WO2021245901A1 - 冷媒分配器、熱交換器および空気調和装置 - Google Patents

冷媒分配器、熱交換器および空気調和装置 Download PDF

Info

Publication number
WO2021245901A1
WO2021245901A1 PCT/JP2020/022246 JP2020022246W WO2021245901A1 WO 2021245901 A1 WO2021245901 A1 WO 2021245901A1 JP 2020022246 W JP2020022246 W JP 2020022246W WO 2021245901 A1 WO2021245901 A1 WO 2021245901A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
plate
refrigerant
shaped body
heat transfer
Prior art date
Application number
PCT/JP2020/022246
Other languages
English (en)
French (fr)
Inventor
篤史 ▲高▼橋
剛志 前田
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20938873.5A priority Critical patent/EP4163572A4/en
Priority to CN202080101373.1A priority patent/CN115698608A/zh
Priority to JP2022528365A priority patent/JP7313557B2/ja
Priority to PCT/JP2020/022246 priority patent/WO2021245901A1/ja
Priority to US17/916,403 priority patent/US20230194191A1/en
Publication of WO2021245901A1 publication Critical patent/WO2021245901A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present disclosure relates to a refrigerant distributor, a heat exchanger, and an air conditioner that branch and flow out an inflowing refrigerant.
  • the diameter of heat transfer tubes in heat exchangers used in air conditioners has been reduced in order to reduce the amount of refrigerant and improve the performance of heat exchangers.
  • the diameter of the heat transfer tube is reduced, it is necessary to suppress an increase in pressure loss when the refrigerant passes through the heat transfer tube. Therefore, in the heat exchanger, the number of passes, which is the number of branches when the refrigerant flows inside, is increased.
  • the heat exchanger is provided with a multi-branch refrigerant distributor that distributes and supplies the refrigerant flowing from one inlet flow path to a plurality of paths in order to increase the number of passes.
  • a multi-branch refrigerant distributor that distributes and supplies the refrigerant flowing from one inlet flow path to a plurality of paths in order to increase the number of passes.
  • a plurality of heat transfer tubes extending in the horizontal direction are arranged side by side in the vertical direction, and a header-shaped refrigerant distributor connected to the plurality of heat transfer tubes is arranged so as to extend in the vertical direction.
  • Refrigerant distributors are disclosed.
  • this refrigerant distributor When the heat exchanger functions as an evaporator, this refrigerant distributor includes an inflow pipe into which a gas-liquid two-phase state refrigerant flows in, a mixing chamber in which the inflowing gas-liquid two-phase refrigerant is mixed and homogenized. It has a communication chamber to which a plurality of heat transfer tubes are connected, and a distribution passage for distributing the gas-liquid two-phase refrigerant to the plurality of communication chambers.
  • the present disclosure has been made in view of the above-mentioned problems in the prior art, and is capable of suppressing the increase in size, suppressing the decrease in the mounting area of the heat exchanger, and improving the heat exchanger performance. It is an object of the present invention to provide a vessel, a heat exchanger and an air conditioner.
  • the refrigerant distributor of the present disclosure is composed of a plurality of plate-shaped bodies, branches the refrigerant flowing in from one or a plurality of inlets into a plurality of branches, and a plurality of outlets arranged at intervals in the first direction.
  • the heat exchanger of the present disclosure includes a refrigerant distributor according to the present disclosure and a plurality of heat transfer tubes connected to each of the plurality of outlets.
  • the air conditioner of the present disclosure is provided with the heat exchanger according to the present disclosure.
  • the wall thickness of the refrigerant distributor can be reduced by forming a communication chamber in which a plurality of heat transfer tubes communicate with each other, so that the increase in size of the refrigerant distributor can be suppressed and the heat exchanger can be reduced in size. It is possible to suppress the decrease in the mounting area and improve the heat exchanger performance.
  • FIG. 2 It is a perspective view which shows an example of the structure of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows an example of the structure of the refrigerant distributor which concerns on Embodiment 1.
  • FIG. It is a schematic diagram for demonstrating the relationship of each flow path when the refrigerant distributor of FIG. 2 is seen from the upper surface.
  • FIG. 2 It is a perspective view which shows an example of the structure of the heat exchanger which concerns on Embodiment 1.
  • FIG. 9 It is a schematic diagram for demonstrating the relationship of each flow path when the refrigerant distributor of FIG. 6 is seen from the upper surface. It is a schematic diagram which shows an example of the positional relationship of each flow path when the refrigerant distributor of FIG. 6 is seen from the front. It is an exploded perspective view which shows an example of the structure of the refrigerant distributor which concerns on Embodiment 3.
  • FIG. It is a schematic diagram for demonstrating the relationship of each flow path when the refrigerant distributor of FIG. 9 is seen from the upper surface. It is a schematic diagram which shows an example of the positional relationship of each flow path when the refrigerant distributor of FIG. 9 is seen from the front.
  • FIG. 4 It is an exploded perspective view which shows an example of the structure of the refrigerant distributor which concerns on Embodiment 4.
  • FIG. 5 It is an exploded perspective view which shows an example of the structure of the refrigerant distributor which concerns on Embodiment 5.
  • Embodiment 6 It is an exploded perspective view which shows an example of the structure of the refrigerant distributor which concerns on Embodiment 6.
  • Embodiment 1 the refrigerant distributor according to the first embodiment will be described with reference to the drawings and the like.
  • the refrigerant distributor according to the first embodiment distributes the refrigerant flowing into the heat exchanger
  • the present invention is not limited to this, and the refrigerant distributor is another device. It may be the one that distributes the refrigerant flowing into.
  • those having the same reference numerals are the same or equivalent thereof, and are common to the whole texts of the embodiments described below.
  • the relationship between the sizes of the constituent members may differ from the actual one.
  • the illustration will be simplified or omitted as appropriate.
  • the form of the component represented in the full text of the specification is merely an example, and is not limited to the form described in the specification.
  • FIG. 1 is a perspective view showing an example of the configuration of the heat exchanger according to the first embodiment.
  • the heat exchanger 1 includes a refrigerant distributor 2, a gas header 3, a plurality of heat transfer tubes 4, and a plurality of fins 5.
  • the refrigerant distributor 2 is provided with one or a plurality of refrigerant inflow portions 2A which are inlets of the refrigerant and a plurality of refrigerant outflow portions 2B which are outlets of the refrigerant.
  • the plurality of refrigerant outflow portions 2B are arranged in the height direction.
  • the gas header 3 is provided with a plurality of refrigerant inflow portions 3A and one refrigerant outflow portion 3B.
  • Refrigerant pipes of refrigerating cycle devices such as air conditioners are connected to the refrigerant inflow section 2A of the refrigerant distributor 2 and the refrigerant outflow section 3B of the gas header 3.
  • a heat transfer tube 4 is connected between the refrigerant outflow portion 2B of the refrigerant distributor 2 and the refrigerant inflow portion 3A of the gas header 3.
  • the heat transfer tube 4 is a flat tube or a circular tube in which a plurality of flow paths are formed.
  • the heat transfer tube 4 is made of, for example, copper or aluminum.
  • the end of the heat transfer tube 4 on the refrigerant distributor 2 side is connected to the refrigerant outflow portion 2B of the refrigerant distributor 2.
  • a plurality of fins 5 are joined to the heat transfer tube 4.
  • the fin 5 is made of, for example, aluminum. In the example of FIG. 1, the case where the number of heat transfer tubes 4 is eight is shown, but the number is not limited to this, and any number may be used as long as there are a plurality of heat transfer tubes 4.
  • the refrigerant flowing through the plurality of heat transfer tubes 4 flows into the gas header 3 through the plurality of refrigerant inflow portions 3A, merges with the refrigerant, and flows out to the refrigerant pipe via the refrigerant outflow portion 3B.
  • the heat exchanger 1 functions as a condenser, the refrigerant flows in the opposite direction to this flow.
  • FIG. 2 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining the relationship between the flow paths when the refrigerant distributor of FIG. 2 is viewed from above. In FIG. 3, each flow path is shown by a broken line so that the relationship between the flow paths formed in each plate-shaped body is facilitated.
  • FIG. 4 is a schematic view showing an example of the positional relationship of each flow path when the refrigerant distributor of FIG. 2 is viewed from the front.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 10.
  • the plate-shaped body 10 is formed by alternately laminating the first plate-shaped bodies 101, 102 and 103 and the second plate-shaped bodies 111 and 112.
  • the first plate-shaped bodies 101, 102 and 103 and the second plate-shaped bodies 111 and 112 have the same outer shape in a plan view.
  • the second plate-shaped bodies 111 and 112 are partition plates for partitioning the first plate-shaped bodies 101, 102 and 103, and for example, a brazing material is applied to both surfaces thereof.
  • Each of the first plate-shaped bodies 101, 102 and 103 is laminated via the second plate-shaped bodies 111 and 112, respectively, and is integrally joined by brazing.
  • Each plate-shaped body is processed by pressing, cutting, or the like.
  • first plate-shaped body 101 In the first plate-shaped body 101, one or a plurality of first flow paths 10A, which are through holes, are formed at substantially the center of the first plate-shaped body 101 in the lateral direction.
  • the refrigerant pipe or capillary tube of the refrigeration cycle device is connected to the first flow path 10A.
  • the first flow path 10A corresponds to the refrigerant inflow portion 2A in FIG.
  • the first plate-shaped body 101 is an inflow plate in which one or a plurality of first flow paths 10A, which are refrigerant inflow portions 2A as inflow ports, are formed.
  • the case where the capillary tube is connected to the first plate-shaped body 101 is shown.
  • the first plate-shaped body 101 is provided with a plurality of first flow paths 10A.
  • one first flow path 10A may be provided in the first plate-shaped body 101.
  • one or a plurality of second flow paths 10B which are through holes, are formed at substantially the center of the second plate-shaped body 111 in the lateral direction.
  • the second flow path 10B is formed at a position corresponding to the first flow path 10A of the first plate-shaped body 101, and communicates the first flow path 10A with the communication chamber 11 of the first plate-shaped body 102, which will be described later.
  • a plurality of communication chambers 11 are formed in the first plate-shaped body 102.
  • the communication chamber 11 is formed corresponding to the second flow path 10B of the second plate-shaped body 111, and communicates the second flow path 10B with the third flow path 10C of the second plate-shaped body 112 described later.
  • the communication chamber 11 is formed so that a plurality of third flow paths 10C communicate with each other.
  • each communication chamber 11 is formed so as to communicate with the two third flow paths 10C.
  • the first plate-shaped body 102 is a communication plate in which a communication chamber 11 as a communication flow path communicating with the refrigerant inflow portion 2A as an inflow port is formed.
  • the second plate-shaped body 112 is formed with a plurality of third flow paths 10C formed in the same shape as the outer shape of the heat transfer tube 4.
  • the third flow path 10C holds the end of the heat transfer tube 4 inserted through the fourth flow path 10D of the first plate-shaped body 103, which will be described later.
  • the first plate-shaped body 103 is formed with a plurality of fourth flow paths 10D, which are heat transfer tube insertion spaces having the same shape as the outer shape of the heat transfer tube 4.
  • the fourth flow path 10D is formed corresponding to the third flow path 10C of the second plate-shaped body 112.
  • a heat transfer tube 4 is inserted through the fourth flow path 10D.
  • a heat transfer tube 4 is brazed to the first plate-shaped body 103, and the first plate-shaped body 103 and the second plate-shaped body 112 are laminated to form a third flow path 10C of the second plate-shaped body 112.
  • the heat transfer tube 4 is connected to the heat transfer tube 4.
  • the first plate-shaped body 103 is a heat transfer tube insertion plate in which a fourth flow path 10D, which is a heat transfer tube insertion space through which the heat transfer tube 4 is inserted, is formed.
  • the distribution flow path 2a is formed by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, and the second plate-shaped bodies 111 and 112, respectively. ing. That is, the distribution flow path 2a is composed of the first flow path 10A, the second flow path 10B, the third flow path 10C, the fourth flow path 10D, and the communication chamber 11.
  • the refrigerant that has flowed into the communication chamber 11 flows into the plurality of third flow paths 10C of the second plate-shaped body 112 that communicates with the communication chamber 11 and is diverted.
  • Each of the separated refrigerants flows into the fourth flow path 10D, which is the heat transfer tube insertion space of the second plate-shaped body 112, and is uniformly distributed to the heat transfer tubes 4 connected to the respective fourth flow paths 10D.
  • FIG. 5 is a schematic diagram showing an example of the configuration of the air conditioner 80 to which the heat exchanger 1 according to the first embodiment is applied.
  • the flow of the refrigerant during the cooling operation is indicated by a broken line arrow
  • the flow of the refrigerant during the heating operation is indicated by a solid line arrow.
  • the air conditioner 80 includes a compressor 81, a four-way valve 82, an outdoor heat exchanger 83, an expansion valve 84, an indoor heat exchanger 85, an outdoor fan 86, and an indoor fan 87.
  • a refrigerant circulation circuit is formed by connecting the compressor 81, the four-way valve 82, the outdoor heat exchanger 83, the expansion valve 84, and the indoor heat exchanger 85 with a refrigerant pipe.
  • the high-pressure, high-temperature gas-state refrigerant discharged from the compressor 81 flows into the outdoor heat exchanger 83 via the four-way valve 82, exchanges heat with the air supplied by the outdoor fan 86, and condenses.
  • the condensed refrigerant becomes a high-pressure liquid state, flows out from the outdoor heat exchanger 83, and becomes a low-pressure gas-liquid two-phase state by the expansion valve 84.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 85 and evaporates by heat exchange with the air supplied by the indoor fan 87 to cool the room.
  • the evaporated refrigerant becomes a low-pressure gas state, flows out from the indoor heat exchanger 85, and is sucked into the compressor 81 via the four-way valve 82.
  • the high-pressure, high-temperature gas-state refrigerant discharged from the compressor 81 flows into the indoor heat exchanger 85 via the four-way valve 82, and is condensed by heat exchange with the air supplied by the indoor fan 87 to condense the room.
  • the condensed refrigerant becomes a high-pressure liquid state, flows out from the indoor heat exchanger 85, and becomes a low-pressure gas-liquid two-phase state refrigerant by the expansion valve 84.
  • the low-pressure gas-liquid two-phase state refrigerant flows into the outdoor heat exchanger 83, exchanges heat with the air supplied by the outdoor fan 86, and evaporates.
  • the evaporated refrigerant becomes a low-pressure gas state, flows out from the outdoor heat exchanger 83, and is sucked into the compressor 81 via the four-way valve 82.
  • the heat exchanger 1 is used for at least one of the outdoor heat exchanger 83 and the indoor heat exchanger 85.
  • the heat exchanger 1 is connected so that the refrigerant flows in from the refrigerant distributor 2 when acting as an evaporator. That is, when the heat exchanger 1 acts as an evaporator, the refrigerant in the gas-liquid two-phase state flows from the refrigerant pipe into the refrigerant distributor 2, branches and flows into each heat transfer tube 4 of the heat exchanger 1. .. Further, when the heat exchanger 1 acts as a condenser, the liquid refrigerant flows into the refrigerant distributor 2 from each heat transfer tube 4 and joins them, and flows out to the refrigerant pipe.
  • the refrigerant distributor 2 has a first plate-like body 101 having a first flow path 10A and a first plate-like body having a communication chamber 11 communicating with the first flow path 10A.
  • a body 102 and a first plate-shaped body 103 having a third flow path 10C formed so that a plurality of heat transfer tubes 4 communicate with each other are provided in the communication chamber 11.
  • the wall thickness of the refrigerant distributor 2 can be reduced as compared with the case where the refrigerant distributor is formed in a cylindrical shape. .. Therefore, the refrigerant distributor 2 can be miniaturized. Further, in the air-conditioning equipment having the same housing size, the heat exchanger performance can be improved because the mounting area of the heat exchanger 1 is increased by reducing the size of the refrigerant distributor 2.
  • Embodiment 2 Next, the second embodiment will be described.
  • the arrangement positions of the first flow path 10A of the first plate-shaped body 101 and the second flow path 10B of the second plate-shaped body 111 are different from those of the first embodiment. ..
  • the parts common to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 6 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the second embodiment.
  • FIG. 7 is a schematic diagram for explaining the relationship between the flow paths when the refrigerant distributor of FIG. 6 is viewed from above. In FIG. 7, each flow path is shown by a broken line so that the relationship between the flow paths formed in each plate-shaped body is facilitated.
  • FIG. 8 is a schematic view showing an example of the positional relationship of each flow path when the refrigerant distributor of FIG. 6 is viewed from the front.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 20.
  • the plate-shaped body 20 is formed by alternately laminating the first plate-shaped bodies 101, 102 and 103 and the second plate-shaped bodies 111 and 112.
  • the first plate-shaped bodies 102 and 103 and the second plate-shaped body 112 are the same as those in the first embodiment.
  • the distribution flow path 2a is formed by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, and the second plate-shaped bodies 111 and 112, respectively. That is, the distribution flow path 2a is composed of the first flow path 10A, the second flow path 10B, the third flow path 10C, the fourth flow path 10D, and the communication chamber 11 as in the first embodiment.
  • the first plate-shaped body 101 is formed with one or a plurality of first flow paths 10A to which a refrigerant pipe or a capillary tube of a refrigeration cycle device is connected.
  • first flow paths 10A to which a refrigerant pipe or a capillary tube of a refrigeration cycle device is connected.
  • FIG. 6 the case where the capillary tube is connected to the first plate-shaped body 101 is shown.
  • second plate-shaped body 111 one or a plurality of second flow paths 10B are formed at positions corresponding to the first flow path 10A of the first plate-shaped body 101.
  • the upstream side of the fluid flow has higher heat transfer performance than the downstream side. Therefore, in the second embodiment, the first flow path 10A of the first plate-shaped body 101 and the second plate-shaped body 111 so that a larger amount of the refrigerant flows to the upstream side of the flow of the fluid having high heat transfer performance.
  • Two flow paths 10B are arranged.
  • the first flow path 10A and the second flow path 10B are provided so as to be biased toward the upstream side of the fluid flow from the central position in the lateral direction of the plate-shaped body 10.
  • the heat exchanger 1 provided with the refrigerant distributor 2 functions as an evaporator into which the refrigerant in the gas-liquid two-phase state flows in
  • the amount of heat exchanged by the gas-liquid two-phase refrigerant is larger than that on the downstream side of the fluid flow. It flows a lot on the high upstream side of. Therefore, the heat transfer performance on the upstream side of the fluid flow in the heat exchanger 1 is improved, and the heat exchanger performance can be improved.
  • the first flow path 10A is located on the first plate-shaped body 101 so as to be located on the upstream side of the flow of the fluid flowing outside the heat transfer tube 4. It is formed. As a result, more refrigerant flows to the upstream side of the fluid, so that the heat transfer performance on the upstream side where the amount of heat exchange is large can be improved, and the heat exchanger performance can be improved.
  • Embodiment 3 Next, the third embodiment will be described.
  • the shape of the communication chamber 11 of the first plate-shaped body 102 is different from that of the first and second embodiments.
  • the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 9 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the third embodiment.
  • FIG. 10 is a schematic diagram for explaining the relationship between the flow paths when the refrigerant distributor of FIG. 9 is viewed from above. In FIG. 10, each flow path is shown by a broken line so that the relationship between the flow paths formed in each plate-shaped body is facilitated.
  • FIG. 11 is a schematic view showing an example of the positional relationship of each flow path when the refrigerant distributor of FIG. 9 is viewed from the front.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 30.
  • the plate-shaped body 30 is formed by alternately laminating the first plate-shaped bodies 101, 102 and 103 and the second plate-shaped bodies 111 and 112.
  • the first plate-shaped bodies 101 and 103, and the second plate-shaped bodies 111 and 112 are the same as those in the first embodiment.
  • the distribution flow path 2a is formed by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, and the second plate-shaped bodies 111 and 112, respectively. That is, the distribution flow path 2a is composed of the first flow path 10A, the second flow path 10B, the third flow path 10C and the fourth flow path 10D, and the communication chamber 11 as in the first and second embodiments. Ru.
  • the first plate-shaped body 102 is formed with a plurality of communication chambers 11 corresponding to the second flow path 10B of the second plate-shaped body 111.
  • the communication chamber 11 is provided with a descent suppressing portion 11a.
  • the descent suppressing portion 11a is provided so as to be unevenly distributed on the downstream side of the fluid flow. Further, as shown in FIG. 11, the lowering suppressing portion 11a is provided so as to be lower than the position of the second flow path 10B.
  • the flow path resistance downward in the direction of gravity against the inflowing refrigerant is large.
  • the flow resistance on the lower side of the communication chamber 11 becomes larger than that on the upper side. Therefore, it is suppressed that the liquid refrigerant of the gas-liquid two-phase refrigerant flows downward due to gravity.
  • the liquid refrigerant flows evenly in the communication chamber 11, so that when the liquid refrigerant flows out of the communication chamber 11, the liquid refrigerant can be evenly distributed to the plurality of communicating heat transfer tubes 4, and heat can be obtained.
  • the performance of the exchanger 1 can be improved.
  • the descent suppressing portion 11a so as to be unevenly distributed on the downstream side of the fluid flow, the gas-liquid two-phase refrigerant flowing from the second flow path 10B of the second plate-shaped body 111 is sent from the downstream side of the fluid flow. Also flows a lot to the upstream side. As a result, the heat transfer performance on the upstream side of the fluid flow in the heat exchanger 1 is improved, so that the heat exchanger performance can be improved.
  • the lowering suppressing portion 11a is formed in the communication chamber 11 below the height of the first flow path 10A.
  • the liquid refrigerant is suppressed from being biased downward due to gravity, and the liquid refrigerant is evenly distributed to the plurality of heat transfer tubes 4, so that heat is generated.
  • the exchanger performance can be improved.
  • the descent suppressing portion 11a is formed so as to be located on the downstream side of the fluid flow. As a result, more refrigerant flows to the upstream side of the fluid, so that the heat transfer performance on the upstream side where the amount of heat exchange is large can be improved, and the heat exchanger performance can be improved.
  • Embodiment 4 Next, the fourth embodiment will be described.
  • a plate-shaped body provided with a branch flow path for branching a plurality of refrigerants is provided between the first plate-shaped body 101 and the first plate-shaped body 102. It is different from 1-3.
  • the parts common to the first to third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 12 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the fourth embodiment.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 40.
  • the plate-shaped body 40 is formed by laminating the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122.
  • the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122 have the same outer shape in a plan view.
  • the distribution flow path 2a is provided by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122. Is formed.
  • the distribution flow path 2a includes a first flow path 10A, a fifth flow path 10E, a sixth flow path 10F, a seventh flow path 10G, an eighth flow path 10H, a ninth flow path 10I, a tenth flow path 10J, and an eleventh flow path.
  • a flow path 10K It is composed of a flow path 10K, a communication chamber 11, a first branch flow path 12A, a second branch flow path 12B and a third branch flow path 12C, and a first stage straddle flow path 13A and a second stage straddle flow path 13B. Will be done.
  • first plate-shaped body 101 In the first plate-shaped body 101, one or a plurality of first flow paths 10A, which are through holes, are formed at substantially the center of the first plate-shaped body 101 in the lateral direction.
  • first flow paths 10A which are through holes, are formed at substantially the center of the first plate-shaped body 101 in the lateral direction.
  • FIG. 12 the case where the refrigerant pipe is connected to the first plate-shaped body 101 is shown, and in this case, one first flow path 10A is provided substantially in the center of the first plate-shaped body 101. Be done.
  • a fifth flow path 10E which is a through hole, is formed at a position substantially at the center of the third plate-shaped body 121.
  • the fifth flow path 10E is formed at a position corresponding to the first flow path 10A of the first plate-shaped body 101, and communicates the first flow path 10A with the sixth flow path 10F described later.
  • a pair of seventh flow paths 10G which are circular through holes, are opened in the second plate-shaped body 113 at a position in the horizontal direction with respect to the sixth flow path 10F, and have a height with respect to the sixth flow path 10F.
  • a pair of eighth flow paths 10H which are circular through holes, are opened at positions symmetrical in the direction.
  • a pair of ninth flow paths 10I which are circular through holes, are opened at positions in the horizontal direction with respect to the respective eighth flow paths 10H, and the eighth flow paths 10H are opened.
  • a pair of tenth flow paths 10J which are circular through holes, are opened at positions that are point-symmetrical with respect to the other.
  • the second plate-shaped body 113 is a through-flow path plate on which the sixth flow path 10F to the tenth flow path 10J as the through-passage are formed.
  • the third plate-shaped body 122 is a linear through groove extending in the horizontal direction so that the sixth flow path 10F and the seventh flow path 10G of the second plate-shaped body 113 communicate with each other in the laminated state.
  • One branch flow path 12A is formed. Further, the third plate-shaped body 122 is at a position symmetrical with respect to the first branch flow path 12A in the height direction, and the eighth flow path 10H and the ninth flow path 10I communicate with each other.
  • a second branch flow path 12B which is a linear through groove extending in the horizontal direction, is formed.
  • the third plate-shaped body 122 is formed with a third branch flow path 12C which is a through groove.
  • the third branch flow path 12C is formed so as to extend linearly in the horizontal direction and both ends of the straight line portion extend in different height directions. Both ends of the third branch flow path 12C are formed so as to be connected to the eleventh flow path 10K of the second plate-shaped body 114, which will be described later.
  • the third plate-shaped body 122 is a branch flow path plate on which the first branch flow path 12A to the third branch flow path 12C as the branch flow path are formed.
  • the first plate-shaped body 121 is a pair of through grooves extending in the height direction so that the seventh flow path 10G and the eighth flow path 10H of the second plate-shaped body 113 communicate with each other in the laminated state.
  • a stepped flow path 13A is formed.
  • the third plate-shaped body 121 is a pair of through grooves extending in the height direction so that the ninth flow path 10I and the tenth flow path 10J of the second plate-shaped body 113 communicate with each other in the laminated state.
  • the second stage straddling flow path 13B is formed.
  • Each of the first-stage straddling flow path 13A and the second-stage straddling flow path 13B is formed so as to straddle the heat transfer tube 4 connected to the refrigerant outflow portion 2B, which is the outlet, so that the two flow paths communicate with each other.
  • the third plate-shaped body 121 is a stepped flow path plate in which the first stepped flow path 13A and the second stepped flow path 13B are formed as the stepped flow path.
  • the second plate-shaped body 114 is formed with an eleventh flow path 10K, which is a through hole.
  • the eleventh flow path 10K is formed at a position corresponding to the end of the third branch flow path 12C of the third plate-shaped body 122, and connects the third branch flow path 12C and the communication chamber 11 of the first plate-shaped body 102. Communicate.
  • the sixth flow path 10F and the seventh flow path 10G are connected to the first branch flow path 12A. Further, a seventh flow path 10G and an eighth flow path 10H are connected to both ends of the first stage straddling flow path 13A. The eighth flow path 10H and the ninth flow path 10I are connected to the second branch flow path 12B. The ninth flow path 10I and the tenth flow path 10J are connected to both ends of the second stage straddling flow path 13B. Then, the eleventh flow path 10K is connected to both ends of the third branch flow path 12C.
  • the refrigerant that has flowed into the refrigerant distributor 2 goes straight through the fifth flow path 10E of the third plate-shaped body 121 and the sixth flow path 10F of the second plate-shaped body 113, and is the first of the third plate-shaped body 122. It collides with the surface of the second plate-shaped body 114 in the branch flow path 12A and splits in the horizontal direction. The separated refrigerant travels to both ends of the first branch flow path 12A and flows into the pair of seventh flow paths 10G.
  • the refrigerant flowing into the 7th flow path 10G goes straight in the 7th flow path 10G in the opposite direction to the refrigerant flowing in the 5th flow path 10E and the 6th flow path 10F.
  • This refrigerant flows into one end side of the first stage straddling flow path 13A of the third plate-shaped body 121, collides with the surface of the first plate-shaped body 101 in the first stage straddling flow path 13A, and straddles the first stage. Proceed to the other end side of the flow path 13A.
  • the refrigerant that has reached the other end side of the first stage straddling flow path 13A flows into the eighth flow path 10H of the second plate-shaped body 113.
  • the refrigerant flowing into the 8th flow path 10H goes straight in the 8th flow path 10H in the opposite direction to the refrigerant traveling in the 7th flow path 10G.
  • This refrigerant collides with the surface of the second plate-shaped body 114 in the second branch flow path 12B of the third plate-shaped body 122, and splits in the horizontal direction.
  • the separated refrigerant travels to both ends of the second branch flow path 12B and flows into the pair of ninth flow paths 10I.
  • the refrigerant flowing into the 9th flow path 10I goes straight in the 9th flow path 10I in the opposite direction to the refrigerant flowing in the 8th flow path 10H.
  • This refrigerant flows into one end side of the second stage straddling flow path 13B of the third plate-shaped body 121, collides with the surface of the first plate-shaped body 101 in the second stage straddling flow path 13B, and straddles the second stage. Proceed to the other end side of the flow path 13B.
  • the refrigerant that has reached the other end of the second-stage straddling flow path 13B flows into the tenth flow path 10J.
  • the refrigerant flowing into the 10th flow path 10J goes straight in the 10th flow path 10J in the opposite direction to the refrigerant flowing in the 9th flow path 10I.
  • This refrigerant collides with the surface of the second plate-shaped body 114 in the third branch flow path 12C of the third plate-shaped body 122, and splits in the horizontal direction.
  • the diverted refrigerant travels to both ends of the third branch flow path 12C and flows into the eleventh flow path 10K of the second plate-shaped body 114. Then, the refrigerant flows out of the 11th flow path 10K and flows into the communication chamber 11 of the first plate-shaped body 102.
  • the refrigerant flowing into the communication chamber 11 flows into the plurality of third flow paths 10C of the second plate-shaped body 112 communicating with the communication chamber 11 and diverges.
  • Each of the separated refrigerants flows into the fourth flow path 10D of the second plate-shaped body 112, and is uniformly distributed to the heat transfer tubes 4 connected to the respective fourth flow paths 10D.
  • the refrigerant distributor 2 having eight branches by passing the refrigerant through three branch flow paths has been described, but the present invention is not limited to this, and the number of branches can be increased by changing the number of branch flow paths. It can be any other number.
  • the refrigerant flowing from the first flow path 10A is branched and distributed between the first plate-shaped body 101 and the first plate-shaped body 102.
  • a third plate-shaped body 122 having a branch flow path to be formed is arranged.
  • Embodiment 5 Next, the fifth embodiment will be described.
  • the shape of the communication chamber 11 of the first plate-shaped body 102 is different from that of the fourth embodiment.
  • the parts common to the first to fourth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 13 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the fifth embodiment.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 50.
  • the plate-shaped body 40 is formed by laminating the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122.
  • the first plate-shaped bodies 101 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped body 121 are the same as those in the fourth embodiment.
  • the distribution flow path 2a is provided by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122. Is formed.
  • the distribution flow path 2a includes a first flow path 10A, a fifth flow path 10E, a sixth flow path 10F, a seventh flow path 10G, an eighth flow path 10H, a ninth flow path 10I, a tenth flow path 10J, and an eleventh flow path.
  • a flow path 10K It is composed of a flow path 10K, a communication chamber 11, a first branch flow path 12A, a second branch flow path 12B and a third branch flow path 12C, and a first stage straddle flow path 13A and a second stage straddle flow path 13B. Will be done.
  • the first plate-shaped body 102 is formed with a plurality of communication chambers 11 corresponding to the second flow path 10B of the second plate-shaped body 111.
