WO2014174999A1 - レドックスフロー電池用電解液、およびレドックスフロー電池 - Google Patents

レドックスフロー電池用電解液、およびレドックスフロー電池 Download PDF

Info

Publication number
WO2014174999A1
WO2014174999A1 PCT/JP2014/059395 JP2014059395W WO2014174999A1 WO 2014174999 A1 WO2014174999 A1 WO 2014174999A1 JP 2014059395 W JP2014059395 W JP 2014059395W WO 2014174999 A1 WO2014174999 A1 WO 2014174999A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox flow
battery
electrolyte solution
electrolyte
flow battery
Prior art date
Application number
PCT/JP2014/059395
Other languages
English (en)
French (fr)
Inventor
雍容 董
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/402,277 priority Critical patent/US20150140471A1/en
Priority to AU2014258654A priority patent/AU2014258654A1/en
Priority to EP14788693.1A priority patent/EP2843744A4/en
Priority to CN201480001316.0A priority patent/CN104321918A/zh
Publication of WO2014174999A1 publication Critical patent/WO2014174999A1/ja
Priority to IN9730DEN2014 priority patent/IN2014DN09730A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery electrolyte and a redox flow battery using the redox flow battery electrolyte.
  • a redox flow battery is a secondary battery that performs charging and discharging by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell in which a diaphragm is interposed between a positive electrode and a negative electrode.
  • An electrolyte solution for a redox flow battery used in such a redox flow battery normally uses a metal element whose valence is changed by oxidation and reduction as an active material.
  • Patent Document 1 lists 1-tetradecene (C 14 H 28 ), 1-octanethiol (C 8 H 18 S), or esters as the specific organic substance.
  • Patent Document 2 n-decane (C 10 H 22 ) is mentioned as a specific organic substance.
  • the present inventors diligently investigated what substances among the impurities contained in the redox flow battery electrolyte particularly have a great influence on the electrode reaction.
  • an organic substance having a portion composed of an aliphatic hydrocarbon having 8 or more and 24 or less carbon atoms has a great influence on the reduction of the electrode reaction. I found out. Based on this finding, the inventors have arrived at the invention.
  • An electrolyte for a redox flow battery is an electrolyte for a redox flow battery used in a redox flow battery including a positive electrode, a negative electrode, and a battery cell including a diaphragm interposed between the electrodes.
  • An electrolyte solution for a redox flow battery in which the content of an organic substance having a portion composed of an aliphatic hydrocarbon having 8 to 24 carbon atoms is 5 mg / liter or less.
  • redox flow battery electrolytes containing at least one of 1-tetradecene, n-decane, 1-octanethiol, and an ester organic material having a site made of an aliphatic hydrocarbon having 8 carbon atoms are excluded.
  • the redox flow battery electrolyte solution (hereinafter referred to as RF electrolyte solution) of the present embodiment has an organic content of 5 mg / liter or less having a portion composed of an aliphatic hydrocarbon having 8 to 24 carbon atoms.
  • An RF electrolyte solution is excluded.
  • an RF electrolyte solution containing at least one of 1-tetradecene, n-decane, 1-octanethiol, and an ester organic material having a site made of an aliphatic hydrocarbon having 8 carbon atoms is excluded.
  • the organic substance is an organic substance having a portion composed of an aliphatic hydrocarbon having 8 to 24 carbon atoms.
  • Examples of the RF electrolyte solution of the present embodiment include an RF electrolyte solution having 8 to 19 carbon atoms in a portion made of an aliphatic hydrocarbon.
  • a site composed of an aliphatic hydrocarbon having 8 or more and 19 or less carbon atoms tends to inhibit the electrode reaction. Therefore, if the content of the organic substance having the above-mentioned carbon number in the RF battery is limited, it is possible to suppress the deterioration of the battery performance of the RF battery over time.
  • the aliphatic hydrocarbon can include an RF electrolyte solution which is an aliphatic saturated hydrocarbon.
  • Saturated hydrocarbons are chemically more stable than unsaturated hydrocarbons and are less likely to be decomposed.
  • an organic substance having a portion composed of an aliphatic saturated hydrocarbon may continue to inhibit the electrode reaction without being almost decomposed over a long period if it exists in excess. Therefore, if the content of the organic substance having a portion composed of an aliphatic saturated hydrocarbon in the RF electrolyte solution is limited, it is possible to suppress the deterioration of the battery performance of the RF battery over time.
  • the organic substance may be an RF electrolyte solution that is an organic substance in which an aliphatic hydrocarbon and other sites are bonded through an oxygen atom.
  • the above organic substances are particularly liable to hinder the electrode reaction. Therefore, if the content of such an organic substance is limited in the RF electrolyte solution, it is possible to suppress deterioration of the battery performance of the RF battery over time.
  • Examples of the RF electrolyte solution of the present embodiment include an RF electrolyte solution containing vanadium ions that function as a positive electrode active material and a negative electrode active material.
  • Vanadium ions function as a positive electrode active material on the positive electrode side and function as a negative electrode active material on the negative electrode side. That is, the same RF electrolyte solution can be used as the positive electrode side electrolyte solution or the negative electrode side electrolyte solution.
  • tetravalent vanadium ions V 4+
  • V 5+ pentavalent vanadium ions
  • V 5+ is reduced to V 4+ during discharging.
  • trivalent vanadium ions (V 3+ ) are reduced to divalent vanadium ions (V 2+ ) during charging, and V 2+ is oxidized to V 3+ during discharging.
  • an RF electrolytic solution of this embodiment containing vanadium ions as an active material an RF electrolysis having a vanadium ion concentration of 1.5 M or more and 1.9 M or less and a sulfate ion concentration of 4.1 M or more and 4.5 M or less.
  • a liquid can be mentioned.
  • the average valence of the RF electrolyte solution is about 3.3 or more and 3.7 or less.
  • Such an average valence RF electrolyte solution has a good balance of vanadium ion concentration of each valence both as the electrolyte solution on the positive electrode side and the electrolyte solution on the negative electrode side. Therefore, when an RF battery is configured using such an average valence RF electrolyte, the capacity of the RF battery can be made very high.
  • the RF battery of the present embodiment is an RF battery including the RF electrolyte solution of the present embodiment.
  • the RF battery is an RF battery that exhibits stable battery characteristics over time. This is because in the RF electrolyte solution used for the RF battery, organic substances that easily inhibit the electrode reaction are suppressed to a predetermined concentration or less.
  • an RF electrolyte having an organic content of 0.0005 ⁇ electrode mass ⁇ (g) ⁇ RF electrolyte volume ⁇ (liter) or less is used. Can be mentioned.
  • the battery resistance increases when an amount of organic matter (mass) exceeding 500 ppm is attached to the mass of the electrode. That is, when the mass of the electrode used in the RF battery is ⁇ (g) and the amount (volume) of the electrolyte is ⁇ (liter), the organic content ⁇ (g / liter) is ⁇ ⁇ 0.0005 ⁇ ⁇ . If the RF battery includes an RF electrolyte that satisfies (g) / ⁇ (liter), an increase in battery resistance is suppressed.
  • an RF battery 1 using V ions as a positive electrode active material and a negative electrode active material will be described as an example with reference to FIG.
  • a solid line arrow indicates a valence change during charging
  • a broken line arrow indicates a valence change during discharging.
  • the metal element metal ion shows only a representative form, and forms other than those shown in the figure can be taken.
  • the RF battery 1 shown in FIG. 1 typically has a power generation unit (for example, a solar power generation device, a wind power generation device, or another general power plant) and a load (customer etc.) via an AC / DC converter. ) And the electric power generated by the power generation unit is charged and stored, or the stored electric power is discharged and supplied to the load.
  • the RF battery 1 includes a battery cell 100 and a circulation mechanism (tank, piping, pump) for supplying an electrolytic solution to the battery cell 100 as in the case of a conventional RF battery.
  • the battery cell 100 in the RF battery 1 includes a positive electrode cell 102 incorporating a positive electrode 104, a negative electrode cell 103 incorporating a negative electrode 105, and a diaphragm 101 that separates both the cells 102 and 103 and transmits ions.
  • a positive electrode tank 106 for storing a positive electrode electrolyte is connected to the positive electrode cell 102 via pipes 108 and 110.
  • a negative electrode tank 107 that stores a negative electrode electrolyte is connected to the negative electrode cell 103 via pipes 109 and 111.
  • the pipes 108 and 109 are provided with pumps 112 and 113 for circulating the electrolytes of both electrodes, respectively.
  • the battery cell 100 is connected to the positive electrode cell 106 (positive electrode 104) and the negative electrode cell 103 (negative electrode 105) by pipes 108 to 111 and pumps 112 and 113, respectively, and the negative electrode in the positive electrode tank 106 and the negative electrode in the negative electrode tank 107.
  • the electrolytic solution is circulated and supplied, and charging / discharging is performed in accordance with a change in the valence of metal ions (V ions in the present embodiment) that are active materials in the electrolytic solution in both electrodes.
  • the battery cell 100 is usually used in a form called a cell stack in which a plurality of single cells each having a positive electrode 104 (positive cell 102), a negative electrode 105 (negative cell 103), and a diaphragm 101 are stacked.
  • the cell stack has a bipolar plate (not shown) in which the positive electrode 104 is disposed on one surface and the negative electrode 105 is disposed on the other surface, a liquid supply hole for supplying an electrolytic solution, and a drain hole for discharging the electrolytic solution.
  • a cell frame provided with a frame (not shown) formed on the outer periphery of the bipolar plate is used.
  • the liquid supply hole and the drainage hole constitute an electrolyte flow path, and the flow path is connected to the pipes 108 to 111.
  • the cell stack is configured by stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,.
  • a known configuration can be used as appropriate.
  • the RF electrolyte solution of this embodiment is a liquid in which ions serving as an active material are contained in a solvent, and the content of a specific organic substance is very low.
  • a common RF electrolyte containing V ions is used for the positive electrode electrolyte and the negative electrode electrolyte.
  • the average valence of the positive electrode electrolyte and the negative electrode electrolyte is preferably 3.3 or more and 3.7 or less, and the V ion concentration is preferably 1M or more and 3M or less.
  • the average valence is more preferably 3.4 or more and 3.6 or less, and the V ion concentration is 1.5M or more and 1.9M or less.
  • the solvent for the RF electrolyte examples include H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 HPO 4 , Na 3 PO 4 , and K 3 PO. 4 , at least one aqueous solution selected from HNO 3 , KNO 3 , HCl, and NaNO 3 can be used.
  • an organic acid solvent can be used as a solvent for the RF electrolyte.
  • the specific organic substance in the RF electrolyte solution is an organic substance having a portion made of an aliphatic hydrocarbon having 8 to 24 carbon atoms.
  • This organic substance includes an aliphatic hydrocarbon itself.
  • the part which consists of an aliphatic hydrocarbon in this organic substance includes what has a linear structure and what has a branched chain structure.
  • Examples of the aliphatic hydrocarbon include the following. ⁇ Undecane (C 11 H 24 ) ⁇ Nonadekane (C 19 H 40 ) ⁇ Hexadecane (C 16 H 34 ) ⁇ Heptadecane (C 17 H 36 ) ⁇ 5-Octadecene (C 18 H 36) ⁇ Eicosane (C 20 H 42) ⁇ Heneicosane (C 21 H 44 )
  • Examples of the organic substance having a portion composed of an aliphatic hydrocarbon include substituted organic substances in which the end of the aliphatic hydrocarbon is substituted with oxygen, nitrogen, sulfur, phosphorus, or the like.
  • the organic material of this embodiment includes an ester organic material in which a portion composed of an aliphatic hydrocarbon and another portion are bonded via an oxygen atom. Examples of such organic substances are listed below.
  • the content of the organic substance is 5 mg / liter or less.
  • the organic content is preferably 1 mg / liter or less.
  • the content of the organic substance is 0.0005 ⁇ ⁇ ⁇ ⁇ or less, preferably 0.0001 ⁇ ⁇ ⁇ ⁇ or less (where ⁇ is the mass of the electrode (g ) And ⁇ is the volume (liter) of the RF electrolyte).
  • the positive electrode tank 106, the negative electrode tank 107, and the pipes 108 to 111 are members in contact with the RF electrolyte solution. Therefore, if these members 106 to 111 contain or adhere to an organic substance having a portion composed of an aliphatic hydrocarbon, the content of the organic substance in the RF electrolyte increases as the RF battery 1 is operated. there's a possibility that. Therefore, as these members 106 to 111, those that do not contain the above-mentioned organic matter or those that do not use the above-mentioned organic matter in the manufacturing process (for example, those that do not use the above-mentioned organic matter as a mold release agent for producing a member) are used. It is preferable to do.
  • members 106-111 has a density (ASTM D 1505) is 0.080 g / cm 3 or more, there is a 0.960 g / cm 3 within the range, the melt flow rate (ASTM D 1238, measuring conditions: 190 ° C., It is made of an ethylene homopolymer having a load of 2.16 kg) within a range of 0.01 g / 10 min to 20 g / 10 min, or an ethylene / ⁇ -olein copolymer having a density and a melt flow rate within the above range. It ’s fine. The same applies to the members 106 to 111 in the transport tank for transporting the RF electrolyte solution.
  • Example 1 A plurality of commercially available carbon felts (3 ⁇ 3 cm, 0.3 g) were prepared as positive and negative electrodes, and each of these electrodes was immersed in 3 ml of an ethanol solution having a different specific organic content.
  • the specific organic substances are the following two types. Hexadecane: C16 aliphatic hydrocarbon itself (hereinafter referred to as regulated organic matter)
  • P-Xylene Aromatic hydrocarbons having 8 carbon atoms (organic substances having no part consisting of aliphatic hydrocarbons having 8 to 24 carbon atoms, hereinafter referred to as non-regulated organic substances)
  • the RF battery 1 having the above configuration was constructed.
  • a sulfuric acid solution having a vanadium ion concentration of 1.7 M and an average valence of 3.5 and a sulfate ion concentration of 4.3 M as a positive electrode electrolyte, and an average of a vanadium ion concentration of 1.7 M as a negative electrode electrolyte.
  • a sulfuric acid solution having a valence of 3.5 and a sulfate ion concentration of 4.3 M was used.
  • cell resistivity ((omega
  • the cell resistivity was determined by “electrode area ⁇ (midpoint voltage of charge voltage curve ⁇ midpoint voltage of discharge voltage curve) ⁇ (2 ⁇ current)”.
  • the results are shown in Table 1.
  • the battery used in this example is a battery having a discharge capacity of 10 hours
  • the content (concentration, mg / liter) of the organic substance in the electrolytic solution is shown in Table 1 when the battery has a discharge capacity of 1 hour. Show.
  • the content of the regulated organic substance is 500 ppm or less, and further 100 ppm or less with respect to the electrode mass, the increase in cell resistivity is small.
  • the content of the regulated organic substance in the electrolyte is 5 mg / liter or less (preferably 1 mg / liter or less), or the regulated organic substance content is 500 ppm or less (preferably, based on the mass of the electrode) 100 ppm or less), it is estimated that a decrease in battery output and a decrease in battery capacity can be reduced.
  • the battery resistance was the smallest.
  • the regulated organic substance is decomposed and eluted from the battery components, and the content of the regulated organic substance in the RF electrolyte solution exceeds 5 mg / liter, or exceeds 500 ppm with respect to the mass of the electrode. There is a possibility.
  • an operation such as appropriately measuring the content of the regulated organic substance and appropriately filtering so that the regulated organic substance content is 5 mg / liter or less, or 500 ppm or less with respect to the mass of the electrode. It is good to do.
  • Test Example 2 a charge / discharge test was performed assuming an RF battery for actual operation. First, a carbon felt positive electrode and negative electrode having an electrode area of 500 cm 2 were prepared. The total mass of both electrodes was about 35 g. In addition, two types of RF electrolytes with different contents of organic substances to be regulated were prepared as RF electrolytes, and RF batteries having a capacity of 2 hours were prepared using the respective RF electrolytes. The prepared electrolyte is as follows. [A] ...
  • Vanadium whose total content of Hexadecane (C 16 H 34 ), Hexadecanitile (C 16 H 31 N), and Octadecanenitile (C 18 H 35 N), which are organic substances subject to regulation, is 0.5 mg / liter.
  • RF electrolyte solution [B] Vanadium RF electrolyte solution with a total content of the three kinds of regulated organic substances described in [A] above of 2.5 mg / liter * Vanadium ion valence and concentration of the RF electrolyte solution , And the concentration of sulfate ions are the same as in Test Example 1.
  • a 2-hour capacity RF battery using the RF electrolyte solution of [A] and a 2-hour capacity RF battery using the RF electrolyte solution of [B] are prepared, and 1600 cycles are charged for each RF battery.
  • a discharge test was performed.
  • the mass of the regulated organic substance with respect to the electrode was 100 ppm
  • the mass of the regulated organic substance with respect to the electrode was 500 ppm.
  • the cell resistivity of RF battery using the RF electrolyte [A] had become approximately 1.24 ⁇ ⁇ cm 2, 1600 about 1.26 ⁇ ⁇ cm 2 in cycle in the first cycle.
  • the cell resistivity of RF battery using the RF electrolyte [B] had become approximately 1.31 ⁇ ⁇ cm 2, 1600 about 1.45 ⁇ ⁇ cm 2 in cycle in the first cycle. From the above, in 2 hours capacity, the RF electrolyte solution with the same content of 0.5 mg / liter is superior in cycle characteristics to the RF electrolyte solution with the regulated organic substance content of 2.5 mg / liter. It was found that an RF battery could be obtained.
  • the electrolyte solution for redox flow batteries of the present invention can be suitably used as an electrolyte solution for secondary batteries such as redox flow batteries.
  • the redox flow battery of this embodiment can be suitably used as a battery for load leveling applications or for measures against instantaneous voltage drop and power failure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物の含有量が5mg/リットル以下であるレドックスフロー電池用電解液。但し、1-tetradecene、n-decane、1-octanethiol、および炭素数が8の脂肪族炭化水素からなる部位を有するエステル系有機物の少なくとも1種を含有するレドックスフロー電池用電解液は除く。

Description

レドックスフロー電池用電解液、およびレドックスフロー電池
 本発明は、レドックスフロー電池用電解液、およびそのレドックスフロー電池用電解液を用いたレドックスフロー電池に関する。
 昨今、地球温暖化への対策として、太陽光発電、風力発電といった自然エネルギー(所謂、再生可能エネルギー)を利用した発電が世界的に活発に行なわれている。これらの発電出力は、天候などの自然条件に大きく左右される。そのため、電力系統に占める自然エネルギーの割合が増えると、電力系統の運用に際しての問題、例えば周波数や電圧の維持が困難になるといった問題が予測される。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の蓄電、負荷平準化などを図ることが挙げられる。
 大容量の蓄電池の一つにレドックスフロー電池がある。レドックスフロー電池は、正極電極と負極電極との間に隔膜を介在させた電池セルに正極電解液及び負極電解液をそれぞれ供給して充放電を行う二次電池である。このようなレドックスフロー電池に用いられるレドックスフロー電池用電解液は通常、酸化還元により価数が変化する金属元素を活物質として利用している。例えば、正極活物質としてFeイオンを、負極活物質としてCrイオンを用いた鉄(Fe2+/Fe3+)-クロム(Cr3+/Cr2+)系レドックスフロー電池や、両極の活物質にVイオンを用いたバナジウム(V2+/V3+-V4+/V5+)系レドックスフロー電池を挙げることができる。
 レドックスフロー電池では、電極上の電気化学反応(電極反応)により充放電が行なわれている。そのため、電極が設計時の仕様通りに機能しないと、電池出力の低下や電池容量の低下などの電池特性の低下を招く。例えば、電極の表面に不純物が付着して電極上の反応活性点が覆われると、実質的に電極の表面積が減じられ、電池出力の低下、電池容量の低下に繋がる。そのような不純物のうちの特定の有機物は、電解液における含有量が非常に微量であったとしても電極反応を大きく阻害することが知られている。例えば、特許文献1ではその特定の有機物として1-tetradecene(C1428)や1-octanethiol(C18S)、あるいはエステル類を挙げている。また、特許文献2ではn-decane(C1022)が特定の有機物として挙げられている。
特開2007-12468号公報 特開2004-119311号公報 特開2004-111182号公報
 上記特許文献に開示される特定の有機物の含有量を減じたレドックスフロー電池用電解液を利用した場合でも電池特性が低下する場合があった。即ち、レドックスフロー電池用電解液における電極反応の低下に大きな影響を与える不純物を特定しきれていない可能性がある。
 そこで、上記事情に鑑みて、電池特性の低下を抑制することができるレドックスフロー電池用電解液を提供することを目的とする。また、このレドックスフロー電池用電解液を用いたレドックスフロー電池を提供することを別の目的とする。
 本発明者らは、レドックスフロー電池用電解液に含まれる不純物のうち、どのような物質が特に電極反応の低下に大きな影響を与えるかを鋭意検討した。その結果、炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物(炭素数が8以上、24以下の脂肪族炭化水素そのものも含む)が電極反応の低下に大きな影響を与えることが判った。この知見に基づいて、本発明者らは発明に至った。
 本発明の一態様に係るレドックスフロー電池用電解液は、正極電極、負極電極、および両電極間に介在される隔膜を備える電池セルを備えるレドックスフロー電池に用いられるレドックスフロー電池用電解液であって、炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物の含有量が5mg/リットル以下であるレドックスフロー電池用電解液。但し、1-tetradecene、n-decane、1-octanethiol、および炭素数が8の脂肪族炭化水素からなる部位を有するエステル系有機物の少なくとも1種を含有するレドックスフロー電池用電解液は除く。
 上記のレドックスフロー電池用電解液によれば、レドックスフロー電池における電池特性の低下を抑制することができる。
活物質としてバナジウムイオンを用いたレドックスフロー電池の概略構成図である。
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
[1]本実施形態のレドックスフロー電池用電解液(以下、RF電解液)は、炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物の含有量が5mg/リットル以下であるRF電解液である。但し、1-tetradecene、n-decane、1-octanethiol、および炭素数が8の脂肪族炭化水素からなる部位を有するエステル系有機物の少なくとも1種を含有するRF電解液は除く。
 上記RF電解液によれば、レドックスフロー電池(以下、RF電池)の電池出力や電池容量などの電池特性の低下を抑制することができる。それは、RF電解液において、電極反応に極めて深刻な影響を与える有機物が所定濃度以下に抑えられているからである。その有機物とは即ち、炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物である。
[2]本実施形態のRF電解液として、脂肪族炭化水素からなる部位の炭素数が8以上、19以下であるRF電解液を挙げることができる。
 特に、炭素数が8以上、19以下の脂肪族炭化水素からなる部位は、電極反応を阻害し易い。そのため、RF電池において上記炭素数の部位を有する有機物の含有量を制限すれば、経時的なRF電池の電池性能の低下を抑制できる。
[3]本実施形態のRF電解液として、脂肪族炭化水素は、脂肪族飽和炭化水素であるRF電解液を挙げることができる。
 飽和炭化水素は不飽和炭化水素よりも化学的に安定しており、分解され難い。つまり、脂肪族飽和炭化水素からなる部位を有する有機物は、過剰に存在すると長期にわたって殆ど分解されることなく電極反応を阻害し続ける恐れがある。そのため、RF電解液において脂肪族飽和炭化水素からなる部位を有する有機物の含有量を制限すれば、経時的なRF電池の電池性能の低下を抑制できる。
[4]本実施形態のRF電解液として、上記有機物は、脂肪族炭化水素とそれ以外の部位とが酸素原子を介して結合した有機物であるRF電解液を挙げることができる。
 上記有機物は特に、電極反応を阻害し易い。そのため、RF電解液においてそのような有機物の含有量を制限すれば、経時的なRF電池の電池性能の低下を抑制できる。
[5]本実施形態のRF電解液として、正極活物質および負極活物質として機能するバナジウムイオンを含むRF電解液を挙げることができる。
 バナジウムイオンは、正極側にあっては正極活物質として機能し、負極側にあっては負極活物質として機能する。即ち、同じRF電解液を、正極側の電解液として利用することもできるし、負極側の電解液として利用することもできる。正極側にあっては充電時に4価のバナジウムイオン(V4+)が5価のバナジウムイオン(V5+)に酸化され、放電時にV5+がV4+に還元される。一方、負極側にあっては充電時に3価のバナジウムイオン(V3+)が2価のバナジウムイオン(V2+)に還元され、放電時にV2+がV3+に酸化される。
[6]活物質としてバナジウムイオンを含む本実施形態のRF電解液として、バナジウムイオン濃度が1.5M以上、1.9M以下、硫酸イオン濃度が4.1M以上、4.5M以下であるRF電解液を挙げることができる。
 バナジウムイオン濃度と硫酸イオン濃度を上記範囲とすることで、RF電解液の平均価数はおよそ3.3以上、3.7以下となる。このような平均価数のRF電解液は、正極側の電解液としても負極側の電解液としても各価数のバナジウムイオン濃度のバランスが良い。そのため、このような平均価数のRF電解液を用いてRF電池を構成した場合、RF電池の容量を非常に高くすることができる。
[7]本実施形態のRF電池は、本実施形態のRF電解液を備えるRF電池である。
 上記RF電池は、経時的に安定した電池特性を発揮するRF電池である。それは、RF電池に使用するRF電解液において、電極反応を阻害し易い有機物が所定濃度以下に抑えられているからである。
[8]本実施形態のRF電池に備わるRF電解液として、有機物の含有量が、0.0005×電極の質量α(g)÷RF電解液の体積β(リットル)以下であるRF電解液を挙げることができる。
 RF電池の種類や出力・容量によって用いる電極の質量及び電解液の量(体積)は異なるが、電極の質量に対して500ppmを超える量(質量)の有機物が付着すると電池抵抗が増大する。即ち、RF電池に使用する電極の質量をα(g)、電解液量(体積)をβ(リットル)とするとき、有機物の含有量γ(g/リットル)が、γ≦0.0005×α(g)÷β(リットル)を満たすようなRF電解液を含むRF電池とすれば、電池抵抗の増大が抑制されたRF電池となる。
[本発明の実施形態の詳細]
 本実施形態に係るRF電解液、およびそれを用いたRF電池を以下に説明する。なお、本発明はこれらの例示に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
 実施形態1では、図1を参照し、正極活物質および負極活物質にVイオンを使用したRF電池1を例に用いて説明する。なお、図1において、実線矢印は充電時の価数変化、破線矢印は放電時の価数変化を示す。また、図1において、金属元素(金属イオン)は代表的な形態のみを示しており、図示する以外の形態もとり得る。
 ≪RF電池の全体構成≫
 図1に示すRF電池1は、代表的には、交流/直流変換器を介して、発電部(例えば、太陽光発電装置や風力発電装置、その他一般の発電所など)と負荷(需要家など)との間に接続され、発電部で発電した電力を充電して蓄え、又は、蓄えた電力を放電して負荷に供給する。このRF電池1は、従来のRF電池と同様に、電池セル100と、この電池セル100に電解液を供給する循環機構(タンク、配管、ポンプ)とを備える。
 (電池セル及び循環機構)
 RF電池1における電池セル100は、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103を分離すると共にイオンを透過する隔膜101とを備える。正極セル102には、正極電解液を貯留する正極用タンク106が配管108,110を介して接続されている。負極セル103には、負極電解液を貯留する負極用タンク107が配管109,111を介して接続されている。
また、配管108,109にはそれぞれ、両極の電解液を循環させるポンプ112,113が設けられている。電池セル100は、配管108~111とポンプ112,113によって、正極セル102(正極電極104)及び負極セル103(負極電極105)にそれぞれ正極用タンク106の正極電解液及び負極用タンク107の負極電解液を循環供給して、両極における電解液中の活物質となる金属イオン(本実施形態ではVイオン)の価数変化に伴って充放電を行う。
 電池セル100は通常、正極電極104(正極セル102と)と負極電極105(負極セル103)と隔膜101とを構成要素とする単セルを複数積層したセルスタックと呼ばれる形態で利用される。セルスタックには、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、電解液を供給する給液孔及び電解液を排出する排液孔を有し、上記双極板の外周に形成される枠体(図示せず)とを備えるセルフレームが利用される。複数のセルフレームを積層することで、上記給液孔及び排液孔は電解液の流路を構成し、この流路は配管108~111に接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…の順に積層して構成される。なお、RF電池の基本構成は、公知の構成を適宜利用することができる。
 (RF電解液)
 本実施形態のRF電解液は、溶媒中に活物質となるイオンを含有させた液体であって、特定の有機物の含有量が非常に低い。図1に示す例では、正極電解液および負極電解液とで、Vイオンを含有する共通のRF電解液を使用している。正極電解液および負極電解液の平均価数は3.3以上、3.7以下、Vイオン濃度は1M以上、3M以下とすることが好ましい。より好ましい平均価数は3.4以上、3.6以下、Vイオン濃度は1.5M以上、1.9M以下である。
 RF電解液の溶媒としては、例えば、HSO、KSO、NaSO、HPO、H、KHPO、NaPO、KPO、HNO、KNO、HCl及びNaNOから選択される少なくとも1種の水溶液を用いることができる。その他、RF電解液の溶媒として有機酸溶媒を利用することもできる。
 RF電解液における特定の有機物とは、炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物である。この有機物には、脂肪族炭化水素そのものも含まれる。また、この有機物における脂肪族炭化水素からなる部位には、直鎖構造を有するものも、分岐鎖構造を有するものも含まれる。
 脂肪族炭化水素としては、例えば以下のものを挙げることができる。
・Undecane(C1124
・Nonadecane(C1940
・Hexadecane(C1634
・Heptadecane(C1736
・5-Octadecene(C1836
・Eicosane(C2042
・Heneicosane(C2144
 また、脂肪族炭化水素からなる部分を有する有機物としては、脂肪族炭化水素の末端が酸素や、窒素、硫黄、リンなどで置換された置換系有機物を挙げることができる。その他、脂肪族炭化水素からなる部位とそれ以外の部位とが酸素原子を介して結合したエステル系有機物も本実施形態の有機物に含まれる。このような有機物の一例を以下に列挙する。
[置換系の有機物]
・Hexadecanenitrile(C1631N、脂肪族炭化水素からなる部位の炭素数は15)
・Octadecanenitrile(C1835N、脂肪族炭化水素からなる部位の炭素数は17)
[エステル系有機物]
・Benzoic acid,2-ethylhexyl ester(C1522、脂肪族炭化水素からなる部位の炭素数は8)
・1,2-Benzenedicarboxylic acid,butyl octyl ester(C2030、脂肪族炭化水素からなる部位が二つあり、一方の炭素数は4、他方の炭素数は8)
・2-propenoic acid,3-(4-methoxyphenyl)-,2-ethylhexyl ester(C1826、脂肪族炭化水素からなる部位の炭素数は8)
 また、上記有機物の含有量は、5mg/リットル以下とする。有機物の含有量は、好ましくは1mg/リットル以下とする。RF電池1の電極との関係で言えば、上記有機物の含有量は、0.0005×α÷β以下、好ましくは0.0001×α÷β以下とする(但し、αは電極の質量(g)であり、βはRF電解液の体積(リットル)である)。
 (タンクおよび配管)
 正極用タンク106、負極用タンク107、および配管108~111は、上記RF電解液が接触する部材である。そのため、これらの部材106~111に脂肪族炭化水素からなる部位を有する有機物が含有されていたり付着したりしていると、RF電池1の運転に伴いRF電解液における上記有機物の含有量が上昇する可能性がある。そこで、これらの部材106~111として、上記有機物を含まない物、あるいは製造工程において上記有機物を使用しない物(例えば、部材を作製する金型の離型剤に上記有機物を使用しない物)を利用することが好ましい。例えば、部材106~111は、密度(ASTM D 1505)が0.080g/cm以上、0.960g/cm以下の範囲内にあり、メルトフローレート(ASTM D 1238,測定条件:190℃、荷重2.16kg)が0.01g/10分以上、20g/10分以下の範囲内にあるエチレン単独重合体、あるいは上記範囲の密度とメルトフローレートのエチレン・αオレイン共重合体などで作製すれば良い。なお、RF電解液を輸送する輸送タンクにおいても、上記部材106~111と同様のことが言える。
<試験例1>
 正負極の電極として、市販の炭素フェルト(3×3cm,0.3g)を複数用意し、これらの電極をそれぞれ、特定の有機物の含有量が異なるエタノール溶液3mlに浸した。
上記特定の有機物は次の二種類である。
・Hexadecane;炭素数16の脂肪族炭化水素そのもの(以下、規制対象有機物と呼ぶ)
・p-Xylene;炭素数8の芳香族炭化水素(炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有さない有機物であって、以下、非規制対象有機物と呼ぶ)
 次に、電極に含まれるエタノールを乾燥させて、上記特定の有機物を電極に吸着させ、有機物を含有した複数の電極を作製した。これらの電極を用いて上記構成のRF電池1を構築した。当該RF電池1では、正極電解液としてバナジウムイオン濃度が1.7Mで平均価数が3.5、硫酸イオン濃度が4.3Mの硫酸溶液、負極電解液としてバナジウムイオン濃度が1.7Mで平均価数が3.5、硫酸イオン濃度が4.3Mの硫酸溶液を用いた。これら電解液は、上記特定の有機物が予め含有されていないもの、即ち、意図的に上記特定の有機物を含有させていないものを用いた。この電解液中における上記特定の有機物の含有量の測定は、ヘリウム雰囲気中で300℃×5分の前処理を施してガスクロマトグラフ分析装置により行った。当該装置の検出限界は1×10-6mg/リットルであり、上記特定の有機物の含有量が検出限界以下のRF電解液は、実質的に上記特定の有機物を含まないものとする。
 特定の有機物の吸着量が異なる電極を備えるRF電池1を以下の充放電条件で充放電を行った後、セル抵抗率(Ω・cm)を測定した。セル抵抗率は、『電極面積×(充電電圧カーブの中点電圧-放電電圧カーブの中点電圧)÷(2×電流)』により求めた。その結果を表1に示す。また、本例で用いた電池を10時間放電容量の電池とした場合、1時間放電容量の電池とした場合において、それぞれ電解液中の有機物の含有量(濃度,mg/リットル)を表1に示す。
 (充放電条件)
  充放電方法 :定電流
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)
  放電終了電圧:1.00(V)
  温度    :25℃
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、規制対象有機物を含むRF電解液を用いたRF電池では、RF電解液に含有される規制対象有機物の含有量が少ないほどセル抵抗率の上昇が少ないことがわかる。特に、10時間容量のRF電池および1時間容量のRF電池のいずれにおいても、RF電解液中の規制対象有機物の濃度が5mg/リットル以下、さらに1mg/リットル以下であれば、セル抵抗率の上昇が小さいことがわかる。また、表1に示すように電極に吸着された規制対象有機物の含有量が少ないほどセル抵抗率の上昇が小さいことがわかる。特に、規制対象有機物の含有量が電極質量に対して500ppm以下、さらに100ppm以下であれば、セル抵抗率の上昇が小さいことがわかる。このように、電解液中における規制対象有機物の含有量を5mg/リットル以下(好ましくは1mg/リットル以下)とする、或いは、規制対象有機物の含有量を電極の質量に対して500ppm以下(好ましくは100ppm以下)とすれば、電池出力の低下や電池容量の低下を低減することができると推測される。
 一方、表2に示すように、炭素数が8以上であるが脂肪族炭化水素ではない非規制対象有機物を含むRF電解液を用いたRF電池では、顕著なセル抵抗率の増加が認められなかった。
 なお、本例では、電極に規制対象有機物を吸着させておらず、また予め規制対象有機物を含まないRF電池用電解液を利用した試料No.1,6では、電池抵抗が最も小さかった。しかし、このような電池であっても、電池構成部材から規制対象有機物が分解・溶出してRF電解液中の規制対象有機物の含有量が5mg/リットル超、あるいは電極の質量に対して500ppm超となる可能性がある。従って、電池使用時において、適宜規制対象有機物の含有量を測定し、規制対象有機物の含有量が5mg/リットル以下、或いは電極の質量に対して500ppm以下となるように適宜ろ過するなどの操作を行うとよい。
<試験例2>
 試験例2では実際の運用に供するRF電池を想定して充放電試験を行なった。まず、電極面積が500cmの炭素フェルト製の正極電極と負極電極を用意した。両電極の合計質量は約35gであった。また、RF電解液として、規制対象有機物の含有量が異なる二種類のRF電解液を用意し、それぞれのRF電解液を用いて2時間容量のRF電池を作製した。用意した電解液は以下の通りである。
[A]…規制対象有機物であるHexadecane(C1634)と、Hexadecanenitrile(C1631N)と、Octadecanenitrile(C1835N)と、の総含有量が0.5mg/リットルのバナジウム系RF電解液
[B]…上記[A]に記載される3種の規制対象有機物の総含有量が2.5mg/リットルのバナジウム系RF電解液
※RF電解液のバナジウムイオンの価数と濃度、および硫酸イオンの濃度は、試験例1と同様である。
 上記[A]のRF電解液を用いた2時間容量のRF電池と、上記[B]のRF電解液を用いた2時間容量のRF電池を作製し、各RF電池に対して1600サイクルの充放電試験を行なった。上記[A]のRF電解液のRF電池では、電極に対する規制対象有機物の質量は100ppmであり、上記[B]のRF電解液のRF電池では、電極に対する規制対象有機物の質量は500ppmであった。充放電試験における充放電条件は試験例1と同じとし、1サイクル目のセル抵抗率(Ω・cm)と、1600サイクル目のセル抵抗率(Ω・cm)とを求めた。その結果、[A]のRF電解液を用いたRF電池のセル抵抗率は、1サイクル目で約1.24Ω・cm、1600サイクル目で約1.26Ω・cmとなっていた。一方、[B]のRF電解液を用いたRF電池のセル抵抗率は、1サイクル目で約1.31Ω・cm、1600サイクル目で約1.45Ω・cmとなっていた。以上のことから、2時間容量において、規制対象有機物の含有量が2.5mg/リットルのRF電解液よりも、同含有量が0.5mg/リットルのRF電解液の方が、サイクル特性に優れたRF電池を得られることが判った。
 本発明のレドックスフロー電池用電解液は、レドックスフロー電池といった二次電池の電解液として好適に利用することができる。また、本実施形態のレドックスフロー電池は、負荷平準用途や瞬低・停電対策用の電池として好適に利用することができる。
1 レドックスフロー電池(RF電池)
 100 電池セル
 101 隔膜  102 正極セル  103 負極セル
 104 正極電極  105 負極電極
 106 正極用タンク  107 負極用タンク
 108~111 配管
 112,113 ポンプ

Claims (8)

  1.  炭素数が8以上、24以下の脂肪族炭化水素からなる部位を有する有機物の含有量が5mg/リットル以下であるレドックスフロー電池用電解液。
     但し、1-tetradecene、n-decane、1-octanethiol、および炭素数が8の脂肪族炭化水素からなる部位を有するエステル系有機物の少なくとも1種を含有するレドックスフロー電池用電解液は除く。
  2.  前記炭素数が8以上、19以下である請求項1に記載のレドックスフロー電池用電解液。
  3.  前記脂肪族炭化水素は、脂肪族飽和炭化水素である請求項1または請求項2に記載のレドックスフロー電池用電解液。
  4.  前記有機物は、前記脂肪族炭化水素とそれ以外の部位とが酸素原子を介して結合した有機物である請求項1~請求項3のいずれか一項に記載のレドックスフロー電池用電解液。
  5.  正極活物質および負極活物質として機能するバナジウムイオンを含む請求項1~請求項4のいずれか一項に記載のレドックスフロー電池用電解液。
  6.  バナジウムイオン濃度が1.5M以上、1.9M以下、硫酸イオン濃度が4.1M以上、4.5M以下である請求項5に記載のレドックスフロー電池用電解液。
  7.  請求項1~請求項6のいずれか一項に記載のレドックスフロー電池用電解液を備えるレドックスフロー電池。
  8.  前記有機物の含有量が、0.0005×α÷β以下である請求項7に記載のレドックスフロー電池。
     但し、αは電極の質量であって単位はgであり、βはレドックスフロー電池用電解液の体積であって単位はリットルである。
PCT/JP2014/059395 2013-04-25 2014-03-31 レドックスフロー電池用電解液、およびレドックスフロー電池 WO2014174999A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/402,277 US20150140471A1 (en) 2013-04-25 2014-03-31 Redox flow battery electrolyte and redox flow battery
AU2014258654A AU2014258654A1 (en) 2013-04-25 2014-03-31 Electrolyte solution for redox flow batteries, and redox flow battery
EP14788693.1A EP2843744A4 (en) 2013-04-25 2014-03-31 ELECTROLYTE SOLUTION FOR REDOX FLOW BATTERIES AND REDOX FLOW BATTERY
CN201480001316.0A CN104321918A (zh) 2013-04-25 2014-03-31 氧化还原液流电池电解液和氧化还原液流电池
IN9730DEN2014 IN2014DN09730A (ja) 2013-04-25 2014-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092866A JP2014216203A (ja) 2013-04-25 2013-04-25 レドックスフロー電池用電解液、およびレドックスフロー電池
JP2013-092866 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014174999A1 true WO2014174999A1 (ja) 2014-10-30

Family

ID=51791581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059395 WO2014174999A1 (ja) 2013-04-25 2014-03-31 レドックスフロー電池用電解液、およびレドックスフロー電池

Country Status (8)

Country Link
US (1) US20150140471A1 (ja)
EP (1) EP2843744A4 (ja)
JP (1) JP2014216203A (ja)
CN (1) CN104321918A (ja)
AU (1) AU2014258654A1 (ja)
IN (1) IN2014DN09730A (ja)
TW (1) TWI518978B (ja)
WO (1) WO2014174999A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075577A1 (en) 2015-10-30 2017-05-04 Massachusetts Institute Of Technology Air-breathing aqueous sulfur rechargeable batteries
KR102229442B1 (ko) * 2016-09-22 2021-03-17 주식회사 엘지화학 수계 레독스 플로우 전지용 유기계 양극 활물질
CN109769399B (zh) * 2017-09-08 2021-12-31 住友电气工业株式会社 氧化还原液流电池单元、氧化还原液流电池单元组和氧化还原液流电池
CN111200152A (zh) * 2018-11-19 2020-05-26 大连融科储能技术发展有限公司 一种全钒液流电池电解液的配方及工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167257A (ja) * 1997-08-19 1999-03-09 Kashimakita Kyodo Hatsuden Kk バナジウム電解液の製造方法
JP2002020123A (ja) * 2000-07-04 2002-01-23 Nippon Chem Ind Co Ltd 3価と4価の混合バナジウム化合物の製造方法およびバナジウム系電解液の製造方法
JP2003157882A (ja) * 2001-11-21 2003-05-30 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2004111182A (ja) 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd レドックスフロー電池用電極の再賦活方法
JP2004119311A (ja) 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd 電解液循環型電池の運転方法及び電解液循環型電池
JP2007012468A (ja) 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd 二次電池用電解液
JP2013232434A (ja) * 2013-07-11 2013-11-14 Sumitomo Electric Ind Ltd レドックスフロー電池用電解液、レドックスフロー電池、及びレドックスフロー電池の運転方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466349C (zh) * 2006-07-19 2009-03-04 中国科学院金属研究所 一种全钒离子氧化还原液流电池电解液的制备方法
CN102110836A (zh) * 2011-01-26 2011-06-29 上海林洋储能科技有限公司 一种高稳定性的钒离子电解液
CN102324547A (zh) * 2011-07-27 2012-01-18 四川省川威集团有限公司 全钒离子氧化还原液流电池电解液的制备方法
CN102637892B (zh) * 2012-04-11 2014-12-10 朝阳华鼎储能技术有限公司 一种全钒离子氧化还原液流电池电解液的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167257A (ja) * 1997-08-19 1999-03-09 Kashimakita Kyodo Hatsuden Kk バナジウム電解液の製造方法
JP2002020123A (ja) * 2000-07-04 2002-01-23 Nippon Chem Ind Co Ltd 3価と4価の混合バナジウム化合物の製造方法およびバナジウム系電解液の製造方法
JP2003157882A (ja) * 2001-11-21 2003-05-30 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2004111182A (ja) 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd レドックスフロー電池用電極の再賦活方法
JP2004119311A (ja) 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd 電解液循環型電池の運転方法及び電解液循環型電池
JP2007012468A (ja) 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd 二次電池用電解液
JP2013232434A (ja) * 2013-07-11 2013-11-14 Sumitomo Electric Ind Ltd レドックスフロー電池用電解液、レドックスフロー電池、及びレドックスフロー電池の運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843744A4

Also Published As

Publication number Publication date
AU2014258654A1 (en) 2014-11-27
TWI518978B (zh) 2016-01-21
EP2843744A1 (en) 2015-03-04
EP2843744A4 (en) 2015-05-27
JP2014216203A (ja) 2014-11-17
TW201513450A (zh) 2015-04-01
IN2014DN09730A (ja) 2015-07-31
US20150140471A1 (en) 2015-05-21
CN104321918A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CA2789889C (en) Redox flow battery and method of operating the same
EP3176862B1 (en) Electrolyte for redox flow battery and redox flow battery system
AU2010341425A1 (en) Redox flow battery
JP6271742B2 (ja) フローバッテリにおける電解質の分配
WO2014174999A1 (ja) レドックスフロー電池用電解液、およびレドックスフロー電池
JP5433100B2 (ja) レドックスフロー電池用電解液、レドックスフロー電池、及びレドックスフロー電池の運転方法
CN109478673B (zh) 电解液流通电池用电解液及电解液流通电池系统
JP5426065B2 (ja) レドックスフロー電池
WO2017006729A1 (ja) レドックスフロー電池用電極、及びレドックスフロー電池システム
JP6434192B2 (ja) レドックスフロー電池
US10673089B2 (en) Reduction-oxidation flow battery
CN109477230B (zh) 电解液、电解槽用电解液和电解槽系统
JP2016186853A (ja) バナジウムレドックス電池
US11901597B2 (en) Redox flow battery cell, cell stack and redox flow battery system
EP3223340B1 (en) Separator layer for flow battery
EP4002531A1 (en) Redox flow battery cell, cell stack and redox flow battery system
JP2020520057A (ja) レドックスフロー電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14402277

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014788693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014788693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014258654

Country of ref document: AU

Date of ref document: 20140331

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE