WO2014177063A1 - 大型电动车电源架构及其电池箱轮休排序控制方法 - Google Patents

大型电动车电源架构及其电池箱轮休排序控制方法 Download PDF

Info

Publication number
WO2014177063A1
WO2014177063A1 PCT/CN2014/076660 CN2014076660W WO2014177063A1 WO 2014177063 A1 WO2014177063 A1 WO 2014177063A1 CN 2014076660 W CN2014076660 W CN 2014076660W WO 2014177063 A1 WO2014177063 A1 WO 2014177063A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module
battery box
variable configuration
electric vehicle
Prior art date
Application number
PCT/CN2014/076660
Other languages
English (en)
French (fr)
Inventor
张新源
陈铮铮
杨安陶
Original Assignee
台湾立凯绿能移动股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾立凯绿能移动股份有限公司 filed Critical 台湾立凯绿能移动股份有限公司
Priority to CA2911036A priority Critical patent/CA2911036A1/en
Priority to JP2016510929A priority patent/JP6185150B2/ja
Priority to CN201480024716.3A priority patent/CN105324677A/zh
Priority to US14/888,376 priority patent/US20160075254A1/en
Priority to KR1020157034039A priority patent/KR101749447B1/ko
Priority to EP14791899.9A priority patent/EP2993483A4/en
Publication of WO2014177063A1 publication Critical patent/WO2014177063A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the invention relates to a large electric vehicle power supply structure and a control method thereof using a battery box rotation sorting, in particular to a real-time calculation of battery module sequencing and battery box sorting by using a computer program, and using the wheel work mode to perform dynamic power storage state.
  • Some electric vehicles use multiple sets of batteries in parallel with the power supply architecture, while the parallel architecture can operate the continuous power supply system in the event of a single battery failure.
  • the parallel architecture can operate the continuous power supply system in the event of a single battery failure.
  • some battery modules are still consumed in advance. As soon as it enters the low-voltage protection state, the current output capability of the power supply system is reduced and the endurance of the electric vehicle is significantly reduced.
  • the object of the present invention is to provide a large electric vehicle power supply structure and a battery box rotation control method thereof, which can maintain the storage state of all battery modules in a similar range by using the battery box rotation order, and increase the battery to the maximum limit. Module utilization and endurance of large electric vehicles.
  • Another object of the present invention is to provide a power supply architecture for a large electric vehicle and a battery box sorting control method thereof, which can adjust the internal series recombination function of the variable configuration tandem battery box by using the battery box rotation sorting, and respectively adjust each one
  • the discharge operation ratio of the battery module enables the battery modules to adjust the charge/discharge ratio between the battery modules by using the prioritized real-time dynamic information even when the battery modules have large differences in capacitance due to different aging conditions.
  • the total remaining power in each battery box in the power supply structure can be as close as possible, and the remaining power of each battery module in the battery box can be as close as possible; and in an ideal state, when electric When the car is returned to the factory for charging, all battery modules have the same amount of remaining power.
  • Another object of the present invention is to provide a power supply architecture for a large electric vehicle and a battery box sorting control method thereof, which can utilize the function of the internal series recombination of the battery box rotation sorting and the variable configuration tandem battery box, thereby avoiding as much as possible Any battery box is over-discharged because the internal single-cell module's discharge state is too low.
  • Another object of the present invention is to provide a large electric vehicle power supply architecture and a battery box rotation control method thereof, which utilizes the function of the series recombination to adjust the DC bus voltage to maintain the duty cycle of the power transistor of the drive motor in an optimal operating range.
  • the torque ripple is avoided, so that the motor of the electric vehicle can be more stable when the power is output at a low power, and the passenger of the electric vehicle is prevented from being uncomfortable.
  • Another object of the present invention is to provide a power supply architecture for a large electric vehicle and a method for controlling the rotation timing of the battery box.
  • the temperature protection program can prevent the battery module from being overheated from continuing to discharge, thereby affecting the driving safety and the life of the battery module.
  • an exemplary embodiment of the present invention provides a battery box rotation scheduling control method for a large electric vehicle power supply architecture, the large electric vehicle power supply architecture including a row of vehicle computers having a sorting control unit, and a plurality of parallel a variable-configuration serial battery box and a motor device, wherein the variable-configuration serial battery box further comprises a plurality of battery modules connected in series, and the battery box rotation control method comprises the following steps:
  • the computer calculates the required quantity of the battery module and the variable configuration serial battery box according to the driving demand of the motor device;
  • the driving computer performs a temperature protection program to mark the battery module whose temperature is too high as unavailable;
  • the control unit calculates a module integral of each of the battery modules to generate a battery module order in each of the variable configuration tandem battery cases; the sorting control unit according to the required quantity of the battery module and each of the variable configuration serial batteries
  • the battery module of the box is sorted and enabled in each of the variable configuration tandem battery cases
  • the battery module requires the quantity of the battery module; the
  • another exemplary embodiment of the present invention provides a battery box rotation scheduling control method for a large electric vehicle power supply architecture, the large electric vehicle power supply architecture including a plurality of variable configuration serial batteries connected in parallel
  • the variable configuration tandem battery box further includes a plurality of battery modules connected in series, wherein: a battery module sorting means is used for each of the variable configuration tandem battery cases The battery modules are sorted, and at least one battery module located at the end of the battery module sorting enters a sleep mode; a battery box sorting means, And the variable configuration serial battery box is sorted, and at least one variable configuration serial battery box located at the last position of the battery box enters a sleep mode; and a temperature protection means for The battery module whose temperature is too high is excluded from the battery module sorting means and the battery box sorting means.
  • still another exemplary embodiment of the present invention provides a large electric vehicle power supply architecture, including: a plurality of variable configuration serial battery cases, the plurality of variable configuration serial battery boxes are connected in parallel The manners are mutually connected, and respectively comprise a plurality of battery modules, wherein the battery modules are connected to each other in series; a motor device is connected to the plurality of variable configuration serial battery cases, and includes a device for driving the large a motor of the electric vehicle, and a motor driver for driving the motor; and a line computer connected to the plurality of variable configuration serial battery cases for detecting the driving demand of the motor device and calculating The battery module and the required quantity of the variable configuration serial battery box, and then performing a temperature protection program, marking the battery module with excessive temperature as being unavailable, and the driving computer further comprises a sorting control unit for Performing a battery box rotation order sorting process, which is to sort the battery modules of each of the variable configuration serial battery boxes, and enable the sorting according to the sorting
  • the battery module requires the number of battery modules
  • FIG. 1 is a schematic structural view of a power supply architecture of a large electric vehicle according to a preferred embodiment of the present invention.
  • FIG. 2 is a detailed structural diagram of a first variable configuration tandem battery case in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of a battery compartment rotation control program in accordance with a preferred embodiment of the present invention.
  • Power system 1
  • First battery box first battery module 111
  • First battery box : Positive relay: 1123 First battery box second negative relay: 1124 First battery box Third battery module: 113 First battery box Third battery string: 1131 First battery box Third battery module monitoring board: 1132 First battery box third positive pole Relay: 1133 First battery box Third negative relay: 1134 First battery box Fourth battery module: 114 First battery box Fourth battery string: 1141 First battery box Fourth battery module Monitoring board: 1142 First battery box Fourth positive relay: 1143 First battery box Fourth negative relay: 1144 Second variable configuration series battery box: 12 Second battery box monitoring board: 120
  • Second battery box First battery module 121 Second battery box Second battery module: 122 Second battery box Third battery module: 123 Second battery box Fourth battery module: 124 Third variable configuration serial battery box : 13 Third Battery Box Monitoring Board: 130
  • Third battery box First battery module 131 Third battery box Second battery module: 132 Third battery box Third battery module: 133 Third battery box Fourth battery module: 134 Fourth variable configuration serial battery box : 14 Fourth Battery Box Monitoring Board: 140
  • Fourth battery box First battery module 141 Fourth battery box Second battery module: 142 Fourth battery box Third battery module: 143 Fourth battery box Fourth battery module: 144 First battery box Power transistor: 15
  • Step S26 S26 Detailed Embodiment
  • FIG. 1 is a power structure of a large electric vehicle according to a preferred embodiment of the present invention.
  • the large electric vehicle may be an electric bus or an electric truck, but not limited thereto.
  • the power supply architecture 1 of the present embodiment includes a driving computer 10, a plurality of variable configuration serial battery cases 11-14, a plurality of power transistors 15-18, and a motor device 19, wherein the driving computer 10 further Including a sorting control unit 101, the number of variable configuration tandem battery cases is four sets of exemplary embodiments of the invention, but the number is not limited to four groups, and the number of power transistors is corresponding to the same variable group.
  • the number of state-of-the-line battery boxes are examples of the number of power transistors.
  • variable configuration tandem battery cases of this embodiment are respectively a first variable configuration serial battery box 11, a second variable configuration serial battery box 12, and a third variable configuration serial battery box. 13 and a fourth variable configuration tandem battery case 14, wherein each variable configuration serial battery box comprises a battery box monitoring board and a plurality of battery modules, in this embodiment, each variable group
  • the state tandem battery case contains four battery modules as an exemplary embodiment of the invention, but the number is not limited to four.
  • the first variable configuration serial battery box 11 includes a first battery box monitoring board 110 and four battery modules 111-114, respectively being the first battery box The first battery module 111, the first battery box second battery module 112, the first battery box third battery module 113, and the first battery box fourth battery module 114.
  • the second variable configuration serial battery box 12 the third variable configuration serial battery box 13 and the fourth variable configuration serial battery box 14 have the same
  • the second configuration of the serial battery box 11 includes a second battery box monitoring board 120 and four battery modules 121-124, respectively, a second battery box.
  • the third variable configuration serial battery box 13 includes a third battery box monitoring board 130 and four battery modules 131-134, respectively Three battery box first battery module 131, third battery box second battery module 132, third battery box third battery module 133, and third battery box fourth battery module 134; fourth variable configuration serial battery box 14
  • a fourth battery box monitoring board 140 and four battery modules 141-144 are included, which are a fourth battery box first battery module 141, a fourth battery box second battery module 142, a fourth battery box third battery module 143, and
  • the fourth battery box is a fourth battery module 144.
  • the plurality of power transistors corresponding to the number of the variable configuration tandem battery cases in this embodiment are the first battery box power transistor 15, the second battery box power transistor 16, the third battery box power transistor 17, and the fourth, respectively.
  • the state tandem battery case 14 is connected.
  • the motor unit 19 includes a motor driver 191 and a motor 192, wherein the motor driver 191 is coupled to the first battery box power transistor 15, the second battery box power transistor 16, the third battery box power transistor 17, and the fourth battery box power transistor 18. Connecting to utilize the first variable configuration tandem battery box 11, the second variable configuration tandem battery box 12, the third variable configuration tandem battery box 13, and the fourth variable configuration tandem battery box The operation of the electric drive motor 192 provided by 14.
  • FIG. 2 is a detailed structural diagram of the first variable configuration tandem battery case. Since the structure of each battery module of each variable configuration tandem battery box is the same, the battery module of the first variable configuration tandem battery case 11 is taken as an example for illustration. As shown in FIG. 2 , the structure of each battery module of each variable configuration tandem battery box is the same, the battery module of the first variable configuration tandem battery case 11 is taken as an example for illustration. As shown in FIG. 2
  • the first battery box first battery module 111 includes a first battery box first battery string 1111, a first battery box first battery module monitoring board 1112, a first battery box first positive relay 1113, and a a battery box first negative relay 1114;
  • a first battery box second battery module 112 includes a first battery box second battery string 1121, a first battery box second battery module monitoring board 1122, a first battery box second positive relay 1123 and the first battery box second negative relay 1124;
  • the first battery box third battery module 113 includes a first battery box third battery string 1131, a first battery box, a third battery module monitoring board 1132, a first battery box a three-electrode relay 1133 and a first battery box third negative relay 1134;
  • a first battery box fourth battery module 114 includes a first battery box fourth battery string 1141, a first battery box fourth battery module monitoring board 1142, a first The battery box fourth positive relay 1143 and the first battery box fourth negative relay 1144.
  • each battery module monitoring board transmits the state of charge (SOC), battery state information (State of Health, S0H) and battery temperature information of the battery module to the driving through each battery box monitoring board.
  • the computer 10 is configured for the sorting control unit 101 to perform a battery module sorting and a battery box sorting by using a battery module sorting means and a battery box sorting means.
  • the power supply loops of the variable configuration series battery boxes are respectively connected to each other by a corresponding power transistor to form a power structure of four sets of variable configuration series battery boxes in parallel.
  • Supply to the motor driver 192 wherein the first battery box power transistor 15, the second battery box power transistor 16, the third battery box power transistor 17, and the fourth battery box power transistor 18 are respectively connected to the first variable configuration series battery Box 11, number
  • the second variable configuration tandem battery case 12, the third variable configuration serial battery case 13 and the fourth variable configuration serial battery case 14 are connected in series
  • the first battery box power transistor 15 and the series connected in series A variable configuration tandem battery compartment 11, a second battery compartment power transistor 16 and a second variable configuration tandem battery compartment 12, a third battery compartment power transistor 17 and a third variable configuration tandem battery compartment 13
  • the fourth battery box power transistor 18 and the fourth variable configuration serial battery box 14 are connected in parallel between the driving computer 10 and the motor device 19.
  • the battery modules in each variable configuration serial battery box are connected in series by their own relays, and one end of the battery box monitoring board in each variable configuration serial battery box is the battery of each battery module included.
  • the module monitoring board is connected, and the other end is connected to the driving computer 10.
  • the driving computer 10 is also coupled to the first battery box power transistor 15, the second battery box power transistor 16, the third battery box power transistor 17, and the fourth battery box power transistor 18.
  • the battery modules 111-114 further include a bypass circuit (not labeled) between the respective relays, and each of the battery modules 111-114
  • the relays are controlled by the battery module monitoring board of the associated battery module to select a bypass circuit (not labeled) connected to the battery string of the battery module or the associated battery module, and the battery module monitoring board of each battery module is
  • the sorting control unit 101 is controlled according to a battery box rotation order, and the variable configuration tandem battery box of the power supply architecture 1 can utilize the internal serial recombination function according to the function of the selective connection of the bypass circuit and according to the sequencing control.
  • the instruction of the unit 101 selectively switches the internal battery modules into the power supply mode or the sleep mode through the relays of the battery modules, so that the battery modules are added or removed from the variable configuration serial battery.
  • the sequencing control unit 101 can independently control the operation of each power transistor. Since each power transistor can independently cut off the power supply loop of the variable configuration serial battery box, the variable configuration serial type can be controlled. Whether the battery box is turned on or not, in accordance with the instruction of the driving computer 10, the variable configuration serial battery box with priority power supply is set.
  • FIG. 3 is a flowchart of a battery box rotation control method for a large electric vehicle power supply structure according to the present invention.
  • the driving computer 10 first detects or predicts the motor target speed of the electric vehicle, and because the motor speed is proportional to the driving voltage of the motor 192, the driving computer 10 can record through the vehicle speed and the throttle in the running.
  • the pedal response predicts the next range of motor speeds, which in turn sets a target motor speed range, and causes the power supply architecture 1 to adjust the DC bus voltage in the motor driver 191 to the optimum setting for the target motor speed range.
  • each battery box power transistor can be prevented from being too short or too long and close to the ideal duty cycle when it is supplied to the motor driver 191.
  • the DC bus voltage of the motor driver 191 is the number of series connected to the battery modules set to the power supply mode among the four variable configuration serial battery cases 11-14, so step S11 is the ratio of the motor speed to the voltage demand. Relationship, calculate the required DC bus voltage range, and calculate the required number of battery modules N according to the DC bus voltage range.
  • the driving computer 10 also detects or predicts the motor target torque of the electric vehicle, since the motor acceleration capability of the electric vehicle depends on the amount of current, and the current used by the motor driver 191 to drive the motor 192 is connected in series by the variable configuration.
  • the number of parallel connection of the battery box is limited, so the driving computer 10 calculates the acceleration capability that may be required at present, that is, the target torque range of the motor, calculates the driving current range of the motor driver 191, and sets the subsequent acceleration operation or deceleration operation.
  • the sorting control unit 101 calculates a corresponding module integral for each battery module by using the battery state of the battery module 10, the battery health state, and the cell temperature measured by the driving computer 10, and then according to the module.
  • the level of the integral is sorted to sort the battery modules in each variable configuration tandem battery case to generate a battery module ordering, wherein the module integral is composed of a battery state information, battery health status information,
  • the formula for the cell temperature information or a combination thereof is defined by, for example, the following formula: but is not limited thereto:
  • Equation 1 Module Integration SOC - (Bell Temperature X Compensation Coefficient)
  • Equation 2 Module integral (SOC X battery life reduction factor) - (cell temperature X compensation coefficient) Equation 3 Module integral (SOC X SOH) - (cell temperature X temperature rise compensation coefficient)
  • Equation 4 Module integral SOC - ((cell temperature - temperature) X temperature rise compensation coefficient)
  • Equation 5 Module integration SOC ((cell temperature battery box internal temperature) X temperature rise)
  • Equation 9 Module Integration (SOC X SOH) - (temperature rise compensation factor X (cell temperature)
  • (SOC X SOH) in the above formula is a method for calculating the internal capacitance of the actual battery module, that is, the product of the State of Charge (SOC) and the state of health (SOH), Equation 7 And formula VIII is to use the sorting control unit 101 to calculate whether the temperature rise of the battery module is normal.
  • SOC State of Charge
  • SOH state of health
  • step S13 after the control unit 101 to be sorted determines the sorting of the battery modules inside each variable configuration tandem battery case, the sorting control unit 101 is convenient for each variable configuration tandem battery case. Selecting N battery modules with the highest module integration according to the battery module ordering and the required number N of battery modules calculated in step S11, and controlling the battery module relays through the battery module monitoring board of the battery module to connect to the battery module.
  • the battery module of the battery module, the selected battery module is incorporated into the series connected power supply circuit of the battery box to adjust the power supply voltage thereof, and the sequencing control unit 101 also monitors the battery module of the unselected battery module.
  • the board issues a command to connect its relay to the bypass circuit to exclude the unselected battery module from the power supply circuit of the associated battery box and put it into sleep mode.
  • step S14 after the battery modules t of the variable configuration tandem battery cases are enabled according to the battery module ordering and the demand number N, the sorting control unit 101 connects the variable configurations in series.
  • Battery The module integral of the battery module enabled by the box is accumulated, and the accumulated result is defined as the battery box integral of the variable configuration serial battery box, and a battery box order is obtained according to the level of the integral.
  • step S15 after the control unit 101 to be sorted determines the sorting of the battery boxes of the variable configuration tandem battery cases, the sorting control unit 101 sorts the battery boxes according to the battery box and the step S11.
  • the required number C selects the C battery boxes with the highest battery box integral, and controls the power transistors corresponding to the battery box through the sorting control unit 101, so that the integrated high-variable variable-configuration series battery box and motor device 19 connected to form a power supply architecture that meets the driving requirements.
  • the sequencing control unit 101 also controls the power transistor corresponding to the variable configuration tandem battery box located at the last position of the battery box and is not enabled, so that the power transistor is turned off.
  • the battery compartment rotation control control method proposed by the present invention utilizes the power output of the variable configuration tandem battery box which stops the prioritization and the last position, so as to balance the battery module storage between the variable configuration serial battery boxes. The sum of the power, and avoiding overheating or over-discharging caused by the continued supply of the variable configuration tandem battery case with low battery compartment integration.
  • the power supply architecture of the present invention utilizes the battery compartment rotation order to maximize the total residual power of each variable configuration serial battery box, and the battery module in each variable configuration serial battery box.
  • the state of charge is also very close, so that the power storage state of the single battery module is too low and the over-discharge protection mode is entered, so that the variable-configuration series battery box cannot provide sufficient supply voltage, and the battery module is made as much as possible. The life of the variable configuration tandem battery box is maximized.
  • the following is a description of an exemplary embodiment of a battery box rotation control method according to the present invention, wherein the first variable configuration serial battery box, the second variable configuration serial battery box, and the third variable group
  • the state serial battery box and the fourth variable configuration serial battery box are respectively abbreviated by the battery box 1, the battery box 2, the battery box 3 and the battery box 4, and the first battery of each variable configuration serial battery box
  • the module, the second battery module, the third battery module, and the fourth battery module are referred to as module 1, module 2, module 3, and module 4, respectively.
  • the required number N of battery modules calculated in step S11 and the required quantity C of the variable configuration tandem battery cases are 2 and 3, respectively, and then the battery module integration calculation is performed according to step S12.
  • Sorting, module integration of module 1, module 2, module 3 and module 4 of battery box 1 are sequentially 40, 38, 30, 32, so the battery module of module 1, module 2, module 3 and module 4 of battery box 1
  • the ordering is 1, 2, 4, 3, and so on.
  • the battery box 2-4 can also generate the battery module sorting as shown in Table 1 according to the module integral of the respective modules. After the respective battery modules are sorted, That is, as described in step S13, the sorting control unit will enable the battery module corresponding to the required number according to the required number N of battery modules and the sorting of the battery modules.
  • the module 1 and the module in the battery box 1 2 is connected to the battery string through the corresponding relay to set the power supply mode, and the module 3 and the module 4 are connected to the bypass circuit through the corresponding relay to set to the sleep mode;
  • the module 2 and the module 3 in the battery box 2 are connected to the battery string through the corresponding relays to be set to the power supply mode, and the module 1 and the module 4 are connected to the bypass circuit through the corresponding relays to be set to the sleep mode.
  • the module 4 and the module 1 in the battery box 3 are connected to the battery string through corresponding relays to be set to the power supply mode, and the modules 2 and 3 are correspondingly
  • the relay is connected to its bypass circuit to be set to the sleep mode; the module 1 and the module 3 in the battery box 4 are connected to the battery string through the corresponding relays to be set to the power supply mode, and the modules 2 and 4 are passed through the corresponding The relay is connected to its bypass circuit to set to sleep mode.
  • the sorting control unit calculates the battery box integral of each battery box according to the enabled battery module integral, and generates a battery box sorting
  • the integral of the battery box 1 is the integral sum of the module 1 and the module 2, that is, 78 points
  • the integral of the battery box 2 is the integral sum of the module 2 and the module 3, that is, 76 points
  • the integral of the battery box 3 is the module 4 and the sum of the integrals of module 1, ie 77 points
  • the integral of battery box 4 is the sum of the integrals of module 1 and module 3, ie 75 points.
  • the battery box in this exemplary embodiment is sequentially sorted into the battery box 1, the battery box 3, the battery box 2, and the battery box 4, so the battery box 4 is sorted in the last position in this exemplary embodiment. battery box. Then, as described in step S15, indicating that at least one variable configuration tandem battery box located at the last position of the battery box enters a sleep mode, so according to the battery box sorting of the exemplary embodiment, the sorting control unit sets the battery Box 4 enters sleep mode, while the remaining battery boxes are set to a normal power state to achieve balanced power and extended battery life.
  • the battery box 1 will enable the module 1, the module 2 and the module 4, and the module integration totals 110 points; the battery box 2 will enable the module 2, the module 3 and the module 1, and the module integration The total is 112 points; Battery Box 3 will enable Module 4, Module 1 and Module 3, and the module integration will be 109 points; Battery Box 4 will enable Module 1, Module 3 and Module 2, and the module integration will be 111. Minute.
  • the battery box in this exemplary embodiment is sequentially sorted into the battery box 2, the battery box 4, the battery box 1, and the battery box 3, so the battery box 3 is sorted in the last position in this exemplary embodiment.
  • the battery case, so the battery box entering the sleep mode will be switched from the battery case 4 of Table 1 to the battery case 3 of Table 2.
  • the battery box sorting will change in real time according to the driving demand and the battery module integral, and the battery box rotation order is used to control the charging and discharging ratio of each battery module, and the total remaining power of each battery box can be maximized.
  • the battery module in each battery box is also in close proximity, so that the battery state of the single battery module is too low and the over-discharge protection mode is prevented, so that the battery box cannot provide sufficient power supply voltage.
  • step S21 the driving computer 10 first detects or predicts the motor target speed of the electric vehicle, and because the motor speed is proportional to the driving voltage of the motor 192, the driving computer 10 can pass the vehicle speed.
  • the recording and the accelerator pedal response during driving predict the next range of motor speeds, thereby setting a target motor speed range, and causing the power supply architecture 1 to adjust the DC bus voltage in the motor driver 191 to the target motor speed range.
  • each battery box power transistor can be prevented from being too short or too long and close to the ideal duty cycle when it is supplied to the motor driver 191.
  • the DC bus voltage of the motor driver 191 is the number of series connected to the battery modules set to the power supply mode among the four variable configuration serial battery cases 11-14, so step S21 is the ratio of the motor speed to the voltage demand. Relationship, calculate the required DC bus voltage range, and then calculate the required number of battery modules required according to the DC bus voltage range? ⁇ .
  • the driving computer 10 also detects or predicts the motor target torque of the electric vehicle, since the motor acceleration capability of the electric vehicle depends on the amount of current, and the current used by the motor driver 191 to drive the motor 192 is connected in series by the variable configuration.
  • the number of parallel connection of the battery box is limited, so the driving computer 10 calculates the acceleration capability that may be required at present, that is, the target torque range of the motor, calculates the driving current range of the motor driver 191, and sets the subsequent acceleration operation or deceleration operation.
  • step S22 the driving computer 10 executes a temperature protection program, that is, detects the temperature of each battery module. If the temperature of the battery module is higher than a preset temperature protection threshold, the battery module is marked as not available. Use it so that it is not included in the integral calculation process of the subsequent steps.
  • the sorting control unit 101 calculates a corresponding state of each battery module passing through the temperature protection program by using the battery state of the battery module 10, the battery health state, and the cell temperature measured by the driving computer 10.
  • Module integration according to the level of module integration, sorting the battery modules in the temperature-protected program in each variable configuration serial battery box to generate a battery module sequencing, wherein the module integration is performed by a battery module.
  • the equations are defined by the formulas of the power storage state information, the battery health state information, the battery temperature information, or a combination thereof, and the examples are as shown in the foregoing formulas 1 to 9, but are not limited thereto.
  • step S24 after the control unit 101 to be sorted determines the sorting of the battery modules inside each variable configuration tandem battery box, the sorting control unit 101 is convenient for each variable configuration serial battery box.
  • the N battery modules having the highest module integration are selected from the battery modules through the temperature protection program, and the battery is controlled by the battery module monitoring board of the battery module.
  • the relay of the module is connected to the battery string of the battery module, and the selected battery module is incorporated into the series connected power supply circuit of the battery box to adjust the power supply voltage thereof.
  • sequencing control unit 101 will also The battery module monitoring board of the battery module with or without the temperature protection program issues a command to connect its relay to the bypass circuit to exclude the battery module that is not selected or not passed the temperature protection program from the power supply circuit of the battery box to which it belongs. , put it into sleep mode.
  • step S25 after the battery modules of the variable configuration tandem battery cases are all enabled according to the battery module ordering and the required quantity N, the sorting control unit 101 further connects the variable configurations in series.
  • the module integral of the battery module enabled by the battery box is accumulated, and the accumulated result is defined as the variable configuration tandem battery case
  • the battery box is integrated, and a battery box is sorted according to the level of the points.
  • step S26 after the control unit 101 to be sorted determines the sorting of the battery boxes of the variable configuration tandem battery cases, the sorting control unit 101 sorts the battery boxes according to the battery box and the step S21.
  • the required number C selects the C battery boxes with the highest battery box integral, and controls the power transistors corresponding to the battery box through the sorting control unit 101, so that the integrated high-variable variable-configuration series battery box and motor device 19 connected to form a power supply architecture that meets the driving requirements.
  • the sequencing control unit 101 also controls the power transistor corresponding to the variable configuration tandem battery box located at the last position of the battery box and is not enabled, so that the power transistor is turned off.
  • the battery compartment rotation control control method proposed by the present invention utilizes the power output of the variable configuration tandem battery box which stops the prioritization and the last position, so as to balance the battery module storage between the variable configuration serial battery boxes. The sum of the power, and avoiding overheating or over-discharging caused by the continued supply of the variable configuration tandem battery case with low battery compartment integration.
  • the battery box rotation control method of the embodiment is to increase the temperature protection program to exclude the battery module with excessive temperature from being outside the power supply circuit, so as to prevent the battery module from affecting driving safety or reducing. Overall efficiency.
  • the power supply architecture of the present invention can effectively solve the problem that each battery module in the battery box has different power consumption due to different degrees of aging due to the rotation control of the battery box, resulting in a battery compartment internal content.
  • the battery module has excess power, some battery modules enter the over-discharge protection mode, and the service life of the battery module and the battery box is shortened.
  • the integral calculation method of the battery compartment rotation order can be added with the temperature rise compensation coefficient, so that the temperature is too high.
  • the sorting integration of the battery module is reduced to prevent the battery module that is overheated from being listed as a preferentially powered battery module, so as to avoid the temperature factor affecting the performance of the overall power supply architecture, in addition, the temperature may be excessively high in advance.
  • the battery modules are marked as unavailable for sorting out the battery modules so as not to affect driving safety or reduce overall efficiency.
  • the power supply architecture of the present invention can keep the state of charge of all battery modules in a similar range, and improve the utilization rate of the battery module and the endurance of the large electric vehicle to the maximum extent, and can also use the battery box to sort the wheel. With the function of the internal series recombination of the variable configuration tandem battery box, the discharge operation ratio of each battery module is adjusted separately, so that the battery modules can still utilize the battery module even in the state where the aging conditions are different and the capacitance is greatly different.
  • the prioritized real-time dynamic information is used to adjust the charge-discharge ratio between the battery modules, so that the total remaining power in each battery box in the power supply architecture can be as close as possible during the driving of the electric vehicle, and each of the battery boxes
  • the remaining capacity of the battery module can also be as close as possible; in an ideal state, when the electric vehicle is returned to the factory for charging, all the battery modules have the same amount of remaining power, and the battery box can be sorted and matched with the variable group.
  • State series serial battery box internal series recombination function avoid as much as possible Any battery box is over-discharged because the discharge state of the internal single battery module is too low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供一种大型电动车电源架构的电池箱轮休排序控制方法,所述电源架构包含具有排序控制单元的行车电脑、多个可变组态串联式电池箱以及马达装置,各可变组态串联式电池箱还包含多个电池模块。所述电池箱轮休排序控制方法包括步骤:行车电脑计算电池模块以及可变组态串联式电池箱的需求数量(S21);行车电脑执行温度保护程序(S22);排序控制单元计算模块积分并产生电池模块排序(S23);排序控制单元依需求数量及电池模块排序启用电池模块(S24);排序控制单元计算电池箱积分并产生电池箱排序(S25);以及排序控制单元指示于电池箱排序末位的可变组态串联式电池箱进入休眠模式(S26)。

Description

大型电动车电源架构及其电池箱轮休排序控制方法
技术领域
本发明涉及一种利用电池箱轮休排序的大型电动车电源架构及其控制方法, 尤其涉 及一种利用电脑程序进行实时计算电池模块排序和电池箱排序, 并利用轮休作业模式进 行动态式蓄电状态平衡作业的大型电动车电源架构及其控制方法。 背景技术
近年来石油能源短缺, 油价节节攀升, 全球变暖现象未舒解, 节能减碳是世界各国 政府的政策, 然而现今大部分的大型车辆还是使用石油作为动力来源, 所排放的废气造 成空气污染, 仅少部分的大型车辆采用电池为动力来源, 然而以电力作为动力来源仍有 着许多须克服的困难, 例如如何保持车辆内部多个电池蓄电量均衡以避免部分电池过度 放电造成寿命减短即为须克服的问题之一。
大型电动车辆因为动力和续航能力的需求, 一般需要将大量电池模块串并联以达到 其高电压及高电流的需求; 但是当电池模块以串联方式衔接时, 其放电电流一致, 所以 在电池箱内串接的电池模块一般都需匹配其电气特性,让各个电池模块的放电状态接近, 以确保长期使用中不会有部分电池因提前耗尽电力而导致过放损坏; 电池箱内串接的电 池模块的匹配作业过程耗时且成本昂贵, 导致电池模块的生产时程大幅拉长且售价无法 降低, 影响产品竞争力。
部分电动车辆使用多组电池并联的电源架构, 而并联架构在单一组电池故障时可持 续电源系统的运转作业, 但是由于每组电池模块的电气特性的差异, 仍然时常会导致部 分电池模块提前耗尽而进入低压保护状态, 导致电源系统的电流输出能力降低和电动车 续航能力明显下降的缺点。
更进一步的, 现有架构的另一问题是其马达驱动器的直流母线电压无法随着车速调 整。 当马达驱动器的直流母线电压大幅高出输出电压时, 驱动马达用的功率晶体管会处 在极低的责任周期, 导致输出的弦波失真, 产生扭力涟波并影响电机效率。
因此,如何提供一种可改善上述现有技术缺陷的大型电动车电源架构及其控制方法, 实为相关技术领域者目前所迫切需要解决的问题。 发明内容
本发明的目的是提供一种大型电动车电源架构及其电池箱轮休排序控制方法, 可利 用电池箱轮休排序使所有电池模块的蓄电状态保持于一相近的范围, 且以最大的限度提 高电池模块利用率和大型电动车的续航能力。 本发明的另一目的是提供一种大型电动车电源架构及其电池箱轮休排序控制方法, 可利用电池箱轮休排序搭配可变组态串联式电池箱的内部串联重组的功能, 分别调整每 一个电池模块的放电作业比例, 使得各电池模块即使在老化情况不同造成电容量大幅差 异的状态下, 仍然能够利用电池模块使用优先排序的实时动态信息来调整各电池模块之 间的充放电比例, 使得在电动车行驶途中, 电源架构内的各个电池箱内的总剩余电量能 尽可能地接近, 且电池箱内的各个电池模块的剩余电量亦能尽可能地接近; 而在理想状 态下, 当电动车回厂充电之时, 所有的电池模块均有等量的剩余电量。
本发明的另一目的是提供一种大型电动车电源架构及其电池箱轮休排序控制方法, 可利用电池箱轮休排序搭配可变组态串联式电池箱的内部串联重组的功能, 尽可能地避 免任何一电池箱因为内部单一电池模块的放电状态过低而达到过放保护。
本发明的另一目的是提供一种大型电动车电源架构及其电池箱轮休排序控制方法, 利用该串联重组的功能调整直流母线电压以维持驱动马达的功率晶体管的责任周期于最 佳作业范围, 进而避免扭力涟波, 使得电动车的马达在低功率输出动力之时能更稳定, 避免电动车的乘客感到不适。
本发明的另一目的是提供一种大型电动车电源架构及其电池箱轮休排序控制方法, 可通过温度保护程序避免温度过高的电池模块继续放电而影响行车安全与电池模块的寿 命。
为达上述目的, 本发明的一示例实施方式提供了一种大型电动车电源架构的电池箱 轮休排序控制方法, 该大型电动车电源架构包含具有一排序控制单元的一行车电脑、 多 个以并联方式连接的可变组态串联式电池箱以及一马达装置, 各该可变组态串联式电池 箱还包含多个以串联方式连接的电池模块, 该电池箱轮休排序控制方法包含步骤: 该行 车电脑根据该马达装置的行车需求计算该电池模块以及该可变组态串联式电池箱的需求 数量; 该行车电脑执行一温度保护程序, 将温度过高的该电池模块标记为不可用; 该排 序控制单元计算各该电池模块的模块积分, 以在各该可变组态串联式电池箱中产生一电 池模块排序; 该排序控制单元依照该电池模块需求数量及各该可变组态串联式电池箱的 该电池模块排序, 在各该可变组态串联式电池箱中启用该电池模块需求数量的该电池模 块; 该排序控制单元使用各该可变组态串联式电池箱中被启用的该电池模块的该模块积 分, 计算出各该可变组态串联式电池箱的电池箱积分, 并依照该电池箱积分产生一电池 箱排序; 以及该排序控制单元指示至少一个位于该电池箱排序末位的该可变组态串联式 电池箱进入休眠模式。
为达上述目的, 本发明另一示例实施方式提供了一种大型电动车电源架构的电池箱 轮休排序控制方法, 该大型电动车电源架构包含多个以并联方式连接的可变组态串联式 电池箱, 该可变组态串联式电池箱还包含多个以串联方式连接的电池模块, 其特征在于: 一电池模块排序的手段, 用以将各该可变组态串联式电池箱中的该电池模块进行排序, 并使至少一个位于该电池模块排序末位的该电池模块进入休眠模式; 一电池箱排序手段, 用以将各该可变组态串联式电池箱进行排序, 并使至少一个位于该电池箱排序末位的该 可变组态串联式电池箱进入休眠模式; 以及一温度保护手段, 用以将温度过高的该电池 模块排除于该电池模块排序手段与该电池箱排序手段中。
为达上述目的, 本发明又一示例实施方式提供了一种大型电动车电源架构, 包含: 多个可变组态串联式电池箱, 该多个可变组态串联式电池箱是以并联的方式相互连接, 且分别包含多个电池模块, 该电池模块是以串联的方式相互连接; 一马达装置, 是与该 多个可变组态串联式电池箱连接, 且包含一用以驱动该大型电动车的马达, 以及一用以 驱动该马达的马达驱动器; 以及一行车电脑, 是与该多个可变组态串连式电池箱连接, 用以侦测该马达装置的行车需求, 并计算该电池模块以及该可变组态串联式电池箱的需 求数量, 再执行一温度保护程序, 将温度过高的该电池模块标记为不可用, 且该行车电 脑还包含一排序控制单元, 用以执行一电池箱轮休排序程序, 其是将各该可变组态串联 式电池箱的该电池模块进行排序, 并根据排序启用该电池模块需求数量的该电池模块, 以及将各该可变组态串联式电池箱进行排序, 并指示至少一个位于该电池箱排序末位的 该可变组态串联式电池箱进入休眠模式。 附图说明
图 1是本发明较佳实施例的大型电动车电源架构的结构示意图。
图 2是本发明较佳实施例的第一可变组态串连式电池箱的细节结构示意图。
图 3是本发明较佳实施例的电池箱轮休控制程序的方法流程图。
图 4是本发明另一较佳实施例的电池箱轮休控制程序的方法流程图。 电源系统: 1
行车电脑: 10
行车控制单元: 101
第一可变组态串联式电池箱: 11
第一电池箱监控板: 110
第一电池箱第一电池模块: 111
第一电池箱第- -电芯串:
第一电池箱第- -电池模块监控板: 1112
第一电池箱第- -正极继电器: 1113
第一电池箱第- -负极继电器: 1114
第一电池箱第::电池模块: 112
第一电池箱第::电芯串: 1121
第一电池箱第::电池模块监控板: 1122
第一电池箱第::正极继电器: 1123 第一电池箱第二负极继电器: 1124 第一电池箱第三电池模块: 113 第一电池箱第三电芯串: 1131 第一电池箱第三电池模块监控板: 1132 第一电池箱第三正极继电器: 1133 第一电池箱第三负极继电器: 1134 第一电池箱第四电池模块: 114 第一电池箱第四电芯串: 1141 第一电池箱第四电池模块监控板: 1142 第一电池箱第四正极继电器: 1143 第一电池箱第四负极继电器: 1144 第二可变组态串联式电池箱: 12 第二电池箱监控板: 120
第二电池箱第一电池模块: 121 第二电池箱第二电池模块: 122 第二电池箱第三电池模块: 123 第二电池箱第四电池模块: 124 第三可变组态串联式电池箱: 13 第三电池箱监控板: 130
第三电池箱第一电池模块: 131 第三电池箱第二电池模块: 132 第三电池箱第三电池模块: 133 第三电池箱第四电池模块: 134 第四可变组态串联式电池箱: 14 第四电池箱监控板: 140
第四电池箱第一电池模块: 141 第四电池箱第二电池模块: 142 第四电池箱第三电池模块: 143 第四电池箱第四电池模块: 144 第一电池箱功率晶体管: 15
第二电池箱功率晶体管: 16
第三电池箱功率晶体管: 17
第四电池箱功率晶体管: 18
马达装置: 19
马达驱动器: 191 马达:: 192
步骤 S11 : S11
步骤 S12: S12
步骤 S13 : S13
步骤 S14: S14
步骤 S15 : S15
步骤 S21 : S21
步骤 S22: S22
步骤 S23 : S23
步骤 S24: S24
步骤 S25 : S25
步骤 S26: S26 具体实施方式
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。 应理解的是 本发明能够在不同的实施方式中具有各种的变化, 其皆不脱离本发明的范围, 且其中的 说明及图式在本质上是当作说明之用, 而非用于限制本发明。
请参阅图 1, 其为本发明较佳实施例的大型电动车电源架构, 其中, 大型电动车可 为电动巴士或电动货车, 但不以此为限。 如图 1所示, 本实施例的电源架构 1包含行车 电脑 10、 多个可变组态串联式电池箱 11-14、 多个功率晶体管 15-18以及马达装置 19, 其中, 行车电脑 10还包含一排序控制单元 101, 可变组态串联式电池箱的数量是以四组 为本发明的示例实施方式, 但其数量并不限于四组, 而功率晶体管的数量是对应相同于 可变组态串联式电池箱的数量。 本实施例的四组可变组态串联式电池箱分别为第一可变 组态串联式电池箱 11、 第二可变组态串联式电池箱 12、 第三可变组态串联式电池箱 13 以及第四可变组态串联式电池箱 14, 其中, 各可变组态串联式电池箱皆包含一电池箱监 控板以及多个电池模块, 于本实施例中, 是以各可变组态串联式电池箱包含四个电池模 块为本发明的示例实施方式, 但其数量并不限于四个。 以第一可变组态串联式电池箱 11 为例, 第一可变组态串联式电池箱 11 包含一第一电池箱监控板 110 以及四个电池模块 111-114, 分别为第一电池箱第一电池模块 111、 第一电池箱第二电池模块 112、 第一电池 箱第三电池模块 113以及第一电池箱第四电池模块 114。
同样地, 如图 1所示, 第二可变组态串联式电池箱 12、 第三可变组态串联式电池箱 13以及第四可变组态串联式电池箱 14皆有与第一可变组态串联式电池箱 11相同的结构, 其中, 第二可变组态串联式电池箱 12包含一第二电池箱监控板 120 以及四个电池模块 121-124, 分别为第二电池箱第一电池模块 121、 第二电池箱第二电池模块 122、 第二电 池箱第三电池模块 123 以及第二电池箱第四电池模块 124; 第三可变组态串联式电池箱 13包含一第三电池箱监控板 130以及四个电池模块 131-134, 分别为第三电池箱第一电 池模块 131、第三电池箱第二电池模块 132、 第三电池箱第三电池模块 133以及第三电池 箱第四电池模块 134; 第四可变组态串联式电池箱 14包含一第四电池箱监控板 140以及 四个电池模块 141-144, 分别为第四电池箱第一电池模块 141、 第四电池箱第二电池模块 142、 第四电池箱第三电池模块 143以及第四电池箱第四电池模块 144。
而本实施例中对应于可变组态串联式电池箱的数量的多个功率晶体管分别为第一电 池箱功率晶体管 15、 第二电池箱功率晶体管 16、 第三电池箱功率晶体管 17以及第四电 池箱功率晶体管 18, 并分别与第一可变组态串联式电池箱 11、 第二可变组态串联式电池 箱 12、 第三可变组态串联式电池箱 13以及第四可变组态串联式电池箱 14连接。 马达装 置 19则包含马达驱动器 191以及马达 192, 其中, 马达驱动器 191是与第一电池箱功率 晶体管 15、 第二电池箱功率晶体管 16、 第三电池箱功率晶体管 17以及第四电池箱功率 晶体管 18连接, 以利用第一可变组态串联式电池箱 11、 第二可变组态串联式电池箱 12、 第三可变组态串联式电池箱 13 以及第四可变组态串联式电池箱 14所提供的电力驱动马 达 192的运转。
请参阅图 2, 其为第一可变组态串联式电池箱的细节结构示意图。 由于各可变组态 串联式电池箱的各电池模块的架构皆相同, 故于此以第一可变组态串联式电池箱 11的电 池模块为例做说明。 如图 2所示, 第一电池箱第一电池模块 111包含第一电池箱第一电 芯串 1111、第一电池箱第一电池模块监控板 1112、第一电池箱第一正极继电器 1113以及 第一电池箱第一负极继电器 1114; 第一电池箱第二电池模块 112包含第一电池箱第二电 芯串 1121、 第一电池箱第二电池模块监控板 1122、 第一电池箱第二正极继电器 1123 以 及第一电池箱第二负极继电器 1124; 第一电池箱第三电池模块 113包含第一电池箱第三 电芯串 1131、 第一电池箱第三电池模块监控板 1132、 第一电池箱第三正极继电器 1133 以及第一电池箱第三负极继电器 1134; 第一电池箱第四电池模块 114包含第一电池箱第 四电芯串 1141、第一电池箱第四电池模块监控板 1142、第一电池箱第四正极继电器 1143 以及第一电池箱第四负极继电器 1144。 以此类推, 第二可变组态串联式电池箱 12、 第三 可变组态串联式电池箱 13 以及第四可变组态串联式电池箱 14均以同样方式架构。 各电 池模块监控板是将所属的电池模块的蓄电状态信息 (State of Charge, SOC) 、电池健康状态 信息 (State of Health, S0H)和电芯温度信息等通过各电池箱监控板传送至行车电脑 10, 以 供排序控制单元 101利用一电池模块排序手段以及一电池箱排序手段进行一电池模块排 序以及一电池箱排序。
请再参阅图 1, 于本实施例中, 各可变组态串联式电池箱的供电回路是经由各自所 对应的功率晶体管以形成一个四组可变组态串联式电池箱并联的电源架构以供应至马达 驱动器 192, 其中, 第一电池箱功率晶体管 15、 第二电池箱功率晶体管 16、 第三电池箱 功率晶体管 17以及第四电池箱功率晶体管 18分别与第一可变组态串联式电池箱 11、 第 二可变组态串联式电池箱 12、第三可变组态串联式电池箱 13以及第四可变组态串联式电 池箱 14串联连接, 而串联连接的第一电池箱功率晶体管 15与第一可变组态串联式电池 箱 11、 第二电池箱功率晶体管 16与第二可变组态串联式电池箱 12、 第三电池箱功率晶 体管 17与第三可变组态串联式电池箱 13以及第四电池箱功率晶体管 18与第四可变组态 串联式电池箱 14则是并联连接于行车电脑 10与马达装置 19之间。各可变组态串联式电 池箱内的电池模块皆是通过自身的继电器串联连接, 且各可变组态串联式电池箱内的电 池箱监控板的一端是与所含的电池模块的各电池模块监控板连接, 另一端则是与行车电 脑 10连接。 此外, 行车电脑 10亦与第一电池箱功率晶体管 15、 第二电池箱功率晶体管 16、 第三电池箱功率晶体管 17以及第四电池箱功率晶体管 18连接。
请再参阅图 2, 以第一可变组态串联式电池箱 11为例, 电池模块 111-114更于各自 的继电器之间包含一旁通回路 (未标号), 而电池模块 111-114的各继电器皆是由所属电 池模块的电池模块监控板所控制, 以选择连接至所属电池模块的电芯串或所属电池模块 的旁通回路 (未标号),各电池模块的电池模块监控板则是由排序控制单元 101根据一电池 箱轮休排序所控制, 通过该旁通回路选择性连接的功能, 本电源架构 1 的各可变组态串 联式电池箱均能利用其内部串联重组功能且根据排序控制单元 101 的指令, 通过各电池 模块的继电器选择性地串联内部的四个电池模块, 将各电池模块切换至供电模式或休眠 模式, 使其电池模块加入或摒除于所属可变组态串联式电池箱的供电回路。 此外, 排序 控制单元 101更可独立控制各功率晶体管的作动, 由于各功率晶体管均能独立切断各自 所搭配的可变组态串联式电池箱的供电回路,故可控制可变组态串联式电池箱导通与否, 以配合行车电脑 10的指令来设定优先供电的可变组态串联式电池箱。
请参阅图 3, 其为本发明大型电动车电源架构的电池箱轮休排序控制方法的流程图。 如步骤 S11所示, 行车电脑 10会先侦测或预测电动车的马达目标转速, 且因马达转速与 马达 192的驱动电压为一比例关系,故行车电脑 10可经由车速记录以及行驶中的油门踏 板反应预测接下来的马达转速范围, 再以此设定一目标马达转速范围, 并使电源架构 1 调整马达驱动器 191 内的一直流母线电压至对应该目标马达转速范围的最佳设定, 于此 设定下, 各个电池箱功率晶体管于供电至马达驱动器 191 时便能避免其责任周期过短或 过长并接近理想责任周期。 而马达驱动器 191 的直流母线电压是对应至四个可变组态串 联式电池箱 11-14中被设定为供电模式的电池模块的串联数量, 因此步骤 S11是通过马 达转速与电压需求的比例关系, 计算出所需要的直流母线电压范围, 再根据直流母线电 压范围计算出所需要的电池模块需求数量 N。
另一方面, 行车电脑 10也会侦测或预测电动车的马达目标扭力, 由于电动车的马达 加速能力取决于电流量, 而马达驱动器 191用于驱动马达 192的电流是由可变组态串联 式电池箱的并联数量所限制, 因此行车电脑 10计算出当下可能所需要的的加速能力即为 马达目标扭力范围, 并计算出马达驱动器 191 的驱动电流范围, 并设定后续加速作业或 减速作业所需要的可变组态串联式电池箱需求数量 C。 如步骤 S12所示,排序控制单元 101将利用前述行车电脑 10所测得的各电池模块的 蓄电状态、 电池健康状态和电芯温度, 对各电池模块计算一对应的模块积分, 再根据模 块积分的高低, 对每一可变组态串联式电池箱内的电池模块进行排序, 以产生一电池模 块排序, 其中, 模块积分是由一个含有电池模块的蓄电状态信息、 电池健康状态信息、 电芯温度信息或其组合的公式所定义, 范例如以下公式所示但并不限于此:
公式一 模块积分 SOC - (电芯温度 X补偿系数)
公式二 模块积分 (SOC X电池寿命折减系数) - (电芯温度 X补偿系数) 公式三 模块积分 (SOC X SOH) - (电芯温度 X温升补偿系数)
公式四 模块积分 SOC - ((电芯温度 - 气温) X温升补偿系数)
公式五 模块积分 SOC ((电芯温度 电池箱内部温度) X温升)
公式六 模块积分 SOC ((电芯温度 理想电芯温度) X温升补偿系数) 公式七 模块积分 SOC ((电芯温度 所有模块的平均电芯温度) X温升补 偿系数)
公式八: 模块积分 = (SOC X SOH) - 温升补偿系数 X (电芯温度
电量 X热损比例系数) (散热系数 X (电池温度 - 电池箱内部温度;
公式九:模块积分 (SOC X SOH) - (温升补偿系数 X (电芯温度
度》 2
其中,上述公式中的 (SOC X SOH)为一计算实际电池模块内部电容量的方法, 即蓄电 状态(State of Charge, SOC)与电池健康状态 (State of Health, SOH)的乘积, 公式七和公式 八均为利用排序控制单元 101计算电池模块的升温是否正常, 于一般状态下, 当电芯温 度异常发热时, 此电池模块在电池模块排序的模块积分较正常发热的电池模块低, 而在 各电池模块的电芯温度接近之时, 电容量较高的电池模块应该优先使用所以在电池模块 排序的模块积分较高, 故由上述公式可知, 电池模块的模块积分不仅是与电池模块的蓄 电状态呈正相关, 且与该电池模块的升温曲线相关, 更与该电池模块的电芯温度呈负相 关。
延续步骤 S12的程序, 如步骤 S13所示, 待排序控制单元 101决定各可变组态串联 式电池箱内部的电池模块排序后, 排序控制单元 101便于各可变组态串联式电池箱内, 依照电池模块排序以及步骤 S11所计算的电池模块的需求数量 N, 选出模块积分最高的 N个电池模块, 并通过该电池模块的电池模块监控板控制该电池模块的继电器, 使其连 接至该电池模块的电芯串, 将被选出的电池模块并入其电池箱的串联连接的供电回路来 调整其供电电压, 此外, 排序控制单元 101亦会对未选上的电池模块的电池模块监控板 发出指令, 使其继电器连接至旁通回路, 以将未选上的电池模块排除于所属电池箱的供 电回路, 使其进入休眠模式。
延续步骤 S13的程序, 如步骤 S14所示, 待各可变组态串联式电池箱的电池模块 t, 依照电池模块排序及需求数 N启用后, 排序控制单元 101再将各可变组态串联式电池 箱启用的电池模块的模块积分累加, 将该累加的结果定义为该可变组态串联式电池箱的 电池箱积分, 并依照积分高低得出一电池箱排序。
延续步骤 S14的程序, 如步骤 S15所示, 待排序控制单元 101决定各可变组态串联 式电池箱的电池箱排序后, 排序控制单元 101将依照电池箱排序以及步骤 S11所计算的 电池箱的需求数量 C, 选出电池箱积分最高的 C个电池箱, 并通过排序控制单元 101控 制该电池箱所对应的功率晶体管, 使该积分较高的可变组态串联式电池箱与马达装置 19 连接以组成一符合行车需求的电源架构, 此外, 排序控制单元 101亦会控制位于电池箱 排序末位而未启用的可变组态串联式电池箱所对应的功率晶体管, 使其截止该未启用的 可变组态串联式电池箱与马达装置 19的连接,指示该未启用的可变组态串联式电池箱进 入休眠模式。 因此, 本发明所提出的电池箱轮休排序控制是利用停止优先排序较末位的 可变组态串联式电池箱的电力输出, 以平衡各可变组态串联式电池箱之间的电池模块蓄 电量的总和, 且避免电池箱积分较低的可变组态串联式电池箱继续供电导致过热或过放 的问题。
因此, 本发明的电源架构即是利用此电池箱轮休排序让每一个可变组态串联式电池 箱的总和剩余电力最大限度的接近, 而每一个可变组态串联式电池箱内的电池模块的蓄 电状态亦会非常接近, 从而避免单一电池模块的蓄电状态过低而进入过放保护模式导致 该可变组态串联式电池箱无法提供足够的供电电压, 并且尽可能地使电池模块以及可变 组态串联式电池箱的使用寿命最大化。
以下将以表 1做为本发明电池箱轮休排序控制方法示例实施方式的说明, 其中, 第 一可变组态串联式电池箱、 第二可变组态串联式电池箱、 第三可变组态串联式电池箱以 及第四可变组态串联式电池箱分别由电池箱 1、电池箱 2、电池箱 3以及电池箱 4简称的, 而各可变组态串联式电池箱的第一电池模块、 第二电池模块、 第三电池模块以及第四电 池模块则分别由模块 1、 模块 2、 模块 3以及模块 4作为简称。 于此一示例实施方式中, 假定步骤 S11所计算出电池模块的需求数量 N以及可变组态串联式电池箱的需求数量 C 分别为 2以及 3,接着,根据步骤 S12进行电池模块积分计算及排序, 电池箱 1的模块 1、 模块 2、 模块 3以及模块 4的模块积分依序为 40、 38、 30、 32, 故电池箱 1的模块 1、 模 块 2、 模块 3以及模块 4的电池模块排序依序为 1、 2、 4、 3, 依此类推, 电池箱 2-4亦 可根据各自模块的模块积分产生一如表 1所示的电池模块排序, 待完成各自的电池模块 排序后, 即如步骤 S13所述, 排序控制单元将依照电池模块的需求数量 N以及电池模块 排序启用对应于需求数量的电池模块,故于表 1的示例实施方式中, 电池箱 1中的模块 1 以及模块 2通过对应的继电器连接至电芯串以设定为供电模式, 而模块 3以及模块 4则 通过对应的继电器连接至其旁通回路以设定为休眠模式; 同样地, 电池箱 2 中的模块 2 以及模块 3通过对应的继电器连接至电芯串以设定为供电模式, 而模块 1 以及模块 4则 通过对应的继电器连接至其旁通回路以设定为休眠模式;电池箱 3中的模块 4以及模块 1 通过对应的继电器连接至电芯串以设定为供电模式, 而模块 2以及模块 3则通过对应的 继电器连接至其旁通回路以设定为休眠模式; 电池箱 4中的模块 1 以及模块 3通过对应 的继电器连接至电芯串以设定为供电模式, 而模块 2以及模块 4则通过对应的继电器连 接至其旁通回路以设定为休眠模式。
待各电池箱的模块皆依照电池模块排序启用后, 即如步骤 S14所述, 排序控制单元 依照被启用的电池模块积分计算各电池箱的电池箱积分, 并产生一电池箱排序, 于此一 示例实施方式中, 电池箱 1的积分为模块 1以及模块 2的积分总和, 即 78分; 电池箱 2 的积分为模块 2以及模块 3的积分总和, 即 76分; 电池箱 3的积分为模块 4以及模块 1 的积分总和, 即 77分; 电池箱 4的积分为模块 1以及模块 3的积分总和, 即 75分。 根 据上述电池箱积分可知, 此示例实施方式中的电池箱排序依序为电池箱 1、 电池箱 3、 电 池箱 2以及电池箱 4, 因此电池箱 4为此示例实施方式中排序最末位的电池箱。接着, 如 步骤 S15所述, 指示至少一个位于该电池箱排序末位的该可变组态串联式电池箱进入休 眠模式, 故依照本示例实施方式的电池箱排序, 排序控制单元将设定电池箱 4进入休眠 模式, 而其余电池箱则设定为正常的供电状态, 以达到平衡电量以及延长电池寿命的目 的。
Figure imgf000012_0001
在电动车运转时, 所需的电池模块的需求数量 N亦会跟着马达转速而变化, 而电池 箱排序也会随的变化, 使得被列为优先使用的电池箱也会随的改变, 例如当电动车速较 高使得马达转速较高时, 所计算出电池模块的需求数量 N也会增加, 故即使在各电池模 块积分及排序都不变的情况下, 也会影响电池箱的排序结果。 以下将以表 2做为另一示 例实施方式的说明, 其中, 表 2的各电池模块积分及排序皆与表 1相同, 惟表 1的 N=2, 而表 2的 N=3。故于表 2的示例实施方式中, 电池箱 1将启用模块 1、模块 2以及模块 4, 且模块积分总合为 110分; 电池箱 2将启用模块 2、 模块 3以及模块 1, 且模块积分总合 为 112分; 电池箱 3将启用模块 4、 模块 1以及模块 3, 且模块积分总合为 109分; 电池 箱 4将启用模块 1、 模块 3以及模块 2, 且模块积分总合为 111分。
根据上述电池箱积分可知, 此示例实施方式中的电池箱排序依序为电池箱 2、 电池 箱 4、 电池箱 1以及电池箱 3, 因此电池箱 3为此示例实施方式中排序最末位的电池箱, 故进入休眠模式的电池箱将从表 1的电池箱 4切换为表 2的电池箱 3。
由上述对照结果可见, 电池箱排序会依照行车需求以及电池模块积分而实时改变, 而利用此电池箱轮休排序来控制各个电池模块的充放电比例, 能够让每一个电池箱的总 和剩余电力最大限度的接近, 而每一个电池箱内的电池模块的蓄电状态亦会非常接近, 从而避免单一电池模块的蓄电状态过低而进入过放保护模式导致该电池箱无法提供足够 的供电电压。
Figure imgf000013_0001
请参阅图 4, 其为本发明大型电动车电源架构的电池箱轮休排序控制方法另一较佳 实施例的流程图,如步骤 S21所示,行车电脑 10会先侦测或预测电动车的马达目标转速, 且因马达转速与马达 192的驱动电压为一比例关系,故行车电脑 10可经由车速记录以及 行驶中的油门踏板反应预测接下来的马达转速范围, 再以此设定一目标马达转速范围, 并使电源架构 1调整马达驱动器 191 内的一直流母线电压至对应该目标马达转速范围的 最佳设定, 于此设定下, 各个电池箱功率晶体管于供电至马达驱动器 191 时便能避免其 责任周期过短或过长并接近理想责任周期。 而马达驱动器 191 的直流母线电压是对应至 四个可变组态串联式电池箱 11-14 中被设定为供电模式的电池模块的串联数量, 因此步 骤 S21是通过马达转速与电压需求的比例关系, 计算出所需要的直流母线电压范围, 再 根据直流母线电压范围计算出所需要的电池模块需求数量?^。
另一方面, 行车电脑 10也会侦测或预测电动车的马达目标扭力, 由于电动车的马达 加速能力取决于电流量, 而马达驱动器 191用于驱动马达 192的电流是由可变组态串联 式电池箱的并联数量所限制, 因此行车电脑 10计算出当下可能所需要的的加速能力即为 马达目标扭力范围, 并计算出马达驱动器 191 的驱动电流范围, 并设定后续加速作业或 减速作业所需要的可变组态串联式电池箱需求数量 C。
接着如步骤 S22所示,行车电脑 10执行一温度保护程序, 亦即侦测每一电池模块的 温度, 若电池模块的温度高于一预设的温度保护门槛, 则将该电池模块标记为不可用, 使其不列入后续步骤的积分计算过程。
再如步骤 S23所示,排序控制单元 101将利用前述行车电脑 10所测得的各电池模块 的蓄电状态、 电池健康状态和电芯温度, 对通过温度保护程序的各电池模块计算一对应 的模块积分, 再根据模块积分的高低, 对每一可变组态串联式电池箱内通过温度保护程 序的电池模块进行排序, 以产生一电池模块排序, 其中, 模块积分是由一个含有电池模 块的蓄电状态信息、 电池健康状态信息、 电芯温度信息或其组合的公式所定义, 范例则 如前述的公式一至公式九所示, 但并不限于此。
延续步骤 S23的程序, 如步骤 S24所示, 待排序控制单元 101决定各可变组态串联 式电池箱内部的电池模块排序后, 排序控制单元 101便于各可变组态串联式电池箱内, 依照电池模块排序以及步骤 S21所计算的电池模块的需求数量 N, 由通过温度保护程序 的电池模块中选出模块积分最高的 N个电池模块, 并通过该电池模块的电池模块监控板 控制该电池模块的继电器, 使其连接至该电池模块的电芯串, 将被选出的电池模块并入 其电池箱的串联连接的供电回路来调整其供电电压, 此外, 排序控制单元 101亦会对未 选上或未通过温度保护程序的电池模块的电池模块监控板发出指令, 使其继电器连接至 旁通回路, 以将未选上或未通过温度保护程序的电池模块排除于所属电池箱的供电回路, 使其进入休眠模式。
延续步骤 S24的程序, 如步骤 S25所示, 待各可变组态串联式电池箱的电池模块皆 依照电池模块排序及需求数量 N启用后, 排序控制单元 101再将各可变组态串联式电池 箱启用的电池模块的模块积分累加, 将该累加的结果定义为该可变组态串联式电池箱的 电池箱积分, 并依照积分高低得出一电池箱排序。
延续步骤 S25的程序, 如步骤 S26所示, 待排序控制单元 101决定各可变组态串联 式电池箱的电池箱排序后, 排序控制单元 101将依照电池箱排序以及步骤 S21所计算的 电池箱的需求数量 C, 选出电池箱积分最高的 C个电池箱, 并通过排序控制单元 101控 制该电池箱所对应的功率晶体管, 使该积分较高的可变组态串联式电池箱与马达装置 19 连接以组成一符合行车需求的电源架构, 此外, 排序控制单元 101亦会控制位于电池箱 排序末位而未启用的可变组态串联式电池箱所对应的功率晶体管, 使其截止该未启用的 可变组态串联式电池箱与马达装置 19的连接,指示该未启用的可变组态串联式电池箱进 入休眠模式。 因此, 本发明所提出的电池箱轮休排序控制是利用停止优先排序较末位的 可变组态串联式电池箱的电力输出, 以平衡各可变组态串联式电池箱之间的电池模块蓄 电量的总和, 且避免电池箱积分较低的可变组态串联式电池箱继续供电导致过热或过放 的问题。
相较于图 3所示实施例,本实施例的电池箱轮休排序控制方法是增加温度保护程序, 以将温度过高的电池模块排除于供电回路外, 以避免该电池模块影响行车安全或降低整 体效率。
综上所述, 本发明的电源架构通过电池箱轮休排序控制能够有效地解决电池箱内各 个电池模块因为老化程度不同, 使得各个电池模块内电力的耗电量不同, 造成一个电池 箱内部份电池模块电力过剩、 部分电池模块进入过放保护模式, 以及电池模块与电池箱 的使用寿命短缩问题, 而且, 此电池箱轮休排序的积分计算方式更可以加入温升补偿系 数, 让温度过高的电池模块的排序积分降低, 以避免温度过高的电池模块被列为优先供 电的电池模块, 以达到避免温度因素影响整体电源架构效能的问题, 除此之外, 还可预 先将温度过高的电池模块标记为不可用使其排除于电池模块排序, 以免影响行车安全或 降低整体效率。 另一方面, 本发明的电源架构可使所有电池模块的蓄电状态保持于一相 近的范围, 且以最大的限度提高电池模块利用率和大型电动车的续航能力, 更可利用电 池箱轮休排序搭配可变组态串联式电池箱的内部串联重组的功能, 分别调整每一个电池 模块的放电作业比例, 使得各电池模块即使在老化情况不同造成电容量大幅差异的状态 下, 仍然能够利用电池模块使用优先排序的实时动态信息来调整各电池模块之间的充放 电比例, 使得在电动车行驶途中, 电源架构内的各个电池箱内的总剩余电量能尽可能地 接近, 且电池箱内的各个电池模块的剩余电量亦能尽可能地接近; 而在理想状态下, 当 电动车回厂充电之时, 所有的电池模块均有等量的剩余电量, 又可利用电池箱轮休排序 搭配可变组态串联式电池箱的内部串联重组的功能, 尽可能地避免任何一电池箱因为内 部单一电池模块的放电状态过低而达到过放保护。

Claims

权利要求
1.一种大型电动车电源架构的电池箱轮休排序控制方法, 其特征在于, 该大型电动 车电源架构包含具有一排序控制单元的一行车电脑、 多个以并联方式连接的可变组态串 联式电池箱以及一马达装置, 各该可变组态串联式电池箱还包含多个以串联方式连接的 电池模块, 该电池箱轮休排序控制方法包含步骤:
(a)该行车电脑根据该马达装置的行车需求计算该电池模块以及该可变组态串联式 电池箱的需求数量;
(b)该行车电脑执行一温度保护程序, 将温度过高的该电池模块标记为不可用;
(c)该排序控制单元计算各该电池模块的模块积分, 以在各该可变组态串联式电池箱 中产生一电池模块排序;
(d)该排序控制单元依照该电池模块需求数量及各该可变组态串联式电池箱的该电 池模块排序, 在各该可变组态串联式电池箱中启用该电池模块需求数量的该电池模块;
(e)该排序控制单元使用各该可变组态串联式电池箱中被启用的该电池模块的该模 块积分, 计算出各该可变组态串联式电池箱的电池箱积分, 并依照该电池箱积分产生一 电池箱排序; 以及
(f)该排序控制单元指示至少一个位于该电池箱排序末位的该可变组态串联式电池 箱进入休眠模式。
2.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 于步骤 (a)中, 该行车电脑是侦测或预测行驶中的电动车的马达转速, 再根据该转速 计算一直流母线电压, 以决定该电池模块的该需求数量。
3.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 于步骤 (a)中, 该行车电脑是侦测或预测行驶中的电动车的马达扭力, 再根据该扭力 决定该可变组态串联式电池箱的该需求数量。
4.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 步骤 (b)的该温度保护程序是通过该行车电脑侦测该多个电池模块的温度, 再将该多 个电池模块中温度过高的该电池模块标记为不可用。
5.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 步骤 (c)的该模块积分是由该电池模块的蓄电状态信息、 健康状态信息、 温度信息或 其组合所定义。
6.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 步骤 (d)还包含将未被启用的该电池模块与一旁通回路连接的步骤。
7.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 步骤 (e)的该电池箱积分是选出步骤 (c)所启用的该电池模块的该模块积分并将其加总 为该电池箱积分。
8.如权利要求 1所述的大型电动车电源架构的电池箱轮休排序控制方法, 其特征在 于, 步骤 (f)是通过控制对应于至少一个位于该电池箱排序末位的该可变组态串联式电池 箱的至少一个功率晶体管, 使该功率晶体管截止该可变组态串联式电池箱与该马达装置 的连接, 进而使该可变组态串联式电池箱进入休眠模式。
9.一种大型电动车电源架构, 其特征在于, 包含:
多个可变组态串联式电池箱, 该多个可变组态串联式电池箱是以并联的方式相互连 接, 且分别包含多个电池模块, 该电池模块是以串联的方式相互连接;
一马达装置, 是与该多个可变组态串联式电池箱连接, 且包含一用以驱动该大型电 动车的马达, 以及一用以驱动该马达的马达驱动器; 以及
一行车电脑, 是与该多个可变组态串连式电池箱连接, 用以侦测该马达装置的行车 需求, 并计算该电池模块以及该可变组态串联式电池箱的需求数量, 再执行一温度保护 程序, 将温度过高的该电池模块标记为不可用, 且该行车电脑还包含一排序控制单元, 用以执行一电池箱轮休排序程序, 其是将各该可变组态串联式电池箱的该电池模块进行 排序, 并根据排序启用该电池模块需求数量的该电池模块, 以及将各该可变组态串联式 电池箱进行排序, 并指示至少一个位于该电池箱排序末位的该可变组态串联式电池箱进 入休眠模式。
10.如权利要求 9所述的大型电动车电源架构, 其特征在于, 该可变组态串联式电池 箱还包含一电池箱监控板, 连接于该行车电脑与该电池模块之间, 用以接收该行车电脑 的指令以控制该电池模块。
11.如权利要求 9所述的大型电动车电源架构, 其特征在于, 该温度保护程序是通过 该行车电脑侦测该多个电池模块的温度, 再将温度过高的该电池模块标记为不可用, 使 其排除于该电池箱轮休排序程序。
12.如权利要求 9所述的大型电动车电源架构, 其特征在于, 该电池模块还包含一电 池模块监控板、 一电芯串、 一继电器以及一旁通回路, 其中该电池模块监控板是控制该 继电器选择性地与该电芯串或该旁通回路连接, 以使该电池模块进入供电模式或休眠模 式。
13.如权利要求 9所述的大型电动车电源架构, 还包含多个功率晶体管, 其是对应设 置于该多个可变组态串联式电池箱与该马达装置之间, 并与该行车电脑连接, 使其可接 收该行车电脑的指令以控制该可变组态串联式电池箱进入休眠模式。
PCT/CN2014/076660 2013-04-30 2014-04-30 大型电动车电源架构及其电池箱轮休排序控制方法 WO2014177063A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2911036A CA2911036A1 (en) 2013-04-30 2014-04-30 Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
JP2016510929A JP6185150B2 (ja) 2013-04-30 2014-04-30 大型電気自動車の電力系統、並びに交互休止バッテリー管理及びその制御方法
CN201480024716.3A CN105324677A (zh) 2013-04-30 2014-04-30 大型电动车电源架构及其电池箱轮休排序控制方法
US14/888,376 US20160075254A1 (en) 2013-04-30 2014-04-30 Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
KR1020157034039A KR101749447B1 (ko) 2013-04-30 2014-04-30 대형 전기차 전력 구조체 및 교번-하이버네이션 배터리 관리 및 제어 방법
EP14791899.9A EP2993483A4 (en) 2013-04-30 2014-04-30 POWER SUPPLY ARCHITECTURE FOR A LARGE ELECTRIC VEHICLE AND METHOD FOR CONTROLLING A SEQUENCING STABILIZATION OF BATTERY BOXES THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361817607P 2013-04-30 2013-04-30
US61/817,607 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014177063A1 true WO2014177063A1 (zh) 2014-11-06

Family

ID=51843147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076660 WO2014177063A1 (zh) 2013-04-30 2014-04-30 大型电动车电源架构及其电池箱轮休排序控制方法

Country Status (8)

Country Link
US (1) US20160075254A1 (zh)
EP (1) EP2993483A4 (zh)
JP (1) JP6185150B2 (zh)
KR (1) KR101749447B1 (zh)
CN (1) CN105324677A (zh)
CA (1) CA2911036A1 (zh)
TW (1) TWI537849B (zh)
WO (1) WO2014177063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769401A (zh) * 2016-06-16 2019-05-17 布鲁解决方案公司 在电池故障的情况下管理供电设施的电化学电池的方法和系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783078B2 (en) * 2015-10-30 2017-10-10 Faraday & Future Inc. Systems and methods for disengaging a battery
FR3052928B1 (fr) * 2016-06-16 2019-07-19 Blue Solutions Procede et systeme de gestion intelligente de batteries electrochimiques d'une installation d'alimentation electrique
FR3052926B1 (fr) * 2016-06-16 2019-07-12 Bluebus Procede et systeme de gestion de batteries electrochimiques d'un vehicule electrique en cas de defaillance de batterie(s)
FR3052927B1 (fr) * 2016-06-16 2019-07-12 Bluebus Procede et systeme de gestion intelligente de batteries electrochimiques d'un vehicule electrique
JP6345291B1 (ja) * 2017-03-22 2018-06-20 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP6363754B1 (ja) 2017-03-22 2018-07-25 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP6812889B2 (ja) * 2017-04-03 2021-01-13 株式会社豊田中央研究所 電源装置
TWI704740B (zh) * 2017-12-29 2020-09-11 英屬開曼群島商睿能創意公司 提供置於裝置交換站的複數個能源儲存裝置的方法、裝置交換站及伺服器
DE102018102211B3 (de) * 2018-02-01 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriesystem für ein batteriebetriebenes elektrisches Fahrzeug und Verfahren zum Nutzen einer Restreichweite eines solchen
FR3082677B1 (fr) * 2018-06-06 2021-04-16 Commissariat Energie Atomique Systeme electrique a cellules commutees et procede de commande d'un tel systeme
US10355496B1 (en) * 2018-07-26 2019-07-16 Kitty Hawk Corporation Inter-module battery balancing using minimum cell voltages to select battery sub-modules to power loads
CN112533734A (zh) 2018-08-06 2021-03-19 创科无线普通合伙 用于选择性地启用设备的运行的系统和方法
DE102019110177A1 (de) 2019-04-17 2020-10-22 instagrid GmbH Energiesparbetrieb für ein Energieversorgungssystem mit Batteriespeicher
WO2021084547A1 (en) * 2019-11-01 2021-05-06 Satyanarayana Chanagala Battery management system for electric vehicles
DK201970832A1 (en) * 2019-12-23 2021-07-26 Kk Wind Solutions As Monitoring system for an energy storage
GB2591755A (en) * 2020-02-05 2021-08-11 Dar Yun Energy Science Tech Co Ltd Power-supplying battery of electric vehicle
US11936222B2 (en) 2020-05-26 2024-03-19 Analog Devices International Unlimited Company BMS architecture for energy storage
JP7488605B2 (ja) 2020-06-26 2024-05-22 TeraWatt Technology株式会社 電池システム、制御装置及び制御方法
CN111993953B (zh) * 2020-08-27 2021-10-29 安徽江淮汽车集团股份有限公司 电池控制方法、动力汽车及可读存储介质
CN114274792A (zh) 2020-10-01 2022-04-05 郑州创狼信息技术有限公司 直流供电系统及其电池模组充电系统
US11951842B2 (en) * 2021-09-27 2024-04-09 Ford Global Technologies, Llc Electrified vehicle configured to selectively deactivate restricted power mode based on acceleration request
FR3130089B1 (fr) * 2021-12-03 2023-12-15 Electricite De France Procede de pilotage de charge etde decharge d’une pluralite de dispositifs destockage d’energie electrique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504444B (zh) * 2009-03-18 2012-06-06 浙江绿源电动车有限公司 电动汽车矩阵电池组的电池容量检测方法
CN102074991B (zh) * 2011-01-24 2013-01-09 启明信息技术股份有限公司 电动汽车的动力电池全均衡控制方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145734A (en) * 1976-05-28 1977-12-05 Japan Storage Battery Co Ltd Method of deciding life fo storage battery
JPH06336380A (ja) * 1993-05-27 1994-12-06 Hitachi Building Syst Eng & Service Co Ltd エレベータ保全作業管理システム
JPH08251714A (ja) * 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
JPH11299122A (ja) * 1998-02-10 1999-10-29 Denso Corp 充電状態制御方法及び装置
JP2003243042A (ja) * 2002-02-12 2003-08-29 Toyota Motor Corp 組電池を構成するリチウム電池の劣化度検知装置および方法
JP2008510130A (ja) * 2004-08-13 2008-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ソリッドステート検出器パッケージングの技術
JP4572850B2 (ja) * 2006-03-24 2010-11-04 株式会社日立製作所 電源制御装置
JP4818808B2 (ja) * 2006-05-19 2011-11-16 富士電機株式会社 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム
JPWO2008105063A1 (ja) * 2007-02-27 2010-06-03 パイオニア株式会社 情報表示装置、情報表示方法、情報表示プログラム、および記録媒体
CN101119036B (zh) * 2007-07-23 2011-01-19 柏禄帕迅能源科技有限公司 用于电动汽车的电池管理系统
JP2009058363A (ja) * 2007-08-31 2009-03-19 Yazaki Corp 電圧検出装置
JP5331493B2 (ja) * 2009-01-13 2013-10-30 日立ビークルエナジー株式会社 電池制御装置
KR101726249B1 (ko) * 2009-07-29 2017-04-26 더 리젠츠 오브 더 유니버시티 오브 미시건 배터리 충전 및 방전을 스케쥴링하는 시스템
JP2012034439A (ja) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd 直流電源装置及び電力貯蔵システム
CN102376988B (zh) * 2010-08-10 2014-12-10 华创车电技术中心股份有限公司 电池组模块及其能量管理系统与方法
WO2012053426A1 (ja) * 2010-10-19 2012-04-26 三洋電機株式会社 電源装置及びこれを用いた車両並びに蓄電装置
JP5717282B2 (ja) * 2011-02-28 2015-05-13 矢崎総業株式会社 電圧検出装置及び暗電流バラツキ低減方法
KR101821334B1 (ko) * 2011-03-17 2018-03-08 이브이 칩 에너지 리미티드 배터리 팩 시스템
JP5991628B2 (ja) * 2011-07-28 2016-09-14 パナソニックIpマネジメント株式会社 バッテリシステム、バッテリ制御装置、電動車両、移動体および電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504444B (zh) * 2009-03-18 2012-06-06 浙江绿源电动车有限公司 电动汽车矩阵电池组的电池容量检测方法
CN102074991B (zh) * 2011-01-24 2013-01-09 启明信息技术股份有限公司 电动汽车的动力电池全均衡控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993483A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769401A (zh) * 2016-06-16 2019-05-17 布鲁解决方案公司 在电池故障的情况下管理供电设施的电化学电池的方法和系统

Also Published As

Publication number Publication date
US20160075254A1 (en) 2016-03-17
EP2993483A4 (en) 2016-08-10
JP2016524435A (ja) 2016-08-12
CN105324677A (zh) 2016-02-10
KR101749447B1 (ko) 2017-06-20
EP2993483A1 (en) 2016-03-09
CA2911036A1 (en) 2014-11-06
JP6185150B2 (ja) 2017-08-23
TWI537849B (zh) 2016-06-11
TW201443794A (zh) 2014-11-16
KR20160003194A (ko) 2016-01-08

Similar Documents

Publication Publication Date Title
TWI537849B (zh) 大型電動車電源架構及其電池箱輪休排序控制方法
TWI526956B (zh) 大型電動車電源架構及其電池箱輪休排序控制方法
JP5836068B2 (ja) 車両用電源装置、電動車両
WO2010109881A1 (ja) 電池制御装置、車両、及び電池制御方法
JP2016028543A (ja) 電源装置
WO2010109872A1 (ja) 電池制御装置、車両、及び電池制御方法
TWI404644B (zh) 電池管理系統及控制車的方法
CN110293954A (zh) 电机控制方法、装置、存储介质以及车辆
JP5861063B2 (ja) 蓄電装置及び電力供給システム
CN110154829B (zh) 动力电池包电芯的均衡控制方法和动力电池系统
CN106208178A (zh) 电动车辆的电池充电装置和方法
JP2009131060A (ja) 充放電回路の制御システム
CN113581007B (zh) 一种锂电池组备用电源的行车充电系统及控制方法
CN107431370A (zh) 用于运行电池组单元的方法
US20170136915A1 (en) Power System Using Switched Reluctance Motor as Power Transformer
WO2022269829A1 (ja) モータ駆動回路
TWI405383B (zh) Intelligent charge and discharge system
CN203135530U (zh) 智能电池传感器系统
Buretea et al. Hybrid car battery management
JP2024094005A (ja) 電動乗り物に用いられるハイブリッドバッテリーの電気エネルギーの出力分配を制御する方法
JP2024057325A (ja) 蓄電システム
TW202411092A (zh) 電池模組與電池管理系統
JP2015081516A (ja) 電動過給機の出力制御装置及び出力制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024716.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791899

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2911036

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014791899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016510929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14888376

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157034039

Country of ref document: KR

Kind code of ref document: A