  • the communication room 11 is provided with a descent suppressing portion 11a as in the third embodiment.
  • the flow resistance on the lower side of the communication chamber 11 becomes larger than that on the upper side, as in the third embodiment. Therefore, it is suppressed that the liquid refrigerant of the gas-liquid two-phase refrigerant flows downward due to gravity. As a result, the liquid refrigerant flows evenly in the communication chamber 11, so that when the liquid refrigerant flows out of the communication chamber 11, the liquid refrigerant can be evenly distributed to the plurality of communicating heat transfer tubes 4, and heat can be obtained. The performance of the exchanger 1 can be improved.
  • the descent suppressing portion 11a so as to be unevenly distributed on the downstream side of the fluid flow, the gas-liquid two-phase refrigerant flowing from the second flow path 10B of the second plate-shaped body 111 is sent from the downstream side of the fluid flow. Also flows a lot to the upstream side. As a result, the heat transfer performance on the upstream side of the fluid flow in the heat exchanger 1 is improved, so that the heat exchanger performance can be improved.
  • the lowering suppressing portion 11a is formed in the communication chamber 11 below the height of the first flow path 10A.
  • the liquid refrigerant is suppressed from being biased downward due to gravity, and the liquid refrigerant is evenly distributed to the plurality of heat transfer tubes 4, so that heat is generated.
  • the exchanger performance can be improved.
  • the descent suppressing portion 11a is formed so as to be located on the downstream side of the fluid flow. As a result, more refrigerant flows to the upstream side of the fluid, so that the heat transfer performance on the upstream side where the amount of heat exchange is large can be improved, and the heat exchanger performance can be improved.
  • Embodiment 6 Next, the sixth embodiment will be described.
  • the shape of the branch flow path of the third plate-shaped body is different from that of the fifth embodiment.
  • the parts common to the first to fifth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 14 is an exploded perspective view showing an example of the configuration of the refrigerant distributor according to the sixth embodiment.
  • the refrigerant distributor 2 is formed by stacking, for example, a plurality of rectangular plate-shaped bodies 60.
  • the plate-shaped body 60 is formed by laminating the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112 and 113, and the third plate-shaped bodies 121 and 123.
  • the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112, 113 and 114, and the third plate-shaped bodies 121 and 122 have the same outer shape in a plan view.
  • the distribution flow path 2a is formed by the flow paths formed in the first plate-shaped bodies 101, 102 and 103, the second plate-shaped bodies 112 and 113, and the third plate-shaped bodies 121 and 123. Has been done.
  • the distribution flow path 2a communicates with the first flow path 10A, the fifth flow path 10E, the sixth flow path 10F, the seventh flow path 10G, the eighth flow path 10H, the ninth flow path 10I, and the tenth flow path 10J.
  • the chamber 11 is composed of a first branch flow path 12A, a second branch flow path 12B and a fourth branch flow path 12D, and a first stage straddle flow path 13A and a second stage straddle flow path 13B.
  • first plate-shaped body 101 In the first plate-shaped body 101, one or a plurality of first flow paths 10A, which are through holes, are formed at substantially the center of the first plate-shaped body 101 in the lateral direction.
  • first flow paths 10A which are through holes, are formed at substantially the center of the first plate-shaped body 101 in the lateral direction.
  • FIG. 14 a case where the refrigerant pipe is connected to the first plate-shaped body 101 is shown, and in this case, one first flow path 10A is provided substantially in the center of the first plate-shaped body 101. Be done.
  • a fifth flow path 10E which is a through hole, is formed at a position substantially at the center of the third plate-shaped body 121.
  • the fifth flow path 10E is formed at a position corresponding to the first flow path 10A of the first plate-shaped body 101, and communicates the first flow path 10A with the sixth flow path 10F described later.
  • a pair of seventh flow paths 10G which are circular through holes, are opened in the second plate-shaped body 113 at a position in the horizontal direction with respect to the sixth flow path 10F, and have a height with respect to the sixth flow path 10F.
  • a pair of eighth flow paths 10H which are circular through holes, are opened at positions symmetrical in the direction.
  • a pair of ninth flow paths 10I which are circular through holes, are opened at positions in the horizontal direction with respect to the respective eighth flow paths 10H, and the eighth flow paths 10H are opened.
  • a pair of tenth flow paths 10J which are circular through holes, are opened at positions that are point-symmetrical with respect to the other.
  • the second plate-shaped body 113 is a through-flow path plate on which the sixth flow path 10F to the tenth flow path 10J as the through-passage are formed.
  • the third plate-shaped body 123 is a linear through groove extending in the horizontal direction so that the sixth flow path 10F and the seventh flow path 10G of the second plate-shaped body 113 communicate with each other in the laminated state.
  • One branch flow path 12A is formed.
  • the third plate-shaped body 122 is at a position symmetrical with respect to the first branch flow path 12A in the height direction, and the eighth flow path 10H and the ninth flow path 10I communicate with each other.
  • a second branch flow path 12B which is a linear through groove extending in the horizontal direction, is formed.
  • the third plate-shaped body 123 is formed with a fourth branch flow path 12D which is a through groove.
  • the fourth branch flow path 12D extends linearly in the horizontal direction, and the upstream end, which is the end located on the upstream side of the fluid flow, is linearly on the upper and lower sides of both ends of the straight portion. It is formed to extend. That is, the fourth branch flow path 12D is formed so that the upstream end portion extends in two different directions parallel to the height direction, that is, it is formed in a sideways T-shape.
  • the upstream end of the fourth branch flow path 12D is formed so as to be connected to the communication chamber 11 of the first plate-shaped body 102.
  • the third plate-shaped body 123 is a branch flow path plate on which a first branch flow path 12A, a second branch flow path 12B, and a fourth branch flow path 12D are formed as branch flow paths.
  • the first plate-shaped body 121 is a pair of through grooves extending in the height direction so that the seventh flow path 10G and the eighth flow path 10H of the second plate-shaped body 113 communicate with each other in the laminated state.
  • a stepped flow path 13A is formed.
  • the third plate-shaped body 121 is a pair of through grooves extending in the height direction so that the ninth flow path 10I and the tenth flow path 10J of the second plate-shaped body 113 communicate with each other in the laminated state.
  • the second stage straddling flow path 13B is formed.
  • Each of the first-stage straddling flow path 13A and the second-stage straddling flow path 13B is formed so as to straddle the heat transfer tube 4 connected to the refrigerant outflow portion 2B, which is the outlet, so that the two flow paths communicate with each other.
  • the third plate-shaped body 121 is a stepped flow path plate in which the first stepped flow path 13A and the second stepped flow path 13B are formed as the stepped flow path.
  • the sixth flow path 10F and the seventh flow path 10G are connected to the first branch flow path 12A. Further, a seventh flow path 10G and an eighth flow path 10H are connected to both ends of the first stage straddling flow path 13A. The eighth flow path 10H and the ninth flow path 10I are connected to the second branch flow path 12B. The ninth flow path 10I and the tenth flow path 10J are connected to both ends of the second stage straddling flow path 13B. Then, different communication chambers 11 are connected to the ends extending linearly to the upper side and the lower side of the fourth branch flow path 12D.
  • the refrigerant that has flowed into the refrigerant distributor 2 goes straight through the fifth flow path 10E of the third plate-shaped body 121 and the sixth flow path 10F of the second plate-shaped body 113, and is the first of the third plate-shaped body 123. It collides with the surface of the first plate-shaped body 102 in the branch flow path 12A and splits in the horizontal direction. The separated refrigerant travels to both ends of the first branch flow path 12A and flows into the pair of seventh flow paths 10G.
  • the refrigerant flowing into the 7th flow path 10G goes straight in the 7th flow path 10G in the opposite direction to the refrigerant flowing in the 5th flow path 10E and the 6th flow path 10F.
  • This refrigerant flows into one end side of the first stage straddling flow path 13A of the third plate-shaped body 121, collides with the surface of the first plate-shaped body 101 in the first stage straddling flow path 13A, and straddles the first stage. Proceed to the other end side of the flow path 13A.
  • the refrigerant that has reached the other end side of the first stage straddling flow path 13A flows into the eighth flow path 10H of the second plate-shaped body 113.
  • the refrigerant flowing into the 8th flow path 10H goes straight in the 8th flow path 10H in the opposite direction to the refrigerant traveling in the 7th flow path 10G.
  • This refrigerant collides with the surface of the first plate-shaped body 102 in the second branch flow path 12B of the third plate-shaped body 123, and splits in the horizontal direction.
  • the separated refrigerant travels to both ends of the second branch flow path 12B and flows into the pair of ninth flow paths 10I.
  • the refrigerant flowing into the 9th flow path 10I goes straight in the 9th flow path 10I in the opposite direction to the refrigerant flowing in the 8th flow path 10H.
  • This refrigerant flows into one end side of the second stage straddling flow path 13B of the third plate-shaped body 121, collides with the surface of the first plate-shaped body 101 in the second stage straddling flow path 13B, and straddles the second stage. Proceed to the other end side of the flow path 13B.
  • the refrigerant that has reached the other end of the second-stage straddling flow path 13B flows into the tenth flow path 10J.
  • the refrigerant flowing into the 10th flow path 10J goes straight in the 10th flow path 10J in the opposite direction to the refrigerant flowing in the 9th flow path 10I.
  • This refrigerant collides with the surface of the first plate-shaped body 102 in the fourth branch flow path 12D of the third plate-shaped body 123, and flows at the upstream end of the fluid flow.
  • the refrigerant that has flowed to the upstream end portion travels to both ends in the vertical direction of the upstream end portion and flows into the communication chamber 11 of the first plate-shaped body 102.
  • the refrigerant flowing into the communication chamber 11 flows into the plurality of third flow paths 10C of the second plate-shaped body 112 communicating with the communication chamber 11 and diverges.
  • Each of the separated refrigerants flows into the fourth flow path 10D of the second plate-shaped body 112, and is uniformly distributed to the heat transfer tubes 4 connected to the respective fourth flow paths 10D.
  • the fourth branch flow path 12D is the upstream end located on the upstream side of the fluid flow among both ends of the straight line portion extending in the horizontal direction.
  • the portions are formed to extend in two different directions parallel to the height direction.
  • the branch flow path and the stepped flow path are described so that the entire flow path is formed by a through groove penetrating the front and back surfaces of the plate-like body.
  • the branch flow path and the stepped flow path may be such that a part of the flow path communicates with each flow path 10A to 10K, for example, a groove formed at a depth less than the plate thickness of the plate-like body.
  • the shape may be such that a part of the flow path does not penetrate in the plate thickness direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

冷媒分配器は、複数の板状体で構成され、1または複数の流入口から流入する冷媒を複数に分岐し、第1の方向に互いに間隔をあけて配列された複数の流出口から冷媒を流出させる冷媒分配器であって、複数の板状体は、流入口が形成された流入板と、流入板に形成された流入口に連通する連通室を有する連通板と、流出口に連通する伝熱管が挿通され、連通室に対して複数の伝熱管が連通するように形成された伝熱管差し込み空間を有する伝熱管差し込み板とを備える。

Description

冷媒分配器、熱交換器および空気調和装置
 本開示は、流入する冷媒を分岐して流出させる冷媒分配器、熱交換器および空気調和装置に関するものである。
 近年、冷媒量の削減および熱交換器の高性能化のため、空気調和装置に用いられる熱交換器における伝熱管の細径化が進んでいる。伝熱管を細径化する場合、冷媒が伝熱管を通過する際の圧損の増加を抑制する必要がある。そのために、熱交換器では、内部を冷媒が流れる際の分岐数であるパス数を増加させることが行われている。
 通常、熱交換器には、パス数を増加させるために、1つの入口流路から流入する冷媒を複数のパスへ分配して供給する多分岐の冷媒分配器が設けられる。例えば、特許文献1には、水平方向に延びる複数の伝熱管が垂直方向に並んで配置され、複数の伝熱管に接続されたヘッダ形状の冷媒分配器が、垂直方向に延びるように配置された冷媒分配器が開示されている。この冷媒分配器は、熱交換器が蒸発器として機能する場合に、気液二相状態の冷媒が流入する流入管と、流入する気液二相冷媒を混合して均質化する混合室と、複数の伝熱管が接続された連通室と、複数の連通室に気液二相冷媒を分配する分配通路とを有している。
特許第5376010号公報
 しかしながら、特許文献1に記載の冷媒分配器は、大型化するため、熱交換器の実装面積が低下してしまう。したがって、この冷媒分配器では、熱交換器性能が低下してしまうという課題がある。
 本開示は、上記従来の技術における課題に鑑みてなされたものであって、大型化を抑制し、熱交換器の実装面積の低下を抑制して熱交換器性能を向上させることができる冷媒分配器、熱交換器および空気調和装置を提供することを目的とする。
 本開示の冷媒分配器は、複数の板状体で構成され、1または複数の流入口から流入する冷媒を複数に分岐し、第1の方向に互いに間隔をあけて配列された複数の流出口から前記冷媒を流出させる冷媒分配器であって、前記複数の板状体は、前記流入口が形成された流入板と、前記流入板に形成された前記流入口に連通する連通室を有する連通板と、前記流出口に連通する伝熱管が挿通され、前記連通室に対して複数の前記伝熱管が連通するように形成された伝熱管差し込み空間を有する伝熱管差し込み板とを備えるものである。
 本開示の熱交換器は、本開示に係る冷媒分配器と、前記複数の流出口のそれぞれに接続される複数の伝熱管とを備えたものである。
 本開示の空気調和装置は、本開示に係る熱交換器を備えたものである。
 本開示によれば、複数の伝熱管が連通する連通室が形成されることにより、冷媒分配器の肉厚を薄くすることができるため、冷媒分配器の大型化を抑制し、熱交換器の実装面積の低下を抑制して熱交換器性能を向上させることができる。
実施の形態1に係る熱交換器の構成の一例を示す斜視図である。 実施の形態1に係る冷媒分配器の構成の一例を示す分解斜視図である。 図2の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。 図2の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。 実施の形態1に係る熱交換器が適用される空気調和装置の構成の一例を示す概略図である。 実施の形態2に係る冷媒分配器の構成の一例を示す分解斜視図である。 図6の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。 図6の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。 実施の形態3に係る冷媒分配器の構成の一例を示す分解斜視図である。 図9の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。 図9の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。 実施の形態4に係る冷媒分配器の構成の一例を示す分解斜視図である。 実施の形態5に係る冷媒分配器の構成の一例を示す分解斜視図である。 実施の形態6に係る冷媒分配器の構成の一例を示す分解斜視図である。
実施の形態1.
 以下、本実施の形態1に係る冷媒分配器について、図面などを参照しながら説明する。なお、以下では、本実施の形態1に係る冷媒分配器が、熱交換器に流入する冷媒を分配するものである場合を説明しているが、これに限られず、冷媒分配器が他の機器に流入する冷媒を分配するものであってもよい。また、以下の説明において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。さらに、図面では、各構成部材の大きさの関係が実際のものと異なる場合がある。また、細かい構造については、適宜図示を簡略化または省略する。そして、明細書全文に表されている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。
[熱交換器1の構成]
 本実施の形態1に係る熱交換器1の構成について説明する。図1は、本実施の形態1に係る熱交換器の構成の一例を示す斜視図である。図1に示すように、熱交換器1は、冷媒分配器2、ガスヘッダ3、複数の伝熱管4および複数のフィン5を備えている。冷媒分配器2には、冷媒の流入口である1または複数の冷媒流入部2Aと、冷媒の流出口である複数の冷媒流出部2Bとが設けられている。複数の冷媒流出部2Bは、高さ方向に配列されている。ガスヘッダ3には、複数の冷媒流入部3Aと、1つの冷媒流出部3Bとが設けられている。冷媒分配器2の冷媒流入部2Aおよびガスヘッダ3の冷媒流出部3Bには、空気調和装置等の冷凍サイクル装置の冷媒配管が接続される。冷媒分配器2の冷媒流出部2Bとガスヘッダ3の冷媒流入部3Aとの間には、伝熱管4が接続される。
 伝熱管4は、複数の流路が形成された扁平管もしくは円管である。伝熱管4は、例えば、銅またはアルミニウムで形成されている。伝熱管4の冷媒分配器2側の端部は、冷媒分配器2の冷媒流出部2Bに接続される。伝熱管4には、複数のフィン5が接合されている。フィン5は、例えば、アルミニウムで形成されている。なお、図1の例では、伝熱管4が8本である場合を示しているが、これに限られず、複数本であればいずれの本数でもよい。
[熱交換器1における冷媒の流れ]
 本実施の形態1に係る熱交換器1における冷媒の流れについて説明する。冷媒配管を流れる冷媒は、例えば熱交換器1が蒸発器として機能する際に、冷媒流入部2Aを介して冷媒分配器2に流入して分配され、複数の冷媒流出部2Bを介して複数の伝熱管4に流出する。冷媒は、複数の伝熱管4において、例えば、図示しない送風機によって供給される空気等との間で熱交換される。複数の伝熱管4を流れる冷媒は、複数の冷媒流入部3Aを介してガスヘッダ3に流入して合流し、冷媒流出部3Bを介して冷媒配管に流出する。なお、熱交換器1が凝縮器として機能する場合には冷媒は、この流れと逆方向に流れる。
[冷媒分配器2の構成]
 本実施の形態1に係る冷媒分配器2の構成について説明する。図2は、本実施の形態1に係る冷媒分配器の構成の一例を示す分解斜視図である。図3は、図2の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。図3では、それぞれの板状体に形成された流路の関係が容易となるように、各流路が破線で示されている。図4は、図2の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。
 図2から図4に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体10が積層されて形成されている。板状体10は、第1板状体101、102および103と、第2板状体111および112とが交互に積層されて形成されている。第1板状体101、102および103と、第2板状体111および112とは、平面視で同一形状の外形となっている。第2板状体111および112は、第1板状体101、102および103を仕切るための仕切り板であり、例えば、両面にろう材が塗布されている。第1板状体101、102および103のそれぞれは、第2板状体111および112のそれぞれを介して積層され、ろう付けにより一体に接合される。なお、各板状体は、プレス加工または切削加工等によって加工される。
 第1板状体101には、当該第1板状体101における短手方向の略中央の位置に、貫通孔である1または複数の第1流路10Aが形成されている。第1流路10Aには、冷凍サイクル装置の冷媒配管またはキャピラリーチューブが接続される。第1流路10Aは、図1における冷媒流入部2Aに相当する。第1板状体101は、流入口としての冷媒流入部2Aである1または複数の第1流路10Aが形成された流入板である。
 図2に示す例では、第1板状体101にキャピラリーチューブが接続される場合が示されており、この場合、第1板状体101には、複数の第1流路10Aが設けられる。なお、第1板状体101に冷媒配管が接続される場合、第1板状体101には、1つの第1流路10Aが設けられればよい。
 第2板状体111には、当該第2板状体111における短手方向の略中央の位置に、貫通孔である1または複数の第2流路10Bが形成されている。第2流路10Bは、第1板状体101の第1流路10Aに対応する位置に形成され、第1流路10Aと後述する第1板状体102の連通室11とを連通する。
 第1板状体102には、複数の連通室11が形成されている。連通室11は、第2板状体111の第2流路10Bに対応して形成され、第2流路10Bと後述する第2板状体112の第3流路10Cとを連通する。連通室11は、複数の第3流路10Cが連通するように形成される。この例では、それぞれの連通室11が2つの第3流路10Cに連通するように形成されている。第1板状体102は、流入口としての冷媒流入部2Aに連通する連通流路としての連通室11が形成された連通板である。
 第2板状体112には、伝熱管4の外形と同形状に形成された複数の第3流路10Cが形成されている。第3流路10Cは、後述する第1板状体103の第4流路10Dを介して挿入された伝熱管4の端部が保持される。
 第1板状体103には、伝熱管4の外形と同形状の伝熱管差し込み空間である複数の第4流路10Dが形成されている。第4流路10Dは、第2板状体112の第3流路10Cに対応して形成されている。第4流路10Dには、伝熱管4が挿通される。第1板状体103には、伝熱管4がろう付けされ、第1板状体103と第2板状体112とが積層されることにより、第2板状体112の第3流路10Cに伝熱管4が接続される。第1板状体103は、伝熱管4が挿通される伝熱管差し込み空間である第4流路10Dが形成された伝熱管差し込み板である。
 このように、冷媒分配器2には、第1板状体101、102および103、ならびに、第2板状体111および112のそれぞれに形成された各流路により、分配流路2aが形成されている。すなわち、分配流路2aは、第1流路10A、第2流路10B、第3流路10Cおよび第4流路10Dと、連通室11とによって構成される。
[冷媒分配器2における冷媒の流れ]
 次に、冷媒分配器2内の分配流路2aおよび冷媒の流れについて、図2~図4を参照して説明する。熱交換器1が蒸発器として機能する場合、気液二相状態の冷媒が、第1板状体101の第1流路10Aから冷媒分配器2内に流入する。冷媒分配器2内に流入した冷媒は、第2板状体111の第2流路10Bを介して第1板状体102の連通室11に流入する。連通室11に流入した冷媒は、当該連通室11に連通する第2板状体112の複数の第3流路10Cに流入して分流する。分流した冷媒は、それぞれが第2板状体112の伝熱管差し込み空間である第4流路10Dに流入し、それぞれの第4流路10Dに接続された伝熱管4に均一に分配される。
 なお、この例では、1つの連通室11に対して2つの第3流路10Cが連通する場合について説明したが、これに限られず、1つの連通室11に対して3つ以上の第3流路10Cが連通してもよい。このように、連通室11に連通する第3流路10Cの数を変更することにより、分配数を変更することができる。
[熱交換器1の使用態様]
 次に、本実施の形態1に係る熱交換器1の使用態様の一例について説明する。なお、以下では、熱交換器1が空気調和装置80に使用される場合を説明しているが、これに限られず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置80が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、これに限られず、冷房運転または暖房運転のみを行うものであってもよい。
 図5は、本実施の形態1に係る熱交換器1が適用される空気調和装置80の構成の一例を示す概略図である。なお、図5では、冷房運転時の冷媒の流れが破線の矢印で示され、暖房運転時の冷媒の流れが実線の矢印で示されている。図5に示すように、空気調和装置80は、圧縮機81、四方弁82、室外熱交換器83、膨張弁84、室内熱交換器85、室外ファン86および室内ファン87を有している。圧縮機81、四方弁82、室外熱交換器83、膨張弁84および室内熱交換器85が冷媒配管で接続されることにより、冷媒循環回路が形成される。
 冷房運転時の冷媒の流れについて説明する。圧縮機81から吐出される高圧高温のガス状態の冷媒は、四方弁82を介して室外熱交換器83に流入し、室外ファン86によって供給される空気と熱交換を行い、凝縮する。凝縮した冷媒は、高圧の液状態となり、室外熱交換器83から流出し、膨張弁84によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器85に流入し、室内ファン87によって供給される空気との熱交換によって蒸発することで、室内を冷却する。蒸発した冷媒は、低圧のガス状態となり、室内熱交換器85から流出し、四方弁82を介して圧縮機81に吸入される。
 暖房運転時の冷媒の流れについて説明する。圧縮機81から吐出される高圧高温のガス状態の冷媒は、四方弁82を介して室内熱交換器85に流入し、室内ファン87によって供給される空気との熱交換によって凝縮することで、室内を暖房する。凝縮した冷媒は、高圧の液状態となり、室内熱交換器85から流出し、膨張弁84によって、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、室外熱交換器83に流入し、室外ファン86によって供給される空気と熱交換を行い、蒸発する。蒸発した冷媒は、低圧のガス状態となり、室外熱交換器83から流出し、四方弁82を介して圧縮機81に吸入される。
 本実施の形態1において、室外熱交換器83および室内熱交換器85の少なくとも一方に、熱交換器1が用いられる。熱交換器1は、蒸発器として作用する際に、冷媒分配器2から冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する場合には、冷媒配管から冷媒分配器2に気液二相状態の冷媒が流入し、分岐して熱交換器1の各伝熱管4に流入する。また、熱交換器1が凝縮器として作用する場合には、各伝熱管4から冷媒分配器2に液冷媒が流入して合流し、冷媒配管に流出する。
 以上のように、本実施の形態1に係る冷媒分配器2は、第1流路10Aを有する第1板状体101と、第1流路10Aに連通する連通室11を有する第1板状体102と、連通室11に複数の伝熱管4が連通するように形成された第3流路10Cを有する第1板状体103とを備えている。このように、複数の伝熱管4と連通する連通室11を形成することにより、冷媒分配器が円筒形状に形成された場合と比較して、冷媒分配器2の肉厚を薄くすることができる。そのため、冷媒分配器2を小型化することができる。また、筐体サイズが同一の空調機器において、冷媒分配器2が小型化することにより、熱交換器1の実装面積が増大するため、熱交換器性能を向上させることができる。
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2に係る冷媒分配器2は、第1板状体101の第1流路10Aおよび第2板状体111の第2流路10Bの配置位置が、実施の形態1と相違する。なお、以下の説明において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
[冷媒分配器2の構成]
 本実施の形態2に係る冷媒分配器2の構成について説明する。図6は、本実施の形態2に係る冷媒分配器の構成の一例を示す分解斜視図である。図7は、図6の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。図7では、それぞれの板状体に形成された流路の関係が容易となるように、各流路が破線で示されている。図8は、図6の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。
 図6から図8に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体20が積層されて形成されている。板状体20は、第1板状体101、102および103と、第2板状体111および112とが交互に積層されて形成されている。第1板状体102および103、ならびに、第2板状体112は、実施の形態1と同様である。
 冷媒分配器2には、第1板状体101、102および103、ならびに、第2板状体111および112のそれぞれに形成された各流路により、分配流路2aが形成されている。すなわち、分配流路2aは、実施の形態1と同様に、第1流路10A、第2流路10B、第3流路10Cおよび第4流路10Dと、連通室11とによって構成される。
 第1板状体101には、冷凍サイクル装置の冷媒配管またはキャピラリーチューブが接続される1または複数の第1流路10Aが形成されている。図6に示す例では、第1板状体101にキャピラリーチューブが接続される場合が示されている。第2板状体111には、第1板状体101の第1流路10Aに対応する位置に、1または複数の第2流路10Bが形成されている。
 ここで、熱交換器1に対して空気などの流体が概ね一方向に流れている場合、熱交換器1では、流体の流れの上流側は、下流側よりも伝熱性能が高い。そこで、本実施の形態2では、伝熱性能の高い流体の流れの上流側に冷媒がより多く流れるように、第1板状体101の第1流路10Aおよび第2板状体111の第2流路10Bが配置される。
 第1流路10Aおよび第2流路10Bは、板状体10の短手方向の中央の位置よりも流体流れの上流側に偏って設けられている。これにより、この冷媒分配器2を備える熱交換器1が、気液二相状態の冷媒が流入する蒸発器として機能する場合に、気液二相冷媒が流体流れの下流側よりも熱交換量の高い上流側に多く流れる。そのため、熱交換器1における流体流れの上流側における伝熱性能が向上し、熱交換器性能を向上させることができる。
 以上のように、本実施の形態2に係る冷媒分配器2において、第1流路10Aは、伝熱管4の外側を流れる流体の流れの上流側に位置するように第1板状体101に形成されている。これにより、流体の上流側に冷媒がより多く流れるため、熱交換量の大きい上流側での伝熱性能が向上し、熱交換器性能を向上させることができる。
実施の形態3.
 次に、本実施の形態3について説明する。本実施の形態3に係る冷媒分配器2は、第1板状体102の連通室11の形状が実施の形態1および2と相違する。なお、以下の説明において、実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
[冷媒分配器2の構成]
 本実施の形態3に係る冷媒分配器2の構成について説明する。図9は、本実施の形態3に係る冷媒分配器の構成の一例を示す分解斜視図である。図10は、図9の冷媒分配器を上面から見た場合の各流路の関係について説明するための概略図である。図10では、それぞれの板状体に形成された流路の関係が容易となるように、各流路が破線で示されている。図11は、図9の冷媒分配器を正面から見た場合における、各流路の位置関係の一例を示す概略図である。
 図9から図11に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体30が積層されて形成されている。板状体30は、第1板状体101、102および103と、第2板状体111および112とが交互に積層されて形成されている。第1板状体101および103、ならびに、第2板状体111および112は、実施の形態1と同様である。
 冷媒分配器2には、第1板状体101、102および103、ならびに、第2板状体111および112のそれぞれに形成された各流路により、分配流路2aが形成されている。すなわち、分配流路2aは、実施の形態1および2と同様に、第1流路10A、第2流路10B、第3流路10Cおよび第4流路10Dと、連通室11とによって構成される。
 第1板状体102には、第2板状体111の第2流路10Bに対応する複数の連通室11が形成されている。本実施の形態3において、連通室11には、下降抑制部11aが設けられている。
 図10に示すように、下降抑制部11aは、流体流れの下流側に偏在するように設けられている。また、図11に示すように、下降抑制部11aは、第2流路10Bの位置よりも下側になるように設けられている。
 通常、連通室11においては、流入する冷媒に対する重力方向下向きの流路抵抗が大きい。冷媒の流入位置よりも下側に下降抑制部11aが設けられることにより、連通室11の下側の流動抵抗が上側よりも大きくなる。そのため、気液二相冷媒のうちの液冷媒が重力によって下側に偏って流れることが抑制される。これにより、液冷媒が連通室11内を均等に流れるため、液冷媒が連通室11から流出する際に、連通する複数の伝熱管4に対して液冷媒を均等に分配することができ、熱交換器1の性能を向上させることができる。
 また、流体流れの下流側に偏在するように下降抑制部11aが設けられることにより、第2板状体111の第2流路10Bから流入した気液二相冷媒は、流体流れの下流側よりも上流側に多く流れる。これにより、熱交換器1における流体流れの上流側における伝熱性能が向上するため、熱交換器性能を向上させることができる。
 以上のように、本実施の形態3に係る冷媒分配器2において、連通室11には、第1流路10Aの高さよりも下側に、下降抑制部11aが形成されている。これにより、連通室11に流入した気液二相冷媒のうち、液冷媒が重力によって下側に偏ることが抑制され、複数の伝熱管4に対して液冷媒が均等に分配されるため、熱交換器性能を向上させることができる。
 冷媒分配器2において、下降抑制部11aは、流体の流れの下流側に位置するように形成されている。これにより、流体の上流側に冷媒がより多く流れるため、熱交換量の大きい上流側での伝熱性能が向上し、熱交換器性能を向上させることができる。
実施の形態4.
 次に、本実施の形態4について説明する。本実施の形態4では、第1板状体101と第1板状体102との間に、冷媒を複数に分岐する分岐流路が設けられた板状体が設けられる点で、実施の形態1~3と相違する。なお、以下の説明において、実施の形態1~3と共通する部分には同一の符号を付し、詳細な説明を省略する。
[冷媒分配器2の構成]
 本実施の形態4に係る冷媒分配器2の構成について説明する。図12は、本実施の形態4に係る冷媒分配器の構成の一例を示す分解斜視図である。
 図12に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体40が積層されて形成されている。板状体40は、第1板状体101、102および103と、第2板状体112、113および114と、第3板状体121および122とが積層されて形成されている。第1板状体101、102および103と、第2板状体112、113および114と、第3板状体121および122とは、平面視で同一形状の外形となっている。
 冷媒分配器2には、第1板状体101、102および103、第2板状体112、113および114、ならびに、第3板状体121および122に形成された流路により分配流路2aが形成されている。分配流路2aは、第1流路10A、第5流路10E、第6流路10F、第7流路10G、第8流路10H、第9流路10I、第10流路10Jおよび第11流路10Kと、連通室11と、第1分岐流路12A、第2分岐流路12Bおよび第3分岐流路12Cと、第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bとによって構成される。
 第1板状体101には、当該第1板状体101における短手方向の略中央の位置に、貫通孔である1または複数の第1流路10Aが形成されている。図12に示す例では、第1板状体101に冷媒配管が接続される場合が示されており、この場合、第1板状体101の略中央に、1つの第1流路10Aが設けられる。
 第3板状体121には、当該第3板状体121の略中央の位置に、貫通孔である第5流路10Eが形成されている。第5流路10Eは、第1板状体101の第1流路10Aに対応する位置に形成され、第1流路10Aと後述する第6流路10Fとを連通する。
 第2板状体113には、第6流路10Fに対して水平方向の位置に、円形の貫通孔である一対の第7流路10Gが開口し、第6流路10Fに対して高さ方向に対称となる位置に、円形の貫通孔である一対の第8流路10Hが開口している。また、第2板状体113には、それぞれの第8流路10Hに対して水平方向の位置に、円形の貫通孔である一対の第9流路10Iが開口し、第8流路10Hに対して点対称となる位置に、円形の貫通孔である一対の第10流路10Jが開口している。第2板状体113は、貫通流路としての第6流路10F~第10流路10Jが形成された貫通流路板である。
 第3板状体122には、積層状態において第2板状体113の第6流路10Fと第7流路10Gとが連通するように、水平方向に延びた直線状の貫通溝である第1分岐流路12Aが形成されている。また、第3板状体122には、第1分岐流路12Aに対して高さ方向に対称となる位置であり、かつ、第8流路10Hと第9流路10Iとが連通するように、水平方向に延びた直線状の貫通溝である第2分岐流路12Bが形成されている。
 さらに、第3板状体122には、貫通溝である第3分岐流路12Cが形成されている。第3分岐流路12Cは、水平方向に直線状に延びるとともに、直線部分の両端部が互いに異なる高さ方向に延びるように形成されている。第3分岐流路12Cのそれぞれの両端部は、後述する第2板状体114の第11流路10Kに接続されるように形成されている。第3板状体122は、分岐流路としての第1分岐流路12A~第3分岐流路12Cが形成された分岐流路板である。
 第3板状体121には、積層状態において第2板状体113の第7流路10Gと第8流路10Hとが連通するように、高さ方向に延びる一対の貫通溝である第1段跨ぎ流路13Aが形成されている。また、第3板状体121には、積層状態において第2板状体113の第9流路10Iと第10流路10Jとが連通するように、高さ方向に延びる一対の貫通溝である第2段跨ぎ流路13Bが形成されている。第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bのそれぞれは、流出口である冷媒流出部2Bに接続された伝熱管4を跨ぐようにして、2つの流路が連通するように形成されている。第3板状体121は、段跨ぎ流路としての第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bが形成された段跨ぎ流路板である。
 第2板状体114には、貫通孔である第11流路10Kが形成されている。第11流路10Kは、第3板状体122の第3分岐流路12Cの端部に対応する位置に形成され、第3分岐流路12Cと第1板状体102の連通室11とを連通する。
 各板状体が積層された場合、第1分岐流路12Aには、第6流路10Fおよび第7流路10Gが接続される。また、第1段跨ぎ流路13Aの両端部には、第7流路10Gおよび第8流路10Hが接続される。第2分岐流路12Bには、第8流路10Hおよび第9流路10Iが接続される。第2段跨ぎ流路13Bの両端部には、第9流路10Iおよび第10流路10Jが接続される。そして、第3分岐流路12Cの両端部には、第11流路10Kが接続される。
[冷媒分配器2における冷媒の流れ]
 次に、冷媒分配器2内の分配流路2aおよび冷媒の流れについて、図12を参照して説明する。熱交換器1が蒸発器として機能する場合、気液二相状態の冷媒が、第1板状体101の第1流路10Aから冷媒分配器2内に流入する。
 冷媒分配器2内に流入した冷媒は、第3板状体121の第5流路10Eおよび第2板状体113の第6流路10F内を直進し、第3板状体122の第1分岐流路12A内で第2板状体114の表面に衝突し、水平方向に分流する。分流した冷媒は、第1分岐流路12Aの両端部まで進み、一対の第7流路10G内に流入する。
 第7流路10G内に流入した冷媒は、第5流路10Eおよび第6流路10F内を進む冷媒と反対向きに第7流路10G内を直進する。この冷媒は、第3板状体121の第1段跨ぎ流路13Aの一端側に流入し、第1段跨ぎ流路13A内で第1板状体101の表面に衝突し、第1段跨ぎ流路13Aの他端側に進む。第1段跨ぎ流路13Aの他端側に到達した冷媒は、第2板状体113の第8流路10H内に流入する。
 第8流路10H内に流入した冷媒は、第7流路10G内を進む冷媒と反対向きに第8流路10H内を直進する。この冷媒は、第3板状体122の第2分岐流路12B内で第2板状体114の表面に衝突し、水平方向に分流する。分流した冷媒は、第2分岐流路12Bの両端部まで進み、一対の第9流路10I内に流入する。
 第9流路10I内に流入した冷媒は、第8流路10H内を進む冷媒と反対向きに第9流路10I内を直進する。この冷媒は、第3板状体121の第2段跨ぎ流路13Bの一端側に流入し、第2段跨ぎ流路13B内で第1板状体101の表面に衝突し、第2段跨ぎ流路13Bの他端側に進む。第2段跨ぎ流路13Bの他端側に到達した冷媒は、第10流路10J内に流入する。
 第10流路10J内に流入した冷媒は、第9流路10I内を進む冷媒と反対向きに第10流路10J内を直進する。この冷媒は、第3板状体122の第3分岐流路12C内で第2板状体114の表面に衝突し、水平方向に分流する。分流した冷媒は、第3分岐流路12Cの両端部まで進み、第2板状体114の第11流路10K内に流入する。そして、冷媒は、第11流路10Kから流出し、第1板状体102の連通室11に流入する。
 連通室11に流入した冷媒は、当該連通室11に連通する第2板状体112の複数の第3流路10Cに流入して分流する。分流した冷媒は、それぞれが第2板状体112の第4流路10Dに流入し、それぞれの第4流路10Dに接続された伝熱管4に均一に分配される。
 なお、この例では、冷媒が3つの分岐流路を通ることにより、8分岐とした冷媒分配器2について説明したが、これに限られず、分岐流路の数を変更することにより、分岐数をこれ以外の数にすることができる。
 以上のように、本実施の形態4に係る冷媒分配器2では、第1板状体101と第1板状体102との間に、第1流路10Aから流入した冷媒を分岐して流通させる分岐流路が形成された第3板状体122が配置される。これにより、冷媒分配器2を大型化することなく多分岐が実現され、熱交換器1における伝熱管4の長さを長くすることができるため、熱交換器性能を向上させることができる。
実施の形態5.
 次に、本実施の形態5について説明する。本実施の形態5に係る冷媒分配器2は、第1板状体102の連通室11の形状が実施の形態4と相違する。なお、以下の説明において、実施の形態1~4と共通する部分には同一の符号を付し、詳細な説明を省略する。
[冷媒分配器2の構成]
 本実施の形態5に係る冷媒分配器2の構成について説明する。図13は、本実施の形態5に係る冷媒分配器の構成の一例を示す分解斜視図である。
 図13に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体50が積層されて形成されている。板状体40は、第1板状体101、102および103と、第2板状体112、113および114と、第3板状体121および122とが積層されて形成されている。第1板状体101および103、第2板状体112、113および114、ならびに、第3板状体121は、実施の形態4と同様である。
 冷媒分配器2には、第1板状体101、102および103、第2板状体112、113および114、ならびに、第3板状体121および122に形成された流路により分配流路2aが形成されている。分配流路2aは、第1流路10A、第5流路10E、第6流路10F、第7流路10G、第8流路10H、第9流路10I、第10流路10Jおよび第11流路10Kと、連通室11と、第1分岐流路12A、第2分岐流路12Bおよび第3分岐流路12Cと、第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bとによって構成される。
 第1板状体102には、第2板状体111の第2流路10Bに対応する複数の連通室11が形成されている。本実施の形態5において、連通室11には、実施の形態3と同様に、下降抑制部11aが設けられている。
 このように、連通室11に下降抑制部11aが設けられることにより、実施の形態3と同様に、連通室11の下側の流動抵抗が上側よりも大きくなる。そのため、気液二相冷媒のうちの液冷媒が重力によって下側に偏って流れることが抑制される。これにより、液冷媒が連通室11内を均等に流れるため、液冷媒が連通室11から流出する際に、連通する複数の伝熱管4に対して液冷媒を均等に分配することができ、熱交換器1の性能を向上させることができる。
 また、流体流れの下流側に偏在するように下降抑制部11aが設けられることにより、第2板状体111の第2流路10Bから流入した気液二相冷媒は、流体流れの下流側よりも上流側に多く流れる。これにより、熱交換器1における流体流れの上流側における伝熱性能が向上するため、熱交換器性能を向上させることができる。
 以上のように、本実施の形態5に係る冷媒分配器2において、連通室11には、第1流路10Aの高さよりも下側に、下降抑制部11aが形成されている。これにより、連通室11に流入した気液二相冷媒のうち、液冷媒が重力によって下側に偏ることが抑制され、複数の伝熱管4に対して液冷媒が均等に分配されるため、熱交換器性能を向上させることができる。
 冷媒分配器2において、下降抑制部11aは、流体の流れの下流側に位置するように形成されている。これにより、流体の上流側に冷媒がより多く流れるため、熱交換量の大きい上流側での伝熱性能が向上し、熱交換器性能を向上させることができる。
実施の形態6.
 次に、本実施の形態6について説明する。本実施の形態6に係る冷媒分配器2は、第3板状体の分岐流路の形状が実施の形態5と相違する。なお、以下の説明において、実施の形態1~5と共通する部分には同一の符号を付し、詳細な説明を省略する。
[冷媒分配器2の構成]
 本実施の形態6に係る冷媒分配器2の構成について説明する。図14は、本実施の形態6に係る冷媒分配器の構成の一例を示す分解斜視図である。
 図14に示すように、冷媒分配器2は、例えば矩形形状の複数の板状体60が積層されて形成されている。板状体60は、第1板状体101、102および103と、第2板状体112および113と、第3板状体121および123とが積層されて形成されている。第1板状体101、102および103と、第2板状体112、113および114と、第3板状体121および122とは、平面視で同一形状の外形となっている。
 冷媒分配器2には、第1板状体101、102および103、第2板状体112および113、ならびに、第3板状体121および123に形成された流路により分配流路2aが形成されている。分配流路2aは、第1流路10A、第5流路10E、第6流路10F、第7流路10G、第8流路10H、第9流路10Iおよび第10流路10Jと、連通室11と、第1分岐流路12A、第2分岐流路12Bおよび第4分岐流路12Dと、第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bとによって構成される。
 第1板状体101には、当該第1板状体101における短手方向の略中央の位置に、貫通孔である1または複数の第1流路10Aが形成されている。図14に示す例では、第1板状体101に冷媒配管が接続される場合が示されており、この場合、第1板状体101の略中央に、1つの第1流路10Aが設けられる。
 第3板状体121には、当該第3板状体121の略中央の位置に、貫通孔である第5流路10Eが形成されている。第5流路10Eは、第1板状体101の第1流路10Aに対応する位置に形成され、第1流路10Aと後述する第6流路10Fとを連通する。
 第2板状体113には、第6流路10Fに対して水平方向の位置に、円形の貫通孔である一対の第7流路10Gが開口し、第6流路10Fに対して高さ方向に対称となる位置に、円形の貫通孔である一対の第8流路10Hが開口している。また、第2板状体113には、それぞれの第8流路10Hに対して水平方向の位置に、円形の貫通孔である一対の第9流路10Iが開口し、第8流路10Hに対して点対称となる位置に、円形の貫通孔である一対の第10流路10Jが開口している。第2板状体113は、貫通流路としての第6流路10F~第10流路10Jが形成された貫通流路板である。
 第3板状体123には、積層状態において第2板状体113の第6流路10Fと第7流路10Gとが連通するように、水平方向に延びた直線状の貫通溝である第1分岐流路12Aが形成されている。また、第3板状体122には、第1分岐流路12Aに対して高さ方向に対称となる位置であり、かつ、第8流路10Hと第9流路10Iとが連通するように、水平方向に延びた直線状の貫通溝である第2分岐流路12Bが形成されている。
 さらに、第3板状体123には、貫通溝である第4分岐流路12Dが形成されている。第4分岐流路12Dは、水平方向に直線状に延びるとともに、直線部分の両端部のうち、流体流れの上流側に位置する端部である上流側端部が上側および下側に直線上に延びるように形成されている。すなわち、第4分岐流路12Dは、上流側端部が高さ方向に平行な異なる2つの方向に延びるように形成、つまり、横倒しされたT字状に形成されている。第4分岐流路12Dの上流側端部は、第1板状体102の連通室11に接続されるように形成されている。第3板状体123は、分岐流路としての第1分岐流路12A、第2分岐流路12Bおよび第4分岐流路12Dが形成された分岐流路板である。
 第3板状体121には、積層状態において第2板状体113の第7流路10Gと第8流路10Hとが連通するように、高さ方向に延びる一対の貫通溝である第1段跨ぎ流路13Aが形成されている。また、第3板状体121には、積層状態において第2板状体113の第9流路10Iと第10流路10Jとが連通するように、高さ方向に延びる一対の貫通溝である第2段跨ぎ流路13Bが形成されている。第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bのそれぞれは、流出口である冷媒流出部2Bに接続された伝熱管4を跨ぐようにして、2つの流路が連通するように形成されている。第3板状体121は、段跨ぎ流路としての第1段跨ぎ流路13Aおよび第2段跨ぎ流路13Bが形成された段跨ぎ流路板である。
 各板状体が積層された場合、第1分岐流路12Aには、第6流路10Fおよび第7流路10Gが接続される。また、第1段跨ぎ流路13Aの両端部には、第7流路10Gおよび第8流路10Hが接続される。第2分岐流路12Bには、第8流路10Hおよび第9流路10Iが接続される。第2段跨ぎ流路13Bの両端部には、第9流路10Iおよび第10流路10Jが接続される。そして、第4分岐流路12Dの上側および下側に直線上に延びたそれぞれ端部には、それぞれ異なる連通室11が接続される。
[冷媒分配器2における冷媒の流れ]
 次に、冷媒分配器2内の分配流路2aおよび冷媒の流れについて、図14を参照して説明する。熱交換器1が蒸発器として機能する場合、気液二相状態の冷媒が、第1板状体101の第1流路10Aから冷媒分配器2内に流入する。
 冷媒分配器2内に流入した冷媒は、第3板状体121の第5流路10Eおよび第2板状体113の第6流路10F内を直進し、第3板状体123の第1分岐流路12A内で第1板状体102の表面に衝突し、水平方向に分流する。分流した冷媒は、第1分岐流路12Aの両端部まで進み、一対の第7流路10G内に流入する。
 第7流路10G内に流入した冷媒は、第5流路10Eおよび第6流路10F内を進む冷媒と反対向きに第7流路10G内を直進する。この冷媒は、第3板状体121の第1段跨ぎ流路13Aの一端側に流入し、第1段跨ぎ流路13A内で第1板状体101の表面に衝突し、第1段跨ぎ流路13Aの他端側に進む。第1段跨ぎ流路13Aの他端側に到達した冷媒は、第2板状体113の第8流路10H内に流入する。
 第8流路10H内に流入した冷媒は、第7流路10G内を進む冷媒と反対向きに第8流路10H内を直進する。この冷媒は、第3板状体123の第2分岐流路12B内で第1板状体102の表面に衝突し、水平方向に分流する。分流した冷媒は、第2分岐流路12Bの両端部まで進み、一対の第9流路10I内に流入する。
 第9流路10I内に流入した冷媒は、第8流路10H内を進む冷媒と反対向きに第9流路10I内を直進する。この冷媒は、第3板状体121の第2段跨ぎ流路13Bの一端側に流入し、第2段跨ぎ流路13B内で第1板状体101の表面に衝突し、第2段跨ぎ流路13Bの他端側に進む。第2段跨ぎ流路13Bの他端側に到達した冷媒は、第10流路10J内に流入する。
 第10流路10J内に流入した冷媒は、第9流路10I内を進む冷媒と反対向きに第10流路10J内を直進する。この冷媒は、第3板状体123の第4分岐流路12D内で第1板状体102の表面に衝突し、流体流れの上流方向の端部である流れる。上流側端部に流れた冷媒は、上流側端部の上下方向の両端部まで進み、第1板状体102の連通室11に流入する。
 連通室11に流入した冷媒は、当該連通室11に連通する第2板状体112の複数の第3流路10Cに流入して分流する。分流した冷媒は、それぞれが第2板状体112の第4流路10Dに流入し、それぞれの第4流路10Dに接続された伝熱管4に均一に分配される。
 以上のように、本実施の形態6に係る冷媒分配器2において、第4分岐流路12Dは、水平方向に延びる直線部の両端部のうち、流体の流れの上流側に位置する上流側端部が高さ方向に平行な異なる2つの方向に延びるように形成されている。これにより、流体の上流側に冷媒がより多く流れるため、熱交換量の大きい上流側での伝熱性能が向上し、熱交換器性能を向上させることができる。
 以上、本実施の形態1~6について説明したが、本開示は、上述した本実施の形態1~6に限定されるものではなく、本開示要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、実施の形態1~6において、分岐流路および段跨ぎ流路は、流路全体が板状体の表裏面を貫通する貫通溝で形成されているように説明したが、これはこの例に限られない。分岐流路および段跨ぎ流路は、流路の一部が各流路10A~10Kと連通していればよく、例えば板状体の板厚未満の深さで形成された溝などのように流路の一部が板厚方向に貫通していない形状とされてもよい。
 1 熱交換器、2 冷媒分配器、2A 冷媒流入部、2B 冷媒流出部、3 ガスヘッダ、3A 冷媒流入部、3B 冷媒流出部、4 伝熱管、5 フィン、10、20、30、40、50、60 板状体、10A 第1流路、10B 第2流路、10C 第3流路、10D 第4流路、10E 第5流路、10F 第6流路、10G 第7流路、10H 第8流路、10I 第9流路、10J 第10流路、10K 第11流路、11 連通室、11a 下降抑制部、12A 第1分岐流路、12B 第2分岐流路、12C 第3分岐流路、12D 第4分岐流路、13A 第1段跨ぎ流路、13B 第2段跨ぎ流路、80 空気調和装置、81 圧縮機、82 四方弁、83 室外熱交換器、84 膨張弁、85 室内熱交換器、86 室外ファン、87 室内ファン、101、102、103 第1板状体、111、112、113、114 第2板状体、121、122、123 第3板状体。

Claims (9)

  1.  複数の板状体で構成され、1または複数の流入口から流入する冷媒を複数に分岐し、第1の方向に互いに間隔をあけて配列された複数の流出口から前記冷媒を流出させる冷媒分配器であって、
     前記複数の板状体は、
     前記流入口が形成された流入板と、
     前記流入板に形成された前記流入口に連通する連通室を有する連通板と、
     前記流出口に連通する伝熱管が挿通され、前記連通室に対して複数の前記伝熱管が連通するように形成された伝熱管差し込み空間を有する伝熱管差し込み板と
    を備える冷媒分配器。
  2.  前記伝熱管の外側に流体が一方向に流れる場合において、
     前記流入口は、
     前記流体の流れの上流側に位置するように前記流入板に形成されている
    請求項1に記載の冷媒分配器。
  3.  前記複数の板状体は、
     前記流入板と前記連通板との間に配置され、前記流入口から流入した前記冷媒を前記第1の方向と異なる第2の方向に分岐して流通させる分岐流路が形成された分岐流路板をさらに備える
    請求項1または2に記載の冷媒分配器。
  4.  前記分岐流路は、
     前記第2の方向に直線状に延びる直線部の両端部が互いに異なる前記第1の方向に延びるように形成されている
    請求項3に記載の冷媒分配器。
  5.  前記伝熱管の外側に流体が一方向に流れる場合において、
     前記分岐流路は、
     前記第2の方向に直線状に延びる直線部の両端部のうち、前記流体の流れの上流側に位置する上流側端部が前記第1の方向に平行で互いに異なる2つの方向に延びるように形成されている
    請求項3に記載の冷媒分配器。
  6.  前記流入口から気液二相状態の前記冷媒が流入する場合において、
     前記連通室は、
     前記流入口の高さよりも下側に、液冷媒の下降を抑制する下降抑制部が形成されている
    請求項1~5のいずれか一項に記載の冷媒分配器。
  7.  前記伝熱管の外側に流体が一方向に流れる場合において、
     前記下降抑制部は、
     前記流体の流れの下流側に偏在する
    請求項6に記載の冷媒分配器。
  8.  請求項1~7のいずれか一項に記載の冷媒分配器と、
     前記複数の流出口のそれぞれに接続される複数の伝熱管と
    を備えた熱交換器。
  9.  請求項8に記載の熱交換器を備えた空気調和装置。
PCT/JP2020/022246 2020-06-05 2020-06-05 冷媒分配器、熱交換器および空気調和装置 WO2021245901A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20938873.5A EP4163572A4 (en) 2020-06-05 2020-06-05 REFRIGERANT DISPENSER, HEAT EXCHANGER, AND AIR CONDITIONING DEVICE
CN202080101373.1A CN115698608A (zh) 2020-06-05 2020-06-05 制冷剂分配器、热交换器和空调装置
JP2022528365A JP7313557B2 (ja) 2020-06-05 2020-06-05 冷媒分配器、熱交換器および空気調和装置
PCT/JP2020/022246 WO2021245901A1 (ja) 2020-06-05 2020-06-05 冷媒分配器、熱交換器および空気調和装置
US17/916,403 US20230194191A1 (en) 2020-06-05 2020-06-05 Refrigerant distributer, heat exchanger, and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022246 WO2021245901A1 (ja) 2020-06-05 2020-06-05 冷媒分配器、熱交換器および空気調和装置

Publications (1)

Publication Number Publication Date
WO2021245901A1 true WO2021245901A1 (ja) 2021-12-09

Family

ID=78830733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022246 WO2021245901A1 (ja) 2020-06-05 2020-06-05 冷媒分配器、熱交換器および空気調和装置

Country Status (5)

Country Link
US (1) US20230194191A1 (ja)
EP (1) EP4163572A4 (ja)
JP (1) JP7313557B2 (ja)
CN (1) CN115698608A (ja)
WO (1) WO2021245901A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189463A (ja) * 1996-02-29 1997-07-22 Mitsubishi Electric Corp 熱交換器の分配装置及びその製造方法
JP5376010B2 (ja) 2011-11-22 2013-12-25 ダイキン工業株式会社 熱交換器
JP2014066502A (ja) * 2012-09-27 2014-04-17 Daikin Ind Ltd 熱交換器および冷凍装置
WO2014184914A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2014184918A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2019186674A1 (ja) * 2018-03-27 2019-10-03 東芝キヤリア株式会社 熱交換器、熱交換モジュール、および冷凍サイクル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064819B1 (en) * 2013-10-29 2019-07-24 Mitsubishi Electric Corporation Pipe joint, heat exchanger, and air conditioner
JP7069129B2 (ja) * 2017-04-14 2022-05-17 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189463A (ja) * 1996-02-29 1997-07-22 Mitsubishi Electric Corp 熱交換器の分配装置及びその製造方法
JP5376010B2 (ja) 2011-11-22 2013-12-25 ダイキン工業株式会社 熱交換器
JP2014066502A (ja) * 2012-09-27 2014-04-17 Daikin Ind Ltd 熱交換器および冷凍装置
WO2014184914A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2014184918A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2019186674A1 (ja) * 2018-03-27 2019-10-03 東芝キヤリア株式会社 熱交換器、熱交換モジュール、および冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163572A4

Also Published As

Publication number Publication date
JP7313557B2 (ja) 2023-07-24
US20230194191A1 (en) 2023-06-22
CN115698608A (zh) 2023-02-03
JPWO2021245901A1 (ja) 2021-12-09
EP4163572A4 (en) 2023-07-05
EP4163572A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
US10571205B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
US10088247B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
WO2013160954A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2015162689A1 (ja) 空気調和装置
US20160169595A1 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
CN109564070B (zh) 热交换器和使用它的制冷系统
US10041710B2 (en) Heat exchanger and air conditioner
JP6639648B2 (ja) 分配器、熱交換器、空気調和装置
CN105593630B (zh) 层叠型集管、换热器和空调装置
EP3290851A1 (en) Layered header, heat exchanger, and air conditioner
JPWO2019073610A1 (ja) 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
US11402162B2 (en) Distributor and heat exchanger
WO2019058540A1 (ja) 冷媒分配器、及び、空気調和装置
CN111902683B (zh) 热交换器及制冷循环装置
WO2021245901A1 (ja) 冷媒分配器、熱交換器および空気調和装置
JP7112164B2 (ja) 冷媒分配器、熱交換器および空気調和装置
WO2022264348A1 (ja) 熱交換器および冷凍サイクル装置
WO2022085113A1 (ja) 分配器、熱交換器および空気調和装置
WO2021095439A1 (ja) 熱交換器
CN110285603B (zh) 热交换器和使用其的制冷系统
WO2023275936A1 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2023281656A1 (ja) 熱交換器および冷凍サイクル装置
WO2022215164A1 (ja) 熱交換器及び空気調和装置
WO2024134798A1 (ja) 冷媒分配器および熱交換器
JP6977184B1 (ja) 空気調和機、冷凍機及び分配器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528365

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020938873

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020938873

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE