WO2014181721A1 - スカンジウム回収方法 - Google Patents

スカンジウム回収方法 Download PDF

Info

Publication number
WO2014181721A1
WO2014181721A1 PCT/JP2014/061783 JP2014061783W WO2014181721A1 WO 2014181721 A1 WO2014181721 A1 WO 2014181721A1 JP 2014061783 W JP2014061783 W JP 2014061783W WO 2014181721 A1 WO2014181721 A1 WO 2014181721A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
solution
chelate resin
extraction
eluent
Prior art date
Application number
PCT/JP2014/061783
Other languages
English (en)
French (fr)
Inventor
佳智 尾崎
俊彦 永倉
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP14794541.4A priority Critical patent/EP2907883B1/en
Priority to CN201480009271.1A priority patent/CN104995321B/zh
Priority to CA2890572A priority patent/CA2890572C/en
Priority to AU2014263634A priority patent/AU2014263634B2/en
Priority to US14/437,767 priority patent/US9399804B2/en
Publication of WO2014181721A1 publication Critical patent/WO2014181721A1/ja
Priority to PH12015500821A priority patent/PH12015500821B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering scandium, and more particularly, to a method for efficiently recovering scandium contained in nickel oxide ore using a chelate resin and solvent extraction.
  • Scandium is extremely useful as an additive for high-strength alloys and as an electrode material for fuel cells. However, since the production amount is small and expensive, it has not been widely used.
  • nickel oxide ores such as laterite or limonite ore contain a small amount of scandium.
  • nickel oxide ore since nickel oxide ore has a low nickel-containing grade, it has not been industrially used as a nickel raw material for a long time. Therefore, there has been little research on industrially recovering scandium from nickel oxide ore.
  • Patent Document 5 2-ethylhexylsulfonic acid-mono-2-ethylhexyl is added to a scandium-containing solution in an aqueous phase containing at least one of iron, aluminum, calcium, yttrium, manganese, chromium, and magnesium in addition to scandium.
  • a slurry containing Sc (OH) 3 obtained by filtering this was dissolved in hydrochloric acid to obtain a scandium chloride aqueous solution, and oxalic acid was added thereto to form a scandium oxalate precipitate.
  • the precipitate was filtered, and iron, manganese, chromium, magnesium, It has been proposed to obtain high-purity scandium oxide by separating aluminum and calcium into a filtrate and then calcining.
  • the nickel oxide ore contains various impurities such as iron, aluminum and chromium in addition to scandium.
  • impurities such as iron, aluminum and chromium in addition to scandium.
  • chromium ions and trivalent iron ions have a property of strongly adsorbing to the chelate resin, and therefore once chromium ions and trivalent iron ions are adsorbed to the chelate resin, the chelate resin is made from chromium or iron. Is difficult to separate, and the amount of scandium adsorbed on the chelate resin thereafter decreases, so that the equipment efficiency decreases. Further, since both the scandium and the impurities are adsorbed on the chelate resin, there is a problem that the quality of the recovered scandium is lowered when the chelate resin is reused after the impurities are adsorbed.
  • Patent Document 5 when the process using solvent extraction as in Patent Document 5 is applied to recovering scandium from an acidic solution after recovering nickel or cobalt from nickel oxide ore, it is industrially disadvantageous in terms of cost. There was a problem. This is because the scandium contained in the nickel oxide ore is much smaller than nickel, and the concentration of scandium in the slurry is determined by the slurry concentration determined from the amount of sulfuric acid added to extract nickel. At most, it is only about several to several tens of mg / l, and the amount of liquid to be handled becomes enormous.
  • the object of the present invention is to efficiently recover high-quality scandium from nickel oxide ore.
  • the present inventors have found that scandium can be separated by a chelate resin and further subjected to solvent extraction to obtain a high-purity scandium compound, thereby completing the present invention. It came to do.
  • the present invention provides the following.
  • the present invention is a leaching process in which nickel oxide ore containing scandium, aluminum and chromium is charged together with sulfuric acid into a pressure vessel and separated into a leaching solution and a leaching residue under high temperature and high pressure,
  • the chelate resin is a resin having iminodiacetic acid as a functional group
  • the ion exchange step causes the post-sulfurization solution to contact the chelate resin to adsorb the scandium to the chelate resin.
  • the obtained chelate resin is contacted with 0.3N or more and less than 3N sulfuric acid to obtain the scandium eluate, and the scandium elution step is contacted with 3N or more sulfuric acid, and the chelate resin is used in the adsorption step.
  • the extractant is an organic solvent having trioctylphosphine oxide as a functional group
  • the scandium eluent and the extractant are mixed to extract scandium.
  • a neutralizing agent is added to the scandium eluent to adjust the pH to a range of 2 or more and 4 or less, then a reducing agent is added, and the redox potential of the scandium eluent is Adjusting the pH of the scandium eluent by adjusting the potential from 200 mV to 300 mV or less with the potential using the silver-silver chloride electrode as the reference electrode, and then adjusting the pH to the range of 1 to 2.5 by adding sulfuric acid It is a scandium collection
  • the present invention further includes an oxidation step for oxidizing scandium contained in the scandium eluent obtained in the ion exchange step, and the oxidation step includes a neutralizing agent in the scandium eluent.
  • the oxidation step includes a neutralizing agent in the scandium eluent.
  • hydrochloric acid is added to the starch obtained by this adjustment to obtain a redissolved solution, and then oxalic acid is added to the redissolved solution to scandium oxalate.
  • the crystal is dissolved in sulfuric acid and / or hydrochloric acid, and the solution of the crystal is subjected to the solvent extraction step after the oxidization step.
  • the scandium recovery method according to any one of the above.
  • the present invention is the scandium recovery method according to any one of (1) to (5), wherein the scandium precipitation step is a step of adding oxalic acid to the back extract.
  • any one of (1) to (5), wherein the scandium precipitation step is a step of adding a neutralizing agent to the back extract and adjusting the pH to a range of 8 to 9.
  • high-quality scandium can be efficiently recovered from nickel oxide ore.
  • FIG. 1 is a view for explaining a scandium recovery method according to the present invention.
  • the present invention is a leaching step S1 in which nickel oxide ore containing scandium, aluminum and chromium is charged together with sulfuric acid into a pressure vessel and separated into a leaching solution and a leaching residue under high temperature and high pressure, and the leaching solution is neutralized.
  • a neutralizing step S2 for adding an agent to obtain a neutralized starch and a post-neutralized solution; and a sulfurizing step S3 for adding a sulfiding agent to the post-neutralized solution and separating the nickel sulfide and the post-sulfurized solution;
  • the post-sulfurization solution is contacted with a chelate resin to adsorb the scandium to the chelate resin, and an ion exchange step S4 for obtaining a scandium eluate, and the scandium eluate is brought into contact with an extractant to obtain a back extract.
  • Step S6 a scandium precipitation step S7 for adding a neutralizing agent or oxalic acid to the back extract to obtain a precipitate, and a roasting step S8 for drying and baking the precipitate to obtain scandium oxide.
  • the present invention is characterized in that ion exchange and solvent extraction are used in combination in recovering and purifying scandium.
  • impurities can be separated with higher quality, and stable operation can be performed with compact equipment even from a raw material containing many impurities such as nickel oxide ore.
  • an oxidation step S5 that oxidizes scandium contained in the scandium eluent obtained in the ion exchange step S4 may be performed. Good.
  • a neutralizing agent is added to the scandium eluent obtained in the ion exchange step S4 (step S101), then a reducing agent is added (step S102), and then sulfuric acid is added (step S103).
  • a neutralizing agent is added to the scandium eluent obtained in the ion exchange step S4 (step S101), then a reducing agent is added (step S102), and then sulfuric acid is added (step S103).
  • the ion exchange step S4 may be performed again using this solution after the pH adjustment.
  • ⁇ Leaching step S1> nickel oxide ore containing scandium, aluminum, and chromium is charged into a pressure vessel together with sulfuric acid, and is solid-liquid separated into a leachate and a leach residue under high temperature and pressure.
  • the leaching step S1 may be performed according to a conventionally known HPAL process, and is described in Patent Document 1, for example.
  • ⁇ Neutralization step S2> a neutralizing agent is added to the leachate obtained in the leaching step S1 to obtain a neutralized starch and a neutralized solution.
  • Valuable metals such as scandium and nickel are contained in the solution after neutralization, and most of impurities such as aluminum are contained in the neutralized starch.
  • a conventionally known neutralizing agent is sufficient, and examples thereof include calcium carbonate, slaked lime, and sodium hydroxide.
  • the neutralization step it is preferable to adjust the pH to a range of 1 to 4.
  • a pH of less than 1 is not preferable because neutralization is insufficient and the neutralized starch and the post-neutralized solution may not be separated. If the pH exceeds 4, not only impurities such as aluminum but also valuable metals such as scandium and nickel are included in the neutralized starch, which is not preferable.
  • ⁇ Sulfurization step S3> In the sulfiding step S3, a sulfiding agent is added to the neutralized solution to separate the sulfide and the sulfidized solution. Nickel, cobalt, zinc and the like are contained in the sulfide, and scandium and the like are contained in the post-sulfurized solution.
  • the sulfurizing agent may be any conventionally known one, and examples thereof include hydrogen sulfide gas, sodium sulfide, sodium hydrogen sulfide and the like.
  • the ion exchange step S4 includes an adsorption step S41 in which the sulfidized solution is brought into contact with the chelate resin to adsorb scandium to the chelate resin, and the adsorption step S41.
  • Sulfuric acid of 0.1N or less is brought into contact with the chelate resin adsorbing scandium, and an aluminum removal step S42 for removing aluminum adsorbed on the chelate resin in the adsorption step S41, and 0.3N or more in the chelate resin that has undergone this aluminum removal step S42
  • the type of chelate resin is not particularly limited, but is preferably a resin having iminodiacetic acid as a functional group.
  • the lower the pH range the smaller the amount of impurities contained in the nickel oxide ore. Therefore, the adsorption
  • the pH is less than 2
  • Al removal step S42 In the aluminum removal step S42, 0.1 N or less sulfuric acid is brought into contact with the chelate resin having adsorbed scandium in the adsorption step S41, and the aluminum adsorbed on the chelate resin is removed in the adsorption step S41.
  • the pH is preferably maintained in the range of 1 to 2.5, more preferably in the range of 1.5 to 2.0. If the pH is less than 1, not only aluminum but also scandium is removed from the chelate resin, which is not preferable. A pH exceeding 2.5 is not preferable because aluminum is not properly removed from the chelate resin.
  • the normality of sulfuric acid used in the eluent within a range of 0.3 N or more and less than 3 N, and more preferably within a range of 0.5 N or more and less than 2 N.
  • the normality is 3N or more, not only scandium but also chromium is contained in the scandium eluent, which is not preferable.
  • the normality is less than 0.3 N, scandium is not appropriately removed from the chelate resin, which is not preferable.
  • Chromium removal step S44 In the chromium removal step S44, 3N or more sulfuric acid is brought into contact with the chelate resin that has undergone the scandium elution step S43, and the chromium adsorbed on the chelate resin in the adsorption step S41 is removed.
  • iron may be contained as an impurity in nickel oxide ore.
  • the chelate resin that has adsorbed scandium in the adsorption step S41 is contacted with sulfuric acid having a normality smaller than that of the sulfuric acid used in the aluminum removal step S42, and the chelate resin in the adsorption step S41. It is preferable to remove the iron adsorbed on the surface.
  • the pH When removing iron, it is preferable to maintain the pH in the range of 1 to 3. If the pH is less than 1, not only iron but also scandium is removed from the chelate resin, which is not preferable. If the pH exceeds 3, iron is not appropriately removed from the chelate resin, which is not preferable.
  • a neutralizing agent is added to the scandium eluate obtained in the scandium elution step S43 to adjust the pH to a range of 2 to 4, preferably 2.7 to 3.3 centered on pH 3.
  • a reducing agent is added (step S102), and then sulfuric acid is added to adjust the pH to a range of 1 to 2.5, preferably 1.7 to 2 centering on pH 2.
  • step S103 is adjusted (step S103) to obtain a solution after the pH adjustment of the scandium eluent, and the adsorption step S41, the aluminum removal step S42 and the scandium elution step S43 are performed again using the solution after the pH adjustment. Preferably it is done.
  • the quality of the recovered scandium can be further enhanced.
  • the addition of the reducing agent is preferably carried out so that the oxidation-reduction potential (ORP) is maintained in a range in which the silver / silver chloride electrode is used as a reference electrode and exceeds 200 mV to 300 mV or less.
  • ORP oxidation-reduction potential
  • the sulfur content derived from the added sulfiding agent is precipitated as a fine solid, and the filter cloth is clogged in the filtration step after sulfidation, so that solid-liquid separation is deteriorated and productivity is increased.
  • the liquid is re-passed through the chelate resin, clogging or uneven liquid flow may occur in the resin tower, and uniform liquid flow cannot be performed.
  • the oxidation-reduction potential exceeds 300 mV, problems such as remaining iron ions adsorbing to the resin and inhibiting the adsorption of scandium may occur.
  • the neutralizing agent a conventionally known neutralizing agent is sufficient, and examples thereof include calcium carbonate.
  • the reducing agent may be a conventionally known reducing agent, and examples thereof include a sulfurizing agent such as hydrogen sulfide gas and sodium sulfide, sulfur dioxide gas, hydrazine, and metallic iron.
  • the chelate resin that has been used may be reused or a new chelate resin may be used, but from the viewpoint of preventing contamination of impurities. Therefore, it is preferable to reuse the chelate resin that has undergone the chromium removal step S44 or use a new chelate resin. In particular, by reusing the chelate resin that has undergone the chromium removal step S44, not only contamination of impurities can be prevented, but also the amount of chelate resin used can be suppressed.
  • the concentration of the recovered scandium increases. However, even if the scandium elution step S43 is repeated many times, the increase in the concentration of the recovered scandium is reduced.
  • the number of repetitions is preferably 8 times or less.
  • ⁇ Oxidation step S5> in order to remove impurities contained in the scandium eluent, the scandium contained in the scandium eluate obtained in the scandium elution step S43 is oxidized after the ion exchange step S4 and before the solvent extraction step S6. It is preferable to perform the oxidation step S5.
  • a neutralizing agent (hydroxide) is added to the scandium eluate obtained in the scandium elution step S43 to adjust the pH within the range of 8 to 9, thereby generating scandium hydroxide precipitate. , Solid-liquid separation.
  • a hydrochloric acid solution is added to scandium hydroxide (starch) to redissolve scandium as a hydrochloric acid acidic solution (re-dissolved solution).
  • oxalic acid is added to the hydrochloric acid acidic solution to precipitate it as scandium oxalate crystals, which are then dissolved in sulfuric acid and / or hydrochloric acid and subjected to the solvent extraction step S6.
  • the pH of oxalic acid is not particularly limited, but is preferably in the range of 1.0 to 1.5, for example. If the pH is too low, the amount of acid used increases, leading to an increase in cost, which is not preferable. If the pH is too high, impurities contained in the redissolved solution may precipitate, which may lower the scandium purity, which is not preferable.
  • the oxidation step S5 By providing the oxidation step S5, impurities contained in the scandium eluent can be significantly removed, and man-hours related to the ion exchange step S4 and the solvent extraction step S6 can be reduced.
  • concentration of the starting solution to be subjected to solvent extraction can be arbitrarily adjusted, it is possible to reduce the capital investment by reducing the equipment scale in the solvent extraction step S6 and to stabilize the operation by stabilizing the starting solution concentration. Also have.
  • ⁇ Solvent extraction step S6> In the solvent extraction step S6, the scandium eluent is brought into contact with the extractant to obtain a back extract.
  • the mode of the solvent extraction step S6 is not particularly limited, but an extraction step S61 in which the scandium eluent and the extractant are mixed and the scandium is extracted and separated into the extracted organic solvent and the extraction residual solution;
  • a scrubbing step S62 in which a hydrochloric acid solution or a sulfuric acid solution is mixed to separate impurities from the organic solvent after extraction to obtain an organic solvent after washing, and a back-extraction starting solution is mixed with the organic solvent after washing, and scandium is washed from the organic solvent after washing. It is preferable to include a back extraction step S63 for back-extracting to obtain a back extract.
  • extraction step S61 In the extraction step, scandium eluent and an organic solvent containing an extractant are mixed to selectively extract scandium into the organic solvent.
  • a solvate extractant containing phosphorus specifically, trioctylphosphine oxide (TOPO) because of selectivity with scandium.
  • trioctylphosphine oxide there are various trialkylphosphine oxides having different alkyl chains in trioctylphosphine oxide, and any of them can be suitably used.
  • the concentration of TOPO in the organic solvent is not particularly limited, but the extraction ability of scandium is about 1.8 g / l at a concentration of 5% by volume, and about 11.4 g / l at a concentration of 40% by volume. Considering phase separation during extraction, etc., the concentration of TOPO in the organic solvent is preferably 5% by volume or more and 20% by volume or less, more preferably around 10% by volume.
  • a hydrochloric acid solution or a sulfuric acid solution can be used as the solution (cleaning solution) used for scrubbing.
  • a hydrochloric acid solution a concentration range of 2.0 mol / l or more and 9.0 mol / l or less is preferable, and when using a sulfuric acid solution, a concentration range of 3.5 mol / l or more and 9.0 mol / l or less is preferable.
  • back extraction step S63 scandium is back extracted from the organic solvent from which scandium has been extracted.
  • water or a low-concentration acid solution is mixed with an organic solvent as a back extraction solution (back extraction start solution) to advance the reverse reaction during extraction, and the back extracted liquid containing scandium Is obtained.
  • the back extraction starting solution may be water, but phase separation from the organic phase may be poor. For this reason, it is preferable to use a low-concentration acid solution as the back extraction starting solution.
  • a hydrochloric acid solution or a sulfuric acid solution can be used as the acid solution.
  • the concentration is preferably less than 2.0 mol / l for a hydrochloric acid solution and less than 3.5 mol / l for a sulfuric acid solution.
  • the neutralizing agent is a conventionally known one.
  • the neutralizing agent is preferably sodium hydroxide.
  • oxalic acid By adding oxalic acid to the solution after back extraction, higher-grade scandium can be recovered than when neutralizing agent is added.
  • the amount of oxalic acid added is not particularly limited, but it is preferably 1.05 to 1.2 times the calculated amount of scandium contained in the back-extracted solution. If it is less than 1.05 times, the total amount of scandium contained in the solution after back extraction may not be recovered, which is not preferable. Exceeding 1.2 times is not preferable because it may lead to an increase in cost and the amount of an oxidizing agent necessary for decomposition of excess oxalic acid, for example, hypochlorous acid soda, increases.
  • the roasting step S8 is a step in which the precipitate obtained in the scandium precipitation step S7 is washed with water, dried and roasted. By going through the roasting step S8, extremely high-quality scandium oxide can be obtained.
  • the baking conditions are not particularly limited.
  • the baking may be performed in a tubular furnace at about 900 ° C. for about 2 hours.
  • the metal special grades listed in Table 1 were dissolved in 0.1 to 3N sulfuric acid, and the solution was functionalized with iminodiacetic acid.
  • the solution was passed through a column packed with a chelate resin (product name: Diaion CR11, manufactured by Mitsubishi Chemical Corporation).
  • metals there are four types of metals, scandium (Sc), aluminum (Al), chromium (Cr), and iron (Fe), and the metal concentrations in the solution are 0.3 mmol / L, 0.1 mol / L, and 0.01 mol, respectively. / L, 0.03 mol / L.
  • the solution after dissolving in concentrated sulfuric acid is adjusted to six types of pH 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 by adding slaked lime.
  • the solution was passed through the column.
  • the liquid temperature was 60 ° C.
  • the amount of adhesion to the chelate resin at this time was calculated by measuring the amount of the eluent and the concentration of the metal contained in the eluent. The results are shown in FIG.
  • the horizontal axis of FIG. 2 indicates the pH of the metal-containing solution that has passed therethrough, and the vertical axis (left) indicates the amount of metal adsorbed on 1 liter of chelate resin (unit: mmol / L).
  • the vertical axis (right) in FIG. 2 shows the ratio of the amount of scandium adsorbed to the amount of impurities adsorbed.
  • Sc / Al represents the ratio of the amount of scandium adsorbed to the amount of aluminum adsorbed
  • Sc / Cr represents the ratio of the amount of scandium adsorbed to the amount of chromium adsorbed
  • Sc / Fe represents the amount of iron adsorbed. The ratio of scandium adsorption is shown.
  • FIG. 2 shows that the preferred pH for adsorbing to the chelate resin varies depending on the type of metal. For example, if the metal is iron, it is easily adsorbed to the chelate resin at a relatively high pH, and if the metal is aluminum, then the metal is easily adsorbed to the chelate resin at a high pH, and the metal is scandium. If the metal is aluminum, it is easy to adsorb to the chelate resin at the next highest pH, and if the metal is chromium, it is easy to adsorb to the chelate resin at the lowest pH.
  • FIG. 4 shows the relationship between the number of washings with respect to the organic solvent and the metal ion concentration in the washing solution.
  • the impurity metal concentration to be eluted could be removed to a level of 0.001 g / l or less.
  • scandium remained at a loss of the order of 0.01 g / l, and only the impurities could be effectively removed without separating the scandium extracted into the organic solvent into the aqueous phase.
  • FIG. 5 shows the relationship between the number of back extraction operations and the concentration of each metal ion in the aqueous phase in the back extract.
  • the total amount of scandium in the liquid after three back extractions was 98.3% of the amount contained in the stock solution, and was almost extracted. Further, from FIG. 5, all the impurity elements could be reduced to less than 0.1 mg / l except for nickel.
  • [Roasting step S8] 100 grams of scandium hydroxide obtained in the above scandium precipitation step was transferred to a high-purity magnesia boat, placed in a quartz tube tube furnace, and heated to 850 ° C. while sending air at a flow rate of 2 liters per minute. Then, heating was maintained for 2 hours after the temperature was raised, and scandium hydroxide was roasted to obtain a roasted product. Thereafter, the obtained baked product was cooled to room temperature and taken out, and its form and impurity quality were analyzed by X-ray diffraction and emission spectroscopy.
  • the resulting roasted product was Sc 2 O 3 , all major impurities were removed to less than 1 ppm, and the elements detected by emission spectroscopic analysis were 4 ppm iron (Fe), calcium ( High-quality scandium oxide exceeding 99.99% was obtained, such as Ca), magnesium (Mg), antimony (Sb), and silicon (Si) were all less than 1 ppm.
  • Example 2 Re-adsorption of the scandium eluent obtained in the scandium elution step S43
  • the pH of the scandium eluate obtained in Example 1 was adjusted to 3, and then the oxidation-reduction potential was a value using the silver-silver chloride electrode as a reference electrode.
  • a reducing agent was added so as to be ⁇ 200 mV or less, and then adjusted with sulfuric acid so that the pH was in the range of 1 to 2.5.
  • Example 2 scandium eluent was passed through 4 ml of the same type of chelate resin as in Example 1 under the same conditions as in Example 1, and then the same 0.1N, 1N, and 3N sulfuric acid solution as in Example 1 Washing and elution were respectively carried out to obtain a resorbed aluminum cleaning solution, a resorbed scandium eluent, and a resorbed chromium eluent.
  • the composition of the re-adsorbed aluminum cleaning solution was 3 mg / l for Al and 0.24 g / l for Sc, and all the other elements mentioned above were below the lower limit.
  • the composition of the re-adsorbed scandium eluent was 1 mg / l for Fe and 0.4 g / l for Sc, and other than that, the lower limit. A scandium quality of 99.8% was obtained.
  • the composition of the resorbed chromium eluent was 1 mg / l for both Fe and Sc, and all other elements were below the lower limit. It was confirmed that the re-adsorption improves the quality of scandium.
  • Example 3 Purification of Scandium Eluent
  • the scandium eluent S43 was repeated several times to purify the scandium eluent. That is, the scandium elution step S43 was again performed on the scandium eluate obtained in the scandium elution step S43, and the composition of the scandium eluate was measured again after increasing the concentration of scandium.
  • the horizontal axis of FIG. 3 indicates the number of times that the scandium elution step S43 is repeated, and the vertical axis indicates the concentration of scandium contained in the scandium eluent after the repetition.
  • the dotted line of FIG. 3 is an approximate line by the least square method. According to FIG. 3, the more the scandium elution step S43 is repeated, the higher the concentration of recovered scandium. However, even if it is excessively repeated, the degree of increase in the concentration of recovered scandium is reduced. It can be seen that the number of times of repeating the scandium elution step S43 is preferably 8 or less.
  • Example 4 In the scandium precipitation step S7, when oxalic acid is added to the back extract, the solution is processed under the same conditions as in Example 1 above, and the back extract after the back extraction obtained in the solvent extraction step S6. Dissolve crystals of oxalic acid dihydrate (manufactured by Mitsubishi Gas Co., Ltd.), which is twice the calculated amount of scandium contained in, and stir and mix for 60 minutes to obtain a white crystalline precipitate of scandium oxalate Was generated. The produced white crystalline precipitate was filtered by suction, washed with pure water, and dried at 105 ° C. for 8 hours.
  • oxalic acid dihydrate manufactured by Mitsubishi Gas Co., Ltd.
  • the dried oxalate was roasted in the same manner as in Example 1 and analyzed by emission spectroscopy.
  • iron could be reduced to 1 ppm or less.
  • it showed good separability against chromium and sulfur, and was also effective in separating phosphorus, sulfur, selenium, uranium and samarium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 ニッケル酸化鉱から高品位のスカンジウムを効率よく回収する。 本発明は、Ni酸化鉱を硫酸とともに加圧容器に装入し、高温高圧下で浸出液と浸出残渣とに固液分離する浸出工程S1と、浸出液に中和剤を加え、中和澱物と中和後液とを得る中和工程S2と、中和後液に硫化剤を添加し、ニッケル硫化物と硫化後液とに分離する硫化工程S3と、硫化後液をキレート樹脂に接触させてScをキレート樹脂に吸着させ、Sc溶離液を得るイオン交換工程S4と、Sc溶離液を抽出剤に接触させ、逆抽出液を得る溶媒抽出工程S6と、逆抽出液に中和剤又はシュウ酸を加え、沈澱物を得るSc沈澱工程S7と、沈殿物を乾燥、焙焼して、酸化Scを得る焙焼工程S8とを含む。

Description

スカンジウム回収方法
 本発明は、スカンジウムの回収方法、より詳しくは、ニッケル酸化鉱石に含まれるスカンジウムを、キレート樹脂及び溶媒抽出を用いて効率よく回収する方法に関する。
 スカンジウムは、高強度合金の添加剤や燃料電池の電極材料として極めて有用である。しかしながら、生産量が少なく、高価であるため、広く用いられるには至っていない。
 ところで、ラテライト鉱やリモナイト鉱等のニッケル酸化鉱には、微量のスカンジウムが含まれている。しかしながら、ニッケル酸化鉱では、ニッケル含有品位が低いため、長らく、ニッケル酸化鉱をニッケル原料として工業的に利用されてこなかった。そのため、ニッケル酸化鉱からスカンジウムを工業的に回収することもほとんど研究されていなかった。
 しかしながら、近年、ニッケル酸化鉱を硫酸とともに加圧容器に装入し、240~260℃程度の高温に加熱してニッケルを含有する浸出液と浸出残渣とに固液分離するHPALプロセスが実用化されつつある。このHPALプロセスで得た浸出液に対し、中和剤を添加して不純物が分離され、次いで硫化剤を添加してニッケルをニッケル硫化物として回収され、このニッケル硫化物を既存のニッケル製錬工程で処理して電気ニッケルやニッケル塩化合物が得られている。
 上記のようなHPALプロセスを用いる場合、ニッケル酸化鉱に含まれるスカンジウムは、ニッケルとともに浸出液に含まれる(特許文献1参照)。そして、HPALプロセスで得た浸出液に対し、中和剤を添加して不純物を分離し、次いで硫化剤を添加すると、ニッケルはニッケル硫化物として回収される一方、スカンジウムは、硫化剤添加後の酸性溶液に含まれるため、HPALプロセスを使用することで、ニッケルとスカンジウムとを効果的に分離できる。
 そして、上記酸性溶液からスカンジウムを回収する方法として、イミノジ酢酸塩を官能基とするキレート樹脂にスカンジウムを吸着させて不純物と分離し、濃縮することが提案されている(特許文献2~4参照)。
 ところで、ニッケル酸化鉱石から溶媒抽出を用いてスカンジウムを回収する方法も提案されている(特許文献5参照)。特許文献5では、スカンジウムの他に少なくとも鉄、アルミニウム、カルシウム、イットリウム、マンガン、クロム、マグネシウムの1種以上を含有する水相の含スカンジウム溶液に、2-エチルヘキシルスルホン酸-モノ-2-エチルヘキシルをケロシンで希釈した有機溶媒を加えて、スカンジウム成分を有機溶媒中に抽出し、次いで、有機溶媒中にスカンジウム共に抽出されたイットリウム、鉄、マンガン、クロム、マグネシウム、アルミニウム、カルシウムを分離するために、塩酸水溶液を加えてスクラビングを行い、イットリウム、鉄、マンガン、クロム、マグネシウム、アルミニウム、カルシウムを除去した後、有機溶媒中にNaOH水溶液を加えて、有機溶媒中に残存するスカンジウムをSc(OH)を含むスラリーとし、これを濾過して得たSc(OH)を塩酸で溶解し、塩化スカンジウム水溶液を得、これにシュウ酸を加えてシュウ酸スカンジウム沈殿とし、沈殿を濾過し、鉄、マンガン、クロム、マグネシウム、アルミニウム、カルシウムを濾液中に分離した後、仮焼することにより高純度な酸化スカンジウムを得ることが提案されている。
特開平3-173725号公報 特開平1-133920号公報 特開平9-176756号公報 特開平9-194211号公報 特開平9-291320号公報
 しかしながら、特許文献1~4に記載の方法を用いたとしても、ニッケル酸化鉱には、スカンジウムのほかにも鉄、アルミ、クロム等様々な不純物も含有している。中でも、クロムイオンや3価の形態の鉄イオンは、上記キレート樹脂と強固に吸着する性質を有するため、いったんクロムイオンや3価の鉄イオンがキレート樹脂に吸着すると、該キレート樹脂からクロムや鉄を分離することが難しくなり、その後にキレート樹脂に吸着するスカンジウムの量が減少するため、設備効率が低下する。また、キレート樹脂には、スカンジウムと不純物との両方が吸着しているため、不純物が吸着した後にキレート樹脂を再利用すると、回収されるスカンジウムの品位が低下する等の課題がある。
 また、特許文献5のような溶媒抽出を用いたプロセスをニッケル酸化鉱からニッケルやコバルトを回収した後の酸性溶液からスカンジウムを回収することに適用した場合、工業的にはコスト的に不利となる課題があった。これは、ニッケル酸化鉱石中に含有されるスカンジウムは、ニッケルに比べてもさらにごく微量であり、ニッケルを抽出するのに必要な硫酸添加量から決定されるスラリー濃度では、スラリー中のスカンジウム濃度はせいぜい数~数十mg/l程度に留まり、また取り扱う液量は膨大なものになる。
 このような酸性溶液に対して溶媒抽出をそのまま適用すると、抽出対象とする溶液すなわち水相への抽出剤の溶出に伴うロスが無視できず、補充のためのコストや排水のCOD等有機分の除去に要する手間とコストがかかる。さらに膨大な液量を扱うことによる装置規模の拡大等設備投資もかさむものとなる。ニッケル酸化鉱への含有成分によっては例えば鉄やカルシウムあるいはアルミニウム等は溶媒抽出に用いる抽出剤とクラッドを形成しやすい成分があり、これらの成分が多いニッケル酸化鉱石を酸浸出した液を溶媒抽出するのは、操業の安定性を確保する観点からも課題となっていた。
 このように、ニッケル酸化鉱石からスカンジウムも工業的に回収するのに適した方法は見出されなかった。
 本発明は、ニッケル酸化鉱から高品位のスカンジウムを効率よく回収することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、スカンジウムをキレート樹脂で分離し、さらに溶媒抽出に付すことで高純度なスカンジウム化合物を得られることを見出し、本発明を完成するに至った。具体的に、本発明では、以下のようなものを提供する。
 (1)本発明は、スカンジウム、アルミニウム及びクロムを含有するニッケル酸化鉱を硫酸とともに加圧容器に装入し、高温高圧下で浸出液と浸出残渣とに固液分離する浸出工程と、前記浸出液に中和剤を加え、中和澱物と中和後液とを得る中和工程と、前記中和後液に硫化剤を添加し、ニッケル硫化物と硫化後液とに分離する硫化工程と、前記硫化後液をキレート樹脂に接触させて前記スカンジウムを前記キレート樹脂に吸着させ、スカンジウム溶離液を得るイオン交換工程と、前記スカンジウム溶離液を抽出剤に接触させ、逆抽出液を得る溶媒抽出工程と、前記逆抽出液に中和剤又はシュウ酸を加え、沈澱物を得るスカンジウム沈澱工程と、前記沈殿物を乾燥し、焙焼して、酸化スカンジウムを得る焙焼工程とを含む、スカンジウム回収方法である。
 (2)また、本発明は、前記キレート樹脂がイミノジ酢酸を官能基とする樹脂であり、前記イオン交換工程が、前記硫化後液を前記キレート樹脂に接触させて前記スカンジウムを前記キレート樹脂に吸着させる吸着工程と、前記吸着工程でスカンジウムを吸着したキレート樹脂に0.1N以下の硫酸を接触させ、前記吸着工程で前記キレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程と、前記アルミニウム除去工程を経たキレート樹脂に0.3N以上3N未満の硫酸を接触させ、前記スカンジウム溶離液を得るスカンジウム溶離工程と、前記スカンジウム溶離工程を経たキレート樹脂に3N以上の硫酸を接触させ、前記吸着工程で前記キレート樹脂に吸着したクロムを除去するクロム除去工程とを含む、(1)に記載のスカンジウム回収方法である。
 (3)また、本発明は、前記抽出剤がトリオクチルホスフィンオキシドを官能基とする有機溶媒であり、前記溶媒抽出工程は、前記スカンジウム溶離液と前記抽出剤とを混合し、スカンジウムを抽出した抽出後有機溶媒と抽残液とに分離する抽出工程と、前記抽出後有機溶媒に、2.0mol/l以上9.0mol/l以下の濃度の塩酸溶液、又は3.5mol/l以上9.0mol/l以下の濃度の硫酸溶液を混合して前記抽出後有機溶媒から不純物を分離して洗浄後有機溶媒を得るスクラビング工程と、前記洗浄後有機溶媒に、2.0mol/l未満の濃度の塩酸溶液、又は、3.5mol/l未満の濃度の硫酸溶液を含有する逆抽出始液を混合し、洗浄後有機溶媒からスカンジウムを逆抽出して前記逆抽出液を得る逆抽出工程とを含む、(1)又は(2)に記載のスカンジウム回収方法である。
 (4)また、本発明は、前記スカンジウム溶離液に中和剤を添加してpHを2以上4以下の範囲に調整し、次いで還元剤を添加し、前記スカンジウム溶離液の酸化還元電位を、銀塩化銀電極を参照電極とする電位で200mVを越えて300mV以下の範囲に調整し、次いで硫酸を添加してpHを1以上2.5以下の範囲に調整することでスカンジウム溶離液のpH調整後液を得、このpH調整後液を用いて前記イオン交換工程を再び行う、(1)から(3)のいずれかに記載のスカンジウム回収方法である。
 (5)また、本発明は、前記イオン交換工程で得られた前記スカンジウム溶離液に含まれるスカンジウムをシュウ酸化するシュウ酸化工程をさらに含み、前記シュウ酸化工程は、前記スカンジウム溶離液に中和剤を添加してpHを8以上9以下の範囲に調整し、この調整によって得られる澱物に塩酸を添加して再溶解液を得、次いで前記再溶解液にシュウ酸を添加してシュウ酸スカンジウムの結晶を得、次いで前記結晶を硫酸及び/又は塩酸に溶解することを含み、前記シュウ酸化工程を行った後に前記結晶の溶解液を前記溶媒抽出工程に供する、(1)から(4)のいずれかに記載のスカンジウム回収方法である。
 (6)また、本発明は、前記スカンジウム沈澱工程が前記逆抽出液にシュウ酸を加える工程である、(1)から(5)のいずれかに記載のスカンジウム回収方法である。
 (7)また、本発明は、前記スカンジウム沈澱工程が、前記逆抽出液に中和剤を加え、pHを8以上9以下の範囲に調整する工程である、(1)から(5)のいずれかに記載のスカンジウム回収方法である。
 本発明によると、ニッケル酸化鉱から高品位のスカンジウムを効率よく回収できる。
本発明に係るスカンジウムの回収方法を説明するための図である。 キレート樹脂に通液した金属含有溶液のpHと、その金属のキレート樹脂への吸着量との関係を示す図である。 スカンジウム溶離工程の繰り返し回数と、繰り返し後のスカンジウム溶離液に含まれるスカンジウムの濃度との関係を示す図である。 溶媒抽出工程のスクラビング(洗浄)工程における洗浄回数と、洗浄液中のスカンジウム又は不純物の濃度との関係を示す図である。 溶媒抽出工程での逆抽出の回数と、逆抽出液中の各金属元素濃度との関係を示す図である。 溶媒抽出工程のスクラビング(洗浄)処理に用いる塩酸溶液(洗浄液)の濃度と洗浄液中のスカンジウム濃度との関係を示す図である。 溶媒抽出工程の洗浄処理に用いる硫酸溶液(洗浄液)の濃度と洗浄液中のスカンジウム濃度との関係を示す図である。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 図1は、本発明に係るスカンジウムの回収方法を説明するための図である。本発明は、スカンジウム、アルミニウム及びクロムを含有するニッケル酸化鉱を硫酸とともに加圧容器に装入し、高温高圧下で浸出液と浸出残渣とに固液分離する浸出工程S1と、上記浸出液に中和剤を加え、中和澱物と中和後液とを得る中和工程S2と、上記中和後液に硫化剤を添加し、ニッケル硫化物と硫化後液とに分離する硫化工程S3と、上記硫化後液をキレート樹脂に接触させて上記スカンジウムを上記キレート樹脂に吸着させ、スカンジウム溶離液を得るイオン交換工程S4と、上記スカンジウム溶離液を抽出剤に接触させ、逆抽出液を得る溶媒抽出工程S6と、上記逆抽出液に中和剤又はシュウ酸を加え、沈殿物を得るスカンジウム沈澱工程S7と、この沈殿物を乾燥し、焙焼して、酸化スカンジウムを得る焙焼工程S8とを含む。
 本発明は、スカンジウムを回収し、精製するにあたり、イオン交換と溶媒抽出とを併用することを特徴とする。本発明の方法を用いることで、不純物をより高品位で分離でき、ニッケル酸化鉱石のような多くの不純物を含有する原料からであっても、コンパクトな設備で安定した操業を行うことができる。
 なお、必須の態様ではないが、イオン交換工程S4の後、溶媒抽出工程S6に先立ち、イオン交換工程S4で得られたスカンジウム溶離液に含まれるスカンジウムをシュウ酸化するシュウ酸化工程S5を行ってもよい。
 また、必須の態様ではないが、イオン交換工程S4で得たスカンジウム溶離液に中和剤を添加し(工程S101)、次いで還元剤を添加し(工程S102)、次いで硫酸を添加する(工程S103)ことでスカンジウム溶離液のpH調整後液を得、このpH調整後液を用いてイオン交換工程S4を再び行ってもよい。これらの工程を経ることで、回収されるスカンジウムの品位をいっそう高めることができる。
<浸出工程S1>
 浸出工程S1では、スカンジウム、アルミニウム及びクロムを含有するニッケル酸化鉱を硫酸とともに加圧容器に装入し、高温高圧下で浸出液と浸出残渣とに固液分離する。
 浸出工程S1は、従来知られているHPALプロセスにしたがって行えばよく、例えば、特許文献1に記載されている。
<中和工程S2>
 中和工程S2では、浸出工程S1で得られた浸出液に中和剤を加え、中和澱物と中和後液とを得る。スカンジウムやニッケル等の有価金属は中和後液に含まれ、アルミニウムをはじめとした不純物の大部分は中和澱物に含まれる。
 中和剤は従来公知のものであれば足り、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられる。
 中和工程では、pHを1~4の範囲に調整することが好ましい。pHが1未満であると、中和が不十分であり、中和澱物と中和後液とに分離できない可能性があるため、好ましくない。pHが4を超えると、アルミニウムをはじめとした不純物のみならず、スカンジウムやニッケル等の有価金属も中和澱物に含まれるため、好ましくない。
<硫化工程S3>
 硫化工程S3では、中和後液に硫化剤を添加し、硫化物と硫化後液とに分離する。ニッケル、コバルト及び亜鉛等は硫化物に含まれ、スカンジウム等は硫化後液に含まれる。
 硫化剤は従来公知のものであれば足り、例えば、硫化水素ガス、硫化ナトリウム、水素化硫化ナトリウム等が挙げられる。
<イオン交換工程S4>
 イオン交換工程S4では、硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させ、スカンジウム溶離液を得る。イオン交換工程S4の態様は特に限定されるものではないが、イオン交換工程S4は、硫化後液をキレート樹脂に接触させてスカンジウムを前記キレート樹脂に吸着させる吸着工程S41と、この吸着工程S41でスカンジウムを吸着したキレート樹脂に0.1N以下の硫酸を接触させ、吸着工程S41でキレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程S42と、このアルミニウム除去工程S42を経たキレート樹脂に0.3N以上3N未満の硫酸を接触させ、スカンジウム溶離液を得るスカンジウム溶離工程S43と、このスカンジウム溶離工程S43を経たキレート樹脂に3N以上の硫酸を接触させ、吸着工程S41でキレート樹脂に吸着したクロムを除去するクロム除去工程S44とを含むことが好ましい。
[吸着工程S41]
 吸着工程S41では、硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させる。
 キレート樹脂の種類は特に限定されるものでないが、イミノジ酢酸を官能基とする樹脂であることが好ましい。
 ところで、pH範囲が低いほど、ニッケル酸化鉱に含まれる不純物の吸着量は少なくなる。そのため、できるだけ低いpH領域の液をキレート樹脂に通液することで、不純物のキレート樹脂への吸着を抑制できる。しかしながら、pHが2未満であると、不純物の吸着量だけでなく、スカンジウムの吸着量も少なくなる。そのため、極端に低いpH領域の液を樹脂に通液して吸着させるのは好ましくない。
[アルミニウム除去工程S42]
 アルミニウム除去工程S42では、吸着工程S41でスカンジウムを吸着したキレート樹脂に0.1N以下の硫酸を接触させ、吸着工程S41でキレート樹脂に吸着したアルミニウムを除去する。
 アルミニウムを除去する際、pHを1~2.5の範囲に維持することが好ましく、1.5~2.0の範囲に維持することがより好ましい。pHが1未満であると、アルミニウムだけでなく、スカンジウムもキレート樹脂から除去されるため、好ましくない。pHが2.5を超えると、アルミニウムが適切にキレート樹脂から除去されないため、好ましくない。
[スカンジウム溶離工程S43]
 スカンジウム溶離工程S43では、アルミニウム除去工程S42を経たキレート樹脂に0.3N以上3N未満の硫酸を接触させ、スカンジウム溶離液を得る。
 スカンジウム溶離液を得る際、溶離液に用いる硫酸の規定度を0.3N以上3N未満の範囲に維持することが好ましく、0.5N以上2N未満未満の範囲に維持することがより好ましい。規定度が3N以上であると、スカンジウムだけでなく、クロムもスカンジウム溶離液に含まれてしまうため、好ましくない。規定度が0.3N未満であると、スカンジウムが適切にキレート樹脂から除去されないため、好ましくない。
[クロム除去工程S44]
 クロム除去工程S44では、スカンジウム溶離工程S43を経たキレート樹脂に3N以上の硫酸を接触させ、吸着工程S41でキレート樹脂に吸着したクロムを除去する。
 クロムを除去する際、溶離液に用いる硫酸の規定度が3Nを下回ると、クロムが適切にキレート樹脂から除去されないため、好ましくない。
[鉄除去工程]
 また、図示していないが、ニッケル酸化鉱に、不純物として鉄が含まれている場合がある。この場合、アルミニウム除去工程S42に先立ち、吸着工程S41でスカンジウムを吸着したキレート樹脂に、アルミニウム除去工程S42で使用する硫酸の規定度よりも小さい規定度の硫酸を接触させ、吸着工程S41でキレート樹脂に吸着した鉄を除去することが好ましい。
 鉄を除去する際、pHを1~3の範囲に維持することが好ましい。pHが1未満であると、鉄だけでなく、スカンジウムもキレート樹脂から除去されるため、好ましくない。pHが3を超えると、鉄が適切にキレート樹脂から除去されないため、好ましくない。
<スカンジウム溶離液のキレート樹脂への再吸着>
 また、必須の態様ではないが、スカンジウム溶離工程S43で得たスカンジウム溶離液に中和剤を添加してpHを2以上4以下の範囲、好ましくはpH3を中心とした2.7~3.3の範囲に調整し(工程S101)、次いで還元剤を添加し(工程S102)、次いで硫酸を添加してpHを1以上2.5以下の範囲、好ましくはpH2を中心とした1.7~2.3の範囲に調整する(工程S103)ことでスカンジウム溶離液のpH調整後液を得、このpH調整後液を用いて上記吸着工程S41、上記アルミニウム除去工程S42及び上記スカンジウム溶離工程S43を再び行うことが好ましい。これらの工程を経ることで、回収されるスカンジウムの品位をいっそう高めることができる。また、スカンジウム溶離液からスカンジウムを分離する際の薬剤コストや設備規模を縮減できる。
 還元剤の添加は、酸化還元電位(ORP)が銀塩化銀電極を参照電極とする値で200mVを越えて300mV以下となる範囲に維持するように行うことが好ましい。酸化還元電位が200mV以下であると、添加された硫化剤に由来する硫黄分が微細な固体として析出し、硫化後の濾過工程で濾布を目詰まりさせて固液分離を悪化させ生産性の低下原因となったり、キレート樹脂に再通液する際に、樹脂塔内で目詰まりや液流れの偏りを生じ均一な通液が行えない等の原因となり得る。一方、酸化還元電位が300mVを超えると、残留する鉄イオン等が樹脂に吸着しスカンジウムの吸着を阻害する等の問題を生じ得る。
 中和剤は従来公知のものであれば足り、例えば、炭酸カルシウム等が挙げられる。また、還元剤は従来公知のものであれば足り、例えば、硫化水素ガス、硫化ナトリウム等の硫化剤や二酸化硫黄ガス、ヒドラジン、金属鉄等が挙げられる。
 スカンジウム溶離液のキレート樹脂への再吸着を行うにあたり、キレート樹脂は、すでに使用したものを再使用してもよいし、新たなキレート樹脂を使用してもよいが、不純物のコンタミを防止する観点から、クロム除去工程S44を経たキレート樹脂を再使用するか、新たなキレート樹脂を使用することが好ましい。特に、クロム除去工程S44を経たキレート樹脂を再使用することで、不純物のコンタミを防止できるだけでなく、キレート樹脂の使用量を抑えられる。
<スカンジウム溶離液の精製>
 スカンジウム溶離工程S43によって得られたスカンジウム溶離液に対して再びスカンジウム溶離工程S43を行うことで、スカンジウム溶離液の濃度を高めることができる。
 スカンジウム溶離工程S43を数多く繰り返すほど、回収されるスカンジウムの濃度が高まるが、多く繰り返し過ぎても、回収されるスカンジウムの濃度の上昇の程度が小さくなるため、工業的には、スカンジウム溶離工程S43を繰り返す回数は8回以下であることが好ましい。
<シュウ酸化工程S5>
 必須の態様ではないが、スカンジウム溶離液に含まれる不純物を除くため、イオン交換工程S4の後、溶媒抽出工程S6に先立ち、スカンジウム溶離工程S43で得られたスカンジウム溶離液に含まれるスカンジウムをシュウ酸化するシュウ酸化工程S5を行うことが好ましい。
 シュウ酸化工程S5では、スカンジウム溶離工程S43で得られたスカンジウム溶離液に中和剤(水酸化物)を添加してpHを8以上9以下の範囲に調整し、水酸化スカンジウムの沈澱を生成させ、固液分離する。次いで、水酸化スカンジウム(澱物)に塩酸溶液を添加してスカンジウムを塩酸酸性溶液(再溶解液)として再溶解する。次いで、この塩酸酸性溶液にシュウ酸を添加し、シュウ酸スカンジウムの結晶として沈澱させ、次いでこの結晶を硫酸及び/又は塩酸に溶解し、溶媒抽出工程S6に付す。
 シュウ酸のpHは特に限定されるものでないが、例えば、1.0~1.5の範囲であることが好ましい。pHが低すぎると、酸の使用量が増え、コストアップにつながるため、好ましくない。pHが高すぎると、再溶解液中に含まれる不純物が沈殿し、スカンジウム純度を下げてしまう可能性があるため、好ましくない。
 シュウ酸化工程S5を設けることにより、スカンジウム溶離液に含まれる不純物を大幅に除去でき、イオン交換工程S4や溶媒抽出工程S6に係る工数を軽減できる。また、溶媒抽出に付す始液の濃度を任意に調整することができるため、溶媒抽出工程S6の設備規模の縮小による設備投資の削減や、始液濃度の安定化により操業を安定化できるという効果も有する。
<溶媒抽出工程S6>
 溶媒抽出工程S6では、スカンジウム溶離液を抽出剤に接触させ、逆抽出液を得る。溶媒抽出工程S6の態様は特に限定されないが、スカンジウム溶離液と抽出剤とを混合し、スカンジウムを抽出した抽出後有機溶媒と抽残液とに分離する抽出工程S61と、この抽出後有機溶媒に塩酸溶液又は硫酸溶液を混合して抽出後有機溶媒から不純物を分離して洗浄後有機溶媒を得るスクラビング工程S62と、この洗浄後有機溶媒に逆抽出始液を混合し、洗浄後有機溶媒からスカンジウムを逆抽出して逆抽出液を得る逆抽出工程S63とを含むことが好ましい。溶媒抽出工程S6を行うことで、スカンジウム溶離液に含まれるスカンジウムの純度をよりいっそう高めることができる。
[抽出工程S61]
 抽出工程では、スカンジウム溶離液と、抽出剤を含む有機溶媒とを混合して、有機溶媒中にスカンジウムを選択的に抽出する。抽出剤には様々な種類があるが、スカンジウムとの選択性から、リンを含む溶媒和抽出剤、具体的には、トリオクチルホスフィンオキシド(TOPO)を用いることが好ましい。
 トリオクチルホスフィンオキシドには、アルキル鎖が異なる種々のトリアルキルホスフィンオキシド類が存在するが、何れのものであっても好適に使用することができる。
 抽出時は、例えば炭化水素系の有機溶媒等で希釈して使用することが好ましい。有機溶媒中のTOPOの濃度としては、特に限定されないが、スカンジウムの抽出能力は濃度が5体積%では1.8g/l程度であり、40体積%では11.4g/l程度なので、抽出、逆抽出時の相分離性等を考慮すると、TOPOの有機溶媒中の濃度としては、5体積%以上20体積%以下であることが好ましく、特に10体積%前後がより好ましい。
[スクラビング(洗浄)工程S62]
 必須の態様ではないが、スカンジウムを抽出した溶媒中にスカンジウム以外の不純物元素が共存する場合には、抽出液を逆抽出する前に、有機溶媒(有機相)にスクラビング(洗浄)処理を施し、不純物元素を水相に分離して抽出剤から除去することが好ましい。
 スクラビングに用いる溶液(洗浄溶液)には、塩酸溶液や硫酸溶液を使用することができる。塩酸溶液を用いる場合は2.0mol/l以上9.0mol/l以下の濃度範囲が好ましく、硫酸溶液を用いる場合は3.5mol/l以上9.0mol/l以下の濃度範囲が好ましい。
 洗浄段数(回数)としては、有機相(O)と水相(A)の相比O/A=1とした場合、不純物元素の種類、濃度にも依存するが、3~5段の段数があればほぼすべての元素を分析下限未満まで分離できる。
[逆抽出工程S63]
 逆抽出工程S63では、スカンジウムを抽出した有機溶媒から、スカンジウムを逆抽出する。逆抽出工程S63では、有機溶媒に、水又は低濃度の酸溶液を逆抽出溶液(逆抽出始液)として用いて混合することで抽出時の逆反応を進行させ、スカンジウムを含む逆抽出後液が得られる。
 逆抽出始液は水であってもよいが、有機相との相分離が不良となる可能性がある。このため、逆抽出始液として、低濃度の酸溶液を用いる事が好ましい。酸溶液としては、塩酸溶液、硫酸溶液を用いることができる。塩酸溶液では2.0mol/l未満、硫酸溶液では3.5mol/l未満の濃度とすることが好ましい。
<スカンジウムの回収>
 溶媒抽出工程S6の後、逆抽出後液に中和剤又はシュウ酸を加え、沈殿物を得るスカンジウム沈澱工程S7と、上記沈殿物を水で洗浄し、乾燥し、焙焼することで、酸化スカンジウムを得る焙焼工程S8とが行われる。これらの工程を経ることで、ニッケル酸化鉱から酸化スカンジウムを回収できる。
[スカンジウム沈澱工程S7]
 逆抽出後液に中和剤を加える場合、中和剤は従来公知のものであれば足り、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられるが、逆抽出始液が硫酸溶液である場合、中和剤がカルシウム塩であると、中和によって石膏が生成されるため、中和剤は水酸化ナトリウムであることが好ましい。
 逆抽出後液に中和剤を加える場合、スカンジウム沈澱工程S7では、pHを8以上9以下の範囲に調整することが好ましい。pHが8未満であると、中和が不十分であり、スカンジウムを充分に回収できない可能性があるため、好ましくない。pHが9を超えると、中和剤の使用量が増え、コストアップにつながるため、好ましくない。
 逆抽出後液にシュウ酸を加えることで、中和剤を加える場合よりもいっそう高品位なスカンジウムを回収できる。シュウ酸の添加量は特に限定されるものでないが、逆抽出後液に含まれるスカンジウム量に対して計算量で1.05倍以上1.2倍以下であることが好ましい。1.05倍未満であると、逆抽出後液に含まれるスカンジウムの全量を回収できない可能性があるため、好ましくない。1.2倍を超えると、コストアップにつながる可能性のほか、過剰なシュウ酸の分解に必要な酸化剤、例えば次亜塩素ソーダの使用量が増えるため、好ましくない。
[焙焼工程S8]
 焙焼工程S8は、スカンジウム沈澱工程S7で得られた沈殿物を水で洗浄し、乾燥し、焙焼する工程である。焙焼工程S8を経ることで、極めて高品位な酸化スカンジウムを得ることができる。
 焙焼の条件は特に限定されるものでないが、例えば、管状炉に入れて約900℃で2時間程度加熱すればよい。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
<予備試験> 硫酸のpHと金属のキレート樹脂への吸着量との関係
Figure JPOXMLDOC01-appb-T000001
 硫酸のpHと金属のキレート樹脂への吸着量との関係を調べるため、表1に記載の金属の特級試薬を0.1~3Nの硫酸に溶かし、その溶液を、イミノジ酢酸を官能基とするキレート樹脂(製品名:ダイヤイオン CR11,三菱化学(株)製)を充填したカラムに通液した。樹脂量は4mlとし、通液はSVが8となるように、毎分0.53mlの流量とし、240ml(Bed Volume:BV=60)まで通液した。金属は、スカンジウム(Sc),アルミニウム(Al),クロム(Cr),鉄(Fe)の4種類とし、溶液中の金属の濃度はそれぞれ0.3mmol/L、0.1mol/L、0.01mol/L、0.03mol/Lとした。また、濃硫酸に溶かした後の溶液は、消石灰を添加してpHを0.5,1.0,1.5,2.0,3.0,4.0の6種類に調整した上で上記カラムに通液した。また、液温は60℃とした。
 このときのキレート樹脂への付着量を、溶離液量と、溶離液に含まれる金属の濃度とを測定することによって算出した。結果を図2に示す。図2の横軸は、通液した金属含有溶液のpHを示し、縦軸(左)は、キレート樹脂1リットルに対する金属の吸着量を示す(単位:mmol/L)。また、図2の縦軸(右)は、不純物の吸着量に対するスカンジウムの吸着量の比を示す。例えば、Sc/Alは、アルミニウムの吸着量に対するスカンジウムの吸着量の比を示し、Sc/Crは、クロムの吸着量に対するスカンジウムの吸着量の比を示し、Sc/Feは、鉄の吸着量に対するスカンジウムの吸着量の比を示す。
 図2によると、金属の種類によって、キレート樹脂に吸着するための好適なpHが異なることが分かる。例えば、金属が鉄であれば、比較的高いpHでキレート樹脂に吸着し易く、金属がアルミニウムであれば、金属が鉄である場合に次いで高いpHでキレート樹脂に吸着し易く、金属がスカンジウムであれば、金属がアルミニウムである場合に次いで高いpHでキレート樹脂に吸着し易く、金属がクロムであれば、最も低いpHでキレート樹脂に吸着し易いことが分かる。
 このことから、吸着工程S4の後、キレート樹脂に対し、pHが異なる硫酸溶液を段階的に通液することで、キレート樹脂から不純物を適切に除去し、かつ、スカンジウムを効率よく回収できるものと推察される。
<実施例1> キレート樹脂に吸着したクロムの除去
[浸出工程S1]
 まず、ニッケル酸化鉱を濃硫酸とともにオートクレーブに装入し、245℃の条件下で1時間かけてスカンジウムやニッケル等の有価金属を含有するスラリーを生成させ、このスラリーから上記有価金属を含有する浸出液と、浸出残渣とに固液分離した。
[中和工程S2]
 そして、この浸出液に炭酸カルシウムを添加してpHを1~4の範囲に調整し、中和澱物と中和後液とを得た。スカンジウムやニッケル等の有価金属は中和後液に含まれ、アルミニウムをはじめとした不純物の大部分は中和澱物に含まれる。
[硫化工程S3]
 続いて、中和後液に硫化水素ガスを吹き込み、ニッケルやコバルトや亜鉛を硫化物として硫化後液と分離した。
[イオン交換工程S4]
〔吸着工程S41〕
 この硫化後液に中和剤として消石灰を添加してpHを1.6に調整した。この吸着液の組成は、Ni:0.036g/l,Mg:6.5g/l,Mn:2.8g/l,Fe:1g/l,Al:2.3g/l,Cr:0.037g/l,Sc:0.014g/lであった。次いで、この吸着液を、上記キレート樹脂CR11型を充填したカラムに通液した。樹脂量は4mlとし、通液はSVが8となるように、毎分0.53mlの流量とし、240ml(Bed Volume:BV=60)まで通液した。なお、液温は60℃とした。
〔アルミニウム除去工程S42〕
 次に、このキレート樹脂に、濃度0.1Nの硫酸溶液80mlを(SVが40となる)毎分2.7mlの流量で通液した。カラムから排出された残留したアルミの多い洗浄液は、アルミ洗浄液として貯液し、一部をサンプリングしてICPで分析した。
 分析値は、Ni:7mg/l、Mg:1mg/l、Mn:4mg/l、Fe:1mg/l、Al:84mg/l、Sc:3mg/lであった。Cr、Caは下限以下であった。
〔スカンジウム溶離工程S43〕
 その後、キレート樹脂に、濃度1Nの硫酸溶液40mlを(SVが40となる)毎分8mlの流量で通液した。カラムから排出された溶離液は、スカンジウム溶離液として貯液しサンプリングして分析した。
 分析値は、Ni:5mg/l、Fe:126mg/l、Al:4mg/l、Cr:10mg/l、Sc:43mg/lであった。Mn、Caは下限以下だった。単純計算したスカンジウム品位は、67%となる。
〔クロム除去工程S44〕
 最後に、キレート樹脂に、濃度3Nの硫酸溶液80mlを(SVが40となる)毎分2.6mlの流量で通液した。カラムから排出された洗浄液は、クロム洗浄液として貯液しサンプリングして分析した。
 分析値は、Fe:2mg/l、Cr:30mg/lであった。Ni、Mg、Mn、Al、Ca、Scは下限以下であった。
〔クロム除去工程S44を経たキレート樹脂の再利用〕
 クロム洗浄後のキレート樹脂を、水40mlを毎分2.6mlの流量で流して洗浄し、上記吸着処理S4に反復して使用することを複数回繰り返した。その結果、上記吸着処理S4に反復して使用しても、新たなキレート樹脂に交換する場合と同程度に高品位のスカンジウムを回収できることが確認された。
[溶媒抽出工程S6]
〔抽出工程S61〕
 上記イオン交換工程で得たスカンジウム溶離液103リットルと、トリオクチルホスフィンオキシド(TOPO)(北興化学工業(株)製)を溶剤シェルゾールA(シェル化学(株)社製)で13体積%濃度で溶解した有機溶媒2.6リットル、とを混合して60分攪拌し、スカンジウムを含む抽出有機相を得た。なお、抽出残液中のスカンジウム濃度は0.1mg/l未満であり、抽出率は99.8%以上であった。
 また抽出時にクラッドを形成することはなく、静置後の相分離も迅速に進行した。
〔スクラビング(洗浄)工程S62〕
 次に、抽出工程で得られたスカンジウムを含む2.6リットルの有機溶媒(抽出有機相)に、濃度6.5mol/lの塩酸溶液を、相比(O/A)が1の比率となる2.6リットル混合し、10分間攪拌して洗浄した。その後、静置して水相を分離し、有機相は再び濃度6.5mol/lの新たな塩酸溶液2.6リットルと混合して洗浄し、同様に水相を分離した。このような洗浄操作を合計3回繰り返した。
 図4は、有機溶媒に対する洗浄回数と洗浄液中の金属イオン濃度の関係を示す。図4に示されるように、抽出有機相を3回洗浄することにより、溶出する不純物金属濃度を0.001g/l以下のレベルまで除去できた。一方で、スカンジウムについては、0.01g/lの桁のロスに留まり、有機溶媒に抽出したスカンジウムを水相に分離させずに、不純物のみを効果的に除去できることが分かった。
〔逆抽出工程S63〕
 次に、洗浄後の抽出有機相に、濃度1%(約0.3mol/l)の塩酸溶液を用いて、相比O/A=1/1の比率となるように混合して20分攪拌し、スカンジウムを水相に逆抽出した。その後、静置して水相を分離し、再び濃度1%の新たな塩酸溶液を用いて同様に混合し、水相を分離した。このような逆抽出操作を3回繰り返した。
 図5は、逆抽出操作の回数と逆抽出液中の水相の各金属イオン濃度の関係を示す。3回の逆抽出後の液(逆抽出後液)中の合計スカンジウム量は、原液中に含まれた量の98.3%となり、ほとんど抽出できた。また図5から不純物元素はニッケルを除くとすべて0.1mg/l未満まで低減できた。
[スカンジウム沈澱工程S7]
 上記の溶媒抽出工程S6で得た逆抽出後液を合わせ、これに水酸化ナトリウムを添加してpHを8~9の間に維持し、水酸化スカンジウムの沈澱を生成した。この澱物を固液分離し、ついで、純水をかけて洗浄し、得た沈澱物をX線回折装置で同定したところ、水酸化スカンジウム(Sc(OH))の形態であることを確かめた。
[焙焼工程S8]
 上記のスカンジウム沈澱工程で得た水酸化スカンジウム100グラムを、高純度マグネシア製のボートに移して石英管の管状炉内に入れ、空気を毎分2リットルの流量で送りながら850℃に昇温し、昇温後2時間加熱を維持して、水酸化スカンジウムを焙焼して焙焼物を得た。その後、得た焙焼物を室温まで冷却して取り出し、X線回折ならびに発光分光分析法によって形態と不純物品位を分析した。
 その結果得た焙焼物の形態はScであり、また主要な不純物は全て1ppm未満にまで除去され、発光分光分析で検出された元素は、それぞれ、鉄(Fe)が4ppm、カルシウム(Ca)、マグネシウム(Mg)、アンチモン(Sb)、ケイ素(Si)はいずれも1ppm未満となる等、99.99%を超える高品質な酸化スカンジウムが得られた。
<比較例>
 クロム除去工程S44を行わなかったこと以外は、実施例1と同じ条件で各工程を行った。そして、実施例1と同じ条件でキレート樹脂を再利用した。しかしながら、クロムがキレート樹脂から充分に溶離されていないため、実施例1に比べ、キレート樹脂へのスカンジウムの吸着量が低下し、実施例1に比べ、回収されるスカンジウムの品位が低下した。
<実施例2> スカンジウム溶離工程S43で得たスカンジウム溶離液の再吸着
 実施例1で得たスカンジウム溶離液のpHを3に調整し、次いで酸化還元電位が銀塩化銀電極を参照電極とする値で-200mV以下になるように、還元剤を添加し、次いでpHが1~2.5の範囲になるように硫酸で調整した。
 次いで、上記実施例1と同じ種類のキレート樹脂4mlに、実施例1と同じ通液条件でスカンジウム溶離液を通液し、次いで実施例1と同じ0.1N、1N、3Nの濃度の硫酸溶液でそれぞれ洗浄・溶離し、再吸着アルミ洗浄液、再吸着スカンジウム溶離液、再吸着クロム溶離液を得た。
 再吸着アルミ洗浄液の組成はAlが3mg/l、Scが0.24g/lで、それ以外の上述の元素はいずれも下限以下だった。
 再吸着スカンジウム溶離液の組成は、Feが1mg/l、Scが0.4g/lでそれ以外は下限だった。スカンジウム品位として99.8%の品位が得られた。
 再吸着クロム溶離液の組成は、FeとScが共に1mg/lで、それ以外の元素はいずれも下限以下だった。
 再吸着させることでスカンジウムの品位が向上することが確認された。
<実施例3> スカンジウム溶離液の精製
 スカンジウム溶離工程S43を複数回繰り返し、スカンジウム溶離液を精製した。すなわち、スカンジウム溶離工程S43によって得られたスカンジウム溶離液に対して再びスカンジウム溶離工程S43を行い、スカンジウムの濃度を高めた上で再度スカンジウム溶離液の組成を測定した。
 このときの結果を図3に示す。図3の横軸は、スカンジウム溶離工程S43を繰り返した回数を示し、縦軸は、繰り返し後のスカンジウム溶離液に含まれるスカンジウムの濃度を示す。なお、図3の点線は、最小自乗法による近似直線である。図3によると、スカンジウム溶離工程S43を数多く繰り返すほど、回収されるスカンジウムの濃度が高まるが、多く繰り返し過ぎても、回収されるスカンジウムの濃度の上昇の程度が小さくなるため、工業的には、スカンジウム溶離工程S43を繰り返す回数は8回以下であることが好ましいことが分かる。
<実施例4> スカンジウム沈澱工程S7において、逆抽出液にシュウ酸を加えた場合
 上記実施例1と同じ条件で処理し、溶媒抽出工程S6で得た逆抽出後液に対し、逆抽出後液に含まれるスカンジウム量に対して計算量で2倍となるシュウ酸・2水和物(三菱ガス(株)製)の結晶を溶解し、60分攪拌混合してシュウ酸スカンジウムの白色結晶性沈殿を生成させた。そして、生成した白色結晶性沈殿を吸引濾過し、純水を用いて洗浄し、105℃で8時間乾燥させた。
 続いて、乾燥したシュウ酸塩を、実施例1と同じ方法で焙焼し発光分光分析法によって分析した。その結果、鉄についても1ppm以下まで低減できた。また、クロムと硫黄に対しては良好な分離性を示し、その他リン、硫黄、セレン、ウラン、サマリウムの分離にも効果が見られた。

Claims (7)

  1.  スカンジウム、アルミニウム及びクロムを含有するニッケル酸化鉱を硫酸とともに加圧容器に装入し、高温高圧下で浸出液と浸出残渣とに固液分離する浸出工程と、
     前記浸出液に中和剤を加え、中和澱物と中和後液とを得る中和工程と、
     前記中和後液に硫化剤を添加し、ニッケル硫化物と硫化後液とに分離する硫化工程と、
     前記硫化後液をキレート樹脂に接触させて前記スカンジウムを前記キレート樹脂に吸着させ、スカンジウム溶離液を得るイオン交換工程と、
     前記スカンジウム溶離液を抽出剤に接触させ、逆抽出液を得る溶媒抽出工程と、
     前記逆抽出液に中和剤又はシュウ酸を加え、沈澱物を得るスカンジウム沈澱工程と、
     前記沈殿物を乾燥し、焙焼して、酸化スカンジウムを得る焙焼工程とを含む、スカンジウム回収方法。
  2.  前記キレート樹脂は、イミノジ酢酸を官能基とする樹脂であり、
     前記イオン交換工程は、
     前記硫化後液を前記キレート樹脂に接触させて前記スカンジウムを前記キレート樹脂に吸着させる吸着工程と、
     前記吸着工程でスカンジウムを吸着したキレート樹脂に0.1N以下の硫酸を接触させ、前記吸着工程で前記キレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程と、
     前記アルミニウム除去工程を経たキレート樹脂に0.3N以上3N未満の硫酸を接触させ、前記スカンジウム溶離液を得るスカンジウム溶離工程と、
     前記スカンジウム溶離工程を経たキレート樹脂に3N以上の硫酸を接触させ、前記吸着工程で前記キレート樹脂に吸着したクロムを除去するクロム除去工程とを含む、請求項1に記載のスカンジウム回収方法。
  3.  前記抽出剤は、トリオクチルホスフィンオキシドを官能基とする有機溶媒であり、
     前記溶媒抽出工程は、
     前記スカンジウム溶離液と前記抽出剤とを混合し、スカンジウムを抽出した抽出後有機溶媒と抽残液とに分離する抽出工程と、
     前記抽出後有機溶媒に、2.0mol/l以上9.0mol/l以下の濃度の塩酸溶液、又は3.5mol/l以上9.0mol/l以下の濃度の硫酸溶液を混合して前記抽出後有機溶媒から不純物を分離して洗浄後有機溶媒を得るスクラビング工程と、
     前記洗浄後有機溶媒に、2.0mol/l未満の濃度の塩酸溶液、又は、3.5mol/l未満の濃度の硫酸溶液を含有する逆抽出始液を混合し、洗浄後有機溶媒からスカンジウムを逆抽出して前記逆抽出液を得る逆抽出工程とを含む、請求項1又は2に記載のスカンジウム回収方法。
  4.  前記スカンジウム溶離液に中和剤を添加してpHを2以上4以下の範囲に調整し、
     次いで還元剤を添加し、前記スカンジウム溶離液の酸化還元電位を、銀塩化銀電極を参照電極とする電位で200mVを越えて300mV以下の範囲に調整し、
     次いで硫酸を添加してpHを1以上2.5以下の範囲に調整することでスカンジウム溶離液のpH調整後液を得、
     このpH調整後液を用いて前記イオン交換工程を再び行う、請求項1から3のいずれかに記載のスカンジウム回収方法。
  5.  前記イオン交換工程で得られた前記スカンジウム溶離液に含まれるスカンジウムをシュウ酸化するシュウ酸化工程をさらに含み、
     前記シュウ酸化工程は、
     前記スカンジウム溶離液に中和剤を添加してpHを8以上9以下の範囲に調整し、この調整によって得られる澱物に塩酸を添加して再溶解液を得、
     次いで前記再溶解液にシュウ酸を添加してシュウ酸スカンジウムの結晶を得、
     次いで前記結晶を硫酸及び/又は塩酸に溶解することを含み、
     前記シュウ酸化工程を行った後に前記結晶の溶解液を前記溶媒抽出工程に供する、請求項1から4のいずれかに記載のスカンジウム回収方法。
  6.  前記スカンジウム沈澱工程は、前記逆抽出液にシュウ酸を加える工程である、請求項1から5のいずれかに記載のスカンジウム回収方法。
  7.  前記スカンジウム沈澱工程は、前記逆抽出液に中和剤を加え、pHを8以上9以下の範囲に調整する工程である、請求項1から5のいずれかに記載のスカンジウム回収方法。
PCT/JP2014/061783 2013-05-10 2014-04-25 スカンジウム回収方法 WO2014181721A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14794541.4A EP2907883B1 (en) 2013-05-10 2014-04-25 Method for recovering scandium
CN201480009271.1A CN104995321B (zh) 2013-05-10 2014-04-25 钪回收方法
CA2890572A CA2890572C (en) 2013-05-10 2014-04-25 Method for recovering scandium
AU2014263634A AU2014263634B2 (en) 2013-05-10 2014-04-25 Method for recovering scandium
US14/437,767 US9399804B2 (en) 2013-05-10 2014-04-25 Method for recovering scandium
PH12015500821A PH12015500821B1 (en) 2013-05-10 2015-04-15 Method for recovering scandium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100217A JP5652503B2 (ja) 2013-05-10 2013-05-10 スカンジウム回収方法
JP2013-100217 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014181721A1 true WO2014181721A1 (ja) 2014-11-13

Family

ID=51867202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061783 WO2014181721A1 (ja) 2013-05-10 2014-04-25 スカンジウム回収方法

Country Status (8)

Country Link
US (1) US9399804B2 (ja)
EP (1) EP2907883B1 (ja)
JP (1) JP5652503B2 (ja)
CN (1) CN104995321B (ja)
AU (1) AU2014263634B2 (ja)
CA (1) CA2890572C (ja)
PH (1) PH12015500821B1 (ja)
WO (1) WO2014181721A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084830A1 (ja) * 2014-11-26 2016-06-02 住友金属鉱山株式会社 高純度スカンジウムの回収方法
JP2016108664A (ja) * 2014-11-26 2016-06-20 住友金属鉱山株式会社 高純度スカンジウムの回収方法
WO2016132629A1 (ja) * 2015-02-20 2016-08-25 住友金属鉱山株式会社 溶媒抽出方法、クラッド発生防止方法
AU2015212063B2 (en) * 2014-01-31 2017-03-09 Sumitomo Metal Mining Co., Ltd. Scandium recovery method
CN107208185A (zh) * 2015-02-02 2017-09-26 住友金属矿山株式会社 钪的回收方法
US20180371579A1 (en) * 2015-12-16 2018-12-27 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
WO2021081629A1 (en) * 2019-10-28 2021-05-06 Rio Tinto Iron And Titanium Canada Inc. Purification of scandium concentrate
US11214849B2 (en) 2016-02-23 2022-01-04 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786895B2 (ja) * 2013-02-15 2015-09-30 住友金属鉱山株式会社 スカンジウムの回収方法
WO2015021926A1 (zh) * 2013-08-15 2015-02-19 中国恩菲工程技术有限公司 处理红土镍矿的方法和回收钪的方法
JP6319362B2 (ja) * 2014-01-31 2018-05-09 住友金属鉱山株式会社 スカンジウム回収方法
KR101654214B1 (ko) * 2014-12-30 2016-09-05 엘에스니꼬동제련 주식회사 저품위 니켈광석 제련시 발생하는 잔사로부터 스칸듐의 회수방법
JP6413772B2 (ja) 2015-01-13 2018-10-31 住友金属鉱山株式会社 クロム含有水の処理方法
JP6439530B2 (ja) * 2015-03-24 2018-12-19 住友金属鉱山株式会社 スカンジウムの回収方法
CN104789762B (zh) * 2015-05-06 2017-08-08 武汉科技大学 一种云母型石煤提取V2O5和KAl(SO4)2·12H2O的方法
JP6090394B2 (ja) * 2015-08-28 2017-03-08 住友金属鉱山株式会社 酸化スカンジウムの製造方法
JP6256491B2 (ja) * 2016-01-25 2018-01-10 住友金属鉱山株式会社 スカンジウムの回収方法
JP6409791B2 (ja) 2016-02-05 2018-10-24 住友金属鉱山株式会社 スカンジウム回収方法
JP6623803B2 (ja) * 2016-02-05 2019-12-25 住友金属鉱山株式会社 スカンジウム回収方法
JP6528707B2 (ja) * 2016-03-14 2019-06-12 住友金属鉱山株式会社 スカンジウム精製方法
JP6623935B2 (ja) * 2016-05-27 2019-12-25 住友金属鉱山株式会社 スカンジウムの回収方法
JP6798078B2 (ja) * 2016-11-30 2020-12-09 住友金属鉱山株式会社 イオン交換処理方法、スカンジウムの回収方法
US10669610B2 (en) 2017-03-17 2020-06-02 University Of North Dakota Rare earth element extraction from coal
CN107675002B (zh) * 2017-09-15 2019-06-28 广西大学 一种基于三烷基氧化膦固体吸附剂从硫酸溶液中回收钪的方法
JP6583445B2 (ja) * 2018-01-25 2019-10-02 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法
CN110195158B (zh) * 2019-06-26 2021-03-05 江西理工大学 以矿石体积为依据的离子型稀土分区注液方法
WO2021006144A1 (ja) * 2019-07-11 2021-01-14 住友金属鉱山株式会社 スカンジウムの回収方法
JP7293976B2 (ja) * 2019-07-11 2023-06-20 住友金属鉱山株式会社 スカンジウムの回収方法
JP7276042B2 (ja) * 2019-09-24 2023-05-18 住友金属鉱山株式会社 スカンジウムの回収方法、並びにイオン交換処理方法
JP7276043B2 (ja) * 2019-09-24 2023-05-18 住友金属鉱山株式会社 スカンジウムの回収方法、並びにイオン交換処理方法
JP7469942B2 (ja) * 2020-03-31 2024-04-17 Jx金属株式会社 塩化スカンジウムの製造方法
CN112095003B (zh) * 2020-08-17 2022-04-08 四川顺应动力电池材料有限公司 一种从红土镍矿中回收多种有价金属及酸碱双介质再生循环的方法
CN113528807B (zh) * 2021-07-29 2022-11-04 中国恩菲工程技术有限公司 明矾石中铝钾钪镓的回收方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108118A (ja) * 1987-10-21 1989-04-25 Ube Ind Ltd スカンジウムの選択的分離回収法
JPH01133920A (ja) 1987-09-11 1989-05-26 Gte Lab Inc スカンジウム回収のためのイオン交換方法
JPH03173725A (ja) 1989-12-01 1991-07-29 Univ Tohoku 希土類元素の分別方法
JPH09176756A (ja) 1995-12-26 1997-07-08 Taiheiyo Kinzoku Kk レアーアースメタルの高純度化方法
JPH09194211A (ja) 1996-01-18 1997-07-29 Taiheiyo Kinzoku Kk 酸化鉱石からの高純度レアーアースメタル酸化物の製造方法
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
WO2012014685A1 (ja) * 2010-07-28 2012-02-02 住友金属鉱山株式会社 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085173B2 (ja) 1995-11-22 2000-09-04 大平洋金属株式会社 酸化鉱石からのレアーアースメタルの濃縮分離回収法
JP3430973B2 (ja) * 1999-04-26 2003-07-28 大平洋金属株式会社 酸化鉱石からニッケルとスカンジウムを回収する方法
CN101161834A (zh) * 2006-10-09 2008-04-16 冯云善 从11#煤层酸水中分离矿物的方法
US20120204680A1 (en) * 2011-02-11 2012-08-16 Emc Metals Corporation System and Method for Recovery of Nickel Values From Nickel-Containing Ores
AU2014202157B2 (en) * 2013-04-22 2017-07-20 Vale S/A A method for recovering scandium from intermediate products formed in the hydrometallurgical processing of laterite ores

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133920A (ja) 1987-09-11 1989-05-26 Gte Lab Inc スカンジウム回収のためのイオン交換方法
JPH01108118A (ja) * 1987-10-21 1989-04-25 Ube Ind Ltd スカンジウムの選択的分離回収法
JPH03173725A (ja) 1989-12-01 1991-07-29 Univ Tohoku 希土類元素の分別方法
JPH09176756A (ja) 1995-12-26 1997-07-08 Taiheiyo Kinzoku Kk レアーアースメタルの高純度化方法
JPH09194211A (ja) 1996-01-18 1997-07-29 Taiheiyo Kinzoku Kk 酸化鉱石からの高純度レアーアースメタル酸化物の製造方法
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
WO2012014685A1 (ja) * 2010-07-28 2012-02-02 住友金属鉱山株式会社 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2907883A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9963762B2 (en) * 2014-01-31 2018-05-08 Sumitomo Metal Mining Co., Ltd. Scandium recovery method
AU2015212063B2 (en) * 2014-01-31 2017-03-09 Sumitomo Metal Mining Co., Ltd. Scandium recovery method
WO2016084830A1 (ja) * 2014-11-26 2016-06-02 住友金属鉱山株式会社 高純度スカンジウムの回収方法
CN107002176A (zh) * 2014-11-26 2017-08-01 住友金属矿山株式会社 高纯度钪的回收方法
JP2016108664A (ja) * 2014-11-26 2016-06-20 住友金属鉱山株式会社 高純度スカンジウムの回収方法
US10081851B2 (en) 2014-11-26 2018-09-25 Sumitomo Metal Mining Co., Ltd. Method for recovering high-purity scandium
CN107208185A (zh) * 2015-02-02 2017-09-26 住友金属矿山株式会社 钪的回收方法
US10156002B2 (en) 2015-02-02 2018-12-18 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
WO2016132629A1 (ja) * 2015-02-20 2016-08-25 住友金属鉱山株式会社 溶媒抽出方法、クラッド発生防止方法
AU2016374348B2 (en) * 2015-12-16 2020-01-02 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
US20180371579A1 (en) * 2015-12-16 2018-12-27 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
US10570482B2 (en) 2015-12-16 2020-02-25 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
US11214849B2 (en) 2016-02-23 2022-01-04 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
WO2021081629A1 (en) * 2019-10-28 2021-05-06 Rio Tinto Iron And Titanium Canada Inc. Purification of scandium concentrate

Also Published As

Publication number Publication date
CN104995321A (zh) 2015-10-21
US20160047014A1 (en) 2016-02-18
JP5652503B2 (ja) 2015-01-14
EP2907883A1 (en) 2015-08-19
EP2907883B1 (en) 2017-10-18
CA2890572A1 (en) 2014-11-13
AU2014263634B2 (en) 2015-08-06
US9399804B2 (en) 2016-07-26
CA2890572C (en) 2016-03-15
PH12015500821A1 (en) 2015-06-08
AU2014263634A1 (en) 2015-07-16
JP2014218719A (ja) 2014-11-20
EP2907883A4 (en) 2016-06-15
CN104995321B (zh) 2017-09-22
PH12015500821B1 (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP5652503B2 (ja) スカンジウム回収方法
JP5954350B2 (ja) スカンジウム回収方法
JP5967284B2 (ja) 高純度スカンジウムの回収方法
JP6004023B2 (ja) スカンジウムの回収方法
JP5994912B2 (ja) スカンジウムの回収方法
JP6439530B2 (ja) スカンジウムの回収方法
JP6319362B2 (ja) スカンジウム回収方法
WO2017146034A1 (ja) スカンジウムの回収方法
WO2018101039A1 (ja) イオン交換処理方法、スカンジウムの回収方法
JP6172100B2 (ja) スカンジウムの回収方法
WO2017104629A1 (ja) スカンジウムの回収方法
WO2018043183A1 (ja) スカンジウムの回収方法
WO2016084830A1 (ja) 高純度スカンジウムの回収方法
JP7528581B2 (ja) スカンジウムの回収方法
JP6206358B2 (ja) スカンジウムの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015500821

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2890572

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14437767

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014794541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014794541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201503974

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014263634

Country of ref document: AU

Date of ref document: 20140425

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE