WO2014174952A1 - 電極材料および電極並びにリチウムイオン電池 - Google Patents

電極材料および電極並びにリチウムイオン電池 Download PDF

Info

Publication number
WO2014174952A1
WO2014174952A1 PCT/JP2014/057790 JP2014057790W WO2014174952A1 WO 2014174952 A1 WO2014174952 A1 WO 2014174952A1 JP 2014057790 W JP2014057790 W JP 2014057790W WO 2014174952 A1 WO2014174952 A1 WO 2014174952A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
nickel
active material
electrode material
electrode active
Prior art date
Application number
PCT/JP2014/057790
Other languages
English (en)
French (fr)
Inventor
大野 宏次
高郎 北川
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to EP14788609.7A priority Critical patent/EP2892092B1/en
Priority to CN201480023626.2A priority patent/CN105144440A/zh
Priority to JP2014536455A priority patent/JP5741882B2/ja
Publication of WO2014174952A1 publication Critical patent/WO2014174952A1/ja
Priority to US14/608,812 priority patent/US20150140428A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode material, an electrode, and a lithium ion battery.
  • non-aqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put into practical use as small, light, and high capacity batteries.
  • a lithium ion battery is composed of a positive electrode and a negative electrode having a property capable of reversibly removing and inserting lithium ions, and a non-aqueous electrolyte.
  • Lithium ion batteries are lighter and smaller than secondary batteries such as conventional lead batteries, nickel cadmium batteries, and nickel metal hydride batteries, and have high energy. Therefore, the lithium ion battery is used as a power source for portable electronic devices such as a portable telephone, a notebook personal computer, and a portable information terminal.
  • lithium ion batteries have been studied as high-output power sources for electric vehicles, hybrid vehicles, electric tools, and the like. High-speed charge / discharge characteristics are required for the electrode active materials of batteries used as these high-output power supplies. In addition to smoothing the power generation load, application to large batteries such as stationary power sources and backup power sources is also being studied, and it is also important that there is no problem of resource amount as well as long-term safety and reliability.
  • the positive electrode of the lithium ion battery is composed of an electrode material including a lithium-containing metal oxide, a positive electrode active material, and a lithium-containing metal oxide having a property capable of reversibly removing and inserting lithium ions, a conductive additive, and a binder. Moreover, the positive electrode of a lithium ion battery is formed by apply
  • lithium (Li) compounds such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (LiFePO 4 ) are also used.
  • lithium cobaltate and lithium nickelate have problems such as instability of charge state, in addition to problems of element toxicity and resource amount.
  • lithium manganate has a problem of dissolution in an electrolytic solution at a high temperature. Therefore, in recent years, phosphate-based electrode materials having an olivine structure typified by lithium iron phosphate have attracted attention as electrode materials that are excellent in long-term safety and reliability.
  • phosphate-based electrode materials do not have sufficient electron conductivity. Therefore, in order to charge and discharge a large current, various devices such as finer particles and composite with a conductive material are required, and many efforts have been made so far.
  • a method for increasing the electron conductivity of the phosphate-based electrode material for example, a method of adding and dissolving a second and third elements has been proposed (see, for example, Patent Document 1). Further, it is known that elements such as chromium and nickel contained in the electrode material are dissolved in the electrolytic solution at the time of charging and discharging, and re-deposited and grown on the negative electrode.
  • Elements such as manganese, iron, and cobalt used in the electrode material are similar in nature to elements such as chromium and nickel, which are elements of the same period (fourth period) in the periodic table. Therefore, elements such as chromium and nickel are easily mixed into the electrode material from the raw materials and the environment. Elements such as chromium and nickel mixed in the electrode material cause defects in the crystal structure and are likely to be the starting point of dissolution described above. As a result, there is a problem that not only does the negative electrode damage due to dissolution and the safety decrease due to a short circuit occur, but also the amount of active species in the electrode active material is reduced and the capacity of the lithium ion battery is reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrode material, an electrode, and a lithium ion battery excellent in electronic conductivity, load characteristics, and cycle characteristics.
  • the present inventors have a high oxidation-reduction potential, so by adding a small amount of nickel that is inactive in the reaction potential range of elements such as manganese, iron, and cobalt, The present inventors have found that a good phosphate-based electrode material excellent in electron conductivity and load characteristics can be realized, and have completed the present invention.
  • the electrode material of the present invention is [1] Li x Fe y A z BO 4 (where A is one or more selected from the group consisting of Mn and Co, and B is one or more selected from the group consisting of P, Si and S, or An electrode material comprising two or more types, an electrode active material represented by 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1.5, 0 ⁇ z ⁇ 1.5) as a main component and containing nickel, A surface of particles of the electrode active material is coated with a carbonaceous film, and the nickel content is 1 ppm or more and 100 ppm or less.
  • the electrode material of the present invention is the electrode material according to [1], wherein the manganese content is 5000 ppm or less.
  • the electrode of the present invention is an electrode characterized by being formed using the electrode material according to any one of [1] to [3].
  • a lithium ion battery of the present invention is a lithium ion battery comprising a positive electrode comprising the electrode according to [4].
  • the electrode material excellent in electronic conductivity, load characteristics, and cycling characteristics, an electrode, and a lithium ion battery can be provided.
  • the electrode material of this embodiment is Li x Fe y A z BO 4 (where A is one or more selected from the group consisting of Mn and Co, and B is selected from the group consisting of P, Si and S) 1 or 2 or more, 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1.5, 0 ⁇ z ⁇ 1.5), and an electrode comprising nickel as a main component
  • the electrode active material particle surface is covered with a carbonaceous film, and the nickel content is 1 ppm or more and 100 ppm or less.
  • the manganese content is preferably 5000 ppm or less, and more preferably 1 ppm or more and 5000 ppm or less.
  • the cobalt content is preferably 80 ppm or less, and more preferably 1 ppm or more and 80 ppm or less.
  • the electrode material of the present embodiment is Li x Fe y A z BO 4 (where A is one or more selected from the group consisting of Mn and Co, B is P, The particle surface of the electrode active material represented by one or more selected from the group consisting of Si and S, 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1.5, 0 ⁇ z ⁇ 1.5) It is covered with a carbonaceous film.
  • the content of nickel with respect to the entire electrode material is 1 ppm or more and 100 ppm or less, preferably 1 ppm or more and 85 ppm or less, more preferably 1 ppm or more and 60 ppm or less.
  • the reason why the nickel content is preferably within the above range is that the following phenomenon occurs when the nickel content is outside the above range.
  • the content of nickel in the electrode material mainly composed of an electrode active material containing iron (Li x Fe y A z BO 4 ) is less than 1 ppm, the electron conductivity of the electrode material cannot be increased.
  • the content of nickel with respect to the entire electrode material is 1 ppm or more and 100 ppm or less, so that a lithium ion battery including an electrode formed using this electrode material as a positive electrode can be used for a long time. Even in the charge / discharge cycle, damage to the negative electrode and influence on safety can be virtually ignored. That is, when the electrode material containing an electrode active material containing iron (Li x Fe y A z BO 4 ) as a main component contains nickel in an amount of 1 ppm to 100 ppm, electron conductivity and stability (dissolution resistance) An electrode material excellent in both of these can be obtained.
  • the nickel content in the electrode material is controlled to 1 ppm or more and 100 ppm without performing performance evaluation on the battery, thereby adversely affecting the electronic conductivity and stability (dissolution resistance).
  • the manufacturing cost of the electrode material can be reduced.
  • nickel is contained in ordinary stainless steel, in the synthesis of electrode materials including a heating step with reaction, stainless steel is used as the material of the member that comes into contact with the raw material such as a container during heating and in the previous step. By using it, nickel can be added to the electrode material. Therefore, not only can the manufacturing equipment be reduced in price, and thus the cost of the product can be reduced, but also improvement in performance can be expected.
  • nickel is easily dissolved in an electrode material mainly composed of an electrode active material containing iron (Li x Fe y A z BO 4 ), but 100 ppm is included in the crystal structure. If nickel is present in excess, the elution of iron as well as nickel is accelerated. This is presumably because the lattice strain caused by nickel dissolved in the lattice becomes the starting point of dissolution.
  • a trace amount of nickel can be added.
  • a mixture in which an organic substance, which is a precursor of a carbonaceous film, is further mixed is heat-treated in a non-oxidizing atmosphere.
  • An electrode active material having excellent characteristics can be obtained. In this case, for example, it is possible to omit the addition of a new nickel source by using stainless steel for the mixing facility of the organic substance and the phosphate electrode active material and adjusting the mixing conditions.
  • the electrode material of this embodiment is an iron polyanion-based electrode material containing a trace amount of nickel, particularly a lithium-ion battery electrode material made of a phosphate-based electrode active material having an olivine structure. That is, the electrode material of the present embodiment is an electrode material such as lithium iron phosphate (LiFePO 4 ) or Li [MnFe] PO 4 , and a small amount of nickel is used to impart good electron conductivity and cycle stability. In addition, by controlling the nickel content to 1 ppm or more and 100 ppm or less, the electrode material is excellent in electronic conductivity and has virtually no adverse effects due to elution starting from lattice strain caused by nickel. It is.
  • the electrode material of the present embodiment is mainly composed of an electrode active material represented by Li x Fe y A z BO 4 containing iron, contains nickel, and the nickel content is 1 ppm or more and 100 ppm or less. It was. Thereby, the electrode material of this embodiment can improve electronic conductivity.
  • nickel dissolves in the electrolyte during charge and discharge, and reprecipitates and grows on the negative electrode, whereby the activity of the negative electrode is increased. It can be prevented from lowering.
