WO2014178149A1 - 表示装置用基板、表示装置用基板の製造方法、及び表示装置 - Google Patents

表示装置用基板、表示装置用基板の製造方法、及び表示装置 Download PDF

Info

Publication number
WO2014178149A1
WO2014178149A1 PCT/JP2013/074541 JP2013074541W WO2014178149A1 WO 2014178149 A1 WO2014178149 A1 WO 2014178149A1 JP 2013074541 W JP2013074541 W JP 2013074541W WO 2014178149 A1 WO2014178149 A1 WO 2014178149A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reflectance
display device
black matrix
substrate
Prior art date
Application number
PCT/JP2013/074541
Other languages
English (en)
French (fr)
Inventor
直也 山口
梓実 佐藤
森田 貴之
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020157031298A priority Critical patent/KR102034073B1/ko
Priority to JP2013556918A priority patent/JP5704262B1/ja
Priority to CN201380076129.4A priority patent/CN105164558B/zh
Publication of WO2014178149A1 publication Critical patent/WO2014178149A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers

Definitions

  • the present invention relates to a display device substrate, a method for manufacturing a display device substrate, and a display device.
  • This application claims priority based on Japanese Patent Application No. 2013-095722 for which it applied on April 30, 2013, and uses the content here.
  • the color filter is an indispensable component for a liquid crystal display device that realizes color display.
  • the color filter includes colored pixels such as a red filter, a green filter, and a blue filter on a transparent substrate such as glass.
  • a black matrix is provided between the colored pixels in order to improve contrast or to prevent malfunction due to light of a TFT (thin film transistor) element provided on the counter substrate in the liquid crystal display device.
  • a black matrix forming method for example, a method of etching a metal chromium thin film is used.
  • a photolithographic method using a black photosensitive resin composition containing a light-shielding material is applied due to problems of cost and environmental burden.
  • Formation of a black matrix by a photolithography method using a black photosensitive resin composition is performed as follows.
  • a black photosensitive resin composition coating film is formed on a transparent substrate by, for example, spin coating or slit coating.
  • the formation target substrate is dried and heated as necessary. Thereafter, exposure processing is performed on the formation target substrate through a photomask having a predetermined pattern. Subsequently, an unexposed portion of the formation target substrate is removed by development processing, and a black matrix is formed on the transparent substrate by heat hardening processing.
  • the characteristics required for the black matrix include, for example, light shielding properties, resolution properties, insulation properties, and the like.
  • each member such as a TFT element, a liquid crystal molecule, a polarizing plate, and a color filter constituting the liquid crystal display.
  • the black matrix of the color filter has a relatively high reflectivity and has a large area ratio in the display screen, and thus has a great influence on the reflection chromaticity. Therefore, when the black matrix has a high reflectance and the black matrix is not neutral black, especially when the black matrix is incorporated into a mobile device, the sense of unity between the outer frame portion called the bezel and the black matrix is impaired. Is a problem.
  • the black matrix of the color filter does not transmit light, it is possible to adjust only the reflected chromaticity when not lit without affecting the transmission chromaticity when lit. Therefore, the black matrix has a low reflectance without impairing the conventional characteristics of the black matrix, and the reflected color is neutral black, that is, a flat characteristic in the visible light region is obtained in the reflection spectroscopy of the black matrix. It is desirable to be able to.
  • the reflectance of a conventional black matrix formed using a black photosensitive resin in which a black pigment is dispersed in a photosensitive resin composition is strongly dependent on the pigment concentration that determines the light shielding property.
  • the pigment concentration is lowered, it is necessary to increase the thickness of the black matrix in order to maintain light shielding properties.
  • the thickness of the black matrix is increased, the flatness of the color filter is impaired, and liquid crystal molecules are likely to be poorly aligned.
  • it is necessary to increase the pigment concentration in order to obtain a sufficient light shielding property with a thin black matrix, it is necessary to increase the pigment concentration.
  • the pigment concentration is increased, the reflectance of the black matrix increases. That is, there is a problem that the light shielding property and the low reflection are in a trade-off relationship.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-154849.
  • Patent Document 1 discloses a combination of a black photosensitive resin composition using a pigment dispersion in which carbon black and an organic pigment are uniformly dispersed at the same time, and a metal film, thereby achieving both light shielding properties and low reflectance. To disclose.
  • Patent Document 2 International Publication WO2010 / 070929 Pamphlet.
  • Patent Document 2 discloses a black matrix having a configuration in which a low optical density layer and a high optical density layer are stacked.
  • the low optical density layer is formed using, for example, a colored photosensitive resin composition containing a pigment, and has a thickness of 2 ⁇ m, for example.
  • the high optical density layer is formed using a black photosensitive resin composition containing carbon black (hereinafter abbreviated as carbon) or titanium black.
  • Patent Document 2 paragraphs of Patent Document 2 describe that the material of the low optical density layer preferably includes a pigment and a resin.
  • pigment types are exemplified.
  • the low optical density layer includes a pigment
  • the reflected light includes a color due to the organic pigment contained in the low optical density layer. Therefore, in Patent Document 2, a black matrix is formed in which the reflected light is neutral black. Is difficult.
  • Patent Document 2 does not disclose a neutral and low-reflection black matrix in which the reflectances of light wavelengths of 430 nm, 540 nm, and 620 nm are in the range of 0.05 to 0.3%.
  • Patent Document 2 does not disclose a specific technique of a low optical density layer using a light-shielding layer having a low carbon content. Patent Document 2 does not disclose an optimum film thickness of a low optical density layer for obtaining a neutral and low reflectance. Patent Document 2 does not disclose, for example, the optical constant or reflectance for each wavelength of light, such as the wavelength of the blue region is 430 nm, the wavelength of the green region is 540 nm, and the wavelength of the red region is 620 nm. It is not disclosed what kind of reflection color occurs in the visible wavelength range.
  • Patent Document 3 Japanese Patent No. 2861391
  • a pigment such as blue or purple is added as a complementary color pigment in addition to a light-shielding agent and a resin, and thus neutral black is used. It is disclosed to obtain.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2005-75965 discloses that neutral black is obtained by using carbon black and titanium oxynitride in combination.
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2011-227467 discloses titanium nitride, C.I. I. Pigment red 254, C.I. I. Pigment red 177, C.I. I. Disclosed is a neutral black obtained by using in combination with at least one red pigment selected from CI Pigment Red 179.
  • Patent Documents 3 to 5 are effective in bringing the reflection chromaticity of the black matrix alone to that of neutral black, but have no effect of reducing the reflectance, and any method can be used to measure through the transparent substrate.
  • the reflectance of the black matrix is 1.0% or more.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2011-197521
  • Patent Document 7 Japanese Unexamined Patent Publication No. Heisei 10-301499
  • a technique for forming a matrix is disclosed.
  • the techniques disclosed in Patent Documents 6 and 7 have, for example, a reflectance of around 5% as disclosed in paragraph [0004] of Patent Document 6 and FIG. 8 or FIG. 9 of Patent Document 7. High and undesirable.
  • an optical interference film for example, by forming a multilayer film of two or more layers and adjusting the film thickness, low reflection can be realized in a specific wavelength range, but in this case, conversely, the entire visible range is low. It is difficult to achieve reflection.
  • single-layer and double-layer metal oxides, metal oxynitrides, and metal films have high costs such as vacuum film formation, and in addition, environmental contamination due to metal ions such as chromium ions occurs in the pattern formation process by etching. It becomes a problem.
  • Japanese Unexamined Patent Publication No. 2006-154849 International Publication 2010/070929 Pamphlet Japanese Patent No. 2861391 Japanese Unexamined Patent Publication No. 2005-75965 Japanese Unexamined Patent Publication No. 2011-227467 Japanese Unexamined Patent Publication No. 2011-197521 Japanese Patent Laid-Open No. 10-301499
  • the present invention has been made in view of the above circumstances, and eliminates reflection on the screen and enables neutral display without coloring, a method for manufacturing a display device substrate, and An object is to provide a display device.
  • the display device substrate includes a transparent substrate, a reflectance reduction layer having a film thickness in a range of approximately 0.1 ⁇ m or more and 0.7 ⁇ m or less on the transparent substrate, and a light shielding property. And a black matrix formed by laminating a light shielding layer containing carbon as a main material of the color material in this order.
  • the effective optical density of the reflectance reduction layer obtained by multiplying the film thickness by the optical density per unit film thickness is in the range of about 0 or more and 0.4 or less.
  • the reflectance of the black matrix measured through the transparent substrate is in the range of about 0.05% or more and 0.3% or less based on the reflectance of the aluminum film.
  • the reflectance of the black matrix measured through the transparent substrate is about 0. 0 when the wavelengths of light are about 430 nm, 540 nm, and 620 nm, respectively. It is preferably in the range of 05% or more and 0.3% or less.
  • the reflectance reduction layer is preferably a transparent resin layer.
  • the reflectance reduction layer is preferably a translucent resin layer containing at least carbon.
  • the reflectance reduction layer is preferably a translucent resin layer containing at least two kinds of organic pigments in a subtractive color mixing relationship.
  • the black matrix has a plurality of pixel openings, and a pixel pattern of a blue filter, a green filter, and a red filter is arranged in each of the pixel openings. It is preferable to be provided.
  • a first layer to be a reflectance reduction layer is applied on a transparent substrate, the first layer is semi-cured, and the first layer is formed on the first layer.
  • the second layer to be a light shielding layer was applied, and the first layer and the second layer were collectively exposed using one photomask, and formed on the transparent substrate by one development.
  • a black matrix in which the light shielding layer is laminated on the reflectance reduction layer is formed from the first layer and the second layer.
  • the reflectance reduction layer is preferably the transparent resin layer or the translucent resin layer.
  • the translucent resin layer preferably contains carbon.
  • the reflectance reducing layer is a translucent resin layer containing at least two kinds of organic pigments in a subtractive color mixing relationship.
  • a display device includes the display device substrate according to the first aspect.
  • a display device substrate a display device substrate manufacturing method, and a display device that can eliminate the reflection on the screen and enable neutral display without coloring.
  • liquid crystal display device will be described as an example, but the present invention can be similarly applied to other display devices such as an organic EL display device.
  • a display device substrate including a black matrix including two layers of a reflectance reduction layer and a light shielding layer will be described.
  • FIG. 1 is a cross-sectional view showing a first example of a display device substrate according to the present embodiment.
  • the display device substrate 1 includes a transparent substrate 2, a black matrix BM, and an overcoat layer (transparent resin layer) 3.
  • the transparent substrate for example, glass is used.
  • a black matrix BM is formed on the first plane of the transparent substrate 2.
  • the black matrix BM forms a plurality of pixel openings arranged in a matrix in a plan view.
  • An overcoat layer 3 is formed on the transparent substrate 2 on which the black matrix BM is formed.
  • the black matrix BM includes a reflectance reduction layer 4 and a light shielding layer 5.
  • the black matrix BM is formed on the transparent substrate 2 in the order of the reflectance reduction layer 4 and the light shielding layer 5.
  • the second plane (surface opposite to the first plane) of the transparent substrate 2 faces the observer, and the overcoat layer 3 is a liquid crystal. Turn to the layer.
  • the black matrix BM has the light shielding layer 5 disposed on the liquid crystal layer side (position close to the liquid crystal layer) and the viewer side (position close to the viewer).
  • the reflectance reduction layer 4 is disposed on the surface.
  • the light blocking layer 5 is made of, for example, carbon as a main material (main body, main agent, or main component) of a light blocking color material.
  • the main material of the light-shielding color material is a material having a mass exceeding 50% with respect to the mass of all the materials of the light-shielding color material in the mass ratio.
  • the film thickness of the reflectance reduction layer 4 is, for example, in the range of about 0.1 ⁇ m to 0.7 ⁇ m, and the optical density of the reflectance reduction layer 4 is in the range of about 0 to 0.4. .
  • a translucent resin containing two or more organic pigments having a subtractive color mixing relationship as a light-shielding colorant can be used.
  • Two or more kinds of organic pigments in such a subtractive color mixing relationship mean organic pigments that produce a blackish color when mixed.
  • the two or more organic pigments having a subtractive color mixing relationship in the present invention are organic pigments that can reduce the light transmittance over a wide range in the visible range by mixing two or more pigments.
  • a subtractive color mixture can be generated by mixing a blue pigment and a red pigment. It is also possible to produce subtractive color mixing by mixing violet and yellow pigments.
  • a combination of known pigments can be mentioned.
  • an organic pigment for adjusting the reflection color can be further added to the pigment.
  • the organic pigment applicable to the present invention will be described later.
  • Carbon may be added to the two or more organic pigments as the main material of the light-shielding color material.
  • the reflectance reduction layer may be a transparent resin layer.
  • the reflectance reduction layer may be made of a translucent resin containing at least carbon.
  • the translucent resin constituting the reflectance reduction layer may be a resin having translucency with a concentration of 0.4 or less.
  • the optical density of the reflectance reduction layer 4 according to this embodiment is not usually the optical density per unit film thickness (1 ⁇ m).
  • the reflectance reduction layer 4 according to this embodiment is formed with a film thickness in the range of approximately 0.1 ⁇ m or more and 0.7 ⁇ m or less.
  • the optical density of the reflectance reduction layer 4 according to the present embodiment is an effective optical density obtained by multiplying the film thickness by the optical density per unit film thickness.
  • the reflectance of the black matrix BM measured through the transparent substrate 2 is, for example, in the range of approximately 0.05 to 0.3% with reference to the reflectance of the aluminum film.
  • the reflectivity of the black matrix BM is measured using a C light source and a microspectrophotometer (for example, LCF-1100 manufactured by Otsuka Electronics Co., Ltd.) with an aluminum vapor deposition film (hereinafter referred to as an aluminum film) as a measurement standard of 100%. Is done.
  • a microspectrophotometer for example, LCF-1100 manufactured by Otsuka Electronics Co., Ltd.
  • an aluminum film aluminum vapor deposition film
  • the reflectance of the black matrix BM measured through the transparent substrate 2 for example, when the wavelength of light is approximately 430 nm, 540 nm, and 620 nm, the reflectance of the black matrix BM is small, approximately 0.05% or more. , Within a range of 0.3% or less.
  • the measurement wavelength may have a light wavelength of approximately 550 nm as a representative value, and may be measured by reflectance at measurement wavelengths of 430 nm, 540 nm, and 620 nm.
  • the measurement accuracy of the reflectance (%) is, for example, approximately ⁇ 0.04 point.
  • the optical density OD is measured using an optical densitometer (for example, D200-II manufactured by Gretag Macbeth).
  • carbon as the main light-shielding material specifically means that the transparent resin base material contains 50% by mass or more of carbon as a coloring material in a solid ratio.
  • FIG. 2 is a cross-sectional view showing a second example of the display device substrate according to the present embodiment.
  • the display device substrate 6 is a color filter substrate.
  • the color filter CF is formed on the transparent substrate 2 on which the black matrix BM is formed.
  • Overcoat layer 3 is formed on color filter CF.
  • FIG. 3 is a plan view illustrating an example of a pixel pattern in which the black matrix BM has a plurality of pixel openings, and is configured by the red filter RF, the green filter GF, and the blue filter BF formed in the pixel openings. .
  • any one of the red filter RF, the green filter GF, and the blue filter BF is disposed for each pixel.
  • the shape of the pixel opening is not limited to the rectangular shape as shown in FIG. 3.
  • at least two sides facing each other are parallel, such as a parallelogram shape or a V-shaped (doglegged shape) shape connected in one direction. Any polygon may be used.
  • the display device substrate 6 having a pixel pattern of a plurality of colors can be applied to a white light emitting liquid crystal display device and an organic EL display device.
  • a transparent conductive oxide layer or pattern such as a transparent conductive film (ITO) may be formed on the overcoat layer 3 of the display device substrate 6 shown in FIGS.
  • ITO transparent conductive film
  • FIG. 4 is a cross-sectional view showing an example of a liquid crystal display device including the display device substrate 6 according to the present embodiment.
  • the liquid crystal display device 7 includes a liquid crystal panel 8.
  • the liquid crystal panel 8 includes an array substrate 9, a liquid crystal layer 10, and a display device substrate 6.
  • the array substrate 9 and the display device substrate 6 face each other through the liquid crystal layer 10.
  • an alignment film 11 is formed on the overcoat layer 3 of the display device substrate 6. An observer observes an image displayed on the liquid crystal display device 7 through the transparent substrate 6. The alignment film 11 is disposed in contact with the liquid crystal layer 10 so that the liquid crystal layer 10 is sandwiched between the alignment film 11 and an alignment film 17 (described later).
  • the array substrate 9 includes a transparent substrate 12, insulating layers (transparent resins) 13a to 13c, a metal wiring 14, a common electrode 15, a pixel electrode 16, and an alignment film 17.
  • the transparent substrate 12 for example, a glass plate is used.
  • An insulating layer 13 a is formed on the first plane of the transparent substrate 12.
  • a metal wiring 14 is formed on the insulating layer 13a.
  • the metal wiring 14 is formed at a position overlapping the black matrix BM in a plan view, that is, in the vertical direction. In other words, when the observer side views the display surface of the transparent substrate 12 (the surface on which the black matrix BM is not formed), the metal wiring 14 is positioned below the black matrix BM.
  • An insulating layer 13b is formed on the insulating layer 13a on which the metal wiring 14 is formed.
  • a plate-like common electrode 15 is formed on the insulating layer 13b.
  • An insulating layer 13c is formed on the insulating layer 13b on which the common electrode 15 is formed.
  • a pixel electrode 16 is formed on the insulating layer 13c.
  • the articulation electrode 16 is formed in, for example, a comb shape in plan view.
  • the pixel electrode 16 may be a stripe pattern having a longitudinal direction perpendicular to the cross section of FIG.
  • An alignment film 17 is formed on the insulating layer 13c on which the pixel electrode 16 is formed.
  • TFT thin film transistor
  • the alignment film 17 of the array substrate 9 is disposed in contact with the liquid crystal layer 10 so that the alignment film 11 and the alignment film 17 sandwich the liquid crystal layer 10.
  • the second plane of the transparent substrate 12 of the array substrate 9 is located on the inner side of the liquid crystal display device 7.
  • the liquid crystal layer 10 may include liquid crystal molecules having a negative dielectric anisotropy or may include liquid crystal molecules having a positive dielectric anisotropy.
  • the polarizing film, retardation film, backlight unit, and the like of the liquid crystal display device 7 are omitted.
  • the liquid crystal display device 7 adopts a liquid crystal driving method called IPS (In-Plane-Switching) or FFS (Fringe Field Switching), for example, VA (Virtual Alignment Birefringent), ECB (Electrically Controlled Birefringence).
  • IPS In-Plane-Switching
  • FFS Frringe Field Switching
  • VA Virtual Alignment Birefringent
  • ECB Electro Mechanical Controlled Birefringence
  • Various systems and orientation modes such as Optically Compensated Bend) or TN (Twisted Nematic) can be applied.
  • the electrode structures of the display device substrate 6 and the array substrate 9 can also be changed as appropriate.
  • the field sequential drive liquid crystal display device includes, for example, a liquid crystal panel in which an array substrate having an array of active elements and a display device substrate 1 are bonded together via a liquid crystal layer 10.
  • the field sequential liquid crystal display device includes a backlight unit that uses blue, green, and red light emitting LED elements. Accordingly, even when the liquid crystal display device includes the display device substrate 1, color display is possible.
  • the organic EL display device including the display device substrate 1 includes, for example, an array substrate including an array of active elements and organic EL elements that emit blue light, green light, and red light, and the display device substrate 1. Color display is possible.
  • FIG. 5 is a flowchart showing an example of a manufacturing method of the black matrix BM according to the present embodiment.
  • the exposure is performed using one photomask having a negative pattern (a portion where the black matrix is formed) of the black matrix BM.
  • the manufacturing method of the black matrix BM according to the present embodiment includes a step of semi-curing at least the reflectance reduction layer by pre-exposure or preheating as shown in FIG. 5 before the exposure step.
  • the manufacturing method of the black matrix BM includes a step of applying the reflectance reduction layer 4 (first layer) (step ST1) and a step of semi-curing the reflectance reduction layer 4 (step). ST2), a step of applying the light shielding layer 5 (second layer) (step ST3), a step of drying the reflectance reduction layer 4 and the light shielding layer 5 (step ST4), and using one photomask, the reflectance
  • the step of exposing the reduction layer 4 and the light shielding layer 5 (step ST5), the reflectance reduction layer 4 and the light shielding layer 5 are collectively developed, and the black matrix in which the light shielding layer 5 is laminated on the reflectance reduction layer 4
  • a step of forming a BM pattern (step ST6) and a step of hardening the reflectance reduction layer 4 and the light shielding layer 5 to form a black matrix BM (step ST7) are included.
  • half-curing the reflectance reduction layer 4 means that the reflectance reduction layer 4 and the light-shielding layer 5 can be developed in a lump in the development process of step ST6, and shape defects and residues occur after development. It means to irradiate the reflection reducing layer 4 with heat rays or light to such an extent.
  • the reflectance reduction layer 4 applied and formed at the interface between the transparent substrate 2 and the light shielding layer 5 is dissolved and absorbed in the layer of the light shielding layer 5 in the coating process of the light shielding layer 5. There is.
  • the reflectance reduction layer 4 disappears, as a result, the reflectance on the surface of the black matrix BM increases.
  • the reflectance reduction layer 4 is “semi-cured” before the light shielding layer 5 is applied, the function of reducing the reflectance of the black matrix BM is not lost.
  • Making the reflectance reduction layer 4 “semi-cured” can be realized by applying a technique for applying heat to the reflectance reduction layer 4 after application, such as heat rays, ultraviolet rays, electromagnetic waves, or heat conduction. .
  • heat rays, ultraviolet rays, electromagnetic waves, or heat When an excessive amount of heat rays, ultraviolet rays, electromagnetic waves, or heat is applied, a residue may be generated in a later development process or a pattern shape defect may occur.
  • the semi-curing treatment is insufficient, as described above, the reflectance reduction layer 4 is dissolved and absorbed in the light shielding layer 5 when the light shielding layer 5 is applied, and the reflectance of the black matrix BM increases.
  • the film thickness of the reflectance reduction layer 4 is about 0.9 ⁇ m or more, a residue is likely to be generated in the developing process of the light shielding layer 5.
  • the reflectance reduction layer 4 is thick, as shown in FIG. 6, appearance defects such as undesirable wrinkles are likely to occur on the surface of the black matrix BM.
  • FIG. 6 is an example of a photograph taken with an optical microscope of a wrinkle generation state on the surface of the black matrix BM in which the film thickness of the reflectance reduction layer 4 is approximately 0.9 ⁇ m in the manufacturing process of the black matrix BM.
  • the thin film is excellent in light shielding properties, the reflectance measured through the transparent substrate 2 can be lowered, and the measurement is performed through the transparent substrate 2.
  • the reflected color of the black matrix BM can be neutral black.
  • the display device including the display device substrates 1 and 6 according to the present embodiment can reduce reflection on the screen, can form a bezel and a black matrix BM with a sense of unity, and can be colored. Neutral display can be realized, and excellent display characteristics and design can be obtained.
  • the black matrix BM according to the present embodiment is a thin film having a film thickness of approximately 1.5 ⁇ m or less, it is possible to achieve both a high optical density of approximately 4.0 or more and a low reflectance of approximately 0.3% or less. it can.
  • the carbon concentration of the reflectance reduction layer at the interface between the glass and the reflectance reduction layer is low and the thickness of the reflectance reduction layer is thin, the following effects can be obtained.
  • the residue of color materials such as carbon on the transparent substrate can be reduced.
  • the reproducibility of forming a black matrix having a narrower pattern can be improved.
  • a desired black matrix pattern shape can be obtained and peeling can be suppressed.
  • OD0 effective optical density zero
  • Oda0.35 effective optical density 0.35
  • the effective optical density can be calculated by multiplying the optical density per unit film thickness by the film thickness of the reflectance reduction layer 4.
  • the effective optical density of the light shielding layer 5 is expressed as ODb.
  • KAYARAD DPHA approximately 0.24 g of photopolymerization initiator (“NCI-831” manufactured by ADEKA), approximately 77.07 g of propylene glycol monomethyl ether acetate 77.07 g, and well stirred, approximately 100 g of reflection A rate reducing member (solid content approximately 14.0%, optical density approximately 0.0 / ⁇ m) is produced.
  • Pigment Blue 15 6 propylene glycol monomethyl ether acetate dispersion (approximately 20.0% solids, pigment concentration in solids approximately 70.0% by weight), and approximately 37.07 g propylene glycol monomethyl ether acetate are added. The mixture was stirred well, and about 100 g of the reflectance reducing member H (solid content: about 22.0%, red pigment concentration: about 13.75% by mass, blue pigment concentration: about 13.75% by mass, optical density: about 1.0 / ⁇ m).
  • the reflectance reducing member B is formed by coating by spin coating. After drying, the substrate to be manufactured is pre-baked on a hot plate at about 90 ° C. for about 1 minute. At this time, the rotation speed at the time of coating is adjusted so that the film thickness after the pre-baking of the reflectance reducing member B becomes approximately 0.5 ⁇ m. Next, the whole coating film of the reflectance reduction layer 4 is irradiated with ultraviolet light at about 40 mJ / cm 2 using an ultrahigh pressure mercury lamp (illuminance 26 mW / cm 2 ), and pre-exposure is performed.
  • an ultrahigh pressure mercury lamp ultraviolet light
  • the pre-exposure corresponds to a technique for making the reflectance reducing layer 4 “semi-cured”.
  • a coating film of the light shielding member E is formed on the reflectance reduction layer 4 by spin coating.
  • the film thickness is adjusted so that the optical density of the black matrix BM obtained after hardening is approximately 4.5.
  • the production target substrate is pre-baked for 30 seconds on a hot plate at approximately 90 ° C.
  • ultraviolet light is applied to the two-layer film including the reflectance reduction layer 4 and the light shielding layer 5 using an ultrahigh pressure mercury lamp (illuminance of about 26 mW / cm 2 ) through a photomask having a black matrix pattern.
  • the substrate to be produced is developed with an aqueous solution of about 2.5% by mass of sodium carbonate, hardened by baking for 20 minutes in a clean oven at about 230 ° C., and the reflectance reduction layer 4 and the light shielding layer 5 A black matrix BM having a film thickness of approximately 1.1 ⁇ m is formed.
  • thermosetting acrylic resin is applied with a film thickness of about 1 ⁇ m so as to cover the pattern of the black matrix BM, the acrylic resin is hardened, and an overcoat layer 3 is formed.
  • the display device substrate 1 is manufactured.
  • the reflectance of the black matrix BM measured through the transparent substrate 2 made of glass is about 0.15% at a light wavelength of about 550 nm using a microscopic light measuring device.
  • the film thickness of the overcoat layer 3 can be changed.
  • Example 2 In Example 2, the reflectance reduction member A is used, and the reflectance reduction layer 4 is formed by coating with a film thickness of about 0.3 ⁇ m. As in Example 1 above, the entire coating film of the reflectance reduction layer 4 is irradiated with ultraviolet light at approximately 40 mJ / cm 2 and pre-exposed. Subsequently, the light shielding member E is coated on the reflectance reduction layer 4 by a spin coating method, and the light shielding layer 5 is formed. Thereafter, exposure, development, and hardening using a photomask are performed in the same manner as in Example 1 to form a black matrix BM. A thermosetting acrylic resin is applied with a film thickness of about 1 ⁇ m so as to cover the pattern of the black matrix BM, and is hardened to form the overcoat layer 3, thereby producing the display device substrate 1.
  • the reflectance of the black matrix BM measured through the transparent substrate 2 made of glass is about 0.22% at a light wavelength of about 550 nm using a microspectroscopic measuring device.
  • Example 3 the reflectance reduction layer 4 is applied and formed with a film thickness of about 0.3 ⁇ m using the reflectance reduction member B.
  • the entire coating film of the reflectance reduction layer 4 is irradiated with ultraviolet light at approximately 40 mJ / cm 2 and pre-exposed.
  • the light shielding member E is coated on the reflectance reduction layer 4 by a spin coating method, and the light shielding layer 5 is formed so as to have a film thickness of approximately 1.1 ⁇ m after hardening.
  • exposure, development, and hardening using a photomask are performed in the same manner as in Example 1 to form a black matrix BM.
  • a thermosetting acrylic resin is applied with a film thickness of about 1 ⁇ m so as to cover the pattern of the black matrix BM, and is hardened to form the overcoat layer 3, thereby producing the display device substrate 1.
  • the reflectance of the black matrix BM measured through the transparent substrate 2 made of glass is about 0.29% at a light wavelength of about 550 nm using a microspectroscopic measuring device.
  • Example 4 to 7 In Examples 4 to 7, as shown in Table 1 below, the reflectance reducing members A, B, C, and H were used, respectively, and the film thickness was about 0.7 ⁇ m or the film thickness was about 0.4 ⁇ m.
  • the reduction layer 4 is formed by coating. As in Example 1 above, the entire coating film of the reflectance reduction layer 4 is irradiated with ultraviolet light at approximately 40 mJ / cm 2 and pre-exposed. Subsequently, the light shielding member E is coated on the reflectance reduction layer 4 by a spin coating method, and the light shielding layer 5 is formed so as to have a film thickness of about 1.1 ⁇ m after hardening.
  • thermosetting acrylic resin is applied with a film thickness of about 1 ⁇ m so as to cover the pattern of the black matrix BM, and is hardened to form the overcoat layer 3, thereby producing the display device substrate 1.
  • the reflectivity of the black matrix BM measured through the transparent substrate 2 made of glass is about 0.18% in Example 4 and about 0.18% in Example 5, using a measuring device that is a microspectrophotometer, and the wavelength of light is about 550 nm. It is about 0.14%, and in Example 6, it is about 0.30%.
  • Tables 1 and 2 show a comparison between Examples 1 to 7 of the display device substrate 1 according to the above embodiment and Comparative Examples 1 to 6 which are other display device substrates.
  • Table 3 shows the values of chromaticity a * and b * in the CIE Lab color space display system measured through the transparent substrate 2 of the black matrix BM of Examples 1 to 3 described above.
  • the chromaticity of the two-layer black matrix BM is a value of a * and b *, which is included in a small range of about ⁇ 1.0, and has been proved to be a neutral color without coloring.
  • Table 4 shows the reflectance measured for each of Examples 1 to 7 through the transparent substrate 2 of the black matrix BM at light wavelengths of about 430 nm, 540 nm, and 620 nm.
  • the reflectance is included in a range of approximately 0.05 to 0.3%. Therefore, it can be confirmed that the black matrix BM of the display device substrate 1 has a substantially neutral reflection characteristic.
  • Comparative Examples 1 to 4 as shown in Table 2 above, the reflectance reduction member C or the reflectance reduction member D having a relatively high carbon concentration is used.
  • the light shielding layer of Comparative Example 1 is formed using the light shielding member F.
  • pre-exposure is performed after the coating step of the reflectance reduction layer, as in the first embodiment.
  • Comparative Example 5 is different from Examples 1 to 6 and Comparative Examples 1 to 4 described above in the curing conditions of the reflectance reduction layer.
  • the reflectance reduction layer in Comparative Example 5 is formed as a single layer by performing a hardening process at 230 ° C. in advance.
  • the reflectance reducing film is applied and formed on the transparent substrate 2 using the reflectance reducing member C so as to have a coating thickness of about 0.5 ⁇ m.
  • the calculated optical density Oda of the reflectance reduction film is approximately 0.5.
  • a hardening process at 230 ° C. is performed to form the reflectance reduction layer.
  • a light shielding layer having an optical density ODb of 4.18 is laminated using the light shielding member E, and a black matrix pattern is formed by performing drying, exposure, development, and film hardening.
  • the reflectance of the black matrix of Comparative Example 5 was measured through the transparent substrate 2, the reflectance was as high as 0.58 at a light wavelength of 540 nm.
  • the black matrix was visually observed on the display surface of the transparent substrate 2, remarkable color unevenness considered to be an interference color was observed, and a preferable result was not obtained.
  • Comparative Example 6 is different from Examples 1 to 6 and Comparative Examples 1 to 5 described above in that the semi-curing treatment of the reflectance reduction layer is omitted, and after application of the reflectance reduction layer, only drying is performed and direct reflection is performed. A manufacturing method in which a light shielding layer is laminated on the rate reduction layer is used.
  • the reflectance reduction member C is applied on the transparent substrate 2 so as to have a coating film thickness of about 0.4 ⁇ m.
  • the calculated optical density Oda is approximately 0.4.
  • the light shielding member E is applied so that the optical density ODb of the light shielding member E is approximately 4.18. Further, drying, exposure, development, and film hardening are performed to form a black matrix pattern.
  • the semi-curing treatment of the reflectance reduction layer 4 is realized by a heat treatment such as a hot plate or an infrared drying apparatus.
  • semi-curing treatment can be performed in a short time by using electromagnetic waves such as ultraviolet rays.
  • a semi-curing process (pre-exposure) using a light source is exemplified below.
  • the reflectance reducing member is applied on the transparent substrate 2 using a coating method such as load spray coating, spin coating, slit coating, roll coating, etc., and the coating film of the reflectance reducing layer 4 is formed. .
  • the entire surface of the coating film is uniformly exposed.
  • the exposure light source for example, a conventionally known light source such as an ultrahigh pressure mercury lamp, a xenon lamp, a carbon arc lamp or the like is used.
  • the exposure amount at this time is, for example, about 15 to 40% when the exposure amount at which the film is not reduced by development processing (hereinafter referred to as “saturated exposure amount”) is 100%.
  • the coating film of the reflectance reduction layer is melted and mixed by the solvent contained in the light shielding member by applying the light shielding member.
  • the carbon concentration in the portion forming the interface increases, and as a result, the reflectance of the black matrix increases.
  • the reflectance-reducing film is excessively cured, and during the development process, the reflectance-reducing film is not sufficiently dissolved and transparent. It may remain on the substrate, resulting in a residue.
  • FIG. 7 is a graph showing the relationship between the pre-exposure amount under coating conditions in Example 1, Example 3, and Example 5 and the reflectance of the black matrix BM.
  • the pre-exposure amount When the pre-exposure amount is about 20 mJ / cm 2 or less, the reflectance tends to be high, and when the pre-exposure amount is about 80 mJ / cm 2 or more, a residue tends to be generated, which is not preferable. However, when the pre-exposure amount is, for example, around 40 mJ / cm 2 or more and 60 mJ / cm 2 or less, the black matrix BM having a low reflectance can be formed stably.
  • the present invention is not limited to the semi-curing treatment conditions and the exposure technique shown in FIG.
  • FIG. 8 shows measurement results indicating extinction coefficient data of the blue filter BF, the green filter GF, and the red filter RF constituting the color filter.
  • the extinction coefficient of the filter was measured for each wavelength of light using a spectroscopic ellipsometer.
  • the blue filter BF, the green filter GF, and the red filter RF have different extinction coefficient values.
  • the reflected light may be colored as shown in FIG. Understandable.
  • the black matrix BM is formed using two types of photosensitive resin compositions having different optical densities. As described above, a photosensitive resin composition having a low optical density is referred to as a “reflectance reducing member”, and a photosensitive resin composition having a high optical density is referred to as a “light-shielding member”.
  • the reflectance reducing member and the light shielding member are both photosensitive resin compositions containing at least a resin, a polymerizable monomer, a photopolymerization initiator, and a solvent.
  • the light shielding member has a black matrix thickness of about 1 ⁇ m. The black pigment is added in the range where the optical density is about 2.5 or more.
  • Resins include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, and other alkyl acrylates or alkyl methacrylates, cyclic cyclohexyl acrylate or methacrylate, hydroxyethyl acrylate or methacrylate, styrene, etc.
  • a resin having a molecular weight of about 5,000 to 100,000, which is synthesized using about three to five types of monomers, is preferably used.
  • a resin in which an unsaturated double bond is added to a part of an acrylic resin a compound such as the above acrylic resin, isocyanate ethyl acrylate having at least one vinyl group and an isocyanate group, or methacryloyl isocyanate is reacted.
  • the photosensitive copolymer having an acid value of 50 to 150 can be preferably used from the viewpoint of heat resistance and developability.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, novolac type epoxy resin, polycarboxylic acid glycidyl ester, polyol polyglycidyl ester, aliphatic or alicyclic epoxy resin, amine epoxy resin, triphenolmethane type epoxy resin,
  • Ordinary photopolymerizable resins such as epoxy (meth) acrylate obtained by reacting an epoxy resin such as a dihydroxybenzene type epoxy resin and (meth) acrylic acid, or a cardo resin can also be used.
  • photopolymerizable monomer examples include ethylene glycol (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol.
  • Various modified (meth) acrylates, urethane (meth) acrylates, and the like may be used as the photopolymerizable monomer.
  • pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate, which have a small double bond equivalent and can achieve high sensitivity are suitably used as the photopolymerizable monomer. .
  • the content of the photopolymerizable monomer is preferably about 5 to 20% by weight, more preferably about 10 to 15% by weight in the solid content of the photosensitive resin composition.
  • the sensitivity and development speed of the photosensitive resin composition can be adjusted to a level suitable for production.
  • the content of the photopolymerizable monomer is about 5% by weight or less, the sensitivity of the black photosensitive resin composition is insufficient.
  • Photopolymerization initiator As the photopolymerization initiator, a conventionally known compound can be used as appropriate, but an oxime ester compound that can achieve high sensitivity when used in a black photosensitive resin composition that does not transmit light is used. Is preferred.
  • oxime ester compounds include, for example, 2- (O-benzoyloxime) -1- [4- (phenylthio) phenyl] -1,2-octanedione, 1- (O-acetyloxime) -1- [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone (both manufactured by BASF Japan Ltd.) and the like are used.
  • the content of the photopolymerization initiator is preferably 0.5 to 10.0% by weight, more preferably about 1.0 to 5.0% by weight, based on the solid content of the photosensitive resin composition. .
  • the content of the photopolymerization initiator is about 1% by weight or less, the sensitivity of the photosensitive resin composition is insufficient.
  • the content of the photopolymerization initiator is about 10% by weight or more, the pattern line width of the black matrix is too thick.
  • photopolymerization initiators can be used in combination with the above photopolymerization initiator.
  • photopolymerization initiators include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1- ON, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butan-1-one and other acetophenone compounds, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal and other benzoin compounds, benzophenone, benzophenone, benzophenone, benzophenone, benzophen
  • photopolymerization initiators can be used alone or in combination of two or more at any ratio as required.
  • the content of the other photopolymerization initiator is preferably 0.1 to 1% by weight, more preferably 0.2 to 0.5% by weight in the solid content of the photosensitive resin composition. .
  • solvent examples include methanol, ethanol, ethyl cellosolve, ethyl cellosolve acetate, diglyme, cyclohexanone, ethylbenzene, xylene, isoamyl acetate, n amyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene Glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, triethylene glycol , Triethylene glycol monomethyl ether, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether, triethylene glycol, triethylene
  • Black color material As the black color material used in the embodiment of the present invention, for example, carbon black (also expressed as carbon in the embodiment of the present invention) is preferable. Examples of carbon black include lamp black, acetylene black, thermal black, channel black, and furnace black.
  • red pigments used to form red pixels include C.I. I. Pigment Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 97, 122, 123, 146, 149, 168, 177 178, 179, 180, 184, 185, 187, 192, 200, 202, 208, 210, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, 246, 254, 255, 264 272, 279, etc. are used. It is also possible to use a yellow pigment and an orange pigment in combination in order to adjust the hue of the red pixel.
  • yellow pigments examples include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 144, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, Such as 73,174,175,176,177,179,180,181,182,185,
  • orange pigments examples include C.I. I. Pigment Orange 36, 43, 51, 55, 59, 61, 71, 73, etc. are used.
  • a green pigment for forming a green pixel for example, C.I. I. Pigment Green 7, 10, 36, 37, 58, etc. are used.
  • a yellow pigment may be used in combination to adjust the hue of the green pixel.
  • the pigment illustrated as a yellow pigment which can be used together in order to adjust the hue of a red pixel may be used suitably.
  • blue pigment for forming a blue pixel for example, C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64 and the like are used.
  • a purple pigment may be used in combination to adjust the hue of the blue pixel.
  • Specific examples of purple pigments include C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50, etc. are used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明の表示装置用基板は、透明基板と、前記透明基板の上に、反射率低減層と遮光性色材の主材としてカーボンを含む遮光層とをこの順で積層して形成されるブラックマトリクスと、を具備し、前記反射率低減層の膜厚は、およそ0.1μm以上、0.7μm以下の範囲にあり、前記反射率低減層について、膜厚と単位膜厚あたりの光学濃度とを掛け算して得られる実効的な光学濃度が、およそ0以上、0.4以下の範囲にあり、前記透明基板を通して測定された前記ブラックマトリクスの反射率は、アルミニウム膜の反射率を基準として、およそ0.05%以上、0.3%以下の範囲にある。

Description

表示装置用基板、表示装置用基板の製造方法、及び表示装置
 本発明は、表示装置用基板、表示装置用基板の製造方法、及び表示装置に関する。
 本願は、2013年4月30日に出願された特願2013-095722号に基づき優先権を主張し、その内容をここに援用する。
 近年、様々な分野に、液晶表示装置が応用されている。カラーフィルタは、カラー表示を実現する液晶表示装置に必要不可欠な部品である。カラーフィルタは、例えばガラスなどのような透明基板の上に、例えば赤フィルタ、緑フィルタ、青フィルタなどの着色画素を備えている。各着色画素の間には、一般的に、コントラストを向上させるため、又は、液晶表示装置において対向基板上に設けられるTFT(薄膜トランジスタ)素子の光による誤動作を防ぐために、ブラックマトリクス(遮光部)が備えられる。
 ブラックマトリクスの形成方法として、例えば、金属クロム薄膜をエッチングする方法が用いられる。しかしながら、コスト及び環境負荷の問題から、遮光材を含有した黒色感光性樹脂組成物を用いるフォトリソグラフィ法が適用される場合もある。
 黒色感光性樹脂組成物を用いるフォトリソグラフィ法によるブラックマトリクスの形成は、以下のように行う。
 最初に、例えばスピンコート又はスリットコート法などにより、透明基板の上に、黒色感光性樹脂組成物の塗膜が形成される。形成対象基板は、必要に応じて乾燥、加熱される。その後、形成対象基板に対して、所定のパターンを持つフォトマスクを介して露光処理が行われる。続いて、現像処理により形成対象基板の未露光部が除去され、加熱硬膜処理により、透明基板上に、ブラックマトリクスが形成される。
 ブラックマトリクスに要求される特性は、例えば遮光性、解像性、絶縁性などを含む。
 カラーフィルタを備える液晶表示装置を透明基板側から見た場合に、透明基板とブラックマトリクスとの界面において外光が反射する場合がある。この場合、液晶表示装置の画面に物が映り込み、色調が変化し、又は、表示品位が悪化する場合がある。このため、近年、反射率の低減及び反射光の色相(反射色度)を制御することが望まれている。
 液晶表示装置を用いた製品においては、意匠性がますます重要となっており、非点灯時の色味も重視される。非点灯時の色味は、液晶表示装置を構成するTFT素子、液晶分子、偏光板、カラーフィルタなどの各部材の反射色度に影響される。これらの各部材の中でも、カラーフィルタのブラックマトリクスは、比較的反射率が高く、また表示画面内に占める面積比率が高いため、反射色度に与える影響は大きい。そのため、ブラックマトリクスの反射率が高く、また、ブラックマトリクスの反射色がニュートラルブラックではない場合、特にモバイル機器にブラックマトリクスが組み込まれると、ベゼルと呼ばれる外枠部とブラックマトリクスとの一体感が損なわれることが問題となる。
 TFT素子自体、偏光板、又は、カラーフィルタの着色画素の反射色度を調整することにより、液晶表示装置の非点灯時における色味を改善することが可能である。しかしながら、このような場合、点灯時の透過色度が変化する場合がある。これに対し、カラーフィルタのブラックマトリクスは光を透過しないため、点灯時の透過色度に影響を与えることなく、非点灯時の反射色度のみを調整することが可能である。そこで、ブラックマトリクスは、ブラックマトリクスの従来の特性を損なわずに低反射率であり、かつ、反射色がニュートラルブラックであること、すなわち、ブラックマトリクスの反射分光において可視光領域でフラットな特性が得られるであること、が望まれる。
 しかしながら、感光性樹脂組成物に黒色顔料を分散させた黒色感光性樹脂を用いて形成された従来のブラックマトリクスの反射率は、遮光性を決める顔料濃度に強く依存される。反射率を低くするためには、顔料濃度を低くする必要がある。顔料濃度を低くする場合には、遮光性を保つためにブラックマトリクスの膜厚を厚くする必要がある。ブラックマトリクスの膜厚が厚くなると、カラーフィルタの平坦性が損なわれ、液晶分子の配向不良が発生しやすくなる。逆に、薄膜のブラックマトリクスで十分な遮光性を得るためには、顔料濃度を高くする必要がある。顔料濃度を高くする場合、ブラックマトリクスの反射率が高くなる。すなわち、遮光性と低反射とがトレードオフの関係になるという問題がある。
 遮光性と反射防止性とのトレードオフを解決するための方法として、例えば特許文献1(日本国特開2006-154849号公報)がある。特許文献1は、カーボンブラックと有機顔料とを同時に均一分散させた顔料分散液を用いた黒色感光性樹脂組成物、及び、金属膜を併用することにより、遮光性と低反射率とを両立することを開示する。
 しかしながら、カーボンブラックと有機顔料との双方を均一分散させることが可能な分散剤の選定は非常に困難である。また、光学濃度を高めるために金属膜を積層する工程が必要であり、工程増加に伴って生産性が低下する場合がある。さらに、金属膜を用いることでコストが高くなる場合がある。
 金属膜を用いることなく、遮光性と反射防止性とのトレードオフを解決するための方法として、例えば特許文献2(国際公開WO2010/070929号パンフレット)がある。特許文献2は、低光学濃度層と高光学濃度層とを積層した構成のブラックマトリクスを開示する。低光学濃度層は、例えば顔料を含む着色感光性樹脂組成物を用いて形成され、例えば厚さ2μmである。高光学濃度層は、カーボンブラック(以下カーボンと略称する)又はチタンブラック含む黒色感光性樹脂組成物を用いて形成される。特許文献2の[0100]段落及び[0102]段落には、低光学濃度層の材料が顔料と樹脂とを含むことが望ましいと記載されている。特許文献2の[0103]~[0105]段落には、顔料種が例示されている。低光学濃度層が顔料を含む場合、反射光は、この低光学濃度層に含有される有機顔料によって色味を含むため、特許文献2では、反射光がニュートラルブラックとなるブラックマトリクスを形成することが難しい。特許文献2は、光の波長が430nm、540nm、620nmのそれぞれの反射率が0.05~0.3%の範囲内にあるニュートラル、かつ、低反射のブラックマトリクスを開示していない。特許文献2の請求項2における光学濃度が0.5以上の低光学濃度層では、反射率が高くなる場合がある。特許文献2では、カーボン低含有率の遮光層を用いる低光学濃度層の具体的な技術が開示されていない。特許文献2では、ニュートラル、かつ、低反射率を得るための低光学濃度層の最適膜厚も開示されていない。特許文献2には、例えば、青の領域の波長が430nm、緑の領域の波長540nm、赤の領域の波長620nm等、光の波長毎の光学定数や反射率が開示されておらず、更に、可視域の波長域でどのような反射色が生じるのかが開示されていない。
 これに対して、特許文献3(日本国特許第2861391号)は、遮光剤と樹脂とに加えて、補色顔料として青色、紫色などの顔料が加えられたブラックマトリックスを用いることにより、ニュートラルブラックを得ることを開示する。
 また、特許文献4(日本国特開2005-75965号公報)は、カーボンブラックとチタン酸窒化物とを併用することでニュートラルブラックを得ることを開示する。
 さらに、特許文献5(日本国特開2011-227467号公報)は、チタン窒化物と、C.I.ピグメントレッド254、C.I.ピグメントレッド177、C.I.ピグメントレッド179から選ばれる少なくとも1種の赤顔料とを併用することでニュートラルブラックを得ることを開示する。
 しかしながら、これらの特許文献3~5は、ブラックマトリックス単体での反射色度をニュートラルブラックに近付けるには有効であるが、反射率低減効果はなく、いずれの方法であっても、透明基板を通じて測定されるブラックマトリックスの反射率は、1.0%以上となる。
 特許文献6(日本国特開2011-197521号公報)及び特許文献7(日本国特開平10-301499号公報)は、クロム等の金属酸窒化物、金属膜の多層構成で反射率の低いブラックマトリクスを形成する技術を開示している。しかしながら、特許文献6,7に開示された技術は、例えば、特許文献6の段落[0004]や、特許文献7の図8又は図9に開示されているように、反射率が5%前後と高く、好ましくない。光学干渉膜として、例えば、2層以上の多層膜を形成し、膜厚を調整することで、特定波長域にて低反射を実現できるが、この場合には、逆に、可視域全体で低反射を実現することは難しくなる。また、単層や2層の金属酸化物、金属酸窒化物、金属膜は、真空成膜等のコストが高いこと、加えて、エッチングによるパターン形成工程でクロムイオン等の金属イオンによる環境汚染が問題となる。
日本国特開2006-154849号公報 国際公開2010/070929号パンフレット 日本国特許第2861391号公報 日本国特開2005-75965号公報 日本国特開2011-227467号公報 日本国特開2011-197521号公報 日本国特開平10-301499号公報
 本発明は、上記実情に鑑みてなされたものであり、画面への写り込みを解消し、かつ、着色のないニュートラルな表示を可能とする表示装置用基板、表示装置用基板の製造方法、及び表示装置を提供することを目的とする。
 本発明の第1態様に係る表示装置用基板は、透明基板と、前記透明基板の上に、およそ0.1μm以上、0.7μm以下の範囲の膜厚を有する反射率低減層と、遮光性色材の主材としてカーボンを含む遮光層とがこの順で積層して形成されたブラックマトリクスと、を具備する。前記膜厚と単位膜厚あたりの光学濃度とを掛け算して得られる前記反射率低減層の実効的な光学濃度は、およそ0以上、0.4以下の範囲にある。前記透明基板を通して測定された前記ブラックマトリクスの反射率は、アルミニウム膜の反射率を基準として、およそ0.05%以上、0.3%以下の範囲にある。
 本発明の第1態様に係る表示装置用基板においては、前記透明基板を通して測定された前記ブラックマトリクスの反射率は、光の波長のそれぞれがおよそ430nm、540nm、620nmである場合で、およそ0.05%以上、0.3%以下の範囲にあることが好ましい。
 本発明の第1態様に係る表示装置用基板においては、前記反射率低減層は、透明樹脂層であることが好ましい。
 本発明の第1態様に係る表示装置用基板においては、前記反射率低減層は、少なくともカーボンを含む半透明樹脂層であることが好ましい。
 本発明の第1態様に係る表示装置用基板においては、前記反射率低減層は、少なくとも減法混色の関係にある2種以上の有機顔料を含む半透明樹脂層であることが好ましい。
 本発明の第1態様に係る表示装置用基板においては、前記ブラックマトリクスは、複数の画素開口部を有し、前記画素開口部のそれぞれに、青フィルタ、緑フィルタ、赤フィルタの画素パターンが配設されていることが好ましい。
 本発明の第2態様に係る表示装置用基板の製造方法は、透明基板上に、反射率低減層となる第一層を塗布し、前記第一層を半硬化させ、前記第一層上に、遮光層となる第二層を塗布し、一つのフォトマスクを用いて、前記第一層及び前記第二層を一括して露光し、1回の現像によって、前記透明基板上に形成された前記第一層及び前記第二層から、前記反射率低減層上に前記遮光層が積層されたブラックマトリクスを形成する。
 本発明の第2態様に係る表示装置用基板の製造方法においては、前記反射率低減層は、前記透明樹脂層、又は、前記半透明樹脂層であることが好ましい。
 本発明の第2態様に係る表示装置用基板の製造方法においては、前記半透明樹脂層は、カーボンを含むことが好ましい。
 本発明の第2態様に係る表示装置用基板の製造方法においては、前記反射率低減層は、少なくとも減法混色の関係にある2種以上の有機顔料を含む半透明樹脂層であることが好ましい。
 本発明の第3態様に係る表示装置は、上記第1態様の表示装置用基板を備える。
 本発明の態様においては、画面への写り込みを解消し、かつ、着色のないニュートラルな表示を可能とする表示装置用基板、表示装置用基板の製造方法、及び表示装置を提供することができる。
本実施形態に係る表示装置用基板の第1の例を示す断面図である。 本実施形態に係る表示装置用基板の第2の例を示す断面図である。 ブラックマトリクスの画素開口部に形成された赤フィルタ、緑フィルタ、青フィルタによって形成される画素パターンの一例を示す平面図である。 本実施形態に係る表示装置用基板を備える液晶表示装置の一例を示す断面図である。 本実施形態に係るブラックマトリクスの製造方法の一例を示すフローチャートである。 ブラックマトリクス表面に生じた外観不良の一例を示す図である。 実施例1、実施例3、実施例5における塗布条件でのプレ露光量と、ブラックマトリクスの反射率との関係を示すグラフである。 カラーフィルタを構成する青フィルタBF、緑フィルタGF、及び赤フィルタRFの消衰係数のデータを示す図である。
 以下、図面を参照しながら本発明の実施形態について説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。また、同一又は実質的に同一の機能及び構成要素については、同一符号を付し、説明を省略するか又は必要な場合のみ説明を行う。
 本実施形態においては、特徴的な部分についてのみ説明し、通常の表示装置の構成要素と差異のない部分については説明を省略する。
 本実施形態は、液晶表示装置を例として説明するが、有機EL表示装置のような他の表示装置についても同様に本発明が適用可能である。
 本実施形態においては、反射率低減層と、遮光層との2層を含むブラックマトリクスを備えた表示装置用基板について説明する。
 図1は、本実施形態に係る表示装置用基板の第1の例を示す断面図である。
 表示装置用基板1は、透明基板2、ブラックマトリクスBM、オーバーコート層(透明樹脂層)3を具備する。
 透明基板2としては、例えばガラスが用いられる。
 透明基板2の第1の平面の上には、ブラックマトリクスBMが形成される。ブラックマトリクスBMは、平面視で、マトリクス状に配列された複数の画素開口部を形成する。
 ブラックマトリクスBMの形成された透明基板2の上には、オーバーコート層3が形成される。
 ブラックマトリクスBMは、反射率低減層4と遮光層5とを含む。ブラックマトリクスBMは、透明基板2の上に、反射率低減層4、遮光層5、の順で形成される。
 この図1の表示装置用基板1が表示装置に備えられる場合には、透明基板2の第2の平面(第1の平面と反対側の面)が観察者に向き、オーバーコート層3が液晶層に向く。
 したがって、表示装置に表示装置用基板1が備えられた状態において、ブラックマトリクスBMは、液晶層側(液晶層に近い位置)に遮光層5が配置され、観察者側(観察者に近い位置)に反射率低減層4が配置される。
 本実施形態において、遮光層5は、例えば、遮光性色材の主材(主体、主剤、又は、主成分)がカーボンであるとする。ここで、遮光性色材の主材とは、質量比率において、遮光性色材の全材料の質量に対して、50%を越える質量を持つ材料である。
 反射率低減層4の膜厚は、例えば、およそ0.1μm以上、0.7μm以下の範囲とし、かつ、反射率低減層4の光学濃度は、およそ0以上、0.4以下の範囲とする。
 反射率低減層4の材料として、遮光性色材として減法混色の関係にある2種以上の有機顔料を含む半透明樹脂を、採用することができる。このような減法混色の関係にある2種以上の有機顔料は、混色によって黒っぽい色を生じさせる有機顔料を意味する。また、本発明における減法混色の関係にある2種以上の有機顔料とは、2種以上の顔料を混ぜることで可視域において広範囲に光の透過率を下げることができる有機顔料である。例えば、青色顔料と赤色顔料を混ぜることによって減法混色を生じさせることが可能である。また、紫色顔料と黄色顔料を混ぜることによって減法混色を生じさせることも可能である。他にも、公知の顔料の組合せが挙げられる。反射率低減層4の色を黒や灰色に近づけるために、上記顔料に、反射色調整用の有機顔料を更に加えることができる。本発明に適用できる有機顔料は、後述する。2種以上の有機顔料に、遮光性色材の主材として、さらに、カーボンを加えてもよい。
 また、反射率低減層は、透明樹脂層であってもよい。
 また、反射率低減層は、少なくともカーボンを含む半透明樹脂で構成されてもよい。反射率低減層を構成する半透明樹脂は、濃度0.4以下の半透明さを有する樹脂であってもよい。
 なお、本実施形態に係る反射率低減層4の光学濃度は、通常標記の単位膜厚(1μm)あたりの光学濃度でない。本実施形態に係る反射率低減層4は、およそ0.1μm以上、0.7μm以下の範囲内の膜厚で形成される。本実施形態に係る反射率低減層4の光学濃度は、膜厚と、単位膜厚あたりの光学濃度とを掛け算して得られる実効的な光学濃度とする。
 透明基板2を通して測定されたブラックマトリクスBMの反射率は、例えば、アルミニウム膜の反射率を基準として、およそ0.05以上、0.3%以下の範囲とする。例えば、ブラックマトリクスBMの反射率は、C光源および顕微分光光度計(例えば、大塚電子社製 LCF-1100)を用いて、アルミニウムの蒸着膜(以下、アルミニウム膜)を測定の基準100%として測定される。ここで、透明基板2を通してブラックマトリクスBMの反射率を測定するとは、ブラックマトリクスBMが形成されていない透明基板2の面に光を入射させて、透明基板2を透過した光をブラックマトリクスBMに照射し、ブラックマトリクスBMから反射された光を測定することによって行われる。
 透明基板2を通して測定されるブラックマトリクスBMの反射率については、例えば、およそ光の波長が430nm、540nm、620nmのそれぞれである場合、ブラックマトリクスBMの反射率は、小さく、およそ0.05%以上、0.3%以下の範囲内に含まれるとする。例えば、測定波長は、およそ光の波長550nmを代表値としてもよく、430nm、540nm、620nmの測定波長によって反射率で測定されてもよい。反射率(%)の測定精度は、例えば、およそ±0.04ポイントとする。
 光学濃度ODは、光学濃度計(例えば、グレタグマクベス社製 D200-II)を測定に用いる。
 遮光性の主材としてカーボンを用いることは、具体的には透明樹脂の母材に、色材として、固形比で50質量%以上のカーボンを含有することを意味する。
 図2は、本実施形態に係る表示装置用基板の第2の例を示す断面図である、この表示装置用基板6は、カラーフィルタ基板である。
 ブラックマトリクスBMの形成された透明基板2の上に、カラーフィルタCFが形成される。カラーフィルタCFの上に、オーバーコート層3が形成される。
 図3は、ブラックマトリクスBMが複数の画素開口部を有し、この画素開口部に形成された赤フィルタRF、緑フィルタGF、青フィルタBFによって構成される画素パターンの一例を示す平面図である。
 表示装置用基板6においては、画素ごとに、赤フィルタRF、緑フィルタGF、青フィルタBFのいずれかが配置される。
 画素開口部の形状は、図3のような矩形状に限定されず、例えば、平行四辺形状、V字形状(doglegged shape)が一方向に連結している形状など、少なくとも向き合う2辺が平行な多角形であればよい。
 複数色の画素パターンを備える表示装置用基板6は、白色発光の液晶表示装置及び有機EL表示装置に適用可能である。
 上記図2及び図3の表示装置用基板6のオーバーコート層3の上には、透明導電膜(ITO)などのような透明な導電性酸化物の層又はパターンが形成されてもよい。
 図4は、本実施形態に係る表示装置用基板6を備える液晶表示装置の一例を示す断面図である。
 液晶表示装置7は、液晶パネル8を備える。液晶パネル8は、アレイ基板9と、液晶層10と、表示装置用基板6とを備える。アレイ基板9と表示装置用基板6とは、液晶層10を介して、向き合っている。
 この図4において、表示装置用基板6のオーバーコート層3の上には、配向膜11が形成されている。観察者は、透明基板6を介して液晶表示装置7に表示される画像を観察する。配向膜11は、配向膜11及び配向膜17(後述)によって液晶層10を挟むように、液晶層10に接して配置されている。
 アレイ基板9は、透明基板12と、絶縁層(透明樹脂)13a~13cと、金属配線14と、共通電極15と、画素電極16と、配向膜17とを備える。
 透明基板12としては、例えば、ガラス板が用いられる。
 透明基板12の第1の平面の上には、絶縁層13aが形成される。絶縁層13aの上には、金属配線14が形成される。
 金属配線14は、平面視で、すなわち、垂直方向において、ブラックマトリクスBMと重なる位置に形成される。換言すれば、観察者側が透明基板12の表示面(ブラックマトリクスBMが形成されていない面)を見た場合に、金属配線14は、ブラックマトリクスBMの下に位置する。
 金属配線14が形成された絶縁層13aの上には、絶縁層13bが形成される。絶縁層13bの上には、板状の共通電極15が形成される。共通電極15が形成された絶縁層13bの上には、絶縁層13cが形成される。絶縁層13cの上には、画素電極16が形成される。
 画度電極16は、例えば、平面視で櫛歯状に形成される。また、画素電極16は、図4の断面に対して垂直な長手方向を持つストライプパターンでもよい。
 画素電極16が形成された絶縁層13cの上には、配向膜17が形成される。
 図4のアレイ基板9については、例えば薄膜トランジスタ(TFT)などのアクティブ素子も備えられる。
 アレイ基板9の配向膜17は、配向膜11及び配向膜17によって液晶層10を挟むように、液晶層10に接して配置されている。アレイ基板9の透明基板12の第2の平面は、液晶表示装置7の内部側に位置する。
 液晶層10は、負の誘電率異方性を持つ液晶分子を含むとしてもよく、正の誘電率異方性を持つ液晶分子を含むとしてもよい。
 図4では、液晶表示装置7の偏光フィルム、位相差フィルム、及び、バックライトユニットなどが省略されている。
 液晶表示装置7は、IPS(In-Plane-Switching)又はFFS(Fringe Field Switching)と呼称される液晶駆動方式を採用するが、例えば、VA(Virtical Alignment)、ECB(Electrically Controlled Birefringence)、OCB(Optically Compensated Bend)、又は、TN(Twisted Nematic)などの各種の方式及び配向モードを適用することができる。
 表示装置用基板6及びアレイ基板9の電極構造も適宜変更することができる。
 ここで、表示装置に、上記の表示装置用基板6に代えて表示装置用基板1を備える場合について説明する。
 フィールドシーケンシャル駆動の液晶表示装置は、例えば、アクティブ素子の配列を備えるアレイ基板と表示装置用基板1とを、液晶層10を介して貼り合せた液晶パネルを備える。また、フィールドシーケンシャル駆動の液晶表示装置は、青色発光、緑色発光、赤色発光のLED素子を用いるバックライトユニットを備える。これにより、液晶表示装置が表示装置用基板1を備える場合であってもカラー表示可能である。
 表示装置用基板1を備える有機EL表示装置は、例えば、アクティブ素子の配列と青色発光、緑色発光、赤色発光の有機EL素子とを備えるアレイ基板と、表示装置用基板1とを備えることで、カラー表示可能である。
 以下に、ブラックマトリクスBMの製造方法について説明する。
 図5は、本実施形態に係るブラックマトリクスBMの製造方法の一例を示すフローチャートである。本実施形態に係るブラックマトリクスBMの製造方法に含まれる露光工程は、ブラックマトリクスBMのネガパターン(ブラックマトリクスが形成される部分が透明)を持つフォトマスク1枚を用いて露光される。本実施形態に係るブラックマトリクスBMの製造方法は、露光工程の前に、図5に示されるように、少なくとも反射率低減層をプレ露光又は予備加熱などによって半硬化とする工程を含む。
 本実施形態に係るブラックマトリクスBMの製造方法は、具体的には、反射率低減層4(第一層)を塗布する工程(ステップST1)、反射率低減層4を半硬化とする工程(ステップST2)、遮光層5(第二層)を塗布する工程(ステップST3)、反射率低減層4と遮光層5とを乾燥する工程(ステップST4)、1枚のフォトマスクを用いて、反射率低減層4と遮光層5とを露光する工程(ステップST5)、反射率低減層4と遮光層5とを一括して現像し、反射率低減層4上に遮光層5が積層されたブラックマトリクスBMのパターンを形成する工程(ステップST6)、反射率低減層4と遮光層5とを硬膜し、ブラックマトリクスBMを形成する工程(ステップST7)、を含む。
 なお、「反射率低減層4を半硬化させる」とは、ステップST6の現像工程で、反射率低減層4と遮光層5とを一括して現像できること、及び、現像後に形状不良及び残渣が生じない程度に熱線又は光を反射低減層4に照射することを意味する。例えば、プレ露光を実施しない場合、透明基板2と遮光層5との界面に塗布形成された反射率低減層4は、この遮光層5の塗布工程で遮光層5のレイヤに溶解吸収される場合がある。このように、反射率低減層4が消失すると、結果として、ブラックマトリクスBM表面での反射率が増大する。しかしながら、反射率低減層4を遮光層5の塗布前に「半硬化」すると、ブラックマトリクスBMを低反射率化する機能が消失されない。反射率低減層4を「半硬化」とすることは、熱線、紫外線、電磁波、又は、熱伝導などによる熱を塗布後の反射率低減層4に付与する技術を適用することにより実現可能である。熱線、紫外線、電磁波、又は、熱を過剰に加えると、後の現像工程で残渣を生じる、又は、パターン形状不良を発生する場合がある。逆に、半硬化処理が不足すると、上述のように、反射率低減層4が、遮光層5塗布時に遮光層5に溶解吸収され、ブラックマトリクスBMの反射率が高くなる。
 例えば、反射率低減層4の膜厚がおよそ0.9μm以上となると、遮光層5の現像工程で残渣を生じやすくなる。加えて、反射率低減層4が厚い場合、図6に示すように、ブラックマトリクスBM表面に、好ましくないシワなどのような外観不良が生じやすい。
 図6は、ブラックマトリクスBMの製造工程で反射率低減層4の膜厚がおよそ0.9μmのブラックマトリクスBMの表面におけるシワ発生状態を、光学顕微鏡で撮影した写真の一例である。
 以上説明した本実施形態に係る表示装置用基板1,6を用いることにより、薄膜で遮光性に優れ、透明基板2を通して測定された反射率を低くすることができ、かつ、透明基板2を通して測定されたブラックマトリックスBMの反射色をニュートラルブラックとすることができる。
 本実施形態に係る表示装置用基板1,6を備えた表示装置は、画面への写り込みを少なくすることができ、一体感のあるベゼルとブラックマトリクスBMとを形成することができ、着色のないニュートラルな表示を実現することができ、優れた表示特性及び意匠性を得ることができる。
 本実施形態に係るブラックマトリクスBMは、およそ膜厚1.5μm以下の薄膜でありながら、およそ4.0以上の高い光学濃度とおよそ0.3%以下の低い反射率とを、両立させることができる。
 更に、ガラスと反射率低減層との界面における反射率低減層のカーボン濃度が低く、反射率低減層の膜厚も薄いため、次のような効果も得られる。
(1)透明基板上におけるカーボンなどの色材の残渣を減少させることができる。
(2)より細いパターンを有するブラックマトリクスの形成の再現性を向上させることができる。
(3)所望のブラックマトリクスのパターン形状が得られ、剥がれを抑制することができる。
 以下の説明において、反射率低減層4の実効の光学濃度は、例えば、OD0(=実効の光学濃度ゼロ)、ODa0.35(=実効の光学濃度0.35)などと表記する。単位膜厚あたりの光学濃度ODは、[/μm]のような単位を付記する(1μmあたりの光学濃度)。なお、実効の光学濃度は、単位膜厚あたりの光学濃度に、反射率低減層4の膜厚を掛けることにより算出可能である。遮光層5の実効の光学濃度は、ODbと表記する。
[反射率低減部材Aの調整](透明樹脂、OD0/μm)
 およそ20.35gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分56.1%)に対し、およそ0.24gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.24gの光重合開始剤(ADEKA社製「NCI-831」)、およそ77.07gのプロピレングリコールモノメチルエーテルアセテート77.07gを加え、よく攪拌し、およそ100gの反射率低減部材(固形分およそ14.0%、光学濃度およそ0.0/μm)が作製される。
[反射率低減部材Bの調整](OD0.5/μm)
 およそ18.42gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分56.1%)に対し、およそ2.18gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.23gの光重合開始剤(ADEKA社製「NCI-831」)、およそ4.85gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ74.33gのプロピレングリコールモノメチルエーテルアセテート74.33gを加え、よく攪拌し、およそ100gの反射率低減部材B(固形分およそ14.0%、カーボンブラック顔料濃度およそ6.75質量%、光学濃度およそ0.5/μm)が作製される。
[反射率低減部材Cの調整](OD1.0/μm)
 およそ16.48gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分およそ56.1%)に対し、およそ2.02gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.21gの光重合開始剤(ADEKA社製「NCI-831」)、およそ9.69gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ71.59gのプロピレングリコールモノメチルエーテルアセテートを加え、よく攪拌し、およそ100gの反射率低減部材C(固形分およそ14.0%、カーボンブラック顔料濃度およそ13.5質量%、光学濃度およそ1.0/μm)が作製される。
[反射率低減部材Dの調整](OD1.7/μm)
 およそ11.55gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分56.1%)に対し、およそ2.38gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.84gの光重合開始剤(ADEKA社製「NCI-831」)、およそ16.51gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ68.71gのプロピレングリコールモノメチルエーテルアセテートを加え、よく攪拌し、およそ100gの反射率低減部材D(固形分およそ14.0%、カーボンブラック顔料濃度およそ23質量%、光学濃度およそ1.7/μm)が作製される。
[反射率低減部材Hの調整](OD1.0/μm)
 およそ14.49gのアクリル樹脂のプロピレングリコールモノメチルエーテルアセテート溶液(固形分20.0%)に対し、およそ3.48gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(東亞合成社製「M402」)、およそ1.74gの光重合開始剤(BASFジャパン社製「IRGACURE 379」)、およそ21.61gのC.I.ピグメントレッド254のプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ20.0%、固形分中の顔料濃度およそ70.0重量%)、およそ21.61gのC.I.ピグメントブルー15:6のプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ20.0%、固形分中の顔料濃度およそ70.0重量%)、及びおよそ37.07gのプロピレングリコールモノメチルエーテルアセテートを加える。この混合物をよく攪拌し、およそ100gの反射率低減部材H(固形分およそ22.0%、レッド顔料濃度およそ13.75質量%、ブルー顔料濃度およそ13.75質量%、光学濃度およそ1.0/μm)が作製される。
[遮光部材Eの調整](OD3.8/μm)
 およそ4.07gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分およそ56.1%)に対し、およそ1.49gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.53gの光重合開始剤(ADEKA社製「NCI-831」)、およそ37.33gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ56.59gのプロピレングリコールモノメチルエーテルアセテートを加え、よく攪拌し、およそ100gの遮光部材E(固形分およそ14.0%、カーボンブラック顔料濃度およそ52質量%、光学濃度およそ3.8/μm)が作製される。
[遮光部材Fの調整](OD4.0/μm)
 およそ3.55gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分およそ56.1%)に対し、およそ1.42gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.50gの光重合開始剤(ADEKA社製「NCI-831」)、およそ38.77gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ56.59gのプロピレングリコールモノメチルエーテルアセテートを加え、よく攪拌し、およそ100gの遮光部材F(固形分およそ14.0%、カーボンブラック顔料濃度およそ54質量%、光学濃度およそ4.0/μm)が作製される。
[遮光部材Gの調整](OD4.2/μm)
 およそ2.90gのビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分およそ56.1%)に対し、およそ1.35gのジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)、およそ0.48gの光重合開始剤(ADEKA社製「NCI-831」)、およそ40.56gのカーボンブラックのプロピレングリコールモノメチルエーテルアセテート分散液(固形分およそ26.0%、固形分中の顔料濃度およそ75.0質量%)、およそ54.71gのプロピレングリコールモノメチルエーテルアセテートを加え、よく攪拌し、およそ100gの遮光部材G(固形分およそ14.0%、カーボンブラック顔料濃度およそ56.5質量%、光学濃度およそ4.2/μm)が作製される。
[実施例1]
 ガラス基板(コーニング社製「EAGLE XG」)の上に、スピンコート法により反射率低減部材Bが塗布形成される。乾燥後、作製対象基板は、およそ90℃のホットプレートでおよそ1分間プレベークされる。このとき、反射率低減部材Bのプレベーク後の膜厚がおよそ0.5μmになるように、コート時の回転数が調整される。次に、超高圧水銀ランプ(照度26mW/cm)を用いて反射率低減層4の塗膜全体に紫外光がおよそ40mJ/cmで照射され、プレ露光される。プレ露光は、反射率低減層4を「半硬化」とする技術に相当する。続いて、反射率低減層4の上に、スピンコート法により遮光部材Eの塗膜が形成される。このとき、硬膜後に得られるブラックマトリックスBMの光学濃度がおよそ4.5となるように膜厚が調整される。さらに、作製対象基板は、およそ90℃のホットプレートで30秒間プレベークされる。次に、ブラックマトリクスのパターンを持つフォトマスクを介し、超高圧水銀ランプ(照度およそ26mW/cm)を用いて反射率低減層4と遮光層5とを含む2層の膜に、紫外光がおよそ100mJ/cmで照射される。続いて、作製対象基板は、およそ2.5質量%の炭酸ナトリウム水溶液で現像され、およそ230℃のクリーンオーブンで20分間ベークすることで硬膜され、反射率低減層4と遮光層5との膜厚がおよそ1.1μmのブラックマトリックスBMが形成される。
 上述の図1に示すように、このブラックマトリクスBMのパターンを覆うように、熱硬化性のアクリル樹脂がおよそ膜厚1μmで塗布され、アクリル樹脂が硬膜され、オーバーコート層3が形成され、表示装置用基板1が作製される。ガラスである透明基板2を通して測定されたブラックマトリクスBMの反射率は、顕微分光の測定装置を用い、光の波長およそ550nmで、およそ0.15%となる。オーバーコート層3の膜厚は変更可能である。
[実施例2]
 実施例2では、反射率低減部材Aを用い、膜厚およそ0.3μmで、反射率低減層4が塗布形成される。上記の実施例1と同様に、反射率低減層4の塗膜全体に紫外光が、およそ40mJ/cmで照射され、プレ露光される。続いて、反射率低減層4の上に、スピンコート法により遮光部材Eが塗膜され、遮光層5が形成される。以下、上記の実施例1と同様に、フォトマスクを用いた露光、現像、硬膜が行われ、ブラックマトリクスBMが形成される。ブラックマトリクスBMのパターンを覆うように、熱硬化性のアクリル樹脂が膜厚およそ1μmで塗布され、硬膜され、オーバーコート層3が形成され、表示装置用基板1が作製される。
 ガラスである透明基板2を通して測定されたブラックマトリクスBMの反射率は、顕微分光の測定装置を用い、光の波長およそ550nmで、およそ0.22%となる。
[実施例3]
 実施例3では、反射率低減部材Bを用い、膜厚およそ0.3μmで、反射率低減層4が塗布形成される。上記の実施例1と同様に、反射率低減層4の塗膜全体に紫外光が、およそ40mJ/cmで照射され、プレ露光される。続いて、反射率低減層4の上に、スピンコート法により遮光部材Eが塗膜され、硬膜後に膜厚およそ1.1μmになるように遮光層5が形成される。以下、上記の実施例1と同様に、フォトマスクを用いた露光、現像、硬膜が行われ、ブラックマトリクスBMが形成される。ブラックマトリクスBMのパターンを覆うように、熱硬化性のアクリル樹脂が膜厚およそ1μmで塗布され、硬膜され、オーバーコート層3が形成され、表示装置用基板1が作製される。
 ガラスである透明基板2を通して測定されたブラックマトリクスBMの反射率は、顕微分光の測定装置を用い、光の波長およそ550nmで、およそ0.29%となる。
[実施例4~7]
 実施例4~7では、下記の表1に示すように、それぞれ反射率低減部材A、B、C、Hを用い、膜厚およそ0.7μm、又は、膜厚およそ0.4μmで、反射率低減層4が塗布形成される。上記の実施例1と同様に、反射率低減層4の塗膜全体に紫外光が、およそ40mJ/cmで照射され、プレ露光される。続いて、反射率低減層4の上に、スピンコート法により、遮光部材Eが塗膜され、硬膜後に膜厚およそ1.1μmになるように遮光層5が形成される。以下、上記の実施例1と同様に、フォトマスクを用いた露光、現像、硬膜が行われ、ブラックマトリクスBMが形成される。ブラックマトリクスBMのパターンを覆うように、熱硬化性のアクリル樹脂が膜厚およそ1μmで塗布され、硬膜され、オーバーコート層3が形成され、表示装置用基板1が作製される。
 ガラスである透明基板2を通して測定されたブラックマトリクスBMの反射率は、顕微分光光度計である測定装置を用い、光の波長およそ550nmで、実施例4ではおよそ0.18%、実施例5ではおよそ0.14%、実施例6ではおよそ0.30%となる。
[実施例1~7と比較例1~6の説明]
 表1及び表2は、上記実施形態に係る表示装置用基板1の実施例1~7と、他の表示装置用基板である比較例1~6との対比を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表3は、上記の実施例1~3のブラックマトリクスBMの、透明基板2を通して測定されたCIE Lab色空間表示系での色度a*、b*の値を示す。
Figure JPOXMLDOC01-appb-T000003
 2層のブラックマトリクスBMの色度は、a*、b*の値で、およそ±1.0の小さな範囲に含まれ、色づきのないニュートラル色であることが実証されている。
 表4は、実施例1~実施例7のそれぞれについて、光の波長およそ430nm、540nm、620nmで、ブラックマトリクスBMの透明基板2を通して測定された反射率を示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~6の上記の光波長の測定点において、反射率は、およそ0.05以上、0.3%以下の範囲内に含まれる。したがって、表示装置用基板1のブラックマトリクスBMがほぼニュートラルな反射特性を持つことが確認できる。
 以下に、比較例1~6の説明を行う。
 比較例1~4については、上記の表2に示されるように、比較的カーボン濃度の高い反射率低減部材C又は反射率低減部材Dが用いられる。また、比較例1の遮光層は、遮光部材Fを用いて形成される。形成工程は、上記の実施例1と同様に、反射率低減層の塗布工程の後、プレ露光が実施される。
 これらの比較例1~4では、反射率低減層に含有されるカーボン濃度が高く、実効の光学濃度ODaがいずれもおよそ0.5以上と高いため、ブラックマトリクスの反射率が高くなる。上記の表2に示されるように、比較例1~4では、ブラックマトリクスの反射率が、およそ0.4%を超え、表示装置の視認性が低下する。
[比較例5]
 比較例5は、上記の実施例1~6、比較例1~4と反射率低減層の硬化条件が異なる。
 比較例5での反射率低減層は、予め230℃の硬膜処理を行って単層で形成される。
 比較例5では、反射率低減部材Cを用い、およそ0.5μmの塗布膜厚になるように透明基板2上に反射率低減膜が塗布形成される。反射率低減膜の計算上の光学濃度ODaはおよそ0.5である。さらに、反射率低減膜を乾燥後、230℃の硬膜処理を行って、反射率低減層が形成される。この反射率低減層の上に、遮光部材Eを用いて光学濃度ODb4.18となる遮光層が積層され、乾燥及び露光、現像、硬膜処理を行ってブラックマトリクスのパターンが形成される。
 比較例5のブラックマトリクスの反射率を、透明基板2を通じて測定したところ、光の波長540nmで0.58と高い反射率となった。加えて、このブラックマトリクスを透明基板2の表示面を目視観察したところ、干渉色と思われる著しい色ムラが観察され、好ましい結果が得られなかった。
[比較例6]
 比較例6は、上記の実施例1~6、比較例1~5と異なり、反射率低減層の半硬化処理を省略し、反射率低減層の塗布後、乾燥のみを行って、直接、反射率低減層の上に遮光層を積層する製造方法を用いている。
 比較例6では、反射率低減部材Cが、およそ0.4μmの塗布膜厚になるように、透明基板2の上に塗布される。計算上の光学濃度ODaは、およそ0.4である。この反射率低減層の塗布、乾燥後、遮光部材Eの光学濃度ODbがおよそ4.18となるように、遮光部材Eが塗布される。さらに、乾燥、露光、現像、硬膜処理が実行され、ブラックマトリクスがパターン形成される。
 このブラックマトリクスを顕微分光光度計で反射率測定すると、光の波長およそ550nmで、およそ2.0%の極めて高い反射率となる。このブラックマトリクスを透明基板2の表示面を通じて目視観察したところ、比較例5で観察された色ムラは生じていなかった。
 比較例6の結果は、反射率低減層の半硬化処理を省くと、この反射率低減層が遮光層に溶解吸収され、ブラックマトリクスの反射率は、カーボン濃度の高い遮光層についての反射率となる。
[半硬化処理の条件]
 反射率低減層4の半硬化処理は、上述したように、ホットプレート又は赤外乾燥装置などの熱処理で実現される。しかしながら、紫外線などの電磁波を用いることで、短時間での半硬化処理を実施することができる。光源を用いた半硬化処理(プレ露光)を以下に例示する。
 例えば荷スプレーコート、スピンコート、スリットコート、ロールコートなどのような塗布方法を用いて、反射率低減部材が、透明基板2上に、塗布され、反射率低減層4の塗膜が形成される。
 反射率低減層4の塗膜は、例えば減圧乾燥又はプレベーク処理などにより塗膜中の残留溶剤を除去された後、塗膜全面を均一に露光する。露光光源としては、例えば、超高圧水銀灯、キセノン灯、カーボンアーク灯などのような従来公知の光源が用いられる。この際の露光量としては、例えば、現像処理により膜減りしなくなる露光量(以下「飽和露光量」という)を100%とした場合の、およそ15~40%程度の露光量とする。
 飽和露光量のおよそ15%以下の露光量で露光が行われた場合には、遮光部材の塗布により、反射率低減層の塗膜が遮光部材に含まれる溶剤により溶け出し、混ざり合い、透明基板と界面を形成する部分のカーボン濃度が高くなり、この結果、ブラックマトリクスの反射率が高くなる。飽和露光量のおよそ40%以上の露光量で露光が行われた場合には、反射率低減膜の硬化が進み過ぎ、現像処理の際に、反射率低減膜が、十分に溶解されず、透明基板の上に残り、この結果、残渣が生じる場合がある。
 図7は、実施例1、実施例3、実施例5における塗布条件でのプレ露光量と、ブラックマトリクスBMの反射率との関係を示すグラフである。
 プレ露光量がおよそ20mJ/cm以下では、反射率が高くなる傾向があり、プレ露光量がおよそ80mJ/cm以上では、残渣を生じる傾向があり、好ましくない。しかしながら、プレ露光量が、例えば、およそ40mJ/cm以上、60mJ/cm以下の辺りでは、安定して、低反射率のブラックマトリクスBMを形成することができる。
 なお、本発明は図7の半硬化処理条件及び露光手法に限定されないが、半硬化処理条件に適当な範囲が存在することが理解できる。
 図8は、カラーフィルタを構成する青フィルタBF、緑フィルタGF、及び赤フィルタRFの消衰係数のデータを示す測定結果である。図8における測定においては、分光エリプソメータを用いて、光の波長ごとにフィルタの消衰係数を測定した。光の波長によって、青フィルタBF、緑フィルタGF、及び赤フィルタRFのそれぞれの色は、異なる消衰係数の値を有している。例えば、ガラスとブラックマトリクスとの界面に、青フィルタBF、緑フィルタGF、及び赤フィルタRFのうちいずれかが挿入された構成においては、図8に示すように、反射光が着色されることが理解できる。
[表示装置用基板1,6に適用可能な材料]
(感光性樹脂組成物)
 ブラックマトリックスBMは、光学濃度の異なる2種の感光性樹脂組成物を用いて形成される。上記のように、光学濃度が低い感光性樹脂組成物を「反射率低減部材」、光学濃度が高い感光性樹脂組成物を「遮光部材」とする。反射率低減部材及び遮光部材は共に少なくとも樹脂、重合性モノマー、光重合開始剤、溶剤を含有する感光性樹脂組成物であって、これらに加え、遮光部材にはブラックマトリックスの膜厚およそ1μmで、光学濃度がおよそ2.5以上となる範囲で黒色顔料が添加される。
(樹脂)
 樹脂としては、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレートなどのアルキルアクリレートまたはアルキルメタクリレート、環状のシクロヘキシルアクリレートまたはメタクリレート、ヒドロキシエチルアクリレートまたはメタクリレート、スチレンなどの内から3~5種類程度のモノマーを用いて合成した、分子量5000~100000程度の樹脂が、好ましくは用いられる。
 また、アクリル系樹脂の一部に不飽和二重結合を付加させた樹脂として、上記のアクリル樹脂、イソシアネート基と少なくとも1個以上のビニル基を有するイソシアネートエチルアクリレート、メタクリロイルイソシアネートなどの化合物を反応させて得られる、酸価50~150の感光性共重合体が、耐熱性、現像性などの点から好ましく使用できる。
 また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリカルボン酸グリシジルエステル、ポリオールポリグリシジルエステル、脂肪族又は脂環式エポキシ樹脂、アミンエポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂などのエポキシ樹脂と(メタ)アクリル酸を反応させて得られるエポキシ(メタ)アクリレートなどの通常の光重合可能な樹脂など又はカルド樹脂も使用できる。
(重合性モノマー)
 光重合性モノマーとしては、例えば、エチレングリコール(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンテトラ(メタ)アクリレート、テトラトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが用いられ、これらの成分は単独又は混合物として使用される。また、光重合性モノマーとして、各種変性(メタ)アクリレート、ウレタン(メタ)アクリレートなどが用いられてもよい。例えば、光重合性モノマーとして、二重結合当量が小さく高感度化が達成できるペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが好適に用いられる。
 光重合性モノマーの含有量としては、感光性樹脂組成物の固形分中およそ5~20重量%であることが好ましく、より好ましくはおよそ10~15重量%の範囲である。光重合性モノマーの含有量がこの範囲である場合、感光性樹脂組成物の感度、現像速度を生産上好適な水準に調整することができる。光重合性モノマーの含有量がおよそ5重量%以下の場合、黒色感光性樹脂組成物の感度が不足する。
(光重合開始剤)
 光重合開始剤としては、従来公知の化合物を適宜使用することができるが、光を透過しない黒色感光性樹脂組成物に用いられた場合に高感度化を達成可能なオキシムエステル化合物が用いられることが好ましい。
 オキシムエステル系化合物の具体例としては、例えば、2-(O-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン、1-(O-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン(共にBASFジャパン社製)などが用いられる。
 光重合開始剤の含有量は、感光性樹脂組成物の固形分中0.5~10.0重量%であることが好ましく、より好ましくはおよそ1.0~5.0重量%の範囲である。光重合開始剤の含有量がおよそ1重量%以下の場合、感光性樹脂組成物の感度が不足する。一方、光重合開始剤の含有量がおよそ10重量%以上の場合、ブラックマトリックスのパターン線幅が太りすぎる。
 本発明の実施形態に用いられる感光性樹脂組成物には、上記の光重合開始剤と共に、他の光重合開始剤を併用することができる。他の光重合開始剤としては、例えば、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オンなどのアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタールなどのベンゾイン系化合物、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン系化合物、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジエチルチオキサントンなどのチオキサントン系化合物、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジンなどのトリアジン系化合物、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドなどのホスフィン系化合物、9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノンなどのキノン系化合物、ボレート系化合物、カルバゾール系化合物、イミダゾール系化合物、チタノセン系化合物などが用いられる。これらの光重合開始剤は1種または必要に応じて任意の比率で2種以上混合して用いることができる。他の光重合開始剤の含有量は、前記感光性樹脂組成物の固形分中0.1~1重量%であることが好ましく、より好ましくは0.2~0.5重量%の範囲である。
(溶剤)
 溶剤としては、例えば、メタノール、エタノール、エチルセロソルブ、エチルセロソルブアセテート、ジグライム、シクロヘキサノン、エチルベンゼン、キシレン、酢酸イソアミル、酢酸nアミル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルアセテート、液体ポリエチレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテルアセテート、乳酸エステル、エチルエトキシプロピオネートなどが用いられる。
(黒色色材)
 本発明の実施形態に用いられる黒色色材としては、例えば、カーボンブラック(本発明の実施形態ではカーボンとも表記)が好ましい。カーボンブラックとしては、例えば、ランプブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、ファーネスブラックなどが用いられる。
(有機顔料)
 赤色画素の形成に用いる赤色顔料としては、例えば、C.I.Pigment Red7、9、14、41、48:1、48:2、48:3、48:4、81:1、81:2、81:3、97、122、123、146、149、168、177、178、179、180、184、185、187、192、200、202、208、210、215、216、217、220、223、224、226、227、228、240、246、254、255、264、272、279などが用いられる。また、赤色画素の色相を調整するために黄色顔料、橙色顔料を併用することも可能である。
 黄色顔料としては、例えば、C.I.Pigment Yellow 1、2、3、4、5、6、10、12、13、14、15、16、17、18、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、86、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、125、126、127、128、129、137、138、139、144、146、147、148、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、199、213、214などが用いられる。
 橙色顔料としては、例えば、C.I.Pigment Orange 36、43、51、55、59、61、71、73などが用いられる。
 緑色画素を形成するための緑色顔料としては、例えば、C.I.Pigment Green 7、10、36、37、58などが用いられる。緑色画素の色相を調整するために黄色顔料が併用されてもよい。黄色顔料としては、赤色画素の色相を調整するために併用可能な黄色顔料として例示された顔料が適宜用いられてもよい。
 青色画素を形成するための青色顔料には、例えば、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、16、22、60、64などが用いられる。青色画素の色相を調整するために紫色顔料が併用されてもよい。紫色顔料の具体例としては、C.I.ピグメントバイオレット1、19、23、27、29、30、32、37、40、42、50などが用いられる。
 上記の実施形態及び各実施例は、発明の趣旨が変わらない範囲で様々に変更して適用することができる。上記の実施形態及び各実施例は、自由に組み合わせて用いることができる。
 1,6…表示装置用基板,2,12…透明基板、3…オーバーコート層、BM…ブラックマトリクス、4…反射率低減層、5…遮光層、CF…カラーフィルタ、RF…赤フィルタ、GF…青フィルタ、BF…青フィルタ、7…液晶表示装置、8…液晶パネル、9…アレイ基板、10…液晶層、11,17…配向膜、13a~13c…絶縁層、14…金属配線、15…共通電極、16…画素電極。
 
 

Claims (11)

  1.  透明基板と、
     前記透明基板の上に、およそ0.1μm以上、0.7μm以下の範囲の膜厚を有する反射率低減層と、遮光性色材の主材としてカーボンを含む遮光層とがこの順で積層して形成されたブラックマトリクスと、
     を具備し、
     前記膜厚と単位膜厚あたりの光学濃度とを掛け算して得られる前記反射率低減層の実効的な光学濃度は、およそ0以上、0.4以下の範囲にあり、
     前記透明基板を通して測定された前記ブラックマトリクスの反射率は、アルミニウム膜の反射率を基準として、およそ0.05%以上、0.3%以下の範囲にある表示装置用基板。
  2.  前記透明基板を通して測定された前記ブラックマトリクスの反射率は、光の波長のそれぞれがおよそ430nm、540nm、620nmである場合で、およそ0.05%以上、0.3%以下の範囲にある請求項1に記載の表示装置用基板。
  3.  前記反射率低減層は、透明樹脂層である請求項1又は請求項2に記載の表示装置用基板。
  4.  前記反射率低減層は、少なくともカーボンを含む半透明樹脂層である請求項1又は請求項2に記載の表示装置用基板。
  5.  前記反射率低減層は、少なくとも減法混色の関係にある2種以上の有機顔料を含む半透明樹脂層である請求項1又は請求項2に記載の表示装置用基板。
  6.  前記ブラックマトリクスは、複数の画素開口部を有し、
     前記画素開口部のそれぞれに、青フィルタ、緑フィルタ、赤フィルタの画素パターンが配設されている請求項1から請求項5のいずれか一項に記載の表示装置用基板。
  7.  透明基板上に、反射率低減層となる第一層を塗布し、
     前記第一層を半硬化させ、
     前記第一層上に、遮光層となる第二層を塗布し、
     一つのフォトマスクを用いて、前記第一層及び前記第二層を一括して露光し、
     1回の現像によって、前記透明基板上に形成された前記第一層及び前記第二層から、前記反射率低減層上に前記遮光層が積層されたブラックマトリクスを形成する表示装置用基板の製造方法。
  8.  前記反射率低減層は、前記透明樹脂層、又は、前記半透明樹脂層である請求項7に記載の表示装置用基板の製造方法。
  9.  前記半透明樹脂層は、カーボンを含む請求項8に記載の表示装置用基板の製造方法。
  10.  前記反射率低減層は、少なくとも減法混色の関係にある2種以上の有機顔料を含む半透明樹脂層である請求項7に記載の表示装置用基板の製造方法。
  11.  請求項1から請求項6のいずれか一項に記載の表示装置用基板を備える表示装置。
     
PCT/JP2013/074541 2013-04-30 2013-09-11 表示装置用基板、表示装置用基板の製造方法、及び表示装置 WO2014178149A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157031298A KR102034073B1 (ko) 2013-04-30 2013-09-11 표시 장치용 기판, 표시 장치용 기판의 제조 방법 및 표시 장치
JP2013556918A JP5704262B1 (ja) 2013-04-30 2013-09-11 表示装置用基板、表示装置用基板の製造方法、及び表示装置
CN201380076129.4A CN105164558B (zh) 2013-04-30 2013-09-11 显示装置用基板、显示装置用基板的制造方法及显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095722 2013-04-30
JP2013095722 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178149A1 true WO2014178149A1 (ja) 2014-11-06

Family

ID=51843298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074541 WO2014178149A1 (ja) 2013-04-30 2013-09-11 表示装置用基板、表示装置用基板の製造方法、及び表示装置

Country Status (5)

Country Link
JP (1) JP5704262B1 (ja)
KR (1) KR102034073B1 (ja)
CN (1) CN105164558B (ja)
TW (1) TWI518354B (ja)
WO (1) WO2014178149A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698521A (zh) * 2015-03-03 2015-06-10 昆山龙腾光电有限公司 彩色滤光片及其制作方法及液晶显示装置
JP2019153389A (ja) * 2018-02-28 2019-09-12 東洋インキScホールディングス株式会社 有機el表示装置
KR20200074039A (ko) 2018-12-14 2020-06-24 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 표시 장치용 기판 및 그 제조 방법, 및 그들에 사용하는 반사 방지층용 수지 조성물 용액
TWI709818B (zh) * 2015-10-16 2020-11-11 日商日鐵化學材料股份有限公司 具有間隔件功能的遮光膜用的感光性樹脂組成物、遮光膜、液晶顯示裝置、具有間隔件功能的遮光膜用的感光性樹脂組成物的製造方法、遮光膜的製造方法以及液晶顯示裝置的製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204223B (zh) * 2015-10-30 2019-05-03 京东方科技集团股份有限公司 一种基板的制作方法、基板和显示装置
CN105242450B (zh) * 2015-11-16 2019-02-12 信利半导体有限公司 一种滤色片基板及其制造方法
US10770293B2 (en) * 2017-08-29 2020-09-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a semiconductor device
CN107422412A (zh) * 2017-09-28 2017-12-01 重庆秉为科技有限公司 关于制备反射式偏振片的方法
WO2020115837A1 (ja) * 2018-12-05 2020-06-11 凸版印刷株式会社 ブラックマトリクス基板、及びブラックマトリクス基板を備えた表示装置
CN109471294A (zh) * 2018-12-15 2019-03-15 深圳市华星光电半导体显示技术有限公司 一种黑色矩阵的制备方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146410A (ja) * 1994-11-17 1996-06-07 Dainippon Printing Co Ltd ブラックマトリックス基板およびこれを用いたカラーフィルタ
JP2006011180A (ja) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd 遮光画像付き基板及び遮光画像の製造方法、感光性樹脂組成物、転写材料、カラーフィルター、並びに表示装置
JP2006154849A (ja) * 1997-02-13 2006-06-15 Toppan Printing Co Ltd カラーフィルタ
JP2009205029A (ja) * 2008-02-29 2009-09-10 Dainippon Printing Co Ltd 近赤外線吸収材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376156B1 (ko) 1994-06-21 2003-11-01 도레이 가부시끼가이샤 액정표시소자용수지블랙매트릭스
JP3692601B2 (ja) * 1996-03-27 2005-09-07 東レ株式会社 樹脂ブラックマトリックス、黒色ペースト、およびカラーフィルタ
JPH10301499A (ja) 1997-04-22 1998-11-13 Ulvac Seimaku Kk ブランクス又はブラックマトリクス及びこれらの製造方法
JP2005075965A (ja) 2003-09-02 2005-03-24 Toray Ind Inc 黒色被膜組成物、樹脂ブラックマトリクス、カラーフィルターおよび液晶表示装置
JP5166513B2 (ja) * 2007-07-25 2013-03-21 株式会社日本触媒 遮光性フィルム
US8687153B2 (en) 2008-12-19 2014-04-01 Sharp Kabushiki Kaisha Substrate, and display panel provided with substrate
JP2010144146A (ja) * 2008-12-22 2010-07-01 Nippon Shokubai Co Ltd 遮光層形成用樹脂組成物、遮光性フィルム及びレンズユニット
JP5531702B2 (ja) * 2010-03-23 2014-06-25 旭硝子株式会社 遮光膜付ガラス基板および液晶表示装置
JP2011227467A (ja) 2010-03-31 2011-11-10 Toray Ind Inc 感光性黒色樹脂組成物、樹脂ブラックマトリクス基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146410A (ja) * 1994-11-17 1996-06-07 Dainippon Printing Co Ltd ブラックマトリックス基板およびこれを用いたカラーフィルタ
JP2006154849A (ja) * 1997-02-13 2006-06-15 Toppan Printing Co Ltd カラーフィルタ
JP2006011180A (ja) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd 遮光画像付き基板及び遮光画像の製造方法、感光性樹脂組成物、転写材料、カラーフィルター、並びに表示装置
JP2009205029A (ja) * 2008-02-29 2009-09-10 Dainippon Printing Co Ltd 近赤外線吸収材

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698521A (zh) * 2015-03-03 2015-06-10 昆山龙腾光电有限公司 彩色滤光片及其制作方法及液晶显示装置
TWI709818B (zh) * 2015-10-16 2020-11-11 日商日鐵化學材料股份有限公司 具有間隔件功能的遮光膜用的感光性樹脂組成物、遮光膜、液晶顯示裝置、具有間隔件功能的遮光膜用的感光性樹脂組成物的製造方法、遮光膜的製造方法以及液晶顯示裝置的製造方法
JP2019153389A (ja) * 2018-02-28 2019-09-12 東洋インキScホールディングス株式会社 有機el表示装置
JP2022164709A (ja) * 2018-02-28 2022-10-27 東洋インキScホールディングス株式会社 有機el表示装置
JP7163037B2 (ja) 2018-02-28 2022-10-31 東洋インキScホールディングス株式会社 有機el表示装置
JP7382466B2 (ja) 2018-02-28 2023-11-16 東洋インキScホールディングス株式会社 有機el表示装置
KR20200074039A (ko) 2018-12-14 2020-06-24 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 표시 장치용 기판 및 그 제조 방법, 및 그들에 사용하는 반사 방지층용 수지 조성물 용액

Also Published As

Publication number Publication date
JP5704262B1 (ja) 2015-04-22
TW201441648A (zh) 2014-11-01
TWI518354B (zh) 2016-01-21
CN105164558B (zh) 2017-08-29
KR20160002870A (ko) 2016-01-08
KR102034073B1 (ko) 2019-10-18
JPWO2014178149A1 (ja) 2017-02-23
CN105164558A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5704262B1 (ja) 表示装置用基板、表示装置用基板の製造方法、及び表示装置
KR101501791B1 (ko) 액정 표시 장치 및 액정 표시 장치용 컬러 필터
KR101385911B1 (ko) 반투과형 액정 표시 장치용 컬러 필터 기판, 그 제조 방법 및 반투과형 액정 표시 장치
TWI463198B (zh) 遲滯基板、其製法及液晶顯示裝置
JP2015108649A (ja) 青色感光性組成物およびカラーフィルタ基板
JP2014119640A (ja) 黒色感光性樹脂組成物、ブラックマトリックス基板、カラーフィルタ及び液晶表示装置
JP2015200774A (ja) カラーフィルタ基板並びに液晶表示装置
JP2011158537A (ja) カラーフィルタ基板、並びにその製造に用いる感光性着色組成物
JP2014215589A (ja) ブラックマトリックス基板、カラーフィルタ基板及び液晶表示装置
TWI518429B (zh) A liquid crystal display device, and a substrate for a display device
JP2009251000A (ja) カラーフィルタおよびこれを用いた半透過型液晶表示装置
JP2009210871A (ja) 着色塗布液組成物、カラーフィルタ、および液晶表示装置
JP6405670B2 (ja) カラーフィルタ基板及び液晶表示装置
JP2010160345A (ja) カラーフィルタ、カラーフィルタの製造方法、カラーフィルタの設計方法、および表示装置
WO2021227621A1 (zh) 显示面板及其制备方法、显示装置
JP2015099313A (ja) 黒色感光性樹脂組成物、ブラックマトリックス、カラーフィルタ、液晶表示装置およびエレクトロルミネッセンス表示装置
JP5263472B2 (ja) 液晶表示装置
JP5655907B2 (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP6136528B2 (ja) カラーフィルタおよび液晶表示装置
JP5608983B2 (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP5671991B2 (ja) 白色発光ダイオード光源用カラーフィルタ及び表示装置
JP2015102792A (ja) 黒色感光性樹脂組成物、ブラックマトリックス基板、カラーフィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP2013097235A (ja) 感光性着色組成物及びそれを用いたカラーフィルタ基板
JP5757107B2 (ja) 白色発光ダイオード光源用カラーフィルタ及び表示装置
JP5640330B2 (ja) 着色層用感光性樹脂組成物の製造方法、カラーフィルタの製造方法および着色層用感光性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076129.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013556918

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031298

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883789

Country of ref document: EP

Kind code of ref document: A1