WO2014174725A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2014174725A1
WO2014174725A1 PCT/JP2013/084029 JP2013084029W WO2014174725A1 WO 2014174725 A1 WO2014174725 A1 WO 2014174725A1 JP 2013084029 W JP2013084029 W JP 2013084029W WO 2014174725 A1 WO2014174725 A1 WO 2014174725A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
groove
sliding
sliding surface
Prior art date
Application number
PCT/JP2013/084029
Other languages
English (en)
French (fr)
Inventor
壮敏 板谷
雄一郎 徳永
和正 砂川
一光 香取
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP17171594.9A priority Critical patent/EP3246604B1/en
Priority to CN201380070532.6A priority patent/CN104919229B/zh
Priority to AU2013387845A priority patent/AU2013387845B2/en
Priority to JP2015513489A priority patent/JP6224087B2/ja
Priority to US14/758,765 priority patent/US9587745B2/en
Priority to EP13882696.1A priority patent/EP2990700B1/en
Publication of WO2014174725A1 publication Critical patent/WO2014174725A1/ja
Priority to US15/400,376 priority patent/US9611938B1/en
Priority to US15/400,461 priority patent/US9829109B2/en
Priority to AU2017216473A priority patent/AU2017216473B2/en
Priority to AU2017216509A priority patent/AU2017216509B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/162Special parts or details relating to lubrication or cooling of the sealing itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/3416Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with at least one continuous groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/342Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed in the sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • a mechanical seal which is an example of a sliding part
  • its performance is evaluated by the amount of leakage, the amount of wear, and torque.
  • the performance is improved by optimizing the sliding material and sliding surface roughness of the mechanical seal, and low leakage, long life, and low torque are realized.
  • further improvement in the performance of mechanical seals is required, and technical development that exceeds the framework of conventional techniques is required.
  • a spiral groove 52 is provided on a sliding surface 51 of a sliding component 50, and an attempt is made to leak to the low-pressure fluid side using the pumping action of the spiral groove 52.
  • the sealing function of the sliding surface is improved by pushing back the sealed fluid to the high pressure fluid side (see, for example, Patent Document 1).
  • the sliding surface 51 is provided with a spiral groove 52 on the high-pressure side at an angle for discharging the fluid to the high-pressure fluid side by sliding relative to the other-side sliding surface.
  • the fluid is pushed back to the high-pressure fluid side by the viscous pump effect to prevent leakage.
  • the low pressure fluid 53 for example, air enters the sliding surface on the low pressure fluid side, and the sealed surface exists as a lubricating fluid on the sliding surface.
  • the dehydration condensation reaction of a high-pressure fluid that is a fluid is promoted, and the causative substances are deposited, adhered, and deposited on the sliding surface, which causes a decrease in the sealing performance of the sliding surface. found. Further, the above-described conventional technique has a problem that the sliding surface is not sufficiently lubricated.
  • the present invention first, even when a fluid discharge means for discharging a high-pressure fluid is provided on the high-pressure side of the sliding surface, the high-pressure fluid (sealed fluid) and the low-pressure fluid on the sliding surface Sliding by preventing deposition, adhesion, and accumulation of substances causing deposition due to dehydration condensation reaction, preventing cavitation due to sudden pressure drop due to fluid discharge, and preventing deterioration of sealing performance of sliding surface
  • An object of the present invention is to provide a sliding component having an improved surface sealing function.
  • a second object of the present invention is to provide a sliding component capable of improving the lubricity of the sliding surface without reducing the negative pressure generating force of the fluid discharging means.
  • the first aspect of the present invention is a sliding component comprising a fluid discharging means for discharging a fluid to a high pressure fluid side on a high pressure side of at least one sliding surface of the sliding component.
  • a buffer groove that relaxes entry of the low-pressure fluid to the high-pressure fluid side is provided on the sliding surface on the side.
  • the buffer groove provided on the sliding surface on the low pressure side from the fluid discharge means becomes a buffer for the high pressure fluid of the low pressure fluid entering the sliding surface from the low pressure fluid side until the sliding surface is filled with the low pressure fluid This delays the period of time and suppresses the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • a fluid discharging means for discharging fluid to the high-pressure fluid side on at least one sliding surface of the sliding part positive pressure is generated on the high-pressure side of the sliding face.
  • a fluid discharge means for discharging fluid to the high pressure fluid side at a lower pressure side than the positive pressure generation mechanism, and a pressure release groove is provided between the positive pressure generation mechanism and the fluid discharge means It is.
  • the positive pressure generating mechanism generates positive pressure (dynamic pressure) to widen the interval between sliding surfaces that slide relative to each other, forms a liquid film on the sliding surfaces, improves lubricity, and increases pressure.
  • the open groove opens the positive pressure (dynamic pressure) generated by the positive pressure generation mechanism on the high pressure side up to the pressure of the high pressure side fluid, so that the fluid flows into the fluid discharge means and the negative pressure generation capability of the fluid discharge means is weakened. To maintain the sealing function of the sliding surface.
  • the sliding component of the present invention is firstly configured to discharge fluid to the high-pressure fluid side on the high-pressure side of the sliding surface on one side of the pair of sliding components that slide relative to each other.
  • the sliding component provided with the means is characterized in that a buffer groove for reducing the entry of the low-pressure fluid to the high-pressure fluid side is provided on the sliding surface on the low-pressure side of the fluid discharge means.
  • the buffer groove provided on the sliding surface on the low pressure side from the fluid discharge means serves as a buffer for the high pressure fluid of the low pressure fluid entering the sliding surface from the low pressure fluid side, and the sliding surface is The time until it is filled with the low-pressure fluid can be delayed, and the dehydration condensation reaction of the high-pressure fluid can be suppressed.
  • the low-pressure fluid is air
  • the sudden pressure drop is alleviated by the fluid present in the buffer groove, so that the occurrence of cavitation can be prevented.
  • the sliding part of the present invention is secondly characterized in that, in the first feature, the buffer groove is preferably formed in a semicircular shape, a rectangular shape or a dovetail shape in cross section. .
  • the width b of the buffer groove is preferably set to 10 to 500 ⁇ m, more preferably 50 to 200 ⁇ m. It is characterized by.
  • the sliding component of the present invention is fourthly characterized in that, in the third feature, the depth h of the buffer groove is set to 1 to 2 times the width b. According to these features, the volume of the buffer groove can be increased while securing the sliding surface.
  • the sliding component of the present invention is fifthly characterized in that, in any of the first to fourth features, the fluid discharging means is constituted by a spiral groove. According to this feature, even when a spiral groove with a rapid pressure drop is adopted as a fluid discharge means with a large fluid discharge function (sealing effect is large), deposition and adhesion of substances causing deposition due to a dehydration condensation reaction of high-pressure fluid In addition, it is possible to prevent deposition and cavitation.
  • the sliding component according to any one of the first to fourth features, wherein the fluid discharging means is constituted by a reverse Rayleigh step.
  • the fluid discharging means is constituted by a reverse Rayleigh step.
  • the high-pressure side of the sliding surface communicates with the high-pressure fluid side in addition to the spiral groove or the reverse Rayleigh step.
  • a positive pressure generating mechanism is provided in a portion surrounded by the fluid circulating groove and the high-pressure fluid side, and the positive pressure generating mechanism is communicated with an inlet portion of the fluid circulating groove.
  • the outlet part of the circulation groove and the high-pressure fluid side are separated from each other by a land part.
  • the sliding component of the present invention is provided with a fluid discharging means for discharging fluid to the high-pressure fluid side on one sliding surface of the pair of sliding components that slide relative to each other.
  • a positive pressure generating mechanism for generating a positive pressure is provided on the sliding surface on the high pressure side of the fluid discharging means so as to be separated from the high pressure fluid side by the land portion.
  • An annular pressure release groove is provided between the pressure generation mechanism, the pressure release groove is connected to a discharge side end portion of the fluid discharge means, and the positive pressure generation mechanism is formed by a land portion in a radial direction.
  • a radial groove is provided so as to communicate with the pressure release groove and the high-pressure fluid side, and the radial groove is provided at a position in contact with the upstream end of the positive pressure generating mechanism. Yes.
  • the space between the sliding surfaces that slide relative to each other can be widened by the positive pressure generating mechanism, a liquid film can be formed on the sliding surface, and the lubricity can be improved.
  • the positive pressure (dynamic pressure) generated by the positive pressure generation mechanism is released up to the pressure of the high-pressure fluid, preventing the fluid from flowing into the fluid discharge means and reducing the negative pressure generation capability, and sealing performance on the sliding surface Can be improved.
  • the radial grooves are arranged in an even number in the circumferential direction, and adjacent radial grooves have different inclination directions from each other.
  • the radial groove is characterized in that the inlet is inclined toward the upstream side, and the radial groove of the other group is provided such that the outlet is inclined toward the downstream side.
  • the sliding component of the present invention alleviates entry of low-pressure fluid to the high-pressure fluid side on the sliding surface on the low-pressure side of the fluid discharge means.
  • a buffer groove is provided. According to this feature, it is generated by a positive pressure generating mechanism provided to widen the interval between the sliding surfaces, form a liquid film on the sliding surfaces, and improve lubricity, and a positive pressure generating mechanism on the high pressure side. Even in the case of having a pressure release groove that allows the fluid that flows into the low-pressure side to escape to the high-pressure fluid side due to the generated pressure, it is possible to prevent deposition, adhesion, and deposition of substances causing deposition due to the dehydration condensation reaction of the high-pressure fluid. Also, cavitation can be prevented.
  • the present invention has the following excellent effects.
  • the buffer groove provided on the sliding surface on the low pressure side from the fluid discharge means serves as a buffer (buffer) against the high pressure fluid of the low pressure fluid entering the sliding surface from the low pressure fluid side. It is possible to delay the time until filling, and to suppress the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the sudden pressure drop is alleviated by the fluid present in the buffer groove, so that the occurrence of cavitation can be prevented.
  • the cross-sectional shape of the buffer groove is formed in a semicircular shape, a rectangular shape or a dovetail shape, the buffer groove width b is set to 10 to 500 ⁇ m, and the buffer groove depth h is width b. By setting it to 1 to 2 times, it is possible to increase the volume of the buffer groove while securing the sliding surface.
  • the sealed fluid is actively from the high pressure fluid side. Even when equipped with a fluid circulation groove that plays a role of introducing and discharging fluid on the sliding surface, it is possible to prevent deposition, adherence and deposition of substances causing deposition due to dehydration condensation reaction of high-pressure fluid, and also prevent cavitation. it can.
  • the positive pressure generating mechanism can widen the interval between the sliding surfaces that slide relative to each other, form a liquid film on the sliding surface, improve lubricity, and improve the positive pressure on the high pressure side by the pressure release groove. Releases the positive pressure (dynamic pressure) generated by the generating mechanism to the pressure of the high-pressure side fluid, prevents the fluid from flowing into the fluid discharge means and weakens the negative pressure generation capability, and improves the sealing performance on the sliding surface be able to.
  • the pressure generated by the positive pressure generating mechanism provided to increase the interval between the sliding surfaces, form a liquid film on the sliding surface, and improve the lubricity, and the positive pressure generating mechanism on the high pressure side. Even in the case of having a pressure release groove that allows the fluid that flows into the low-pressure side to escape to the high-pressure fluid side, it is possible to prevent deposition, adhesion, and deposition due to the dehydration condensation reaction of the high-pressure fluid, and to prevent cavitation. Occurrence can also be prevented.
  • FIG. 1 It is a longitudinal cross-sectional view which shows an example of the mechanical seal which concerns on Example 1 of this invention.
  • (A) shows a sliding surface of a sliding component according to Embodiment 1 of the present invention
  • (b) to (d) are cross-sectional views taken along line AA of (a).
  • 3 shows a sliding surface of a sliding component according to Embodiment 2 of the present invention. It shows the sliding surface of the sliding component which concerns on Example 3 of this invention.
  • 7 shows a sliding surface of a sliding component according to Example 4 of the present invention.
  • 10 shows a sliding surface of a sliding component according to Example 5 of the present invention.
  • 10 shows a sliding surface of a sliding component according to Example 6 of the present invention.
  • FIG. 9 shows a sliding surface of a sliding component according to Example 7 of the present invention.
  • FIG. 5A is a Rayleigh step mechanism
  • FIG. The mechanism is shown. It is a figure which shows a prior art.
  • Example 1 of this invention With reference to FIG.1 and FIG.2, the sliding component which concerns on Example 1 of this invention is demonstrated.
  • a mechanical seal which is an example of a sliding part will be described as an example.
  • the outer peripheral side of the sliding component which comprises a mechanical seal is demonstrated as a high pressure fluid side (sealed fluid side) and an inner peripheral side is a low pressure fluid side (atmosphere side), this invention is not limited to this.
  • the present invention can also be applied to the case where the high-pressure fluid side and the low-pressure fluid side are reversed.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on a high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • annular ring which is one sliding component provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1.
  • a ring-shaped stationary ring 5 which is the other sliding part provided in the pump housing 4 in a non-rotating state and movable in the axial direction, and the stationary ring 5 is moved in the axial direction.
  • FIG. 2A shows a sliding surface of the sliding component according to the first embodiment of the present invention.
  • the fluid discharging means according to the present invention and the sliding surface S of the stationary ring 5 in FIG. A case where a buffer groove is formed will be described as an example. The same applies when the fluid discharge means and the buffer groove according to the present invention are formed on the sliding surface of the rotating ring 3.
  • the outer peripheral side of the sliding surface S of the stationary ring 5 is the high-pressure fluid side
  • the inner peripheral side is the low-pressure fluid side, for example, the atmosphere side
  • the mating sliding surface rotates counterclockwise.
  • the sliding surface S communicates with the high-pressure fluid side and is separated from the low-pressure fluid side by a smooth portion R of the sliding surface S (in the present invention, sometimes referred to as “land portion R”), and
  • a pumping groove 10 is provided as a fluid discharge means for discharging the fluid to the high-pressure fluid side by sliding relative to the mating sliding surface.
  • the pumping groove 10 is formed in a linear shape or a curved shape so as to have an angle for discharging the fluid to the high-pressure fluid side by relative sliding with the mating sliding surface. In this embodiment, in consideration of vibration and noise, it is formed in a spiral shape along the rotation direction of the mating sliding surface.
  • the spiral-shaped pumping groove is referred to as a “spiral groove”, and the case where the pumping groove is the spiral groove 10 will be described below.
  • a buffer groove 11 is provided in the smooth portion R on the low pressure side of the spiral groove 10.
  • the buffer groove 11 is provided in an annular shape along the low pressure side end of the spiral groove 10. The radial position on the sliding surface S of the buffer groove 11 is lower than the spiral groove 10 and is separated from the low-pressure fluid side by the land portion R.
  • the cross-sectional shape of the buffer groove 11 is not particularly limited. For example, a semicircular shape as shown in FIG. 2 (b), a rectangle as shown in (c), and a dovetail groove as shown in (d) It is formed in a shape.
  • the size of the buffer groove 11 is set according to the capability of the spiral groove 10 as a fluid discharge means, and is set to a size having a volume capable of storing fluid to some extent.
  • the width b of the buffer groove 11 is preferably set to 10 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the depth h of the buffer groove 11 is preferably set to 1 to 2 times the width b.
  • the buffer groove 11 has a buffer action to alleviate the low pressure fluid entering the low pressure side of the sliding surface at the same time as the spiral groove 10 discharges fluid (sealing action), and slides from the low pressure fluid side.
  • the low-pressure fluid entering the surface serves as a buffer for the high-pressure fluid, and the time until the sliding surface is filled with the low-pressure fluid can be delayed, thereby suppressing the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the entry of the low-pressure fluid 12 is limited to a small part on the low-pressure side of the sliding surface, and the high-pressure fluid remains from the vicinity of the buffer groove 11 to the high-pressure side. is doing. Further, even when a sudden pressure drop occurs due to fluid discharge by the spiral groove 10, the sudden pressure drop is alleviated by the fluid present in the buffer groove 11, so that the occurrence of cavitation is prevented.
  • Example 2 With reference to FIG. 3, the sliding component which concerns on Example 2 of this invention is demonstrated.
  • the same reference numerals as those in FIG. 2 indicate the same members as in FIG.
  • a plurality of reverse Rayleigh step mechanisms 15 as fluid discharging means are provided in the circumferential direction on the high pressure side of the sliding surface.
  • the reverse Rayleigh step mechanism 15 will be described in detail later, but the fluid is sucked by the groove 15a and the reverse Rayleigh step 15b that constitute the negative pressure generating groove composed of the ridge groove separated from the high pressure fluid side and the land portion R, and the high pressure fluid The fluid is discharged to the high-pressure fluid side from the radial groove 15c formed of a deep groove communicated with the fluid side.
  • a buffer groove 11 is provided in the smoothing portion R on the lower pressure side than the reverse Rayleigh step mechanism 15.
  • the buffer groove 11 is provided in an annular shape so as to be separated from the reverse Rayleigh step mechanism 15 toward the low pressure fluid side. Further, the radial position on the sliding surface of the buffer groove 11 is lower than the reverse Rayleigh step mechanism 15 and is separated from the low-pressure fluid side by the land portion R.
  • the reverse Rayleigh step mechanism will be described in detail later.
  • the cross-sectional shape and size of the buffer groove 11 are the same as those in the first embodiment.
  • the buffer groove 11 has a buffering action to alleviate the low-pressure fluid entering the low-pressure side of the sliding surface in conjunction with the fluid discharging action (sealing action) of the reverse Rayleigh step mechanism 15.
  • the low-pressure fluid entering the sliding surface becomes a buffer for the high-pressure fluid, and the time until the sliding surface is filled with the low-pressure fluid can be delayed, thereby suppressing the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the entry of the low-pressure fluid 12 is limited to a small part on the low-pressure side of the sliding surface, and the high-pressure fluid remains from the vicinity of the buffer groove 11 to the high-pressure side. is doing. Further, even when a sudden pressure drop occurs due to fluid discharge by the reverse Rayleigh step mechanism 15, the sudden pressure drop is mitigated by the fluid present in the buffer groove 11, so that the occurrence of cavitation is prevented.
  • Example 3 of this invention With reference to FIG. 4, the sliding component which concerns on Example 3 of this invention is demonstrated.
  • the same reference numerals as those in FIG. 2 indicate the same members as those in FIG. 2, and duplicate descriptions are omitted.
  • a fluid circulation groove 20 serving as a fluid circulation means that communicates with the high-pressure fluid side and is separated from the low-pressure fluid side by a land portion R of the slide surface is provided on the sliding surface of the stationary ring 5 in the circumferential direction.
  • the fluid circulation groove 20 includes an inlet portion 20a that enters from the high-pressure fluid side, an outlet portion 20b that exits to the high-pressure fluid side, and a communication portion 20c that communicates the inlet portion 20a and the outlet portion 20b in the circumferential direction. Is isolated by a land portion R.
  • the fluid circulation groove 20 plays a role of positively introducing and discharging the sealed fluid from the high-pressure fluid side to the sliding surface in order to prevent the fluid containing corrosion products and the like from being concentrated on the sliding surface.
  • the angle of inclination of the inlet 20a and the outlet 20b is set large so that the sealed fluid can be taken into the sliding surface according to the rotation direction of the mating sliding surface and can be easily discharged. It is arranged so as to intersect on the low-pressure fluid side (inner peripheral side in FIG. 4), and this crossing portion forms a communication portion 20c.
  • the crossing angle between the inlet 20a and the outlet 20b is an obtuse angle (for example, about 150 °).
  • the rotating ring 3 and the stationary ring 5 are disposed on the outside of the portion surrounded by the fluid circulation groove 20 and the high-pressure fluid side of the sliding surface of the stationary ring 5, that is, between the adjacent fluid circulation grooves 20 and 20.
  • a spiral groove 10 that discharges fluid to the high-pressure fluid side by sliding is provided.
  • the sliding surface provided with the fluid circulation groove 20 is provided with a positive pressure generating mechanism 21 having a groove 21a shallower than the fluid circulation groove 20 in a portion surrounded by the fluid circulation groove 20 and the high-pressure fluid side.
  • the positive pressure generation mechanism 21 is provided to generate a positive pressure (dynamic pressure) to widen the interval between sliding surfaces that slide relative to each other, form a liquid film on the sliding surfaces, and improve lubricity. Is.
  • the groove 21a communicates with the inlet portion 20a of the fluid circulation groove 20, and is separated from the outlet portion 20b and the high-pressure fluid side by the land portion R.
  • the positive pressure generating mechanism 21 includes a Rayleigh step mechanism including a groove 21a and a Rayleigh step 21b communicating with the inlet portion 20a of the fluid circulation groove 20, but is not limited thereto.
  • a femto groove with a dam may be used.
  • any mechanism that generates positive pressure may be used.
  • the Rayleigh step mechanism will be described in detail later.
  • a buffer groove 11 is provided in the smooth portion R on the lower pressure side than the fluid circulation groove 20 and the spiral groove 10.
  • the buffer groove 11 is provided in an annular shape so as to be separated from the fluid circulation groove 20 toward the low pressure fluid side and along the low pressure side end of the spiral groove 10. Further, the radial position on the sliding surface of the buffer groove 11 is lower than the fluid circulation groove 20 and the spiral groove 10 and is separated from the low pressure fluid side by the land portion R.
  • the cross-sectional shape and size of the buffer groove 11 are the same as those in the first embodiment.
  • the buffer groove 11 has a buffer action to alleviate the low pressure fluid entering the low pressure side of the sliding surface at the same time as the spiral groove 10 discharges fluid (sealing action), and slides from the low pressure fluid side.
  • the low-pressure fluid entering the surface serves as a buffer for the high-pressure fluid, and the time until the sliding surface is filled with the low-pressure fluid can be delayed, thereby suppressing the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the entry of the low-pressure fluid 12 is limited to a small part on the low-pressure side of the sliding surface, and the high-pressure fluid remains from the vicinity of the buffer groove 11 to the high-pressure side. is doing. Further, even when a sudden pressure drop occurs due to fluid discharge by the spiral groove 10, the sudden pressure drop is alleviated by the fluid present in the buffer groove 11, so that the occurrence of cavitation is prevented.
  • Example 4 of this invention With reference to FIG. 5, the sliding component which concerns on Example 4 of this invention is demonstrated. 5, the same reference numerals as those in FIGS. 2 and 4 indicate the same members as those in FIGS. 2 and 4, and redundant descriptions are omitted.
  • a fluid circulation groove 20 as a fluid circulation means that communicates with the high-pressure fluid side and is separated from the low-pressure fluid side by a land portion R of the slide surface is provided on the sliding surface of the stationary ring 5 in the circumferential direction. Are provided in plurality.
  • the rotating ring 3 and the stationary ring 5 are disposed on the outside of the portion surrounded by the fluid circulation groove 20 and the high-pressure fluid side of the sliding surface of the stationary ring 5, that is, between the adjacent fluid circulation grooves 20 and 20.
  • a plurality of reverse Rayleigh step mechanisms 15 that discharge fluid to the high-pressure fluid side by sliding are provided in the circumferential direction.
  • a positive pressure generating mechanism 21 having a groove 21a shallower than the fluid circulation groove 20 is provided in a portion surrounded by the fluid circulation groove 20 and the high-pressure fluid side.
  • a buffer groove 11 is provided in the smoothing portion R on the lower pressure side than the fluid circulation groove 20 and the reverse Rayleigh step mechanism 15.
  • the buffer groove 11 is provided in an annular shape spaced apart from the fluid circulation groove 20 and the reverse Rayleigh step mechanism 15 toward the low pressure fluid side.
  • the radial position on the sliding surface of the buffer groove 11 is lower than the fluid circulation groove 20 and the reverse Rayleigh step mechanism 15, and is separated from the low pressure fluid side by the land portion R.
  • the cross-sectional shape and size of the buffer groove 11 are the same as those in the first embodiment.
  • the buffer groove 11 has a buffering action to alleviate the low-pressure fluid entering the low-pressure side of the sliding surface in conjunction with the fluid discharging action (sealing action) of the reverse Rayleigh step mechanism 15.
  • the low-pressure fluid entering the sliding surface becomes a buffer for the high-pressure fluid, and the time until the sliding surface is filled with the low-pressure fluid can be delayed, thereby suppressing the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the entry of the low-pressure fluid 12 is limited to a small part on the low-pressure side of the sliding surface, and the high-pressure fluid remains from the vicinity of the buffer groove 11 to the high-pressure side. is doing. Further, even when a sudden pressure drop occurs due to fluid discharge by the reverse Rayleigh step mechanism 15, the sudden pressure drop is mitigated by the fluid present in the buffer groove 11, so that the occurrence of cavitation is prevented.
  • Example 5 of this invention With reference to FIG. 6, the sliding component which concerns on Example 5 of this invention is demonstrated.
  • the same reference numerals as those in FIGS. 2 and 4 indicate the same members as those in FIGS. 2 and 4, and redundant descriptions are omitted.
  • a positive pressure generating mechanism 21 for example, a Rayleigh step mechanism including a groove 21 a and a Rayleigh step 21 b is provided on the sliding surface on the high-pressure fluid side of the sliding surface.
  • the positive pressure generating mechanism 21 is separated from the high-pressure fluid side and the low-pressure fluid side by the land portion R, and is provided at four equal intervals in the circumferential direction.
  • a spiral groove 10 is annularly arranged on the sliding surface on the low-pressure fluid side of the positive pressure generating mechanism 21 so as to be separated from the positive pressure generating mechanism 21 in the radial direction.
  • an annular pressure release groove 25 is provided continuously in the circumferential direction so as to be positioned between the spiral groove 10 and the positive pressure generating mechanism 21.
  • the pressure release groove 25 is separated from the groove 21a of the positive pressure generating mechanism 21 by the land portion R in the radial direction, and is connected to the discharge side end portion (downstream end portion) of the spiral groove 10.
  • the positive pressure generating mechanisms 21 are arranged in four equal parts, but the present invention is not limited to this, and one or more may be used.
  • a radial groove 26 is provided so that the pressure release groove 25 communicates with the high-pressure fluid side.
  • the radial grooves 26 are arranged in four equal positions in a position in contact with the upstream end of the groove portion 21 a of the positive pressure generating mechanism 21 in the circumferential direction and in a direction perpendicular to the tangent to the pressure release groove 25.
  • the pressure release groove 25 and the radial groove 26 are deeper than the groove 21 a of the positive pressure generating mechanism 21.
  • channel 26 is formed wider than the pressure release groove
  • the positive pressure generation mechanism 21 is provided to generate a positive pressure (dynamic pressure) to widen the interval between sliding surfaces that slide relative to each other, form a liquid film on the sliding surfaces, and improve lubricity. Is.
  • the pressure release groove 25 releases the positive pressure (dynamic pressure) generated by the positive pressure generation mechanism 21 on the high pressure side to the pressure of the high pressure side fluid, so that the fluid flows into the spiral groove 10 on the low pressure side.
  • the fluid that is about to flow into the low pressure side due to the pressure generated by the positive pressure generation mechanism 21 on the high pressure side is led to the pressure release groove 25 to the high pressure fluid side. It plays a role to be missed. For this reason, the sealing performance on the sliding surface is further improved.
  • Example 6 of this invention With reference to FIG. 7, the sliding component which concerns on Example 6 of this invention is demonstrated.
  • This embodiment is different from the fifth embodiment in FIG. 6 in the direction of the radial groove, but the other configurations are the same as those in the fifth embodiment, and the same reference numerals as those in FIG. 6 indicate the same members as those in FIG. The overlapping description is omitted.
  • the radial grooves 27 are the same as in the fifth embodiment in that they are provided in four equal positions at a position in contact with the upstream end of the groove 21 a of the positive pressure generating mechanism 21.
  • the direction is slightly different. That is, the radial groove 27 divides the four radial grooves 27a, 27b, 27c and 27d into two pairs, and in one pair of radial grooves 27a and 27b or another pair of radial grooves 27c and 27d,
  • the inlet is inclined toward the upstream side so that the fluid easily enters the upstream radial groove 27a (27c), and the fluid is easily discharged from the radial groove 27b (27d) on the outlet side.
  • the outlet is inclined to the downstream side.
  • the radial grooves 27 are evenly arranged in the circumferential direction, the adjacent radial grooves 27 are inclined in different directions, and the radial grooves 27a and 27c of one group are inclined toward the upstream side.
  • the other group of radial grooves 27b, 27d is provided such that the outlet is inclined toward the downstream side.
  • Embodiment 7 of the present invention a sliding component according to Embodiment 7 of the present invention will be described.
  • This embodiment is different from the fifth embodiment of FIG. 6 in that the positive pressure generating mechanisms are provided in eight equal positions and the buffer groove is provided, but the other basic configuration is the same as that of the fifth embodiment.
  • the same reference numerals as those in FIG. 6 denote the same members as those in FIG.
  • a spiral groove 10 is annularly arranged in the radial center of the sliding surface, and a positive pressure generating mechanism 21 such as a Rayleigh step mechanism is provided on the sliding surface on the high-pressure fluid side of the spiral groove 10.
  • a pressure release groove 25 is provided so as to be positioned between the spiral groove 10 and the positive pressure generating mechanism 21. Further, the positive pressure generating mechanism 21 and the pressure release groove 25 are communicated with the high pressure fluid side via the radial groove 26.
  • the positive pressure generation mechanism 21 is provided to generate a positive pressure (dynamic pressure) to widen the interval between sliding surfaces that slide relative to each other, form a liquid film on the sliding surfaces, and improve lubricity. Is.
  • the pressure release groove 25 releases the positive pressure (dynamic pressure) generated by the positive pressure generation mechanism 21 on the high pressure side to the pressure of the high pressure side fluid, so that the fluid flows into the spiral groove 10 on the low pressure side.
  • the fluid that is about to flow into the low pressure side due to the pressure generated by the positive pressure generation mechanism 21 on the high pressure side is led to the pressure release groove 25 to the high pressure fluid side. It plays a role to be missed.
  • a buffer groove 11 is provided in the smooth portion R on the lower pressure side than the spiral groove 10 as the fluid discharge means.
  • the buffer groove 11 is provided in an annular shape along the low-pressure side end of the spiral groove 10. Further, the radial position on the sliding surface of the buffer groove 11 is lower than the spiral groove 10 and is separated from the low-pressure fluid side by the land portion R.
  • the cross-sectional shape and size of the buffer groove 11 are the same as those in the first embodiment.
  • the buffer groove 11 has a buffer action to alleviate the low pressure fluid entering the low pressure side of the sliding surface at the same time as the spiral groove 10 discharges fluid (sealing action), and slides from the low pressure fluid side.
  • the low-pressure fluid entering the surface serves as a buffer for the high-pressure fluid, and the time until the sliding surface is filled with the low-pressure fluid can be delayed, thereby suppressing the dehydration condensation reaction of the high-pressure fluid.
  • the low-pressure fluid is air
  • the entry of the low-pressure fluid 12 is limited to a small part on the low-pressure side of the sliding surface, and the high-pressure fluid remains from the vicinity of the buffer groove 11 to the high-pressure side. is doing. Further, even when a sudden pressure drop occurs due to fluid discharge by the spiral groove 10, the sudden pressure drop is alleviated by the fluid present in the buffer groove 11, so that the occurrence of cavitation is prevented.
  • a negative pressure generation mechanism including a positive pressure generation mechanism including a Rayleigh step mechanism and a reverse Rayleigh step mechanism will be described with reference to FIG.
  • the rotating ring 3 and the stationary ring 5 that are the sliding parts facing each other slide relative to each other as indicated by arrows.
  • a Rayleigh step 21b is formed on the sliding surface of the fixed ring 5 so as to face the upstream side and the upstream side of the relative movement direction, and on the upstream side of the Rayleigh step 21b, a groove portion 21a that is a positive pressure generating groove. Is formed.
  • the sliding surfaces of the opposed rotating ring 3 and stationary ring 5 are flat.
  • FIG. 9B the rotating ring 3 and the stationary ring 5 which are opposed sliding parts slide relative to each other as indicated by arrows, but the sliding surfaces of the rotating ring 3 and the stationary ring 5
  • a reverse Rayleigh step 15b is formed perpendicular to the relative movement direction and facing the downstream side, and a groove portion 15a, which is a negative pressure generating groove, is formed on the downstream side of the reverse Rayleigh step 15b.
  • the sliding surfaces of the opposed rotating ring 3 and stationary ring 5 are flat.
  • the present invention can also be applied to a case where the inner peripheral side is a high-pressure fluid.
  • the fluid discharging means is the spiral groove 10 and the reverse Rayleigh step mechanism 15 has been described.
  • the present invention is not limited thereto, and a dimple may be used.
  • the buffer groove 11 is continuously formed in an annular shape.
  • the buffer groove 11 does not necessarily have to be formed continuously. What is necessary is just to have the capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

摺動面の高圧側に高圧流体を排出する流体排出手段を備えている場合であっても、高圧流体(被密封流体)と低圧流体との摺動面上における脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止すると共に、流体排出による急激な圧力低下に伴うキャビテーションの発生を防止する。一対の摺動部品の互いに相対摺動する一方側の摺動面(S)の高圧側に、流体を高圧流体側へ排出する流体排出手段(10)を備えた摺動部品において、流体排出手段(10)よりも低圧側の摺動面Sには低圧流体の高圧流体側への進入を緩和する緩衝溝(11)が設けられることを特徴としている。

Description

摺動部品
 本発明は、例えば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環または軸受などの摺動部品に関する。
 摺動部品の一例である、メカニカルシールにおいて、その性能は、漏れ量、摩耗量、及びトルクによって評価される。従来技術ではメカニカルシールの摺動材質や摺動面粗さを最適化することにより性能を高め、低漏れ、高寿命、低トルクを実現している。しかし、近年の環境問題に対する意識の高まりから、メカニカルシールの更なる性能向上が求められており、従来技術の枠を超える技術開発が必要となっている。メカニカルシールに関する従来技術としては、図10に示すように、摺動部品50の摺動面51にスパイラル溝52を設け、該スパイラル溝52のポンピング作用を利用して、低圧流体側に漏洩しようとする被密封流体を高圧流体側に押し戻すことにより、摺動面のシール機能を向上させたものがある(例えば、特許文献1参照。)。
実開昭61-82177号公報(図1、2)
 上記の従来技術は、摺動面51に、相手側摺動面との相対摺動により、流体を高圧流体側に排出する角度をつけたスパイラル溝52を高圧側に設け、該スパイラル溝52の粘性ポンプ効果で流体を高圧流体側に押し戻し、漏れを防止するというものである。
 しかし、この種のメカニカルシールにおいては、摺動による流体ポンピング効果によって摺動面の低圧流体側には低圧流体53、例えば、空気が進入し、摺動面に潤滑流体として存在している被密封流体である高圧流体の脱水縮合反応を促進し、摺動面に堆積原因物質が析出、付着及び堆積し、摺動面の密封性を低下させる要因となっていることが本願発明者の研究により判明した。
 また、上記の従来技術では、摺動面の潤滑が不十分であるという問題があった。
 本発明は、第一に、摺動面の高圧側に高圧流体を排出する流体排出手段を備えている場合であっても、高圧流体(被密封流体)と低圧流体との摺動面上における脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止すると共に、流体排出による急激な圧力低下に伴うキャビテーションの発生を防止し、摺動面の密封性の低下を防止することにより、摺動面のシール機能を向上させた摺動部品を提供することを目的とするものである。
 また、第二に、流体排出手段の負圧発生力を減殺することなく摺動面の潤滑性を向上させることができるようにした摺動部品を提供することを目的とするものである。
〔原理〕
 本発明は、第一に、少なくとも摺動部品のいずれか一方の摺動面の高圧側に高圧流体側へ流体を排出する流体排出手段を備えた摺動部品において、前記流体排出手段よりも低圧側の前記摺動面に低圧流体の高圧流体側への進入を緩和する緩衝溝を設けるものである。流体排出手段よりも低圧側の摺動面に設けられる緩衝溝は、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 また、流体排出による急激な圧力低下に伴うキャビテーションの発生を防止できる。
 本発明は、第二に、少なくとも摺動部品のいずれか一方の摺動面に高圧流体側へ流体を排出する流体排出手段を備えた摺動部品において、摺動面の高圧側に正圧発生機構を備えると共に前記正圧発生機構より低圧側に高圧流体側へ流体を排出する流体排出手段を備え、前記正圧発生機構と前記流体排出手段との間に位置して圧力開放溝を設けるものである。
 前記正圧発生機構は、正圧(動圧)を発生することにより相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させ、また、圧力開放溝は、高圧側の正圧発生機構で発生した正圧(動圧)を高圧側流体の圧力まで開放し、流体が流体排出手段に流入し、流体排出手段の負圧発生能力が弱まることを防止し、摺動面のシール機能を維持する。
〔手段〕
 上記目的を達成するため本発明の摺動部品は、第1に、一対の摺動部品の互いに相対摺動する一方側の摺動面の高圧側に、流体を高圧流体側へ排出する流体排出手段を備えた摺動部品において、前記流体排出手段よりも低圧側の前記摺動面には低圧流体の高圧流体側への進入を緩和する緩衝溝が設けられることを特徴としている。
 この特徴によれば、流体排出手段よりも低圧側の摺動面に設けられる緩衝溝は、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制することができる。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 また、流体排出手段による流体排出により急激な圧力低下が生じる場合でも、緩衝溝内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生を防止できる。
 また、本発明の摺動部品は、第2に、第1の特徴において、前記緩衝溝は、好ましくは、断面形状が半円状、矩形状またはアリ溝状に形成されることを特徴としている。
 また、本発明の摺動部品は、第3に、第1または第2の特徴において、前記緩衝溝の幅bは、好ましくは、10~500μm、より好ましくは、50~200μmに設定されることを特徴としている。
 また、本発明の摺動部品は、第4に、第3の特徴において、前記緩衝溝の深さhは、前記幅bの1~2倍に設定されることを特徴としている。
 これらの特徴によれば、摺動面を確保しつつ緩衝溝の容積をアップさせることができる。
 また、本発明の摺動部品は、第5に、第1ないし第4のいずれかの特徴において、前記流体排出手段がスパイラル溝より構成されることを特徴としている。
 この特徴によれば、流体排出機能が大きく(密封効果が大きく)、急激な圧力低下を伴うスパイラル溝を流体排出手段として採用した場合でも、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
 また、本発明の摺動部品は、第6に、第1ないし第4のいずれかの特徴において、前記流体排出手段が逆レイリーステップより構成されることを特徴としている。
 この特徴によれば、流体排出機能が大きく(密封効果が大きく)、急激な圧力低下を伴う逆レイリーステップを流体排出手段として採用した場合でも、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
 また、本発明の摺動部品は、第7に、第5又は第6の特徴において、前記摺動面の高圧側には、前記スパイラル溝又は前記逆レイリーステップに加えて前記高圧流体側に連通される流体循環溝を備え、前記流体循環溝と前記高圧流体側とで囲まれる部分に正圧発生機構が設けられ、前記正圧発生機構は前記流体循環溝の入口部に連通され、前記流体循環溝の出口部及び前記前記高圧流体側とはランド部により隔離されていることを特徴としている。
 この特徴によれば、急激な圧力低下を伴うスパイラル溝又は逆レイリーステップに加えて、摺動面において腐食生成物などを含む流体が濃縮されることを防止するため、積極的に高圧流体側から被密封流体を摺動面上に導入し排出するという役割を担う流体循環溝を備えた場合においても、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
 また、本発明の摺動部品は、第8に、一対の摺動部品の互いに相対摺動する一方側の摺動面に、流体を高圧流体側へ排出する流体排出手段を備えた摺動部品において、前記流体排出手段よりも高圧側の前記摺動面には正圧を発生する正圧発生機構が高圧流体側とランド部により隔離されるようにして設けられ、前記流体排出手段と前記正圧発生機構との間には環状の圧力開放溝が設けられ、前記圧力開放溝は、前記流体排出手段の排出側端部とは連結され、前記正圧発生機構とは径方向においてランド部により離間され、前記圧力開放溝と高圧流体側とを連通するように半径方向溝が設けられ、前記半径方向溝は、正圧発生機構の上流側の端部に接する位置に設けられることを特徴としている。
 この特徴によれば、正圧発生機構により相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させることができると共に、圧力開放溝により高圧側の正圧発生機構で発生した正圧(動圧)を高圧側流体の圧力まで開放し、流体が流体排出手段に流入して負圧発生能力が弱まることを防止し、摺動面における密封性を向上することができる。
 また、本発明の摺動部品は、第9に、第8の特徴において、前記半径方向溝は、周方向に偶数配置され、隣接する半径方向溝は相互に傾斜方向が異なり、一方のグループの半径方向溝は入口が上流側に向けて傾斜され、他方のグループの半径方向溝は、出口が下流側に向けて傾斜するように設けられることを特徴としている。
 この特徴によれば、圧力開放溝及び半径方向溝で構成される深溝内において緩やかな流体の流れが生成されるため、深溝内に気泡あるいは不純物などが滞留することが防止され、高圧側の正圧発生機構で発生した圧力により低圧側に流入しようとする流体を確実に高圧流体側に逃すことができるため、密封性を向上することができる。
 また、本発明の摺動部品は、第10に、第8又は第9の特徴において、前記流体排出手段よりも低圧側の前記摺動面には低圧流体の高圧流体側への進入を緩和する緩衝溝が設けられることを特徴としている。
 この特徴によれば、摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させるために設けられる正圧発生機構、及び、高圧側の正圧発生機構で発生した圧力により低圧側に流入しようとする流体を高圧流体側に逃す役割を果たす圧力開放溝を備えた場合においても、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
 本発明は、以下のような優れた効果を奏する。
(1)流体排出手段よりも低圧側の摺動面に設けられる緩衝溝は、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制することができる。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 また、流体排出手段による流体排出により急激な圧力低下が生じる場合でも、緩衝溝内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生を防止できる。
(2)緩衝溝の断面形状が半円状、矩形状またはアリ溝状に形成され、また、緩衝溝の幅bが10~500μmに設定され、また、緩衝溝の深さhが幅bの1~2倍に設定されることにより、摺動面を確保しつつ緩衝溝の容積をアップさせることができる。
(3)流体排出機能が大きく(密封効果が大きく)、急激な圧力低下を伴うスパイラル溝又は逆レイリーステップを流体排出手段として採用した場合でも、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
(4)急激な圧力低下を伴うスパイラル溝又は逆レイリーステップに加えて、摺動面において腐食生成物などを含む流体が濃縮されることを防止するため、積極的に高圧流体側から被密封流体を摺動面上に導入し排出するという役割を担う流体循環溝を備えた場合においても、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
(5)正圧発生機構により相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させることができると共に、圧力開放溝により高圧側の正圧発生機構で発生した正圧(動圧)を高圧側流体の圧力まで開放し、流体が流体排出手段に流入して負圧発生能力が弱まることを防止し、摺動面における密封性を向上することができる。
(6)圧力開放溝及び半径方向溝で構成される深溝内において緩やかな流体の流れが生成されるため、深溝内に気泡あるいは不純物などが滞留することが防止され、高圧側の正圧発生機構で発生した圧力により低圧側に流入しようとする流体を確実に高圧流体側に逃すことができるため、密封性を向上することができる。
(7)摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させるために設けられる正圧発生機構、及び、高圧側の正圧発生機構で発生した圧力により低圧側に流入しようとする流体を高圧流体側に逃す役割を果たす圧力開放溝を備えた場合においても、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できると共に、キャビテーションの発生も防止できる。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 (a)は、本発明の実施例1に係る摺動部品の摺動面を示したものであり、(b)~(d)は(a)のA-A断面図である。 本発明の実施例2に係る摺動部品の摺動面を示したものである。 本発明の実施例3に係る摺動部品の摺動面を示したものである。 本発明の実施例4に係る摺動部品の摺動面を示したものである。 本発明の実施例5に係る摺動部品の摺動面を示したものである。 本発明の実施例6に係る摺動部品の摺動面を示したものである。 本発明の実施例7に係る摺動部品の摺動面を示したものである。 レイリーステップ機構などからなる正圧発生機構及び逆レイリーステップ機構などからなる負圧発生機構を説明するためのものであって、図(a)はレイリーステップ機構を、図(b)は逆レイリーステップ機構を示したものである。 従来技術を示す図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。
 図1及び図2を参照して、本発明の実施例1に係る摺動部品について説明する。
 なお、本実施例においては、摺動部品の一例であるメカニカルシールを例にして説明する。また、メカニカルシールを構成する摺動部品の外周側を高圧流体側(被密封流体側)、内周側を低圧流体側(大気側)として説明するが、本発明はこれに限定されることなく、高圧流体側と低圧流体側とが逆の場合も適用可能である。
 図1は、メカニカルシールの一例を示す縦断面図であって、摺動面の外周から内周方向に向かって漏れようとする高圧流体側の被密封流体を密封する形式のインサイド形式のものであり、高圧流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた一方の摺動部品である円環状の回転環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた他方の摺動部品である円環状の固定環5とが設けられ、固定環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、ラッピング等によって鏡面仕上げされた摺動面S同士で密接摺動するようになっている。すなわち、このメカニカルシールは、回転環3と固定環5との互いの摺動面Sにおいて、被密封流体が回転軸1の外周から大気側へ流出するのを防止するものである。
 図2(a)は、本発明の実施例1に係る摺動部品の摺動面を示したもので、例えば、図1の固定環5の摺動面Sに本発明に係る流体排出手段及び緩衝溝が形成された場合を例にして説明する。
 なお、回転環3の摺動面に本発明に係る流体排出手段及び緩衝溝が形成される場合も同様である。
 図2(a)において、固定環5の摺動面Sの外周側が高圧流体側であり、また、内周側が低圧流体側、例えば大気側であり、相手摺動面は反時計方向に回転するものとする。
 摺動面Sには、高圧流体側に連通されると共に低圧流体側とは摺動面Sの平滑部R(本発明においては、「ランド部R」ということがある。)により隔離され、かつ、相手摺動面との相対摺動により流体を高圧流体側に排出する流体排出手段としてのポンピング溝10が設けられている。ポンピング溝10は、相手摺動面との相対摺動により流体を高圧流体側に排出する角度を有するように直線状、あるいは曲線状に形成される。本実施例では、振動及び騒音などを考慮して、相手摺動面の回転方向に沿うようにスパイラル形状に形成されている。
 なお、本明細書においては、スパイラル形状のポンピング溝を「スパイラル溝」といい、以下では、ポンピング溝がスパイラル溝10である場合について説明する。
 スパイラル溝10よりも低圧側の平滑部Rには緩衝溝11が設けられる。図2において、緩衝溝11はスパイラル溝10の低圧側端部に沿うように円環状に設けられている。
 緩衝溝11の摺動面Sにおける半径方向の位置については、スパイラル溝10よりも低圧側であって、低圧流体側とはランド部Rにより隔離されている。
 また、緩衝溝11の断面形状は、特に限定されないが、例えば、図2(b)に示すような半円状、同(c)に示すような矩形、同(d)に示すようなアリ溝状に形成される。さらに、緩衝溝11の大きさは、流体排出手段としてのスパイラル溝10の能力等に応じて設定されるものであり、流体をある程度貯留できる容積を持つ大きさに設定される。一例を示すと、緩衝溝11の幅bは、好ましくは、10~500μm、より好ましくは、50~200μmに設定される。また、緩衝溝11の深さhは、好ましくは、幅bの1~2倍に設定される。
 緩衝溝11は、スパイラル溝10の流体排出作用(密封作用)に伴い、摺動面の低圧側に低圧流体が一気に進入するのを緩和する緩衝作用を有するものであり、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 図2の場合、緩衝溝11の緩衝(バッファー)効果により、低圧流体12の進入は摺動面の低圧側のごく一部に限定され、緩衝溝11の近傍から高圧側にかけては高圧流体が残存している。
 また、スパイラル溝10による流体排出により急激な圧力低下が生じる場合でも、緩衝溝11内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生が防止される。
 図3を参照して、本発明の実施例2に係る摺動部品について説明する。 
 なお、図3において、図2の符号と同じ符号は図2と同じ部材を示しており、重複する説明は省略する。
 図3に示す摺動部品5においては、摺動面の高圧側に流体排出手段としての逆レイリーステップ機構15が周方向に複数設けられている。
 この逆レイリーステップ機構15については後で詳しく説明するが、高圧流体側とランド部Rにより隔離された淺溝からなる負圧発生溝を構成するグルーブ15a及び逆レイリーステップ15bで流体を吸い込み、高圧流体側に連通された深溝からなる半径溝15cから高圧流体側に流体を排出するものである。
 逆レイリーステップ機構15よりも低圧側の平滑部Rには緩衝溝11が設けられる。図3において、緩衝溝11は逆レイリーステップ機構15から低圧流体側に離間して円環状に設けられている。
 また、緩衝溝11の摺動面における半径方向の位置については、逆レイリーステップ機構15よりも低圧側であって、低圧流体側とはランド部Rにより隔離されている。
 なお、逆レイリーステップ機構については、後に、詳しく説明する。
 緩衝溝11の断面形状、大きさなどは実施例1と同じである。
 緩衝溝11は、逆レイリーステップ機構15の流体排出作用(密封作用)に伴い、摺動面の低圧側に低圧流体が一気に進入するのを緩和する緩衝作用を有するものであり、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 図3の場合、緩衝溝11の緩衝(バッファー)効果により、低圧流体12の進入は摺動面の低圧側のごく一部に限定され、緩衝溝11の近傍から高圧側にかけては高圧流体が残存している。
 また、逆レイリーステップ機構15による流体排出により急激な圧力低下が生じる場合でも、緩衝溝11内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生が防止される。
 図4を参照して、本発明の実施例3に係る摺動部品について説明する。 
 なお、図4において、図2の符号と同じ符号は図2と同じ部材を示しており、重複する説明は省略する。
 図4において、固定環5の摺動面には、高圧流体側に連通されると共に低圧流体側とは摺動面のランド部Rにより隔離された流体循環手段としての流体循環溝20が周方向に複数設けられている。
 流体循環溝20は、高圧流体側から入る入口部20a、高圧流体側に抜ける出口部20b、及び、入口部20a及び出口部20bとを周方向に連通する連通部20cから構成され、低圧流体側とはランド部Rにより隔離されている。流体循環溝20は、摺動面において腐食生成物などを含む流体が濃縮されることを防止するため、積極的に高圧流体側から被密封流体を摺動面上に導入し排出するという役割を担うものであり、相手摺動面の回転方向に合わせて摺動面上に被密封流体を取り入れ、かつ、排出しやすいように入口部20a及び出口部20bの傾斜角度が大きく設定され、両者は低圧流体側(図4においては内周側)において交差するように配設され、この交叉部が連通部20cを形成している。入口部20aと出口部20bとの交叉角度は鈍角(例えば、約150°)である。
 固定環5の摺動面の流体循環溝20と高圧流体側とで囲まれる部分の外側、すなわち、隣接する流体循環溝20と20との間には、回転環3と固定環5との相対摺動により流体を高圧流体側に排出するスパイラル溝10が設けられている。
 流体循環溝20が設けられた摺動面には、流体循環溝20と高圧流体側とで囲まれる部分に流体循環溝20より浅いグルーブ21aを備える正圧発生機構21が設けられている。正圧発生機構21は、正圧(動圧)を発生することにより相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させるために設けられるものである。
 グルーブ21aは流体循環溝20の入口部20aに連通し、出口部20b及び高圧流体側とはランド部Rにより隔離されている。
 本例では、正圧発生機構21は、流体循環溝20の入口部20aに連通するグルーブ21a及びレイリーステップ21bを備えたレイリーステップ機構から構成されるが、これに限定されることなく、例えば、ダム付きフェムト溝で構成してもよく、要は、正圧を発生する機構であればよい。
 なお、レイリーステップ機構については、後に、詳しく説明する。
 流体循環溝20及びスパイラル溝10よりも低圧側の平滑部Rには緩衝溝11が設けられる。図4において、緩衝溝11は流体循環溝20から低圧流体側に離間すると共にスパイラル溝10の低圧側端部に沿うようにして円環状に設けられている。
 また、緩衝溝11の摺動面における半径方向の位置については、流体循環溝20及びスパイラル溝10よりも低圧側であって、低圧流体側とはランド部Rにより隔離されている。
 緩衝溝11の断面形状、大きさなどは実施例1と同じである。
 緩衝溝11は、スパイラル溝10の流体排出作用(密封作用)に伴い、摺動面の低圧側に低圧流体が一気に進入するのを緩和する緩衝作用を有するものであり、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 図4の場合、緩衝溝11の緩衝(バッファー)効果により、低圧流体12の進入は摺動面の低圧側のごく一部に限定され、緩衝溝11の近傍から高圧側にかけては高圧流体が残存している。
 また、スパイラル溝10による流体排出により急激な圧力低下が生じる場合でも、緩衝溝11内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生が防止される。
 図5を参照して、本発明の実施例4に係る摺動部品について説明する。 
 なお、図5において、図2及び図4の符号と同じ符号は図2及び図4と同じ部材を示しており、重複する説明は省略する。
 図5において、固定環5の摺動面には、高圧流体側に連通されると共に低圧流体側とは摺動面のランド部Rにより隔離された流体循環手段としての流体循環溝20が周方向に複数設けられている。
 固定環5の摺動面の流体循環溝20と高圧流体側とで囲まれる部分の外側、すなわち、隣接する流体循環溝20と20との間には、回転環3と固定環5との相対摺動により流体を高圧流体側に排出する逆レイリーステップ機構15が周方向に複数設けられている。
 流体循環溝20が設けられた摺動面には、流体循環溝20と高圧流体側とで囲まれる部分に流体循環溝20より浅いグルーブ21aを備える正圧発生機構21が設けられている。
 流体循環溝20及び逆レイリーステップ機構15よりも低圧側の平滑部Rには緩衝溝11が設けられる。図5において、緩衝溝11は流体循環溝20及び逆レイリーステップ機構15から低圧流体側に離間して円環状に設けられている。
 また、緩衝溝11の摺動面における半径方向の位置については、流体循環溝20及び逆レイリーステップ機構15よりも低圧側であって、低圧流体側とはランド部Rにより隔離されている。
 緩衝溝11の断面形状、大きさなどは実施例1と同じである。
 緩衝溝11は、逆レイリーステップ機構15の流体排出作用(密封作用)に伴い、摺動面の低圧側に低圧流体が一気に進入するのを緩和する緩衝作用を有するものであり、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 図3の場合、緩衝溝11の緩衝(バッファー)効果により、低圧流体12の進入は摺動面の低圧側のごく一部に限定され、緩衝溝11の近傍から高圧側にかけては高圧流体が残存している。
 また、逆レイリーステップ機構15による流体排出により急激な圧力低下が生じる場合でも、緩衝溝11内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生が防止される。
 図6を参照して、本発明の実施例5に係る摺動部品について説明する。 
 なお、図6において、図2及び図4の符号と同じ符号は図2及び図4と同じ部材を示しており、重複する説明は省略する。
 図6において、摺動面の高圧流体側の摺動面には、正圧発生機構21、例えば、グルーブ21a及びレイリーステップ21bを備えたレイリーステップ機構が設けられている。正圧発生機構21は、高圧流体側及び低圧流体側とランド部Rにより隔離され、周方向に等間隔で4等配に設けられている。
 また、正圧発生機構21より低圧流体側の摺動面には、正圧発生機構21と径方向において離間するようにしてスパイラル溝10が環状に配設されている。
 さらに、スパイラル溝10と正圧発生機構21との間に位置するように周方向に連続して環状の圧力開放溝25が設けられている。圧力開放溝25は、正圧発生機構21のグルーブ21aとは径方向においてランド部Rにより離間され、スパイラル溝10の排出側端部(下流側端部)とは連結されている。
 なお、本例では、正圧発生機構21は4等配に設けられているが、これに限らず、1つ以上であればよい。
 圧力開放溝25と高圧流体側とを連通するように半径方向溝26が設けられている。半径方向溝26は、周方向において正圧発生機構21のグルーブ部21aの上流側の端部に接する位置であって、圧力開放溝25の接線に直交する方向に4等配で設けられる。圧力開放溝25及び半径方向溝26は正圧発生機構21のグルーブ21aより深い。また、半径方向溝26は、本例では、圧力開放溝25より幅が広く形成されている。
 正圧発生機構21は、正圧(動圧)を発生することにより相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させるために設けられるものである。
 圧力開放溝25は、高圧側の正圧発生機構21で発生した正圧(動圧)を高圧側流体の圧力まで開放することで、流体が低圧側のスパイラル溝10に流入し、スパイラル溝10の負圧発生能力が弱まることを防止するためのものであり、高圧側の正圧発生機構21で発生した圧力により低圧側に流入しようとする流体を圧力開放溝25に導き、高圧流体側に逃す役割を果たすものである。このため、摺動面における密封性が一層向上される。
 図7を参照して、本発明の実施例6に係る摺動部品について説明する。 
 本実施例は、半径方向溝の向きにおいて図6の実施例5と相違するがその他の構成は実施例5と同じであり、図6の符号と同じ符号は図6と同じ部材を示しており、重複する説明は省略する。
 図7においては、半径方向溝27は、正圧発生機構21のグルーブ21aの上流側の端部に接する位置に4等配で設けられる点では、実施例5と同じであるが、配設される方向において若干相違する。
 すなわち、半径方向溝27は、4つの半径方向溝27a、27b、27c及び27dを2対に分け、1対の半径方向溝27a及び27b、あるいは、他の対の半径方向溝27c及び27dにおいて、上流側である入口側の半径方向溝27a(27c)には流体が入りやすいように入口が上流側に向けて傾斜され、また、出口側の半径方向溝27b(27d)では流体が排出されやすいに出口が下流側に向けて傾斜するように設けられている。
 換言すれば、半径方向溝27は周方向に偶数配置され、隣接する半径方向溝27は相互に傾斜方向が異なり、一方のグループの半径方向溝27a、27cは入口が上流側に向けて傾斜され、他方のグループの半径方向溝27b、27dは、出口が下流側に向けて傾斜するように設けられるものである。
 このように半径方向溝27が設けられると、圧力開放溝25及び半径方向溝27で構成される深溝内において緩やかな流体の流れが生成される。このため、深溝内に気泡あるいは不純物などが滞留することが防止され、高圧側の正圧発生機構21で発生した圧力により低圧側に流入しようとする流体を確実に高圧流体側に逃すことができるため、密封性を向上することができる。
 なお、本例では、正圧発生機構21は4等配に設けられているが、これに限らず、偶数であればよい。
 図8を参照して、本発明の実施例7に係る摺動部品について説明する。 
 本実施例は、正圧発生機構が8等配に設けられる点及び緩衝溝が設けらる点で図6の実施例5と相違するがその他の基本構成は実施例5と同じであり、図6の符号と同じ符号は図6と同じ部材を示しており、重複する説明は省略する。
 図8において、摺動面の径方向の中央には、スパイラル溝10が環状に配設され、スパイラル溝10より高圧流体側の摺動面には、正圧発生機構21、例えば、レイリーステップ機構が設けられると共に、スパイラル溝10と正圧発生機構21との間に位置するように圧力開放溝25が設けられている。また、正圧発生機構21及び圧力開放溝25は半径方向溝26を介して高圧流体側と連通されている。
 正圧発生機構21は、正圧(動圧)を発生することにより相対摺動する摺動面の間隔を広げ、該摺動面に液膜を形成し、潤滑性を向上させるために設けられるものである。
 圧力開放溝25は、高圧側の正圧発生機構21で発生した正圧(動圧)を高圧側流体の圧力まで開放することで、流体が低圧側のスパイラル溝10に流入し、スパイラル溝10の負圧発生能力が弱まることを防止するためのものであり、高圧側の正圧発生機構21で発生した圧力により低圧側に流入しようとする流体を圧力開放溝25に導き、高圧流体側に逃す役割を果たすものである。
 流体排出手段としてのスパイラル溝10よりも低圧側の平滑部Rには緩衝溝11が設けられる。図8において、緩衝溝11はスパイラル溝10の低圧側端部に沿うようにして円環状に設けられている。
 また、緩衝溝11の摺動面における半径方向の位置については、スパイラル溝10よりも低圧側であって、低圧流体側とはランド部Rにより隔離されている。
 緩衝溝11の断面形状、大きさなどは実施例1と同じである。
 緩衝溝11は、スパイラル溝10の流体排出作用(密封作用)に伴い、摺動面の低圧側に低圧流体が一気に進入するのを緩和する緩衝作用を有するものであり、低圧流体側から摺動面に進入する低圧流体の高圧流体に対する緩衝(バッファー)となり、摺動面が低圧流体で満たされるまでの時間を遅延することができ、高圧流体の脱水縮合反応を抑制するものである。
 例えば、低圧流体が空気の場合、空気により摺動面の低圧側が乾燥するのを防止できるため、高圧流体の脱水縮合反応による堆積原因物質の析出、付着及び堆積を防止できる。
 図3の場合、緩衝溝11の緩衝(バッファー)効果により、低圧流体12の進入は摺動面の低圧側のごく一部に限定され、緩衝溝11の近傍から高圧側にかけては高圧流体が残存している。
 また、スパイラル溝10による流体排出により急激な圧力低下が生じる場合でも、緩衝溝11内に存在する流体により急激な圧力低下が緩和されるため、キャビテーションの発生が防止される。
 次に、図9を参照しながら、レイリーステップ機構などからなる正圧発生機構及び逆レイリーステップ機構などからなる負圧発生機構を説明する。
 図9(a)において、相対する摺動部品である回転環3、及び、固定環5が矢印で示すように相対摺動する。例えば、固定環5の摺動面には、相対的移動方向と垂直かつ上流側に面してレイリーステップ21bが形成され、該レイリーステップ21bの上流側には正圧発生溝であるグルーブ部21aが形成されている。相対する回転環3及び固定環5の摺動面は平坦である。
 回転環3及び固定環5が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3または固定環5の移動方向に追随移動しようとするため、その際、レイリーステップ21bの存在によって破線で示すような正圧(動圧)を発生する。
 なお、20a、20bは、それぞれ、流体循環溝の入口部、出口部を、また、Rはランド部を、さらに、26は半径方向溝を示す。
 図9(b)においても、相対する摺動部品である回転環3、及び、固定環5が矢印で示すように相対摺動するが、回転環3及び固定環5の摺動面には、相対的移動方向と垂直かつ下流側に面して逆レイリーステップ15bが形成され、該逆レイリーステップ15bの下流側には負圧発生溝であるグルーブ部15aが形成されている。相対する回転環3及び固定環5の摺動面は平坦である。
 回転環3及び固定環5が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3または固定環5の移動方向に追随移動しようとするため、その際、逆レイリーステップ15bの存在によって破線で示すような負圧(動圧)を発生する。
 なお、15cは半径溝を、また、20a、20bは、それぞれ、流体循環溝の入口部、出口部を、さらに、Rはランド部を示す。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、摺動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。
 また、例えば、前記実施例では、外周側に高圧の被密封流体が存在する場合について説明したが、内周側が高圧流体の場合にも適用できる。
 また、例えば、前記実施例では、流体排出手段がスパイラル溝10及び逆レイリーステップ機構15の場合について説明したが、これらに限らず、ディンプルであってもよい。
 また、例えば、前記実施例では、緩衝溝11が環状に連続して形成される場合について説明したが、必ずしも、連続して形成される必要はなく、断続して形成されても、要は、緩衝作用を有する容量を有していればよい。
  1      回転軸
  2      スリーブ
  3      回転環
  4      ハウジング
  5      固定環
  6      コイルドウェーブスプリング
  7      ベローズ
 10      ポンピング溝(スパイラル溝)
 11      緩衝溝
 12      低圧流体
 15      逆レイリーステップ機構
 15a     グルーブ
 15b     逆レイリーステップ(負圧発生機構)
 15c     半径溝
 20      流体循環溝
 20a     入口部
 20b     出口部
 20c     連通部
 21      レイリーステップ(正圧発生機構)
 21a     グルーブ
 21b     レイリーステップ
 25      圧力開放溝
 26      半径方向溝
 27      半径方向溝
 S       摺動面
 R       ランド部

Claims (10)

  1.  一対の摺動部品の互いに相対摺動する一方側の摺動面の高圧側に、流体を高圧流体側へ排出する流体排出手段を備えた摺動部品において、前記流体排出手段よりも低圧側の前記摺動面には低圧流体の高圧流体側への進入を緩和する緩衝溝が設けられることを特徴とする摺動部品。
  2.  前記緩衝溝は、好ましくは、断面形状が半円状、矩形状またはアリ溝状に形成されることを特徴とする請求項1記載の摺動部品。
  3.  前記緩衝溝の幅bは、好ましくは、10~500μm、より好ましくは、50~200μmに設定されることを請求項1または2記載の摺動部品。
  4.  前記緩衝溝の深さhは、前記幅bの1~2倍に設定されることを特徴とする請求項3記載の摺動部品。
  5.  前記流体排出手段がスパイラル溝より構成されることを特徴とする請求項1ないし4のいずれか1項に記載の摺動部品。
  6.  前記流体排出手段が逆レイリーステップより構成されることを特徴とする請求項1ないし4のいずれか1項に記載の摺動部品。
  7.  前記摺動面の高圧側には、前記スパイラル溝又は前記逆レイリーステップに加えて前記高圧流体側に連通される流体循環溝を備え、前記流体循環溝と前記高圧流体側とで囲まれる部分に正圧発生機構が設けられ、前記正圧発生機構は前記流体循環溝の入口部に連通され、前記流体循環溝の出口部及び前記前記高圧流体側とはランド部により隔離されていることを特徴とする請求項5又は6記載の摺動部品。
  8.  一対の摺動部品の互いに相対摺動する一方側の摺動面に、流体を高圧流体側へ排出する流体排出手段を備えた摺動部品において、前記流体排出手段よりも高圧側の前記摺動面には正圧を発生する正圧発生機構が高圧流体側とランド部により隔離されるようにして設けられ、前記流体排出手段と前記正圧発生機構との間には環状の圧力開放溝が設けられ、前記圧力開放溝は、前記流体排出手段の排出側端部とは連結され、前記正圧発生機構とは径方向においてランド部により離間され、前記圧力開放溝と高圧流体側とを連通するように半径方向溝が設けられ、前記半径方向溝は、正圧発生機構の上流側の端部に接する位置に設けられることを特徴とする摺動部品。
  9.  前記半径方向溝は、周方向に偶数配置され、隣接する半径方向溝は相互に傾斜方向が異なり、一方のグループの半径方向溝は入口が上流側に向けて傾斜され、他方のグループの半径方向溝は、出口が下流側に向けて傾斜するように設けられることを特徴とする請求項8記載の摺動部品。
  10.  前記流体排出手段よりも低圧側の前記摺動面には低圧流体の高圧流体側への進入を緩和する緩衝溝が設けられることを特徴とする請求項8または9記載の摺動部品。
PCT/JP2013/084029 2013-04-24 2013-12-19 摺動部品 WO2014174725A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP17171594.9A EP3246604B1 (en) 2013-04-24 2013-12-19 Sliding component
CN201380070532.6A CN104919229B (zh) 2013-04-24 2013-12-19 滑动部件
AU2013387845A AU2013387845B2 (en) 2013-04-24 2013-12-19 Sliding part
JP2015513489A JP6224087B2 (ja) 2013-04-24 2013-12-19 摺動部品
US14/758,765 US9587745B2 (en) 2013-04-24 2013-12-19 Sliding component
EP13882696.1A EP2990700B1 (en) 2013-04-24 2013-12-19 Sliding part
US15/400,376 US9611938B1 (en) 2013-04-24 2017-01-06 Sliding component
US15/400,461 US9829109B2 (en) 2013-04-24 2017-01-06 Sliding component
AU2017216473A AU2017216473B2 (en) 2013-04-24 2017-08-15 Sliding part
AU2017216509A AU2017216509B2 (en) 2013-04-24 2017-08-16 Sliding part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013091026 2013-04-24
JP2013-091026 2013-04-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/758,765 A-371-Of-International US9587745B2 (en) 2013-04-24 2013-12-19 Sliding component
US15/400,376 Division US9611938B1 (en) 2013-04-24 2017-01-06 Sliding component
US15/400,461 Division US9829109B2 (en) 2013-04-24 2017-01-06 Sliding component

Publications (1)

Publication Number Publication Date
WO2014174725A1 true WO2014174725A1 (ja) 2014-10-30

Family

ID=51791316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084029 WO2014174725A1 (ja) 2013-04-24 2013-12-19 摺動部品

Country Status (6)

Country Link
US (3) US9587745B2 (ja)
EP (2) EP2990700B1 (ja)
JP (3) JP6224087B2 (ja)
CN (3) CN107420548B (ja)
AU (3) AU2013387845B2 (ja)
WO (1) WO2014174725A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121739A1 (ja) * 2015-01-31 2016-08-04 イーグル工業株式会社 摺動部品
WO2016203878A1 (ja) * 2015-06-15 2016-12-22 イーグル工業株式会社 摺動部品
WO2017002691A1 (ja) * 2015-06-27 2017-01-05 イーグル工業株式会社 摺動部品
CN107407424A (zh) * 2015-04-15 2017-11-28 伊格尔工业股份有限公司 滑动部件
CN107735606A (zh) * 2015-06-27 2018-02-23 伊格尔工业股份有限公司 滑动部件
WO2018212108A1 (ja) * 2017-05-19 2018-11-22 イーグル工業株式会社 摺動部品
WO2019013233A1 (ja) * 2017-07-13 2019-01-17 イーグル工業株式会社 摺動部材
EP3299684A4 (en) * 2015-05-20 2019-03-06 Eagle Industry Co., Ltd. SLIDING ELEMENT
WO2020085122A1 (ja) * 2018-10-24 2020-04-30 イーグル工業株式会社 摺動部材
JPWO2020196145A1 (ja) * 2019-03-22 2020-10-01
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
WO2023286590A1 (ja) * 2021-07-13 2023-01-19 イーグル工業株式会社 摺動部品
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
US20230407971A1 (en) * 2022-06-15 2023-12-21 John Crane Inc. Ring with recirculating grooves for dry gas seal
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US12013040B2 (en) 2019-02-21 2024-06-18 Eagle Industry Co., Ltd. Sliding components
US12018757B2 (en) 2019-02-04 2024-06-25 Eagle Industry Co., Ltd. Sliding components
US12104598B2 (en) 2020-07-06 2024-10-01 Eagle Industry Co., Ltd. Eccentric sliding assembly with a plurality of dynamic pressure generation mechanisms

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683632B (zh) * 2013-11-22 2017-07-07 伊格尔工业股份有限公司 滑动部件
WO2016035860A1 (ja) * 2014-09-04 2016-03-10 イーグル工業株式会社 メカニカルシール
JP6918012B2 (ja) * 2016-11-14 2021-08-11 イーグル工業株式会社 しゅう動部品
EP3543552B1 (en) * 2016-11-18 2021-11-10 Eagle Industry Co., Ltd. Sliding members
US11053974B2 (en) * 2016-12-07 2021-07-06 Eagle Industry Co., Ltd. Sliding component
US11125334B2 (en) * 2016-12-21 2021-09-21 Eaton Intelligent Power Limited Hydrodynamic sealing component and assembly
EP3575643B1 (en) * 2017-01-30 2023-03-22 Eagle Industry Co., Ltd. Sliding component
CN106812947B (zh) * 2017-02-14 2018-11-27 四川日机密封件股份有限公司 组合式流体动压槽的非接触机械密封环
EP3627011B1 (en) * 2017-05-19 2022-10-19 Eagle Industry Co., Ltd. Sliding component
WO2019009345A1 (ja) * 2017-07-07 2019-01-10 イーグル工業株式会社 摺動部材
US10907684B2 (en) * 2017-08-28 2021-02-02 Eagle Industry Co., Ltd. Sliding part
JP7242533B2 (ja) 2017-09-05 2023-03-20 イーグル工業株式会社 摺動部品
US20190195078A1 (en) * 2017-12-21 2019-06-27 Pratt & Whitney Canada Corp. Contacting face seal
JP6917332B2 (ja) * 2018-03-29 2021-08-11 株式会社豊田自動織機 遠心圧縮機及びメカニカルシール
WO2019206191A1 (en) 2018-04-28 2019-10-31 Telefonaktiebolaget Lm Ericsson (Publ) QoS FLOW CONTROL PARAMETERS SIGNALING
US11530749B2 (en) * 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
WO2019221229A1 (ja) 2018-05-17 2019-11-21 イーグル工業株式会社 シールリング
CN112703341B (zh) * 2018-06-08 2024-01-23 约翰起重机有限公司 带有具有通道的密封面的机械密封件
EP4166823A1 (en) * 2018-10-01 2023-04-19 Eagle Industry Co., Ltd. Sliding member
WO2020162350A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JP7366945B2 (ja) 2019-02-14 2023-10-23 イーグル工業株式会社 摺動部品
CN113412370B (zh) 2019-02-15 2023-03-10 伊格尔工业股份有限公司 滑动部件
JP7224630B2 (ja) * 2019-02-28 2023-02-20 学校法人東海大学 ドライガスシール
EP3940266A4 (en) * 2019-03-15 2022-04-20 NOK Corporation SEALING RING AND SEALING STRUCTURE
EP3961069A4 (en) 2019-04-24 2022-12-14 Eagle Industry Co., Ltd. SLIDING ELEMENT
JPWO2021246371A1 (ja) * 2020-06-02 2021-12-09
WO2022009769A1 (ja) * 2020-07-06 2022-01-13 イーグル工業株式会社 摺動部品
KR20230058503A (ko) * 2020-09-29 2023-05-03 이구루코교 가부시기가이샤 슬라이딩 부품
KR20230150356A (ko) * 2021-03-12 2023-10-30 이구루코교 가부시기가이샤 슬라이딩 부품

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958252U (ja) * 1982-10-08 1984-04-16 三菱重工業株式会社 メカニカルシ−ル
JPS60107461U (ja) * 1983-12-23 1985-07-22 イーグル工業株式会社 船尾管軸封装置
JPS6182117A (ja) 1984-09-29 1986-04-25 Nippon Kokan Kk <Nkk> 直流帰還型渦流距離計
JPH01133572U (ja) * 1988-03-08 1989-09-12
JP2006022834A (ja) * 2004-07-06 2006-01-26 Eagle Ind Co Ltd シール装置
WO2012046749A1 (ja) * 2010-10-06 2012-04-12 イーグル工業株式会社 摺動部品

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1505487A (fr) * 1966-10-28 1967-12-15 Guinard Pompes Perfectionnement aux joints tournants à régulation de fuite
JPS54118948A (en) * 1978-03-08 1979-09-14 Arai Pump Mfg Shaft seal device
US4491331A (en) * 1981-12-23 1985-01-01 Hughes Tool Company Grooved mechanical face seal
JPS5958252A (ja) 1982-09-29 1984-04-03 Honda Motor Co Ltd Vベルト伝動装置
US4406466A (en) * 1982-11-29 1983-09-27 Elliott Turbomachinery Co., Inc. Gas lift bearing and oil seal
JPS60107461A (ja) 1983-11-15 1985-06-12 Jidosha Kiki Co Ltd 動力舵取装置の制御方法
JPH06100642B2 (ja) 1984-09-29 1994-12-12 株式会社東芝 光応用磁界センサ
JPS6182117U (ja) 1984-11-05 1986-05-31
DE3619489A1 (de) * 1986-06-10 1987-12-17 Gutehoffnungshuette Man Wellendichtung
JPS63115669U (ja) * 1987-01-23 1988-07-26
JPS6449771A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Mechanical seal
JPH01133572A (ja) 1987-11-16 1989-05-25 Sanyo Electric Co Ltd 単相周波数変換回路
JPH01176270U (ja) * 1988-05-31 1989-12-15
JPH0448468U (ja) * 1990-08-28 1992-04-24
SU1753128A1 (ru) * 1991-01-24 1992-08-07 Сумское Машиностроительное Научно-Производственное Объединение Им.М.В.Фрунзе Газостатодинамическое уплотнение
JPH07117167B2 (ja) * 1991-05-09 1995-12-18 日本ピラー工業株式会社 非接触形メカニカルシール装置
JP3885972B2 (ja) 1993-09-01 2007-02-28 デュラメタリック コーポレーション 角度をつけた円環状の溝を有する面封止装置
US5498007A (en) * 1994-02-01 1996-03-12 Durametallic Corporation Double gas barrier seal
CN2236047Y (zh) * 1995-09-12 1996-09-25 徐万孚 一种带有密封沟槽的机械密封结构
DE19722870C2 (de) * 1996-12-06 2000-09-07 Karl Uth Gasgeschmierte Gleitringdichtung
US6446976B1 (en) * 2000-09-06 2002-09-10 Flowserve Management Company Hydrodynamic face seal with grooved sealing dam for zero-leakage
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
CN1558126A (zh) * 2004-02-11 2004-12-29 徐万福 一种阻隔及缓冲介质内供式的螺旋槽非接触机械密封
US8205891B2 (en) * 2008-09-15 2012-06-26 Stein Seal Company Intershaft seal assembly
CN102518809B (zh) * 2011-12-29 2015-04-22 江苏大学 一种防固体颗粒吸入型流体动压机械密封环
US9777840B2 (en) * 2012-09-29 2017-10-03 Eagle Industry Co., Ltd. Sliding component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958252U (ja) * 1982-10-08 1984-04-16 三菱重工業株式会社 メカニカルシ−ル
JPS60107461U (ja) * 1983-12-23 1985-07-22 イーグル工業株式会社 船尾管軸封装置
JPS6182117A (ja) 1984-09-29 1986-04-25 Nippon Kokan Kk <Nkk> 直流帰還型渦流距離計
JPH01133572U (ja) * 1988-03-08 1989-09-12
JP2006022834A (ja) * 2004-07-06 2006-01-26 Eagle Ind Co Ltd シール装置
WO2012046749A1 (ja) * 2010-10-06 2012-04-12 イーグル工業株式会社 摺動部品

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121739A1 (ja) * 2015-01-31 2016-08-04 イーグル工業株式会社 摺動部品
CN107208804A (zh) * 2015-01-31 2017-09-26 伊格尔工业股份有限公司 滑动部件
JPWO2016121739A1 (ja) * 2015-01-31 2017-11-09 イーグル工業株式会社 摺動部品
CN107407424B (zh) * 2015-04-15 2019-11-22 伊格尔工业股份有限公司 滑动部件
CN107407424A (zh) * 2015-04-15 2017-11-28 伊格尔工业股份有限公司 滑动部件
EP3299684A4 (en) * 2015-05-20 2019-03-06 Eagle Industry Co., Ltd. SLIDING ELEMENT
WO2016203878A1 (ja) * 2015-06-15 2016-12-22 イーグル工業株式会社 摺動部品
JPWO2016203878A1 (ja) * 2015-06-15 2018-03-29 イーグル工業株式会社 摺動部品
CN107735606A (zh) * 2015-06-27 2018-02-23 伊格尔工业股份有限公司 滑动部件
JPWO2017002691A1 (ja) * 2015-06-27 2018-04-12 イーグル工業株式会社 摺動部品
EP3315831A4 (en) * 2015-06-27 2019-02-20 Eagle Industry Co., Ltd. SLIDING COMPONENT
US10655736B2 (en) 2015-06-27 2020-05-19 Eagle Industry Co., Ltd. Sliding component
WO2017002691A1 (ja) * 2015-06-27 2017-01-05 イーグル工業株式会社 摺動部品
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
US11168793B2 (en) 2017-05-19 2021-11-09 Eagle Industry Co., Ltd. Sliding component
KR102346371B1 (ko) 2017-05-19 2022-01-03 이구루코교 가부시기가이샤 슬라이딩 부품
JP7171553B2 (ja) 2017-05-19 2022-11-15 イーグル工業株式会社 摺動部品
KR20190131090A (ko) * 2017-05-19 2019-11-25 이구루코교 가부시기가이샤 슬라이딩 부품
JPWO2018212108A1 (ja) * 2017-05-19 2020-05-21 イーグル工業株式会社 摺動部品
WO2018212108A1 (ja) * 2017-05-19 2018-11-22 イーグル工業株式会社 摺動部品
CN110832235B (zh) * 2017-07-13 2022-07-12 伊格尔工业股份有限公司 滑动部件
WO2019013233A1 (ja) * 2017-07-13 2019-01-17 イーグル工業株式会社 摺動部材
CN110832235A (zh) * 2017-07-13 2020-02-21 伊格尔工业股份有限公司 滑动部件
JPWO2019013233A1 (ja) * 2017-07-13 2020-07-09 イーグル工業株式会社 摺動部材
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
JPWO2020085122A1 (ja) * 2018-10-24 2021-09-16 イーグル工業株式会社 摺動部材
JP7387238B2 (ja) 2018-10-24 2023-11-28 イーグル工業株式会社 摺動部材
WO2020085122A1 (ja) * 2018-10-24 2020-04-30 イーグル工業株式会社 摺動部材
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
US12018757B2 (en) 2019-02-04 2024-06-25 Eagle Industry Co., Ltd. Sliding components
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US12013040B2 (en) 2019-02-21 2024-06-18 Eagle Industry Co., Ltd. Sliding components
CN113508238A (zh) * 2019-03-22 2021-10-15 伊格尔工业股份有限公司 滑动部件
WO2020196145A1 (ja) * 2019-03-22 2020-10-01 イーグル工業株式会社 摺動部品
JPWO2020196145A1 (ja) * 2019-03-22 2020-10-01
JP7419346B2 (ja) 2019-03-22 2024-01-22 イーグル工業株式会社 摺動部品
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US12104598B2 (en) 2020-07-06 2024-10-01 Eagle Industry Co., Ltd. Eccentric sliding assembly with a plurality of dynamic pressure generation mechanisms
WO2023286590A1 (ja) * 2021-07-13 2023-01-19 イーグル工業株式会社 摺動部品
US20230407971A1 (en) * 2022-06-15 2023-12-21 John Crane Inc. Ring with recirculating grooves for dry gas seal

Also Published As

Publication number Publication date
US9611938B1 (en) 2017-04-04
CN106949244B (zh) 2019-03-12
JP2017141961A (ja) 2017-08-17
AU2017216509B2 (en) 2019-01-31
JPWO2014174725A1 (ja) 2017-02-23
EP3246604B1 (en) 2020-05-13
US9829109B2 (en) 2017-11-28
CN107420548B (zh) 2019-05-17
AU2017216473B2 (en) 2019-01-31
AU2017216509A1 (en) 2017-08-31
CN104919229A (zh) 2015-09-16
AU2013387845B2 (en) 2017-07-20
AU2017216473A1 (en) 2017-08-31
CN104919229B (zh) 2017-05-31
JP6224087B2 (ja) 2017-11-01
EP2990700B1 (en) 2019-08-07
AU2013387845A1 (en) 2015-07-23
US20170130844A1 (en) 2017-05-11
EP3246604A1 (en) 2017-11-22
CN106949244A (zh) 2017-07-14
US9587745B2 (en) 2017-03-07
EP2990700A4 (en) 2016-10-12
CN107420548A (zh) 2017-12-01
JP2017141962A (ja) 2017-08-17
US20170114902A1 (en) 2017-04-27
JP6410867B2 (ja) 2018-10-24
US20160033045A1 (en) 2016-02-04
EP2990700A1 (en) 2016-03-02
JP6407346B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6407346B2 (ja) 摺動装置
JP6058018B2 (ja) 摺動部品
US9765892B2 (en) Sliding component
JP6161632B2 (ja) 摺動部品
JP6345695B2 (ja) 摺動部品
EP3361128B1 (en) Sliding component
EP2977654B1 (en) Sliding component
US9845886B2 (en) Sliding parts
JP6279474B2 (ja) 摺動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758765

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013882696

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013387845

Country of ref document: AU

Date of ref document: 20131219

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE