JP2006207448A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2006207448A
JP2006207448A JP2005019783A JP2005019783A JP2006207448A JP 2006207448 A JP2006207448 A JP 2006207448A JP 2005019783 A JP2005019783 A JP 2005019783A JP 2005019783 A JP2005019783 A JP 2005019783A JP 2006207448 A JP2006207448 A JP 2006207448A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
engine
temperature
load state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019783A
Other languages
English (en)
Inventor
Tatsu Hamaguchi
竜 濱口
Shuichi Hanai
修一 花井
Zenichi Shinpo
善一 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005019783A priority Critical patent/JP2006207448A/ja
Publication of JP2006207448A publication Critical patent/JP2006207448A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】 エンジンの燃焼室温を適切な温度に維持する蓄熱システムを備える車両の制御装置を提供する。
【解決手段】 エンジンECU1000は、内燃機関の燃焼室温度が所定の上限温度に到達しないように、蓄熱タンク310内の液媒体のエンジンへの供給および供給の停止を行なうように、電動ポンプ300や流量制御弁430、三方弁600を制御する。エンジンECU1000は、エンジンの始動時に蓄熱タンク310内に流路から回収した冷水を、高負荷状態が検出された場合にエンジンに供給する。燃焼室を通過した冷却水の上限温度目標値であるしきい値温度は、エンジンの負荷状態に対応してエンジンにノッキングが発生しない温度範囲内に定められる。エンジンECU1000は、このしきい値温度を超えないようにエンジンの負荷状態に応じてラジエータ400等による放熱能力を調整し、かつ蓄熱タンクの冷却水を使用する。
【選択図】 図1

Description

本発明は、温度を保った状態で液媒体を一時的に蓄える蓄熱システムを搭載した車両の制御装置に関し、特に、内燃機関に液媒体を供給して、内燃機関の温度を制御する車両の制御装置に関する。
自動車などに搭載される内燃機関が冷間状態で始動される場合には、吸気ポートや燃焼室等の壁面温度が低くなる。このため、燃料が霧化し難くなるとともに燃焼室の周縁部において消炎が発生し易くなり、始動性の低下や排気エミッションの悪化などが誘発される。
このような問題に対し、水冷式内燃機関において高温の冷却水を保温貯蔵する蓄熱装置を備え、内燃機関の始動時などに蓄熱装置に貯蔵されている冷却水を内燃機関へ供給することにより内燃機関の昇温を図り、始動性の向上や暖機の早期化を図る技術が提案されている。
たとえば、特開2003−184553号公報(特許文献1)に開示された蓄熱装置を備えた内燃機関は、内燃機関のシリンダヘッドに形成され、熱媒体が流通する熱媒体流通路と、熱媒体流通路を流れる熱媒体の一部を保温貯蔵する蓄熱装置と、蓄熱装置から熱媒体流通路へ熱媒体を導く第1の熱媒体通路と、熱媒体流通路から蓄熱装置へ熱媒体を導く第2の熱媒体通路と、第1の熱媒体通路と第2の熱媒体通路とを択一的に導通させる通路切換手段とを備える。
この蓄熱装置を備えた内燃機関によると、通路切換手段が第1の熱媒体通路を導通させることにより、蓄熱装置内に保温貯蔵されている高温の熱媒体が第1の熱媒体通路を介して直接的に熱媒体流通路へ供給されるとともに、通路切換手段が第2の熱媒体通路を導通させることにより、熱媒体流通路内の高温の熱媒体が第2の熱媒体通路を介して直接的に蓄熱装置へ供給される。
このように熱媒体流通路と蓄熱装置との間で直接的に熱媒体の授受が行なわれると、蓄熱装置から熱媒体流通路へ熱媒体を供給する際の熱損失が最小限に抑制されるとともに、熱媒体流通路から蓄熱装置へ熱媒体を供給する際の熱損失も最小限に抑制される。この結果、熱媒体流通路内の熱媒体が持つ熱量が少ない場合であっても、その少ない熱量が効率良く蓄熱装置に蓄えられることになる。
特開2003−184553号公報
近年、冷却水温度を90℃程度に制御することにより燃焼室温度を従前よりも高温に維持して燃費改善を図る技術が開発されている。燃焼室温を高温にすることにより熱損失が少なくなり、かつ潤滑油温も上昇し摩擦も小さくなる。
このような高温水制御では、エンジン負荷が高くなるとノッキングが発生しやすくなるという問題がある。しかしながら、特許文献1に開示された蓄熱装置を備えた内燃機関においては、内燃機関の昇温に着目したものに過ぎず、蓄熱装置をノッキング防止に利用することについては考慮されていない。
この発明の目的は、エンジンの燃焼室温を適切な温度に維持する蓄熱システムを備える車両の制御装置を提供することである。
この発明は、要約すると、内燃機関に設けられた流路を循環する液媒体の一部を保温貯蔵するための貯蔵部と、貯蔵部内の液媒体を内燃機関との間で循環させるための循環部とが搭載された車両の制御装置であって、内燃機関の温度を検知する第1の検知部と、内燃機関の負荷状態を検知する第2の検知部と、内燃機関の燃焼室温度が所定の上限温度に到達しないように定められたしきい値温度と検知された内燃機関の温度とに基づいて、貯蔵部内の液媒体の内燃機関への供給および供給の停止を行なうように、循環部を制御するための制御部とを備える。しきい値温度は、負荷状態に対応する内燃機関にノッキングが発生しない温度範囲内に定められ、負荷状態が通常負荷状態である場合よりも負荷の高い高負荷状態である場合のほうが低く定められる。
好ましくは、制御部は、内燃機関の始動時に貯蔵部内に流路から回収した液媒体を、高負荷状態が検出された場合に内燃機関に供給する。
好ましくは、第2の検知部は、内燃機関を通過した液媒体の温度に基づいて負荷状態を検知する。
好ましくは、第2の検知部は、内燃機関の吸気量に基づいて負荷状態を検知する。
好ましくは、第2の検知部は、内燃機関の回転数に基づいて負荷状態を検知する。
好ましくは、第2の検知部は、内燃機関のスロットル開度に基づいて前記負荷状態を検知する。
好ましくは、通常負荷状態に対応するしきい値温度は、高負荷状態に対応するしきい値温度よりも10℃以上高く定められる。
好ましくは、車両は、内燃機関から送出される液媒体の放熱を行なう放熱部と、貯蔵部から送出される液媒体をと内燃機関に導くように構成された第1の経路と、液媒体を貯蔵部に取込むとともに貯蔵部に貯蔵されていた液媒体を内燃機関に向けて放出させる第1のポンプと、放熱部から送出される液媒体を内燃機関に導くように構成された第2の経路と、第2の経路上に配置され液媒体を内燃機関に向けて送出する第2のポンプとを備える。
より好ましくは、放熱部は、ラジエータと、ラジエータと並列接続されるバイパス通路と、ラジエータおよびバイパス通路の結合点に配置され、制御部の指示に応じてラジエータおよびバイパス通路のいずれかを選択し、またはラジエータおよびバイパス通路の双方の液媒体の通過の停止させることが可能な流量制御弁とを含む。
本発明によれば、燃焼室温度を高温領域に維持しつつ、高負荷運転を行なったときに適切に燃焼室温度の上昇を抑え、高燃費とノッキングの発生防止の両立を図ることができる。
以下、図面を参照しつつ、本発明の実施の形態について詳しく説明する。なお、同一または相当の部品には同一の符号を付し、それらの説明は繰返さない。
[実施の形態1]
図1は、本実施の形態に係る制御装置の制御対象である蓄熱システムの制御ブロック図である。
図1に示す蓄熱システムは、内燃機関(エンジン)を搭載した車両に適用される。なお、この車両は、エンジンのみを搭載した車両であってもよいし、エンジンとバッテリにより駆動されるモータとを搭載したハイブリッド車両のいずれであってもよい。
図1に示すように、この蓄熱システムは、シリンダヘッド(以下、ヘッドと記載する。)100およびシリンダブロック110に設けられた冷却水流路を流れる冷却水の一部を蓄熱タンク310に保温して貯蔵しておいて、その冷却水を必要に応じて蓄熱タンク310からヘッド100やシリンダブロック110に供給する。
ヘッド100およびシリンダブロック110とラジエータ400またはラジエータバイパス通路410との間において、機械式ウォータポンプ200により冷却水が循環される。ラジエータ400およびラジエータバイパス通路410のいずれを通るかについては、流量制御弁430により制御される。
蓄熱タンク310からヘッド100およびシリンダブロック110への冷却水の供給は電動式ウォータポンプ300により行なわれる。蓄熱タンク310の入口および出口には図示しない逆流防止弁が取付けられており、電動式ウォータポンプ300の停止時における冷却水の逆流が防止される。電動式ウォータポンプ300を駆動することにより、蓄熱タンク310内の冷却水(温水であったり冷水であったりする)が三方弁600を介してヘッド100、シリンダブロック110、ヒータコア500等に供給される。
三方弁600は、全閉状態、全開状態(ポートA、ポートBおよびポートCを連通状態)、ポートAとポートBとを連通状態、ポートAとポートCとを連通状態、ポートBとポートCとを連通状態の5通りの状態を実現することができる。
また、この蓄熱システムは、温度センサとして、温度センサ120と、蓄熱タンク温度センサ320と、ラジエータ水温センサ420とを含む。
温度センサ120は、ヘッド100に設けられヘッド100の温度に応じて変化するエンジン冷却水温を検知する。蓄熱タンク温度センサ320は、蓄熱タンク310に設けられ貯蔵されている冷却水の温度を検知する。ラジエータ水温センサ420は、ラジエータ400に設けられエンジンから送られてくる冷却水の温度とラジエータ400の放熱能力とに応じて変化する冷却水温を検知する。これらの温度センサからの信号は、エンジンECU(Electronic Control Unit)1000に入力される。
さらに、この蓄熱システムは、エンジンの吸気量を検知する吸気量センサ140と、エンジン回転数を検知する回転数センサ130と、スロットル開度を検知するスロットル開度センサ150とを含む。これらのセンサからの信号もエンジンECU1000に入力される。
エンジンECU1000は、電動式ウォータポンプ300、三方弁600、流量制御弁430を制御する。流量制御弁430は、制御デューティを変更することにより、ラジエータ400に流通する冷却水の流量およびラジエータバイパス通路410を流通する冷却水の流量を制御することができる。
このとき、流量制御弁430は、ラジエータ400のみに冷却水を流すことができ、またラジエータバイパス通路410のみに冷却水を流すことができ、さらにラジエータ400およびラジエータバイパス通路410の両方に冷却水を流すことができる。
流量制御弁430は、エンジンECU1000からラジエータ選択指令信号を受信すると、冷却水の全量をラジエータ400に流すように流量を制御する。また、流量制御弁430は、エンジンECU1000からバイパス選択指令信号を受信すると、冷却水の全量をラジエータバイパス通路410に流すように、流量を制御する。さらに、流量制御弁430は、エンジンECU1000から指令信号を受信して、冷却水の一部をラジエータ400に流して、残りの冷却水をラジエータバイパス通路410に流すように流量を制御することもできる。
また、エンジンECU1000は、電動式ウォータポンプ300を駆動するモータの制御デューティを変更することにより、モータの回転数を制御して、電動式ウォータポンプ300の吐出量を制御することができる。また、この制御は、電動式ウォータポンプ300のモータの電圧を可変とすることにより行なってもよい。また、電動式ウォータポンプ300のモータの通電時間を変更することにより、電動式ウォータポンプ300の駆動時間を制御して、電動式ウォータポンプ300から吐出される総冷却水量を制御するようにしてもよい。
図2は、図1のエンジンECU1000で実行されるプログラムの制御を説明するためのフローチャートである。このフローチャートはエンジン制御のメインルーチンから一定時間毎または所定の条件が成立するごとに呼び出されて実行される。
図1、図2を参照して、処理が開始されると、ステップS1においてエンジンの始動時か否かが判断される。たとえば、イグニッションキースイッチやパワースイッチがオンされた場合などに始動時であると判断される。
ステップS1において始動時であると判断された場合にはステップS2に処理が進み、始動時ではないと判断された場合にはステップS6に処理が進む。
ステップS2〜S5では、始動時においてエンジンの燃焼室を蓄熱タンク310に貯蔵されていた温水によって予熱するための処理を行なう。
まずステップS2において、エンジンECU1000は三方弁600に対してポートAとポートBとを連通状態にするように制御信号を送信する。これにより蓄熱タンク310からヘッド100に至る経路が形成される。ステップS2の処理が終了すると処理はステップS3に進む。
続いてステップS3においては、エンジンECU1000は流量制御弁430に対して全閉指令を出力する。全閉指令を受けると流量制御弁430は冷却水を流通させないので、ラジエータ400とバイパス通路410は冷却水が流れない状態となる。これによりヘッド100からシリンダブロック110、機械式ウォータポンプ200を経由し電動式ウォータポンプ300に至る経路が形成される。機械式ウォータポンプ200はエンジン停止状態では動作していないので冷却水が逆流することが可能である。ステップS3の処理が終了すると処理はステップS4に進む。
ステップS4では、エンジンECU1000は電動式ウォータポンプ300を駆動するモータに対して駆動指令を出力する。このとき、エンジンECU1000は、電動式ウォータポンプ300を駆動するモータの制御デューティ、電圧または通電時間を制御して電動式ウォータポンプ300から吐出される総冷却水量を制御する。そして、蓄熱タンク310に貯蔵されていた温水が吐出され、これによりヘッド100およびシリンダブロック110が予熱される。代わりに冷えていたヘッド100およびシリンダブロック110中の冷却水は蓄熱タンク310に取込まれる。
図3は、蓄熱システムにおける冷却水の流れを説明するための図である。
図3を参照して、蓄熱タンク310から吐出された温水は経路P3を通ってヘッド100およびシリンダブロック110のウォータジャケットスペース(W/Jスペーサ)に注入される。そして経路P1を逆流する。経路P1はエンジン停止時においては機械式ウォータポンプ200が停止しており、冷却水は逆流が可能である。そして、温水は経路P4を通り、ヘッド100およびシリンダブロック110から押出された冷水が蓄熱タンク310に取込まれる。
再び図1、図2を参照して、ステップS4においてヘッド100およびシリンダブロック110が予熱され、蓄熱タンク310中の冷却水の入替えが終了すると処理はステップS5に進む。ステップS5ではエンジンECU1000は電動式ウォータポンプ300の駆動を停止する。そして処理はステップS11に進み、制御がメインルーチンに戻る。
一方、ステップS1において始動時ではないと判断されステップS6に処理が進んだ場合には、エンジンの高負荷状態が検出されるか否かが判断される。例えば、ヘッド100に取付けられた温度センサ120の出力によってエンジン温度が急上昇したことを検知した時、エンジン回転数が所定回転以上となった時、吸気量センサ140の出力によって吸気量が急に増加したことを検知した時、スロットル開度センサ150の出力によってスロットル開度が急に増加したことを検知した時またはこれらの条件の組合せによってエンジンが高負荷状態であると判断される。
ステップS6においてエンジンが高負荷状態でないと判断された場合には、処理はステップS11に進み、制御がメインルーチンに戻る。
一方、ステップS6においてエンジンが高負荷状態であると判断された場合には、処理はステップS7に進む。
ステップS7〜S10では、エンジンの燃焼室を蓄熱タンク310に貯蔵されていた冷水によって冷却するための処理を行なう。
すなわち、エンジンECU1000は、エンジンの温度に基づいて、前記内燃機関の燃焼室温度が所定のしきい値温度に到達しないように、蓄熱タンク310内の液媒体のエンジンへの供給および供給の停止を行なうように、電動式ウォータポンプ300や流量制御弁430、三方弁600を制御する。
エンジンECU1000は、エンジンの始動時に蓄熱タンク310内に流路から回収した冷水を、高負荷状態が検出された場合にエンジンに供給する。
まずステップS7において、エンジンECU1000は三方弁600に対してポートAとポートBとを連通状態にするように制御信号を送信する。これにより蓄熱タンク310からヘッド100に至る経路が形成される。ステップS7の処理が終了すると処理はステップS8に進む。
続いてステップS8においては、エンジンECU1000は流量制御弁430に対して指令を出力する。この指令を受けると流量制御弁430はバイパス通路410には冷却水を流通させず、ラジエータ400に冷却水が流れる状態となる。これによりヘッド100からラジエータ400を経由し電動式ウォータポンプ300に至る経路が形成される。機械式ウォータポンプ200はエンジン運転状態では冷却水をシリンダブロック110に向けて送出している。ステップS8の処理が終了するとステップS9に進む。
ステップS9では、エンジンECU1000は電動式ウォータポンプ300を駆動するモータに対して駆動指令を出力する。このとき、エンジンECU1000は、電動式ウォータポンプ300を駆動するモータの制御デューティ、電圧または通電時間を制御して電動式ウォータポンプ300から吐出される総冷却水量を制御する。蓄熱タンク310に貯蔵されていた冷水が吐出されこの冷水によりヘッド100が冷却される。これにより、高負荷時において燃焼室が高温になってしまうことによるノッキングの発生が防止される。
図3に示すように、蓄熱タンク310から吐出された冷水は経路P3を通ってヘッド100を冷却する。ヘッド100を通過した冷却水は経路P2でラジエータ400を経由する。そしてその一部は、機械式ウォータポンプ200によって経路P1を流れシリンダブロック110のウォータジャケットスペースを冷却する。残りの冷却水は経路P4を通って蓄熱タンク310に取込まれる。
再び図2を参照して、ステップS9において蓄熱タンク310中の冷水の吐出が終了すると処理はステップS10に進む。ステップS10ではエンジンECU1000は電動式ウォータポンプ300の駆動を停止する。そして処理はステップS11に進み、制御がメインルーチンに戻る。
図4は、本発明が適用された蓄熱システムによるエンジン燃焼室の温度変化を説明するための図である。
図4を参照して、冷却能力が低い状態、例えばラジエータ400による冷却が行われない状態で時刻t0〜t1において運転が行なわれており、時刻t2においてエンジンが高負荷状態になると、従来においては一点鎖線W1で示すように温度上昇が大きくなりノッキングが発生しない臨界温度を超えてしまう。
このため、燃費が良好な高温の領域にエンジンの燃焼室の温度を維持することが困難であった。または、エンジン燃焼室の目標温度をノッキングが発生しない臨界温度に対して十分余裕を持った温度に設定しなければならなかったので、通常運転時における燃費向上の面ではさらに改善の余地があった。
一方、本発明に係る制御装置においては、実線W2で示すように、蓄熱タンクに貯蔵していた冷水を注入することにより急速に燃焼室を冷却可能であるので、ノッキングを発生させることなく燃費が良好な高温の領域にエンジンの燃焼室の温度を維持することができる。
また、燃焼室を通過した冷却水の上限温度目標値であるしきい値温度は、エンジンの負荷状態に対応してエンジンにノッキングが発生しない温度範囲内に定められる。すなわち、負荷状態が通常負荷状態である場合は温度T1程度に定められており、高負荷状態である場合には温度T1よりも低い温度T2に定められる。たとえば、通常負荷状態に対応するしきい値温度T1は、燃費をよくするため90℃程度に定められ、高負荷状態に対応するしきい値温度T2はノッキングの発生を防止するためこれよりも温度の低い80℃程度に定められる。つまり温度T1は温度T2よりも10℃以上高く定められる。
エンジンECU1000は、このしきい値温度を超えないようにエンジンの負荷状態に応じてラジエータ400等による放熱能力を調整し、かつ蓄熱タンクの冷却水を使用する。
すなわち、時刻t0〜t1において通常運転が行なわれており、時刻t1において急加速が行なわれエンジン回転数NEが増加開始し、時刻t2において高負荷運転であると判断される回転数NE0に到達する。時刻t0〜t2においては、電動式ウォータポンプ300は停止している。
すると時刻t2において、エンジンECU1000は、燃焼室を通過した冷却水の上限側のしきい値温度をT1からT2に切換える。そして、エンジンECU1000が電動式ウォータポンプ300を駆動するので、蓄熱タンク310に貯蔵されていた冷水はヘッド100に注入される。すると実線W2に示すように時刻t3において温度Thがしきい値温度T2を下回る。そしてエンジンECU1000は電動式ウォータポンプ300を停止させる。
その後、エンジン回転数NEが時刻t4において回転数NE0より低下し、高負荷運転が終了し、その後時刻t5においてエンジンECU1000は、燃焼室を通過した冷却水の上限温度目標値であるしきい値温度をT2からT1に戻す。
以上説明したように、実施の形態1によれば、燃焼室温度を高温領域に維持しつつ、高負荷運転を行なったときに適切に燃焼室温度の上昇を抑え、高燃費とノッキングの発生防止の両立を図ることができる。
[実施の形態2]
図5は、図2に共通して使用できる他の蓄熱システムの制御ブロック図である。
図5に示すように、この蓄熱システムも、実施の形態1と同様、エンジンECU1000により制御される。図1に示す制御ブロック図と異なる点は、三方弁610である。
この三方弁610は、実施の形態1において説明した図1の三方弁600と同じ機能を有するが、その配置される位置が異なる。図1では、三方弁600はヒータコア500とヘッド100との間に設けられ蓄熱タンク310の出口につながる通路が接続されていた。これに対し、図5の場合は、蓄熱タンク出口はシリンダブロック110に設けられた通路に接続され、三方弁610は、ヒータコア500から機械式ウォータポンプ200に至る経路上の電動式ウォータポンプ300への分岐点に配置されている。
このような図5に示す蓄熱システムにおいても、図2に示すフローチャートにより表わされるプログラムをエンジンECU1000により実行することにより、熱損失を少なく抑え、かつエンジンフリクションロスを低下させて燃費を向上させることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本実施の形態に係る制御装置の制御対象である蓄熱システムの制御ブロック図である。 図1のエンジンECU1000で実行されるプログラムの制御を説明するためのフローチャートである。 蓄熱システムにおける冷却水の流れを説明するための図である。 本発明が適用された蓄熱システムによるエンジン燃焼室の温度変化を説明するための図である。 図2に共通して使用できる他の蓄熱システムの制御ブロック図である。
符号の説明
100 ヘッド、110 シリンダブロック、120 温度センサ、130 回転数センサ、140 吸気量センサ、150 スロットル開度センサ、200 機械式ウォータポンプ、300 電動式ウォータポンプ、310 蓄熱タンク、320 蓄熱タンク温度センサ、400 ラジエータ、410 ラジエータバイパス通路、420 ラジエータ水温センサ、430 流量制御弁、500 ヒータコア、600,610 三方弁、A,B,C ポート、1000 エンジンECU。

Claims (9)

  1. 内燃機関に設けられた流路を循環する液媒体の一部を保温貯蔵するための貯蔵部と、前記貯蔵部内の液媒体を前記内燃機関との間で循環させるための循環部とが搭載された車両の制御装置であって、
    前記内燃機関の温度を検知する第1の検知部と、
    前記内燃機関の負荷状態を検知する第2の検知部と、
    前記内燃機関の燃焼室温度が所定の上限温度に到達しないように定められたしきい値温度と前記検知された内燃機関の温度とに基づいて、前記貯蔵部内の液媒体の前記内燃機関への供給および前記供給の停止を行なうように、前記循環部を制御するための制御部とを備え、
    前記しきい値温度は、前記負荷状態に対応する前記内燃機関にノッキングが発生しない温度範囲内に定められ、前記負荷状態が通常負荷状態である場合よりも負荷の高い高負荷状態である場合のほうが低く定められる、車両の制御装置。
  2. 前記制御部は、前記内燃機関の始動時に前記貯蔵部内に前記流路から回収した前記液媒体を、前記高負荷状態が検出された場合に前記内燃機関に供給する、請求項1に記載の車両の制御装置。
  3. 前記第2の検知部は、前記内燃機関を通過した前記液媒体の温度に基づいて前記負荷状態を検知する、請求項1に記載の車両の制御装置。
  4. 前記第2の検知部は、前記内燃機関の吸気量に基づいて前記負荷状態を検知する、請求項1に記載の車両の制御装置。
  5. 前記第2の検知部は、前記内燃機関の回転数に基づいて前記負荷状態を検知する、請求項1に記載の車両の制御装置。
  6. 前記第2の検知部は、前記内燃機関のスロットル開度に基づいて前記負荷状態を検知する、請求項1に記載の車両の制御装置。
  7. 前記通常負荷状態に対応する前記しきい値温度は、前記高負荷状態に対応する前記しきい値温度よりも10℃以上高く定められる、請求項1〜6のいずれか1項に記載の車両の制御装置。
  8. 前記車両は、
    内燃機関から送出される前記液媒体の放熱を行なう放熱部と、
    前記貯蔵部から送出される前記液媒体をと前記内燃機関に導くように構成された第1の経路と、
    前記液媒体を前記貯蔵部に取込むとともに前記貯蔵部に貯蔵されていた液媒体を前記内燃機関に向けて放出させる第1のポンプと、
    前記放熱部から送出される前記液媒体を前記内燃機関に導くように構成された第2の経路と、
    前記第2の経路上に配置され前記液媒体を前記内燃機関に向けて送出する第2のポンプとを備える、請求項1に記載の車両の制御装置。
  9. 前記放熱部は、
    ラジエータと、
    前記ラジエータと並列接続されるバイパス通路と、
    前記ラジエータおよび前記バイパス通路の結合点に配置され、前記制御部の指示に応じて前記ラジエータおよび前記バイパス通路のいずれかを選択し、または前記ラジエータおよび前記バイパス通路の双方の前記液媒体の通過の停止させることが可能な流量制御弁とを含む、請求項8に記載の車両の制御装置。
JP2005019783A 2005-01-27 2005-01-27 車両の制御装置 Pending JP2006207448A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019783A JP2006207448A (ja) 2005-01-27 2005-01-27 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019783A JP2006207448A (ja) 2005-01-27 2005-01-27 車両の制御装置

Publications (1)

Publication Number Publication Date
JP2006207448A true JP2006207448A (ja) 2006-08-10

Family

ID=36964584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019783A Pending JP2006207448A (ja) 2005-01-27 2005-01-27 車両の制御装置

Country Status (1)

Country Link
JP (1) JP2006207448A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191991A (zh) * 2010-03-03 2011-09-21 株式会社电装 用于发动机冷却系统的控制器
CN114233459A (zh) * 2021-11-08 2022-03-25 潍柴动力股份有限公司 发动机冷却系统及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314279A (ja) * 2002-04-24 2003-11-06 Toyota Motor Corp 車輌用内燃機関の温水式暖機促進装置
JP2004316524A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp エンジンの冷却装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314279A (ja) * 2002-04-24 2003-11-06 Toyota Motor Corp 車輌用内燃機関の温水式暖機促進装置
JP2004316524A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp エンジンの冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191991A (zh) * 2010-03-03 2011-09-21 株式会社电装 用于发动机冷却系统的控制器
CN114233459A (zh) * 2021-11-08 2022-03-25 潍柴动力股份有限公司 发动机冷却系统及控制方法

Similar Documents

Publication Publication Date Title
JP4682863B2 (ja) エンジンの冷却装置
US20060096553A1 (en) Liquid-cooling device for internal combustion engine
US9850802B2 (en) Coolant control device
JPWO2011111159A1 (ja) 機関冷却装置
JP2011179421A (ja) 内燃機関の冷却装置
JP2006161806A (ja) 液冷式内燃機関の冷却装置
JP2006051852A (ja) ハイブリッド車両の暖房装置
JP2006207449A (ja) 車両の制御装置
JP2006207448A (ja) 車両の制御装置
JP6443824B2 (ja) エンジンの冷却装置
JP2006242070A (ja) 車両の制御装置
JP2010223050A (ja) エンジンの冷却装置
JP2006258069A (ja) 冷却システム
US11319855B2 (en) Heat accumulation and dissipation device for internal combustion engine
JP2005256641A (ja) 内燃機関の冷却制御装置
JP2006161745A (ja) 車両の制御装置
JP2006242023A (ja) 車両の制御装置
JP2006242025A (ja) 車両の制御装置
JP2000303840A (ja) エンジンの冷却制御装置
KR100727165B1 (ko) 전자 제어식 서머스탯을 적용한 냉각 시스템 및 그 제어방법
JP2006161739A (ja) 車両の制御装置
JP2002188443A (ja) 内燃機関の冷却装置
JP2006161743A (ja) 車両の制御装置
JP2006161742A (ja) 車両の制御装置
JP2004285830A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Effective date: 20100225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A02