WO2014184854A1 - ハイブリッド車両の駆動装置 - Google Patents

ハイブリッド車両の駆動装置 Download PDF

Info

Publication number
WO2014184854A1
WO2014184854A1 PCT/JP2013/063322 JP2013063322W WO2014184854A1 WO 2014184854 A1 WO2014184854 A1 WO 2014184854A1 JP 2013063322 W JP2013063322 W JP 2013063322W WO 2014184854 A1 WO2014184854 A1 WO 2014184854A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
generator
motor
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/063322
Other languages
English (en)
French (fr)
Inventor
茂 奥脇
塩入 広行
寛之 柴田
浩平 三宅
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157032516A priority Critical patent/KR20150142052A/ko
Priority to DE112013007066.9T priority patent/DE112013007066T5/de
Priority to PCT/JP2013/063322 priority patent/WO2014184854A1/ja
Priority to JP2015516777A priority patent/JPWO2014184854A1/ja
Priority to BR112015028616A priority patent/BR112015028616A2/pt
Priority to CN201380076526.1A priority patent/CN105209278A/zh
Priority to US14/890,533 priority patent/US9440526B2/en
Publication of WO2014184854A1 publication Critical patent/WO2014184854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/80Control of differentials
    • B60Y2300/84Differential locking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H2048/204Control of arrangements for suppressing differential actions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio

Definitions

  • the present invention relates to a drive device for a hybrid vehicle that includes a power split mechanism that includes a differential mechanism and is connected to an internal combustion engine and a motor / generator, and a lock mechanism that can lock a rotation element of the differential mechanism so as not to rotate. .
  • the internal combustion engine, the motor / generator, and the output shaft are connected to different rotating elements of the planetary gear mechanism, and the ratio between the rotational speed of the internal combustion engine and the rotational speed of the output shaft, i.e., the gear ratio, is determined by the planetary gear mechanism and the motor / generator.
  • Hybrid vehicles that change continuously are known.
  • As a driving device for such a hybrid vehicle it is provided with two planetary gear mechanisms and a brake, thereby continuously changing the speed ratio, and the rotational speed of the internal combustion engine is smaller than the rotational speed of the output shaft.
  • An apparatus that realizes the overdrive state is known (see Patent Document 1).
  • Patent Document 2 there is Patent Document 2 as a prior art document related to the present invention.
  • a brake or a clutch is provided in addition to an existing brake, and the rotation ratio of the rotating element of the planetary gear mechanism is limited by the brake or the clutch so that the gear ratio of the driving device is in the overdrive state. It can be fixed to a different gear ratio. Therefore, three drive modes can be realized.
  • an object of the present invention is to provide a hybrid vehicle drive device that can realize three drive modes and is advantageous for downsizing.
  • a drive device includes an internal combustion engine, a first motor / generator, and a differential mechanism having a plurality of rotating elements that can rotate differentially with each other, and the internal combustion engine and the first motor / generator are coupled to each other.
  • the hybrid vehicle drive device comprising: a power split mechanism; an output member to which the power output from the power distribution mechanism is transmitted; and a second motor / generator capable of outputting power to the output member.
  • a locking mechanism that can be switched between a locked state in which a rotating element coupled to the first motor / generator among the plurality of rotating elements is non-rotatably locked and a released state in which rotation of the rotating element is allowed; Of the rotating elements, a restricted state for restricting the rotation of a rotating element different from the rotating element connected to the first motor / generator, and the control of the rotation of the rotating element.
  • Rotation limiting means that can be switched to a released state for releasing the internal combustion engine, wherein the internal combustion engine, the first motor / generator, the power split mechanism, the lock mechanism, and the rotation limiting means are on the same axis.
  • the power split mechanism is disposed between the internal combustion engine and the first motor / generator, and the lock mechanism and the rotation restricting unit sandwich the first motor / generator and the internal combustion engine and the power. It is arranged on the side opposite to the dividing mechanism.
  • the drive mode in which the lock mechanism is in the locked state and the rotation restricting means is in the released state the drive mode in which the lock mechanism is in the released state and the rotation restricting means is in the restricted state, and the lock mechanism and rotation Three drive modes can be realized, which are drive modes in which all of the limiting means are released. Since the lock mechanism and the rotation limiting means are disposed on the opposite side of the internal combustion engine and the power split mechanism with the first motor / generator interposed therebetween, it is possible to suppress an increase in size of the lock mechanism and the rotation limiting means. Therefore, the drive device can be reduced in size. In addition, this makes it possible to improve mountability on the vehicle.
  • the power split mechanism includes a single pinion type planetary gear mechanism as the differential mechanism, and the plurality of rotating elements are a sun gear, a ring gear, and a carrier of the planetary gear mechanism.
  • the internal combustion engine is connected to the ring gear
  • the first motor / generator is connected to the sun gear
  • the output member is connected to the carrier so as to be able to transmit power
  • the rotation limiting means is the limit
  • the sun gear and the ring gear may be connected so as to rotate integrally in the state, and the sun gear and the ring gear may be disconnected in the released state.
  • the lock mechanism is in the released state and the rotation restricting means is in the restricted state
  • the sun gear, the ring gear, and the carrier rotate together.
  • the power split mechanism includes a single pinion type first planetary gear mechanism and a second planetary gear mechanism as the differential mechanism, and the plurality of rotating elements include the first planetary gear mechanism.
  • the first motor / generator is connected to the sun gear of the first planetary gear mechanism, and the ring gear of the first planetary gear mechanism can transmit power to the output member via a gear train having a first gear ratio.
  • the ring gear of the second planetary gear mechanism is capable of transmitting power to the output member via a gear train having a second gear ratio smaller than the first gear ratio.
  • the rotation limiting means the lock can not rotate the sun gear of the second planetary gear mechanism in the limit state, it may allow the rotation of the sun gear of the second planetary gear mechanism in the released state.
  • the sun gear of the second planetary gear mechanism rotates idle, so that the rotation of the internal combustion engine is output via the first planetary gear mechanism.
  • the drive mode transmitted to the member can be realized.
  • the rotation restricting means when the lock mechanism is in the released state, the rotation restricting means is in the restricted state, and the torque of the first motor / generator is set to zero, the sun gear of the first planetary gear mechanism rotates idly, so that the internal combustion engine rotates.
  • the drive mode transmitted to the output member via the second planetary gear mechanism can be realized. Since the second gear ratio is smaller than the first gear ratio, two drive modes having different ratios between the rotational speed of the internal combustion engine and the rotational speed of the output member can be realized.
  • a drive mode in which the gear ratio of the drive device continuously changes can be realized by changing the rotation speed of the first motor / generator.
  • the second motor / generator may be arranged on an axis different from the axis on which the lock mechanism and the rotation limiting means are arranged.
  • the lock mechanism is switched to the locked state, the rotation limiting unit is switched to the released state, and the operating point of the internal combustion engine is set to maximize the thermal efficiency of the internal combustion engine.
  • control means for thermal efficiency causes the output torque from the second motor-generator so as to move to a predetermined operation line defined to be maximum may further include a.
  • the internal combustion engine can be operated with high thermal efficiency in both the drive mode in which the lock mechanism is in the locked state and the drive mode in which the rotation restricting means is in the restricted state. Therefore, fuel consumption can be improved.
  • the figure which shows schematically the drive device which concerns on the 1st form of this invention The figure which shows an example of the alignment chart of the drive device at the time of low gear mode. The figure which shows an example of the alignment chart of a drive device at the time of a high gear mode.
  • FIG. 1 shows a skeleton diagram of a driving apparatus according to the first embodiment of the present invention.
  • the drive device 10A is mounted on the hybrid vehicle 1, and may be referred to as an internal combustion engine (hereinafter also referred to as an engine) 11 and a first motor / generator (hereinafter referred to as a first MG). ) 12 and a second motor / generator (hereinafter sometimes abbreviated as second MG) 13.
  • the engine 11 is a known spark ignition type internal combustion engine mounted on a hybrid vehicle. Therefore, detailed description is omitted.
  • the first MG 12 and the second MG 13 are well-known motor generators that function as an electric motor and a generator.
  • the first MG 12 includes a rotor 12b that rotates integrally with the rotor shaft 12a, and a stator 12c that is coaxially disposed on the outer periphery of the rotor 12b and fixed to a case (not shown).
  • the second MG 13 includes a rotor 13b that rotates integrally with the rotor shaft 13a, and a stator 13c that is coaxially disposed on the outer periphery of the rotor 13b and fixed to the case.
  • Each MG 12, 13 is connected to a battery 15 via a motor control device 14.
  • the motor control device 14 converts the electric power generated by each MG 12, 13 into a direct current and stores it in the battery 15, and converts the electric power of the battery 15 into an alternating current and supplies it to each MG 11, 12.
  • the output shaft 11 a of the engine 11 and the rotor shaft 12 a of the first MG 12 are connected to the power split mechanism 20.
  • An output unit 16 for outputting power to the drive wheels 2 of the vehicle 1 is also connected to the power split mechanism 20.
  • the output unit 16 includes a counter shaft 17 as an output member and an output gear 18 that rotates integrally with the counter shaft 17.
  • the output gear 18 meshes with a ring gear 19 a provided in the case of the differential mechanism 19.
  • the differential mechanism 19 is a well-known mechanism that distributes the power transmitted to the ring gear 19 a to the left and right drive wheels 2.
  • the power split mechanism 20 includes a single pinion type planetary gear mechanism 21.
  • the planetary gear mechanism 21 is capable of rotating a sun gear S that is an external gear, a ring gear R that is an internal gear that is coaxially disposed with respect to the sun gear S, and a pinion gear P that meshes with these gears S and R. And a carrier C that holds the periphery of S so as to be able to revolve.
  • the sun gear S is coupled to rotate integrally with the rotor shaft 12a of the first MG 12.
  • the ring gear R is coupled to rotate integrally with the output shaft 11a of the engine 11.
  • the carrier C is coupled to rotate integrally with the first drive gear 22.
  • the first drive gear 22 meshes with a first driven gear 23 provided on the counter shaft 17.
  • the sun gear S is provided with a lock mechanism 24.
  • the lock mechanism 24 can be switched between a locked state in which the sun gear S and the rotor shaft 12a are locked so as not to rotate and a released state in which the rotation of the sun gear S and the rotor shaft 12a is allowed.
  • the sun gear S is connected to the ring gear R via the clutch mechanism 25.
  • the clutch mechanism 25 can be switched between an engaged state in which the sun gear S and the ring gear R are connected and a released state in which the connection between the sun gear S and the ring gear R is released.
  • the engine 11, the power split mechanism 20, the first MG 12, the lock mechanism 24, and the clutch mechanism 25 are arranged on the same axis.
  • Power split device 20 is arranged between engine 11 and first MG 12.
  • the lock mechanism 24 and the clutch mechanism 25 are disposed on the opposite side of the engine 11 with the power split mechanism 20 and the first MG 12 interposed therebetween. In this way, the lock mechanism 24 and the clutch mechanism 25 are arranged together at one end.
  • the second drive gear 26 is provided on the rotor shaft 13a of the second MG 13.
  • the second drive gear 26 meshes with a second driven gear 27 provided on the counter shaft 17.
  • the second MG 13 is arranged on an axis different from the axis on which the lock mechanism 24 and the clutch mechanism 25 are arranged.
  • the drive mode can be switched to the low gear mode, the high gear mode, and the continuously variable transmission mode by switching the states of the lock mechanism 24 and the clutch mechanism 25.
  • the low gear mode the lock mechanism 24 is switched to the locked state, and the clutch mechanism 25 is switched to the released state.
  • the high gear mode the lock mechanism 24 is switched to the released state, and the clutch mechanism 25 is switched to the engaged state.
  • the continuously variable transmission mode both the lock mechanism 24 and the clutch mechanism 25 are switched to the released state.
  • FIG. 2 shows an example of a collinear diagram of the driving device 10A in the low gear mode.
  • FIG. 3 shows an example of an alignment chart of the driving device 10A in the high gear mode.
  • ENG indicates the engine 11 and “OUT” indicates the first drive gear 22.
  • MG1 indicates the first MG12.
  • S indicates the sun gear S, “R” indicates the ring gear R, and “C” indicates the carrier C.
  • the lock mechanism 24 In the low gear mode, the lock mechanism 24 is switched to the locked state. Therefore, the sun gear S is locked so as not to rotate. On the other hand, since the clutch mechanism 25 is switched to the released state, the rotation of the ring gear R is allowed. Therefore, as indicated by the solid line L1 in FIG. 2, the rotation speed of the first MG 12 is fixed to zero, and the rotation speed of the first drive gear 22 is lower than the rotation speed of the engine 11.
  • the clutch mechanism 25 is switched to the engaged state. Therefore, the sun gear S and the ring gear R are connected. Since the lock mechanism 24 is switched to the released state, the sun gear S and the ring gear R are allowed to rotate. In this case, as indicated by the solid line L2 in FIG. 3, the sun gear S, the ring gear R, and the carrier C rotate together. Therefore, the rotation speed of the first drive gear 22 and the rotation speed of the engine 11 are the same. Therefore, in the high gear mode, the gear ratio of the drive device 10A is smaller than in the low gear mode. That is, it becomes a high gear.
  • both the lock mechanism 24 and the clutch mechanism 25 are switched to the released state. Therefore, rotation of the sun gear S, the ring gear R, and the carrier C is allowed. In this case, the ratio between the rotation speed of the engine 11 and the rotation speed of the first drive gear 22 can be continuously changed by changing the rotation speed of the first MG 12.
  • the lock mechanism 24 and the clutch mechanism 25 are controlled by the vehicle control device 30.
  • the vehicle control device 30 is configured as a computer unit including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation.
  • the vehicle control device 30 holds various control programs for causing the vehicle 1 to travel appropriately.
  • the vehicle control device 30 executes control of the control target such as the engine 11 and the MGs 12 and 13 by executing these programs.
  • Various sensors for acquiring information related to the vehicle 1 are connected to the vehicle control device 30. For example, a crank angle sensor 31, an accelerator opening sensor 32, and an SOC sensor 33 are connected to the vehicle control device 30.
  • the crank angle sensor 31 outputs a signal corresponding to the rotational speed of the output shaft 11 a of the engine 11.
  • the accelerator opening sensor 32 outputs a signal corresponding to the depression amount of the accelerator pedal, that is, the accelerator opening.
  • the SOC sensor 33 outputs a signal corresponding to the state of charge (SOC) of the battery 15.
  • various sensors, switches, and the like are connected to the vehicle control device 30, but these are not shown.
  • FIG. 4 shows a drive mode switching control routine executed by the vehicle control device 30 to control the lock mechanism 24, the clutch mechanism 25, and the second MG 13.
  • the lock mechanism 24, the clutch mechanism 25, and the second MG 13 are controlled so that the power requested by the driver is output from the drive device 10A and the engine 11 can be operated with high thermal efficiency.
  • a broken line L11 in FIG. 5 indicates a driving force required for the engine 11 when the driving mode is the high gear mode and the vehicle 1 is driven only by the engine 11.
  • a broken line L12 indicates a driving force required for the engine 11 when the driving mode is the low gear mode and the vehicle 1 is driven only by the engine 11.
  • An alternate long and short dash line L13 indicates an operation line of the engine 11 determined so that the thermal efficiency of the engine 11 is maximized.
  • this operation line may be referred to as an optimum efficiency line.
  • Solid lines L14 to L16 indicate power lines connecting operating points where the output power of the engine 11 is the same.
  • the vehicle 1 is driven only by the engine 11, the drive mode is the continuously variable transmission mode, and the operating point of the engine 11 is a section L13 between the broken line L11 and the broken line L12 in the optimum efficiency line L13.
  • switch the drive mode to high gear mode or low gear mode For example, the drive mode is switched when the operating point of the engine 11 is a point P1 in the figure.
  • the SOC of the battery 15 is equal to or less than a predetermined first determination value ⁇ 1
  • the drive mode is switched to the low gear mode.
  • the operating point of the engine 11 changes to the point P2, so that the thermal efficiency of the engine 11 is lowered.
  • the second MG 13 power is generated by the second MG 13 so that the thermal efficiency of the engine 11 is increased while maintaining the speed of the vehicle 1.
  • the second MG 13 generates power so that the operating point of the engine 11 changes from the point P2 to the point P2 '.
  • this control may be referred to as charge control.
  • This control routine is repeatedly executed at a predetermined cycle while the vehicle 1 is traveling. Further, this control routine is executed in parallel with other routines executed by the vehicle control device 30.
  • the vehicle control device 30 first acquires the state of the vehicle 1 in step S11. As the state of the vehicle 1, for example, the rotation speed of the engine 11, the torque required for the vehicle 1, and the charge state of the battery 15 are acquired. In addition, what is necessary is just to calculate the request torque to the vehicle 1 by a known method from the accelerator opening.
  • the vehicle control device 30 determines whether or not the drive mode switching condition is satisfied.
  • the drive mode switching condition is when the vehicle 1 is running only with the engine 11, the drive mode is the continuously variable transmission mode, and the operating point of the engine 11 is on the section L13 ′ of the optimum efficiency line L13. It is determined that it has been established. This determination may be performed based on the relationship shown in FIG. The relationship shown in FIG. 5 may be obtained in advance through experiments or numerical calculations and stored in the ROM of the vehicle control device 30 as a map. If it is determined that the drive mode switching condition is not satisfied, the current control routine is terminated.
  • step S13 it is determined whether the SOC of the battery 15 is equal to or less than the first determination value ⁇ 1.
  • step S14 determines whether the charge state of the battery 15 is below 1st determination value (alpha) 1, it progresses to step S14 and the vehicle control apparatus 30 performs the charge control mentioned above.
  • step S15 the vehicle control device 30 determines whether or not the drive mode switching condition is satisfied. If it is determined that the drive mode switching condition is not satisfied, the current control routine is terminated.
  • step S16 the vehicle control device 30 determines whether or not the SOC of the battery 15 is equal to or greater than a predetermined second determination value ⁇ 2.
  • the second determination value ⁇ 2 is set to a value larger than the first determination value ⁇ 1. If it is determined that the SOC of the battery 15 is less than the second determination value ⁇ 2, the process returns to step S14. Then, the processes of steps S14 to S16 are repeatedly executed until the SOC of the battery 15 becomes equal to or higher than the second determination value ⁇ 2 or until it is determined that the drive mode switching condition is not satisfied.
  • step S17 the vehicle control device 30 is described above. Assist control is executed.
  • step S18 the vehicle control device 30 determines whether or not the drive mode switching condition is satisfied. If it is determined that the drive mode switching condition is not satisfied, the current control routine is terminated.
  • step S19 the vehicle control device 30 determines whether or not the SOC of the battery 15 is equal to or less than a predetermined third determination value ⁇ 3.
  • the third determination value ⁇ 3 is set to a value smaller than the first determination value ⁇ 1. If it is determined that the SOC of the battery 15 is equal to or less than the third determination value ⁇ 3, the process proceeds to step S14. On the other hand, if it is determined that the SOC of the battery 15 is greater than the third determination value ⁇ 3, the process returns to step S17. Then, the processes of steps S17 to S19 are repeatedly executed until the SOC of the battery 15 becomes equal to or smaller than the third determination value ⁇ 3 or until it is determined that the drive mode switching condition is not satisfied.
  • the drive device 10A of the first embodiment includes the lock mechanism 24 and the clutch mechanism 25, three drive modes of the low gear mode, the high gear mode, and the continuously variable transmission mode can be realized. Further, the lock mechanism 24 and the clutch mechanism 25 are arranged on the side opposite to the engine 11 with the power split mechanism 20 and the first MG 12 interposed therebetween. Therefore, the enlargement of the lock mechanism 24 and the clutch mechanism 25 can be suppressed. Therefore, the drive device 10A can be reduced in size. Moreover, the mounting property to the vehicle 1 can thereby be improved.
  • the second MG 13 is disposed on an axis different from the axis on which the lock mechanism 24 and the clutch mechanism 25 are disposed, the length of the drive device 10A in the rotation axis direction can be shortened. Therefore, the drive device 10A can be further downsized.
  • the drive device 10A executes charge control or assist control when the drive mode switching condition is satisfied. In the low gear mode and the high gear mode, it is not necessary to output the reaction force for transmitting the power of the engine 11 to the counter shaft 17 from the first MG 12. Therefore, the energy consumed by the first MG 12 can be reduced by executing the charge control or the assist control in this way. Further, since the second MG 13 is controlled so that the operating point of the engine 11 is on the optimum efficiency line L13, fuel consumption can be improved. Therefore, the energy efficiency of the drive device 10A can be improved.
  • the planetary gear mechanism 21 corresponds to the differential mechanism of the present invention.
  • the vehicle control device 30 corresponds to the control means of the present invention.
  • the clutch mechanism 25 corresponds to the rotation limiting means of the present invention.
  • the engaged state of the clutch mechanism 25 corresponds to the restricted state of the rotation restricting means of the present invention.
  • FIG. 6 shows a skeleton diagram of the driving apparatus 10B according to this embodiment. In this figure, parts common to those in FIG.
  • the power split mechanism 20 is provided with a first planetary gear mechanism 41 and a second planetary gear mechanism 42.
  • These planetary gear mechanisms 41 and 42 are single pinion type planetary gear mechanisms.
  • the first planetary gear mechanism 41 can rotate a sun gear S1 that is an external gear, a ring gear R1 that is an internal gear disposed coaxially with the sun gear S1, and a pinion gear P1 that meshes with these gears S1 and R1.
  • a carrier C1 that holds the periphery of the sun gear S1 so as to be able to revolve.
  • the sun gear S1 of the first planetary gear mechanism 41 may be referred to as a first sun gear S1
  • the ring gear R1 may be referred to as a first ring gear R1
  • the carrier C1 may be referred to as a first carrier C1.
  • the second planetary gear mechanism 42 includes a sun gear S2 that is an external gear, a ring gear R2 that is an internal gear disposed coaxially with the sun gear S2, and a pinion gear P2 that meshes with these gears S2 and R2.
  • a carrier C2 capable of rotating and holding around the sun gear S2 so as to be able to revolve.
  • the sun gear S2 of the second planetary gear mechanism 42 may be referred to as a second sun gear S2
  • the ring gear R2 may be referred to as a second ring gear R2
  • the carrier C2 may be referred to as a second carrier C2.
  • the first planetary gear mechanism 41 and the second planetary gear mechanism 42 are configured such that the gear ratios among the sun gear, the carrier, and the ring gear are the same.
  • the first carrier C1 and the second carrier C2 are connected to rotate integrally with the output shaft 11a of the engine 11.
  • the first sun gear S1 is connected to the rotor shaft 12a of the first MG 12.
  • the first sun gear S ⁇ b> 1 is connected to the first lock mechanism 43.
  • the first lock mechanism 43 can be switched between a locked state in which the first sun gear S1 is locked so as not to rotate and a released state in which the rotation of the first sun gear S1 is allowed.
  • the second sun gear S ⁇ b> 2 is connected to the second lock mechanism 44.
  • the second lock mechanism 44 can be switched between a locked state in which the second sun gear S2 is locked so as not to rotate and a released state in which the rotation of the second sun gear S2 is allowed.
  • the engine 11, the first MG 12, the power split mechanism 20, the first lock mechanism 43, and the second lock mechanism 44 are arranged on the same axis.
  • power split device 20 is arranged between engine 11 and first MG 12.
  • the first lock mechanism 43 and the second lock mechanism 44 are disposed on the opposite side of the engine 11 with the power split mechanism 20 and the first MG 12 interposed therebetween.
  • the 1st lock mechanism 43 and the 2nd lock mechanism 44 are collectively arranged at one end.
  • the first ring gear R1 is coupled to rotate integrally with the first drive gear 22.
  • the second ring gear R2 is connected to rotate integrally with the third drive gear 45.
  • the third drive gear 45 meshes with a third driven gear 46 provided on the counter shaft 17.
  • the gear ratio between the first drive gear 22 and the first driven gear 23 (hereinafter sometimes referred to as the first gear ratio) ⁇ 1 is the gear ratio between the third drive gear 45 and the third driven gear 46 (hereinafter referred to as the second gear). (It may be called a ratio.)
  • a value larger than ⁇ 2 is set. That is, these gear ratios have a relationship of ⁇ 1> ⁇ 2.
  • the drive mode can be switched to the low gear mode, the high gear mode, and the continuously variable transmission mode by switching the states of the first lock mechanism 43 and the second lock mechanism 44.
  • the first lock mechanism 43 is switched to the locked state, and the second lock mechanism 44 is switched to the released state.
  • the second lock mechanism 44 is switched to the locked state, and the first lock mechanism 43 is switched to the released state.
  • the torque of the first MG 12 is set to zero.
  • both the first lock mechanism 43 and the second lock mechanism 44 are switched to the released state.
  • FIG. 7 shows an example of a collinear diagram of the driving device 10B in the low gear mode.
  • FIG. 8 shows an example of a collinear diagram of the driving device 10B in the high gear mode.
  • “ENG” indicates the engine 11, and “MG1” indicates the first MG 12.
  • “S1” represents the first sun gear S1, “R1” represents the first ring gear R1, and “C1” represents the first carrier C1.
  • “S2” indicates the second sun gear S2, “R2” indicates the second ring gear R2, and “C2” indicates the second carrier C2.
  • “D1” indicates the first drive gear 22 and “D3” indicates the third drive gear 45.
  • a solid line L ⁇ b> 21 in the drawing indicates the relationship between the rotating elements of the first planetary gear mechanism 41.
  • a broken line L22 indicates the relationship between the rotating elements of the second planetary gear mechanism 42.
  • the first lock mechanism 43 In the low gear mode, the first lock mechanism 43 is switched to the locked state. Therefore, the first sun gear S1 is locked so as not to rotate. On the other hand, since the second lock mechanism 44 is switched to the released state, the second sun gear S2 rotates idly. In this case, the rotation of the engine 11 is transmitted to the counter shaft 17 via the first planetary gear mechanism 41, the first drive gear 22, and the first driven gear 23.
  • the second lock mechanism 44 In the high gear mode, the second lock mechanism 44 is switched to the locked state. Therefore, the second sun gear S2 is locked so as not to rotate.
  • the first lock mechanism 43 is switched to the released state. Further, the torque of the first MG 12 is set to zero. Therefore, the first sun gear S1 and the rotor shaft 12a are idled. Accordingly, in this case, the rotation of the engine 11 is transmitted to the counter shaft 17 via the second planetary gear mechanism 42, the third drive gear 45, and the third driven gear 46.
  • the second gear ratio ⁇ 2 is smaller than the first gear ratio ⁇ 1. Therefore, if the rotation speed of the engine 11 is the same, the rotation speed of the counter shaft 17 is higher in the high gear mode than in the low gear mode.
  • both the first lock mechanism 43 and the second lock mechanism 44 are switched to the released state. Therefore, in this case, the ratio between the rotation speed of the engine 11 and the rotation speed of the first drive gear 22 can be continuously changed by changing the rotation speed of the first MG 12.
  • the first lock mechanism 43 and the second lock mechanism 44 are controlled by the vehicle control device 30. Also in this embodiment, the vehicle control device 30 executes the drive mode switching control routine of FIG. Then, the first lock mechanism 43 and the second lock mechanism 44 are controlled by executing this control routine. That is, in the charge control, the first lock mechanism 43 and the second lock mechanism 44 are controlled so that the drive mode of the drive device 10B is the low gear mode. On the other hand, in the assist control, the first lock mechanism 43 and the second lock mechanism 44 are controlled so that the drive mode of the drive device 10B becomes the high gear mode.
  • the drive device 10B since the drive device 10B includes the first lock mechanism 43 and the second lock mechanism 44, three drive modes of a low gear mode, a high gear mode, and a continuously variable transmission mode can be realized. And these two lock mechanisms 43 and 44 are arrange
  • the second MG 13 is arranged on an axis different from the axis on which the two lock mechanisms 43 and 44 are arranged, the length of the driving device 10B in the direction of the rotation axis can be shortened.
  • charging control or assist control is executed when the drive mode switching condition is satisfied. Even in the low gear mode and the high gear mode of this form, it is not necessary to output the reaction force for transmitting the power of the engine 12 to the counter shaft 17 from the first MG 12. Therefore, the energy consumed by the first MG 12 can be reduced. And since 2nd MG13 is controlled so that the operating point of the engine 11 may be on the optimal efficiency line L13, a fuel consumption can be improved. Therefore, the energy efficiency of the drive device 10B can be improved.
  • first planetary gear mechanism 41 and the second planetary gear mechanism 42 correspond to the differential mechanism of the present invention.
  • the first lock mechanism 43 corresponds to the lock mechanism of the present invention.
  • the second lock mechanism 44 corresponds to the rotation limiting means of the present invention.
  • the locked state of the second lock mechanism 44 corresponds to the restricted state of the rotation restricting means of the present invention.
  • the first drive gear 22 and the first driven gear 23 correspond to the first gear ratio gear train of the present invention.
  • the third drive gear 45 and the third driven gear 46 correspond to the second gear ratio gear train of the present invention.
  • the present invention can be implemented in various forms without being limited to the above-described forms.
  • the planetary gear mechanism provided in the driving device of the present invention is not limited to a single pinion type planetary gear mechanism.
  • a double pinion type planetary gear mechanism may be used.
  • the connection destination of the ring gear and the carrier in each form is appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 本発明の駆動装置(10A)は、リングギヤ(R)が内燃機関(11)と接続され、サンギヤ(S)が第1MG(12)と接続され、キャリア(C)がカウンタ軸(17)と動力伝達可能に接続された遊星歯車機構(21)を含む動力分割機構(20)と、サンギヤ(S)をロック可能なロック機構(24)と、サンギヤ(S)とリングギヤ(R)とを係合可能なクラッチ機構(25)とを備えている。内燃機関(11)、動力分割機構(20)、第1MG(12)、ロック機構(24)、及びクラッチ機構(25)は、同一軸線上に配置されている。ロック機構(24)及びクラッチ機構(25)は、動力分割機構(20)及び第1MG(12)を挟んで内燃機関(11)と反対の側に配置されている。

