WO2014174549A1 - 流体供給装置 - Google Patents

流体供給装置 Download PDF

Info

Publication number
WO2014174549A1
WO2014174549A1 PCT/JP2013/002721 JP2013002721W WO2014174549A1 WO 2014174549 A1 WO2014174549 A1 WO 2014174549A1 JP 2013002721 W JP2013002721 W JP 2013002721W WO 2014174549 A1 WO2014174549 A1 WO 2014174549A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
drive source
engine
supply pump
rotational speed
Prior art date
Application number
PCT/JP2013/002721
Other languages
English (en)
French (fr)
Inventor
浩忠 吉谷
武 傍士
Original Assignee
株式会社Tbk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbk filed Critical 株式会社Tbk
Priority to JP2015513358A priority Critical patent/JP6096888B2/ja
Priority to KR1020157031196A priority patent/KR102030880B1/ko
Priority to EP13883181.3A priority patent/EP2990648B1/en
Priority to PCT/JP2013/002721 priority patent/WO2014174549A1/ja
Priority to US14/784,696 priority patent/US10012227B2/en
Priority to CN201380075961.2A priority patent/CN105143670A/zh
Publication of WO2014174549A1 publication Critical patent/WO2014174549A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting

Definitions

  • the present invention relates to a fluid supply apparatus that supplies a cooling fluid to a drive source to cool the drive source.
  • this fluid supply device there is an engine cooling device provided in an automobile engine or the like.
  • Water (cooling water) is used as a medium (refrigerant) for cooling cylinders and cylinder heads in water-cooled engines such as automobile engines.
  • the engine cooling device is configured to cool the engine by supplying cooling water into a water jacket formed in an engine cylinder block and forcibly circulating it.
  • the cooling water is supplied by a cooling water supply pump driven by the engine, and an amount of cooling water corresponding to the rotational speed of the engine is supplied into the water jacket to cool the engine (for example, Patent Documents). 1).
  • the cooling water supply pump is required to have a capacity (pump capacity) for supplying cooling water so that the engine does not overheat even under severe operating conditions in which the engine load increases.
  • the capacity of the cooling water supply pump is not a capacity required under normal operating conditions, but a large pump capacity that can prevent the engine from overheating when used in combination with a radiator even under the severe operating conditions assumed. It is done.
  • This large capacity cooling water supply pump is always driven by the engine, and the engine rotation speed is increased. A suitable amount of cooling water is always supplied to the water jacket. For this reason, it is difficult to control the amount of cooling water according to the engine temperature, and particularly during warm-up operation, cooling water is supplied according to engine rotation. There was a problem that energy for driving the pump was wasted.
  • the present invention has been made in view of the problems as described above, and can appropriately control the supply amount of the cooling fluid while avoiding an increase in the size of the apparatus, and can efficiently cool the drive source.
  • An object of the present invention is to provide a fluid supply apparatus.
  • the fluid supply device is a fluid supply device that supplies a cooling fluid to a drive source that is rotationally driven to cool the drive source, and is driven by the drive source to supply the cooling fluid to the drive source.
  • Rotation speed detecting means for controlling the operation of the electric motor and the supply switching means based on detection results detected by the temperature detecting means and the rotation speed detecting means.
  • the operation control means switches the supply switching means to the restricted state and switches the first supply pump.
  • the supply of the cooling fluid from the second supply pump to the drive source is controlled by controlling the supply of the cooling fluid from the second supply pump to the drive source.
  • the operation control means detects the rotation speed detection means when the temperature of the drive source detected by the temperature detection means is equal to or higher than a first predetermined temperature.
  • the supply switching means is switched to the restricted state to restrict the supply of cooling fluid from the first supply pump to the drive source, and A control for driving the electric motor is performed to supply the cooling fluid from the second supply pump to the drive source, and the rotational speed of the drive source detected by the rotational speed detection means is the first predetermined rotation.
  • the supply is performed. Detecting by the rotational speed detecting means is performed by controlling the gradual switching of the switching means from the regulated state to the supplying state, and gradually increasing the supply of cooling fluid from the first supply pump to the driving source.
  • the supply switching means is switched to the supply state so that the cooling fluid is supplied from the first supply pump to the drive source.
  • the rotation speed of the drive source detected by the rotation speed detection unit is greater than or equal to the first predetermined rotation speed and less than a second predetermined rotation speed, and the second predetermined rotation speed.
  • the control for driving the electric motor is also performed, and the cooling fluid is supplied from the second supply pump to the drive source.
  • the operation control unit is at least one of a rotation speed detected by the rotation speed detection unit and a temperature detected by the temperature detection unit when the electric motor is driven. Accordingly, the rotational speed of the electric motor is controlled.
  • the supply switching unit includes a switching valve provided in a flow path for supplying the cooling fluid discharged from the first supply pump to the driving source, and the switching valve By the switching operation, a supply state in which the cooling fluid is supplied from the first supply pump to the drive source and a regulation state in which the supply of the cooling fluid from the first supply pump to the drive source is regulated. Change over.
  • the supply switching unit includes a power transmission control device provided in a power transmission system that transmits a rotational driving force from the driving source to the first supply pump, and the power transmission According to an operation control of the control device, a supply state in which the first supply pump is driven by the drive source and cooling fluid is supplied from the first supply pump to the drive source, and the first by the drive source The driving of one supply pump is shut off, and switching to a restricted state in which the supply of cooling fluid from the first supply pump to the drive source is restricted is performed.
  • the supply of the cooling fluid from the first supply pump to the drive source is restricted and the electric motor is driven. Is performed so that the cooling fluid is supplied from the second supply pump to the driving source, so that the electric motor is driven in accordance with the temperature of the driving source and the cooling fluid is supplied.
  • the supply can be controlled arbitrarily. For this reason, for example, when performing warm-up operation with a drive source at a low temperature so as to perform warm-up operation of the engine, the cooling fluid supply amount is appropriately controlled by drive control of the electric motor, and efficient warm-up operation is performed. It becomes possible to minimize the pump drive energy by the engine.
  • the flowchart of the control which cools an engine with this engine cooling device is shown. It is a graph which shows the relationship between an engine speed and the amount of cooling water discharged from the 1st and 2nd supply pump. It is a graph which shows the relationship between an engine speed and the amount of cooling water discharged from a 2nd supply pump. It is a graph which shows the relationship between an engine speed and the amount of cooling water discharged from a 1st supply pump. It is a block diagram which shows the structure of the engine cooling device which concerns on 2nd Embodiment.
  • FIG. 1 is a block diagram showing the configuration of the engine cooling device 1.
  • This engine cooling device 1 forcibly circulates cooling water through a water jacket WJ formed in a cylinder block of the engine EG, and appropriately cools the engine EG in combination with the radiator RD. It is a device that controls the supply of cooling water so as not to overheat.
  • the engine cooling device 1 has a first supply flow path L1 that connects the outlet of the radiator RD and the inlet of the water jacket WJ of the engine EG, and branches from the first supply flow path L1 (branch point A1) and extends in parallel therewith. After branching from a second supply flow path L2 that joins the first supply flow path L1 (joining point A2) and a first flow switching valve V1 (described later) provided in the first supply flow path L1. And a return flow path L4 that connects the outlet of the water jacket WJ of the engine EG and the inlet of the radiator RD, and is connected to the first supply flow path L1 (joining point A3).
  • the engine cooling device 1 further includes a first supply pump 11 provided between the branch point A1 and the junction A2 in the first supply flow path L1 and driven by the engine EG, and a discharge side of the first supply pump 11
  • the first flow path switching valve V1 provided in the second supply flow path 12, the second supply pump 12 provided in the second supply flow path L2, the electric motor M that drives the second supply pump 12, and the rotational speed of the engine EG are detected.
  • the rotation speed detector 14 that detects the temperature of the cooling water in the return flow path L4 (that is, the temperature of the cooling water that flows in the water jacket WJ of the engine EG), the electric motor M, and the first.
  • a controller CN that controls the operation of the flow path switching valve V1.
  • the first supply pump 11 is composed of a centrifugal pump, and is driven to rotate by transmitting the rotational driving force of the crankshaft of the engine EG. Thereby, an amount of cooling water proportional to the rotation of the engine EG is discharged from the radiator RD side to the first flow path switching valve V1 side by the first supply pump 11.
  • the first flow path switching valve V1 has a supply position for supplying the cooling water discharged from the first supply pump 11 to the water jacket WJ side, and the first flow path L3 without being supplied to the water jacket WJ side. It is configured to be able to switch to a return position to return to the upstream side (confluence point A3) of the supply pump 11.
  • the opening degree can be adjusted between the supply position and the return position, and the ratio of the cooling water supply amount to the water jacket WJ side and the cooling water supply amount to the circulation flow path L3 can be controlled by opening degree control.
  • the first flow path switching valve V1 is configured from a duty control solenoid valve to control the duty ratio, and is configured from a proportional control valve to proportionally control the flow rate.
  • a first check valve V2 is disposed downstream of the first flow path switching valve V1 and upstream of the junction A2 in the first supply flow path L1. The first check valve V2 allows the flow of cooling water from the first flow path switching valve V1 side to the water jacket WJ side, but restricts the opposite flow.
  • the 1st supply pump 11 may comprise the 1st supply pump 11 from the pump of another type.
  • the first supply pump 11 is constituted by a centrifugal pump as described above
  • the first flow path opening / closing valve V1 is configured by a valve for performing opening / closing control of the first supply flow path L1 without the circulation flow path L3. You may do it. This is because, in the case of a centrifugal pump, even if the discharge side of the pump is closed by the first flow path switching valve V1, the pump impeller simply runs idle and the pump driving force of the engine EG is small.
  • the second supply pump 12 is also composed of a centrifugal pump and is driven to rotate by the electric motor M. From the second supply pump 12, an amount of cooling water proportional to the rotation of the electric motor M is supplied to the water jacket WJ via the second supply flow path L2 and the first supply flow path L1.
  • the first supply pump 11 may be composed of other types of pumps.
  • a second check valve V3 is disposed downstream of the second supply pump 12 in the second supply flow path L2. The second check valve V3 allows the flow of cooling water from the second supply pump 12 side to the water jacket WJ side, but restricts the opposite flow.
  • the controller CN receives detection signals detected by the rotational speed detector 14 and the temperature detector 15, and controls the operation of the electric motor M and the first flow path switching valve V1 based on these detection signals (details will be described later). ).
  • the controller CN includes a memory that stores an engine EG cooling program and the like.
  • the memory includes a first reference rotation speed Ra and a second reference rotation speed Rb (> Ra), which are higher than the engine rotation speed R1 during idling and serve as a reference for switching control of the first flow path switching valve V1, and a warm-up completion temperature. Necessary control information such as Ta is stored (see FIG. 3 described later).
  • the return flow path L4 is provided with a second flow path switching valve V4 that is operated by a thermostat.
  • This second flow path switching valve V4 flows to the first supply flow path L1 (confluence A4) via the radiator side supply position for flowing the cooling water returned from the water jacket WJ to the radiator RD side and the bypass flow path L5. It can be switched to the bypass side supply position.
  • the second flow path switching valve V4 is located at the bypass side supply position when the temperature of the engine EG (cooling water temperature) is lower than the predetermined temperature to be maintained, and when it exceeds this predetermined temperature, it is switched to the radiator side supply position. Start changing.
  • step S10 the controller CN drives the engine EG based on the engine EG rotation speed detection signal (a signal indicating the rotation speed R of the engine EG) sent from the rotation speed detector 14. Determine whether it is on or off. If it is determined that the engine EG is driven, the process proceeds to step S20. If it is determined that the engine EG is stopped, the current flow is terminated.
  • the engine EG rotation speed detection signal a signal indicating the rotation speed R of the engine EG
  • step S20 it is determined whether or not a warm-up operation for raising the temperature of the engine EG to a temperature suitable for driving is necessary based on the coolant temperature detection signal sent from the temperature detector 15. .
  • This determination is made by comparing the warm-up completion temperature Ta stored in the memory with the coolant temperature T detected by the temperature detector 15. As a result of this comparison, if the cooling water temperature T ⁇ warm-up completion temperature Ta, warm-up operation is necessary, and the process proceeds to step S21.
  • the cooling water temperature T> the warm-up completion temperature Ta the warm-up operation is unnecessary, and the process proceeds to step S30.
  • step S21 a warm-up operation is performed in which the engine EG is operated at a relatively low speed without applying a load to raise the temperature.
  • the temperature of the engine EG in a low temperature state is raised to a temperature suitable for operation, but the amount of cooling water supplied to the water jacket WJ is reduced, and the engine EG is efficiently raised in a short time. It is preferable to warm.
  • step S21 control for suppressing the amount of cooling water supplied to the water jacket WJ is performed.
  • the first supply pump 11 is driven by the engine EG, cooling water proportional to the rotational speed of the engine is discharged. For this reason, if the cooling water discharged from the 1st supply pump 11 is supplied to the water jacket WJ, control which suppresses the amount of cooling water cannot be performed.
  • step S21 the controller CN outputs an operation signal to the first flow path switching valve V1, and performs control to switch the first flow path switching valve V1 to the return position.
  • the cooling water discharged from the first supply pump 11 is returned to the upstream portion of the first supply pump 11 via the circulation flow path L3 without being supplied to the water jacket WJ.
  • the amount of cooling water supplied to the water jacket WJ of the engine EG is suppressed, and the engine temperature can be quickly raised by the warm-up operation.
  • the driving load of the first supply pump 11 is suppressed, and the engine EG driving load can be suppressed.
  • the amount of cooling water to the water jacket WJ is set to zero, the engine EG may be partially heated so that problems such as seizure may occur. Further, as the engine temperature (engine cooling water temperature) rises from the low temperature state by the warm-up operation and the cooling water temperature T approaches the warm-up completion temperature Ta, it is necessary to control to gradually increase the cooling water amount.
  • step S21 the controller CN controls the drive of the electric motor M based on the detection signal (cooling water temperature T) from the temperature detector 15, and supplies the cooling water from the second supply pump 12 to the water jacket WJ.
  • Control to supply In this control, first, when the engine EG is in a low temperature state, the engine EG is partially heated so that the minimum amount of cooling water necessary to prevent the occurrence of problems such as seizure is supplied. The drive of the electric motor M is controlled. Then, the drive of the electric motor M is controlled so that the amount of cooling water supplied to the water jacket WJ increases as the cooling water temperature T (the temperature of the engine EG) increases due to the warm-up operation of the engine EG.
  • the first flow path switching valve V1 and the electric motor M by controlling the operation of the first flow path switching valve V1 and the electric motor M, it is possible to perform the warm-up operation while supplying the water jacket WJ with an amount of cooling water corresponding to the temperature of the engine EG. .
  • the driving load of the first supply pump by the engine EG can be suppressed, and the engine EG can be warmed up efficiently in a short time.
  • steps S10, S20, and S21 are repeatedly determined every predetermined cycle and continued regardless of the rotational speed R of the engine EG. Executed.
  • the second flow path switching valve V4 is located at the bypass side supply position, and the cooling water is circulated in the engine EG without being supplied to the radiator RD, so that the warm-up operation is performed more efficiently. Can do.
  • step S30 first, the controller CN reads the first reference rotation speed Ra stored in the memory, and the first reference rotation speed Ra and the detection signal (that is, the detection signal from the rotation speed detector 14 input in step S10 (that is, A comparison is made with the current rotational speed R of the engine EG.
  • the process proceeds to step S31.
  • the process proceeds to step S40, and the rotation speed R is further determined.
  • step S30 The process proceeds from step S30 to step S31 when the engine EG is operated at a low speed, and the amount of heat generated in the engine EG is relatively small.
  • the controller CN sets the first flow path switching valve V1 to the return position, and supplies the cooling water discharged from the first supply pump 11 to the upstream portion of the first supply pump 11 via the circulation flow path L3. Control to return.
  • the controller CN controls driving of the electric motor M based on a detection signal (cooling water temperature T) from the temperature detector 15.
  • a detection signal cooling water temperature T
  • an amount of cooling water corresponding to the cooling water temperature T is discharged from the second supply pump 12 and supplied to the water jacket WJ.
  • the controller CN controls driving of the electric motor M based on a detection signal (cooling water temperature T) from the temperature detector 15.
  • the first flow path switching valve V1 is set to the supply position. Switching may be performed so that the cooling water discharged from the first supply pump 11 is supplied to the water jacket WJ. In this case, when the supply from the first supply pump 11 is insufficient, the control for driving the electric motor M is also performed, and the control for supplying the shortage from the second supply pump 12 is performed.
  • step S40 the controller CN also reads out the second reference rotation speed Rb stored in the memory, and these first and second reference rotation speeds Ra and Rb and the current rotation of the engine EG. The speed R is compared. If it is determined that the current rotational speed R of the engine EG is a speed between the first reference rotational speed Ra and the second reference rotational speed Rb, the process proceeds to step S41. On the other hand, when it is determined that the rotational speed R is higher than the second reference rotational speed Rb, the process proceeds to step S42.
  • the control in step 41 and step 42 is a control performed when the engine speed increases while performing the control in step 31 described above.
  • step 41 the control transitions to the control in step 42.
  • Control Therefore, before describing the control in step 41, which is this transient control, first, the control in step S42 will be described.
  • the control in step 31, step S41 and step S42 is performed in a state where the warm-up operation of the engine EG is completed, that is, the cooling water temperature T of the engine EG becomes equal to or higher than the warm-up completion temperature Ta. It is control performed in the state which is.
  • step S42 is performed in a state where the rotational speed R of the engine EG exceeds the second reference rotational speed Rb, that is, the engine EG is driven at a high speed.
  • the controller CN first outputs an operation signal to the first flow path switching valve V1, and performs control to switch the first flow path switching valve V1 to the supply position.
  • the cooling water discharged from the first supply pump 11 is supplied to the water jacket WJ without being supplied to the circulation flow path L3.
  • an amount of cooling water proportional to the engine speed is supplied from the first supply pump 11 driven by the engine EG to the water jacket WJ to cool the engine EG.
  • the control in step S42 is the state in which the engine EG is operating at a high speed as described above, and the first supply pump in a state where the engine load, the outside air temperature is high, and the cooling efficiency in the radiator RD is low.
  • the amount of cooling water may be insufficient with only the cooling water discharged from 11. Therefore, the controller CN controls the driving of the electric motor M based on the detection signal (rotation speed R) from the rotation speed detector 14 and the detection signal (cooling water temperature T) from the temperature detector 15.
  • cooling water is discharged from the second supply pump 12 so as to compensate for the shortage of cooling water discharged from the first supply pump 11 and supplied to the water jacket WJ.
  • the engine cooling device is configured by only the first supply pump 11 or only the second supply pump 12. Compared with the case where it does, the 1st and 2nd supply pumps 11 and 12 can be reduced in size. Then, as described above, the driving of the first flow path switching valve V1 and the electric motor M is controlled according to the engine operating state, and the first and second supply pumps 11 and 12 are selectively or appropriately combined. Used for optimal and most efficient cooling water supply control. As a result, the drive energy of the first supply pump 11 by the engine EG can be minimized.
  • the control in step S41 is a case where the rotational speed R of the engine EG is determined to be a speed between the first reference rotational speed Ra and the second reference rotational speed Rb as described above. As described above, when the rotational speed R of the engine EG is equal to or lower than the first reference rotational speed Ra, the control in step S31 is performed, and the first flow path switching valve V1 is switched to the return position and driven by the electric motor M.
  • the second supply pump 12 supplies cooling water.
  • step S42 when the rotational speed R of the engine EG is equal to or higher than the second reference rotational speed Rb, the control in step S42 is performed, the first flow path switching valve V1 is switched to the supply position, and the first supply driven by the engine EG is performed. Cooling water is supplied by the pump 11, and cooling water is supplied by the second supply pump 12 by driving the electric motor M as necessary. In step S41, control between these two controls, that is, transient control according to engine rotation is performed.
  • the opening degree of the first flow path switching valve V1 from the return position to the supply position is increased. Control is performed to gradually change.
  • the first flow path switching valve V1 is constituted by a duty ratio control or a proportional control valve.
  • the first flow path switching valve V1 is fully open on the circulation flow path L3 side and fully closed on the water jacket WJ side at the return position. From this state, control is performed to gently close the opening on the circulation flow path L3 side and gently open the opening on the water jacket WJ side.
  • the amount of cooling water supplied from the first supply pump 11 to the water jacket WJ side increases as the rotational speed R of the engine EG increases from the first reference rotational speed Ra to the second reference rotational speed Rb. It becomes control.
  • the second supply pump 12 is driven by the electric motor M to control the amount of cooling water. Done.
  • FIG. 4 shows the amount of cooling water supplied from the second supply pump 12 driven by the electric motor M to the water jacket WJ of the engine EG.
  • the electric motor M can be freely controlled regardless of the engine rotation, and the discharge amount of the second supply pump 12 can be arbitrarily discharged from zero discharge amount to the maximum discharge amount Qm corresponding to the maximum drive rotation of the electric motor. Setting control as a quantity is possible.
  • the electric motor M is configured so that the coolant having the optimum flow rate is supplied from the second supply pump 12 to the water jacket WJ according to the change in the coolant temperature T during the warm-up operation.
  • Drive control is performed.
  • step S31 the same drive control of the electric motor M is performed.
  • steps S41 and S42 when it is necessary to compensate for the shortage of supply from the engine-driven first supply pump 11, the drive control of the electric motor M is performed as necessary regardless of the engine rotation.
  • FIG. 5 shows the supply cooling water amount characteristic from the first supply pump 11 driven by the engine EG to the water jacket WJ of the engine EG.
  • the first flow path switching valve V1 is set to the return position, and the first supply pump 11 The cooling water discharged from is returned to the upstream portion of the first supply pump 11 via the circulation flow path L3. For this reason, in the region where the engine rotation speed is smaller than the first reference rotation speed Ra, the amount of oil supplied to the water jacket WJ is zero.
  • the rotational speed R of the engine EG when the rotational speed R of the engine EG is between the first reference rotational speed Ra and the first reference rotational speed Ra, the rotational speed R of the engine EG increases from the first reference rotational speed Ra to the second reference rotational speed Rb.
  • the first flow path switching valve V1 is controlled so that its opening degree is gradually changed from the return position to the supply position. As a result, the amount of cooling water supplied from the first supply pump 11 to the water jacket WJ side increases relatively rapidly as the engine speed increases, as indicated by the line E3 in FIG.
  • the first flow path switching valve V1 When the rotational speed R of the engine EG is equal to or higher than the second reference rotational speed Rb, the first flow path switching valve V1 is switched to the supply position, and all the cooling water discharged from the first supply pump 11 is directed to the water jacket WJ side. Supplied. Therefore, the amount of cooling water supplied from the first supply pump 11 to the water jacket WJ side is an amount proportional to the engine rotation, as indicated by a line E2 in FIG.
  • the amount of cooling water supplied to the water jacket WJ side by the control in steps S41 and S42 is the sum of the supply flow rates from the first and second supply pumps 11 and 12. This is shown in FIG. 3, which is the sum of the amount of cooling water shown in FIG. 4 and the amount of cooling water shown in FIG.
  • the engine cooling device 2 according to the second embodiment will be described with reference to FIG.
  • the configuration different from the engine cooling device 1 according to the first embodiment described above will be mainly described, and the same members as those of the engine cooling device 1 will be denoted by the same reference numerals and description thereof will be omitted.
  • the engine cooling device 2 is configured by providing a clutch mechanism 201 in a driving force transmission mechanism 200 that transmits the rotational driving force of the engine EG to the first supply pump instead of the first flow path switching valve V1 in the engine cooling device 1. Is done.
  • the clutch mechanism 201 is configured to be switchable between a connected state in which the rotational driving force of the engine EG is transmitted to the first supply pump 11 and a disconnected state in which the transmission of the rotational driving force to the first supply pump 11 is disconnected.
  • the clutch mechanism 201 for example, a fluid coupling (fluid clutch), a centrifugal clutch, or the like can be used.
  • the clutch mechanism 201 When the clutch mechanism 201 is switched to the connected state, the rotational driving force of the engine EG is transmitted to the first supply pump 11 via the driving force transmission mechanism 200 and the clutch mechanism 201. As a result, the first supply pump 11 is driven at a speed corresponding to the rotational speed of the engine EG, and an amount of cooling water corresponding to the rotational speed of the engine EG is discharged and supplied to the water jacket WJ.
  • the clutch mechanism 201 is switched to the disconnected state, the transmission of the rotational driving force to the first supply pump 11 is interrupted, and the first supply pump 11 is maintained in the stopped state. Thereby, the cooling water is not discharged from the first supply pump 11, and the cooling water is not supplied from the first supply pump 11 to the water jacket WJ.
  • connection / disconnection operation of the clutch mechanism 201 is controlled based on an operation signal output from the controller CN. Specifically, in step S21 and S31 shown in FIG. 2, control for making a disconnected state is performed, in step S41, control for gently connecting and disconnecting is performed, and in step S42, control for making a connected state is performed.
  • the first supply pump 11 is rotationally driven when the cooling water is not supplied from the first supply pump 11 to the water jacket WJ. As a result, wasteful energy consumption can be further suppressed.
  • the cooling control when the engine EG is driven has been described.
  • the control for driving the electric motor M is performed after the engine EG is stopped, It is also possible to cool the engine EG.
  • the present invention is applied to the engine cooling device 1 provided in the engine EG for automobiles.
  • the fluid that forcibly circulates the cooling fluid to cool the power motor and the drive mechanism The present invention can also be applied to a supply device.
  • coolant the structure which replaces with cooling water, for example, uses cooling oil or cooling air is also possible.
  • the configuration in which the second flow path switching valve V4 is provided in the return flow path L4 has been described as an example. However, for example, when the warm-up operation can be efficiently performed by the control in step S21. It is also possible to configure an engine cooling device that omits the second flow path switching valve V4 and the bypass flow path L5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 エンジン冷却装置(1)は、エンジン(EG)により駆動される第1供給ポンプ(11)と、伝動モータ(M)により駆動される第2供給ポンプ(12)と、第1供給ポンプによりエンジンへ冷却流体を供給させる供給状態とエンジンへの冷却流体の供給を規制する規制状態との切換を行う第1流路切換バルブ(V1)と、エンジンの温度(エンジン冷却水温)を検出する温度検出器(15)と、エンジンの回転速度を検出する回転速度検出器(14)と、温度検出器および回転速度検出器により検出される検出結果に基づいて、電動モータおよび流路切換バルブの作動を制御するコントローラ(CN)を備える。コントローラは、温度検出器により検出されるエンジンの温度が第1の所定温度未満の場合には、流路切換バルブを規制状態に切り換えて第1供給ポンプからエンジンへの冷却流体の供給を規制するとともに、電動モータを駆動させる制御を行って第2供給ポンプからエンジンへ冷却流体の供給を行わせる制御を行う。

Description

流体供給装置
 本発明は、駆動源に冷却流体を供給して駆動源を冷却する流体供給装置に関する。
 この流体供給装置の一例として、自動車用のエンジン等に備えられたエンジン冷却装置が挙げられる。自動車用のエンジンを初めとする水冷式エンジンには、シリンダやシリンダヘッドを冷却するための媒体(冷媒)として水(冷却水)が使用されている。エンジン冷却装置は、冷却水をエンジンンのシリンダブロック内に形成されたウォータージャケット内に供給して強制循環させてエンジンの冷却を行うように構成されている。冷却水の供給はエンジンにより駆動される冷却水供給ポンプにより行われる構成であり、エンジンの回転速度に応じた量の冷却水がウォータージャケット内に供給されてエンジンが冷却される(例えば、特許文献1を参照)。なお、冷却水供給ポンプは、エンジン負荷が大きくなる過酷な運転条件においても、エンジンが過熱しないように冷却水を供給する能力(ポンプ容量)が求められる。すなわち、冷却水供給ポンプの容量は通常の運転条件で求められる容量ではなく、想定される過酷な運転条件でもラジエータと組み合わせて用いることによりエンジンが過熱することを防止できるだけの、大きなポンプ容量が求められる。
国際公開第2006/035552号
 ところで、自動車用のエンジンにおいては、エンジン温度に見合った量の冷却水をウォータージャケットに供給して、冷却水供給ポンプの駆動のための無駄なエネルギー消費を抑えつつ効率の良い冷却を行いたいという要求がある。特にエンジンを駆動に適した温度範囲まで(なお、この温度範囲での最低温度を暖機完了温度と称する)上昇させる暖機運転に際しては、エンジンのウォータージャケットへの供給冷却水量を抑えて、無駄なエネルギー消費を抑えつつ暖機運転に要する時間をなるべく短くしたいという要求がある。しかし、上述のように、冷却水供給ポンプの容量は過酷な運転条件にも対応できるだけの大きな容量が設定されており、この大きな容量の冷却水供給ポンプがエンジンにより常時駆動され、エンジン回転速度に応じた量の冷却水を常時ウォータージャケットに供給する。このため、エンジン温度に応じて冷却水量を制御することが困難であり、特に暖機運転時においてもエンジン回転に応じた冷却水が供給されるため、暖気運転に時間を要したり冷却水供給ポンプを駆動させるエネルギーが無駄になったりするという課題があった。
 なお、別途電動モータを設け、エンジンではなくこの電動モータにより冷却水供給ポンプを駆動させる構成にすれば、暖機運転時に供給冷却水量を抑える等の制御ができて効果的な暖機運転が可能となり、無駄なエネルギー消費も抑えられる。しかし、この構成では、上述のように設定されている大きな容量の冷却水供給ポンプを駆動できるだけの能力を有した大きな電動モータや電気容量の大きなバッテリが必要となる。このため、電動モータおよびバッテリが大型化し、配置スペースの問題が生じるという問題がある。
 本発明は上記のような課題に鑑みてなされたものであり、装置の大型化を回避しつつ冷却流体の供給量を適切に制御でき、駆動源の冷却を効率よく行うことができるような構成の流体供給装置を提供することを目的とする。
 本発明に係る流体供給装置は、回転駆動する駆動源に冷却流体を供給して前記駆動源を冷却する流体供給装置であって、前記駆動源により駆動されて前記駆動源に冷却流体を供給する第1の供給ポンプと、電動モータにより駆動されて前記駆動源に冷却流体を供給する第2の供給ポンプと、前記第1の供給ポンプにより前記駆動源へ冷却流体を供給させる供給状態と前記第1の供給ポンプによる前記駆動源への冷却流体の供給を規制する規制状態との切換を行う供給切換手段と、前記駆動源の温度を検出する温度検出手段と、前記駆動源の回転速度を検出する回転速度検出手段と、前記温度検出手段および前記回転速度検出手段により検出される検出結果に基づいて、前記電動モータおよび前記供給切換手段の作動を制御する作動制御手段とを備えて構成される。そして、前記作動制御手段は、前記温度検出手段により検出される前記駆動源の温度が第1の所定温度未満の場合には、前記供給切換手段を前記規制状態に切り換えて前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制するとともに、前記電動モータを駆動させる制御を行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給を行わせる制御を行う。
 上記流体供給装置において、好ましくは、前記作動制御手段は、前記温度検出手段により検出される前記駆動源の温度が第1の所定温度以上の場合においては、前記回転速度検出手段により検出される前記駆動源の回転速度が第1の所定回転速度未満のときに、前記供給切換手段を前記規制状態に切り換えて前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制するとともに、前記電動モータを駆動させる制御を行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給を行わせ、前記回転速度検出手段により検出される前記駆動源の回転速度が前記第1の所定回転速度以上で第2の所定回転速度未満のときに、前記駆動源の回転速度が前記第1の所定回転速度から前記第2の所定回転速度まで増加するのに応じて前記供給切換手段を前記規制状態から前記供給状態に緩やかに切り換える制御を行い、前記第1の供給ポンプから前記駆動源への冷却流体の供給を緩やかに増加させる制御を行い、前記回転速度検出手段により検出される前記駆動源の回転速度が前記第2の所定回転速度以上のときに、前記供給切換手段を前記供給状態に切り換えて前記第1の供給ポンプから前記駆動源へ冷却流体の供給を行わせる。
 上記流体供給装置において、好ましくは、前記回転速度検出手段により検出される前記駆動源の回転速度が、前記第1の所定回転速度以上で第2の所定回転速度未満のときおよび前記第2の所定回転速度以上のときに、前記電動モータを駆動させる制御も併用して行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給も行わせる。
 上記流体供給装置において、好ましくは、前記作動制御手段は、前記電動モータを駆動させるときに、前記回転速度検出手段により検出される回転速度および前記温度検出手段により検出される温度の少なくともいずれかに応じて前記電動モータの回転速度を制御する。
 上記流体供給装置において、好ましくは、前記供給切換手段が、前記第1の供給ポンプから吐出された冷却流体を前記駆動源に供給する流路内に設けられた切換バルブから構成され、前記切換バルブの切換作動により、前記第1の供給ポンプから前記駆動源への冷却流体の供給を行わせる供給状態と前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制する規制状態との切換を行う。
 上記流体供給装置において、好ましくは、前記供給切換手段が、前記駆動源から前記第1の供給ポンプに回転駆動力を伝達する動力伝達系に設けられた動力伝達制御装置から構成され、前記動力伝達制御装置の作動制御により、前記駆動源により前記第1の供給ポンプを駆動させて前記第1の供給ポンプから前記駆動源への冷却流体の供給を行わせる供給状態と、前記駆動源による前記第1の供給ポンプの駆動を遮断して前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制する規制状態との切換を行う。
 本発明によれば、駆動源の温度が第1の所定温度未満の場合には、前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制するとともに、前記電動モータを駆動させる制御を行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給を行わせる制御を行うように構成されているので、駆動源の温度に応じて電動モータの駆動を行わせて冷却流体の供給を任意に制御することができる。このため、例えば、エンジンの暖気運転を行うように、駆動源が低温状態で暖気運転を行うときには、電動モータの駆動制御により冷却流体供給量を適切に制御し、効率の良い暖気運転を行うとともに、エンジンによるポンプ駆動エネルギーを最小に抑えることが可能となる。
第1実施形態に係るエンジン冷却装置の構成を示すブロック図である。 このエンジン冷却装置によりエンジンを冷却する制御のフローチャートを示す。 エンジン回転速度と第1および第2供給ポンプから吐出される冷却水量との関係を示すグラフである。 エンジン回転速度と第2供給ポンプから吐出される冷却水量との関係を示すグラフである。 エンジン回転速度と第1供給ポンプから吐出される冷却水量との関係を示すグラフである。 第2実施形態に係るエンジン冷却装置の構成を示すブロック図である。
 以下、本発明の実施形態について図面を参照しながら説明する。まず第1の実施形態に係る流体供給装置として、自動車用のエンジンEGに設けられてこのエンジンEGを冷却するエンジン冷却装置1を例示して説明する。図1にはエンジン冷却装置1の構成をブロック図により示しており、まずこの図1を参照しながらエンジン冷却装置1の全体構成について説明する。このエンジン冷却装置1は、エンジンEGのシリンダブロック内に形成されたウォータージャケットWJに冷却水を強制循環させて、ラジエータRDと組み合わせてエンジンEGの適正な冷却を行い、過酷な運転条件下でも過熱(オーバーヒート)しないように冷却水の供給を制御する装置である。
 エンジン冷却装置1は、ラジエータRDの出口とエンジンEGのウォータージャケットWJの入口とを繋ぐ第1供給流路L1と、第1供給流路L1から分岐(分岐点A1)してこれと並列に延びた後に第1供給流路L1に合流(合流点A2)する第2供給流路L2と、第1供給流路L1に設けられた第1流路切換バルブV1(後述する)から分岐し上流側に戻って第1供給流路L1に繋がる(合流点A3)循環流路L3と、エンジンEGのウォータージャケットWJの出口とラジエータRDの入口とを繋ぐ戻り流路L4とを備えて構成される。
 エンジン冷却装置1はさらに、第1供給流路L1における分岐点A1と合流点A2との間に設けられてエンジンEGにより駆動される第1供給ポンプ11と、この第1供給ポンプ11の吐出側に設けられた第1流路切換バルブV1と、第2供給流路L2に設けられた第2供給ポンプ12と、第2供給ポンプ12を駆動する電動モータMと、エンジンEGの回転速度を検出する回転速度検出器14と、戻り流路L4内の冷却水の温度(すなわち、エンジンEGのウォータージャケットWJ内を流れる冷却水の温度)を検出する温度検出器15と、電動モータMおよび第1流路切換バルブV1の作動を制御するコントローラCNとを備える。
 第1供給ポンプ11は遠心ポンプから構成され、エンジンEGのクランクシャフトの回転駆動力が伝達されて回転駆動される。これにより、エンジンEGの回転に比例した量の冷却水が第1供給ポンプ11によりラジエータRD側から第1流路切換バルブV1側に吐出される。第1流路切換バルブV1は、第1供給ポンプ11から吐出された冷却水をウォータージャケットWJ側に供給させる供給位置と、ウォータージャケットWJ側に供給させずに循環流路L3を介して第1供給ポンプ11の上流側(合流点A3)に戻す戻し位置とに切換作動可能に構成されている。このとき、供給位置と戻し位置との間で開度調整可能であり、開度制御によりウォータージャケットWJ側への冷却水供給量と循環流路L3への冷却水供給量との比率を制御できるようになっている。このため例えば、第1流路切換バルブV1をデューティ制御ソレノイドバルブから構成してデューティ比制御したり、比例制御バルブから構成して流量を比例制御したりするようになっている。第1供給流路L1における第1流路切換バルブV1の下流側で且つ合流点A2より上流側には、第1チェックバルブV2が配設されている。この第1チェックバルブV2により、第1流路切換バルブV1側からウォータージャケットWJ側への冷却水の流れは許容されるが、その反対の流れは規制される。
 なお、第1供給ポンプ11を他の形式のポンプから構成しても良い。また、上述のように第1供給ポンプ11を遠心ポンプから構成する場合には、循環流路L3を無くして第1流路開閉バルブV1を第1供給流路L1の開閉制御を行うバルブから構成しても良い。遠心ポンプの場合には、第1流路切換バルブV1によりポンプの吐出側を閉止しても、ポンプインペラが空転するだけで、エンジンEGのポンプ駆動力は小さいからである。
 第2供給ポンプ12も、遠心ポンプから構成され、電動モータMにより回転駆動される。第2供給ポンプ12からは電動モータMの回転に比例した量の冷却水が第2供給流路L2および第1供給流路L1を介してウォータージャケットWJに供給される。第1供給ポンプ11を他の形式のポンプから構成しても良い。第2供給流路L2における第2供給ポンプ12の下流側には、第2チェックバルブV3が配設されている。この第2チェックバルブV3により、第2供給ポンプ12側からウォータージャケットWJ側への冷却水の流れは許容されるが、その反対の流れは規制される。
 コントローラCNは、回転速度検出器14および温度検出器15で検出された検出信号を受け、これらの検出信号に基づいて電動モータMおよび第1流路切換バルブV1の作動制御を行う(詳細は後述)。コントローラCNは、エンジンEGの冷却プログラム等を記憶するメモリを備える。メモリには、アイドリング時のエンジン回転速度R1よりも高く第1流路切換バルブV1の切換制御の基準となる第1基準回転速度Raおよび第2基準回転速度Rb(>Ra)や暖機完了温度Ta等、必要な制御情報が記憶されている(後で説明する図3参照)。
 なお、戻り流路L4には、サーモスタットにより作動する第2流路切換バルブV4が設けられている。この第2流路切換バルブV4は、ウォータージャケットWJから戻される冷却水をラジエータRD側に流すラジエータ側供給位置と、バイパス流路L5を介して第1供給流路L1(合流点A4)に流すバイパス側供給位置とに切換作動可能に構成される。第2流路切換バルブV4は、エンジンEGの温度(冷却水温度)が維持されるべき所定温度未満の場合にはバイパス側供給位置に位置し、この所定温度を超えるとラジエータ側供給位置に切り換わり始める。
 以上ここまで、第1実施形態に係るエンジン冷却装置1の全体構成について説明した。次に、このエンジン冷却装置1によりウォータージャケットWJに冷却水を強制循環させて、エンジンEGを冷却するときの冷却制御について、図2に示すフローチャートに沿って説明する。なお、図2に示す制御フローは、所定制御サイクル(例えば、10ms毎)に繰り返し行われる。
 この制御では、まずステップS10において、コントローラCNは、回転速度検出器14から送られてくるエンジンEGの回転速度検出信号(エンジンEGの回転速度Rを示す信号)に基づいて、エンジンEGか駆動しているか停止しているかを判断する。エンジンEGが駆動していると判断した場合にはステップS20に進み、エンジンEGが停止していると判断した場合には今回のフローを終了する。
 ステップS10からステップS20に進むと、温度検出器15から送られてくる冷却水温度検出信号に基づいてエンジンEGを駆動に適した温度にまで昇温させる暖機運転が必要か否かを判断する。この判断は、メモリに記憶された暖機完了温度Taと、温度検出器15により検出された冷却水温度Tとを比較することにより行われる。この比較の結果、冷却水温度T<暖機完了温度Taの場合には、暖機運転が必要であるのでステップS21に進む。一方、冷却水温度T>暖機完了温度Taの場合には、暖機運転が不要であるのでステップS30に進む。
 ステップS21においては、エンジンEGを比較的低速で負荷をかけることなく運転して昇温させる暖機運転を行う。この暖機運転は、低温状態にあるエンジンEGの温度を運転に適した温度に上昇させるものであるが、ウォータージャケットWJに供給される冷却水量を少なくしてエンジンEGを効率良く短時間で昇温させる方が好ましい。このため、ステップS21においては、ウォータージャケットWJに供給される冷却水量を抑える制御が行われる。この場合において、第1供給ポンプ11はエンジンEGにより駆動されるためエンジンの回転速度に比例する冷却水が吐出される。このため、第1供給ポンプ11から吐出される冷却水をウォータージャケットWJに供給させるのでは、冷却水量を抑える制御ができない。
 そこで、ステップS21において、コントローラCNは、第1流路切換バルブV1に作動信号を出力して、第1流路切換バルブV1を戻し位置に切り換える制御を行う。この切換制御により、第1供給ポンプ11から吐出される冷却水は、ウォータージャケットWJに供給されることなく、循環流路L3を介して第1供給ポンプ11の上流部に戻される。この結果、エンジンEGのウォータージャケットWJに供給される冷却水量が抑えられ、暖気運転によりエンジン温度を迅速に上昇させることができる。同時に、第1供給ポンプ11の駆動負荷が抑えられてエンジンEG駆動負荷を抑えることができる。但し、ウォータージャケットWJへの冷却水量を零にすると、エンジンEGが部分的に加熱しすぎて焼き付き等の問題が生じるおそれがある。また、暖気運転によりエンジン温度(エンジン冷却水温度)が低温状態から上昇して冷却水温度Tが暖機完了温度Taに近づくに応じて、冷却水量を徐々に増加させる制御が必要とされる。
 このため、ステップS21において、コントローラCNは、温度検出器15からの検出信号(冷却水温度T)に基づいて電動モータMの駆動を制御し、第2供給ポンプ12からウォータージャケットWJに冷却水を供給させる制御を行う。この制御では、まずエンジンEGが低温状態のときには、エンジンEGが部分的に加熱しすぎて焼き付き等の問題の発生を防止するに必要な最小限の量の冷却水の供給を行わせるように、電動モータMの駆動を制御する。そして、エンジンEGの暖気運転により冷却水温度T(エンジンEGの温度)が高くなるに従って、ウォータージャケットWJに供給される冷却水量を増加させるように、電動モータMの駆動を制御する。
 以上のように第1流路切換バルブV1および電動モータMの作動制御を行うことで、エンジンEGの温度に見合った量の冷却水をウォータージャケットWJに供給しつつ暖気運転を行わせることができる。この結果、エンジンEGによる第1供給ポンプの駆動負荷を抑え、エンジンEGを効率良く短時間で暖気させることができる。以下同様にして、エンジンEGを起動させた後、暖機運転が完了するまでは、エンジンEGの回転速度RによらずステップS10、ステップS20およびステップS21が所定サイクル毎に繰り返し判断されて継続して実行される。なお、このときには、第2流路切換バルブV4はバイパス側供給位置に位置し、冷却水がラジエータRDに供給されることなくエンジンEG内で循環されるので、一層効率良く暖機運転を行うことができる。
 このようにして暖気運転が完了してエンジンEGの冷却水温度Tが暖機完了温度Ta以上となると暖気運転が不要となるので、上述のようにステップS20からステップS30に進む。ステップS30においてはまず、コントローラCNはメモリに記憶された第1基準回転速度Raを読み出し、この第1基準回転速度Raと、ステップS10で入力された回転速度検出器14からの検出信号(すなわち、現在のエンジンEGの回転速度R)とを比較する。この比較の結果、回転速度R<第1基準回転速度Raと判断されたとき、すなわち、エンジンEGが比較的低速で駆動されている場合にはステップS31に進む。一方、回転速度R>第1基準回転速度Raと判断された場合にはステップS40に進み、さらに回転速度Rの判断が行われる。
 ステップS30からステップS31に進むのは、エンジンEGが低速回転で運転されている場合であり、エンジンEGにおける発熱量は比較的少ない。このときには、エンジンEGにより駆動される第1供給ポンプ11から吐出される冷却水をそのままウォータージャケットWJに供給させると、特にエンジンEGの温度がまだ低温のとき(但し、暖機完了温度Taよりは高いが)に、冷却水量が多すぎることになる場合がある。このため、コントローラCNは、第1流路切換バルブV1を戻し位置に設定し、第1供給ポンプ11から吐出される冷却水を、循環流路L3を介して第1供給ポンプ11の上流部に戻す制御を行う。これと同時に、コントローラCNは、温度検出器15からの検出信号(冷却水温度T)に基づいて電動モータMの駆動を制御する。この駆動制御により、第2供給ポンプ12から冷却水温度Tに応じた量の冷却水を吐出させてウォータージャケットWJに供給させる。このように、第1流路切換バルブV1および電動モータMの作動を制御することで、エンジンEGの温度に見合った量の冷却水を供給して、エンジンEGのエネルギー消費(第1供給ポンプ11の駆動のためエネルギー消費)を抑えつつエンジンの適切な冷却制御を行うことができる。
 なお、エンジンEGが低速回転で運転されている場合であっても、エンジン温度(冷却水温度T)が高くなって必要冷却水量が大きくなったときには、第1流路切換バルブV1を供給位置に切り換え、第1供給ポンプ11から吐出される冷却水をウォータージャケットWJに供給させる制御を行っても良い。この場合において、第1供給ポンプ11からの供給では不足する場合には、電動モータMも駆動する制御を行って、不足分を第2供給ポンプ12から供給させて補う制御を行えば良い。
 一方、ステップS30からステップS40に進んだ場合には、コントローラCNはメモリに記憶された第2基準回転速度Rbも読み出し、これら第1および第2基準回転速度Ra,RbとエンジンEGの現在の回転速度Rとを比較する。そして、現在のエンジンEGの回転速度Rが、第1基準回転速度Raと第2基準回転速度Rbとの間の速度であると判断された場合にはステップS41に進む。一方、回転速度Rが、第2基準回転速度Rbを超える速度であると判断された場合にはステップS42に進む。
 ステップ41およびステップ42での制御は、上述したステップ31での制御を行っているときにエンジン回転速度が増加した場合に行われる制御であり、ステップ41ではステップ42での制御に移行する過渡的な制御を行う。そこでこの過渡的な制御であるステップ41での制御を説明する前に、まず、ステップS42における制御について説明する。上述の説明から分かるようにステップ31,ステップS41およびステップS42での制御は、エンジンEGの暖機運転が完了した状態、すなわち、エンジンEGの冷却水温度Tが暖機完了温度Ta以上となっている状態で行われる制御である。
 ステップS42での制御は、エンジンEGの回転速度Rが第2基準回転速度Rbを超える速度、すなわち、高速でエンジンEGが駆動されている状態で行われる。この場合、エンジンEGの回転速度Rに応じてエンジンEGにおける発熱量も多いので、ステップS31の場合よりも多量の冷却水が要求される。そこで、まずコントローラCNは、第1流路切換バルブV1に作動信号を出力して、第1流路切換バルブV1を供給位置に切り換える制御を行う。この切換制御により、第1供給ポンプ11から吐出される冷却水が、循環流路L3に供給されることなくウォータージャケットWJに供給される。これにより、エンジンEGにより駆動された第1供給ポンプ11からエンジン回転速度に比例した量の冷却水がウォータージャケットWJに供給されてエンジンEGの冷却が行われる。
 ステップS42における制御は上述のようにエンジンEGが高回転で運転されている状態であり、エンジン負荷、外気温が高くてラジエータRDでの冷却効率が低くなるような状態等において、第1供給ポンプ11から吐出される冷却水だけでは冷却水量が不足する場合がある。そこで、コントローラCNは、回転速度検出器14からの検出信号(回転速度R)および温度検出器15からの検出信号(冷却水温度T)に基づいて、電動モータMの駆動を制御する。この駆動制御により、第1供給ポンプ11から吐出される冷却水の不足分を補うように第2供給ポンプ12から冷却水を吐出させて、ウォータージャケットWJに供給する。以上のように第1流路切換バルブV1および電動モータMの作動を制御することで、エンジンEGの温度および回転速度に見合った量の冷却水を供給して、無駄なエネルギー消費を抑えつつエンジンEGの過熱を抑えた効果的な冷却を行うことができる。
 このように第1供給ポンプ11からの冷却水の不足分を、適宜第2供給ポンプ12を駆動させて補う構成なので、第1供給ポンプ11のみまたは第2供給ポンプ12のみによりエンジン冷却装置を構成する場合と比較して、第1および第2供給ポンプ11,12を小型化することができる。その上で、上述のように、エンジン運転状態に応じて第1流路切換バルブV1および電動モータMの駆動を制御して、第1および第2供給ポンプ11,12を選択的にもしくは適宜組み合わせて用いて、最適で最も効率の良い冷却水の供給制御を行っている。その結果、エンジンEGによる第1供給ポンプ11の駆動エネルギーを必要最小限に抑えることができる。
 次にステップS41での制御について説明する。ステップS41での制御は、上述のように、エンジンEGの回転速度Rが、第1基準回転速度Raと第2基準回転速度Rbとの間の速度であると判断された場合である。上述のように、エンジンEGの回転速度Rが第1基準回転速度Ra以下のときには、ステップS31の制御が行われ、第1流路切換バルブV1は戻り位置に切り換えられ、電動モータMにより駆動された第2供給ポンプ12により冷却水の供給が行われる。一方、エンジンEGの回転速度Rが第2基準回転速度Rb以上のときには、ステップS42の制御が行われ、第1流路切換バルブV1は供給位置に切り換えられ、エンジンEGにより駆動された第1供給ポンプ11により冷却水の供給が行われ、必要に応じて電動モータMの駆動による第2供給ポンプ12による冷却水の供給が加えられる。ステップS41では、これら二つの制御の間の制御、すなわち、エンジン回転に応じた過渡制御が行われる。
 具体的には、エンジンEGの回転速度Rが第1基準回転速度Raから第2基準回転速度Rbに増加するのに応じて、第1流路切換バルブV1を戻り位置から供給位置までその開度を緩やかに変化させる制御を行う。上述のように第1流路切換バルブV1はデューティ比制御もしくは比例制御バルブから構成されている。第1流路切換バルブV1は、戻り位置において循環流路L3側に全開でウォータージャケットWJ側に全閉の状態である。この状態から、循環流路L3側の開度を緩やかに閉止し、ウォータージャケットWJ側の開度を緩やかに開放する制御を行う。この結果、エンジンEGの回転速度Rが第1基準回転速度Raから第2基準回転速度Rbに増加するのに応じて、第1供給ポンプ11からウォータージャケットWJ側に供給される冷却水量が増加する制御となる。なお、このときも、第1供給ポンプ11からウォータージャケットWJ側に供給される冷却水量だけでは冷却不足となるときには、電動モータMにより第2供給ポンプ12が駆動されて、冷却水量を補う制御が行われる。
 以上、エンジン冷却装置1によるエンジンEGの冷却制御について説明したが、この制御によりエンジンEGに供給される冷却水量とエンジン回転および電動モータ回転の関係について、図3~図5を参照して簡単に説明する。まず、図4には、電動モータMにより駆動される第2供給ポンプ12からエンジンEGのウォータージャケットWJへの供給冷却水量特性を示している。電動モータMはエンジン回転に関係なく自由な回転制御が可能であり、第2供給ポンプ12の吐出量を、零吐出量から電動モータの最大駆動回転に対応する最大吐出量Qmまでの任意の吐出量とする設定制御が可能である。このため、例えば、ステップS21における制御のように、暖気運転時に冷却水温Tの変化に応じて最適な流量の冷却水を第2供給ポンプ12からウォータージャケットWJへ供給されるように電動モータMの駆動制御が行われる。ステップS31においても同様な電動モータMの駆動制御が行われる。さらに、ステップS41およびS42においても、エンジン駆動の第1供給ポンプ11からの供給不足を補う必要があるときにエンジン回転の如何に拘わらず必要に応じた電動モータMの駆動制御が行われる。
 図5には、エンジンEGにより駆動される第1供給ポンプ11からエンジンEGのウォータージャケットWJへの供給冷却水量特性を示している。上述のように、エンジンEGの回転速度Rが第1基準回転速度Raより小さいときに行われるステップS31での制御では、第1流路切換バルブV1は戻し位置に設定され、第1供給ポンプ11から吐出される冷却水は循環流路L3を介して第1供給ポンプ11の上流部に戻される。このため、エンジン回転速度が第1基準回転速度Raより小さい領域では、ウォータージャケットWJへの供給油量は零である。
 次に、エンジンEGの回転速度Rから第1基準回転速度Raまでの間であるときには、エンジンEGの回転速度Rが第1基準回転速度Raから第2基準回転速度Rbに増加するのに応じて、第1流路切換バルブV1を戻り位置から供給位置までその開度を緩やかに変化させる制御が行われる。これにより、第1供給ポンプ11からウォータージャケットWJ側に供給される冷却水量は、図5において線E3で示されるように、エンジン回転の増加に応じて比較的急速に増加する。エンジンEGの回転速度Rが第2基準回転速度Rb以上であるときには、第1流路切換バルブV1が供給位置に切り換えられ、第1供給ポンプ11から吐出された冷却水は全てウォータージャケットWJ側に供給される。このため、第1供給ポンプ11からウォータージャケットWJ側に供給される冷却水量は、図5において線E2で示されるように、エンジン回転に比例する量となる。
 ステップS41およびS42における制御により、ウォータージャケットWJ側に供給される冷却水量は、第1および第2供給ポンプ11,12からの供給流量を合わせた量となる。これを図3に示しており、図4に示す供給冷却水量と図5に示す供給冷却水量とを合算したものとなる。
 次に、第2実施形態に係るエンジン冷却装置2について図6を参照して説明する。なお、以下においては、上述した第1実施形態に係るエンジン冷却装置1とは異なる構成を中心に説明を行い、エンジン冷却装置1と同一部材については同一番号を付してその説明を省略する。
 エンジン冷却装置2は、エンジン冷却装置1における第1流路切換バルブV1の代わりに、エンジンEGの回転駆動力を第1供給ポンプに伝達する駆動力伝達機構200に、クラッチ機構201を設けて構成される。このクラッチ機構201は、エンジンEGの回転駆動力を第1供給ポンプ11に伝達させる接続状態と、第1供給ポンプ11への回転駆動力の伝達を切断する切断状態とに切換作動可能に構成される。なお、クラッチ機構201として、例えばフルードカップリング(流体クラッチ)や遠心クラッチ等を用いることができる。
 クラッチ機構201が接続状態に切換えられると、エンジンEGの回転駆動力が駆動力伝達機構200およびクラッチ機構201を介して第1供給ポンプ11に伝達される。これにより、第1供給ポンプ11がエンジンEGの回転速度に応じた速度で駆動され、エンジンEGの回転速度に応じた量の冷却水を吐出してウォータージャケットWJに供給する。一方、クラッチ機構201が切断状態に切換えられると、第1供給ポンプ11への回転駆動力の伝達が遮断され、第1供給ポンプ11は停止状態に維持される。これにより、第1供給ポンプ11から冷却水は吐出されず、第1供給ポンプ11からウォータージャケットWJへの冷却水の供給は行われない。
 このクラッチ機構201の断接作動は、コントローラCNから出力される作動信号に基づいて制御される。具体的には、図2に示すステップS21およびS31においては切断状態とする制御が行われ、ステップS41においては緩やかに断接する制御が行われ、ステップS42においては接続状態とする制御が行われる。このように第1流路切換バルブV1に代えて、クラッチ機構201を用いた構成によれば、第1供給ポンプ11からウォータージャケットWJに冷却水を供給させないときに第1供給ポンプ11が回転駆動されないので、無駄なエネルギー消費を一層抑えることができる。
 上述の実施形態において、第1および第2供給ポンプ11,12として非容積型ポンプ(遠心ポンプ)を用いた例について説明したが、これに代えて容積型ポンプ(例えば、ギヤポンプ)を用いることも可能である。
 上述の実施形態においては、エンジンEGが駆動しているときの冷却制御について説明したが、この冷却制御に加えて、エンジンEGを停止させた後においても電動モータMを駆動させる制御を行って、エンジンEGを冷却させることも可能である。
 上述の実施形態では、本発明を自動車用のエンジンEGに設けられるエンジン冷却装置1に適用した例について説明したが、これ以外に、冷却流体を強制循環させて動力モータや駆動機構を冷却する流体供給装置にも本発明を適用することが可能である。また、上述の実施形態においては、冷媒としての冷却水を強制循環させる構成を例示して説明したが、冷却水に代えて例えば冷却油や冷却空気を用いる構成も可能である。
 上述の実施形態においては、戻り流路L4に第2流路切換バルブV4を設けた構成を例示して説明したが、例えばステップS21による制御によって効率良く暖機運転を行うことができる場合には、第2流路切換バルブV4およびバイパス流路L5を省略したエンジン冷却装置を構成することも可能である。
1,2 エンジン冷却装置(流体供給装置)
11 第1供給ポンプ       12 第2供給ポンプ
EG エンジン          RD ラジエータ
CN コントローラ        WJ ウォータージャケット

Claims (6)

  1.  回転駆動する駆動源に冷却流体を供給して前記駆動源を冷却する流体供給装置であって、
     前記駆動源により駆動されて前記駆動源に冷却流体を供給する第1の供給ポンプと、
     電動モータにより駆動されて前記駆動源に冷却流体を供給する第2の供給ポンプと、
     前記第1の供給ポンプにより前記駆動源へ冷却流体を供給させる供給状態と前記第1の供給ポンプによる前記駆動源への冷却流体の供給を規制する規制状態との切換を行う供給切換手段と、
     前記駆動源の温度を検出する温度検出手段と、
     前記駆動源の回転速度を検出する回転速度検出手段と、
     前記温度検出手段および前記回転速度検出手段により検出される検出結果に基づいて、前記電動モータおよび前記供給切換手段の作動を制御する作動制御手段とを備え、
     前記作動制御手段は、
     前記温度検出手段により検出される前記駆動源の温度が第1の所定温度未満の場合には、前記供給切換手段を前記規制状態に切り換えて前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制するとともに、前記電動モータを駆動させる制御を行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給を行わせる制御を行うことを特徴とする流体供給装置。
  2.  前記作動制御手段は、
     前記温度検出手段により検出される前記駆動源の温度が第1の所定温度以上の場合においては、
     前記回転速度検出手段により検出される前記駆動源の回転速度が第1の所定回転速度未満のときに、前記供給切換手段を前記規制状態に切り換えて前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制するとともに、前記電動モータを駆動させる制御を行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給を行わせ、
     前記回転速度検出手段により検出される前記駆動源の回転速度が前記第1の所定回転速度以上で第2の所定回転速度未満のときに、前記駆動源の回転速度が前記第1の所定回転速度から前記第2の所定回転速度まで増加するのに応じて前記供給切換手段を前記規制状態から前記供給状態に緩やかに切り換える制御を行い、前記第1の供給ポンプから前記駆動源への冷却流体の供給を緩やかに増加させる制御を行い、
     前記回転速度検出手段により検出される前記駆動源の回転速度が前記第2の所定回転速度以上のときに、前記供給切換手段を前記供給状態に切り換えて前記第1の供給ポンプから前記駆動源へ冷却流体の供給を行わせるように構成されたことを特徴とする請求項1に記載の流体供給装置。
  3.  前記回転速度検出手段により検出される前記駆動源の回転速度が、前記第1の所定回転速度以上で第2の所定回転速度未満のときおよび前記第2の所定回転速度以上のときに、前記電動モータを駆動させる制御も併用して行って前記第2の供給ポンプから前記駆動源へ冷却流体の供給も行わせることを特徴とする請求項2に記載の流体供給装置。
  4.  前記作動制御手段は、前記電動モータを駆動させるときに、前記回転速度検出手段により検出される回転速度および前記温度検出手段により検出される温度の少なくともいずれかに応じて前記電動モータの回転速度を制御するように構成されたことを特徴とする請求項1~3のいずれかに記載の流体供給装置。
  5.  前記供給切換手段が、前記第1の供給ポンプから吐出された冷却流体を前記駆動源に供給する流路内に設けられた切換バルブから構成され、
     前記切換バルブの切換作動により、前記第1の供給ポンプから前記駆動源への冷却流体の供給を行わせる供給状態と前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制する規制状態との切換を行うことを特徴とする請求項1~4のいずれかに記載の流体供給装置。
  6.  前記供給切換手段が、前記駆動源から前記第1の供給ポンプに回転駆動力を伝達する動力伝達系に設けられた動力伝達制御装置から構成され、
     前記動力伝達制御装置の作動制御により、前記駆動源により前記第1の供給ポンプを駆動させて前記第1の供給ポンプから前記駆動源への冷却流体の供給を行わせる供給状態と、前記駆動源による前記第1の供給ポンプの駆動を遮断して前記第1の供給ポンプから前記駆動源への冷却流体の供給を規制する規制状態との切換を行うことを特徴とする請求項1~4のいずれかに記載の流体供給装置。
PCT/JP2013/002721 2013-04-23 2013-04-23 流体供給装置 WO2014174549A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015513358A JP6096888B2 (ja) 2013-04-23 2013-04-23 流体供給装置
KR1020157031196A KR102030880B1 (ko) 2013-04-23 2013-04-23 유체 공급장치
EP13883181.3A EP2990648B1 (en) 2013-04-23 2013-04-23 Fluid supply device
PCT/JP2013/002721 WO2014174549A1 (ja) 2013-04-23 2013-04-23 流体供給装置
US14/784,696 US10012227B2 (en) 2013-04-23 2013-04-23 Fluid supply device
CN201380075961.2A CN105143670A (zh) 2013-04-23 2013-04-23 流体供给装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002721 WO2014174549A1 (ja) 2013-04-23 2013-04-23 流体供給装置

Publications (1)

Publication Number Publication Date
WO2014174549A1 true WO2014174549A1 (ja) 2014-10-30

Family

ID=51791161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002721 WO2014174549A1 (ja) 2013-04-23 2013-04-23 流体供給装置

Country Status (6)

Country Link
US (1) US10012227B2 (ja)
EP (1) EP2990648B1 (ja)
JP (1) JP6096888B2 (ja)
KR (1) KR102030880B1 (ja)
CN (1) CN105143670A (ja)
WO (1) WO2014174549A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142975A1 (ja) * 2017-01-31 2018-08-09 株式会社村田製作所 流体制御装置および血圧計
JP7360301B2 (ja) * 2019-11-08 2023-10-12 Kyb株式会社 作動流体供給システム
CN111594303B (zh) * 2020-06-03 2022-06-21 苏州玲珑汽车科技有限公司 具有双水泵的内燃机热管理系统
CN112983623B (zh) * 2021-03-10 2022-07-01 神华神东煤炭集团有限责任公司 一种防爆柴油机的冷却系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035552A1 (ja) 2004-09-27 2006-04-06 Tbk Co., Ltd. 流体ポンプ
JP2008290636A (ja) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd ハイブリッドカー
JP2012177308A (ja) * 2011-02-25 2012-09-13 Hitachi Automotive Systems Ltd 内燃機関の冷却装置
JP2012215079A (ja) * 2011-03-31 2012-11-08 Isuzu Motors Ltd 始動支援装置
JP2013057290A (ja) * 2011-09-08 2013-03-28 Isuzu Motors Ltd エンジン冷却装置
WO2013047148A1 (ja) * 2011-09-30 2013-04-04 日産自動車株式会社 エンジンシステム、およびその制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519694A1 (fr) * 1982-01-08 1983-07-18 Valeo Circuit hydraulique economique pour le refroidissement d'un moteur a combustion interne de vehicule automobile
JP2767995B2 (ja) * 1989-12-28 1998-06-25 株式会社デンソー 内燃機関の冷却装置
JPH11303635A (ja) * 1998-04-23 1999-11-02 Aisin Seiki Co Ltd エンジンの冷却装置
EP0976917B2 (en) * 1998-07-28 2009-03-11 Aisin Seiki Kabushiki Kaisha Cooling device for internal combustion engines
JP3821349B2 (ja) * 2000-04-11 2006-09-13 三菱自動車工業株式会社 エンジンの冷却装置
JP2004316472A (ja) * 2003-04-14 2004-11-11 Nissan Motor Co Ltd 内燃機関の冷却装置
DE10332949A1 (de) * 2003-07-19 2005-02-10 Daimlerchrysler Ag Vorrichtung zum Kühlen und Vorwärmen
JP2006242022A (ja) * 2005-03-01 2006-09-14 Toyota Motor Corp 車両の制御装置
JP2007182857A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp 冷却装置
US8430071B2 (en) 2009-07-10 2013-04-30 GM Global Technology Operations LLC Engine cooling system for a vehicle
US8631772B2 (en) * 2010-05-21 2014-01-21 Ford Global Technologies, Llc Transmission fluid warming and cooling method
JP5979030B2 (ja) * 2013-02-05 2016-08-24 マツダ株式会社 可変気筒エンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035552A1 (ja) 2004-09-27 2006-04-06 Tbk Co., Ltd. 流体ポンプ
JP2008290636A (ja) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd ハイブリッドカー
JP2012177308A (ja) * 2011-02-25 2012-09-13 Hitachi Automotive Systems Ltd 内燃機関の冷却装置
JP2012215079A (ja) * 2011-03-31 2012-11-08 Isuzu Motors Ltd 始動支援装置
JP2013057290A (ja) * 2011-09-08 2013-03-28 Isuzu Motors Ltd エンジン冷却装置
WO2013047148A1 (ja) * 2011-09-30 2013-04-04 日産自動車株式会社 エンジンシステム、およびその制御方法

Also Published As

Publication number Publication date
JPWO2014174549A1 (ja) 2017-02-23
KR20160003681A (ko) 2016-01-11
US20160076531A1 (en) 2016-03-17
US10012227B2 (en) 2018-07-03
EP2990648B1 (en) 2021-02-24
KR102030880B1 (ko) 2019-10-10
JP6096888B2 (ja) 2017-03-15
EP2990648A4 (en) 2017-01-04
EP2990648A1 (en) 2016-03-02
CN105143670A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
US8555826B2 (en) Cooler arrangement for a drive train in a motor vehicle
US6453853B1 (en) Method of controlling a variable speed fan
KR101684124B1 (ko) 엔진 열 관리 제어 방법
EP2795078B1 (en) Arrangement and method for cooling of coolant in a cooling system in a vehicle
JP6096888B2 (ja) 流体供給装置
JP4078742B2 (ja) 車輌用暖房装置
CN112127985B (zh) 驱动装置的冷却剂回路和运行冷却剂回路的方法
WO2021195862A1 (zh) 一种温控系统、温控方法及车辆
JP2004293430A (ja) エンジン冷却装置
JP2004324459A (ja) 車両用エンジン冷却装置
JP2009274462A (ja) 空調装置
KR20190072934A (ko) 차량용 워터 펌프
JP2012132379A (ja) エンジンの冷却水装置
JPWO2020152734A1 (ja) ハイブリッド車両の冷却装置
JP2004285830A (ja) エンジンの冷却装置
JP2002188443A (ja) 内燃機関の冷却装置
JP2014070501A (ja) オイル冷却構造
JP2005147028A (ja) ハイブリッド車の冷却装置及び冷却方法
JP5752723B2 (ja) 機械式自動変速機の初期設定方法
KR102540550B1 (ko) 차량의 엔진 냉각수 온도 제어 방법
JP3906817B2 (ja) エンジンの冷却装置
JP2006207448A (ja) 車両の制御装置
JP2015059532A (ja) エンジン冷却装置、及びエンジン冷却装置の制御方法
CN118030259A (zh) 温度调节系统、机械震源和车辆
WO2018225305A1 (ja) エンジン冷却システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075961.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14784696

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013883181

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031196

Country of ref document: KR

Kind code of ref document: A