bの全部又は合流流路12Cの全部が、第2板状体12に形成される場合には、積層型ヘッダー2の幅寸法を、第1伝熱管3の幅寸法とほぼ等しくすることができ、熱交換器1がコンパクト化される。
 第2板状部材22には、流路22Aと、流路22Bと、が形成される。流路22A及び流路22Bは、円形状の貫通穴である。流路22Bの流路面積(つまり断面積)は、流路22Aの流路面積(つまり断面積)と比較して大きい。第2板状部材22が積層されると、流路22Aは、第2入口流路12Aとして機能し、流路22Bは、第2出口流路12Dとして機能する。第2板状部材22は、例えば、厚さ1~10mm程度であり、アルミニウム製である。流路22A及び流路22Bが、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。
 例えば、第2板状部材22の他の部材が積層されない側の表面に口金等が設けられ、その口金等を介して第2入口流路12A及び第2出口流路12Dに冷媒配管が接続される。第2入口流路12A及び第2出口流路12Dの内周面が、冷媒配管の外周面と嵌合する形状であり、口金等を用いずに、第2入口流路12A及び第2出口流路12Dに冷媒配管が直接接続されてもよい。そのような場合には、部品費等が削減される。
 複数の第3板状部材23_1~23_3には、複数の流路23A_1~23A_3が形成される。複数の流路23A_1~23A_3は、2つの端部23a、23bを有する貫通溝である。複数の第3板状部材23_1~23_3が積層されると、複数の流路23A_1~23A_3のそれぞれは、分岐流路12bとして機能する。複数の第3板状部材23_1~23_3は、例えば、厚さ1~10mm程度であり、アルミニウム製である。複数の流路23A_1~23A_3が、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。
 また、複数の第3板状部材23_1~23_3には、複数の流路23B_1~23B_3が形成される。複数の流路23B_1~23B_3は、第3板状部材23_1~23_3の高さ方向のほぼ全域を貫通する矩形状の貫通穴である。流路23B_1~23B_3の流路面積(つまり断面積)は、複数の流路21Aの流路面積(つまり断面積の総和)と比較して大きい。複数の第3板状部材23_1~23_3が積層されると、複数の流路23B_1~23B_3のそれぞれは、混合流路12cの一部として機能する。複数の流路23B_1~23B_3は、矩形状でなくてもよい。
 以下では、複数の第3板状部材23_1~23_3を総称して、第3板状部材23と記載する場合がある。以下では、複数の流路23A_1~23A_3を総称して、流路23Aと記載する場合がある。以下では、複数の流路23B_1~23B_3を総称して、流路23Bと記載する場合がある。以下では、保持部材4と第1板状部材21と第2板状部材22と第3板状部材23とを総称して、板状部材と記載する場合がある。
 第3板状部材23に形成された流路23Aは、2つの端部23a、23bの間を、重力方向と垂直な直線部23cを介して結ぶ形状である。流路23Aが、冷媒の流入側に隣接して積層される部材によって、直線部23cの両端の間の一部の領域23d(以降、開口部23dという)以外の領域を閉塞され、冷媒の流出側に隣接して積層される部材によって、端部23a、23b以外の領域を閉塞されることで、分岐流路12bが形成される。
 流入する冷媒を異なる高さに分岐して流出するために、端部23aと端部23bとは、互いに異なる高さに位置する。特に、端部23aと端部23bとの一方が、直線部23cと比較して上側にあり、他方が、直線部23cと比較して下側にある場合には、開口部23dから流路23Aに沿って端部23aと端部23bとのそれぞれに至る各距離の偏りを、形状を複雑化することなく小さくすることができる。端部23aと端部23bとを結ぶ直線が、第3板状部材23の長手方向と平行になることで、第3板状部材23の短手方向の寸法を小さくすることが可能となり、部品費、重量等が削減される。更に、端部23aと端部23bとを結ぶ直線が、第1伝熱管3の配列方向と平行になることで、熱交換器1が省スペース化される。
 分岐流路12bは、流入する冷媒を2つに分岐して流出する。そのため、接続される第1伝熱管3が8本である場合には、第3板状部材23は、最低でも3枚必要となる。接続される第1伝熱管3が16本である場合には、第3板状部材23は、最低でも4枚必要となる。接続される第1伝熱管3の本数は、2の累乗に限定されない。そのような場合には、分岐流路12bと分岐しない流路とが組み合わされればよい。なお、接続される第1伝熱管3は、2本であってもよい。
 なお、積層型ヘッダー2は、複数の第1出口流路11A及び複数の第1入口流路11Bが、重力方向に沿って配列されるものに限定されず、例えば、壁掛けタイプのルームエアコン室内機、空調機用室外機、チラー室外機等の熱交換器のように、熱交換器1が傾斜して配設される場合に用いられてもよい。そのような場合には、直線部23cが、第3板状部材23の長手方向と垂直にならないような形状の貫通溝とすればよい。
 また、流路23Aは他の形状であってもよい。例えば、流路23Aが、直線部23cを有しなくてもよい。そのような場合には、流路23Aの、端部23aと端部23bとの間の、重力方向とほぼ垂直な水平部が、開口部23dとなる。直線部23cを有する場合には、冷媒が開口部23dで分岐する際に、重力の影響を受け難くなる。また、例えば、流路23Aが、直線部23cの両端のそれぞれと、端部23aと端部23bとのそれぞれと、を結ぶ領域が枝分かれした形状の貫通溝であってもよい。分岐流路12bが、流入する冷媒を2つに分岐し、更に、分岐された冷媒を複数に分岐しない場合には、冷媒の分配の均一性を向上することができる。直線部23cの両端のそれぞれと、端部23aと端部23bとのそれぞれと、を結ぶ領域は、直線であってもよく、曲線であってもよい。
 各板状部材は、ロウ付け接合によって積層される。全ての板状部材又は1つおきの板状部材に、ロウ材が両面に圧延加工された両側クラッド材が用いられることで、接合のためのロウ材が供給されてもよい。全ての板状部材に、ロウ材が片面に圧延加工された片側クラッド材が用いられることで、接合のためのロウ材が供給されてもよい。各板状部材の間に、ロウ材シートが積層されることで、ロウ材が供給されてもよい。各板状部材の間に、ペースト状のロウ材が塗布されることで、ロウ材が供給されてもよい。各板状部材の間に、ロウ材が両面に圧延加工された両側クラッド材が積層されることで、ロウ材が供給されてもよい。
 ロウ付け接合によって積層されることで、各板状部材間が隙間なく積層されることとなり、冷媒の漏れが抑制され、また、耐圧性が確保される。板状部材を加圧しつつロウ付け接合する場合には、ロウ付け不良の発生が更に抑制される。冷媒の漏れが生じやすい箇所に、リブが形成される等、フィレットの形成が促進されるような処理が施された場合には、ロウ付け不良の発生が更に抑制される。
 更に、第1伝熱管3、フィン5等を含む全てのロウ付け接合される部材が、同一の材質(例えば、アルミニウム製)であるような場合には、纏めてロウ付け接合することが可能となり、生産性が向上される。積層型ヘッダー2のロウ付け接合を行った後に、第1伝熱管3及びフィン5のロウ付けを行ってもよい。また、第1板状体11のみを先に保持部材4にロウ付け接合し、第2板状体12を後からロウ付け接合してもよい。
 特に、各板状部材の間に、ロウ材が両面に圧延加工された板状部材、つまり両側クラッド材が積層されることで、ロウ材が供給されるとよい。図2に示されるように、複数の両側クラッド材24_1~24_5が、各板状部材間に積層される。以下では、複数の両側クラッド材24_1~24_5を総称して、両側クラッド材24と記載する場合がある。
 両側クラッド材24には、両側クラッド材24を貫通する流路24A及び流路24Bが形成される。流路24A及び流路24Bが、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。両側クラッド材24を含む全てのロウ付け接合される部材が、同一の材質(例えば、アルミニウム製)である場合には、纏めてロウ付け接合することが可能となり、生産性が向上される。
 第2板状部材22及び第3板状部材23に積層される両側クラッド材24に形成される流路24Aは、円形状の貫通穴である。第3板状部材23_1、23_2に積層される両側クラッド材24に形成される流路24Bは、両側クラッド材24の高さ方向のほぼ全域を貫通する矩形状の貫通穴である。その流路24Bは、矩形状でなくてもよい。その流路24Bの流路面積(つまり断面積)は、複数の流路21Aの流路面積(つまり断面積の総和)と比較して大きい。第3板状部材23_3と第1板状部材21との間に積層される両側クラッド材24_4に形成される複数の流路24Bは、矩形状の貫通穴である。その複数の流路24Bは、矩形状でなくてもよい。その複数の流路24Bのうちの1つの流路24Bの流路面積(つまり断面積)は、複数の流路21Aのうちのその1つの流路24Bに連通される1つの流路21Aの流路面積(つまり断面積)と比較して大きい。
 第1板状部材21と保持部材4との間に積層される両側クラッド材24_5に形成される複数の流路24A及び複数の流路24Bは、内周面が第1伝熱管3の外周面に沿う形状の貫通穴である。複数の流路24Bのうちの1つ流路24Bの流路面積(つまり断面積)は、複数の流路21Aのうちのその流路24Bに連通される1つの流路21Aの流路面積(つまり断面積)と比較して大きい。
 両側クラッド材24が積層されると、流路24Aは、第1出口流路11A、分配流路12B、及び第2入口流路12Aの冷媒隔離流路として機能し、流路24Bは、第1入口流路11B、合流流路12C、及び第2出口流路12Dの冷媒隔離流路として機能する。両側クラッド材24によって冷媒隔離流路が形成されることで、冷媒同士の隔離が確実化される。また、冷媒同士の隔離が確実化されることによって、流路の設計自由度が向上される。なお、一部の板状部材の間に、両側クラッド材24が積層され、他の板状部材の間に、他の方法によってロウ材が供給されてもよい。
 保持部材4の表面から第1伝熱管3の端部が突出しており、両側クラッド材24_5が保持部材4に積層されて、その端部の外周面に両側クラッド材24_5の流路24A、24Bの内周面が嵌合することで、第1出口流路11A及び第1入口流路11Bに第1伝熱管3が接続される。第1出口流路11A及び第1入口流路11Bと第1伝熱管3とが、例えば、保持部材4に形成された凸部と第1板状体11に形成された凹部との嵌合等によって位置決めされてもよく、そのような場合には、第1伝熱管3の端部は、保持部材4の表面から突出しなくてもよい。保持部材4が設けられず、第1出口流路11A及び第1入口流路11Bに第1伝熱管3が直接接続されてもよい。そのような場合には、部品費等が削減される。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図2及び図3に示されるように、第2板状部材22の流路22Aを通過した冷媒は、第3板状部材23_1に形成された流路23Aの開口部23dに流入する。開口部23dに流入した冷媒は、隣接して積層される部材の表面に当たり、直線部23cの両端のそれぞれに向かって2つに分岐する。分岐された冷媒は、流路23Aの端部23a、23bに至り、第3板状部材23_2に形成された流路23Aの開口部23dに流入する。
 同様に、第3板状部材23_2に形成された流路23Aの開口部23dに流入した冷媒は、隣接して積層される部材の表面に当たり、直線部23cの両端のそれぞれに向かって2つに分岐する。分岐された冷媒は、流路23Aの端部23a、23bに至り、第3板状部材23_3に形成された流路23Aの開口部23dに流入する。
 同様に、第3板状部材23_3に形成された流路23Aの開口部23dに流入した冷媒は、隣接して積層される部材の表面に当たり、直線部23cの両端のそれぞれに向かって2つに分岐する。分岐された冷媒は、流路23Aの端部23a、23bに至り、第1板状部材21の流路21Aを通過して、第1伝熱管3に流入する。
 第1板状部材21の流路21Aから流出して第1伝熱管3を通過した冷媒は、第1板状部材21の流路21Bに流入する。第1板状部材21の流路21Bに流入した冷媒は、第3板状部材23に形成された流路23Bに流入して混合される。混合された冷媒は、第2板状部材22の流路22Bを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態1に係る熱交換器の使用態様の一例について説明する。
 なお、以下では、実施の形態1に係る熱交換器が空気調和装置に使用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
 図4は、実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図4では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。
 図4に示されるように、空気調和装置51は、圧縮機52と、四方弁53と、熱源側熱交換器54と、絞り装置55と、負荷側熱交換器56と、熱源側ファン57、負荷側ファン58、制御装置59と、を有する。圧縮機52と四方弁53と熱源側熱交換器54と絞り装置55と負荷側熱交換器56とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置59には、例えば、圧縮機52、四方弁53、絞り装置55、熱源側ファン57、負荷側ファン58、各種センサ等が接続される。制御装置59によって、四方弁53の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器54は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。負荷側熱交換器56は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Bから第1伝熱管3に冷媒が流入し、第1伝熱管3から積層型ヘッダー2の合流流路12Cに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Bに気液二相状態の冷媒が流入し、第1伝熱管3から積層型ヘッダー2の合流流路12Cにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Cにガス状態の冷媒が流入し、第1伝熱管3から積層型ヘッダー2の分配流路12Bに液状態の冷媒が流入する。
<熱交換器の作用>
 以下に、実施の形態1に係る熱交換器の作用について説明する。
 積層型ヘッダー2では、複数の第1入口流路11Bのうちの1つの第1入口流路11Bの流路面積が、複数の第1出口流路11Aのうちのその第1入口流路11Bに連通される1つの第1出口流路11Aの流路面積と比較して大きい。そのため、第1板状体11の複数の第1入口流路11Bにガス状態の冷媒が流入するような状況で使用されても、第1板状体11の複数の第1入口流路11Bと第2板状体12の第2出口流路12Dとの間で生じる冷媒の圧力損失の増大を抑制することができる。
 また、積層型ヘッダー2では、混合流路12cの流路面積が、複数の第1出口流路11Aの流路面積と比較して大きい。そのため、第1板状体11の複数の第1入口流路11Bにガス状態の冷媒が流入するような状況で使用されても、第1板状体11の複数の第1入口流路11Bと第2板状体12の第2出口流路12Dとの間で生じる冷媒の圧力損失の増大を抑制することができる。
 また、積層型ヘッダーでは、第2出口流路12Dの流路面積が、第2入口流路12Aの流路面積と比較して大きい、そのため、第1板状体11の複数の第1入口流路11Bにガス状態の冷媒が流入するような状況で使用されても、第2板状体12の第2出口流路12Dで生じる冷媒の圧力損失の増大を抑制することができる。
 特に、積層型ヘッダー2から第1伝熱管3に流入する冷媒が気液二相状態で、第1伝熱管3から積層型ヘッダー2に流入する冷媒がガス状態である状況で使用されても、第1板状体11の複数の第1入口流路11Bと第2板状体12の第2出口流路12Dとの間で生じる冷媒の圧力損失の増大を抑制することができる。そして、熱交換器1が蒸発器として作用して、積層型ヘッダー2から流出するガス状態の冷媒が、圧縮機52に吸入されるような場合には、圧力損失の増大が抑制された冷媒が、圧縮機52に吸入されることとなって、圧縮機52の吸入圧力が低下して圧縮機52の仕事量が増大してしまうことが抑制され、例えば、空気調和装置51等が高性能化される。
 特に、従来の積層型ヘッダーでは、冷媒量の削減、熱交換器の省スペース化等を目的として、伝熱管が円管から扁平管に変更されると、冷媒の流入方向と垂直な全周方向に大型化されなければならないが、積層型ヘッダー2では、冷媒の流入方向と垂直な全周方向に大型化されなくてもよく、熱交換器1が省スペース化される。つまり、従来の積層型ヘッダーでは、伝熱管が円管から扁平管に変更されると、伝熱管内の流路断面積が小さくなって、伝熱管内で生じる圧力損失が増大してしまうため、分岐流路を形成する複数の溝の角度間隔を更に細かくして、パス数(つまり伝熱管の本数)を増加させる必要が生じ、積層型ヘッダーが冷媒の流入方向と垂直な全周方向に大型化される。一方、積層型ヘッダー2では、パス数を増加させる必要が生じても、第3板状部材23の枚数を増加すればよいため、積層型ヘッダー2が冷媒の流入方向と垂直な全周方向に大型化されることが抑制される。なお、積層型ヘッダー2は、第1伝熱管3が扁平管である場合に限定されない。
<変形例-1>
 図5は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。
 図5に示されるように、第3板状部材23において、流路23Bの周縁が、流路23Aの周縁に近接するように、拡大されてもよい。流路23Bが、全ての第3板状部材23において同一形状であると、圧力損失が低減される。そのため、流路23Bは、全ての流路23Aと重複しない領域を貫通する。第2板状部材22と第3板状部材23_3との間に積層される両側クラッド材24の流路24Bも、同一形状である。
<変形例-2>
 図6は、実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での斜視図である。
 図6に示されるように、第2板状部材22に流路22Aが複数形成されて、つまり、第2板状体12に第2入口流路12Aが複数形成されて、第3板状部材23の枚数が削減されてもよい。このように構成されることで、部品費、重量等が削減される。流路22Bの流路面積(つまり断面積)は、複数の流路22Aの流路面積(つまり断面積の総和)と比較して大きい。
<変形例-3>
 図7は、実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。
 図7に示されるように、第2板状部材22及び第3板状部材23に流路22B及び流路23Bが複数形成されてもよい。つまり、合流流路12Cが複数の混合流路12cを有してもよい。第2板状部材22と第3板状部材23_3との間に積層される両側クラッド材24の複数の流路24Bは、複数の流路23Bと同一形状である。複数の流路22Bの流路面積(つまり断面積の総和)は、流路22Aの流路面積(つまり断面積)と比較して大きい。複数の流路23Bの流路面積(つまり断面積の総和)は、複数の流路21Aの流路面積(つまり断面積の総和)と比較して大きい。複数の流路24Bの流路面積(つまり断面積の総和)は、複数の流路21Aの流路面積(つまり断面積の総和)と比較して大きい。
<変形例-4>
 図8は、実施の形態1に係る熱交換器の変形例-4の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。なお、図8(a)は、積層型ヘッダーを分解した状態での要部の斜視図であり、図8(b)は、図8(a)のA-A線での第3板状部材23の断面図である。
 図8に示されるように、第3板状部材23に形成された流路23Aのいずれかが、有底の溝であってもよい。そのような場合には、流路23Aの溝の底面の端部23aと端部23bとのそれぞれに円形状の貫通穴23eが形成される。このように構成されることで、分岐流路12b間に冷媒隔離流路として機能する流路24Aを介在させるために、板状部材間に両側クラッド材24が積層されなくてもよくなり、生産効率が向上される。なお、図8では、流路23Aの冷媒の流出側が底面である場合を示しているが、流路23Aの冷媒の流入側が底面であってもよい。そのような場合には、開口部23dに相当する領域に貫通穴が形成されればよい。
<変形例-5>
 図9は、実施の形態1に係る熱交換器の変形例-5の、積層型ヘッダーを分解した状態での斜視図である。
 図9に示されるように、第2入口流路12Aとして機能する流路22Aは、第2板状部材22以外の積層される部材、つまり、他の板状部材、両側クラッド材24等に形成されてもよい。そのような場合には、流路22Aを、例えば、他の板状部材の側面から第2板状部材22の有る側の表面までを貫通する貫通穴とすればよい。
<変形例-6>
 図10は、実施の形態1に係る熱交換器の変形例-6の、積層型ヘッダーを分解した状態での斜視図である。
 図10に示されるように、第2出口流路12Dとして機能する流路22Bが、第2板状体12の第2板状部材22以外の他の板状部材、両側クラッド材24等に形成されてもよい。そのような場合には、例えば、流路23B又は流路24Bの一部と、第3板状部材23又は両側クラッド材24の側面と、を連通する切り欠きが形成されればよい。混合流路12cが折り返されて、第1板状部材21に第2出口流路12Dとして機能する流路22Bが形成されてもよい。
実施の形態2.
 実施の形態2に係る熱交換器について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態2に係る熱交換器の構成について説明する。
 図11は、実施の形態2に係る熱交換器の、構成を示す図である。
 図11に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管3と、複数の第2伝熱管6と、保持部材4と、複数のフィン5と、を有する。
 積層型ヘッダー2は、複数の冷媒折返部2Eを有する。第2伝熱管6は、第1伝熱管3と同様に、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと複数の冷媒折返部2Eとの間に、複数の第1伝熱管3が接続され、積層型ヘッダー2の複数の冷媒折返部2Eと複数の冷媒流入部2Cとの間に、複数の第2伝熱管6が接続される。
<熱交換器における冷媒の流れ>
 以下に、実施の形態2に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管3に流出する。冷媒は、複数の第1伝熱管3において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管3を通過した冷媒は、積層型ヘッダー2の複数の冷媒折返部2Eに流入して折り返され、複数の第2伝熱管6に流出する。冷媒は、複数の第2伝熱管6において、例えば、ファンによって供給される空気等と熱交換する。複数の第2伝熱管6を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーの構成について説明する。
 図12は、実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図13は、実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。なお、図13では、両側クラッド材24の図示が省略されている。
 図12及び図13に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11には、複数の第1出口流路11Aと、複数の第1入口流路11Bと、複数の折返流路11Cと、が形成される。複数の折返流路11Cは、図11における複数の冷媒折返部2Eに相当する。
 第1板状部材21には、複数の流路21Cが形成される。複数の流路21Cは、内周面が第1伝熱管3の冷媒の流出側の端部の外周面と第2伝熱管6の冷媒流入側の端部の外周面とを囲む形状の貫通穴である。第1板状部材21が積層されると、複数の流路21Cは、複数の折返流路11Cとして機能する。
 特に、各板状部材の間に、ロウ材が両面に圧延加工された両側クラッド材24が積層されることで、ロウ材が供給されるとよい。保持部材4と第1板状部材21との間に積層される両側クラッド材24_5に形成される流路24Cは、内周面が第1伝熱管3の冷媒の流出側の端部の外周面と第2伝熱管6の冷媒流入側の端部の外周面とを囲む形状の貫通穴である。両側クラッド材24が積層されると、流路24Cは、折返流路11Cの冷媒隔離流路として機能する。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図12及び図13に示されるように、第1板状部材21の流路21Aから流出して第1伝熱管3を通過した冷媒は、第1板状部材21の流路21Cに流入し、折り返されて、第2伝熱管6に流入する。第2伝熱管6を通過した冷媒は、第1板状部材21の流路21Bに流入する。第1板状部材21の流路21Bに流入した冷媒は、第3板状部材23に形成された流路23Bに流入して混合される。混合された冷媒は、第2板状部材22の流路22Bを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態2に係る熱交換器の使用態様の一例について説明する。
 図14は、実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 図14に示されるように、熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Bから第1伝熱管3に冷媒が流入し、第2伝熱管6から積層型ヘッダー2の合流流路12Cに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Bに気液二相状態の冷媒が流入し、第2伝熱管6から積層型ヘッダー2の合流流路12Cにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Cにガス状態の冷媒が流入し、第1伝熱管3から積層型ヘッダー2の分配流路12Bに液状態の冷媒が流入する。
 更に、熱交換器1が凝縮器として作用する際に、第1伝熱管3が、第2伝熱管6と比較して、熱源側ファン57又は負荷側ファン58によって生じる気流の上流側(風上側)になるように、熱交換器1は配設される。つまり、第2伝熱管6から第1伝熱管3への冷媒の流れと気流とが対向する関係になる。第1伝熱管3の冷媒は、第2伝熱管6の冷媒と比較して、低温となる。熱源側ファン57又は負荷側ファン58によって生じる気流は、熱交換器1の上流側の方が、熱交換器1の下流側と比較して、低温となる。その結果、特に、熱交換器1の上流側を流れる低温の気流で、冷媒を過冷却(いわゆるSC化)することができ、凝縮器性能が向上される。なお、熱源側ファン57及び負荷側ファン58は、風上側に設けられてもよく、風下側に設けられてもよい。
<熱交換器の作用>
 以下に、実施の形態2に係る熱交換器の作用について説明する。
 熱交換器1では、第1板状体11に複数の折返流路11Cが形成され、複数の第1伝熱管3に加えて、複数の第2伝熱管6が接続される。例えば、熱交換器1の正面視した状態での面積を増加させて、熱交換量を増やすことも可能であるが、その場合には、熱交換器1を内蔵する筐体が大型化されてしまう。また、フィン5の間隔を小さくして、フィン5の枚数を増加させて、熱交換量を増やすことも可能であるが、その場合には、排水性、着霜性能、埃耐力の観点から、フィン5の間隔を約1mm未満にすることが困難であり、熱交換量の増加が不充分となってしまう場合がある。一方、熱交換器1のように、伝熱管の列数を増加させる場合には、熱交換器1の正面視した状態での面積、フィン5の間隔等を変えることなく、熱交換量を増加させることが可能である。伝熱管の列数が2列になると、熱交換量は約1.5倍以上に増加する。なお、伝熱管の列数が3列以上にされてもよい。また、更に、熱交換器1の正面視した状態での面積、フィン5の間隔等が変えられてもよい。
 また、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる。熱交換器1が、熱交換部の実装体積を増加するために、例えば、熱交換器1を内蔵する筐体の複数の側面に沿うように、折り曲げられて配設される場合には、伝熱管の列毎にその折り曲げ部の曲率半径が異なることに起因して、伝熱管の列毎に端部がずれてしまう。積層型ヘッダー2のように、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる場合には、伝熱管の列毎に端部がずれてしまっても、片側の端部のみ揃えばよく、設計自由度、生産効率等が向上される。特に、熱交換器1の各部材を接合した後に、熱交換器1を折り曲げることも可能となり、生産効率が更に向上される。
 また、熱交換器1が凝縮器として作用する際に、第1伝熱管3が、第2伝熱管6と比較して、風上側に位置する。熱交換器の両側にヘッダーが設けられる場合では、伝熱管の列毎に冷媒の温度差を与えて凝縮器性能を向上することが困難であった。特に、第1伝熱管3及び第2伝熱管6が扁平管である場合には、円管と異なり、曲げ加工の自由度が低いため、伝熱管の列毎に冷媒の温度差を与えることを、冷媒の流路を変形させて実現することが難しい。一方、熱交換器1のように、第1伝熱管3と第2伝熱管6とが積層型ヘッダー2に接続される場合には、伝熱管の列毎に冷媒の温度差が必然的に生じることとなり、冷媒の流れと気流とを対向する関係にすることを、冷媒の流路を変形させることなく簡易に実現することができる。
 以上、実施の形態1及び実施の形態2について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部、各変形例等を組み合わせることも可能である。
 1 熱交換器、2 積層型ヘッダー、2A 冷媒流入部、2B 冷媒流出部、2C 冷媒流入部、2D 冷媒流出部、2E 冷媒折返部、3 第1伝熱管、4 保持部材、5 フィン、6 第2伝熱管、11 第1板状体、11A 第1出口流路、11B 第1入口流路、11C 折返流路、12 第2板状体、12A 第2入口流路、12B 分配流路、12C 合流流路、12D 第2出口流路、12b 分岐流路、12c 混合流路、21 第1板状部材、21A~21C 流路、22 第2板状部材、22A、22B 流路、23、23_1~23_3 第3板状部材、23A、23B、23A_1~23A_3、23B_1~23B_3 流路、23a、23b 端部、23c 直線部、23d 開口部、23e 貫通穴、24、24_1~24_5 両側クラッド材、24A~24C 流路、51 空気調和装置、52 圧縮機、53 四方弁、54 熱源側熱交換器、55 絞り装置、56 負荷側熱交換器、57 熱源側ファン、58 負荷側ファン、59 制御装置。

Claims (9)

  1.  複数の第1出口流路と、複数の第1入口流路と、が形成された第1板状体と、
     前記第1板状体に積層され、第2入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路の少なくとも一部と、前記複数の第1入口流路から流入する冷媒を合流して第2出口流路に流出する合流流路の少なくとも一部と、が形成された第2板状体と、
    を備え、
     前記複数の第1入口流路のうちの1つの流路の流路面積は、前記複数の第1出口流路のうちの該1つの流路に連通される1つの流路の流路面積と比較して大きい、
    ことを特徴とする積層型ヘッダー。
  2.  前記合流流路のうちの合流後の冷媒が通過する流路の流路面積は、前記複数の第1出口流路の流路面積と比較して大きい、
    ことを特徴とする請求項1に記載の積層型ヘッダー。
  3.  前記第2出口流路の流路面積は、前記第2入口流路の流路面積と比較して大きい、
    ことを特徴とする請求項1または2に記載の積層型ヘッダー。
  4.  前記第1板状体に、流入する冷媒を折り返して流出する複数の折返流路が形成された、
    ことを特徴とする請求項1~3のいずれか一項に記載の積層型ヘッダー。
  5.  請求項1~3のいずれか一項に記載の積層型ヘッダーと、
     前記複数の第1出口流路のそれぞれと前記複数の第1入口流路のそれぞれとに接続された複数の第1伝熱管と、
    を備えたことを特徴とする熱交換器。
  6.  請求項4に記載の積層型ヘッダーと、
     前記複数の第1出口流路のそれぞれと前記複数の折返流路のそれぞれの入口側とに接続された複数の第1伝熱管と、
     前記複数の折返流路のそれぞれの出口側と前記複数の第1入口流路のそれぞれとに接続された複数の第2伝熱管と、
    を備えたことを特徴とする熱交換器。
  7.  前記伝熱管は、扁平管である、
    ことを特徴とする請求項5または6に記載の熱交換器。
  8.  請求項5~7のいずれか一項に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に冷媒を流出する、
    ことを特徴とする空気調和装置。
  9.  請求項6に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に冷媒を流出し、
     前記第1伝熱管は、前記熱交換器が凝縮器として作用する際に、前記第2伝熱管と比較して、風上側に位置する、
    ことを特徴とする空気調和装置。
PCT/JP2013/063611 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置 WO2014184918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13884722.3A EP2998680B1 (en) 2013-05-15 2013-05-15 Laminated header, heat exchanger, and air conditioner
JP2015516830A JP6005268B2 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
PCT/JP2013/063611 WO2014184918A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
CN201420245866.4U CN203940770U (zh) 2013-05-15 2014-05-14 层叠型集管、热交换器以及空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063611 WO2014184918A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2014184918A1 true WO2014184918A1 (ja) 2014-11-20

Family

ID=51860078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063611 WO2014184918A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Country Status (4)

Country Link
EP (1) EP2998680B1 (ja)
JP (1) JP6005268B2 (ja)
CN (1) CN203940770U (ja)
WO (1) WO2014184918A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945A4 (en) * 2015-09-07 2018-09-26 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
EP3348946A4 (en) * 2015-09-07 2018-10-03 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
WO2018189892A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2021025156A1 (ja) * 2019-08-07 2021-02-11 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JPWO2021245901A1 (ja) * 2020-06-05 2021-12-09
WO2023148841A1 (ja) * 2022-02-02 2023-08-10 三菱電機株式会社 熱交換器および空気調和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822525B2 (ja) 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JP6819811B1 (ja) * 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH09189463A (ja) * 1996-02-29 1997-07-22 Mitsubishi Electric Corp 熱交換器の分配装置及びその製造方法
JP3958400B2 (ja) * 1997-03-25 2007-08-15 三菱電機株式会社 分配ヘッダー
AU2002360056A1 (en) * 2001-12-21 2003-07-09 Behr Gmbh And Co. Heat exchanger, particularly for a motor vehicle
US6892805B1 (en) * 2004-04-05 2005-05-17 Modine Manufacturing Company Fluid flow distribution device
JP4887213B2 (ja) * 2007-05-18 2012-02-29 日立アプライアンス株式会社 冷媒分配器及び空気調和機
DE102008025910A1 (de) * 2008-05-29 2009-12-03 Behr Gmbh & Co. Kg Wärmeübertrager
JP5195733B2 (ja) * 2009-12-17 2013-05-15 三菱電機株式会社 熱交換器及びこれを備えた冷凍サイクル装置
JP5794022B2 (ja) * 2011-07-28 2015-10-14 ダイキン工業株式会社 熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945A4 (en) * 2015-09-07 2018-09-26 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
EP3348946A4 (en) * 2015-09-07 2018-10-03 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
WO2018189892A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
JPWO2018189892A1 (ja) * 2017-04-14 2019-12-19 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2021025156A1 (ja) * 2019-08-07 2021-02-11 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JP2021025765A (ja) * 2019-08-07 2021-02-22 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US11555655B2 (en) 2019-08-07 2023-01-17 Daikin Industries, Ltd. Heat exchanger and heat pump device
JPWO2021245901A1 (ja) * 2020-06-05 2021-12-09
WO2021245901A1 (ja) * 2020-06-05 2021-12-09 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
EP4163572A4 (en) * 2020-06-05 2023-07-05 Mitsubishi Electric Corporation REFRIGERANT DISPENSER, HEAT EXCHANGER, AND AIR CONDITIONING DEVICE
JP7313557B2 (ja) 2020-06-05 2023-07-24 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
WO2023148841A1 (ja) * 2022-02-02 2023-08-10 三菱電機株式会社 熱交換器および空気調和装置

Also Published As

Publication number Publication date
EP2998680A1 (en) 2016-03-23
JPWO2014184918A1 (ja) 2017-02-23
EP2998680B1 (en) 2018-11-07
JP6005268B2 (ja) 2016-10-12
EP2998680A4 (en) 2017-02-01
CN203940770U (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
JP6005267B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6038302B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6177319B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005268B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005266B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2015004719A1 (ja) 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法
EP3088831B1 (en) Heat exchanger and air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013884722

Country of ref document: EP