WO2021006144A1 - スカンジウムの回収方法 - Google Patents
スカンジウムの回収方法 Download PDFInfo
- Publication number
- WO2021006144A1 WO2021006144A1 PCT/JP2020/025816 JP2020025816W WO2021006144A1 WO 2021006144 A1 WO2021006144 A1 WO 2021006144A1 JP 2020025816 W JP2020025816 W JP 2020025816W WO 2021006144 A1 WO2021006144 A1 WO 2021006144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scandium
- solution
- extraction
- organic solvent
- mol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/212—Scandium oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for efficiently recovering scandium from an acidic solution containing scandium.
- Scandium has a particularly small ionic radius among rare earth elements, so it is rarely present in ordinary rare earth minerals, but is widely present in trace amounts in oxide ores such as aluminum, tin, tungsten, zirconium, iron, and nickel. ..
- Scandium has a low basicity due to its small ionic radius, so a strong acid is required to dissolve it. As a result, since there are many types of coexisting elements that dissolve at the same time and their concentrations are high, it is not easy to separate and purify scandium contained in the aqueous solution.
- an organic solvent using an acidic alkylphosphoric acid ester such as PC-88A main component: 2-ethylhexyl 2-ethylhexylphosphonate
- PC-88A main component: 2-ethylhexyl 2-ethylhexylphosphonate
- Patent Document 1 an extractant.
- a solvent extraction method using an ester is known. Specifically, the organic solvent is mixed with an aqueous solution containing scandium, and scandium and coexisting elements such as iron, aluminum, calcium, and yttrium are extracted into the organic solvent.
- Patent Document 2 describes a method of selectively extracting scandium in a solution by a solvent extraction method using an organic solvent using trioctylphosphine oxide (hereinafter, appropriately referred to as "TOPO") as an extractant. It is disclosed. However, impurities contained in the solution are also extracted in a small amount depending on the type.
- TOPO trioctylphosphine oxide
- Patent Document 2 discloses that when it is necessary to remove impurities extracted in an organic solvent, a cleaning step of performing cleaning (scrubbing) after the extraction process in the extraction step is introduced to remove the impurities. .. Specifically, impurities are washed and removed by using a hydrochloric acid solution having a concentration of 2 mol / L or more and 9 mol / L or less or a sulfuric acid solution having a concentration of 3.5 mol / L or more and 9 mol / L or less as a cleaning starting solution. Is disclosed. If cleaning is performed using a cleaning starting solution in such a range, the amount of scandium to be washed can be suppressed to a small amount.
- TOPO is a solvate type extractant, which extracts scandium compounds by affinity.
- the solvate type extractor can control extraction and back extraction by controlling the affinity between the extractant and the compound and the ionic strength of the solution.
- the present invention has been proposed in view of such circumstances, and provides a method capable of efficiently recovering scandium from an acidic solution containing scandium by ensuring the separability of scandium and impurity elements.
- the purpose is to provide.
- the present inventors have made extensive studies to solve the above-mentioned problems.
- the pH of the acidic solution containing scandium is adjusted to a specific range, extraction treatment is performed with a neutral extractant, and the reverse extraction liquid obtained by back extraction from the organic phase after extraction is neutralized and hydroxylated.
- the pH of a scandium-containing acidic solution is adjusted to a range of ⁇ 0.5 or more and 3.0 or less, and an organic containing a neutral extractant is used.
- An extraction step of mixing with a solvent to extract scandium in the organic solvent, and a reverse extraction starting solution containing at least one of water, hydrochloric acid, and sulfuric acid are mixed with the organic solvent, and the organic solvent is used.
- a dissolution step of dissolving to obtain a solution a crystallization step of mixing the solution and oxalic acid to obtain a precipitate of scandium oxalate, and a firing step of firing the precipitate to obtain scandium oxide. It is a method for recovering scandium having.
- the neutral extractant contains an extractant having trioctylphosphine oxide as a functional group, and the organic solvent is the trioctylphosphine oxide.
- the acidic solution contains one or more anions of chloride ion, sulfate ion, and nitrate ion, and the acidic solution is contained.
- This is a method for recovering scandium in which the total concentration of the anions in the solution is 1.0 mol / L or more and 10.0 mol / L or less.
- the organic solvent after extraction in the extraction step and the cleaning starting solution are mixed and contained in the organic solvent.
- a fifth invention of the present invention is a method for recovering scandium, wherein in the fourth invention, the washed liquid obtained through the washing step is repeated as a solution to be subjected to the extraction treatment in the extraction step. Is.
- the sixth invention of the present invention is the fourth or fifth invention, in the cleaning step, as the cleaning starting solution, a hydrochloric acid solution of 0.2 mol / L or more and 4.0 mol / L or less or 0. This is a scandium recovery method using a sulfuric acid solution of 5 mol / L or more and 4.0 mol / L or less.
- a part of the back-extracting solution obtained in the back-extracting step is used as the cleaning starting solution.
- This is a method for recovering scandium, in which the solution after back extraction is adjusted to pH 1.0 or less with a hydrochloric acid solution or a sulfuric acid solution and mixed with the organic solvent after extraction.
- any one of the first to seventh inventions water, a hydrochloric acid solution having a concentration of 1.0 mol / L or less, and 2.0 mol / L are used as the back extraction starting solution.
- This is a scandium recovery method using any one or more of the following sulfuric acid solutions.
- the pH is adjusted to 5.5 or more by adding a neutralizing agent to the back-extracted liquid.
- This is a scandium recovery method adjusted to a range of 7.0 or less.
- the pH of the solution was adjusted to a range of ⁇ 0.5 or more and 2.0 or less in the crystallization step. After that, it is a method for recovering scandium, which produces a precipitate of scandium oxalate by mixing a solution containing pH-adjusted solution and a solution containing oxalic acid.
- scandium can be efficiently recovered while ensuring the separability between scandium and impurity elements.
- the scandium recovery method according to the present invention is a method for efficiently recovering scandium by selectively separating it from an acidic solution containing scandium.
- this method for recovering scandium includes an extraction step of mixing an acidic solution containing scandium with an organic solvent containing a neutral extractant to extract scandium, an organic solvent, and water, hydrochloric acid, and sulfuric acid.
- a reverse extraction step of back-extracting scandium by mixing a back-extraction starting solution containing any one or more of them, and a neutralization step of adding a neutralizing agent to the back-extracting solution to obtain a neutralized starch.
- An acidic solution containing scandium (hereinafter, also referred to as “scandium-containing acidic solution”) is, for example, an ore containing scandium, an intermediate such as a residue after refining other metal components from the ore, and aluminum containing scandium. It is an aqueous solution obtained by leaching various materials such as alloys, nickel / alkaline storage battery anodes, metal halide lamps, and waste with an acidic solution.
- mineral acids such as hydrochloric acid, sulfuric acid and nitric acid can be used.
- scandium can be efficiently recovered with high selectivity by satisfactorily separating scandium and impurity elements by being composed of the above-mentioned steps. ..
- FIG. 1 is a process diagram showing an example of the flow of the scandium recovery method.
- the scandium-containing acidic solution is mixed with an organic solvent containing a neutral extractant, and scandium is extracted by a solvent extraction method.
- an organic solvent containing a solvate type extractant also called a solvate extractant
- a neutral extractant is used.
- the solvate type extractant for example, an extractant having trioctylphosphine oxide (TOPO) as a functional group can be used.
- an acidic extractant is an extractant that extracts metal ions by substituting —H contained in the extractant with cations such as scandium ions to form a metal salt.
- the acidic extractant has a strong chemical bond with the metal ion, and the back extraction cannot be performed unless the bond is broken.
- a phosphoric acid-based extractant such as an acidic phosphoric acid ester is used as an acidic extractant, the extremely strong affinity between phosphoric acid and scandium increases the selectivity for scandium, but it is difficult to break the bond. (See, for example, reaction formula (i) below).
- the back extractability for example, when a carboxylic acid having a weak binding force to a metal ion is used as an acidic extractant, the back extractability can be improved, but the selectivity for scandium is increased because it does not contain phosphoric acid. It is damaged and cannot be used as a purification medium.
- solvate extractants which are neutral extractants, have functional groups in their molecules that have an affinity for non-ionized molecular metal compounds, and can be combined with metal compounds. It is an extractant that extracts by affinity.
- the extract is extracted by binding to the scandium compound only by affinity, and on the other hand, since no chemical bond is formed, the fluidity of the liquid after back extraction is improved and the back extraction can be easily performed.
- solvation can be promoted by increasing the ionic strength in the aqueous phase to promote the extraction reaction, and conversely, the back extraction reaction can be carried out by decreasing the ionic strength. Can be promoted. Therefore, extraction and back extraction can be easily controlled by controlling the ionic strength based on the adjustment of the salt concentration in the solution.
- the solvate type extractant stays in the organic solvent because the ions constituting the metal compound are hydrated and stabilized when they come into contact with an aqueous solution or water having an ion intensity lower than that of the extracted conditions.
- the back extraction reaction proceeds.
- the reaction of extraction and back extraction can be freely controlled by adjusting the salt concentration of the solution and controlling the ionic strength by using the solvate type extractant.
- Solvation-type extracts that are neutral extracts include phosphorus-based and non-phosphorus-based extracts, but when emphasis is placed on selectivity with scandium, which is the target of separation and purification, phosphorus-based solvate extracts containing phosphorus are considered. Is particularly suitable. Above all, it is preferable to use trioctylphosphine oxide (TOPO) from the viewpoint that scandium can be extracted and back-extracted more effectively.
- TOPO trioctylphosphine oxide
- reaction formula (ii) shows the extraction reaction formula when TOPO is used as an extractant.
- the scandium compound is only added to the extractant in an affinity manner, and the extract is extracted by a reaction that does not involve the formation of a chemical bond.
- TOPO used as an extractant there are various trialkylphosphine oxides having different alkyl chains, but any of them can be preferably used.
- TOPO has a melting point of about 60 ° C and is solid at room temperature. Therefore, in the extraction treatment, for example, it is diluted with a hydrocarbon solvent or the like before use. Even with the extractant called TOPO, some types having similar structures with different alkyl chains are liquid at room temperature, and when they are liquid, dilution is not always necessary.
- the volume concentration of TOPO in the organic solvent is not particularly limited, but is preferably 5% by volume or more and 40% by volume or less, and more preferably 5% by volume or more and 25% by volume or less.
- the maximum extraction capacity of scandium is, for example, Sc: 1.8 g / L when the concentration of TOPO in an organic solvent is 5% by volume, and Sc: 11.4 g / L when the concentration is 40% by volume. is there.
- Sc 1.8 g / L when the concentration of TOPO in an organic solvent is 5% by volume
- Sc 11.4 g / L when the concentration is 40% by volume.
- the liquid property of the scandium-containing acidic solution to be mixed with the organic solvent containing the extractant is not particularly limited and may be any liquid property, but the ions of the scandium-containing acidic solution may be used.
- the liquidity of the scandium-containing acidic solution is hydrochloric acid acidic, sulfuric acid acidic, nitrate acidic, or a mixed system thereof, one or more anions of chloride ion, sulfate ion, and nitrate ion
- the total concentration is preferably 1.0 mol / L or more and 10.0 mol / L or less, and more preferably 1.0 mol / L or more and 6.0 mol / L or less.
- the total concentration of anions in the scandium-containing acidic solution is 1.0 mol / L or more, the scandium extraction effect can be further enhanced.
- the total concentration of anions is 10.0 mol / L or less.
- the anion concentration can be adjusted by adjusting the metal salt concentration and the acid concentration.
- the metal salt concentration can be adjusted by concentrating or diluting the solution, or by adding a metal salt having a low extraction rate.
- the pH of the scandium-containing acidic solution to be subjected to the extraction treatment is adjusted to the range of -0.5 or more and 3.0 or less.
- the extraction step S1 such a scandium-containing acidic solution after pH adjustment is mixed with an organic solvent containing a neutral extractant to perform an extraction treatment.
- FIG. 2 shows the relationship between the concentration of the hydrochloric acid solution as the back extraction starting solution and the back extraction rate of scandium (Sc) and iron (Fe) as an example of the back extraction conditions.
- Sc scandium
- Fe iron
- the pH of the scandium-containing acidic solution is preferably ⁇ 0.5 or higher.
- the pH of the scandium-containing acidic solution in the extraction treatment is preferably 3.0 or less.
- the pH of the scandium-containing acidic solution is more preferably in the range of 0 or more and 2.0 or less. By more preferably adjusting to such a pH range and performing the extraction treatment, it is possible to suppress the extraction of the acid and more effectively prevent the back extraction rate of scandium from decreasing in the back extraction step S2.
- a cleaning step S11 may be provided to wash the organic solvent (extracted organic phase) after extraction obtained by solvent extraction in the extraction step S1. Specifically, in the cleaning step S11, the organic solvent after extraction and the cleaning initial solution are mixed, and impurities contained in the organic solvent are removed.
- TOPO which is an extractant particularly preferably used in the above-mentioned extraction step S1
- TOPO has high selectivity for impurities coexisting in the solution.
- the organic solvent is washed (scrubbing) after the scandium is extracted and before the back extraction. ) Is applied to separate the impurity element into the aqueous phase and remove it from the extractant.
- a hydrochloric acid solution or a sulfuric acid solution can be used as the cleaning starting solution, and a mixed solution thereof may be used. Although it is possible to perform cleaning using a nitric acid solution, it may accelerate the oxidative deterioration of TOPO, which is an extractant.
- water-soluble chlorides and sulfates can be used instead of the hydrochloric acid solution and the sulfuric acid solution.
- the use of alkali metal salts may cause new impurities, and it is preferable to use them in consideration of this point.
- the concentration of the cleaning starting solution is preferably in the range of 0.2 mol / L or more and 4.0 mol / L or less.
- the range is preferably 0.5 mol / L or more and 4.0 mol / L or less.
- the concentration is lower than 0.2 mol / L, the amount of scandium washed (back-extracted) together with the impurity elements may increase, and the scandium in the organic solvent after washing may increase.
- the scandium concentration may decrease and scandium may not be recovered efficiently.
- the concentration is higher than 4.0 mol / L, the cleaning efficiency of impurities may decrease.
- the concentration of the cleaning starting solution is more preferably 0.5 mol / L or more and 2.0 mol / L or less when a hydrochloric acid solution is used, and further preferably 0.8 mol / L or more and less than 2.0 mol / L.
- a sulfuric acid solution it is more preferably 0.8 mol / L or more and 3.5 mol / L or less, and further preferably 1.0 mol / L or more and less than 3.5 mol / L. More preferably, in such a range, impurities can be washed more effectively while suppressing the washing of scandium.
- the amount of acid extracted can be reduced by increasing the phase ratio O / A of the organic phase (O) and the aqueous phase (A) during the reaction, but O / A When becomes extremely large, control becomes difficult.
- the phase ratio O / A in the cleaning treatment using the hydrochloric acid solution is not particularly limited, but is preferably 3 or more and 30 or less from the viewpoint of liquid balance and operability. The same applies when a sulfuric acid solution is used as the cleaning starting solution.
- the cleaning treatment is performed using the cleaning initial solution (hydrochloric acid solution or sulfuric acid solution) in the above-mentioned concentration range
- a part of scandium is washed, albeit in a small amount, and coexists with impurity elements in the cleaning solution. It becomes.
- the liquid after cleaning becomes a waste liquid, so scandium in the liquid after cleaning causes a recovery loss. Therefore, the post-cleaning solution obtained through the cleaning step S11 is repeated as a part of the extraction starting solution (scandium-containing acidic solution) (arrow indicated by X in the flow of FIG. 1).
- the loss of scandium can be eliminated, and the recovery rate can be further improved.
- FIG. 3 is a process diagram showing another example of the flow of the scandium recovery method, in which a part of the back-extracted liquid obtained from the back-extracted step S2 is used as the washing starting liquid in the washing step S11 ( It is a process drawing explaining the example of (the arrow indicated by W in the flow of FIG. 3).
- the back-extraction solution obtained in the back-extraction step S2 causes a reaction opposite to the extraction reaction by mixing the back-extraction starting solution with the organic solvent (organic phase) from which scandium was extracted, and the reverse extraction thereof. It is a solution containing scandium obtained by back-extracting scandium in the starting solution.
- the reverse extraction starting solution is water or an acid solution such as hydrochloric acid or sulfuric acid having a low concentration, as will be described later. Therefore, the post-extraction solution is a solution containing scandium in these solutions.
- the cleaning treatment in the cleaning step S11 cleans a part of scandium, albeit in a small amount, so that it coexists with the impurity element in the cleaning liquid. Therefore, a preferred embodiment is after the cleaning.
- the solution is repeated as part of the starting solution for extraction (scandium-containing acidic solution) (the arrow indicated by X in the flow of FIG. 1) to eliminate the loss of scandium.
- the generated post-cleaning liquid solution containing scandium
- the organic solvent (cleaned organic phase) that has been washed in the washing step S11 as described above is subjected to the back extraction step S2 of the next step.
- back extraction process In the back extraction step S2, scandium is back extracted from the organic solvent from which scandium has been extracted. Specifically, scandium is back-extracted by mixing an organic solvent with a back-extraction starting solution containing any one or more of water, hydrochloric acid, and sulfuric acid.
- back extraction step S2 water or a low-concentration acid solution is mixed with the organic solvent from which scandium has been extracted as a back extraction solution (back extraction starting solution), thereby reversing the above reaction formula (ii).
- a reaction is allowed to reverse extract the scandium to obtain a back-extracted solution containing the scandium.
- the extraction rate increases as the acid concentration of the solution increases.
- the back extraction rate decreases as the acid concentration increases. Therefore, from the viewpoint of the back extraction rate, it is most advantageous to perform the back extraction treatment using water.
- the ionic strength of the aqueous phase is extremely lowered, the phase separation from the organic phase becomes poor, which may cause the generation of emulsion (clad). For this reason, it is practically preferable to perform the back extraction treatment using a solution in which a slight amount of acid is present (acid solution) as the back extraction starting solution.
- the acid solution a hydrochloric acid solution or a sulfuric acid solution can be used.
- the concentration is preferably 1.0 mol / L or less
- the concentration is preferably 2.0 mol / L or less.
- the concentration range is more preferably 0.05 mol / L or more and 0.3 mol / L or less.
- the organic phase after the back extraction treatment (organic phase after the back extraction treatment) can be repeated as the organic phase used in the extraction step S1 after performing, for example, a plurality of washing treatments.
- a neutralizing agent is added to the obtained back-extracted liquid obtained by back-extracting scandium to obtain a neutralized starch.
- a neutralizing agent such as sodium hydroxide
- the pH of the filtrate is in the range of 5.5 or more and 7.0 or less, preferably about 6.5.
- a neutralization treatment is carried out so as to obtain a precipitate of scandium hydroxide.
- the produced scandium hydroxide which is a neutralized starch, can be separated from the neutralized liquid (filtrate) and recovered by performing solid-liquid separation such as filtration on the neutralized slurry.
- the concentration of sodium hydroxide or the like used as a neutralizing agent may be appropriately determined, but for example, when a high concentration neutralizing agent exceeding 4N (specified concentration) is added, the pH locally rises in the reaction vessel. Therefore, it becomes difficult to control the pH. Further, if the reaction proceeds rapidly, a small-diameter scandium hydroxide precipitate is likely to be formed, and the solid-liquid separability is deteriorated.
- the neutralizing agent is preferably a solution diluted to a concentration of 4N or less so that the neutralization reaction in the reaction vessel can occur as uniformly as possible.
- the concentration of the neutralizing agent such as sodium hydroxide is preferably 1N or more.
- dissolution step S4 the neutralized starch obtained in the neutralization step S3 is dissolved with an acid to obtain a solution. Since the neutralized starch contains scandium hydroxide, a solution containing scandium can be obtained by dissolving it.
- the acid used for dissolution is not particularly limited, but it is preferable to use a mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid.
- a mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid.
- sulfuric acid for example, the solution is a scandium sulfate solution.
- the concentration is not particularly limited, but in consideration of the industrial reaction rate, it is preferable to dissolve using a sulfuric acid solution having a concentration of 2N or more.
- the pH of the scandium sulfate solution (dissolved solution) obtained by dissolving it with sulfuric acid it is preferable to adjust the pH of the scandium sulfate solution (dissolved solution) obtained by dissolving it with sulfuric acid to be -0.5 or more and 2.0 or less. If the solution has a pH of less than -0.5 in a strongly acidic region, the solubility of scandium oxalate crystallized in the next crystallization step S5 increases, the amount obtained as crystals decreases, and the yield decreases. I have something to do. On the other hand, when the pH is higher than 2.0, the time until the scandium hydroxide is completely dissolved in the dissolution step S4 becomes long, and the productivity deteriorates.
- the concentration of scandium can be increased and concentrated as compared with the liquid after back extraction.
- the amount of the mother liquor after crystallization in the next crystallization step S5 is reduced, the loss amount of scandium oxalate corresponding to the solubility can be reduced, and the yield can be increased.
- crystalization process In the crystallization step S5, the scandium-containing solution obtained in the dissolution step S4 is mixed with oxalic acid to precipitate a scandium oxalate precipitate (crystal).
- the pH of the solution is preferably adjusted to ⁇ 0.5 or more and 2.0 or less, and scandium oxalate is crystallized by mixing the pH-adjusted solution with a solution containing oxalic acid.
- oxalate precipitates for example, iron oxalate
- high-purity scandium oxalate can be produced.
- a method for oxalate oxidation treatment a method can be used in which oxalic acid is added to a solution containing scandium to precipitate and generate crystals of scandium oxalate based on the scandium in the solution.
- the oxalic acid used at this time may be a solid or a solution.
- a method of oxalate oxidation treatment a method of precipitating and forming scandium oxalate crystals by gradually adding a scandium-containing solution to the oxalic acid solution filled in the reaction vessel (so-called reverse addition method). Can also be used.
- the oxalic acid concentration in the solution is not particularly limited, but is preferably about 100 g / L, which is close to the solubility. If the oxalic acid concentration is higher than 100 g / L, oxalic acid crystals may precipitate in the solution. On the other hand, as the concentration decreases, the amount of liquid increases, the amount of mother liquor after crystallization increases, and the amount of scandium oxalate corresponding to solubility increases.
- the firing step S6 the precipitate of scandium oxalate is heated and subjected to a thermal decomposition (calcination) treatment to obtain scandium oxide which is an oxide.
- the conditions for firing treatment are not particularly limited. For example, it may be placed in a tube furnace and heated at 700 to 900 ° C. for about 2 hours. Industrially, it is preferable to use a continuous furnace such as a rotary kiln because drying and firing can be performed by the same apparatus.
- Example 1 (Extraction process) 2.3 L of scandium-containing acidic solution having the composition shown in Table 1 below adjusted to pH 1.5 and chloride ion concentration of 2.0 mol / L and trioctylphosphine oxide (TOPO) (manufactured by Hokuko Kagaku Kogyo Co., Ltd.) as a solvent. 2.3 L of an organic solvent dissolved in swazole (manufactured by Maruzen Petrochemical Co., Ltd.) so as to have a concentration of 20% by volume was mixed and stirred for 30 minutes for extraction treatment to obtain an extracted organic phase containing scandium. The amount of Na in Table 1 is large because the NaOH solution was added for pH adjustment.
- TOPO trioctylphosphine oxide
- “Others” in the component column in Table 1 and the tables thereafter is a general term for various metal elements such as chromium, magnesium, calcium, cobalt, titanium, zirconium, yttrium, uranium, and thorium, and is scandium-containing acidic.
- the components and impurities contained in the chemicals used in the process are also included.
- the concentration is described as the total of the analytical values of these detected components, and the elements whose analytical values are less than the lower limit of detection are calculated as zero.
- Table 2 below shows the composition and extraction rate of the obtained extracted organic phase.
- the scandium concentration was 2.2 g / L, and the scandium extraction rate was 88%. This result shows that when the extraction process is carried out with a continuous device having multiple countercurrent stages, the extraction rate is 99% or more in three or more stages.
- impurity elements aluminum is extracted at 0.15%, iron is 100%, manganese is 1%, sodium is 0.02%, and Others is 0.5%, and nickel is the lower limit of analysis detection. Was less than.
- Table 3 below shows the composition of the liquid after cleaning
- Table 4 below shows the cleaning rate.
- the cleaning rate shown in Table 4 is a value calculated from the component concentration in the extracted organic phase shown in Table 2 and the component concentration of the cleaning liquid shown in Table 3 and the phase ratio, and the cleaning rate is 100% or more. In the case of, " ⁇ 100 (%)" is described in the table.
- the cleaning rate of scandium is about 10% when a 1.0 mol / L hydrochloric acid solution is used as the cleaning starting solution, and 1 to 2% when a 2.0 mol / L hydrochloric acid solution is used, except for iron.
- the impurities in the above could be efficiently separated by washing. Although scandium was washed up to 11%, the loss of scandium can be suppressed by repeating the washing liquid as the extraction starting liquid.
- Table 8 below shows the analysis results of scandium oxide. Others is the total value of other impurities detected, and the value below the lower limit of analytical detection was calculated as zero. Most of the impurities were below the lower limit of analytical detection, and the grade of scandium oxide was 99.9% or more.
- Example 2 (Extraction process) Extraction was carried out in the same manner as in Example 1 except that the pH of the scandium-containing acidic solution was adjusted to 0 and the chloride ion concentration was adjusted to 3.0 mol / L. Sodium chloride was used to adjust the chloride ion concentration, and the sodium concentration of the extraction starting solution was 26.2 g / L.
- Table 9 below shows the composition and extraction rate of the extracted organic phase obtained.
- the scandium concentration was 2.25 g / L, and the scandium extraction rate was 90%. This result was a result of having an extraction rate of 99% or more in 3 or more stages when carried out in a continuous device with multiple countercurrent stages.
- impurity elements aluminum was extracted at 0.2%, iron at 100%, manganese at 1.5%, sodium at 0.02%, and Others at 0.6%, and nickel was analyzed. It was below the lower limit of detection.
- Table 10 below shows the analysis results of scandium oxide. Most of the impurities were below the lower limit of analytical detection, and the grade of scandium oxide was 99.9% or more.
- Example 3 (Extraction process) Extraction was carried out in the same manner as in Example 1 except that the pH of the scandium-containing acidic solution was adjusted to 0.8 and the chloride ion concentration was adjusted to 2.0 mol / L. Sodium chloride was used to adjust the chloride ion concentration.
- Table 11 shows the composition and extraction rate of the extracted organic phase obtained.
- the scandium concentration was 2.1 g / L, and the scandium extraction rate was 87%. This result was a result of having an extraction rate of 99% or more in 3 or more stages when carried out in a continuous device with multiple countercurrent stages.
- the impurity elements were extracted at 96% iron and 1.0% manganese.
- Table 13 below shows the composition of the starting solution for cleaning used in the cleaning process
- Table 14 shows the composition of the solution after cleaning
- Table 15 shows the cleaning rate in the cleaning process.
- the cleaning rate shown in Table 15 is a value calculated from the component concentration in the cleaning initial solution shown in Table 13, the component concentration of the cleaning solution shown in Table 14, and the phase ratio O / A, and is a negative value. Was written as " ⁇ 0".
- the cleaning rate of scandium is 0% when a 1.0 mol / L hydrochloric acid solution is used as the cleaning initial solution and 36% when a 0.1 mol / L hydrochloric acid solution is used, and the hydrochloric acid in the cleaning initial solution is hydrochloric acid. It was found that the washing of manganese can be effectively performed while suppressing the washing of scandium by setting the concentration to 1.0 mol / L or more.
- Table 16 below shows the composition of the obtained extracted organic phase.
- the scandium concentration was 2.28 g / L, and the scandium extraction rate was 91%. This result was a result of having an extraction rate of 99% or more in 3 or more stages when carried out in a continuous device with multiple countercurrent stages.
- the impurity elements were extracted at each extraction rate of 0.3% for aluminum, 100% for iron, 5% for manganese, and 2.2% for Others, and nickel was below the lower limit of analytical detection.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
スカンジウムを含む酸性溶液から、スカンジウムと不純物元素との分離性を確保して、効率的にスカンジウムを回収することができる方法を提供する。 本発明に係るスカンジウムの回収方法は、スカンジウム含有酸性溶液のpH-0.5以上3.0以下に調整し、中性抽出剤を含有する有機溶媒と混合してスカンジウムを抽出する抽出工程S1と、有機溶媒と逆抽出始液とを混合してスカンジウムを逆抽出する逆抽出工程S2と、逆抽出後液に中和剤を添加して中和澱物を得る中和工程S3と、中和澱物を酸で溶解して溶解液を得る溶解工程S4と、溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物を得る晶析工程S5と、沈澱物を焼成して酸化スカンジウムを得る焼成工程S6と、を有する。また、抽出工程S1での抽出後の有機溶媒と洗浄始液とを混合してその有機溶媒に含まれる不純物を除去する洗浄工程S11を有することが好ましい。
Description
本発明は、スカンジウムを含有する酸性溶液からスカンジウムを効率的に回収する方法に関する。
スカンジウムは、希土類元素の中でも特にイオン半径が小さいため、通常の希土類鉱物中には殆ど存在せず、アルミニウム、スズ、タングステン、ジルコニウム、鉄、ニッケル等の酸化鉱石中に広く、微量存在している。
スカンジウムは、イオン半径が小さいことに伴い塩基性が低いため、その溶解には強酸を必要とする。これにより、同時に溶解する共存元素の種類が多く、かつ、その濃度が高いため、水溶液に含有するスカンジウムを分離して精製することは容易ではない。
代表的な分離方法としては、例えば特許文献1に開示されているような商品名PC-88A(主成分:2-エチルヘキシルホスホン酸2-エチルヘキシル)等の酸性アルキル燐酸エステルを抽出剤とする有機溶媒を用いた溶媒抽出法が知られている。具体的には、その有機溶媒と、スカンジウムを含有する水溶液とを混合して、スカンジウムと、鉄、アルミニウム、カルシウム、イットリウム等の共存元素を有機溶媒中に抽出する。次いで、濃度4~9mol/Lの塩酸溶液を有機溶媒に加えて洗浄することにより、スカンジウム以外の元素を分離して除去し、最後に水酸化ナトリウム水溶液を有機溶媒に加えて、スカンジウムを水酸化物の形態で有機溶媒から分離する。
しかしながら、特許文献1の方法では、スカンジウムを水溶液として逆抽出することはできず、固体のゴム状あるいはゲル状沈澱として水酸化スカンジウムを有機溶媒から分離することになる。このため、溶媒と水酸化スカンジウムとの固液分離が困難となり、水酸化スカンジウムは溶媒、特にリンにより汚染されるという問題がある。さらに、その抽出剤は、逆抽出の都度、かなりの部分がナトリウム塩として水に溶解するため、逆抽出後の水相からの回収処理も必要となる。この回収処理を行わないと、排水のCOD(化学的酸素要求量)値が著しく上昇して環境上の問題となる。
また、特許文献2には、トリオクチルホスフィンオキシド(以下、適宜「TOPO」と表記する)を抽出剤とする有機溶媒を用いた溶媒抽出法により、溶液中のスカンジウムを選択的に抽出する方法が開示されている。ところが、溶液に含有される不純物も、その種類によっては微量に抽出されてしまう。
特許文献2には、有機溶媒中に抽出された不純物の除去が必要な場合、抽出工程での抽出処理後に洗浄(スクラビング)を行う洗浄工程を導入して不純物を除去することが開示されている。具体的には、洗浄始液として、2mol/L以上9mol/L以下の濃度の塩酸溶液、又は、3.5mol/L以上9mol/L以下の濃度の硫酸溶液を用いて、不純物を洗浄除去することが開示されている。このような範囲の洗浄始液を用いて洗浄すれば、洗浄されるスカンジウム量を少量に抑えることができる。
なお、TOPOは、溶媒和型抽出剤であり、スカンジウム化合物を親和力によって抽出している。溶媒和型抽出剤は、抽出剤と化合物の親和力及び溶液のイオン強度を制御することで、抽出と逆抽出とを制御することができる。
上述した洗浄工程では、塩酸や硫酸も同時に抽出され、酸濃度が高いほど多くの酸が抽出される。一方、有機溶媒に抽出されたスカンジウム化合物を逆抽出する場合、水相のイオン強度を小さくする必要があるが、抽出された酸が水相に逆抽出されるため酸濃度が増加、すなわちイオン強度が増加する。その結果、スカンジウム化合物の逆抽出率が低下するという問題がある。
そのことから、特許文献2に記載の技術では、洗浄工程にて洗浄処理を行った場合、シュウ酸で逆抽出処理を行い、シュウ酸スカンジウム沈澱を生成させ分離している。
しかしながら、溶媒抽出を行う設備としては、液-液反応のみであれば連続装置として構成し易いが、特許文献2に記載の方法のように、プロセスの途中に固-液反応が生じるようになると、連続装置とすることが困難であったり、工程や設備が複雑になったりする問題がある。また、一部をバッチ処理とすると生産効率が低下するという問題もある。
本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含む酸性溶液から、スカンジウムと不純物元素との分離性を確保して、効率的にスカンジウムを回収することができる方法を提供することを目的とする。
本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、スカンジウムを含む酸性溶液のpHを特定の範囲に調整して中性抽出剤による抽出処理を行い、抽出後有機相から逆抽出して得られる逆抽出後液を中和して水酸化スカンジウムの沈澱物を生成させ、その沈澱物を酸で溶解して溶解液を生成することで、不純物元素との分離性を高め、スカンジウムを有効に濃縮させることができることを見出し、本発明を完成するに至った。
(1)本発明の第1の発明は、スカンジウムを含有する酸性溶液(スカンジウム含有酸性溶液)のpHを-0.5以上3.0以下の範囲に調整し、中性抽出剤を含有する有機溶媒と混合して、該有機溶媒中にスカンジウムを抽出する抽出工程と、前記有機溶媒と、水、塩酸、硫酸のいずれか1種以上を含有する逆抽出始液とを混合し、該有機溶媒からスカンジウムを逆抽出して逆抽出後液を得る逆抽出工程と、前記逆抽出後液に中和剤を添加して中和澱物を得る中和工程と、前記中和澱物を酸で溶解して溶解液を得る溶解工程と、前記溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物を得る晶析工程と、前記沈澱物を焼成して酸化スカンジウムを得る焼成工程と、を有する、スカンジウムの回収方法である。
(2)本発明の第2の発明は、第1の発明において、前記中性抽出剤は、トリオクチルホスフィンオキシドを官能基とする抽出剤を含み、前記有機溶媒は、前記トリオクチルホスフィンオキシドの濃度が5体積%以上40体積%以下である、スカンジウムの回収方法である。
(3)本発明の第3の発明は、第1又は第2の発明において、前記酸性溶液は、塩化物イオン、硫酸イオン、及び硝酸イオンのいずれか1種以上の陰イオンを含み、該酸性溶液中における該陰イオンの合計濃度が1.0mol/L以上10.0mol/L以下である、スカンジウムの回収方法である。
(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記抽出工程での抽出後の前記有機溶媒と洗浄始液とを混合して該有機溶媒に含まれる不純物を除去する洗浄工程を有する、スカンジウムの回収方法である。
(5)本発明の第5の発明は、第4の発明において、前記洗浄工程を経て得られた洗浄後液を、前記抽出工程での抽出処理に供される溶液として繰り返す、スカンジウムの回収方法である。
(6)本発明の第6の発明は、第4又は第5の発明において、前記洗浄工程では、前記洗浄始液として、0.2mol/L以上4.0mol/L以下の塩酸溶液又は0.5mol/L以上4.0mol/L以下の硫酸溶液を用いる、スカンジウムの回収方法である。
(7)本発明の第7の発明は、第4又は第5の発明において、前記洗浄工程では、前記洗浄始液として、前記逆抽出工程にて得られる前記逆抽出後液の一部を用い、該逆抽出後液を塩酸溶液又は硫酸溶液によってpH1.0以下に調整して、抽出後の前記有機溶媒と混合する、スカンジウムの回収方法である。
(8)本発明の第8の発明は、第1乃至第7のいずれかの発明において、前記逆抽出始液として、水、濃度1.0mol/L以下の塩酸溶液、及び2.0mol/L以下の硫酸溶液のいずれか1種類以上を用いる、スカンジウムの回収方法である。
(9)本発明の第9の発明は、第1乃至第8のいずれかの発明において、前記中和工程では、前記逆抽出後液に中和剤を添加することによりpHを5.5以上7.0以下の範囲に調整する、スカンジウムの回収方法である。
(10)本発明の第10の発明は、第1乃至第9のいずれかの発明において、前記晶析工程では、前記溶解液のpHを-0.5以上2.0以下の範囲に調整した後、pH調整後の溶解液とシュウ酸を含有する溶液とを混合することによりシュウ酸スカンジウムの沈澱物を生成させる、スカンジウムの回収方法である。
本発明によれば、スカンジウムと不純物元素との分離性を確保しながら、効率的にスカンジウムを回収することができる。
以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
本発明に係るスカンジウムの回収方法は、スカンジウムを含む酸性溶液からスカンジウムを選択的に分離して効率的に回収する方法である。
具体的に、このスカンジウムの回収方法は、スカンジウムを含有する酸性溶液を、中性抽出剤を含有する有機溶媒と混合してスカンジウムを抽出する抽出工程と、有機溶媒と、水、塩酸、硫酸のいずれか1種以上を含有する逆抽出始液とを混合してスカンジウムを逆抽出する逆抽出工程と、逆抽出後液に中和剤を添加して中和澱物を得る中和工程と、中和澱物を酸で溶解して溶解液を得る溶解工程と、溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物を得る晶析工程と、沈澱物を焼成して酸化スカンジウムを得る焼成工程と、を有する。
スカンジウムを含む酸性溶液(以下、「スカンジウム含有酸性溶液」ともいう)は、例えば、スカンジウムを含有する鉱石や、その鉱石から他の金属成分を精錬した後の残滓等の中間物、スカンジウムを含むアルミニウム合金、ニッケル・アルカリ蓄電池の陽極、メタルハライドランプ等の各種材料や廃棄物等を、酸性溶液により浸出処理等して得られる水溶液である。なお、浸出処理に使用する酸としては、塩酸、硫酸、硝酸等の鉱酸を用いることができる。
本発明に係るスカンジウムの回収方法によれば、上述した各工程により構成されることで、スカンジウムと不純物元素とを良好に分離して、高い選択性でもってスカンジウムを効率的に回収することができる。
以下、スカンジウムの回収方法の各工程について詳細に説明する。図1は、このスカンジウムの回収方法の流れの一例を示す工程図である。
[抽出工程]
抽出工程S1では、スカンジウム含有酸性溶液を、中性抽出剤を含有する有機溶媒と混合して溶媒抽出法によってスカンジウムを抽出する。溶媒抽出法によるスカンジウムの抽出分離に際しては、中性抽出剤である溶媒和型抽出剤(溶媒和性抽出剤とも言われる)を含有する有機溶媒を用いる。具体的に、溶媒和型抽出剤としては、例えば、トリオクチルホスフィンオキシド(TOPO)を官能基とする抽出剤を用いることができる。
抽出工程S1では、スカンジウム含有酸性溶液を、中性抽出剤を含有する有機溶媒と混合して溶媒抽出法によってスカンジウムを抽出する。溶媒抽出法によるスカンジウムの抽出分離に際しては、中性抽出剤である溶媒和型抽出剤(溶媒和性抽出剤とも言われる)を含有する有機溶媒を用いる。具体的に、溶媒和型抽出剤としては、例えば、トリオクチルホスフィンオキシド(TOPO)を官能基とする抽出剤を用いることができる。
ここで、スカンジウムの抽出分離に際して用いる抽出剤として、酸性抽出剤を用いることが考えられる。酸性抽出剤は、その抽出剤の持つ-Hがスカンジウムイオン等の陽イオンと置換して金属塩を形成することで金属イオンを抽出する抽出剤である。ところが、酸性抽出剤は、金属イオンと強固に化学結合し、その結合を切らないと逆抽出できない。例えば、酸性抽出剤として酸性リン酸エステル等のリン酸系の抽出剤を用いると、リン酸とスカンジウムとの極めて強い親和力により、スカンジウムに対する選択性は高くなるものの、その結合を切ることは困難となる(例えば下記反応式(i)参照)。その結果、ゴム状やゲル状の固体が析出して有機相や水相の流動性が悪くなり、効果的かつ効率的な逆抽出処理が困難となる。また、その強固な結合を切るために、例えば水酸化ナトリウム等のアルカリを別途添加して処理することが必要となる。
3H-R+ScCl3+3NaOH→Sc-R3+3NaCl+3H2O ・・(i)
(なお、式中のH-Rは酸性抽出剤を表す。)
3H-R+ScCl3+3NaOH→Sc-R3+3NaCl+3H2O ・・(i)
(なお、式中のH-Rは酸性抽出剤を表す。)
また、逆抽出性を改善するために、酸性抽出剤として例えば金属イオンとの結合力が弱いカルボン酸を使用すると、逆抽出性は改善できるものの、リン酸を含まないためにスカンジウムに対する選択性が損なわれ、精製媒体としては使用できない。
このような酸性抽出剤に対して、中性抽出剤である溶媒和型抽出剤は、その分子中に、イオン化していない分子状の金属化合物と親和力のある官能基を有し、金属化合物と親和することによって抽出を行う抽出剤である。溶媒和型抽出剤では、スカンジウム化合物と親和力のみで結合して抽出し、一方で、化学結合を形成しないため逆抽出後液の流動性が改善されて容易に逆抽出することができる。
また、溶媒和型抽出剤においては、水相中のイオン強度を上昇させることにより溶媒和が促されて抽出反応を促進させことができ、逆に、イオン強度を低下させることにより逆抽出反応を促進させることができる。そのため、溶液中の塩濃度の調整に基づいてイオン強度を制御することで、抽出、逆抽出を容易に制御することができる。
この点に関してより詳述すると、一般に、金属化合物が水に溶解すると、陽イオンと陰イオンのそれぞれに水分子が取り囲んで安定化(水和)するため、その状態では溶媒和型抽出剤を含んだ有機溶媒中に金属化合物を取り込むことは困難となる。ところが、水に溶解し易い塩類を溶液中に溶解させる、すなわちイオン強度を上げておくと、水溶液中の水分子が添加された塩類を構成するイオンに次々と水和して、最終的にフリーの水(自由水)が殆どない状態となる。すると、金属化合物を水和することができなくなり、その金属化合物が分子そのままの状態として存在する割合が増え、結果として、金属化合物が溶媒和型抽出剤により抽出されるようになる。
一方で、溶媒和型抽出剤は、抽出された条件よりもイオン強度が低い水溶液や水と接触すると、金属化合物を構成するイオンが水和して安定化されるため、有機溶媒中に留まることが困難となり、結果的に逆抽出反応が進行することになる。このように、溶媒和型抽出剤を用いて、溶液の塩濃度を調整してイオン強度を制御することによって、抽出、逆抽出の反応を自由に制御することができる。
中性抽出剤である溶媒和型抽出剤としては、リン系、非リン系の抽出剤があるが、分離精製対象であるスカンジウムとの選択性を重視すると、リンを含むリン系溶媒和抽出剤が特に適している。中でも、スカンジウムをより効果的に抽出、逆抽出できるという点から、トリオクチルホスフィンオキシド(TOPO)を用いることが好ましい。
下記反応式(ii)に、TOPOを抽出剤として用いたときの抽出反応式を示す。反応式(ii)に示すように、この抽出剤に対しては、スカンジウム化合物が親和して付加されるのみであり、化学結合の形成を伴わない反応で抽出される。
3TOPO+ScCl3→ScCl3・3TOPO ・・(ii)
3TOPO+ScCl3→ScCl3・3TOPO ・・(ii)
抽出剤として用いるTOPOとしては、そのアルキル鎖が異なる種々のトリアルキルホスフィンオキシド類が存在するが、いずれのものであっても好適に使用できる。
TOPOの融点は約60℃であり、常温では固体である。そのため、抽出処理では、例えば炭化水素系の溶媒等で希釈して使用する。なお、TOPOと称される抽出剤でも、アルキル鎖が異なる類似構造をもつ種類の中には常温で液体のものもあり、液体である場合には希釈は必ずしも要しない。
TOPOの有機溶媒中の体積濃度は、特に限定されないが、5体積%以上40体積%以下とすることが好ましく、5体積%以上25体積%以下とすることがより好ましい。
スカンジウムの最大抽出能力は、例えば有機溶媒中のTOPOの濃度が5体積%の場合ではSc:1.8g/L程度であり、濃度が40体積%の場合ではSc:11.4g/L程度である。このように、TOPOの有機溶媒中の濃度が高くなるほど抽出能力は高まるが、TOPOの体積あたりのスカンジウム抽出量は減少する。なお、有機溶媒における炭化水素の種類によってその溶解度は異なるが、常温25℃付近では40体積%程度の濃度がほぼ上限となる。
溶媒和型抽出剤を用いた抽出において、抽出剤を含む有機溶媒と混合するスカンジウム含有酸性溶液の液性としては、特に限定されず如何なる液性であってもよいが、スカンジウム含有酸性溶液のイオン強度が高いほどTOPOによる溶媒和が促進するため抽出には有利となる。すなわち、溶媒和反応を進行させるためには、抽出対象となる化合物が分子性であることが重要であり、化合物の解離を抑制するために、塩濃度を高く維持してイオン強度を高めることが好ましい。
例えば、スカンジウム含有酸性溶液の液性が、塩酸酸性、硫酸酸性、硝酸酸性、あるいはこれらの混合系の場合には、塩化物イオン、硫酸イオン、及び硝酸イオンのいずれか1種以上の陰イオンの合計濃度が1.0mol/L以上10.0mol/L以下であることが好ましく、1.0mol/L以上6.0mol/L以下がより好ましい。スカンジウム含有酸性溶液において、陰イオンの合計濃度が1.0mol/L以上であることにより、スカンジウムの抽出効果をより高めることができる。ただしそのとき、不純物元素の抽出効果も高くなることから、陰イオンの合計濃度は10.0mol/L以下とすることが望ましい。なお、陰イオン濃度は、金属塩濃度や酸濃度により調整することができる。金属塩濃度は、溶液の濃縮や希釈、抽出率の低い金属塩を添加することで調整することができる。
ここで、抽出処理に付すスカンジウム含有酸性溶液については、そのpHを、-0.5以上3.0以下の範囲に調整する。抽出工程S1では、このようなpH調整後のスカンジウム含有酸性溶液と、中性抽出剤を含有する有機溶媒とを混合して抽出処理を行う。
溶媒和型抽出剤は、金属化合物以外にも酸を抽出するため、酸の量が多いほど、すなわちpHが低いほど抽出される酸の量が多くなる。図2に、逆抽出条件の一例として、逆抽出始液である塩酸溶液の濃度とスカンジウム(Sc)及び鉄(Fe)の逆抽出率との関係を示す。図2のグラフ図に示すように、塩酸濃度が高くなるとScやFeの逆抽出効率が低下することが分かる。これは、有機溶媒中に抽出された酸は、逆抽出時に逆抽出されるため水相の酸濃度が増加し、その結果、目的とするスカンジウムの逆抽出率を低下させることによる。このことを踏まえ、抽出処理においては、スカンジウム含有酸性溶液のpHを-0.5以上とすることが好ましい。一方、pHが高いと不純物の一部が水酸化物として沈澱、あるいはコロイド粒子として析出し、この状態で有機溶媒と混合して抽出処理を行うと、クラッドを形成して抽出不良が生じる。このことを踏まえ、抽出処理におけるスカンジウム含有酸性溶液のpHは3.0以下とすることが好ましい。
また、スカンジウム含有酸性溶液のpHとしては、0以上2.0以下の範囲であることがより好ましい。より好ましくこのようなpH範囲に調整して抽出処理を行うことで、酸の抽出を抑制し、逆抽出工程S2においてスカンジウムの逆抽出率が低下することをより効果的に防ぐことができる。
このような抽出工程S1における溶媒抽出により、抽出剤を含む有機溶媒から構成される有機相にスカンジウムを抽出し、その抽出有機相を次の工程に供する。
[洗浄工程]
必須の態様ではないが、抽出工程S1での溶媒抽出により得られた抽出後の有機溶媒(抽出有機相)を洗浄する洗浄工程S11を設けてもよい。具体的に、洗浄工程S11は、抽出後の有機溶媒と洗浄始液とを混合し、その有機溶媒に含まれる不純物を除去する。
必須の態様ではないが、抽出工程S1での溶媒抽出により得られた抽出後の有機溶媒(抽出有機相)を洗浄する洗浄工程S11を設けてもよい。具体的に、洗浄工程S11は、抽出後の有機溶媒と洗浄始液とを混合し、その有機溶媒に含まれる不純物を除去する。
上述した抽出工程S1において特に好適に用いられる抽出剤であるTOPOは、溶液中に共存する不純物に対する選択性が高い。しかしながら、スカンジウム含有酸性溶液中において抽出目的とするスカンジウム以外に過剰の不純物元素が共存する場合には、スカンジウムを抽出した後、それを逆抽出する前に、その有機溶媒に対して洗浄処理(スクラビング)を施し、不純物元素を水相に分離して抽出剤から除去することが好ましい。このようにして洗浄工程S11を設け、当該洗浄工程S11にて有機溶媒を洗浄し不純物元素を除去することで、後述する各工程で得られるスカンジウム化合物の純度を、より一層に高めることができる。
洗浄始液としては、塩酸溶液や硫酸溶液を使用することができ、これらの混合溶液であってもよい。なお、硝酸溶液を用いて洗浄を行うことも可能であるが、抽出剤であるTOPOの酸化劣化を促進する可能性がある。また、塩酸溶液や硫酸溶液に代わって水に可溶性の塩化物や硫酸塩を使用することもできる。ただし、例えばアルカリ金属の塩類を使用すると新たな不純物の原因となる可能性があるため、その点を考慮して使用することが好ましい。
洗浄始液の濃度として、例えば、塩酸溶液を用いる場合は0.2mol/L以上4.0mol/L以下の範囲とすることが好ましい。また、硫酸溶液を用いる場合は0.5mol/L以上4.0mol/L以下の範囲とすることが好ましい。
例えば洗浄始液として塩酸溶液を用いた場合、濃度が0.2mol/Lより低くなると、不純物元素と共にスカンジウムが洗浄(逆抽出)される量が多くなる可能性があり、洗浄後有機溶媒中のスカンジウム濃度が低下し、効率的にスカンジウムを回収できないことがある。一方で、濃度が4.0mol/Lより高くなると、不純物の洗浄効率が低下する可能性がある。また、濃度が4.0mol/Lより高い塩酸溶液により洗浄すると、水相から有機相に抽出される酸の量が増加し、次工程の逆抽出工程においてこの酸も逆抽出されるため水相中の酸濃度が増加し、その逆抽出工程でのスカンジウムの逆抽出率が低下する可能性がある。なお、洗浄始液として硫酸溶液を用いた場合における好ましい濃度範囲についても、同様の理由となる。
また、洗浄始液の濃度として、より好ましくは、塩酸溶液を用いる場合には0.5mol/L以上2.0mol/L以下とし、さらに好ましくは0.8mol/L以上2.0mol/L未満とする。また、硫酸溶液を用いる場合には、より好ましくは、0.8mol/L以上3.5mol/L以下とし、さらに好ましくは1.0mol/L以上3.5mol/L未満とする。より好ましくこのような範囲であることにより、スカンジウムが洗浄されることを抑制しながら、より効果的に不純物を洗浄することができる。
なお、洗浄始液の酸濃度を高くする場合、反応時の有機相(O)と水相(A)の相比O/Aを大きくすることで酸の抽出量を低減できるが、O/Aが極端に大きくなると制御が困難になる。具体的に、塩酸溶液を用いた洗浄処理における相比O/Aは、特に限定されないが、液バランス及び操作性の観点から3以上30以下とすることが好ましい。洗浄始液として硫酸溶液を用いた場合も同様である。
ここで、上述した濃度範囲の洗浄始液(塩酸溶液又は硫酸溶液)を用いて洗浄処理を行うと、少量ではあるもののスカンジウムの一部が洗浄され、洗浄後液中に不純物元素と共に共存する状態となる。一般的に洗浄後液は廃液となるため、洗浄後液中のスカンジウムは回収ロスとなってしまう。そこで、このような洗浄工程S11を経て得られた洗浄後液を、抽出始液(スカンジウム含有酸性溶液)の一部として繰り返すようにする(図1のフロー中のXで示す矢印)。これにより、スカンジウムのロスを無くすことができ、回収率をより向上させることができる。
また、洗浄始液としては、後述する逆抽出工程S2にて得られる逆抽出後液であって、塩酸溶液又は硫酸溶液によってpH1.0以下に調整した溶液を用いてもよい。なお、図3は、スカンジウムの回収方法の流れの他の例を示す工程図であり、洗浄工程S11における洗浄始液として、逆抽出工程S2から得られる逆抽出後液の一部を用いる場合(図3のフロー中のWで示す矢印)の例を説明する工程図である。
逆抽出工程S2にて得られる逆抽出後液は、スカンジウムを抽出した有機溶媒(有機相)に対して逆抽出始液を混合することで抽出反応とは逆の反応を生じさせ、その逆抽出始液中にスカンジウムを逆抽出して得られる、スカンジウムを含む溶液である。逆抽出始液は、後述するように、水、あるいは低濃度の塩酸、硫酸等の酸溶液である。したがって、逆抽出後液は、これらの溶液にスカンジウムが含まれた溶液である。
上述したように、洗浄工程S11での洗浄処理により、少量ではあるもののスカンジウムの一部が洗浄され、洗浄後液中に不純物元素と共に共存する状態となることから、好ましい態様としては、その洗浄後液を、抽出始液(スカンジウム含有酸性溶液)の一部として繰り返して(図1のフロー中のXで示す矢印)、スカンジウムのロスを無くすようにしている。このような態様においては、スカンジウムが逆抽出された逆抽出後液の一部を、洗浄工程S11における洗浄始液として用いたとしても、生成する洗浄後液(スカンジウムを含む溶液)を抽出始液の一部として繰り返すことで、洗浄始液として用いる逆抽出後液中に含まれていたスカンジウムの回収ロスを防ぐことができる。
逆抽出工程S2にて得られる逆抽出後液の一部を洗浄始液として用いる場合、その酸濃度が低すぎると不純物の洗浄効率も低下するとともに、抽出有機相に含まれるスカンジウムも洗浄されやすくなる。このことから、逆抽出後液を洗浄始液として用いるにあたっては、塩酸溶液又は硫酸溶液によってpH1.0以下に調整した溶液とすることが好ましい。このように、pH調整後の逆抽出後液を洗浄始液として、抽出有機相と混合して洗浄することで、抽出有機相に含まれるスカンジウムの洗浄を抑制しながら、効果的に不純物を洗浄することができる。そしてこのことにより、例えば、洗浄後液を抽出始液として繰り返し戻さない態様であっても、スカンジウムの回収ロスを防ぐことができる。
以上のようにして洗浄工程S11にて洗浄処理を行った有機溶媒(洗浄有機相)を、次工程の逆抽出工程S2に供する。
[逆抽出工程]
逆抽出工程S2では、スカンジウムを抽出した有機溶媒からスカンジウムを逆抽出する。具体的には、有機溶媒と、水、塩酸、及び硫酸のいずれか1種以上を含有する逆抽出始液とを混合してスカンジウムを逆抽出する。
逆抽出工程S2では、スカンジウムを抽出した有機溶媒からスカンジウムを逆抽出する。具体的には、有機溶媒と、水、塩酸、及び硫酸のいずれか1種以上を含有する逆抽出始液とを混合してスカンジウムを逆抽出する。
逆抽出工程S2では、スカンジウムを抽出した有機溶媒に対し、水、あるいは低濃度の酸溶液を逆抽出溶液(逆抽出始液)として用いて混合することで、上記の反応式(ii)の逆反応を生じさせてスカンジウムを逆抽出し、スカンジウムを含む逆抽出後液を得る。
ここで、上述したように、スカンジウムの抽出においては溶液の酸濃度が上昇するに従ってその抽出率が高まる。このことはつまり、スカンジウムの逆抽出の点においては酸濃度が上昇するに従ってその逆抽出率が低下することを意味する。そのため、逆抽出率の観点からは、水を用いて逆抽出処理を行うことが最も有利となる。ところが、水相のイオン強度が極端に低下すると、有機相との相分離が不良となってエマルジョン(クラッド)発生の原因となる可能性がある。このことから、僅かに酸が存在する溶液(酸溶液)を逆抽出始液として用いて逆抽出処理を行うことが実用上好ましい。
酸溶液としては、塩酸溶液、硫酸溶液を用いることができる。塩酸溶液を用いる場合には濃度が1.0mol/L以下であることの好ましく、硫酸溶液を用いる場合には濃度が2.0mol/L以下であることが好ましい。また、特に、塩酸溶液を用いる場合には、0.05mol/L以上0.3mol/L以下の濃度範囲とすることがより好ましい。
なお、逆抽出処理後の有機相(逆抽出後有機相)は、例えば複数回の洗浄処理を行ったのち、抽出工程S1にて使用する有機相として繰り返すことができる。
[中和工程]
中和工程S3では、スカンジウムを逆抽出した得られた逆抽出後液に中和剤を添加して中和澱物を得る。具体的には、逆抽出後液に水酸化ナトリウム等の中和剤を添加することによって、その濾液のpHが5.5以上7.0以下の範囲、好ましくはpHが6.5程度となるように調整する中和処理を行い、これにより水酸化スカンジウムの沈澱物を得る。
中和工程S3では、スカンジウムを逆抽出した得られた逆抽出後液に中和剤を添加して中和澱物を得る。具体的には、逆抽出後液に水酸化ナトリウム等の中和剤を添加することによって、その濾液のpHが5.5以上7.0以下の範囲、好ましくはpHが6.5程度となるように調整する中和処理を行い、これにより水酸化スカンジウムの沈澱物を得る。
なお、生成した中和澱物である水酸化スカンジウムは、中和後スラリーに対して濾過等の固液分離を施すことで中和後液(濾液)と分離して回収することができる。
中和剤として用いる水酸化ナトリウム等の濃度は、適宜決めればよいが、例えば4N(規定濃度)を超えるような高濃度の中和剤を添加すると、反応槽内でpHが局部的に上昇するため、pHの制御が困難になる。また、急激に反応が進むと、小径の水酸化スカンジウムの沈澱物が形成されやすくなり、固液分離性が悪化する。このことから、中和剤としては、濃度が4N以下に希釈された溶液とすることが好ましく、これにより反応槽内の中和反応ができるだけ均一に生じさせるようにする。
なお、水酸化ナトリウム等の中和剤の濃度が低すぎると、添加に要する溶液量が増加して、結果として設備規模が大きくなりコスト増加の原因となる。このため、中和剤の濃度としては1N以上とすることが好ましい。
[溶解工程]
溶解工程S4では、中和工程S3で得られた中和澱物を、酸で溶解して溶解液を得る。中和澱物は、水酸化スカンジウムを含むものであることから、これを溶解することでスカンジウムを含む溶解液を得ることができる。
溶解工程S4では、中和工程S3で得られた中和澱物を、酸で溶解して溶解液を得る。中和澱物は、水酸化スカンジウムを含むものであることから、これを溶解することでスカンジウムを含む溶解液を得ることができる。
溶解に用いる酸としては、特に限定されないが、塩酸、硫酸、硝酸等の鉱酸を用いることが好ましい。なお、例えば硫酸を用いて溶解した場合、その溶解液は硫酸スカンジウム溶液となる。
具体的に、例えば硫酸を用いて溶解する場合、その濃度は特に限定されないが、工業的な反応速度を考慮すれば濃度2N以上の硫酸溶液を用いて溶解することが好ましい。
またこのとき、硫酸を用いて溶解して得られる硫酸スカンジウム溶液(溶解液)のpHが-0.5以上2.0以下となるように調整することが好ましい。pHが-0.5未満の強い酸性領域の溶解液であると、次の晶析工程S5で晶析するシュウ酸スカンジウムの溶解度が上昇し、結晶として得られる量が減少して収率が低下することがある。一方で、pHが2.0より大きくなると、溶解工程S4にて水酸化スカンジウムを完全に溶解するまでの時間が長くなり生産性が悪くなる。
このように、水酸化スカンジウムの沈澱物に酸を添加して溶解することで、逆抽出後液よりもスカンジウムの濃度を高めて濃縮することができる。これにより、次の晶析工程S5での晶析後の母液の量が減少し、溶解度に相当するシュウ酸スカンジウムのロス量を低減して収率を上げることができる。
[晶析工程]
晶析工程S5では、溶解工程S4で得られたスカンジウムを含む溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物(結晶)を析出させる。
晶析工程S5では、溶解工程S4で得られたスカンジウムを含む溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物(結晶)を析出させる。
晶析工程S5では、溶解液のpHを-0.5以上2.0以下に調整することが好ましく、pH調整後の溶解液とシュウ酸を含む溶液と混合することによってシュウ酸スカンジウムを晶析させる。溶解液のpHを上述した範囲に調整することで、不純物元素のシュウ酸化沈澱物(例えばシュウ酸鉄)を防止することができ、高純度なシュウ酸スカンジウムを生成させることができる。
シュウ酸化処理の方法としては、スカンジウムを含有する溶解液に対してシュウ酸を添加することで、その溶解液中のスカンジウムに基づいてシュウ酸スカンジウムの結晶を析出生成させる方法を用いることができる。このとき使用するシュウ酸としては、固体であっても溶液であってもよい。あるいは、シュウ酸化処理の方法として、スカンジウムを含有する溶液を、反応容器に満たしたシュウ酸溶液の中に徐々に添加することで、シュウ酸スカンジウムの結晶を析出生成させる方法(いわゆる逆添加法)を用いることもできる。
シュウ酸化処理においてシュウ酸溶液を用いる場合、溶液中のシュウ酸濃度としては、特に限定されないが、溶解度に近い100g/L程度であることが好ましい。シュウ酸濃度が100g/Lより多くなると、溶液中でシュウ酸の結晶が析出する場合がある。一方で、濃度が低くなるにつれて液量が増加し、晶析後の母液の量が増加して、溶解度に相当するシュウ酸スカンジウムのロス量が増える。
このようにしてシュウ酸スカンジウムの沈澱物を生成させると、固液分離により沈澱物のみを回収し、水で洗浄した後、乾燥させる。
[焼成工程]
焼成工程S6では、シュウ酸スカンジウムの沈澱物を加熱して熱分解(焼成)処理を施し、酸化物である酸化スカンジウムを得る。
焼成工程S6では、シュウ酸スカンジウムの沈澱物を加熱して熱分解(焼成)処理を施し、酸化物である酸化スカンジウムを得る。
焼成処理の条件は、特に限定されない。例えば、管状炉に入れて700~900℃で2時間程度加熱すればよい。なお、工業的にはロータリーキルン等の連続炉を用いることによって乾燥と焼成とを同じ装置で行うことができ、好ましい。
以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[実施例1]
(抽出工程)
pH1.5、塩化物イオン濃度2.0mol/Lに調整した下記表1の組成からなるスカンジウム含有酸性溶液2.3Lと、トリオクチルホスフィンオキシド(TOPO)(北興化学工業(株)製)を溶剤スワゾール(丸善石油化学社製)に濃度20体積%となるように溶解した有機溶媒2.3Lと、を混合して30分撹拌して抽出処理を行い、スカンジウムを含む抽出有機相を得た。なお、表1中のNaに関しては、pH調整用にNaOH溶液を添加したため多い。
(抽出工程)
pH1.5、塩化物イオン濃度2.0mol/Lに調整した下記表1の組成からなるスカンジウム含有酸性溶液2.3Lと、トリオクチルホスフィンオキシド(TOPO)(北興化学工業(株)製)を溶剤スワゾール(丸善石油化学社製)に濃度20体積%となるように溶解した有機溶媒2.3Lと、を混合して30分撹拌して抽出処理を行い、スカンジウムを含む抽出有機相を得た。なお、表1中のNaに関しては、pH調整用にNaOH溶液を添加したため多い。
なお、表1及びそれ以降の表における成分欄の「Others」とは、クロム、マグネシウム、カルシウム、コバルト、チタン、ジルコニウム、イットリウム、ウラン、トリウム等の様々な金属元素の総称であり、スカンジウム含有酸性溶液に含まれる不純物以外に、工程内で使用される薬剤に含まれる成分や不純物も含む。また、その濃度は、これら検出できた成分の分析値の合計で記載しており、分析値が検出下限未満の元素についてはゼロとして計算した。
下記表2に、得られた抽出有機相の組成及び抽出率を示す。表2に示すように、スカンジウム濃度は2.2g/Lであり、スカンジウム抽出率は88%であった。この結果は、向流多段の連続装置で抽出処理を実施した場合、3段以上で抽出率99%以上の性能を有する結果であった。なお、不純物元素については、アルミニウムが0.15%、鉄が100%、マンガンが1%、ナトリウムが0.02%、Othersが0.5%の各抽出率で抽出され、ニッケルは分析検出下限未満であった。
(洗浄工程)
次に、濃度1.0mol/Lの塩酸溶液(洗浄始液)を用いて、抽出有機相と洗浄始液とを相比O/A=5/1、7.5/1、10/1の比率になるように混合した。また同様に、濃度2mol/Lの塩酸溶液(洗浄始液)を用いて、抽出有機相と洗浄始液とを相比O/A=10/1、15/1、20/1の比率になるように混合した。その後、それぞれ15分撹拌し、アルミニウムやマンガン等の不純物が水相に逆抽出されるように洗浄処理を行った。
次に、濃度1.0mol/Lの塩酸溶液(洗浄始液)を用いて、抽出有機相と洗浄始液とを相比O/A=5/1、7.5/1、10/1の比率になるように混合した。また同様に、濃度2mol/Lの塩酸溶液(洗浄始液)を用いて、抽出有機相と洗浄始液とを相比O/A=10/1、15/1、20/1の比率になるように混合した。その後、それぞれ15分撹拌し、アルミニウムやマンガン等の不純物が水相に逆抽出されるように洗浄処理を行った。
下記表3に洗浄後液の組成を示し、下記表4に洗浄率を示す。なお、表4に示す洗浄率とは、表2に示す抽出有機相における成分濃度及び表3に示す洗浄後液の成分濃度と、相比から算出した値であり、その洗浄率が100%以上となった場合は表中に「≒100(%)」と記載した。
試験1~6において、鉄はほとんど洗浄されなかったものの、ナトリウムは60%以上、アルミニウムやマンガンは90%以上の洗浄率で洗浄除去することができた。一方、スカンジウムの洗浄率については、洗浄始液として1.0mol/L塩酸溶液を用いた場合では10%前後、2.0mol/L塩酸溶液を用いた場合では1~2%であり、鉄以外の不純物を効率的に洗浄によって分離することができた。なお、スカンジウムは最大で11%洗浄されたが、その洗浄後液を抽出始液として繰り返すことで、スカンジウムのロスを抑えることができる。
一方、試験7では、洗浄始液として6.5mol/L塩酸溶液を用いたが、相比O/A=1/1で実施したにも関わらず、不純物元素の洗浄率が低下し、マンガンでは60%であった。スカンジウムの洗浄率は0.4%であったが、相比O/A=1/1では最初の抽出始液と同じ液量であるため、繰り返すことができない。一方、相比O/Aを大きくするとさらに不純物元素の洗浄率が低下する。このことから、濃度6.5mol/Lの塩酸溶液は洗浄始液としては適さないことが分かった。
また、試験8では、洗浄始液に0.1mol/L塩酸溶液を用いたが、スカンジウムの洗浄率が50%と大きくなり、効率的にスカンジウムを回収できないことが分かった。
(逆抽出工程)
次に、0.1mol/Lの塩酸溶液(逆抽出始液)を用いて、洗浄有機相と逆抽出始液とを相比O/A=1/1の比率になるように混合して30分撹拌し、スカンジウムを水相に逆抽出した。下記表5に逆抽出後液の組成を示し、下記表6に逆抽出率を示す。
次に、0.1mol/Lの塩酸溶液(逆抽出始液)を用いて、洗浄有機相と逆抽出始液とを相比O/A=1/1の比率になるように混合して30分撹拌し、スカンジウムを水相に逆抽出した。下記表5に逆抽出後液の組成を示し、下記表6に逆抽出率を示す。
試験1~6の洗浄有機相を用いた場合では、逆抽出後液中のスカンジウム濃度は1.7~1.9g/Lであり、スカンジウムの逆抽出率は87~91%であった。この結果は、向流多段の連続装置で実施した場合、3段以上で抽出率99%以上の性能を有する結果であった。
一方、試験7の洗浄有機相を用いた場合では、スカンジウムの逆抽出率は65%と低くなった。この結果は、洗浄時に酸が有機相に抽出され、その酸が逆抽出時に逆抽出されたことにより水相の酸濃度が増加したことが原因であると考えられる。
(中和工程)
次に、試験3の逆抽出後液に、濃度4Nの水酸化ナトリウム溶液を添加してpHが6.5になるように調整して中和処理を施し、沈澱物(中和澱物)を生成させた。そして、中和後スラリーを固液分離して沈澱物を回収した後、その沈澱物を水で洗浄し、水酸化スカンジウムの沈澱物を得た。
次に、試験3の逆抽出後液に、濃度4Nの水酸化ナトリウム溶液を添加してpHが6.5になるように調整して中和処理を施し、沈澱物(中和澱物)を生成させた。そして、中和後スラリーを固液分離して沈澱物を回収した後、その沈澱物を水で洗浄し、水酸化スカンジウムの沈澱物を得た。
(溶解工程)
次に、得られた水酸化スカンジウムに濃度20Nの硫酸溶液を添加して、下記表7に示す組成の溶解液(pH0.5)を得た。
次に、得られた水酸化スカンジウムに濃度20Nの硫酸溶液を添加して、下記表7に示す組成の溶解液(pH0.5)を得た。
(晶析工程)
次に、濃度100g/Lのシュウ酸溶液に、得られた溶解液を添加し、室温で撹拌しながら反応させて沈澱物を生成させた。固液分離した後、水で洗浄して、シュウ酸スカンジウムの沈澱物を得た。その後、105℃にて8時間かけて乾燥させた。
次に、濃度100g/Lのシュウ酸溶液に、得られた溶解液を添加し、室温で撹拌しながら反応させて沈澱物を生成させた。固液分離した後、水で洗浄して、シュウ酸スカンジウムの沈澱物を得た。その後、105℃にて8時間かけて乾燥させた。
(焙焼工程)
次に、乾燥させたシュウ酸スカンジウムを、焼成炉で900℃に2時間加熱分解させることによって酸化スカンジウムを生成させた。その後、得られた酸化スカンジウムを室温まで冷却して取り出し、発光分光分析法によって酸化スカンジウムに含まれる金属品位を分析した。
次に、乾燥させたシュウ酸スカンジウムを、焼成炉で900℃に2時間加熱分解させることによって酸化スカンジウムを生成させた。その後、得られた酸化スカンジウムを室温まで冷却して取り出し、発光分光分析法によって酸化スカンジウムに含まれる金属品位を分析した。
下記表8に酸化スカンジウムの分析結果を示す。Othersは検出されたその他の不純物の合計値であり、分析検出下限未満はゼロとして計算した。不純物の多くは分析検出下限未満であり、酸化スカンジウムの品位は99.9%以上であった。
[実施例2]
(抽出工程)
スカンジウム含有酸性溶液のpHを0に調整し、塩化物イオン濃度3.0mol/Lに調整したこと以外は、実施例1と同様の方法で抽出を行った。なお、塩化物イオン濃度の調整には塩化ナトリウムを用い、抽出始液のナトリウム濃度は26.2g/Lであった。
(抽出工程)
スカンジウム含有酸性溶液のpHを0に調整し、塩化物イオン濃度3.0mol/Lに調整したこと以外は、実施例1と同様の方法で抽出を行った。なお、塩化物イオン濃度の調整には塩化ナトリウムを用い、抽出始液のナトリウム濃度は26.2g/Lであった。
下記表9に得られた抽出有機相の組成及び抽出率を示す。表9に示すように、スカンジウム濃度は2.25g/Lであり、スカンジウムの抽出率は90%であった。この結果は、向流多段の連続装置で実施した場合、3段以上で抽出率99%以上の性能を有する結果であった。なお、不純物元素については、アルミニウムが0.2%、鉄が100%、マンガンが1.5%、ナトリウムが0.02%、Othersが0.6%の各抽出率で抽出され、ニッケルは分析検出下限未満であった。
(洗浄工程~焼成工程)
次に、得られた抽出有機相に対して洗浄処理を行った。なお、洗浄条件は、実施例1の試験3と同様とした。また、逆抽出工程以降の処理は、実施例1と同様の方法で実施して、酸化スカンジウムを生成させた。得られた酸化スカンジウムについて、発光分光分析法によって金属品位を分析した。
次に、得られた抽出有機相に対して洗浄処理を行った。なお、洗浄条件は、実施例1の試験3と同様とした。また、逆抽出工程以降の処理は、実施例1と同様の方法で実施して、酸化スカンジウムを生成させた。得られた酸化スカンジウムについて、発光分光分析法によって金属品位を分析した。
下記表10に酸化スカンジウムの分析結果を示す。不純物の多くは分析検出下限未満であり、酸化スカンジウムの品位は99.9%以上であった。
[実施例3]
(抽出工程)
スカンジウム含有酸性溶液のpHを0.8に調整し、塩化物イオン濃度2.0mol/Lに調整したこと以外は、実施例1と同様の方法で抽出を行った。なお、塩化物イオン濃度の調整には塩化ナトリウムを用いた。
(抽出工程)
スカンジウム含有酸性溶液のpHを0.8に調整し、塩化物イオン濃度2.0mol/Lに調整したこと以外は、実施例1と同様の方法で抽出を行った。なお、塩化物イオン濃度の調整には塩化ナトリウムを用いた。
下記表11に得られた抽出有機相の組成及び抽出率を示す。表11に示すように、スカンジウム濃度は2.1g/Lであり、スカンジウムの抽出率は87%であった。この結果は、向流多段の連続装置で実施した場合、3段以上で抽出率99%以上の性能を有する結果であった。なお、不純物元素については、鉄が96%、マンガンが1.0%の各抽出率で抽出された。
(逆抽出工程)
次に、0.1mol/Lの塩酸溶液(逆抽出始液)を用いて、抽出有機相と逆抽出始液とを相比O/A=1/1の比率になるように混合して30分撹拌し、スカンジウムを水相に逆抽出した。下記表12に逆抽出後液の組成と逆抽出率を示す。
次に、0.1mol/Lの塩酸溶液(逆抽出始液)を用いて、抽出有機相と逆抽出始液とを相比O/A=1/1の比率になるように混合して30分撹拌し、スカンジウムを水相に逆抽出した。下記表12に逆抽出後液の組成と逆抽出率を示す。
(洗浄工程)
ここで、実施例3における一連の処理の流れのなかで、洗浄工程として、抽出工程にて得られた抽出有機相に対して洗浄処理を行った。このとき、洗浄始液として、逆抽出工程にて得られた逆抽出後液の一部を用いた(図3の工程図を参照)。具体的には、逆抽出後液の一部を回収し、その逆抽出後液に塩酸溶液を用いて塩酸濃度が0.1,0.6,1.0mol/Lとなるようそれぞれ調整し、これを洗浄始液として用いて、抽出有機相と洗浄始液とを相比O/A=4/1の比率になるように混合した。それぞれ30分撹拌し、マンガン等の不純物が水相に逆抽出されるように洗浄処理を行った。
ここで、実施例3における一連の処理の流れのなかで、洗浄工程として、抽出工程にて得られた抽出有機相に対して洗浄処理を行った。このとき、洗浄始液として、逆抽出工程にて得られた逆抽出後液の一部を用いた(図3の工程図を参照)。具体的には、逆抽出後液の一部を回収し、その逆抽出後液に塩酸溶液を用いて塩酸濃度が0.1,0.6,1.0mol/Lとなるようそれぞれ調整し、これを洗浄始液として用いて、抽出有機相と洗浄始液とを相比O/A=4/1の比率になるように混合した。それぞれ30分撹拌し、マンガン等の不純物が水相に逆抽出されるように洗浄処理を行った。
下記表13に洗浄処理に用いた洗浄始液の組成を示し、下記表14に洗浄後液の組成を示す。また、下記表15に洗浄処理における洗浄率を示す。なお、表15に示す洗浄率とは、表13に示す洗浄始液における成分濃度、表14に示す洗浄後液の成分濃度、及び相比O/Aから算出した値であり、マイナスとなる値は「≒0」と表記した。
この試験において、鉄はほとんど洗浄されなかったものの、マンガンは60%以上の洗浄率で洗浄除去することができた。一方、スカンジウムの洗浄率については、洗浄始液として1.0mol/L塩酸溶液を用いた場合では0%、0.1mol/L塩酸溶液を用いた場合では36%であり、洗浄始液の塩酸濃度を1.0mol/L以上とすることでスカンジウムが洗浄されることを抑制しながら、マンガンの洗浄を有効に行うことができることが分かった。
[比較例1]
(抽出工程)
スカンジウム含有酸性溶液のpHを3.5に調整したこと以外は、実施例1と同様の方法で抽出を行った。
(抽出工程)
スカンジウム含有酸性溶液のpHを3.5に調整したこと以外は、実施例1と同様の方法で抽出を行った。
その結果、有機相と水相とがきれいに分離せず、相の中間にクラッドが発生した。これは、溶液のpHが高かったために、溶液中のFe3+イオンの一部がFe(OH)3として析出したことが原因であると考えられる。
[比較例2]
(抽出工程)
スカンジウム含有酸性溶液のpHを-0.8に調整し、塩化物イオン濃度を6.0mol/Lに調整したこと以外は、実施例2と同様の方法で抽出を行った。なお、pHや塩化物イオン濃度の調整は塩酸で行った。そのため、酸性溶液中にナトリウムはほとんど存在しなかった。
(抽出工程)
スカンジウム含有酸性溶液のpHを-0.8に調整し、塩化物イオン濃度を6.0mol/Lに調整したこと以外は、実施例2と同様の方法で抽出を行った。なお、pHや塩化物イオン濃度の調整は塩酸で行った。そのため、酸性溶液中にナトリウムはほとんど存在しなかった。
下記表16に、得られた抽出有機相の組成を示す。表16に示すように、スカンジウム濃度は2.28g/Lであり、スカンジウムの抽出率は91%であった。この結果は、向流多段の連続装置で実施した場合、3段以上で抽出率99%以上の性能を有する結果であった。なお、不純物元素については、アルミニウムが0.3%、鉄が100%、マンガンが5%、Othersが2.2%の各抽出率で抽出され、ニッケルは分析検出下限未満であった。
(洗浄工程~逆抽出工程)
次に、得られた抽出有機相に対する洗浄処理及び逆抽出処理を、実施例2と同様の方法で実施した。その結果、スカンジウムの逆抽出率は60%と低く、スカンジウムを効率的に回収できなかった。
次に、得られた抽出有機相に対する洗浄処理及び逆抽出処理を、実施例2と同様の方法で実施した。その結果、スカンジウムの逆抽出率は60%と低く、スカンジウムを効率的に回収できなかった。
Claims (10)
- スカンジウムを含有する酸性溶液(スカンジウム含有酸性溶液)のpHを-0.5以上3.0以下の範囲に調整し、中性抽出剤を含有する有機溶媒と混合して、該有機溶媒中にスカンジウムを抽出する抽出工程と、
前記有機溶媒と、水、塩酸、硫酸のいずれか1種以上を含有する逆抽出始液とを混合し、該有機溶媒からスカンジウムを逆抽出して逆抽出後液を得る逆抽出工程と、
前記逆抽出後液に中和剤を添加して中和澱物を得る中和工程と、
前記中和澱物を酸で溶解して溶解液を得る溶解工程と、
前記溶解液とシュウ酸とを混合してシュウ酸スカンジウムの沈澱物を得る晶析工程と、
前記沈澱物を焼成して酸化スカンジウムを得る焼成工程と、を有する
スカンジウムの回収方法。 - 前記中性抽出剤は、トリオクチルホスフィンオキシドを官能基とする抽出剤を含み、
前記有機溶媒は、前記トリオクチルホスフィンオキシドの濃度が5体積%以上40体積%以下である
請求項1に記載のスカンジウムの回収方法。 - 前記酸性溶液は、塩化物イオン、硫酸イオン、及び硝酸イオンのいずれか1種以上の陰イオンを含み、該酸性溶液中における該陰イオンの合計濃度が1.0mol/L以上10.0mol/L以下である
請求項1又は2に記載のスカンジウムの回収方法。 - 前記抽出工程での抽出後の前記有機溶媒と洗浄始液とを混合して該有機溶媒に含まれる不純物を除去する洗浄工程を有する
請求項1乃至3のいずれかに記載のスカンジウムの回収方法。 - 前記洗浄工程を経て得られた洗浄後液を、前記抽出工程での抽出処理に供される溶液として繰り返す
請求項4に記載のスカンジウムの回収方法。 - 前記洗浄工程では、前記洗浄始液として、0.2mol/L以上4.0mol/L以下の塩酸溶液又は0.5mol/L以上4.0mol/L以下の硫酸溶液を用いる
請求項4又は5に記載のスカンジウムの回収方法。 - 前記洗浄工程では、前記洗浄始液として、前記逆抽出工程にて得られる前記逆抽出後液の一部を用い、該逆抽出後液を塩酸溶液又は硫酸溶液によってpH1.0以下に調整して、抽出後の前記有機溶媒と混合する
請求項4又は5に記載のスカンジウムの回収方法。 - 前記逆抽出始液として、水、濃度1.0mol/L以下の塩酸溶液、及び2.0mol/L以下の硫酸溶液のいずれか1種類以上を用いる
請求項1乃至7のいずれかに記載のスカンジウムの回収方法。 - 前記中和工程では、前記逆抽出後液に中和剤を添加することによりpHを5.5以上7.0以下の範囲に調整する
請求項1乃至8のいずれかに記載のスカンジウムの回収方法。 - 前記晶析工程では、前記溶解液のpHを-0.5以上2.0以下の範囲に調整した後、pH調整後の溶解液とシュウ酸を含有する溶液とを混合することによりシュウ酸スカンジウムの沈澱物を生成させる
請求項1乃至9のいずれかに記載のスカンジウムの回収方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019129648 | 2019-07-11 | ||
JP2019-129648 | 2019-07-11 | ||
JP2019-150469 | 2019-08-20 | ||
JP2019150469A JP7293976B2 (ja) | 2019-07-11 | 2019-08-20 | スカンジウムの回収方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006144A1 true WO2021006144A1 (ja) | 2021-01-14 |
Family
ID=74114571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025816 WO2021006144A1 (ja) | 2019-07-11 | 2020-07-01 | スカンジウムの回収方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021006144A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113371751A (zh) * | 2021-05-13 | 2021-09-10 | 中国恩菲工程技术有限公司 | 超高纯氧化钪的制备方法和应用 |
CN113584327A (zh) * | 2021-06-28 | 2021-11-02 | 中国恩菲工程技术有限公司 | 氧化钪的提纯方法 |
CN114634199A (zh) * | 2022-02-23 | 2022-06-17 | 中国恩菲工程技术有限公司 | 低成本制备超高纯氧化钪的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014218719A (ja) * | 2013-05-10 | 2014-11-20 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
EP3034636A1 (en) * | 2013-08-15 | 2016-06-22 | China Enfi Engineering Corp. | Method for processing laterite-nickel ore and method for recycling scandium |
JP2017210675A (ja) * | 2016-05-27 | 2017-11-30 | 住友金属鉱山株式会社 | スカンジウムの回収方法 |
JP2018031051A (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人九州大学 | スカンジウムの精製方法、スカンジウム抽出剤 |
JP2018090844A (ja) * | 2016-11-30 | 2018-06-14 | 住友金属鉱山株式会社 | イオン交換処理方法、スカンジウムの回収方法 |
-
2020
- 2020-07-01 WO PCT/JP2020/025816 patent/WO2021006144A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014218719A (ja) * | 2013-05-10 | 2014-11-20 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
EP3034636A1 (en) * | 2013-08-15 | 2016-06-22 | China Enfi Engineering Corp. | Method for processing laterite-nickel ore and method for recycling scandium |
JP2017210675A (ja) * | 2016-05-27 | 2017-11-30 | 住友金属鉱山株式会社 | スカンジウムの回収方法 |
JP2018031051A (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人九州大学 | スカンジウムの精製方法、スカンジウム抽出剤 |
JP2018090844A (ja) * | 2016-11-30 | 2018-06-14 | 住友金属鉱山株式会社 | イオン交換処理方法、スカンジウムの回収方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113371751A (zh) * | 2021-05-13 | 2021-09-10 | 中国恩菲工程技术有限公司 | 超高纯氧化钪的制备方法和应用 |
CN113584327A (zh) * | 2021-06-28 | 2021-11-02 | 中国恩菲工程技术有限公司 | 氧化钪的提纯方法 |
CN113584327B (zh) * | 2021-06-28 | 2022-10-28 | 中国恩菲工程技术有限公司 | 氧化钪的提纯方法 |
CN114634199A (zh) * | 2022-02-23 | 2022-06-17 | 中国恩菲工程技术有限公司 | 低成本制备超高纯氧化钪的方法 |
CN114634199B (zh) * | 2022-02-23 | 2024-05-24 | 中国恩菲工程技术有限公司 | 低成本制备超高纯氧化钪的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021006144A1 (ja) | スカンジウムの回収方法 | |
JP5403115B2 (ja) | スカンジウムの分離精製方法 | |
US9963762B2 (en) | Scandium recovery method | |
EP2907883B1 (en) | Method for recovering scandium | |
JP5454735B2 (ja) | スカンジウムの分離精製方法 | |
JP6004023B2 (ja) | スカンジウムの回収方法 | |
WO2016031699A1 (ja) | スカンジウムの分離方法 | |
CN107429320B (zh) | 钪回收方法 | |
JP6798078B2 (ja) | イオン交換処理方法、スカンジウムの回収方法 | |
WO2017146034A1 (ja) | スカンジウムの回収方法 | |
WO2022269962A1 (ja) | 硫酸コバルトの製造方法 | |
CN114829303A (zh) | 用于从工业工艺流中回收有机盐的方法 | |
JP2968877B2 (ja) | 金属硫酸塩含有の廃硫酸から硫酸を回収する方法 | |
JP6172100B2 (ja) | スカンジウムの回収方法 | |
WO2017104629A1 (ja) | スカンジウムの回収方法 | |
JP7293976B2 (ja) | スカンジウムの回収方法 | |
JP5549648B2 (ja) | モリブデンの回収方法およびモリブデンの抽出溶媒 | |
JP2010264331A (ja) | 砒素の分離方法 | |
JP7347083B2 (ja) | 高純度酸化スカンジウムの製造方法 | |
JP2022191115A (ja) | 硫酸コバルトの製造方法 | |
KR20220080109A (ko) | 아연 함유 원료에서 아연을 회수하는 개선된 공정 | |
JP6206358B2 (ja) | スカンジウムの回収方法 | |
JP7338179B2 (ja) | 高純度酸化スカンジウムの製造方法 | |
WO2022224499A1 (ja) | 硫酸コバルトの製造方法 | |
JP6128166B2 (ja) | 酸化スカンジウムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20837694 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20837694 Country of ref document: EP Kind code of ref document: A1 |