Description

ハイブリッド車両の駆動装置
 本発明は、差動機構を含むとともに内燃機関及びモータ・ジェネレータが連結された動力分割機構と、差動機構の回転要素を回転不能にロック可能なロック機構とを備えたハイブリッド車両の駆動装置に関する。
 内燃機関、モータ・ジェネレータ、及び出力軸を遊星歯車機構の互いに異なる回転要素と接続し、遊星歯車機構及びモータ・ジェネレータで内燃機関の回転数と出力軸の回転数との比、すなわち変速比を連続的に変化させるハイブリッド車両が知られている。このようなハイブリッド車両の駆動装置として、2つの遊星歯車機構とブレーキとを備え、これらにより変速比を連続的に変化させる無段変速状態と、内燃機関の回転数が出力軸の回転数より小さくなるオーバードライブ状態とを実現する装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。
特開2004-345527号公報 国際公開2012/131218号
 特許文献1の装置では、既設のブレーキの他にブレーキ又はクラッチを設け、そのブレーキ又はクラッチで遊星歯車機構が有する回転要素の回転を制限することにより、駆動装置の変速比をオーバードライブ状態のときとは別の変速比に固定できる。そのため、3つの駆動モードを実現できる。しかしながら、特許文献1の装置では、ブレーキ又はクラッチを2つのモータ・ジェネレータの間に配置する必要がある。そのため、ブレーキ又はクラッチの外径が大きくなり、装置が大型化するおそれがある。
 そこで、本発明は、3つの駆動モードを実現でき、かつ小型化に有利なハイブリッド車両の駆動装置を提供することを目的とする。
 本発明の駆動装置は、内燃機関と、第1モータ・ジェネレータと、相互に差動回転可能な複数の回転要素を有する差動機構を含み、前記内燃機関及び前記第1モータ・ジェネレータが連結された動力分割機構と、前記動力分配機構から出力された動力が伝達される出力部材と、前記出力部材に動力を出力可能な第2モータ・ジェネレータと、を備えたハイブリッド車両の駆動装置において、前記複数の回転要素のうち前記第1モータ・ジェネレータと連結された回転要素を回転不能にロックするロック状態と、その回転要素の回転を許容する解放状態とに切り替え可能なロック機構と、前記複数の回転要素のうち前記第1モータ・ジェネレータと連結された回転要素とは別の回転要素の回転を制限する制限状態と、その回転要素の回転の制限を解除する解放状態とに切替可能な回転制限手段と、をさらに備え、前記内燃機関、前記第1モータ・ジェネレータ、前記動力分割機構、前記ロック機構、及び前記回転制限手段が、同一軸線上に配置され、前記内燃機関と前記第1モータ・ジェネレータとの間に前記動力分割機構が配置され、前記ロック機構及び前記回転制限手段が、前記第1モータ・ジェネレータを挟んで前記内燃機関及び前記動力分割機構と反対の側に配置されている。
 本発明の駆動装置では、ロック機構をロック状態にし、かつ回転制限手段を解放状態にする駆動モード、ロック機構を解放状態にし、かつ回転制限手段を制限状態にする駆動モード、及びロック機構及び回転制限手段をいずれも解放状態にする駆動モードの3つの駆動モードを実現できる。そして、ロック機構及び回転制限手段は、第1モータ・ジェネレータを挟んで内燃機関及び動力分割機構と反対の側に配置されているので、これらロック機構及び回転制限手段の大型化を抑制できる。そのため、駆動装置を小型化できる。また、これにより車両への搭載性を向上できる。
 本発明の駆動装置の一形態において、前記動力分割機構は、前記差動機構としてシングルピニオン型の遊星歯車機構を含み、前記複数の回転要素は、前記遊星歯車機構のサンギヤ、リングギヤ、及びキャリアであり、前記内燃機関は、前記リングギヤと連結され、前記第1モータ・ジェネレータは、前記サンギヤと連結され、前記出力部材は、前記キャリアと動力伝達可能に接続され、前記回転制限手段は、前記制限状態において前記サンギヤと前記リングギヤとが一体回転するように連結し、前記解放状態において前記サンギヤと前記リングギヤとの連結を解除してもよい。この形態では、ロック機構を解放状態にし、かつ回転制限手段を制限状態にした場合、サンギヤ、リングギヤ、及びキャリアが一体に回転する。そのため、動力分割機構の変速比を1にする駆動モードを実現できる。一方、ロック機構をロック状態にし、回転制限手段を解放状態にした場合には、内燃機関の回転を動力分割機構で減速して出力部材に出力する駆動モードを実現できる。そして、ロック機構及び回転制限手段をいずれも解放状態にした場合には、第1モータ・ジェネレータの回転数を変化させることにより駆動装置の変速比が連続的に変化する駆動モードを実現できる。
 本発明の駆動装置の一形態において、前記動力分割機構は、前記差動機構としてシングルピニオン型の第1遊星歯車機構及び第2遊星歯車機構を含み、前記複数の回転要素は、前記第1遊星歯車機構のサンギヤ、リングギヤ、及びキャリア、及び前記第2遊星歯車機構のサンギヤ、リングギヤ、及びキャリアであり、前記内燃機関は、前記第1遊星歯車機構のキャリア及び前記第2遊星歯車機構のキャリアと連結され、前記第1モータ・ジェネレータは、前記第1遊星歯車機構のサンギヤと連結され、前記第1遊星歯車機構のリングギヤは、第1ギヤ比のギヤ列を介して前記出力部材と動力伝達可能に接続され、前記第2遊星歯車機構のリングギヤは、前記第1ギヤ比より小さい第2ギヤ比のギヤ列を介して前記出力部材と動力伝達可能に接続され、前記回転制限手段は、前記制限状態において前記第2遊星歯車機構のサンギヤを回転不能にロックし、前記解放状態において前記第2遊星歯車機構のサンギヤの回転を許容してもよい。この形態では、ロック機構をロック状態にし、かつ回転制限手段を解放状態にした場合には、第2遊星歯車機構のサンギヤが空転するので、内燃機関の回転が第1遊星歯車機構を介して出力部材に伝達される駆動モードを実現できる。一方、ロック機構を解放状態にし、回転制限手段を制限状態にし、かつ第1モータ・ジェネレータのトルクをゼロにした場合には、第1遊星歯車機構のサンギヤが空転するので、内燃機関の回転が第2遊星歯車機構を介して出力部材に伝達される駆動モードを実現できる。第2ギヤ比は第1ギヤ比よりも小さいので、内燃機関の回転数と出力部材の回転数との比が異なる2つの駆動モードを実現できる。そして、ロック機構及び回転制限手段をいずれも解放状態にした場合には、第1モータ・ジェネレータの回転数を変化させることにより駆動装置の変速比が連続的に変化する駆動モードを実現できる。
 本発明の駆動装置の一形態において、前記第2モータ・ジェネレータは、前記ロック機構及び前記回転制限手段が配置されている軸線とは別の軸線上に配置されていてもよい。このように第2モータ・ジェネレータを別の軸線上に配置することにより、駆動装置の軸線方向の長さを短縮できる。そのため、装置をさらに小型化できる。
 本発明の駆動装置の一形態においては、前記第1モータ・ジェネレータ及び前記第2モータ・ジェネレータが電気的に接続されたバッテリと、所定のモード切替条件が成立し、かつ前記バッテリの充電状態が所定の判定値以下の場合には、前記ロック機構を前記ロック状態に切り替えるとともに前記回転制限手段を前記解放状態に切り替え、かつ前記内燃機関の動作点が前記内燃機関の熱効率が最高になるように定められた所定の動作線上に移動するように前記第2モータ・ジェネレータで発電を行い、前記モード切替条件が成立し、かつ前記バッテリの充電状態が前記判定値より大きい場合には、前記ロック機構を前記解放状態に切り替えるとともに前記回転制限手段を前記制限手段に切り替え、かつ前記内燃機関の動作点が前記内燃機関の熱効率が最高になるように定められた所定の動作線上に移動するように前記第2モータ・ジェネレータからトルクを出力させる制御手段と、をさらに備えていてもよい。この形態によれば、ロック機構をロック状態にする駆動モード及び回転制限手段を制限状態にする駆動モードの両方の駆動モードにおいて内燃機関を熱効率が高い状態で運転できる。そのため、燃費を向上させることができる。また、これらの駆動モードでは、内燃機関の回転を出力部材に伝達するための反力を第1モータ・ジェネレータから出力する必要がない。そのため、第1モータ・ジェネレータで消費されるエネルギを低減できる。従って、駆動装置のエネルギ効率を改善できる。
本発明の第1の形態に係る駆動装置を概略的に示す図。 ローギヤモードのときの駆動装置の共線図の一例を示す図。 ハイギヤモードのときの駆動装置の共線図の一例を示す図。 車両制御装置が実行する駆動モード切替制御ルーチンを示すフローチャート。 充電制御及びアシスト制御の概略を説明するための図。 本発明の第2の形態に係る駆動装置を概略的に示す図。 ローギヤモードのときの駆動装置の共線図の一例を示す図。 ハイギヤモードのときの駆動装置の共線図の一例を示す図。
(第1の形態)
 図1は、本発明の第1の形態に係る駆動装置のスケルトン図を示している。この駆動装置10Aは、ハイブリッド車両1に搭載されるものであり、内燃機関(以下、エンジンと称することがある。)11と、第1モータ・ジェネレータ(以下、第1MGと略称することがある。)12と、第2モータ・ジェネレータ(以下、第2MGと略称することがある。)13とを備えている。エンジン11は、ハイブリッド車両に搭載される周知の火花点火式内燃機関である。そのため、詳細な説明を省略する。
 第1MG12及び第2MG13は、電動機及び発電機として機能する周知のモータ・ジェネレータである。第1MG12は、ロータ軸12aと一体回転するロータ12bと、ロータ12bの外周に同軸に配置されてケース(不図示)に固定されたステータ12cとを備えている。第2MG13も同様に、ロータ軸13aと一体回転するロータ13bと、ロータ13bの外周に同軸に配置されてケースに固定されたステータ13cとを備えている。各MG12、13はモータ制御装置14を介してバッテリ15に接続されている。モータ制御装置14は各MG12、13が発電した電力を直流変換してバッテリ15に蓄電するとともにバッテリ15の電力を交流変換して各MG11、12に供給する。
 エンジン11の出力軸11a及び第1MG12のロータ軸12aは、動力分割機構20と接続されている。動力分割機構20には、車両1の駆動輪2に動力を出力するための出力部16も接続されている。出力部16は、出力部材としてのカウンタ軸17と、カウンタ軸17と一体に回転する出力ギヤ18とを備えている。出力ギヤ18は、デファレンシャル機構19のケースに設けられたリングギヤ19aと噛み合っている。デファレンシャル機構19は、リングギヤ19aに伝達された動力を左右の駆動輪2に分配する周知の機構である。
 動力分割機構20は、シングルピニオン型の遊星歯車機構21を備えている。遊星歯車機構21は、外歯歯車であるサンギヤSと、サンギヤSに対して同軸的に配置された内歯歯車であるリングギヤRと、これらのギヤS、Rに噛み合うピニオンギヤPを自転可能かつサンギヤSの周囲を公転可能に保持するキャリアCとを備えている。この図に示すようにサンギヤSは、第1MG12のロータ軸12aと一体回転するように連結されている。リングギヤRは、エンジン11の出力軸11aと一体回転するように連結されている。キャリアCは、第1ドライブギヤ22と一体回転するように連結されている。この第1ドライブギヤ22は、カウンタ軸17に設けられた第1ドリブンギヤ23と噛み合っている。
 この図に示すようにサンギヤSには、ロック機構24が設けられている。ロック機構24は、サンギヤS及びロータ軸12aが回転不能にロックされるロック状態と、サンギヤS及びロータ軸12aの回転を許容する解放状態とに切り替えることができる。また、サンギヤSは、クラッチ機構25を介してリングギヤRと接続されている。クラッチ機構25は、サンギヤSとリングギヤRとを連結する係合状態と、サンギヤSとリングギヤRとの連結を解除する解放状態とに切り替えることができる。
 この図に示すように、エンジン11、動力分割機構20、第1MG12、ロック機構24、及びクラッチ機構25は、同一軸線上に配置されている。そして、動力分割機構20は、エンジン11と第1MG12との間に配置されている。ロック機構24及びクラッチ機構25は、動力分割機構20及び第1MG12を挟んでエンジン11と反対の側に配置されている。このようにロック機構24及びクラッチ機構25は一方の端にまとめて配置されている。
 第2MG13のロータ軸13aには、第2ドライブギヤ26が設けられている。この第2ドライブギヤ26は、カウンタ軸17に設けられた第2ドリブンギヤ27と噛み合っている。この図に示すように第2MG13は、ロック機構24及びクラッチ機構25が配置されている軸線とは別の軸線上に配置されている。
 この駆動装置10Aでは、ロック機構24及びクラッチ機構25のそれぞれの状態を切り替えることにより、ローギヤモード、ハイギヤモード、及び無段変速モードに駆動モードを切り替えることができる。ローギヤモードでは、ロック機構24をロック状態に切り替え、かつクラッチ機構25を解放状態に切り替える。ハイギヤモードでは、ロック機構24を解放状態に切り替え、かつクラッチ機構25を係合状態に切り替える。無段変速モードでは、ロック機構24及びクラッチ機構25をいずれも解放状態に切り替える。
 図2は、ローギヤモードのときの駆動装置10Aの共線図の一例を示している。図3は、ハイギヤモードのときの駆動装置10Aの共線図の一例を示している。なお、図中の「ENG」はエンジン11を示し、「OUT」は第1ドライブギヤ22を示している。また、「MG1」は第1MG12を示している。「S」はサンギヤSを示し、「R」はリングギヤRを示し、「C」はキャリアCを示している。
 ローギヤモードではロック機構24がロック状態に切り替えられる。そのため、サンギヤSが回転不能にロックされる。一方、クラッチ機構25は解放状態に切り替えられるので、リングギヤRの回転は許容される。従って、図2に実線L1で示すように第1MG12の回転数がゼロに固定され、第1ドライブギヤ22の回転数がエンジン11の回転数より低くなる。
 一方、ハイギヤモードではクラッチ機構25が係合状態に切り替えられる。そのため、サンギヤSとリングギヤRとが連結される。そして、ロック機構24が解放状態に切り替えられるので、サンギヤS及びリングギヤRの回転が許容される。この場合、図3に実線L2で示すようにサンギヤS、リングギヤR、及びキャリアCが一体に回転する。そのため、第1ドライブギヤ22の回転数とエンジン11の回転数が同じになる。従って、ハイギヤモードでは、ローギヤモードと比較して駆動装置10Aの変速比が小さくなる。すなわち、ハイギヤになる。
 無段変速モードでは、ロック機構24及びクラッチ機構25がいずれも解放状態に切り替えられる。そのため、サンギヤS、リングギヤR、及びキャリアCの回転が許容される。この場合、第1MG12の回転数を変化させることにより、エンジン11の回転数と第1ドライブギヤ22の回転数との比を連続的に変化させることができる。
 ロック機構24及びクラッチ機構25は、車両制御装置30にて制御される。車両制御装置30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータユニットとして構成されている。車両制御装置30は、車両1を適切に走行させるための各種制御プログラムを保持している。車両制御装置30は、これらのプログラムを実行することによりエンジン11及び各MG12、13等の制御対象に対する制御を行っている。車両制御装置30には、車両1に係る情報を取得するための種々のセンサが接続されている。車両制御装置30には、例えばクランク角センサ31、アクセル開度センサ32、及びSOCセンサ33が接続されている。クランク角センサ31は、エンジン11の出力軸11aの回転数に対応した信号を出力する。アクセル開度センサ32は、アクセルペダルの踏み込み量、すなわちアクセル開度に対応した信号を出力する。SOCセンサ33は、バッテリ15の充電状態(SOC)に対応した信号を出力する。この他にも車両制御装置30には種々のセンサやスイッチ等が接続されているが、それらの図示は省略した。
 図4は、車両制御装置30が、ロック機構24、クラッチ機構25、及び第2MG13を制御するために実行する駆動モード切替制御ルーチンを示している。この制御ルーチンでは、ドライバから要求されているパワーが駆動装置10Aから出力され、かつエンジン11を熱効率が高い状態で運転できるように、ロック機構24、クラッチ機構25、及び第2MG13が制御される。
 図4の制御ルーチンを説明する前に、図5を参照してこの制御方法の概要について説明する。図5の破線L11は、駆動モードがハイギヤモードであり、かつエンジン11のみで車両1を走行させる場合にエンジン11に要求される駆動力を示している。破線L12は、駆動モードがローギヤモードであり、かつエンジン11のみで車両1を走行させる場合にエンジン11に要求される駆動力を示している。一点鎖線L13は、エンジン11の熱効率が最高になるように定められたエンジン11の動作線を示している。以下、この動作線を最適効率ラインと称することがある。実線L14~L16は、エンジン11の出力パワーが同じになる動作点を繋げたパワーラインを示している。
 この制御では、エンジン11のみで車両1を走行させており、駆動モードが無段変速モードであり、かつエンジン11の動作点が最適効率ラインL13のうちの破線L11と破線L12の間の区間L13’上にある場合に、駆動モードをハイギヤモード又はローギヤモードに切り替える。例えば、エンジン11の動作点が図中の点P1の場合に駆動モードを切り替える。この際にバッテリ15のSOCが予め設定した所定の第1判定値α1以下の場合には、駆動モードをローギヤモードに切り替える。これによりエンジン11の運転点が点P2に変化するので、エンジン11の熱効率が低くなる。そこで、この場合には車両1の速度を維持しつつエンジン11の熱効率が高くなるように第2MG13で発電を行う。具体的には、エンジン11の動作点が点P2から点P2’に変化するように第2MG13で発電を行う。以下、この制御を充電制御と称することがある。
 一方、バッテリ15のSOCが第1判定値α1より大きい場合は、駆動モードをハイギヤモードに切り替える。この場合、エンジン11の運転点が点P3に変化するので、エンジン11の熱効率が低くなる。そこで、この場合には車両1の速度を維持しつつエンジン11の熱効率が高くなるように第2MG13からトルクを出力する。具体的には、エンジン11の動作点が点P3から点P3’に変化するように第2MG13からトルクを出力して車両1の駆動をアシストする。以下、この制御をアシスト制御と称することがある。
 図4の制御ルーチンを説明する。この制御ルーチンは、車両1の走行中に所定の周期で繰り返し実行される。また、この制御ルーチンは、車両制御装置30が実行する他のルーチンと並行に実行される。
 この制御ルーチンにおいて車両制御装置30は、まずステップS11で車両1の状態を取得する。車両1の状態としては、例えばエンジン11の回転数、車両1に要求されているトルク、及びバッテリ15の充電状態が取得される。なお、車両1への要求トルクは、アクセル開度から周知の方法で算出すればよい。次のステップS12において車両制御装置30は、駆動モード切替条件が成立したか否か判定する。駆動モード切替条件は、車両1がエンジン11のみで走行中であり、駆動モードが無段変速モードであり、かつエンジン11の動作点が最適効率ラインL13のうちの区間L13’上にある場合に成立したと判定される。なお、この判定は、図5に示した関係に基づいて行えばよい。図5の関係は、予め実験又は数値計算等で求めて車両制御装置30のROMにマップとして記憶させておけばよい。駆動モード切替条件が不成立と判定した場合は、今回の制御ルーチンを終了する。
 一方、駆動モード切替条件が成立したと判定した場合はステップS13に進み、バッテリ15のSOCが第1判定値α1以下か否か判定する。バッテリ15の充電状態が第1判定値α1以下と判定した場合はステップS14に進み、車両制御装置30は上述した充電制御を実行する。次のステップS15において車両制御装置30は、駆動モード切替条件が成立したか否か判定する。駆動モード切替条件が不成立と判定した場合は今回の制御ルーチンを終了する。
 一方、駆動モード切替条件が成立していると判定した場合はステップS16に進み、車両制御装置30はバッテリ15のSOCが予め設定した所定の第2判定値α2以上か否か判定する。なお、第2判定値α2には、第1判定値α1より大きい値が設定される。バッテリ15のSOCが第2判定値α2未満と判定した場合はステップS14に戻る。そして、バッテリ15のSOCが第2判定値α2以上になるか、又は駆動モード切替条件が不成立と判定されるまで、ステップS14~S16の処理が繰り返し実行される。
 一方、バッテリ15のSOCが第2判定値α2以上と判定した場合、又はステップS13でバッテリ15のSOCが第1判定値α1より大きいと判定した場合はステップS17に進み、車両制御装置30は上述したアシスト制御を実行する。次のステップS18において車両制御装置30は、駆動モード切替条件が成立したか否か判定する。駆動モード切替条件が不成立と判定した場合は今回の制御ルーチンを終了する。
 一方、駆動モード切替条件が成立していると判定した場合はステップS19に進み、車両制御装置30はバッテリ15のSOCが予め設定した所定の第3判定値α3以下か否か判定する。なお、第3判定値α3には、第1判定値α1より小さい値が設定される。バッテリ15のSOCが第3判定値α3以下と判定した場合はステップS14に進む。一方、バッテリ15のSOCが第3判定値α3より大きいと判定した場合はステップS17に戻る。そして、バッテリ15のSOCが第3判定値α3以下になるか、又は駆動モード切替条件が不成立と判定されるまで、ステップS17~S19の処理が繰り返し実行される。
 以上に説明したように、第1の形態の駆動装置10Aでは、ロック機構24及びクラッチ機構25を備えているので、ローギヤモード、ハイギヤモード、及び無段変速モードの3つの駆動モードを実現できる。また、ロック機構24及びクラッチ機構25は、動力分割機構20及び第1MG12を挟んでエンジン11と反対の側に配置される。そのため、ロック機構24及びクラッチ機構25の大型化を抑制できる。従って、駆動装置10Aを小型化することができる。また、これにより車両1への搭載性を向上できる。
 また、ロック機構24及びクラッチ機構25が配置されている軸線とは別の軸線上に第2MG13が配置されるので、駆動装置10Aの回転軸線方向の長さを短縮することができる。そのため、駆動装置10Aをさらに小型化することができる。
 この駆動装置10Aでは、駆動モード切替条件が成立した場合に充電制御又はアシスト制御を実行する。ローギヤモード及びハイギヤモードでは、エンジン11の動力をカウンタ軸17に伝達するための反力を第1MG12から出力する必要がない。そのため、このように充電制御又はアシスト制御を実行することにより、第1MG12で消費されるエネルギを低減できる。また、エンジン11の動作点が最適効率ラインL13上になるように第2MG13を制御するので、燃費を向上させることができる。従って、駆動装置10Aのエネルギ効率を改善することができる。
 なお、この形態では、遊星歯車機構21が本発明の差動機構に対応する。車両制御装置30が本発明の制御手段に対応する。クラッチ機構25が本発明の回転制限手段に対応する。クラッチ機構25の係合状態が本発明の回転制限手段の制限状態に対応する。
(第2の形態)
 次に図6~図8を参照して本発明の第2の形態に係る駆動装置について説明する。図6は、この形態に係る駆動装置10Bのスケルトン図を示している。なお、この図において図1と共通の部分には同一の符号を付して説明を省略する。
 この形態では、動力分割機構20に、第1遊星歯車機構41と、第2遊星歯車機構42とが設けられている。これらの遊星歯車機構41、42はシングルピニオン型の遊星歯車機構である。第1遊星歯車機構41は、外歯歯車であるサンギヤS1と、サンギヤS1に対して同軸的に配置された内歯歯車であるリングギヤR1と、これらのギヤS1、R1に噛み合うピニオンギヤP1を自転可能かつサンギヤS1の周囲を公転可能に保持するキャリアC1とを備えている。以降では、これら第1遊星歯車機構41のサンギヤS1を第1サンギヤS1と呼び、リングギヤR1を第1リングギヤR1と呼び、キャリアC1を第1キャリアC1と呼ぶことがある。第2遊星歯車機構42も同様に、外歯歯車であるサンギヤS2と、サンギヤS2に対して同軸的に配置された内歯歯車であるリングギヤR2と、これらのギヤS2、R2に噛み合うピニオンギヤP2を自転可能かつサンギヤS2の周囲を公転可能に保持するキャリアC2とを備えている。以降では、これら第2遊星歯車機構42のサンギヤS2を第2サンギヤS2と呼び、リングギヤR2を第2リングギヤR2と呼び、キャリアC2を第2キャリアC2と呼ぶことがある。第1遊星歯車機構41及び第2遊星歯車機構42は、サンギヤ、キャリア、及びリングギヤの間の変速比が互いに同じになるように構成されている。
 この図に示すように、第1キャリアC1及び第2キャリアC2は、エンジン11の出力軸11aと一体回転するように連結されている。第1サンギヤS1は、第1MG12のロータ軸12aと連結されている。また、第1サンギヤS1は、第1ロック機構43と連結されている。第1ロック機構43は、第1サンギヤS1を回転不能にロックするロック状態と、第1サンギヤS1の回転を許容する解放状態とに切り替えることができる。第2サンギヤS2は、第2ロック機構44と連結されている。第2ロック機構44は、第2サンギヤS2を回転不能にロックするロック状態と、第2サンギヤS2の回転を許容する解放状態とに切り替えることができる。
 この図に示すようにエンジン11、第1MG12、動力分割機構20、第1ロック機構43、及び第2ロック機構44は、同一の軸線上に配置される。そして、この形態でも、動力分割機構20は、エンジン11と第1MG12との間に配置されている。第1ロック機構43及び第2ロック機構44は、動力分割機構20及び第1MG12を挟んでエンジン11と反対の側に配置されている。このように第1ロック機構43及び第2ロック機構44は、一方の端にまとめて配置されている。
 第1リングギヤR1は、第1ドライブギヤ22と一体回転するように連結されている。第2リングギヤR2は、第3ドライブギヤ45と一体回転するように連結されている。第3ドライブギヤ45は、カウンタ軸17に設けられた第3ドリブンギヤ46と噛み合っている。第1ドライブギヤ22と第1ドリブンギヤ23のギヤ比(以下、第1ギヤ比と称することがある。)γ1には、第3ドライブギヤ45と第3ドリブンギヤ46のギヤ比(以下、第2ギヤ比と称することがある。)γ2より大きい値が設定されている。すなわち、これらのギヤ比はγ1>γ2の関係を有している。
 この駆動装置10Bでは、第1ロック機構43及び第2ロック機構44のそれぞれの状態を切り替えることにより、ローギヤモード、ハイギヤモード、及び無段変速モードに駆動モードを切り替えることができる。ローギヤモードでは、第1ロック機構43をロック状態に切り替え、かつ第2ロック機構44を解放状態に切り替える。ハイギヤモードでは、第2ロック機構44をロック状態に切り替え、かつ第1ロック機構43を解放状態に切り替える。また、第1MG12のトルクをゼロにする。無段変速モードでは、第1ロック機構43及び第2ロック機構44をいずれも解放状態に切り替える。
 図7は、ローギヤモードのときの駆動装置10Bの共線図の一例を示している。図8は、ハイギヤモードのときの駆動装置10Bの共線図の一例を示している。なお、図中の「ENG」はエンジン11を示し、「MG1」は第1MG12を示している。また、「S1」は第1サンギヤS1を示し、「R1」は第1リングギヤR1を示し、「C1」は第1キャリアC1を示している。「S2」は第2サンギヤS2を示し、「R2」は第2リングギヤR2を示し、「C2」は第2キャリアC2を示している。「D1」は第1ドライブギヤ22を示し、「D3」は第3ドライブギヤ45を示している。図中の実線L21は、第1遊星歯車機構41の各回転要素の関係を示している。破線L22は、第2遊星歯車機構42の各回転要素の関係を示している。
 ローギヤモードでは第1ロック機構43がロック状態に切り替えられる。そのため、第1サンギヤS1が回転不能にロックされる。一方、第2ロック機構44は解放状態に切り替えられるので、第2サンギヤS2は空転する。この場合、エンジン11の回転は第1遊星歯車機構41、第1ドライブギヤ22、及び第1ドリブンギヤ23を介してカウンタ軸17に伝達される。
 ハイギヤモードでは、第2ロック機構44がロック状態に切り替えられる。そのため、第2サンギヤS2が回転不能にロックされる。一方、第1ロック機構43は解放状態に切り替えられる。また、第1MG12のトルクをゼロにする。そのため、第1サンギヤS1及びロータ軸12aが空転する。従って、この場合、エンジン11の回転は第2遊星歯車機構42、第3ドライブギヤ45、及び第3ドリブンギヤ46を介してカウンタ軸17に伝達される。上述したように第2ギヤ比γ2は、第1ギヤ比γ1より小さい。そのため、エンジン11の回転数が同じであれば、ローギヤモードよりもハイギヤモードの方がカウンタ軸17の回転数が高くなる。
 無段変速モードでは、第1ロック機構43及び第2ロック機構44がいずれも解放状態に切り替えられる。そのため、この場合には第1MG12の回転数を変化させることにより、エンジン11の回転数と第1ドライブギヤ22の回転数との比を連続的に変化させることができる。
 第1ロック機構43及び第2ロック機構44は、車両制御装置30にて制御される。この形態でも、車両制御装置30は図4の駆動モード切替制御ルーチンを実行する。そして、この制御ルーチンを実行することにより第1ロック機構43及び第2ロック機構44を制御する。すなわち、充電制御では、駆動装置10Bの駆動モードがローギヤモードになるように第1ロック機構43及び第2ロック機構44を制御する。一方、アシスト制御では、駆動装置10Bの駆動モードがハイギヤモードになるように第1ロック機構43及び第2ロック機構44を制御する。
 以上に説明したように、この駆動装置10Bは、第1ロック機構43及び第2ロック機構44を備えているので、ローギヤモード、ハイギヤモード、及び無段変速モードの3つの駆動モードを実現できる。そして、これら2つのロック機構43、44は、動力分割機構20及び第1MG12を挟んでエンジン11と反対の側に配置される。そのため、ロック機構43、44の大型化を抑制できる。従って、駆動装置10Bを小型化し、車両1への搭載性を向上できる。
 また、この形態でも2つのロック機構43、44が配置されている軸線とは別の軸線上に第2MG13が配置されるので、駆動装置10Bの回転軸線方向の長さを短縮することができる。
 そして、駆動装置10Bでも、駆動モード切替条件が成立した場合には充電制御又はアシスト制御が実行される。この形態のローギヤモード及びハイギヤモードでも、エンジン12の動力をカウンタ軸17に伝達するための反力を第1MG12から出力する必要がない。そのため、第1MG12で消費されるエネルギを低減できる。そして、エンジン11の動作点が最適効率ラインL13上になるように第2MG13を制御するので、燃費を向上させることができる。従って、駆動装置10Bのエネルギ効率を改善することができる。
 なお、この形態では、第1遊星歯車機構41及び第2遊星歯車機構42が本発明の差動機構に対応する。第1ロック機構43が本発明のロック機構に対応する。第2ロック機構44が本発明の回転制限手段に対応する。第2ロック機構44のロック状態が本発明の回転制限手段の制限状態に対応する。第1ドライブギヤ22及び第1ドリブンギヤ23が、本発明の第1ギヤ比のギヤ列に対応する。第3ドライブギヤ45及び第3ドリブンギヤ46が本発明の第2ギヤ比のギヤ列に対応する。
 本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明の駆動装置に設けられる遊星歯車機構は、シングルピニオン型の遊星歯車機構に限定されない。本発明の駆動装置では、ダブルピニオン型の遊星歯車機構を使用してもよい。ただし、この場合には各形態におけるリングギヤとキャリアの接続先が適宜に変更される。

Claims (5)

  1.  内燃機関と、
     第1モータ・ジェネレータと、
     相互に差動回転可能な複数の回転要素を有する差動機構を含み、前記内燃機関及び前記第1モータ・ジェネレータが連結された動力分割機構と、
     前記動力分配機構から出力された動力が伝達される出力部材と、
     前記出力部材に動力を出力可能な第2モータ・ジェネレータと、を備えたハイブリッド車両の駆動装置において、
     前記複数の回転要素のうち前記第1モータ・ジェネレータと連結された回転要素を回転不能にロックするロック状態と、その回転要素の回転を許容する解放状態とに切り替え可能なロック機構と、
     前記複数の回転要素のうち前記第1モータ・ジェネレータと連結された回転要素とは別の回転要素の回転を制限する制限状態と、その回転要素の回転の制限を解除する解放状態とに切替可能な回転制限手段と、をさらに備え、
     前記内燃機関、前記第1モータ・ジェネレータ、前記動力分割機構、前記ロック機構、及び前記回転制限手段が、同一軸線上に配置され、
     前記内燃機関と前記第1モータ・ジェネレータとの間に前記動力分割機構が配置され、
     前記ロック機構及び前記回転制限手段が、前記第1モータ・ジェネレータを挟んで前記内燃機関及び前記動力分割機構と反対の側に配置されている駆動装置。
  2.  前記動力分割機構は、前記差動機構としてシングルピニオン型の遊星歯車機構を含み、
     前記複数の回転要素は、前記遊星歯車機構のサンギヤ、リングギヤ、及びキャリアであり、
     前記内燃機関は、前記リングギヤと連結され、
     前記第1モータ・ジェネレータは、前記サンギヤと連結され、
     前記出力部材は、前記キャリアと動力伝達可能に接続され、
     前記回転制限手段は、前記制限状態において前記サンギヤと前記リングギヤとが一体回転するように連結し、前記解放状態において前記サンギヤと前記リングギヤとの連結を解除する請求項1に記載の駆動装置。
  3.  前記動力分割機構は、前記差動機構としてシングルピニオン型の第1遊星歯車機構及び第2遊星歯車機構を含み、
     前記複数の回転要素は、前記第1遊星歯車機構のサンギヤ、リングギヤ、及びキャリア、及び前記第2遊星歯車機構のサンギヤ、リングギヤ、及びキャリアであり、
     前記内燃機関は、前記第1遊星歯車機構のキャリア及び前記第2遊星歯車機構のキャリアと連結され、
     前記第1モータ・ジェネレータは、前記第1遊星歯車機構のサンギヤと連結され、
     前記第1遊星歯車機構のリングギヤは、第1ギヤ比のギヤ列を介して前記出力部材と動力伝達可能に接続され、
     前記第2遊星歯車機構のリングギヤは、前記第1ギヤ比より小さい第2ギヤ比のギヤ列を介して前記出力部材と動力伝達可能に接続され、
     前記回転制限手段は、前記制限状態において前記第2遊星歯車機構のサンギヤを回転不能にロックし、前記解放状態において前記第2遊星歯車機構のサンギヤの回転を許容する請求項1に記載の駆動装置。
  4.  前記第2モータ・ジェネレータは、前記ロック機構及び前記回転制限手段が配置されている軸線とは別の軸線上に配置されている請求項1~3のいずれか一項に記載の駆動装置。
  5.  前記第1モータ・ジェネレータ及び前記第2モータ・ジェネレータが電気的に接続されたバッテリと、
     所定のモード切替条件が成立し、かつ前記バッテリの充電状態が所定の判定値以下の場合には、前記ロック機構を前記ロック状態に切り替えるとともに前記回転制限手段を前記解放状態に切り替え、かつ前記内燃機関の動作点が前記内燃機関の熱効率が最高になるように定められた所定の動作線上に移動するように前記第2モータ・ジェネレータで発電を行い、前記モード切替条件が成立し、かつ前記バッテリの充電状態が前記判定値より大きい場合には、前記ロック機構を前記解放状態に切り替えるとともに前記回転制限手段を前記制限手段に切り替え、かつ前記内燃機関の動作点が前記内燃機関の熱効率が最高になるように定められた所定の動作線上に移動するように前記第2モータ・ジェネレータからトルクを出力させる制御手段と、
     をさらに備えている請求項1~4のいずれか一項に記載の駆動装置。
PCT/JP2013/063322 2013-05-13 2013-05-13 ハイブリッド車両の駆動装置 WO2014184854A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157032516A KR20150142052A (ko) 2013-05-13 2013-05-13 하이브리드 차량의 구동 장치
DE112013007066.9T DE112013007066T5 (de) 2013-05-13 2013-05-13 Antriebssystem für ein Hybridfahrzeug
PCT/JP2013/063322 WO2014184854A1 (ja) 2013-05-13 2013-05-13 ハイブリッド車両の駆動装置
JP2015516777A JPWO2014184854A1 (ja) 2013-05-13 2013-05-13 ハイブリッド車両の駆動装置
BR112015028616A BR112015028616A2 (pt) 2013-05-13 2013-05-13 sistema de acionamento para veículo híbrido
CN201380076526.1A CN105209278A (zh) 2013-05-13 2013-05-13 混合动力车辆的驱动装置
US14/890,533 US9440526B2 (en) 2013-05-13 2013-05-13 Drive system for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063322 WO2014184854A1 (ja) 2013-05-13 2013-05-13 ハイブリッド車両の駆動装置

Publications (1)

Publication Number Publication Date
WO2014184854A1 true WO2014184854A1 (ja) 2014-11-20

Family

ID=51897875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063322 WO2014184854A1 (ja) 2013-05-13 2013-05-13 ハイブリッド車両の駆動装置

Country Status (7)

Country Link
US (1) US9440526B2 (ja)
JP (1) JPWO2014184854A1 (ja)
KR (1) KR20150142052A (ja)
CN (1) CN105209278A (ja)
BR (1) BR112015028616A2 (ja)
DE (1) DE112013007066T5 (ja)
WO (1) WO2014184854A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150673A (ja) * 2015-02-18 2016-08-22 トヨタ自動車株式会社 ハイブリッド車両
CN106476794A (zh) * 2015-09-02 2017-03-08 现代自动车株式会社 环境友好型车辆的发动机操作控制系统及方法
US9840142B2 (en) 2013-05-13 2017-12-12 Toyota Jidosha Kabushiki Kaisha Drive system for hybrid vehicle

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160066648A (ko) * 2014-12-02 2016-06-13 현대자동차주식회사 하이브리드 차량용 파워트레인
JP6330969B2 (ja) * 2015-03-23 2018-05-30 アイシン・エィ・ダブリュ株式会社 制御装置
JP6376074B2 (ja) * 2015-08-10 2018-08-22 トヨタ自動車株式会社 車両の動力伝達装置
DE102015222692A1 (de) * 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102016008173A1 (de) * 2016-07-02 2018-01-04 Audi Ag Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Antriebseinrichtung
JP6569620B2 (ja) * 2016-07-29 2019-09-04 トヨタ自動車株式会社 ハイブリッド車の制御装置
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
DE102017207827A1 (de) * 2017-05-09 2018-11-15 Volkswagen Aktiengesellschaft Antriebsanordnung für ein Hybridfahrzeug
US10807458B2 (en) * 2017-08-08 2020-10-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Axle driving apparatus for hybrid utility vehicle
FR3071894B1 (fr) * 2017-10-03 2021-10-01 Renault Sas Transmission infiniment variable a train diviseur de puissance et procede de fonctionnement de celle-ci
KR102347763B1 (ko) * 2017-10-25 2022-01-05 현대자동차주식회사 하이브리드 차량의 페일 세이프 제어 방법
FR3073783B1 (fr) * 2017-11-21 2020-01-17 Renault S.A.S Transmission infiniment variable a train diviseur de puissance a trois modes de fonctionnement et procede de fonctionnement de celle-ci
FR3077109B1 (fr) * 2018-01-25 2022-10-14 Renault Sas Transmission infiniment variable a train diviseur de puissance et procede de fonctionnement de celle-ci
DE102019105994A1 (de) * 2019-03-08 2020-09-10 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebsstrang und Kraftfahrzeug mit einem solchen Antriebsstrang
CN112440719B (zh) * 2019-08-30 2022-05-13 比亚迪股份有限公司 混合动力装置和车辆

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036880A (ja) * 2008-07-11 2010-02-18 Aisin Aw Co Ltd ハイブリッド駆動装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255228A (ja) * 1985-09-03 1987-03-10 Toyota Motor Corp 四輪駆動装置
US5823281A (en) * 1995-05-25 1998-10-20 Kabushikikaisha Equos Reseach Hybrid vehicle
JP3454036B2 (ja) * 1995-11-13 2003-10-06 トヨタ自動車株式会社 ハイブリッド駆動装置
JP3656841B2 (ja) * 2001-12-27 2005-06-08 アイシン・エィ・ダブリュ株式会社 電動機付駆動装置
JP3891146B2 (ja) 2003-05-22 2007-03-14 トヨタ自動車株式会社 ハイブリッド車の駆動装置
JP4192814B2 (ja) 2004-03-16 2008-12-10 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4704767B2 (ja) * 2004-12-10 2011-06-22 Gknドライブラインジャパン株式会社 車両駆動制御装置
KR101260535B1 (ko) 2005-03-15 2013-05-06 닛뽄 가야쿠 가부시키가이샤 에폭시 수지, 에폭시 수지 조성물, 이것을 사용한프리프레그 및 적층판
JP4158122B2 (ja) * 2006-05-25 2008-10-01 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP4344394B2 (ja) * 2007-06-18 2009-10-14 日産自動車株式会社 トルクコンバータのロックアップ制御装置
US7766791B2 (en) * 2008-02-29 2010-08-03 Caterpillar Inc System for protecting a powertrain
JP2010279132A (ja) * 2009-05-27 2010-12-09 Toshiba Corp Dc−dcコンバータ
CN101992679B (zh) * 2009-08-24 2013-09-25 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置
DE112010005487T5 (de) 2010-04-14 2013-03-21 Toyota Jidosha Kabushiki Kaisha Fahrzeugantriebseinheit
US20110269595A1 (en) * 2010-04-30 2011-11-03 American Axle & Manufacturing Inc. Control strategy for operating a locking differential
JP5447264B2 (ja) * 2010-07-30 2014-03-19 株式会社デンソー 車両用動力伝達装置
GB201018520D0 (en) * 2010-11-03 2010-12-15 Meritor Technology Inc A braking apparatus for a vehicle and a vehicle comprising said braking apparatus
FR2973302B1 (fr) 2011-03-29 2016-12-02 Peugeot Citroen Automobiles Sa Vehicule comportant une chaine de traction hybride thermique/hydraulique a repartition de puissance
JP5622050B2 (ja) * 2011-04-18 2014-11-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2013051158A1 (ja) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
US9090233B2 (en) * 2012-03-15 2015-07-28 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic pressure control apparatus
CN105228843A (zh) 2013-05-13 2016-01-06 丰田自动车株式会社 混合动力车辆用驱动装置
JP5994934B2 (ja) 2013-05-13 2016-09-21 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
US9162569B2 (en) * 2013-07-30 2015-10-20 Arvinmeritor Technology, Llc Method of controlling a differential lock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036880A (ja) * 2008-07-11 2010-02-18 Aisin Aw Co Ltd ハイブリッド駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840142B2 (en) 2013-05-13 2017-12-12 Toyota Jidosha Kabushiki Kaisha Drive system for hybrid vehicle
JP2016150673A (ja) * 2015-02-18 2016-08-22 トヨタ自動車株式会社 ハイブリッド車両
CN106476794A (zh) * 2015-09-02 2017-03-08 现代自动车株式会社 环境友好型车辆的发动机操作控制系统及方法
CN106476794B (zh) * 2015-09-02 2020-11-20 现代自动车株式会社 环境友好型车辆的发动机操作控制系统及方法

Also Published As

Publication number Publication date
JPWO2014184854A1 (ja) 2017-02-23
US9440526B2 (en) 2016-09-13
KR20150142052A (ko) 2015-12-21
BR112015028616A2 (pt) 2017-07-25
US20160107518A1 (en) 2016-04-21
DE112013007066T5 (de) 2016-02-04
CN105209278A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2014184854A1 (ja) ハイブリッド車両の駆動装置
JP6863231B2 (ja) ハイブリッド車両の制御装置
US9174523B2 (en) Power transmission system of hybrid electric vehicle
JP5812183B2 (ja) ハイブリッド車両の駆動装置
JP2008105531A (ja) 動力出力装置およびハイブリッド自動車
US9193253B2 (en) Power transmission system of hybrid electric vehicle
US9260001B2 (en) Power transmission system of hybrid electric vehicle
US9702437B2 (en) Power transmission system of hybrid electric vehicle
KR101646114B1 (ko) 하이브리드 자동차의 동력전달장치
JP5994934B2 (ja) ハイブリッド車両用駆動装置
US9308809B2 (en) Hybrid powertrain
WO2015098943A1 (ja) 車両用駆動装置
WO2013145193A1 (ja) ハイブリッド車両用駆動装置
US9701189B2 (en) Power transmission system of hybrid electric vehicle
JP6235389B2 (ja) ハイブリッド車両用駆動装置
JP2009166793A (ja) ハイブリッド駆動装置
JP2014019328A (ja) ハイブリッド車両の制御装置
WO2013183164A1 (ja) ハイブリッド車両の制御装置
JP2011255706A (ja) ハイブリッド車両の駆動装置
KR20180067301A (ko) 하이브리드 차량용 동력전달장치
JP5282811B2 (ja) ハイブリッド車の駆動装置
JP4285579B2 (ja) 動力出力装置およびハイブリッド自動車
KR20150100513A (ko) 하이브리드 차량용 구동 장치의 제어 장치
KR101490962B1 (ko) 하이브리드 자동차의 동력전달장치
JP6007768B2 (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516777

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890533

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032516

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013007066

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028616

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13884485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015028616

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151113