  • a lithium ion battery equipped with an electrode formed using the electrode material of the present embodiment as a positive electrode it has excellent electronic conductivity, and even during a long charge / discharge cycle, damage to the negative electrode and impact on safety are prevented. Lithium ion batteries can be virtually ignored.
  • a lithium ion battery having high voltage, high energy density, high load characteristics, and high-speed charge / discharge characteristics can be realized. Therefore, a lithium ion battery having long-term cycle stability and reliability can be realized.
  • the electrode material of the present embodiment can be obtained by mixing an electrode active material, a nickel source, and an organic substance serving as a carbon source, and then performing a heat treatment in a non-oxidizing atmosphere.
  • the electrode active material of the present embodiment can be produced by a solid phase reaction method, a hydrothermal synthesis method, or the like, but if synthesized under a high pressure using a hydrothermal synthesis method, it is compared with a solid phase reaction method.
  • the desired substance can be obtained at a low temperature, and fine particles excellent in monodispersibility can be obtained, which is preferable.
  • an electrode active material, a nickel source, and an organic substance serving as a carbon source are dissolved or dispersed in a solvent to form a uniform slurry.
  • a dispersant may be added.
  • a nickel source is added to a raw material such as an electrode active material so that the nickel content with respect to the entire electrode material finally obtained is 1 ppm or more and 100 ppm or less.
  • a raw material containing nickel as an impurity as a part of the raw material is used.
  • combination of an electrode material the material containing nickel, such as stainless steel, is applied to the equipment used in the process before heating and before.
  • Li x Fe y A z BO 4 (where A is one or more selected from the group consisting of Mn and Co, and B is one or more selected from the group consisting of P, Si and S)
  • the electrode active material represented by 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1.5, 0 ⁇ z ⁇ 1.5) is a conventional method such as a solid phase method, a liquid phase method, or a gas phase method.
  • the produced electrode active material is used.
  • the electrode active material (Li x Fe y A z BO 4 ) was selected from the group consisting of lithium salts such as lithium acetate (LiCH 3 COO), lithium chloride (LiCl), or lithium hydroxide (LiOH), for example.
  • lithium salts such as lithium acetate (LiCH 3 COO), lithium chloride (LiCl), or lithium hydroxide (LiOH), for example.
  • Li source divalent iron salt such as iron (II) chloride (FeCl 2 ), iron (II) acetate (Fe (CH 3 COO) 2 ), iron (II) sulfate (FeSO 4 ), and phosphoric acid ( Phosphate compounds such as H 3 PO 4 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and a small amount of nickel raw material (for example, nickel chloride) (II) (NiCl 2), nickel acetate (II) (Ni (CH 3 COO) 2), manganese sulphate optionally nickel sulfate (II) (NiSO 4) nickel salt, etc.) MnSO 4), A source such as cobalt sulfate (CoSO 4) and (raw material A in the general formula Li x Fe y A z BO 4 ), a slurry-like mixture obtained by mixing the water,
  • the above raw materials use high-purity reagent grades, and a small amount of nickel raw material is added.
  • industrial grades and recycled materials can be used.
  • the Li x Fe y A z BO 4 particles may be crystalline particles or amorphous particles, or may be mixed crystal particles in which crystalline particles and amorphous particles coexist.
  • the reason that the Li x Fe y A z BO 4 particles may be amorphous particles is that the amorphous Li x Fe y A z BO 4 particles are non-oxidized at 500 ° C. or more and 1000 ° C. or less. This is because crystallization occurs when heat treatment is performed in a neutral atmosphere. Therefore, in the case of forming a carbonaceous film for further enhancing electronic conductivity, amorphous Li x Fe y A z BO 4 powder is preferably used.
  • the size of Li x Fe y A z BO 4 particles is not particularly limited, but the average particle size is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.02 ⁇ m or more and 5 ⁇ m or less. .
  • the reason why the average particle size of the primary particles of the electrode active material is preferably within the above range is as follows when the average particle size of the primary particles of the electrode active material is outside the above range. This is because a different phenomenon occurs.
  • the average particle size of the primary particles of the electrode active material is less than 0.01 ⁇ m, a large amount of binder resin for binding the electrode material is required, and the ratio of the electrode active material in the electrode plate is reduced. As a result, not only the capacity decreases, but it becomes difficult to form a good carbonaceous film for further enhancing the electron conductivity, and the discharge capacity in high-speed charge / discharge is reduced. Therefore, it becomes difficult to realize sufficient charge / discharge rate performance.
  • the average particle diameter of the primary particles of the electrode active material exceeds 20 ⁇ m, the internal resistance of the primary particles increases, and the discharge capacity in high-speed charge / discharge becomes insufficient.
  • the average particle diameter in this embodiment is a number average particle diameter.
  • the average particle size of the primary particles of the electrode active material can be measured using a laser diffraction scattering type particle size distribution measuring device or the like.
  • the shape of the electrode active material is not particularly limited, but it is easy to produce an electrode material composed of spherical, particularly spherical, secondary particles. Therefore, the shape of the primary particles composed of the electrode active material is also spherical, particularly true spherical. preferable.
  • the reason why the shape of the primary particles of the electrode active material is preferably spherical, and particularly true spherical, is that the electrode active material, the binder resin (binder), and the solvent are mixed to produce an electrode (positive electrode). This is because, when preparing the paste, the amount of the solvent can be reduced, and the electrode (positive electrode) preparation paste can be easily applied to the current collector.
  • the average molecular weight of the organic substance serving as the carbon source is preferably 200,000 or less, more preferably 100,000 or less.
  • the solubility of the organic substance in water decreases.
  • the viscosity of the obtained solution becomes high, and this high viscosity may cause a decrease in workability, which is not preferable.
  • examples of such organic substances include glucose, sucrose, polyvinyl alcohol, polyacrylic acid, and hydroxy acid. These organic substances may be used alone or in combination of two or more.
  • the solvent is preferably water, but in addition to water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol: IPA), butanol, pentanol, hexanol, octanol, diacetone alcohol, Ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as ⁇ -butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether ( Ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether Ethers such as tellurium, ketones such as acetone, methyl ethyl ketone (MEK
  • the electrode active material or the precursor of the electrode active material is uniformly dispersed, and the organic substance is dissolved or dispersed. If there is, it will not be specifically limited.
  • a method for dissolving or dispersing the raw material of the electrode material in a solvent for example, a method using a medium stirring type dispersing device such as a planetary ball mill, a vibration ball mill, a bead mill, a paint shaker, or an attritor that stirs medium particles at high speed is preferable.
  • a uniform slurry can be prepared by dispersing the electrode active material as primary particles and then stirring so as to dissolve the organic substance, which is preferable. By doing so, the surface of the primary particles of the electrode active material is coated with the organic substance, and as a result, the carbon derived from the organic substance is uniformly interposed between the primary particles of the electrode active material.
  • this slurry is sprayed in a high-temperature atmosphere, for example, in the air of 70 ° C. or more and 250 ° C. or less and dried.
  • the conditions at the time of spraying for example, the concentration of the electrode active material or its precursor in the slurry, the concentration of the organic compound, the spraying pressure, the speed, and the conditions at the time of drying after spraying, for example, the atmospheric temperature, residence Adjust time etc. as appropriate.
  • a dried product having an average particle size of 0.5 ⁇ m or more and 100 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less is obtained.
  • the dried product is heat-treated at a temperature of 400 ° C. or higher and 1000 ° C. or lower, preferably 550 ° C. or higher and 850 ° C. or lower in a non-oxidizing atmosphere, that is, in an inert atmosphere or a reducing atmosphere.
  • a non-oxidizing atmosphere that is, in an inert atmosphere or a reducing atmosphere.
  • an atmosphere made of an inert gas such as nitrogen (N 2 ) or argon (Ar) is preferable, and when it is desired to suppress oxidation, a reducing atmosphere containing a reducing gas such as hydrogen (H 2 ). Is preferred.
  • the reason why the heat treatment temperature is set to 400 ° C. or more and 1000 ° C. or less is that the following phenomenon occurs when the heat treatment temperature is out of the above range.
  • the heat treatment temperature is less than 400 ° C.
  • the decomposition / reaction of the organic substance serving as the carbon source does not proceed sufficiently, and if the carbonization of the organic substance serving as the carbon source becomes insufficient, the generated decomposition / reaction product is high resistance carbon. It becomes a thin layer made of an electron-conductive material.
  • the heat treatment temperature exceeds 1000 ° C. components of Li x Fe y A z BO particles constituting the electrode active material, for example, lithium (Li) evaporate, resulting in a shift in composition.
  • the heat treatment time is not particularly limited as long as the organic substance serving as the carbon source is sufficiently carbonized, and examples thereof include a time of 0.5 hours or more and 48 hours or less.
  • the electrode material of the present embodiment can be obtained.
  • an electrode material of the present embodiment after mixing an electrode active material, a nickel source, and an organic substance serving as a carbon source, heat treatment is performed in a non-oxidizing atmosphere, thereby improving electron conductivity.
  • an electrode material excellent in electronic conductivity, load characteristics, and cycle characteristics can be easily realized at lower cost, lower environmental load, and lower device damage.
  • the electrode of this embodiment is an electrode formed using the electrode material of this embodiment.
  • the electrode material, a binder composed of a binder resin, and a solvent are mixed to prepare an electrode-forming paint or an electrode-forming paste.
  • a conductive aid such as carbon black may be added as necessary.
  • the binder resin for example, polytetrafluoroethylene (PTFE) resin, polyvinylidene fluoride (PVdF) resin, fluororubber, and the like are preferably used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • fluororubber fluororubber
  • the mixing ratio of the electrode material and the binder resin is not particularly limited.
  • the binder resin is 1 part by mass or more and 30 parts by mass or less, preferably 3 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the electrode material. Part or less.
  • the solvent used in the electrode-forming paint or electrode-forming paste may be appropriately selected according to the properties of the binder resin.
  • water methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol: IPA)
  • Alcohols such as butanol, pentanol, hexanol, octanol, diacetone alcohol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as ⁇ -butyrolactone, diethyl ether, Ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve) , Ethers such as diethylene glycol monomethyl ether and diethylene glycol monoethyl ether
  • the electrode-forming paint or electrode-forming paste was applied to one surface of the metal foil, and then dried, and a coating film composed of a mixture of the electrode material and the binder resin was formed on one surface. Obtain a metal foil. Next, this coating film is pressure-bonded and dried to produce an electrode having an electrode material layer on one surface of the metal foil. In this way, the electrode of this embodiment can be produced.
  • the electrode of the present embodiment since it is formed using the electrode material of the present embodiment, the electron conductivity can be enhanced, and nickel is dissolved in the electrolyte during charging and discharging, and re-deposited and grown on the negative electrode. And it can prevent that the activity of a negative electrode falls. Therefore, an electrode having excellent electron conductivity, high voltage, high energy density, high load characteristics, and high-speed charge / discharge characteristics can be realized. As a result, an electrode having long-term cycle stability and reliability can be realized.
  • the lithium ion battery of this embodiment includes a positive electrode made of the electrode of this embodiment, a negative electrode made of metal Li, Li alloy, Li 4 Ti 5 O 12 , a carbon material, etc., and an electrolyte solution and a separator or a solid electrolyte. Yes.
  • the positive electrode comprising the electrode of this embodiment since the positive electrode comprising the electrode of this embodiment is provided, the electronic conductivity, load characteristics, and cycle characteristics can be improved. Therefore, it is possible to provide a lithium ion battery having durability, high discharge capacity, sufficient charge / discharge rate performance, and having long-term cycle stability and reliability.
  • Electrode active materials and carbonization catalyst solutions used in common with the examples and comparative examples were prepared.
  • this precursor slurry was put into a pressure vessel and hydrothermal synthesis was performed at 170 ° C. for 24 hours. After this reaction, the mixture was naturally cooled to room temperature (25 ° C.) to obtain a precipitated cake-like reaction product. This precipitate was sufficiently washed with distilled water several times and kept at a water content of 30% so as not to be dried to obtain a cake-like substance. A small amount of a sample for measurement was collected from this cake-like substance, vacuum-dried at 70 ° C. for 2 hours, and the obtained powder was identified by X-ray diffraction. As a result, it was found that single-phase LiFePO 4 was formed. confirmed.
  • LiOH Lithium hydroxide
  • H 3 PO 4 phosphoric acid
  • FeSO 4 ⁇ 7H 2 O iron sulfate heptahydrate
  • Mn source manganese sulfate pentahydrate
  • LiOH Lithium hydroxide
  • H 3 PO 4 phosphoric acid
  • FeSO 4 ⁇ 7H 2 O iron sulfate heptahydrate
  • CoSO 4 ⁇ 7H 2 O cobalt sulfate heptahydrate as the Co source
  • Carbonization catalyst solution A carbonization catalyst solution for coating carbon on Li [MnFe] PO 4 active material containing Mn and Li [CoFe] PO 4 active material containing Co, which are organic carbonization negative catalysts, was prepared. Here, 1 mol each of lithium carbonate, iron (III) nitrate and phosphoric acid was added to water to prepare a total amount of 1 kg, and then stirred and dissolved to obtain a carbonization catalyst solution. The concentration in terms of LiFePO 4 in this carbonization catalyst solution was 15.78% by mass, and the molar concentration was 1 mol / kg.
  • Example 1 In the above LiFePO 4 synthesis step, iron sulfate heptahydrate (FeSO 4 ⁇ 7H 2 O) was used as a raw material, and a small amount of nickel sulfate (NiSO 4 ) was added (corresponding to a nickel content of 10 ppm in the electrode active material). A positive electrode active material made of LiFePO 4 was obtained. 20 g of the above LiFePO 4 and 1 g of the carbonization catalyst solution in terms of LiFePO 4 were mixed. Then, 4.0 g of polyvinyl alcohol was added to the mixture, and water was further added to make the total amount 100 g.
  • Electrode material A1 was obtained.
  • Example 2 A positive electrode active material made of LiFePO 4 was obtained in the same manner as in Example 1 except that nickel sulfate (NiSO 4 ) was added so as to correspond to a nickel content of 80 ppm in the electrode active material. Using the obtained positive electrode active material, an electrode material A2 coated with the carbon coating of Example 2 was obtained in the same manner as Example 1.
  • Example 3 A positive electrode active material made of LiFePO 4 was obtained in the same manner as in Example 1 except that nickel sulfate (NiSO 4 ) was added so as to correspond to a nickel content of 50 ppm in the electrode active material. Using the obtained positive electrode active material, an electrode material A3 coated with the carbon coating of Example 3 was obtained in the same manner as Example 1.
  • Example 4 A positive electrode active material made of LiFePO 4 was obtained in the same manner as in Example 1 except that nickel sulfate (NiSO 4 ) was added so as to correspond to a nickel content of 1 ppm in the electrode active material. Using the obtained positive electrode active material, an electrode material A4 coated with the carbon coating of Example 4 was obtained in the same manner as in Example 1.
  • Example 5 A part of iron sulfate heptahydrate (FeSO 4 ⁇ 7H 2 O) , to correspond to a manganese content 4500ppm in the electrode active material is replaced with manganese sulfate pentahydrate (MnSO 4 ⁇ 5H 2 O)
  • a positive electrode active material made of Li [MnFe] PO 4 was obtained in the same manner as in Example 1 except that. Using the obtained positive electrode active material, an electrode material A5 coated with the carbon coating of Example 5 was obtained in the same manner as in Example 1.
  • Example 6 A part of iron sulfate heptahydrate (FeSO 4 ⁇ 7H 2 O) , to correspond to the cobalt content 80ppm in the electrode active material, replaced with cobalt sulfate heptahydrate (CoSO 4 ⁇ 7H 2 O)
  • a positive electrode active material made of Li [CoFe] PO 4 was obtained in the same manner as Example 1 except for the above.
  • an electrode material A6 coated with the carbon coating of Example 6 was obtained in the same manner as Example 1.
  • Example 7 In the synthesis process of LiFePO 4 , iron sulfate heptahydrate (FeSO 4 ⁇ 7H 2 O) was used as a raw material, and a small amount of nickel sulfate (NiSO 4 ) was added (corresponding to a nickel content of 10 ppm in the electrode active material). A positive electrode active material made of LiFePO 4 was obtained. 20 g of the above LiFePO 4 and 4.0 g of polyvinyl alcohol were added, water was further added to make the total amount 100 g, and this mixture was pulverized and mixed together with 150 g of zirconia balls having a diameter of 5 mm in a ball mill to obtain a slurry. . The obtained slurry was dried and granulated using a spray dryer, and then heat-treated at 700 ° C. for 5 hours in a nitrogen (N 2 ) atmosphere, and coated with the carbon coating of Example 7. Electrode material A7 was obtained.
  • Example 2 A positive electrode active material made of LiFePO 4 was obtained in the same manner as in Example 1 except that nickel sulfate (NiSO 4 ) was added in an amount equivalent to a nickel content of 120 ppm in the electrode active material. Using the obtained positive electrode active material, an electrode material B2 coated with the carbon coating of Comparative Example 2 was obtained in the same manner as in Example 1.
  • Example 3 In the same manner as in Example 1, a positive electrode active material made of LiFePO 4 was obtained. The obtained positive electrode active material was heat-treated at 700 ° C. for 5 hours under a nitrogen (N 2 ) atmosphere to obtain an electrode material B3 not covered with the carbon coating of Comparative Example 3.
  • this positive electrode material paste was applied onto an aluminum (Al) foil having a thickness of 30 ⁇ m and dried. Then, it crimped
  • a counter electrode (negative electrode) made of metallic lithium was used for load characteristic evaluation.
  • the counter electrode (negative electrode) which consists of artificial graphite was used for cycle characteristic evaluation.
  • NMP N-methyl-2-pyrrolidinone
  • this counter electrode material paste was applied onto an aluminum (Al) foil having a thickness of 30 ⁇ m and dried. Then, it crimped
  • a porous polypropylene film was used as the separator.
  • LiPF 6 was used a solution of 1 mol / L.
  • the solvent used in this LiPF 6 solution 1 ethylene carbonate and diethyl carbonate at a volume ratio of: using a mixture to 1.
  • the test electrode (positive electrode), counter electrode (negative electrode), and nonaqueous electrolyte solution prepared as described above, and a 2016 type coin cell lithium ions of each of Examples 1 to 7 and Comparative Examples 1 to 3 were used.
  • a battery was produced.
  • the lithium ion batteries using the electrode materials A1 to 7 of Examples 1 to 7 all showed good load characteristics and cycle characteristics.
  • the load characteristics of the lithium ion battery using the electrode material B1 containing almost no nickel of Comparative Example 1 were inferior to those of Examples 1-7.
  • the cycle characteristics were inferior to those in Examples 1-7.
  • Examples 1 to 7 and Comparative Examples 1 to 3 acetylene black was used as a conductive additive, but the present invention is not limited to this. Carbon black, graphite, ketjen black, natural graphite, artificial graphite, etc. The carbon material may be used.
  • a counter electrode made of lithium metal was used for load characteristic evaluation, and a counter electrode made of artificial graphite was used for cycle characteristic evaluation.
  • the present invention is not limited to this. Instead, other carbon materials such as natural graphite and coke, and negative electrode materials such as Li 4 Ti 5 O 12 and Li alloys may be used as the counter electrode.
  • Examples 1 to 7 and Comparative Examples 1 to 3 ethylene carbonate containing 1 mol / L LiPF 6 solution and diethyl carbonate were mixed at a volume ratio of 1: 1 as a non-aqueous electrolyte solution that is a non-aqueous electrolyte.
  • the electrolytic solution and the separator are used.
  • the present invention is not limited to this, and a solid electrolyte may be used instead of the electrolytic solution and the separator.
  • the electrode material of the present invention comprises an electrode active material represented by Li x Fe y A z BO 4 as a main component, contains nickel, the particle surface of the electrode active material is covered with a carbonaceous film, and nickel In the lithium ion battery provided with an electrode formed using this electrode material, nickel is contained in the electrolyte during charging / discharging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電子伝導性、負荷特性およびサイクル特性に優れた電極材料が提供される。そのような電極材料は、LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質を主成分とし、ニッケルを含有してなる電極材料であり、電極活物質の粒子表面が炭素質膜で被覆されており、かつ、ニッケルの含有量が1ppm以上かつ100ppm以下である電極材料。

Description

電極材料および電極並びにリチウムイオン電池
本発明は、電極材料および電極並びにリチウムイオン電池に関する。
本願は、2013年4月24日に、日本に出願された特願2013-091117号に基づき優先権を主張し、その内容をここに援用する。
近年、小型、軽量、高容量の電池として、リチウムイオン電池などの非水電解液系の二次電池が提案され、実用に供されている。リチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正極および負極と、非水系の電解質により構成されている。
リチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型であるとともに、高エネルギーを有している。そのため、リチウムイオン電池は、携帯用電話機、ノート型パーソナルコンピュータ、携帯用情報端末等の携帯用電子機器の電源として用いられている。また、リチウムイオン電池は、近年、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されている。これらの高出力電源として用いられる電池の電極活物質には、高速の充放電特性が求められている。
また、発電負荷の平滑化と共に、定置用電源、バックアップ電源等の大型電池への応用も検討されており、長期の安全性、信頼性と共に資源量の問題がないことも重要視されている。
リチウムイオン電池の正極は、正極活物質といわれるリチウムイオンを可逆的に脱挿入可能な性質を有するリチウム含有金属酸化物、導電助剤およびバインダーを含む電極材料により構成されている。また、リチウムイオン電池の正極は、この電極材料を集電体と呼ばれる金属箔の表面に塗布することにより形成されている。リチウムイオン電池の正極活物質としては、通常、コバルト酸リチウム(LiCoO)が用いられている。また、リチウムイオン電池の正極活物質としては、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リン酸鉄リチウム(LiFePO)等のリチウム(Li)化合物も用いられている。これらの内、コバルト酸リチウムやニッケル酸リチウムは、元素の毒性や資源量の問題の他、充電状態の不安定性等の問題がある。また、マンガン酸リチウムは、高温下での電解液中への溶解の問題が指摘されている。
そこで、近年、長期の安全性、信頼性に優れた電極材料として、リン酸鉄リチウムに代表されるオリビン構造を有するリン酸塩系電極材料が注目を浴びている。
ところが、リン酸塩系電極材料は電子伝導性が十分でない。そのため、大電流の充放電を行うためには、粒子の微細化、導電性物質との複合化等、さまざまな工夫が必要であり、これまでにも多くの努力がなされている。そこで、リン酸塩系電極材料の電子伝導性を高める方法として、例えば、第二、第三の元素を添加、固溶させる方法が提案されている(例えば、特許文献1参照)。
また、電極材料中に含まれる、クロム、ニッケルといった元素は、充放電時に電解液中に溶解し、負極上に再析出、成長することが知られている。このような元素の再析出や成長は、負極の活性を低下させるばかりではなく、遂には正極と負極の間に導電経路を形成し、短絡を引き起こし、安全性に深刻な影響を与えることが知られている。このように、電極材料に過剰な異種元素を導入することは、必ずしも電極材料の電子伝導性を高めるための有効な方法とは言い難い。そのため、より純度の高い電極材料を得るための検討も多くなされている。
特開2009-263222号公報
電極材料に用いられているマンガン、鉄、コバルトといった元素は、周期表の同周期(第4周期)の元素である、クロム、ニッケルといった元素に性質が似通っている。そのため、クロム、ニッケルといった元素は、原料や環境から電極材料に混入し易い。電極材料に混入したクロム、ニッケルといった元素は、結晶構造中に欠陥を生じ、前述の溶解の起点となり易い。その結果、溶解による負極ダメージや短絡による安全性の低下を引き起こすばかりではなく、電極活物質中の活性種の量を低下させ、リチウムイオン電池の容量を低下させるという問題もあった。
 本発明は、上記の課題を解決するためになされたものであって、電子伝導性、負荷特性およびサイクル特性に優れた電極材料および電極並びにリチウムイオン電池を提供することを目的とする。
本発明者等は、上記課題を解決するために鋭意研究を行なった結果、酸化還元電位が高いため、マンガン、鉄、コバルトといった元素の反応電位範囲では不活性なニッケルを微量添加することにより、電子伝導性および負荷特性に優れた良好なリン酸塩系電極材料を実現可能なことを見出し、本発明を完成するに至った。
すなわち、本発明の電極材料は、
[1]LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質を主成分とし、ニッケルを含有してなる電極材料であって、前記電極活物質の粒子表面が炭素質膜で被覆されており、かつ、前記ニッケルの含有量が1ppm以上かつ100ppm以下であることを特徴とする電極材料である。
[2]本発明の電極材料は、前記マンガンの含有量が5000ppm以下であることを特徴とする[1]に記載の電極材料である。
[3]本発明の電極材料は、前記コバルトの含有量が80ppm以下であることを特徴とする[1]に記載の電極材料である。
[4]本発明の電極は、[1]~[3]のいずれかに記載の電極材料を用いて形成されていることを特徴とする電極である。
[5]本発明のリチウムイオン電池は、[4]に記載の電極からなる正極を備えてなることを特徴とするリチウムイオン電池である。
本発明によれば、電子伝導性、負荷特性およびサイクル特性に優れた電極材料および電極並びにリチウムイオン電池を提供できる。
以下、実施形態を説明する。
[電極材料]
本実施形態の電極材料は、LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質を主成分とし、ニッケルを含有してなる電極材料であって、電極活物質の粒子表面が炭素質膜で被覆されており、かつ、ニッケルの含有量が1ppm以上かつ100ppm以下である。
本実施形態の電極材料は、マンガンの含有量が5000ppm以下が好ましく、1ppm以上かつ5000ppm以下がより好ましい。
また、本実施形態の電極材料は、コバルトの含有量が80ppm以下が好ましく、1ppm以上かつ80ppm以下がより好ましい。
本実施形態の電極材料は、導電性をより高めるために、LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質の粒子表面が炭素質膜で被覆されている。
本実施形態の電極材料では、電極材料の全体に対するニッケルの含有量が1ppm以上かつ100ppm以下であり、1ppm以上かつ85ppm以下が好ましく、より好ましくは1ppm以上かつ60ppm以下である。
ここで、ニッケルの含有量が上記の範囲内であるのが好ましい理由は、ニッケルの含有量が上記の範囲外であると、次のような現象が生じるからである。鉄を含有する電極活物質(LiFeBO)を主成分とする電極材料におけるニッケルの含有量が1ppm未満では、電極材料の電子伝導性を高められない。一方、ニッケルの含有量が100ppmを超えると、結晶構造中に欠陥を生じ、充放電時に電解液中にニッケルが溶解し、負極上に再析出、成長する。そのため、負極の活性を低下させるばかりではなく、正極と負極の間に導電経路を形成し、短絡を引き起こす。
本実施形態の電極材料では、電極材料の全体に対するニッケルの含有量を1ppm以上かつ100ppm以下とすることにより、この電極材料を用いて形成された電極を正極として備えたリチウムイオン電池を、長期の充放電サイクルにおいても、負極へのダメージや安全性への影響を事実上無視できる。すなわち、鉄を含有する電極活物質(LiFeBO)を主成分とする電極材料に、ニッケルを1ppm以上かつ100ppm以下含有することにより、電子伝導性と安定性(溶解耐性)の両方に優れた電極材料が得られる。
一般に使用される工業グレードの鉄原料には、不純物としてニッケルが含有されており、特に、産廃鉄を利用して製造される鉄原料では、産廃鉄の種類によりニッケルを多く含有することもあり、鉄を含有する電極活物質(LiFeBO)の鉄原料に使用することが不適当である場合があった。
本実施形態の電極材料では、電池における性能評価を行うことなく、電極材料中のニッケル含有量を1ppm以上かつ100ppmに管理することにより、電子伝導性と安定性(溶解耐性)に悪影響を与えることのない工業グレードや再生原料の鉄原料を用いることができる。また、電極材料の製造コストを低減することもできる。
また、ニッケルは通常のステンレス鋼に含まれるから、反応を伴う加熱工程を含む電極材料の合成においては、加熱時およびそれ以前の工程において、容器等の原料に接触する部材の材質にステンレス鋼を用いることにより、電極材料にニッケルを添加できる。よって、製造設備の低価格化、ひいては、製品の低コスト化に繋がるばかりでなく、それによる性能の向上も期待できる。
前述のように、鉄を含有する電極活物質(LiFeBO)を主成分とする電極材料中に、ニッケルを固溶させることは容易であるが、結晶構造中に100ppmを超えてニッケルが存在すると、ニッケルはもとより、鉄自体の溶出も加速される。これは、格子中に固溶したニッケルに起因する格子ひずみが溶解の起点となるためと考えられる。
電極活物質の表面に炭素質被膜を形成する過程において、微量のニッケルを添加可能である。炭素源となる有機物とリン酸塩系電極活物質と微量のニッケルとを含む混合物、あるいは、電極活物質が炭化負触媒性を示すマンガン、コバルトの量が多い場合においては、微量のニッケルおよび鉄では不足する炭化触媒能を補うための鉄を炭素質被膜の前駆体である有機物中にさらに混合した混合物を、非酸化性雰囲気下で熱処理することにより、より高性能で、特に負荷特性、サイクル特性に優れた電極活物質材料が得られる。
この場合、例えば、有機物とリン酸塩系電極活物質の混合設備にステンレス鋼を用い、混合条件を調整することにより、新たなニッケル源の追加を省略することも可能である。
本実施形態の電極材料は、微量のニッケルを含む鉄ポリアニオン系の電極材料、とりわけオリビン構造を有するリン酸塩系電極活物質からなるリチウムイオン電池の電極材料である。すなわち、本実施形態の電極材料は、リン酸鉄リチウム(LiFePO)やLi[MnFe]POといった電極材料であって、良好な電子伝導性とサイクル安定性を付与するために、微量のニッケルを導入するとともに、ニッケル含有量を1ppm以上かつ100ppm以下に管理することにより、電子伝導性に優れ、しかも、ニッケルに起因する格子ひずみを起点とした溶出による悪影響を、事実上無しにした電極材料である。
すなわち、本実施形態の電極材料は、鉄を含有するLiFeBOで表される電極活物質を主成分とし、ニッケルを含有させて、ニッケルの含有量を1ppm以上かつ100ppm以下とした。これにより、本実施形態の電極材料は、電子伝導性を高められる。また、本実施形態の電極材料を用いて形成された電極を備えたリチウムイオン電池において、充放電時に電解液中にニッケルが溶解し、負極上に再析出、成長することにより、負極の活性が低下するのを防止できる。したがって、本実施形態の電極材料を用いて形成された電極を正極として備えたリチウムイオン電池では、電子伝導性に優れ、長期の充放電サイクルにおいても、負極へのダメージや安全性への影響を事実上無視することができるリチウムイオン電池にできる。また、高電圧、高エネルギー密度、高負荷特性および高速充放電特性を有するリチウムイオン電池を実現できる。よって、長期のサイクル安定性および信頼性を有するリチウムイオン電池を実現できる。
[電極材料の製造方法]
本実施形態の電極材料は、電極活物質と、ニッケル源と、炭素源となる有機物とを混合した後、非酸化性雰囲気下にて熱処理することにより、得られる。
なお、本実施形態の電極活物質は、固相反応法、水熱合成法等により作製することができるが、水熱合成法を用いて高圧下で合成すれば、固相反応法と比べて低温で目的の物質を得ることができ、単分散性に優れた微粒子を得ることができるので、好ましい。
次に、電極材料の製造方法について詳細に説明する。
まず、電極活物質と、ニッケル源と、炭素源となる有機物とを、溶媒に溶解あるいは分散させて、均一なスラリーとする。この溶解あるいは分散の際には、分散剤を加えてもよい。
本実施形態の電極材料を製造するには、電極活物質等の原料に、最終的に得られる電極材料の全体に対するニッケルの含有量が1ppm以上かつ100ppm以下となるように、ニッケル源を加えるか、原料の一部にニッケルを不純物として含む原料を用いる。あるいは、電極材料の合成において、加熱時およびそれ以前の工程において用いられる設備にステンレス鋼等のニッケルを含む材料を適用する。
LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質としては、固相法、液相法、気相法等の従来の方法により製造した電極活物質が用いられる。
電極活物質(LiFeBO)としては、例えば、酢酸リチウム(LiCHCOO)、塩化リチウム(LiCl)等のリチウム塩、あるいは水酸化リチウム(LiOH)からなる群から選択されたLi源と、塩化鉄(II)(FeCl)、酢酸鉄(II)(Fe(CHCOO))、硫酸鉄(II)(FeSO)等の2価の鉄塩と、リン酸(HPO)、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)等のリン酸化合物と、微量のニッケル原料(例えば、塩化ニッケル(II)(NiCl)、酢酸ニッケル(II)(Ni(CHCOO))、硫酸ニッケル(II)(NiSO)等のニッケル塩)と必要に応じて硫酸マンガン(MnSO)、硫酸コバルト(CoSO)といったA源(上記一般式LiFeBOにおけるAの原料)と、水とを混合して得られるスラリー状の混合物を、耐圧密閉容器を用いて水熱合成し、得られた沈殿物を水洗してケーキ状の前駆体物質を生成し、このケーキ状の前駆体物質を焼成して得られた化合物(LiFeBO粒子)が好適に用いられる。
最終的に得られる電極材料の全体に対するニッケルの含有量が1ppm以上かつ100ppm以下となるように管理することにより、上記の各原料は純度の高い試薬グレードを使用し、微量のニッケル原料を添加してもよく、また、工業グレードや再生原料を使用することができる。
LiFeBO粒子は、結晶性粒子であっても非晶質粒子であってもよく、結晶質粒子と非晶質粒子が共存した混晶粒子であってもよい。ここで、LiFeBO粒子が非晶質粒子でもよいとする理由は、この非晶質のLiFeBO粒子は、500℃以上かつ1000℃以下の非酸化性雰囲気下にて熱処理すると、結晶化するからである。そのため、電子伝導性をより高めるための炭素質被膜を形成する場合においては、非晶質のLiFeBO粉体が好適に用いられる。
LiFeBO粒子(1次粒子)の大きさは、特に限定されないが、平均粒径は0.01μm以上かつ20μm以下が好ましく、より好ましくは0.02μm以上かつ5μm以下である。
ここで、電極活物質の1次粒子の平均粒径が上記の範囲内であるのが好ましい理由は、電極活物質の1次粒子の平均粒径が上記の範囲外であると、次のような現象が生じるからである。電極活物質の1次粒子の平均粒径が0.01μm未満では、電極材料を結着するためのバインダー樹脂を多く必要とし、電極板中の電極活物質の割合が低くなってしまう。その結果、容量が低下するばかりでなく、電子伝導性をより高めるための良好な炭素質被膜を形成することが困難となり、高速充放電における放電容量が低くなる。そのため、充分な充放電レート性能を実現することが困難となる。一方、電極活物質の1次粒子の平均粒径が20μmを超えると、1次粒子の内部抵抗が大きくなり、高速充放電における放電容量が不充分となる。
なお、本実施形態における平均粒径とは、個数平均粒径のことである。この電極活物質の1次粒子の平均粒径は、レーザー回折散乱式粒度分布測定装置等を用いて測定できる。
電極活物質の形状は、特に限定されないが、球状、特に真球状の2次粒子からなる電極材料が生成し易いため、この電極活物質からなる1次粒子の形状も、球状、特に真球状が好ましい。
ここで、電極活物質の1次粒子の形状として球状、特に真球状が好ましいさらなる理由は、電極活物質と、バインダー樹脂(結着剤)と、溶媒とを混合して電極(正極)作製用ペーストを調製する際に、溶媒の量を低減できるとともに、この電極(正極)作製用ペーストの集電体への塗工も容易となるからである。
また、炭素源となる有機物の平均分子量は20万以下が好ましく、より好ましくは10万以下である。
ここで、炭素源となる有機物の平均分子量が20万を超えると、この有機物の水に対する溶解度が小さくなる。また、この有機物を水に溶解させたとしても、得られた溶液の粘度が高くなり、この高粘度が作業性の低下を招く虞があるので好ましくない。
このような有機物としては、グルコース、スクロース、ポリビニルアルコール、ポリアクリル酸、ヒドロキシ酸等が挙げられる。これらの有機物は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
溶媒としては、水が好ましいが、水の他、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等が挙げられる。これらは、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
上記の電極活物質と、炭素源となる有機物とを、溶媒に溶解あるいは分散させる方法としては、電極活物質または電極活物質の前駆体が均一に分散し、かつ有機物が溶解または分散する方法であれば、特に限定されない。電極材料の原料を、溶媒に溶解あるいは分散させる方法としては、例えば、遊星ボールミル、振動ボールミル、ビーズミル、ペイントシェーカー、アトライタ等の媒体粒子を高速で攪拌する媒体攪拌型分散装置を用いる方法が好ましい。
この溶解あるいは分散の際には、電極活物質を1次粒子として分散させ、その後、有機物とを溶解するように攪拌することにより均一なスラリーが調製できるため、好ましい。このようにすれば、電極活物質の1次粒子の表面が有機物で被覆され、その結果として、電極活物質の1次粒子の間に有機物由来の炭素が均一に介在するようになる。
次いで、このスラリーを高温雰囲気中、例えば、70℃以上かつ250℃以下の大気中に噴霧し、乾燥させる。
ここで、噴霧の際の条件、例えば、スラリー中の電極活物質またはその前駆体の濃度、有機化合物の濃度、噴霧圧力、速度、更に、噴霧後に乾燥させる際の条件、例えば、雰囲気温度、滞留時間等を適宜調整する。これにより、平均粒径が0.5μm以上かつ100μm以下、好ましくは0.5μm以上かつ20μm以下の乾燥物が得られる。
次いで、この乾燥物を、非酸化性雰囲気下、すなわち不活性雰囲気下または還元性雰囲気下にて、400℃以上かつ1000℃以下、好ましくは550℃以上かつ850℃以下の温度にて熱処理する。
不活性雰囲気としては、窒素(N)、アルゴン(Ar)等の不活性ガスからなる雰囲気が好ましく、より酸化を抑えたい場合には水素(H)等の還元性ガスを含む還元性雰囲気が好ましい。
ここで、熱処理温度を400℃以上かつ1000℃以下とした理由は、熱処理温度が前記の範囲外であると、次のような現象が生じるからである。熱処理温度が400℃未満では、炭素源となる有機物の分解・反応が充分に進行せず、炭素源となる有機物の炭化が不充分となった場合、生成する分解・反応物は高抵抗の炭素質電子伝導性物質からなる薄層となる。一方、熱処理温度が1000℃を超えると、電極活物質を構成するLiFeBO粒子の成分、例えば、リチウム(Li)が蒸発して組成にずれが生じる。加えて、LiFeBO粒子の粒成長が促進し、高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となる。
また、熱処理時間は、炭素源となる有機物が充分に炭化される時間であればよく、特に制限はないが、例えば、0.5時間以上かつ48時間以下の時間が挙げられる。
以上により、本実施形態の電極材料を得ることができる。
本実施形態の電極材料の製造方法によれば、電極活物質と、ニッケル源と、炭素源となる有機物とを混合した後、非酸化性雰囲気下にて熱処理するので、電子伝導性の向上と、負荷特性の向上とを同時に満足し、しかも、電解液中にニッケルが溶解し、負極上に再析出、成長して、負極の活性が低下するのを抑制可能な電極材料を容易かつ安価に製造できる。すなわち、本実施形態の電極材料の製造方法によれば、より低コスト、低環境負荷、低装置ダメージで、電子伝導性、負荷特性およびサイクル特性に優れた電極材料を容易に実現可能である。
[電極]
本実施形態の電極は、本実施形態の電極材料を用いて形成された電極である。
本実施形態の電極を作製するには、上記の電極材料と、バインダー樹脂からなる結着剤と、溶媒とを混合して、電極形成用塗料または電極形成用ペーストを調製する。この際、必要に応じてカーボンブラック等の導電助剤を添加してもよい。
上記の結着剤、すなわちバインダー樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、ポリフッ化ビニリデン(PVdF)樹脂、フッ素ゴム等が好適に用いられる。
上記の電極材料とバインダー樹脂との配合比は、特に限定されないが、例えば、電極材料100質量部に対してバインダー樹脂を1質量部以上かつ30質量部以下、好ましくは3質量部以上かつ20質量部以下とする。
電極形成用塗料または電極形成用ペーストに用いる溶媒としては、バインダー樹脂の性質に合わせて適宜選択すればよく、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等が挙げられる。これらは、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
次いで、電極形成用塗料または電極形成用ペーストを、金属箔の一方の面に塗布し、その後、乾燥し、上記の電極材料とバインダー樹脂との混合物からなる塗膜が一方の面に形成された金属箔を得る。
次いで、この塗膜を加圧圧着し、乾燥して、金属箔の一方の面に電極材料層を有する電極を作製する。
このようにして、本実施形態の電極を作製することができる。
本実施形態の電極によれば、本実施形態の電極材料を用いて形成されたので、電子伝導性を高められるとともに、充放電時に電解液中にニッケルが溶解し、負極上に再析出、成長して、負極の活性が低下するのを防止できる。したがって、電子伝導性に優れ、高電圧、高エネルギー密度、高負荷特性および高速充放電特性を有する電極を実現でき、その結果、長期のサイクル安定性および信頼性を有する電極を実現できる。
[リチウムイオン電池]
本実施形態のリチウムイオン電池は、本実施形態の電極からなる正極と、金属Li、Li合金、LiTi12、炭素材料等からなる負極と、電解液とセパレータあるいは固体電解質を備えている。
本実施形態のリチウムイオン電池によれば、本実施形態の電極からなる正極を備えているので、電子伝導性、負荷特性およびサイクル特性を向上させることができる。したがって、耐久性、高放電容量、充分な充放電レート性能を有し、長期のサイクル安定性および信頼性を有するリチウムイオン電池を提供することができる。
以下、実施例1~6および比較例1~3により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例および比較例に共通して用いられる電極活物質および炭化触媒溶液を作製した。
(電極活物質)
(1)LiFePOは、水熱合成法にて作製した。
まず、Li源として水酸化リチウム(LiOH)、P源としてリン酸(HPO)、Fe源として硫酸鉄7水和物(FeSO・7HO)を用い、これらをモル比でLi:Fe:P=2:1:1となるように純水中に投入して混合し、200mlの前駆体スラリーを作製した。
次いで、この前駆体スラリーを耐圧容器に入れ、170℃にて24時間水熱合成を行った。この反応後に室温(25℃)になるまで自然冷却し、沈殿しているケーキ状の反応生成物を得た。この沈殿物を蒸留水で複数回十分に水洗し、乾燥しないように含水率30%に保持してケーキ状物質とした。
このケーキ状物質から測定用試料を若干量採取し、70℃にて2時間真空乾燥させ、得られた粉体をX線回折で同定したところ、単相のLiFePOが生成していることが確認された。
(2)Li[MnFe]POは、水熱合成法にて作製した。
Li源として水酸化リチウム(LiOH)、P源としてリン酸(HPO)、Fe源として硫酸鉄7水和物(FeSO・7HO)、Mn源として硫酸マンガン5水和物(MnSO・5HO)を用い、これらをモル比でLi:Fe:Mn:P=2:1:1:1となるように純水中に投入して混合した以外は、LiFePOの場合と同様にして、ケーキ状物質を得た。
(3)Li[CoFe]POは、水熱合成法にて作製した。
Li源として水酸化リチウム(LiOH)、P源としてリン酸(HPO)、Fe源として硫酸鉄7水和物(FeSO・7HO)、Co源として硫酸コバルト7水和物(CoSO・7HO)を用い、これらをモル比でLi:Fe:Co:P=2:1:1:1となるように純水中に投入して混合した以外は、LiFePOの場合と同様にして、ケーキ状物質を得た。
(炭化触媒溶液)
有機物の炭化負触媒であるMnを含むLi[MnFe]PO活物質およびCoを含むLi[CoFe]PO活物質に炭素被覆するための炭化触媒溶液を調製した。
ここでは、炭酸リチウム、硝酸鉄(III)、リン酸をそれぞれ水に1molずつ加え、全体量が1kgとなるように調製し、次いで、撹拌・溶解し、炭化触媒溶液を得た。
この炭化触媒溶液中のLiFePOに換算した濃度は15.78質量%、モル濃度で1mol/kgであった。
[実施例1]
上記のLiFePOの合成工程において、原料に硫酸鉄7水和物(FeSO・7HO)を用い、硫酸ニッケル(NiSO)を微量(電極活物質中ニッケル含有量10ppm相当)添加して、LiFePOからなる正極活物質を得た。
上記のLiFePO20gと、炭化触媒溶液をLiFePO換算で1gとを混合し、次いで、この混合液にポリビニルアルコール4.0gを添加し、さらに水を添加して全体量を100gとし、この混合物を、直径5mmのジルコニアボール150gとともにボールミルにて粉砕混合し、スラリーを得た。
得られたスラリーを、スプレードライヤーを用いて乾燥、造粒し、その後、窒素(N)雰囲気下にて、700℃にて5時間、熱処理を行い、実施例1の炭素被覆で被覆された電極材料A1を得た。
[実施例2]
硫酸ニッケル(NiSO)を、電極活物質中のニッケル含有量80ppmに相当するように添加した以外は実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、実施例2の炭素被覆で被覆された電極材料A2を得た。
[実施例3]
硫酸ニッケル(NiSO)を、電極活物質中のニッケル含有量50ppmに相当するように添加した以外は実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、実施例3の炭素被覆で被覆された電極材料A3を得た。
[実施例4]
硫酸ニッケル(NiSO)を、電極活物質中のニッケル含有量1ppmに相当するように添加した以外は実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、実施例4の炭素被覆で被覆された電極材料A4を得た。
[実施例5]
硫酸鉄7水和物(FeSO・7HO)の一部を、電極活物質中のマンガン含有量4500ppmに相当するように、硫酸マンガン5水和物(MnSO・5HO)に置き換えた以外は実施例1と同様にして、Li[MnFe]POからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、実施例5の炭素被覆で被覆された電極材料A5を得た。
[実施例6]
硫酸鉄7水和物(FeSO・7HO)の一部を、電極活物質中のコバルト含有量80ppmに相当するように、硫酸コバルト7水和物(CoSO・7HO)に置き換えた以外は実施例1と同様にして、Li[CoFe]POからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、実施例6の炭素被覆で被覆された電極材料A6を得た。
[実施例7]
LiFePOの合成工程において、原料に硫酸鉄7水和物(FeSO・7HO)を用い、硫酸ニッケル(NiSO)を微量(電極活物質中のニッケル含有量10ppmに相当)添加して、LiFePOからなる正極活物質を得た。
上記のLiFePO20gと、ポリビニルアルコール4.0gを添加し、さらに水を添加して全体量を100gとし、この混合物を、直径5mmのジルコニアボール150gとともにボールミルにて粉砕混合し、スラリーを得た。
得られたスラリーを、スプレードライヤーを用いて乾燥、造粒し、その後、窒素(N)雰囲気下にて、700℃にて5時間、熱処理を行い、実施例7の炭素被覆で被覆された電極材料A7を得た。
[比較例1]
硫酸鉄7水和物(FeSO・7HO)を純水に溶解した後、再結晶させて、不純物を取り除いた。
この不純物を取り除いた硫酸鉄7水和物(FeSO・7HO)を用い、硫酸ニッケル(NiSO)を添加しなかった以外は実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、比較例1の炭素被覆で被覆された電極材料B1を得た。
[比較例2]
硫酸ニッケル(NiSO)を電極活物質中ニッケル含有量120ppm相当添加した以外は実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を用い、実施例1と同様にして、比較例2の炭素被覆で被覆された電極材料B2を得た。
[比較例3]
実施例1と同様にして、LiFePOからなる正極活物質を得た。
得られた正極活物質を窒素(N)雰囲気下にて、700℃にて5時間、熱処理を行い、比較例3の炭素被覆で被覆されてない電極材料B3を得た。
[リチウムイオン電池の作製]
実施例1~7および比較例1~3にて得られた各々の電極材料を用いて、実施例1~7および比較例1~3各々のリチウムイオン電池を作製した。
まず、上記の電極材料と、導電助剤としてアセチレンブラック(AB)と、結着材(バインダー)としてポリフッ化ビニリデン(PVdF)とを、質量比が電極材料:AB:PVdF=90:5:5となるように混合し、さらに溶媒としてN-メチル-2-ピロリジノン(NMP)を加えて流動性を付与し、正極材料ペーストとした。
次いで、この正極材料ペーストを厚み30μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、所定の密度となるように圧着し、電極板とした。
次いで、得られた各電極板を、直径16mmの円板状に打ち抜き、実施例1~7および比較例1~3各々の試験電極(正極)を作製した。
一方、負荷特性評価用として、金属リチウムからなる対極(負極)を用いた。
また、サイクル特性評価用として、人造黒鉛からなる対極(負極)を用いた。この人造黒鉛からなる対極を以下のように作製した。
人造黒鉛と、導電助剤としてアセチレンブラック(AB)と、結着材(バインダー)としてポリフッ化ビニリデン(PVdF)とを、質量比が電極材料:AB:PVdF=93:2:5となるように混合し、さらに溶媒としてN-メチル-2-ピロリジノン(NMP)を加えて流動性を付与し、対極材料ペーストとした。
次いで、この対極材料ペーストを厚み30μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、所定の密度となるように圧着し、電極板とした。
次いで、得られた各電極板を、直径16mmの円板状に打ち抜き、実施例1~7および比較例1~3各々のサイクル特性評価用の対極(負極)を作製した。
セパレータとしては、多孔質ポリプロピレン膜を用いた。
また、非水電解質である非水電解質溶液として、1mol/LのLiPF溶液を用いた。なお、このLiPF溶液に用いられる溶媒としては、炭酸エチレンと炭酸ジエチルを体積比で1:1に混合したものを用いた。
そして、以上の様にして作製された試験電極(正極)、対極(負極)および非水電解質溶液と、2016型のコインセルを用いて、実施例1~7および比較例1~3各々のリチウムイオン電池を作製した。
[電極材料のニッケル、鉄、マンガン、コバルトの定量]
実施例1~7および比較例1~3にて得られた各々の電極材料を、大気中、750℃にて5時間、熱処理を行った後、熱処理後の電極材料を塩酸で全量溶解した溶液を、ICP原子発光分光分析により定量し、電極材料のニッケル、マンガン、コバルト含有量を定量した。
また、サイクル試験後のリチウムイオン電池を解体し、対極(負極)を構成する人造黒鉛を、大気中、750℃にて5時間、熱処理を行った後、熱処理後の残渣を塩酸で全量溶解した溶液を、ICP原子発光分光分析により定量し、人造黒鉛のニッケル含有量および鉄含有量を定量した。
これらの測定結果を表1に示す。表1中、「tr.」は、検出下限未満の極微量であることを示す。
[充放電試験]
実施例1~7および比較例1~3各々のリチウムイオン電池について、充放電試験を実施した。それぞれのリチウムイオン電池について、0.1Cの電流で定電流充電を行い、各電流で放電容量を測定した。
電圧範囲は、正極活物質がLiFePOの場合2-4.2V、正極活物質がLi[MnFe]POの場合2-4.5V、正極活物質がLi[CoFe]POの場合2-4.8Vとした。
サイクル試験は、1Cの電流で2-4.2Vで行った。1000サイクル後の放電容量を、5サイクル目の放電容量で除して、容量維持率を求めた。
これらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
以上の結果によれば、実施例1~7の電極材料A1~7を用いたリチウムイオン電池では、いずれも良好な負荷特性とサイクル特性を示した。
一方、比較例1のニッケルをほとんど含まない電極材料B1を用いたリチウムイオン電池では、実施例1~7よりも負荷特性が劣っていた。また、比較例2のニッケルの含有量が100ppmを超える電極材料B2を用いたリチウムイオン電池では、実施例1~7よりもサイクル特性が劣っていた。
なお、実施例1~7および比較例1~3では、導電助剤としてアセチレンブラックを用いたが、これに限定されるものではなく、カーボンブラック、グラファイト、ケッチェンブラック、天然黒鉛、人造黒鉛等の炭素材料を用いてもよい。
また、実施例1~7および比較例1~3では、負荷特性評価用として、金属リチウムからなる対極を用い、サイクル特性評価用として、人造黒鉛からなる対極を用いたが、これに限定されるものではなく、対極として、天然黒鉛、コークスのような他の炭素材料、LiTi12やLi合金等の負極材料を用いてもよい。
また、実施例1~7および比較例1~3では、非水電解質である非水電解質溶液として、1mol/LのLiPF溶液を含む炭酸エチレンと炭酸ジエチルを体積比で1:1に混合したものを用いたが、これに限定されるものではなく、LiPFの代わりにLiBFやLiClOを用いてもよく、炭酸エチレンの代わりにプロピレンカーボネートやジエチルカーボネートを用いてもよい。
また、実施例1~7および比較例1~3では、電解液とセパレータを用いたが、これに限定されるものではなく、電解液とセパレータの代わりに固体電解質を用いてもよい。
本発明の電極材料は、LiFeBOで表される電極活物質を主成分とし、ニッケルを含有させて、電極活物質の粒子表面が炭素質膜で被覆し、かつ、ニッケルの含有量を1ppm以上かつ100ppm以下としたので、電子伝導性を高めることができるとともに、この電極材料を用いて形成された電極を備えたリチウムイオン電池において、充放電時に電解液中にニッケルが溶解し、負極上に再析出、成長させることにより、負極の活性が低下することを防止でき、より高電圧、高エネルギー密度、高負荷特性および高速充放電特性が期待される次世代の二次電池に対して適用することが可能である。

Claims (5)

  1. LiFeBO(但し、AはMnおよびCoからなる群から選択される1種または2種以上、BはP、SiおよびSからなる群から選択される1種または2種以上、0≦x<4、0<y<1.5、0≦z<1.5)で表される電極活物質を主成分とし、ニッケルを含有してなる電極材料であって、前記電極活物質の粒子表面が炭素質膜で被覆されており、かつ、前記ニッケルの含有量が1ppm以上かつ100ppm以下であることを特徴とする電極材料。
  2.  前記マンガンの含有量が5000ppm以下であることを特徴とする請求項1に記載の電極材料。
  3.  前記コバルトの含有量が80ppm以下であることを特徴とする請求項1に記載の電極材料。
  4. 請求項1~3のいずれか1項に記載の電極材料を用いて形成されていることを特徴とする電極。
  5. 請求項4に記載の電極からなる正極を備えてなることを特徴とするリチウムイオン電池。
PCT/JP2014/057790 2013-04-24 2014-03-20 電極材料および電極並びにリチウムイオン電池 WO2014174952A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14788609.7A EP2892092B1 (en) 2013-04-24 2014-03-20 Electrode material, electrode and lithium ion battery
CN201480023626.2A CN105144440A (zh) 2013-04-24 2014-03-20 电极材料和电极以及锂离子电池
JP2014536455A JP5741882B2 (ja) 2013-04-24 2014-03-20 電極材料および電極並びにリチウムイオン電池
US14/608,812 US20150140428A1 (en) 2013-04-24 2015-01-29 Electrode material, electrode, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-091117 2013-04-24
JP2013091117 2013-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/608,812 Continuation US20150140428A1 (en) 2013-04-24 2015-01-29 Electrode material, electrode, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2014174952A1 true WO2014174952A1 (ja) 2014-10-30

Family

ID=51791536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057790 WO2014174952A1 (ja) 2013-04-24 2014-03-20 電極材料および電極並びにリチウムイオン電池

Country Status (5)

Country Link
US (1) US20150140428A1 (ja)
EP (1) EP2892092B1 (ja)
JP (2) JP5741882B2 (ja)
CN (1) CN105144440A (ja)
WO (1) WO2014174952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076460A1 (en) * 2015-03-31 2016-10-05 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101874159B1 (ko) * 2015-09-21 2018-07-03 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2009263222A (ja) 2008-03-31 2009-11-12 Toda Kogyo Corp リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池
WO2011035235A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof
JP2011082131A (ja) * 2009-09-09 2011-04-21 Kansai Univ 正極材料の合成方法
WO2011138964A1 (ja) * 2010-05-06 2011-11-10 旭硝子株式会社 ケイ酸-リン酸化合物、二次電池用正極、および二次電池の製造方法
JP2012099469A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 電極用材料、蓄電装置及び電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180363B2 (ja) * 2002-01-31 2008-11-12 日本化学工業株式会社 リン酸第一鉄含水塩結晶、その製造方法及びリチウム鉄リン系複合酸化物の製造方法
JP5204966B2 (ja) * 2006-10-25 2013-06-05 日本化学工業株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP5159681B2 (ja) * 2009-03-25 2013-03-06 株式会社東芝 非水電解質電池
JP5373889B2 (ja) * 2009-03-31 2013-12-18 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質
US9269950B2 (en) * 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
US8916296B2 (en) * 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
JP5321847B2 (ja) * 2010-09-27 2013-10-23 株式会社東芝 活物質及びその製造方法、非水電解質電池及び電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2009263222A (ja) 2008-03-31 2009-11-12 Toda Kogyo Corp リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池
JP2011082131A (ja) * 2009-09-09 2011-04-21 Kansai Univ 正極材料の合成方法
WO2011035235A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof
WO2011138964A1 (ja) * 2010-05-06 2011-11-10 旭硝子株式会社 ケイ酸-リン酸化合物、二次電池用正極、および二次電池の製造方法
JP2012099469A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 電極用材料、蓄電装置及び電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076460A1 (en) * 2015-03-31 2016-10-05 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary batteries
CN106025193A (zh) * 2015-03-31 2016-10-12 住友大阪水泥股份有限公司 锂离子二次电池用正极材料及其制造方法、锂离子二次电池用正极和锂离子二次电池
US9508989B2 (en) 2015-03-31 2016-11-29 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary batteries
EP3182488A1 (en) * 2015-03-31 2017-06-21 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary batteries
CN106025193B (zh) * 2015-03-31 2018-02-13 住友大阪水泥股份有限公司 锂离子二次电池用正极材料及其制造方法、锂离子二次电池用正极和锂离子二次电池

Also Published As

Publication number Publication date
JP5741882B2 (ja) 2015-07-01
EP2892092B1 (en) 2017-08-23
JP5804217B2 (ja) 2015-11-04
CN105144440A (zh) 2015-12-09
EP2892092A4 (en) 2016-04-27
JP2015149296A (ja) 2015-08-20
US20150140428A1 (en) 2015-05-21
JPWO2014174952A1 (ja) 2017-02-23
EP2892092A1 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
US9748563B2 (en) Electrode material, electrode plate, lithium ion battery, manufacturing method for electrode material, and manufacturing method for electrode plate
JP5949798B2 (ja) 電極材料、電極材料の製造方法及び電極並びにリチウムイオン電池
WO2012121110A1 (ja) 電極活物質およびその製造方法
KR20130038382A (ko) 인산철의 제조방법, 인산철리튬, 전극 활물질, 및 이차전지
CN105470516B (zh) 电极材料、电极及锂离子电池
JP2019149356A (ja) 電極材料、電極材料の製造方法、電極、及びリチウムイオン電池
JP2016143503A (ja) リチウムイオン二次電池用正極材料の製造方法、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
US11374221B2 (en) Lithium-ion secondary battery
US11769875B2 (en) Electrode material, method for manufacturing electrode material, electrode, and lithium ion battery
JP6593510B1 (ja) 電極材料、該電極材料の製造方法、電極、及びリチウムイオン電池
US10326163B2 (en) Cathode material for lithium-ion secondary battery and lithium-ion secondary battery
US11374217B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5804217B2 (ja) 電極活物質粒子及び電極並びにリチウムイオン電池
JP2015049997A (ja) リチウムイオン電池用電極材料とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
TW201332887A (zh) 磷酸鐵之製造方法、磷酸鋰鐵、電極活性物質及二次電池
CN111033854A (zh) 非水电解质二次电池
JP6528886B1 (ja) 電極材料及びその製造方法
CN111630703A (zh) 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
JP2014194879A (ja) 電極活物質及び電極並びにリチウムイオン電池
JP6547891B1 (ja) 電極材料、該電極材料の製造方法、電極、及びリチウムイオン電池
JP2018147696A (ja) 非水系電解質二次電池用正極活物質
US10014522B2 (en) Cathode material for lithium-ion secondary battery
JP2018147695A (ja) 非水系電解質二次電池用正極活物質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023626.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014536455

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788609

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014788609

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE