WO2014171437A1 - 抗体タンパク質の精製方法 - Google Patents

抗体タンパク質の精製方法 Download PDF

Info

Publication number
WO2014171437A1
WO2014171437A1 PCT/JP2014/060677 JP2014060677W WO2014171437A1 WO 2014171437 A1 WO2014171437 A1 WO 2014171437A1 JP 2014060677 W JP2014060677 W JP 2014060677W WO 2014171437 A1 WO2014171437 A1 WO 2014171437A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
cation exchange
monomer
copolymer
strong cation
Prior art date
Application number
PCT/JP2014/060677
Other languages
English (en)
French (fr)
Inventor
弘樹 谷口
雅子 後藤
一郎 小熊
敬郎 横山
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to EP14785266.9A priority Critical patent/EP2987801B1/en
Priority to US14/785,069 priority patent/US10400007B2/en
Priority to JP2015512479A priority patent/JP6163541B2/ja
Publication of WO2014171437A1 publication Critical patent/WO2014171437A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3861Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus
    • B01D15/3876Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus modifying the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/17Organic material containing also inorganic materials, e.g. inert material coated with an ion-exchange resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • B01D15/327Reversed phase with hydrophobic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials

Definitions

  • the present invention relates to a biomolecule purification technique, and relates to a method for purifying antibody proteins.
  • Immunoglobulin is a physiologically active substance that controls the immune reaction.
  • the antibody protein is obtained from the blood of an immunized animal or a cell culture medium of cells possessing antibody-producing ability or an ascites culture medium of an animal.
  • blood and culture fluid containing antibody protein includes impurities other than antibody protein or impurity components such as complicated contaminant components derived from raw material fluid used for cell culture. Therefore, in order to separate and purify antibody proteins from impurity components, a complicated and time-consuming operation is usually necessary.
  • Liquid chromatography is important for the separation and purification of antibody proteins.
  • Chromatographic techniques for separating antibody proteins include gel filtration chromatography, affinity chromatography, ion exchange chromatography, reverse phase chromatography, and the like, and antibody proteins are separated and purified by combining these techniques.
  • Ion exchange chromatography is a method of performing separation by reversibly adsorbing counter ions present in a mobile phase using an ion exchange group on the surface of a substrate as a stationary phase.
  • a solid adsorbent having a cation exchange group has a property of mainly adsorbing antibody proteins and allowing most of other impurities to pass through, and is therefore used for concentration separation of antibody proteins.
  • Cation exchange groups are roughly classified into weak cation exchange groups such as carboxyl groups and strong cation exchange groups such as sulfonic acid groups.
  • the adsorbent having a weak cation exchange group has a drawback that the charge of the adsorbent surface changes when the pH of the mobile phase changes, and the binding capacity of the antibody protein varies. Therefore, when an adsorbent having a weak cation exchange group is used for separation and purification of antibody protein, the reproducibility of separation is poor, and the recovery rate of antibody protein may be lowered.
  • the adsorbent having a strong cation exchange group does not change the binding capacity of the antibody protein because the charge on the adsorbent surface does not change even when the pH of the mobile phase varies.
  • an adsorbent having a strong cation exchange group is required. It is used.
  • Patent Document 1 discloses a packing containing a charged copolymer that can change the effective charge density on the surface of the stationary phase according to temperature change, a production method, and a temperature-responsive chromatography method using the same.
  • Patent Document 2 discloses a stationary phase of temperature-responsive chromatography in which a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. is immobilized at high density on the surface of the substrate by an atom transfer radical polymerization method.
  • Patent Document 3 discloses a temperature response characterized by causing a growth reaction of a polymer having a charge and changing hydration power within a temperature range of 0 to 80 ° C.
  • Non-Patent Document 1 discloses a temperature-responsive chromatography carrier having a carboxyl group prepared by an atom transfer radical polymerization method and a method for producing the same. Among them, a monomer composition optimized for the separation of lysozyme in the monomer composition used in the atom transfer radical polymerization method is disclosed.
  • an object of this invention is to provide the purification method of the bioactive substance which can refine
  • the present inventors have studied and developed from various angles. As a result, the present inventors have obtained a mixed solution containing impurities and a physiologically active substance at a specific temperature, a base material, and at least N-isopropylacrylamide immobilized on the base material surface as a monomer unit.
  • the impurities are selectively adsorbed on the chromatographic carrier by contacting with an ion exchange chromatographic carrier or a temperature-responsive ion exchange chromatographic carrier comprising a high-purity target physiologically active substance. And found that it can be purified.
  • An aspect of the present invention based on the findings of the present inventors is a purification method for purifying a physiologically active substance from a mixed solution containing impurities and a physiologically active substance, the substrate being fixed to the substrate surface, And a copolymer containing at least N-isopropylacrylamide as a monomer unit, and a physiologically active substance is recovered by allowing the mixed solution to flow through a container containing the carrier at a constant temperature.
  • This is a method for purifying a physiologically active substance.
  • Another aspect of the present invention is a purification method for purifying a physiologically active substance from a mixed solution containing impurities and a physiologically active substance, using at least one temperature-responsive ion exchange chromatography carrier, This is a method for purifying a physiologically active substance by collecting the physiologically active substance by allowing it to flow through a container containing a carrier at a constant temperature.
  • Another aspect of the present invention is a method for removing impurities from a mixed solution containing impurities and a physiologically active substance, wherein the substrate and at least N-isopropylacrylamide immobilized on the substrate surface are used as monomer units. And an ion exchange chromatography carrier comprising a copolymer, and the mixed solution is flowed through a container containing the carrier at a constant temperature to remove impurities.
  • Yet another embodiment of the present invention is a method for removing impurities from a mixed solution containing impurities and a physiologically active substance, using at least one temperature-responsive ion exchange chromatography carrier, and mixing the mixed solution with the carrier.
  • impurities are removed by allowing the container to be stored to flow through at a constant temperature.
  • the present invention was completely unpredictable from the prior art, and is expected to develop into a novel antibody separation system that was never present in the prior art.
  • the physiologically active substance can be efficiently purified.
  • the physiologically active substance can be efficiently purified and impurities can be efficiently removed without being exposed to low pH conditions or high temperature conditions that cause inactivation of the physiologically active substance.
  • FIG. 2 is a graph of absorbance when the fraction eluted from the protein A column according to Example 1 was subjected to size exclusion chromatography. It is an enlarged view of the graph of FIG. It is a graph of the light absorbency at the time of applying the elution fraction from the protein column which concerns on Example 3 to size exclusion chromatography.
  • FIG. 4 is an enlarged view of the graph of FIG. 3. It is a table
  • a method for purifying a physiologically active substance is a purification method for purifying a physiologically active substance from a mixed solution containing an impurity and a physiologically active substance, and includes a base material and at least N fixed on the base material surface.
  • -Recovery of physiologically active substances by using an ion exchange chromatography carrier comprising isopropylacrylamide as a monomer unit and allowing the mixed solution to flow through a container containing the carrier at a specific temperature.
  • the specific temperature is preferably a temperature at which impurities can be adsorbed on the carrier by 50% or more by mass fraction and the physiologically active substance can be recovered by 70% or more by mass fraction.
  • the ion exchange chromatography carrier is also expressed as a solid adsorbent for ion exchange chromatography or a stationary phase for ion exchange chromatography.
  • a temperature-responsive cationic ion exchange carrier that can change the effective charge density of the stationary phase surface with temperature changes is used as an ion exchange chromatography carrier.
  • the physiologically active substance is, for example, a monomer component of an antibody protein.
  • Impurities are, for example, aggregate components of antibody protein dimers or more.
  • the temperature at which impurities are adsorbed by 50% or more by mass fraction on the carrier means that the total mass of impurities contained in the mixed solution before being added to the container for storing the ion exchange chromatography carrier is adsorbed on the carrier.
  • the temperature is such that the mass ratio of impurities is 50% or more.
  • the ratio of the mass of impurities to the mass of the collected solution is, for example, 2% or less, preferably 1% or less.
  • the temperature at which the physiologically active substance can be recovered by 70% or more in mass fraction is the carrier relative to the total mass of the physiologically active substance contained in the mixed solution before being added to the container for storing the ion exchange chromatography carrier.
  • the temperature is such that the ratio of the mass of the physiologically active substance contained in the solution that has passed through the container (hereinafter also referred to as “recovery rate”) is 70% or more.
  • recovery rate the ratio of the mass of the physiologically active substance contained in the solution that has passed through the container.
  • the higher the temperature the lower the recovery rate of physiologically active substances such as monomer components of antibody proteins.
  • the temperature region in which the monomer of the antibody protein tends to be difficult to adsorb on the cationic ion exchange carrier and the impurity tends to be adsorbed is, for example, 5 ° C. or more and 60 ° C. or less, preferably 10 ° C. or more and 50 ° C. or less, More preferably, it is 15 degreeC or more and 40 degrees C or less, More preferably, it is 20 degreeC or more and 35 degrees C or less, Most preferably, it is 25 degreeC.
  • the temperature can be adjusted according to the purpose. Recovered material is obtained.
  • the degree of adsorption of impurities may differ from the target physiologically active substance for purification. Even in such a case, the target can be adjusted by adjusting the temperature without changing the buffer. The physiologically active substance is obtained as a recovered product.
  • a chromatography carrier that can be used under room temperature conditions of 20 ° C. or more and 35 ° C. or less is desired. The reason is that it has been found that exposure to high temperature conditions can denature the bioactive substance and impair its activity. In addition, when it is industrialized, it is difficult to control the temperature accurately and uniformly, and therefore there is a high demand for a chromatography carrier that can be used at a constant room temperature.
  • An antibody protein which is an example of a physiologically active substance, is a glycoprotein molecule (also referred to as gamma globulin or immunoglobulin) produced by B lymphocytes as a vertebrate infection prevention mechanism as generally defined in biochemistry.
  • a glycoprotein molecule also referred to as gamma globulin or immunoglobulin
  • an antibody protein purified by the method according to the embodiment is used as a human pharmaceutical and has substantially the same structure as an antibody protein in a human body to be administered.
  • the antibody protein may be a human antibody protein, or may be an antibody protein derived from mammals such as non-human bovines and mice.
  • the antibody protein may be a chimeric antibody protein with human IgG and a humanized antibody protein.
  • a chimeric antibody protein with human IgG is an antibody protein in which the variable region is derived from a non-human organism such as a mouse, but the other constant region is substituted with a human-derived immunoglobulin.
  • the humanized antibody protein is a variable region of which complementarity-determining region (CDR) is derived from a non-human organism, but the other framework region (framework region: FR) is derived from a human. It is an antibody protein. Humanized antibody proteins are further reduced in immunogenicity than chimeric antibody proteins.
  • the class (isotype) and subclass of the antibody protein that is an example of the purification target of the method according to the embodiment is not particularly limited.
  • antibody proteins are classified into five classes, IgG, IgA, IgM, IgD, and IgE, depending on the structure of the constant region.
  • the antibody protein to be purified by the method according to the embodiment may be any of the five classes.
  • IgG has four subclasses, IgG1 to IgG4, and IgA has two subclasses, IgA1 and IgA2.
  • any subclass of the antibody protein to be purified by the method according to the embodiment may be used.
  • antibody-related proteins such as Fc fusion proteins in which a protein is bound to the Fc region can also be included in the antibody protein to be purified by the method according to the embodiment.
  • antibody proteins can also be classified by origin.
  • the antibody protein to be purified by the method according to the embodiment is any of a natural human antibody protein, a recombinant human antibody protein produced by gene recombination technology, a monoclonal antibody protein, and a polyclonal antibody protein. Also good.
  • human IgG is preferable as the antibody protein to be purified by the method according to the embodiment from the viewpoint of demand and importance as an antibody drug, but is not limited thereto.
  • An ion-exchange chromatography carrier comprising a base material and a copolymer containing at least N-isopropylacrylamide as a monomer unit, which is used in the purification method according to the embodiment, is fixed on the surface of the base material. It preferably contains an exchange group.
  • the cationic ion exchange carrier according to the embodiment comprises a monomer composition containing a monomer having a cationic ion exchange group and / or a precursor monomer for introducing a cationic ion exchange group, and an N-isopropylacrylamide monomer. It is formed by polymerizing on the substrate surface by a polymerization method such as a surface living radical polymerization method or a radiation graft polymerization method.
  • a polymerization method such as a surface living radical polymerization method or a radiation graft polymerization method.
  • N-isopropylacrylamide can be identified by pyrolysis gas chromatography mass spectrometry (GC / MS).
  • GC / MS pyrolysis gas chromatography mass spectrometry
  • isopropylamine sites, isopropyl isocyanate, and N-isopropylacrylamide monomer sites can be measured.
  • the analysis conditions can be changed by changing the column length or the column itself.
  • the solid adsorbent for ion exchange chromatography including the temperature-responsive cationic ion exchange carrier according to the embodiment includes, for example, a base material and a temperature-responsive copolymer fixed on the base material surface.
  • the copolymer has at least a cationic ion exchange group.
  • the temperature responsive cationic ion exchange carrier according to the embodiment includes a monomer having a cationic ion exchange group and / or a precursor monomer having a cationic ion exchange group introduced therein, and a monomer having temperature responsiveness after polymerization.
  • the monomer composition is formed by polymerizing on the surface of the substrate by a polymerization method such as a surface living radical polymerization method or a radiation graft polymerization method.
  • a monomer having temperature responsiveness after polymerization means a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. after polymerization, and has a lower critical solution temperature (0 to 80 ° C.).
  • LCST and polymers that have an upper critical solution temperature (UCST). Any of those homopolymers, copolymers, or mixtures may be used.
  • the shape of the substrate used in the embodiment is not particularly limited, but may be, for example, a bead shape or a film shape.
  • the pressure rise tends to be suppressed, and the processing speed tends to be improved.
  • membrane form since all the process liquids are forced to pass the pore of a support
  • the particle size of the bead-shaped substrate is not particularly limited, but is, for example, 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • the particle size is 1 ⁇ m or less, since consolidation of beads tends to occur in the column packed with the carrier, it tends to be difficult to pass the solution through the column at high speed. Further, when the particle size is 300 ⁇ m or more, the gap between the beads becomes large, and the solution protein tends to leak when the antibody protein is adsorbed on the carrier.
  • the material for the bead-shaped substrate is not particularly limited, and glass, silica, polystyrene resin, methacrylic resin, crosslinked agarose, crosslinked dextran, crosslinked polyvinyl alcohol, crosslinked cellulose, and the like can be used.
  • the shape of the substrate is a film shape
  • a flat plate shape and a hollow fiber shape are exemplified, but a hollow fiber shape is preferable from the viewpoint of operability.
  • the material of the film-like base material is not particularly limited, but is preferably composed of a polyolefin polymer in order to maintain mechanical properties.
  • polyolefin polymers include olefin homopolymers such as ethylene, propylene, butylene, and vinylidene fluoride, two or more types of copolymers of these olefins, or one or more types of olefins, and perhalogenated compounds. Examples thereof include copolymers with olefins.
  • the perhalogenated olefin include tetrafluoroethylene and / or chlorotrifluoroethylene.
  • polyethylene or polyvinylidene fluoride is preferable, and polyethylene is more preferable in that it has excellent mechanical strength and a high adsorption capacity for contaminants such as proteins.
  • the base material used in the embodiment has, for example, a plurality of pores.
  • the pore diameter is not particularly limited, but is, for example, 5 to 1000 nm, preferably 10 to 700 nm, and more preferably 20 to 500 nm. If the pore diameter is 5 nm or less, the molecular weight of the separable antibody protein tends to be low. Further, when the pore diameter is 1000 nm or more, the surface area of the substrate is decreased, and the binding capacity of the antibody protein tends to be decreased.
  • a polymer having a cation exchange group is fixed to the base material.
  • an atom transfer radical polymerization initiator is fixed on the surface of the substrate, and a temperature responsive polymer is grown from the initiator in the presence of a catalyst.
  • a “radiation graft polymerization method” or the like in which a radical is generated by irradiation and a polymer is grown and reacted from the generated radical as a starting point, but is not particularly limited.
  • an “atom transfer radical polymerization method” which is a surface living radical polymerization method.
  • the “atom transfer radical polymerization method” is preferably used because the polymer can be fixed at a high density on the surface of the substrate.
  • the initiator used at that time is not particularly limited, but when the substrate has a hydroxyl group, for example, 1 -Trichlorosilyl-2- (m, p-chloromethylphenyl) ethane, 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane, (3- (2-bromoisobutyryl) propyl) dimethylethoxysilane, and 2 -Bromoisobutyric acid bromide and the like. Polymer chains are grown from this initiator.
  • the catalyst at that time is not particularly limited, and examples of the copper halide (CuIX) include CuICl and CuIBr.
  • the ligand complex for the copper halide is not particularly limited, but tris (2- (dimethylamino) ethyl) amine (Me 6 TREN), N, N, N ′′, N ′′ -pentamethyl.
  • any means can be adopted to generate radicals on the substrate, but when the substrate is irradiated with ionizing radiation, the entire substrate is exposed. It is preferable because uniform radicals are generated.
  • ionizing radiation ⁇ rays, electron beams, ⁇ rays, neutron rays and the like can be used. However, electron beams or ⁇ rays are preferable for implementation on an industrial scale.
  • the ionizing radiation is obtained from radioactive isotopes such as cobalt 60, strontium 90, and cesium 137, or by an X-ray imaging apparatus, an electron beam accelerator, an ultraviolet irradiation apparatus, or the like.
  • the irradiation dose of ionizing radiation is preferably 1 kGy or more and 1000 kGy or less, more preferably 2 kGy or more and 500 kGy or less, and further preferably 5 kGy or more and 200 kGy or less. If the irradiation dose is less than 1 kGy, radicals tend not to be generated uniformly. Further, when the irradiation dose exceeds 1000 kGy, the physical strength of the substrate tends to be lowered.
  • the pre-irradiation method in which the radicals are then contacted with the reactive compound, and the film in contact with the reactive compound on the base material. It is roughly divided into a simultaneous irradiation method for generating radicals. In the embodiment, any method can be applied, but a pre-irradiation method with less oligomer formation is preferable.
  • the solvent used in the polymerization is not particularly limited as long as the reactive compound can be uniformly dissolved.
  • solvents include alcohols such as ethanol, isopropanol, and t-butyl alcohol, ethers such as diethyl ether and tetrahydrofuran, ketones such as acetone and 2-butanone, water, and mixtures thereof.
  • the polymer fixed to the substrate surface has N-isopropylacrylamide.
  • Poly (N-isopropylacrylamide) is known to have a lower critical temperature at 32 degrees.
  • the solid adsorbent in which a polymer having N-isopropylacrylamide is introduced onto the substrate surface greatly changes the hydrophilic / hydrophobic surface properties at a critical temperature. Therefore, by grafting or coating a polymer having N-isopropylacrylamide on the surface of a chromatographic packing material to form a solid adsorbent, it becomes possible to change the force with which the solid adsorbent retains antibody protein depending on the temperature. . As a result, the retention behavior of the solid adsorbent can be controlled by temperature without changing the composition of the eluate.
  • acrylamide, methacrylic acid, acrylic acid, dimethylacrylamide, vinylpyrrolidone, etc. which are more hydrophilic monomers than isopropylacrylamide, and N-isopropylacrylamide as hydrophilic comonomers are used. It can be adjusted by copolymerization.
  • the lower critical temperature is desired to be 32 ° C. or lower, it can be adjusted by copolymerizing styrene, alkyl methacrylate, alkyl acrylate, etc., which are hydrophobic monomers, with N-isopropylacrylamide as a hydrophobic comonomer. is there.
  • the impurity removal performance tends to be lowered when the treatment temperature in the flow-through is low, and the antibody treatment amount representing the amount of antibody that can be purified tends to be lowered.
  • the amount of antibody treatment increases, but at a high temperature, the antibody tends to aggregate. Therefore, when polymerizing a temperature-responsive polymer, it is desirable to copolymerize a hydrophobic monomer and lower the lower critical temperature.
  • the ratio of the hydrophobic monomer to the total monomer is, for example, 2% or more, preferably 5% or more, more preferably 10% or more, and still more preferably 20% or more, from the viewpoint of lowering the processing temperature. is there.
  • the polymer fixed on the substrate surface has a strong cation exchange group such as a sulfonic acid group as the cation exchange group.
  • a method for providing a strong cation exchange group is not particularly limited, but the first method includes a method of copolymerization including a monomer having a strong cation exchange group when synthesizing a polymer chain fixed to the substrate surface.
  • the monomer unit having a sulfonic acid group include (meth) acrylamide alkyl sulfonic acid, vinyl sulfonic acid, acrylamide t-butyl sulfonic acid, and styrene sulfonic acid, which are constituent units of a polymer having sulfonic acid.
  • the monomer unit of the copolymer when at least a part of the monomer unit of the copolymer is derived from a vinyl monomer having a sulfonic acid group such as vinyl sulfonic acid, the sulfonic acid group is bonded to the main chain without a linker. Therefore, since the hydrophobic interaction between the linker and the antibody protein does not occur, the antibody protein tends to be hardly adsorbed on the substrate surface.
  • at least a part of the monomer unit of the copolymer having a strong cation exchange group can also be represented by the following chemical formula (1), where each of R 1 , R 2 , and R 3 is H or Me. —CR 1 R 2 —CR 3 (—SO 3 H) — (1)
  • the precursor is converted to sulfone.
  • the method of converting into an acid group is mentioned.
  • the “strong cation exchange group-introduced precursor” may include “a strong cation exchange group precursor”.
  • the “precursor of a strong cation exchange group” is, for example, a strong cation exchange group with a protective group. Examples of the monomer having a sulfonic acid group precursor include phenyl vinyl sulfonate, but are not limited thereto.
  • a monomer having a functional group capable of imparting a strong cation exchange group is used as a strong cation exchange group introduction precursor monomer.
  • a method of converting a functional group capable of providing a strong cation exchange group into a sulfonic acid group after copolymerization is included.
  • the monomer having a functional group that can impart a strong cation exchange group include styrene and glycidyl methacrylate.
  • a sufficient polymerization rate is often not obtained, but a strong cation in which at least a part of glycidyl methacrylate or the like is a methacrylic acid derivative or an acrylic acid derivative A sufficient polymerization rate can be obtained by using the exchange group-introduced precursor monomer.
  • the monomer unit of the copolymer having a strong cation exchange group is a methacrylic acid derivative or an acrylic acid derivative
  • other parts of the base material or the copolymer impurities such as an aggregate, It may be possible to increase the hydrophobic interaction of and increase the amount of adsorption of impurities such as aggregates.
  • At least a part of the monomer unit of the copolymer having a strong cation exchange group is a methacrylic acid derivative or an acrylic acid derivative
  • at least a part of the monomer unit of the copolymer having a strong cation exchange group is: It has a group represented by chemical formula (2) or (3).
  • the sulfonic acid group of the monomer unit represented by the chemical formula (2) is bonded to the main chain through a linker containing at least —CH (—OH) —CH 2 —.
  • the sulfonic acid group of the monomer unit represented by the chemical formula (3) is bonded to the main chain via a linker containing at least —CH—. Since the steric hindrance is reduced by the linker, impurities such as aggregates may be able to quickly bind to the sulfonic acid group.
  • a monomer composition in which the ratio of the monomer having a strong cation exchange group and / or the precursor monomer having a strong cation exchange group introduced to N-isopropylacrylamide is 0.01 to 500.00 mol% is added to the surface. Polymerize by graft polymerization. As a result, the copolymer contains 0.01 to 500.00 mol% of strong cation exchange groups in terms of monomers with respect to N-isopropylacrylamide.
  • the ratio is preferably 0.1 to 400.0 mol%, more preferably 1 to 300.0 mol%, still more preferably 1.5 to 200.0 mol%, and most preferably 4 to 150 mol%.
  • the ratio exceeds 500.00 mol%, the amount of antibody protein adsorbed tends to increase, and the antibody protein recovery rate tends to decrease.
  • the ratio is less than 0.01 mol%, the amount of strong cation exchange group introduced is too small, and the amount of impurities such as aggregates adsorbed on the solid adsorbent tends to decrease.
  • the mass ratio of N-isopropylacrylamide in the copolymer is desirably 1% to 99%, preferably 10% to 90%, more preferably 20% to 80%, and still more preferably 30%. ⁇ 70%.
  • the proportion of N-isopropylacrylamide is small, the temperature responsiveness becomes too small, and the balance between the recovery rate and the purity of the recovered antibody tends not to be adjusted by adjusting the temperature.
  • the proportion of N-isopropylacrylamide is large, the temperature responsiveness is strong, the temperature becomes too sensitive, and the operation tends to be difficult. If it is 20% to 80%, and further 30 to 70% or less, there is a tendency that aggregates can be removed efficiently at room temperature without requiring temperature control.
  • the sulfonic acid group density of the cation exchanger is desirably 30 mmol / L or more.
  • the copolymerization ratio (composition) of the monomer unit having a strong cation exchange group with respect to N-isopropylacrylamide can be quantified by analyzing the copolymer immobilized on the substrate surface. is there.
  • Various analysis techniques such as elemental analysis and NMR can be used for the analysis of the copolymerization ratio. Analyzing the copolymerization ratio after isolating the copolymer from the substrate is preferable from the viewpoint of analysis accuracy because the influence of the substrate on the analysis can be eliminated.
  • the copolymer used for analysis of the copolymerization ratio can be obtained by polymerizing the copolymer in the solution without using the substrate.
  • the polymer fixed on the substrate surface is hydrated and dehydrated by changing the temperature, and the temperature range is, for example, 0 ° C. to 80 ° C. If the temperature exceeds 80 ° C., the mobile phase is water, and thus evaporation occurs and the workability tends to deteriorate. On the other hand, if it is lower than 0 ° C., the mobile phase tends to freeze.
  • the solid adsorbent obtained by the embodiment is stored in a column of a normal liquid chromatography apparatus and used as a liquid chromatography system.
  • the method of applying a temperature to the solid adsorbent is not particularly limited.
  • the solid adsorbent is brought into contact with an aluminum block, water bath, and air layer having a predetermined temperature, or the solid adsorbent is attached to a jacket or the like. And so on.
  • the monomer component of the target antibody protein is passed through the solid adsorbent in one temperature region to adsorb the aggregate component.
  • FT flow-through
  • the amount of antibody protein given to the solid adsorbent may or may not exceed the amount that the solid adsorbent can adsorb impurities. Since antibody protein aggregates have a higher charge amount than monomers, the binding to ion exchange resins tends to be stronger than monomers. Furthermore, since the aggregate is more hydrophobic than the monomer, the aggregate tends to interact with the hydrophobic portion of the solid adsorbent (hydrophobic interaction) and become strongly bonded to the solid adsorbent.
  • the buffer solution is an aqueous solution containing inorganic salts, and specifically includes a phosphate buffer solution, a Tris buffer solution, an acetate buffer solution, and the like. It is not limited.
  • the concentration of the inorganic salt is 1 to 50 mmol / L, preferably 3 to 40 mmol / L, and more preferably 5 to 30 mmol / L.
  • the concentration of inorganic salts in the buffer solution is lower than 1 mmol / L, the activity of antibody protein as a solute tends to be impaired. Furthermore, when the concentration of inorganic salts in the buffer solution is lower than 1 mmol / L, the degree of dissociation of ion exchange groups on the surface of the temperature-responsive adsorbent increases, and the antibody protein is strongly adsorbed on the surface of the temperature-responsive adsorbent. , Antibody protein recovery tends to be low.
  • the concentration of inorganic salts in the buffer solution is higher than 50 mmol / L, the dissociation degree of the ion exchange groups on the surface of the adsorbent tends to be low, so that it is difficult for the adsorbent surface to hold impurities such as aggregates. It is in. Therefore, it tends to be difficult to efficiently separate the antibody protein from the aggregate component.
  • the concentration of the inorganic salt is expressed on a scale of electrical conductivity, it is preferably 0.5 to 20 mS / cm. More preferably, it is 0.5 mS / cm to 10 mS / cm, and still more preferably 0.5 mS / cm to 5 mS / cm.
  • the hydrogen ion concentration of the buffer is, for example, pH 3.0 to 9.0, preferably pH 4.5 to 8.5, more preferably pH 5.0 to 8.0, and particularly preferably pH 5.0 to 7. .5.
  • pH of the buffer solution is higher than 9.0, the electrostatic repulsion between the antibody proteins becomes small and tends to aggregate.
  • the pH is lower than 3.0, the antibody protein is denatured and tends to cause a decrease in activity and quality such as formation of aggregates.
  • the flow rate when the mixed solution is flow-through is, for example, not less than 0.1 times the volume / minute of the volume of the ion exchange chromatography carrier, not more than 30 times the volume / minute of the volume of the carrier, preferably ion exchange chromatography.
  • the volume is not less than 1 volume / minute of the carrier volume and not more than 10 volume / minute of the carrier volume.
  • the volume of the carrier is 0.1 times the volume / min or more and 3 times the volume / min or less, the volume of the 0.1 times / min or more and the volume that is 2 times the volume / min. Minutes or less, preferably 0.1 times volume / minute or more and 1 time volume / minute or less. This is because when the flow rate exceeds 3 times volume / min, the antibody solution passes between the beads, and the impurity removability tends to decrease.
  • An antibody at a temperature at which impurities can be adsorbed to the carrier by 50% or more by mass fraction and the physiologically active substance can be collected by 70% or more by mass fraction on the cationic ion exchange carrier according to the embodiment described above.
  • antibody protein monomers can be efficiently purified while suppressing the formation of antibody protein aggregates. . Therefore, according to the method for purifying an antibody protein according to the embodiment, it is possible to efficiently purify a very useful antibody protein that can be used for pharmaceuticals and the like.
  • the present inventors have reduced the impurities and made it more effective by purifying the mixed solution containing the impurities and the physiologically active substance by affinity chromatography before purifying the physiologically active substance with the ion exchange chromatography carrier.
  • purification using an ion chromatography carrier can be performed.
  • the contact time between the antibody and the carrier can be shortened, and the purified antibody can be immediately brought to an appropriate temperature, so that denaturation of the antibody can be suppressed and the antibody can be purified efficiently.
  • affinity chromatography a protein A carrier, an acid-eluting affinity chromatography carrier, or a temperature-responsive affinity chromatography carrier can be used.
  • the temperature-responsive affinity chromatography carrier comprises temperature-responsive protein A, which is protein A mutated so that the binding property to the antibody changes depending on temperature
  • the temperature-responsive protein A is: It can be prepared with reference to a patent document (WO2008 / 143199 pamphlet).
  • the coupling reaction between the NHS activated carboxyl group and the temperature-responsive protein A is performed as follows, for example. First, citrate buffer (pH 3.0 to 6.2), acetate buffer (pH 3.6 to 5.6), phosphate buffered saline (PBS, pH 5.8 to 8.5), or carbonate buffer A 0.1-100 mg / mL temperature-responsive protein A solution is prepared using a buffer solution that does not contain an amino group component, such as a solution (pH 9.2 to 10.6). When this aqueous solution is brought into contact with the active ester surface, a functional group such as an amino group contained in the temperature-responsive protein A reacts with the active ester to form an amide bond.
  • citrate buffer pH 3.0 to 6.2
  • acetate buffer pH 3.6 to 5.6
  • phosphate buffered saline PBS, pH 5.8 to 8.5
  • carbonate buffer A 0.1-100 mg / mL temperature-responsive protein A solution is prepared using a buffer solution that does not contain an
  • temperature-responsive protein A is immobilized on the surface by covalent bonds.
  • the contact time may be set in the range of 2 minutes to 16 hours.
  • the washing solution is preferably a buffer solution containing about 0.5 mol / L of salt (NaCl) and about 0.1% of nonionic surfactant. This is because the temperature-responsive protein A that is physically adsorbed without being covalently bonded can be removed.
  • the unreacted carboxyl group or active ester is converted into a low molecular compound having an amino group and It is preferable to convert the carboxyl group or the active ester into a functional group having a lower reactivity by bonding. As a result, it is possible to prevent molecules such as impurities that are not subject to purification from being unintentionally immobilized on the surface of the carrier.
  • the functional group at the end of the temperature-responsive protein A fixing carrier is an active ester, this operation is preferably performed.
  • the operation of reacting a low molecular weight compound having an amino group with an active ester group may be particularly described as “blocking”.
  • the surface of the carrier after reacting the carboxyl group or the active ester with the low molecular weight compound is hydrophilic. This is because a hydrophilic surface generally has an effect of suppressing nonspecific adsorption of a biological substance.
  • Non-limiting examples of such low molecular weight compounds include ethanolamine, trishydroxymethylaminomethane, and diglycolamine (IUPAC name: 2- (2-aminoethoxy) ethanol).
  • reaction temperature may be set in the range of 4 to 37 ° C. and the reaction time in the range of 2 minutes to 16 hours.
  • the temperature-responsive protein A-immobilized carrier is stored at a low temperature of about 2-10 ° C. with a neutral solution in the pH range of 4-8 as a storage solution.
  • a neutral solution in the pH range of 4-8 as a storage solution.
  • 20% ethanol is preferable in consideration of antibacterial properties.
  • Temperature-responsive protein A has a characteristic that it can bind an antibody at a low temperature and can elute the antibody at a temperature higher than the temperature at the time of binding. It is preferable that the temperature at which the characteristics of the temperature-responsive protein A change in advance is confirmed, and the antibody is adsorbed and desorbed by changing the temperature so as to sandwich the temperature.
  • the temperature range in which the antibody is adsorbed to the temperature-responsive protein A is, for example, a low temperature range of 0 ° C. to 20 ° C., preferably 1 ° C. to 15 ° C., and most preferably 2 ° C. to 13 ° C.
  • the temperature at which the antibody is desorbed from the temperature-responsive protein A is, for example, a high temperature region of 20 ° C. or higher and 60 ° C. or lower, preferably 25 ° C. or higher and 50 ° C. or lower, and most preferably 30 ° C. or higher and 45 ° C. or lower.
  • Example 1 a bead-like cationic ion exchange carrier having a sulfonic acid group was synthesized by an atom transfer radical polymerization method.
  • N-isopropylacrylamide (IPAAm, manufactured by Wako Pure Chemical Industries, Ltd.) 18.40 g, GMA 0.231 g, butyl methacrylate (BMA, manufactured by Tokyo Chemical Industry Co., Ltd.) 1.217 g, copper chloride I ( 0.085 g of CuCl, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.012 g of copper chloride II (CuCl2, manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 42.8 mL of a 90% by volume isopropanol (IPA) aqueous solution. Nitrogen bubbling was performed for 30 minutes.
  • IPA isopropanol
  • the monomer solution and the copper catalyst are removed by immersing the reaction solution in a dialysis membrane (Spectra / po Dialyzation Membrane, MWCO1000, Spectrum Laboratories) and immersing in the order ethanol, 50 mmol / L-EDTA aqueous solution, and pure water. did.
  • the reaction solution was placed in a dialysis membrane and immersed in pure water to remove sodium sulfite and IPA, and the reaction solution was freeze-dried to obtain a copolymer.
  • the copolymerization ratio (composition) of the monomer unit having a strong cation exchange group with respect to N-isopropylacrylamide was calculated from the signal integrated value derived from the N-isopropylacrylamide unit and the signal integrated value derived from the sulfonic acid group.
  • the copolymerization ratio (composition) of the monomer unit having a strong cation exchange group with respect to N-isopropylacrylamide was 0.72 mol%. Further, it was confirmed by lithium ion exchange that the synthesized resin had a sulfonic acid group density of 31 mmol / L.
  • AE6F4-producing cells were provided by Associate Professor Yoshinori Katakura, graduate School of Agriculture, Kyushu University.
  • the AE6F4 antibody-producing cells were cultured with reference to literature (Abstracts of the Japanese Society for Biotechnology, 1994, Volume 65, page 65).
  • the culture solution containing AE6F4 antibody-producing cells was filtered using a filtration membrane (trade name BioOptimal (registered trademark) MF-SL, manufactured by Asahi Kasei Medical) to obtain a mixed solution (culture supernatant) containing impurities and antibodies. . Filtration was performed with reference to the instruction manual of the provider.
  • phosphate buffer 20 mmol / L sodium phosphate + 150 mmol / L NaCl (pH 8.0)
  • elution buffer 100 mmol / L sodium citrate ( 240 mL of pH 3.6)
  • the absorbance of the mixed solution 1 was measured using a size exclusion chromatography (SEC) apparatus under the following conditions.
  • FIG. 2 is an enlarged view of the peak in FIG.
  • the monomer peak is (3) and the aggregate peaks recovered in a shorter time are (1) and (2), respectively, the aggregates appearing in the peak of (1)
  • the content of the component is 0.67 mg, the content is 1.2%, the content of the aggregate component appearing at the peak of (2) is 0.95 mg, the content is 1.7%, (3)
  • the content of the antibody protein monomer appearing at the peak of 54.44 mg was 97.1%.
  • the total amount of antibody aggregates and monomers recovered was 56.06 mg (mixed solution 1).
  • the elution fraction (mixed solution 1) from the protein A column subjected to virus inactivation treatment is added to a column packed with cationic ion exchange carrier fat, and the antibody protein aggregate component (mixed solution 1) is added to the cationic ion exchange carrier.
  • a mixed solution containing an impurity) and a monomer component (target physiologically active substance) was brought into contact.
  • the amount of the eluted fraction added was 12 mL (4.7 mg / ml), the flow rate was 0.4 mL / min, and the temperature was 20 ° C.
  • the column packed with the temperature-responsive cationic ion exchange carrier was washed with an acetic acid buffer (15 mmol / L acetic acid buffer (pH 6.0)) at 20 ° C. flowing at a flow rate of 0.4 mL / min. 32 ml (1.6 mg / ml) solution was recovered in the flow-through process and the washing process.
  • the collected solution was subjected to size exclusion chromatography (SEC: Size Exclusion Chromatography). Also in this case, the graph (not shown) indicating the absorbance indicates that not only the antibody protein monomer but also the antibody protein aggregate component (impurities) are included. However, as shown in FIG. 5, the content of impurities was slight.
  • the mass ratio of the aggregate component and the monomer component contained in the mixed solution before the treatment with the cationic ion exchange carrier and the recovered solution after the treatment with the cationic ion exchange carrier is shown as the content rate.
  • the total amount of antibody protein (including the aggregate component and monomer component) contained in the protein A elution fraction was 100%, it was recovered by flowing through a column packed with a cationic ion exchange carrier. The total amount of the antibody protein (including the aggregate component and the monomer component) was shown as the antibody recovery rate.
  • the aggregate absorptivity is the total content of aggregate components appearing at the peaks of (1) and (2) after flowing through a column packed with a cationic ion exchange carrier, and packed with a cationic ion exchange carrier.
  • the percentage divided by the total content of aggregate components appearing at the peaks (1) and (2) before flowing through the column is subtracted from 1 and expressed as a percentage.
  • the monomer recovery rate is the monomer content after flowing through the column filled with the cationic ion exchange carrier, and the monomer content before flowing through the column packed with the cationic ion exchange carrier. The percentage divided by the quantity is shown.
  • Example 2 The same as in Example 1 except that the fraction eluted from protein A that had been subjected to virus inactivation treatment (same composition as in Example 1) was brought into contact with a cationic ion exchange carrier packed in a column at 25 ° C. and washed. Operated. The results are shown in FIG.
  • the content of the aggregate component 2 that appears at the peak of the mixed solution 2 (0.5) is 0.5%, and the content of the aggregate component that appears at the peak of (2) is 1.2%. 46% (5.5 mg / mL) of the antibody protein monomer content that appears in the peak of (3) is added, and the cation exchange resin packed in the column is contacted at 25 ° C. and washed. did. A 66 mL (3.6 mg / mL) solution was collected by flow-through and washing steps. The other operations were the same as in Example 2. The results are shown in FIG.
  • Example 4 a hollow fiber cation exchange membrane having a sulfonic acid group was synthesized by a radiation graft polymerization method.
  • Example 2 In the same manner as in Example 1, antibody protein purification using a protein A column and virus inactivation treatment were performed, and a mixed solution 3 was obtained in which the eluted fraction was buffer-exchanged with 15 mol / L acetate buffer (pH 6.0). .
  • the absorbance of the mixed solution 3 was measured using a size exclusion chromatography (SEC) apparatus under the following conditions.
  • SEC size exclusion chromatography
  • the monomer peak is (3) and the aggregate peaks recovered in a shorter time are (1) and (2)
  • the aggregate components appearing in the peak of (1) The content of 1.41 mg, the content rate is 1.9%
  • the content of the aggregate component appearing at the peak of (2) is 1.11 mg
  • the content rate is 1.5%
  • the content of the monomer of the antibody protein that appears at the peak was 71.65 g
  • the content was 96.6%.
  • the total amount of antibody aggregates and monomers recovered was 74.17 g.
  • the elution fraction (mixed solution 3) from the protein A column subjected to virus inactivation treatment is added to the modularized cation exchange membrane, and the antibody protein aggregate components (impurities) and monomer are added to the cation exchange membrane.
  • a mixed solution containing the component (target physiologically active substance) was brought into contact.
  • the amount of the eluted fraction added was 15 mL (4.9 mg / ml), the flow rate was 6.0 mL / min, and the temperature was 35 ° C. Subsequently, the modularized cation exchange membrane was washed with 35 ° C.
  • Example 5 in the aggregate removal step, the content ratio of the aggregate component appearing at the peak of the mixed solution 4 ((1) is 1.5%, and the content ratio of the aggregate component appearing at the peak of (2) is 0.
  • the content of the antibody protein monomer appearing at the peak of (3) was 97.6%), and the same operation as in Example 4 was performed except that the treatment was performed at 30 ° C.
  • the results are shown in FIG.
  • the temperature is lowered by using the hollow fiber cation exchange membrane described in Example 4. As it goes on, the aggregate removal performance decreases. Therefore, it is not suitable for use at room temperature.
  • Example 6 by radiation graft polymerization, N-isopropylacrylamide (5.380 g), glycidyl methacrylate (0.098 g), and butyl methacrylate (2.939 g) in a 50 volume% t-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution (500 mL).
  • the content of the aggregate component appearing at the peak of (1) is 2.1% and the content of the aggregate component appearing at the peak of (2) is used.
  • the ratio was 1.1%, and the same procedure as in Example 5 was performed except that the content of the antibody protein monomer appearing at the peak of (3) was 96.8%.
  • the results are shown in FIG.
  • Example 7 by radiation graft polymerization, 5.187 g of N-isopropylacrylamide, 0.292 g of glycidyl methacrylate, and 2.919 g of butyl methacrylate were added in an amount of 500 mL of 50 vol% t-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the content of the aggregate component appearing at the peak of (1) is 2.0%
  • the content of the aggregate component appearing at the peak of (2) is used.
  • the rate was 1.7%, and the same procedure as in Example 6 was performed except that the content of the antibody protein monomer appearing at the peak of (3) was 96.3%.
  • the results are shown in FIG.
  • Example 8 3.6 g of N-isopropylacrylamide, 0.6 g of glycidyl methacrylate, and 1.8 g of butyl methacrylate were added to 280 mL of a 50 vol% t-butyl alcohol (Wako Pure Chemical Industries, Ltd.) aqueous solution by radiation graft polymerization. Using 140 mL of the dissolved solution, it was reacted with 3.000 g (15 cm, 15 pieces) of polyethylene porous hollow fiber. Thereafter, a cation exchange membrane was synthesized by sulfonation and modularized with a membrane volume of 0.25 mL.
  • a 50 vol% t-butyl alcohol Wang Chemical Industries, Ltd.
  • the content rate of the aggregate component appearing at the peak of the mixed solution 7 ((1) is 4.0%, and the content rate of the aggregate component appearing at the peak of (2) is 2.8%.
  • 20 mL (5.1 mg / mL) of the antibody protein monomer content that appears at the peak of (3) was 93.2%.
  • the flow rate was 1.5 mL / min and the temperature was 25 ° C.
  • the modularized cation exchange membrane was washed with an acetic acid buffer (15 mmol / L acetic acid buffer (pH 6.0)) at 25 ° C. flowing at a flow rate of 1.5 mL / min.
  • a 27.5 ml (3.1 mg / ml) solution was recovered in the flow-through process and the washing process.
  • the other operations were the same as in Example 6. The results are shown in FIG.
  • Example 9 in the aggregate removal step, the content rate of the aggregate component appearing at the peak of the mixed solution 8 ((1) buffer-exchanged to 15 mmol / L Tris buffer (pH 7.0) is 2.3%.
  • the content of the aggregate component appearing at the peak of (2) is 2.4%, and the content of the antibody protein monomer appearing at the peak of (3) is 95.4%. / ML).
  • the flow rate was 1.5 mL / min and the temperature was 25 ° C.
  • the modularized cation exchange membrane was washed with a 25 ° C.
  • Tris buffer (15 mmol / L Tris buffer (pH 7.0)) flowing at a flow rate of 1.5 mL / min.
  • a 27.5 ml (2.9 mg / ml) solution was recovered in the flow-through and washing steps. The other operations were the same as in Example 8. The results are shown in FIG.
  • Example 10 in the aggregate removal step, the content rate of the aggregate component appearing at the peak of the mixed solution 9 ((1) buffer-exchanged to 15 mmol / L Tris buffer (pH 8.0) is 1.6%.
  • the content of the aggregate component appearing at the peak of (2) is 2.3%, and the content of the antibody protein monomer appearing at the peak of (3) is 96.1%) (20 mg, 4.8 mg). / ML).
  • the flow rate was 1.5 mL / min and the temperature was 25 ° C.
  • the modularized cation exchange membrane was washed with a 25 ° C.
  • Tris buffer (15 mmol / L Tris buffer (pH 8.0)) flowing at a flow rate of 1.5 mL / min.
  • a 27.5 ml (2.9 mg / ml) solution was recovered in the flow-through and washing steps. The other operations were the same as in Example 8. The results are shown in FIG.
  • Example 11 3.6 g of N-isopropylacrylamide, 1.2 g of glycidyl methacrylate, and 1.2 g of butyl methacrylate were added to 280 mL of a 50 vol% t-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution by radiation graft polymerization. Using 140 mL of the dissolved solution, it was reacted with 3.000 g (15 cm, 15 pieces) of polyethylene porous hollow fiber. Thereafter, a cation exchange membrane was synthesized by sulfonation and modularized with a membrane volume of 0.25 mL.
  • a 50 vol% t-butyl alcohol manufactured by Wako Pure Chemical Industries, Ltd.
  • the synthesized membrane had a sulfonic acid group density of 35 mmol / L.
  • the content of the aggregate component 10 (1.8) at the peak of (1) is 1.8%
  • the content of the aggregate component at (2) is 2.8%.
  • the content of the antibody protein monomer appearing at the peak of (3) was 95.4%.
  • the flow rate was 0.3 mL / min and the temperature was 25 ° C.
  • the modularized cation exchange membrane was washed with an acetic acid buffer (15 mmol / L acetic acid buffer (pH 6.0)) at 25 ° C. flowing at a flow rate of 0.3 mL / min.
  • a 32.5 ml (3.2 mg / ml) solution was recovered in the flow-through and washing steps. The other operations were the same as in Example 8. The results are shown in FIG.
  • Example 11 3.6 g of N-isopropylacrylamide, 1.3 g of glycidyl methacrylate, and 1.1 g of butyl methacrylate were added to 280 mL of a 50 vol% t-butyl alcohol (Wako Pure Chemical Industries, Ltd.) aqueous solution by radiation graft polymerization. Using 140 mL of the dissolved solution, it was reacted with 3.000 g (15 cm, 15 pieces) of polyethylene porous hollow fiber. Thereafter, a cation exchange membrane was synthesized by sulfonation and modularized with a membrane volume of 0.25 mL.
  • a 50 vol% t-butyl alcohol Wang Chemical Industries, Ltd.
  • the synthesized membrane had a sulfonic acid group density of 41 mmol / L.
  • the content ratio of the aggregate component 11 appearing at the peak of the mixed solution 11 (1.5) is 1.5%
  • the content ratio of the aggregate component appearing at the peak of (2) is 2.3%.
  • 25 mL (5.0 mg / mL) of the antibody protein monomer content that appears at the peak of (3) was 96.2%.
  • the flow rate was 0.3 mL / min and the temperature was 25 ° C.
  • the modularized cation exchange membrane was washed with an acetic acid buffer (15 mmol / L acetic acid buffer (pH 6.0)) at 25 ° C. flowing at a flow rate of 0.3 mL / min.
  • a 32.5 ml (3.1 mg / ml) solution was recovered in the flow-through process and the washing process.
  • the other operations were the same as in Example 8. The results are shown in FIG.
  • the content of the aggregate component appearing at the peak of (1) and the content of the aggregate component appearing at the peak of (2) are determined by the ion exchange chromatography carrier. It was possible to make it less than 50%. From this, it was shown that impurities can be adsorbed by 50% or more by mass ratio at 20 ° C., 25 ° C., 30 ° C., and 35 ° C. It was also shown that 70% or more of the antibody monomer can be recovered. Furthermore, it was shown that the ratio (content rate) of impurities (total content of aggregate component 1 and aggregate component 2) to the mass of the recovered solution was 2% or less.
  • the antibody protein monomer can be purified on an industrial scale by temperature change.

Abstract

 不純物と生理活性物質を含む混合溶液から、生理活性物質を精製する精製方法であって、基材と、基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、混合溶液を、担体を格納する容器に一定温度でフロースルーさせることによって、生理活性物質を回収する、生理活性物質を精製する方法。

Description

抗体タンパク質の精製方法
 本発明は、生体分子の精製技術に関し、抗体タンパク質の精製方法に関する。
 免疫グロブリン(抗体タンパク質)は、免疫反応を司る生理活性物質である。近年、医薬品、診断薬あるいは対応する抗原タンパク質の分離精製材料等の用途において、抗体タンパク質の利用価値が高まっている。抗体タンパク質は免疫した動物の血液あるいは抗体産生能を保有する細胞の細胞培養液又は動物の腹水培養液から取得される。但し、抗体タンパク質を含有する血液や培養液は、抗体タンパク質以外のタンパク質、又は細胞培養に用いた原料液に由来する複雑な夾雑成分等の不純物成分を包含する。そのため、不純物成分から抗体タンパク質を分離精製するには、煩雑で長時間を要する操作が通常必要である。
 液体クロマトグラフィーは、抗体タンパク質の分離精製に重要である。抗体タンパク質を分離するためのクロマトグラフィー手法として、ゲルろ過クロマトグラフィー、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、及び逆相クロマトグラフィー等があり、これらの手法を組み合わせることで抗体タンパク質が分離精製される。
 イオン交換クロマトグラフィーは、基材表面のイオン交換基を固定相として移動相中に存在する対イオンを可逆的に吸着することにより分離を行う方法である。基材の形状としては、ビーズや、平膜、中空糸等の膜などが採用されており、これらの基材にカチオン交換基又はアニオン交換基を結合したものが固体吸着剤(固定相)として市販されている。一般的に、カチオン交換基を有する固体吸着剤は、抗体タンパク質を主として吸着し、他の夾雑物の大半を素通りさせる特性を有するため、抗体タンパク質の濃縮分離に用いられている。
 カチオン交換基は、カルボキシル基等の弱カチオン交換基と、スルホン酸基等の強カチオン交換基と、に大別される。弱カチオン交換基を有する吸着剤は、移動相のpHが変化すると吸着剤表面の電荷が変化して、抗体タンパク質の結合容量が変動する欠点がある。そのため、弱カチオン交換基を有する吸着剤を抗体タンパク質の分離精製に用いた場合、分離の再現性が悪く、抗体タンパク質の回収率が低くなる可能性がある。一方、強カチオン交換基を有する吸着剤は、移動相のpHが変動しても吸着剤表面の電荷が変化しないため、抗体タンパク質の結合容量が変化しにくい。工業的な抗体タンパク質の分離精製プロセスでは、移動相のpHを一定に保つのが難しいにもかかわらず、一方では分離の再現性が厳しく要求されることから、強カチオン交換基を有する吸着剤が用いられている。
 従来のイオン交換基を有する吸着剤を用いた抗体タンパク質の精製方法では、移動相の塩濃度を高めることにより、抗体タンパク質と、吸着剤と、の静電的相互作用を弱くして、固定相に吸着させた抗体タンパク質を溶出させることが一般的に行われている。ここで、移動相の塩濃度が高いほど、抗体タンパク質の溶出が容易になる傾向にある。しかし、移動相の塩濃度が高くなると、タンパク質どうしの疎水性相互作用が高くなり、タンパク質の会合体や凝集体が生じやすくなる傾向にある。このように、抗体タンパク質の溶出の容易さと、凝集体の生じやすさとは、トレードオフの関係にある。そのため、抗体タンパク質の収率、濃度、及び溶出速度等、精製の際に要求される様々な条件を満たす移動相の塩濃度を設定することは困難である。
 そこで、従来のイオン交換基を有する吸着材の問題を解決すべく、固定相に吸着させた抗体タンパク質等の生理活性物質を溶出する際に、移動相の塩濃度を高めるのではなく、表面の有効イオン交換基密度を温度によって変化させ、生理活性物質を溶出することが可能である温度応答性吸着剤が提案されている。
 特許文献1では、固定相表面の有効荷電密度を温度変化によって変化させることが可能である、荷電を有する共重合体を含む充填剤、製造方法及びそれを用いた温度応答性クロマトグラフィー法が開示されている。特許文献2では、原子移動ラジカル重合法によって、基材表面に0~80℃の温度範囲内で水和力が変化するポリマーを高密度に固定化した温度応答性クロマトグラフィーの固定相が開示されている。特許文献3には、イソプロピルアルコールを溶媒として、原子移動ラジカル法により、荷電を有し、0~80℃の温度範囲内で水和力が変化するポリマーを成長反応させることを特徴とした温度応答性クロマトグラフィー担体の製造方法が開示されている。特許文献4では、水系移動相を含む特定の条件下で、生物学、医学、薬学等の分野において有用な高分子量の生理活性物質を分離できる、固体表面に0~80℃の温度範囲内で水和力が変化する荷電ポリマーを固定した液体クロマトグラフィー用担体の製造方法が開示されている。非特許文献1では、原子移動ラジカル重合法により調製された、カルボキシル基を有する温度応答性クロマトグラフィー担体及びその製造法が開示されている。その中で、原子移動ラジカル重合法に用いるモノマー組成において、リゾチームの分離に最適化されたモノマー組成が開示されている。
国際公開第99/061904号 特開2007-69193号公報 特開2009-85933号公報 国際公開第01/074482号
Polymer Preprints,Japan Vol.58,No.2,3T1-13(2009)
 しかし、上述した文献は、生理活性物質を効率的に精製する方法を明示してはおらず、例えば、工業的な規模における生理活性物質の分離精製プロセスには適さない。そこで、本発明は、生理活性物質を効率的に精製することが可能な生理活性物質の精製方法を提供することを目的とする。
 本発明者らは上記課題を解決するために、種々の角度から検討を加えて、研究開発を行った。その結果、本発明者らは、特定の温度において、不純物と、生理活性物質と、を含む混合溶液を、基材と、前記基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体、あるいは、温度応答性イオン交換クロマトグラフィー担体に接触させることで、不純物をクロマトグラフィー担体に選択的に吸着させ、目的の生理活性物質を高純度に精製できることを見出した。
 係る本発明者らの知見に基づく本発明の態様は、不純物と生理活性物質を含む混合溶液から、生理活性物質を精製する精製方法であって、基材と、基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、混合溶液を、担体を格納する容器に一定温度でフロースルーさせることによって、生理活性物質を回収する、生理活性物質を精製する方法である。
 本発明の別の態様は、不純物と生理活性物質を含む混合溶液から、生理活性物質を精製する精製方法であって、少なくとも1つの温度応答性イオン交換クロマトグラフィー担体を使用し、混合溶液を、担体を格納する容器に一定温度でフロースルーさせることによって、生理活性物質を回収する、生理活性物質を精製する方法である。
 本発明のまた別の態様は、不純物と生理活性物質を含む混合溶液から、不純物を除去する方法であって、基材と、基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、混合溶液を、担体を格納する容器に一定温度でフロースルーさせることによって、不純物を除去する方法である。
 本発明のさらに別の態様は、不純物と生理活性物質を含む混合溶液から、不純物を除去する方法であって、少なくとも1つの温度応答性イオン交換クロマトグラフィー担体を使用し、混合溶液を、担体を格納する容器に一定温度でフロースルーさせることによって、不純物を除去する方法である。
 本発明は、従来技術からは全く予想し得なかったもので、従来技術には全くなかった新規な抗体の分離システムへの発展が期待される。
 本発明に係る生理活性物質の精製方法によれば、生理活性物質を効率的に精製することが可能となる。特に、生理活性物質の失活を招く低pH条件や高温条件に晒すことなく、生理活性物質を効率的に精製し、また、不純物を効率的に除去することを可能としたものである。
実施例1に係るプロテインAカラムからの溶出画分をサイズ排除クロマトグラフィーにかけた際の吸光度のグラフである。 図1のグラフの拡大図である。 実施例3に係るプロテインカラムからの溶出画分をサイズ排除クロマトグラフィーにかけた際の吸光度のグラフである。 図3のグラフの拡大図である。 実施例1ないし12の結果を示す表である。
 以下、本発明の好適な実施の形態(以下において、「実施の形態」という。)について詳細に説明する。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部材の組み合わせ等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
 実施の形態に係る生理活性物質の精製方法は、不純物と生理活性物質を含む混合溶液から、生理活性物質を精製する精製方法であって、基材と、基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、特定の温度において、混合溶液を、担体を格納する容器にフロースルーさせることによって、生理活性物質を回収する、精製方法である。上記特定の温度とは、例えば、担体に不純物を質量分率で50%以上吸着させられ、かつ、生理活性物質を質量分率で70%以上回収できる温度であることが好ましい。
 以下において、イオン交換クロマトグラフィー担体は、イオン交換クロマトグラフィーの固体吸着剤、あるいはイオン交換クロマトグラフィーの固定相とも、表現される。例えば、固定相表面の有効荷電密度を温度変化によって変化させることが可能である、温度応答性カチオン性イオン交換担体が、イオン交換クロマトグラフィー担体として使用される。
 生理活性物質とは、例えば、抗体タンパク質の単量体成分である。不純物とは、例えば、抗体タンパク質の二量体以上の凝集体成分である。
 担体に不純物を質量分率で50%以上吸着させられる温度とは、イオン交換クロマトグラフィー担体を格納する容器に加えられる前の混合溶液に含まれていた不純物の全質量に対し、担体に吸着した不純物の質量の比が50%以上となるような温度である。ここで、温度が高くなるほど、イオン交換クロマトグラフィー担体に吸着する、抗体タンパク質の二量体以上の凝集体成分等の不純物の量は増える傾向にある。回収した溶液の質量に対する不純物の質量の割合は、例えば2%以下、好ましくは1%以下となる。
 また、生理活性物質を質量分率で70%以上回収できる温度とは、イオン交換クロマトグラフィー担体を格納する容器に加えられる前の混合溶液に含まれていた生理活性物質の全質量に対し、担体を格納する容器を通過した溶液に含まれる生理活性物質の質量の比(以下、「回収率」ともいう。)が70%以上となるような温度である。ここで、温度が高くなるほど、抗体タンパク質の単量体成分等の生理活性物質の回収率は低くなる傾向にある。
 担体を格納する容器に不純物と生理活性物質の混合溶液をフロースルーするときの設定温度としては、精製目的の生理活性物質の担体に対する吸着性が低く、不純物の担体に対する吸着性が高い温度を選択する。抗体タンパク質の単量体がカチオン性イオン交換担体に吸着しにくい傾向にあり、不純物が吸着しやすい傾向にある温度領域とは、例えば5℃以上60℃以下、好ましくは10℃以上50℃以下、より好ましくは15℃以上40℃以下、さらに好ましくは20℃以上35℃以下、特に好ましくは25℃である。
 ここで、目的の生理活性物質の回収率を重視する場合は温度を下げ、純度を重視するときは温度を上げるといったように、バッファー等を変えることなく、温度を調節することにより、目的に応じた回収物が得られる。
 更に、目的の生理活性物質の特性により、精製目的の生理活性物質と不純物の吸着度合が異なる場合があるが、そのような場合でも、バッファー等を変えることなく、温度を調節することにより、目的の生理活性物質が回収物として得られる。
 なお、生理活性物質の精製を行う現場では、20℃以上35℃以下の室温条件で用いることができるクロマトグラフィー担体が望まれている。その理由としては、高温条件に晒すことで生理活性物質が変性し活性が損なわれうることがわかっているからである。また、工業化する際に、温度を精度よく均一に制御することが困難であるから、一定温度の室温で利用できるクロマトグラフィー担体の需要は高い。
 生理活性物質の一例である抗体タンパク質は、生化学における一般的な定義のとおり、脊椎動物の感染防禦機構としてBリンパ球が産生する糖タンパク質分子(ガンマグロブリン又は免疫グロブリンともいう)である。例えば、実施の形態に係る方法で精製される抗体タンパク質は、ヒトの医薬品として使用され、投与対象であるヒトの体内にある抗体タンパク質と実質的に同一の構造を有する。
 抗体タンパク質は、ヒト抗体タンパク質であってもよく、ヒト以外のウシ及びマウス等の哺乳動物由来抗体タンパク質であってもよい。あるいは、抗体タンパク質は、ヒトIgGとのキメラ抗体タンパク質、及びヒト化抗体タンパク質であってもよい。ヒトIgGとのキメラ抗体タンパク質とは、可変領域がマウスなどのヒト以外の生物由来であるが、その他の定常領域がヒト由来の免疫グロブリンに置換された抗体タンパク質である。また、ヒト化抗体タンパク質とは、可変領域のうち、相補性決定領域(complementarity-determining region: CDR)がヒト以外の生物由来であるが、その他のフレームワーク領域(framework region: FR)がヒト由来である抗体タンパク質である。ヒト化抗体タンパク質は、キメラ抗体タンパク質よりも免疫原性がさらに低減される。
 実施の形態に係る方法の精製対象の一例である抗体タンパク質のクラス(アイソタイプ)及びサブクラスは特に限定されない。例えば、抗体タンパク質は、定常領域の構造の違いにより、IgG,IgA,IgM,IgD,及びIgEの5種類のクラスに分類される。しかし、実施の形態に係る方法が精製対象とする抗体タンパク質は、5種類のクラスの何れであってもよい。また、ヒト抗体タンパク質においては、IgGにはIgG1~IgG4の4つのサブクラスがあり、IgAにはIgA1とIgA2の2つのサブクラスがある。しかし、実施の形態に係る方法が精製対象とする抗体タンパク質のサブクラスは、いずれであってもよい。なお、Fc領域にタンパク質を結合したFc融合タンパク質等の抗体関連タンパク質も、実施の形態に係る方法が精製対象とする抗体タンパク質に含まれ得る。
 さらに、抗体タンパク質は、由来によっても分類することができる。しかし、実施の形態に係る方法が精製対象とする抗体タンパク質は、天然のヒト抗体タンパク質、遺伝子組換え技術により製造された組換えヒト抗体タンパク質、モノクローナル抗体タンパク質、及びポリクローナル抗体タンパク質の何れであってもよい。これらの抗体タンパク質の中でも、実施の形態に係る方法が精製対象とする抗体タンパク質としては、抗体医薬としての需要や重要性の観点から、ヒトIgGが好適であるが、これに限定されない。
 実施の形態に係る精製方法で用いられる、基材と、基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体は、カチオン性イオン交換基を含むことが好ましい。例えば、実施の形態に係るカチオン性イオン交換担体は、カチオン性イオン交換基を有するモノマー及び/又はカチオン性イオン交換基導入前駆体モノマーと、N-イソプロピルアクリルアミドモノマーと、を含むモノマー組成物を、表面リビングラジカル重合法及び放射線グラフト重合法等の重合法によって基材表面に重合して形成される。 
 N-イソプロピルアクリルアミドの存在は熱分解ガスクロマトグラフ質量分析法(GC/MS)により特定できる。N-イソプロピルアクリルアミドの単独重合体を熱分解GC/MSにより解析すると、イソプロピルアミン部位や、イソプロピルイソシアネート、N-イソプロピルアクリルアミドのモノマー部位が測定できる。N-イソプロピルアクリルアミドの単独重合体の解析結果と、対象のイオン交換クロマトグラフィー担体の解析結果を比較することにより、N-イソプロピルアクリルアミドがモノマー単位として含まれているかどうか判断できる。他のモノマー等と、N-イソプロピルアクリルアミド由来のピークが重なる時は、カラムの長さを変えたり、カラム自体を変えたりすることにより、解析条件を変え、対応することが可能である。
 実施の形態に係る温度応答性カチオン性イオン交換担体を備えるイオン交換クロマトグラフィーの固体吸着剤は、例えば基材と、基材表面に固定された温度応答性共重合体と、を含む。共重合体は、少なくともカチオン性イオン交換基を有する。例えば、実施の形態に係る温度応答性カチオン性イオン交換担体は、カチオン性イオン交換基を有するモノマー及び/又はカチオン性イオン交換基導入前駆体モノマーと、重合後に温度応答性を有するモノマーと、を含むモノマー組成物を、表面リビングラジカル重合法及び放射線グラフト重合法等の重合法によって基材表面に重合して形成される。
 重合後に温度応答性を有するモノマーとは、重合後、0~80℃の温度範囲内で水和力が変化するポリマーになるもののことであり、0~80℃の範囲内に下限臨界溶解温度(LCST)を有するポリマー、および、上限臨界溶解温度(UCST)を有するポリマーになるものが挙げられる。それらのホモポリマー、コポリマー、又は混合物のいずれであっても良い。
 実施の形態で使用する基材の形状は、特に限定されないが、例えばビーズ状、及び膜状でありうる。特に、膜状であれば圧上昇が抑えられる傾向にあり、処理速度が向上する傾向にある。また、膜状であれば、強制的に全ての処理液を担体の細孔を通過させるため、流速による不純物除去能力の低下が小さいという観点からも、処理速度の向上が望める。
 基材の形状がビーズ状の場合、さまざまな粒径のビーズが入手可能である。ビーズ状の基材の粒径は、特に限定されるものではないが、例えば1~300μmであり、好ましくは10~200μmであり、さらに好ましくは20~150μmである。粒径が1μm以下であると、当該担体が充填されるカラム内でビーズの圧密化が起きやすいために、カラムに溶液を高速で通すことが困難となる傾向にある。また粒径が300μm以上であると、ビーズ間の隙間が大きくなり、抗体タンパク質を当該担体に吸着させる際に、溶液の漏れが発生する傾向にある。
 ビーズ状の基材の材料は、特に限定されないが、ガラス、シリカ、ポリスチレン樹脂、メタクリル樹脂、架橋アガロース、架橋デキストラン、架橋ポリビニルアルコール、及び架橋セルロースなどが使用できる。
 基材の形状が膜状の場合、平板状及び中空糸状が挙げられるが、操作性の観点から中空糸状が好ましい。
 膜状の基材の材料は、特に限定されないが、機械的性質保持のために、ポリオレフィン系重合体から構成されていることが好ましい。ポリオレフィン系重合体としては、例えば、エチレン、プロピレン、ブチレン及びフッ化ビニリデンなどのオレフィン単独重合体、該オレフィンの2種以上の共重合体、又は1種もしくは2種以上のオレフィンと、パーハロゲン化オレフィンと、の共重合体などが挙げられる。パーハロゲン化オレフィンとしては、テトラフルオロエチレン及び/又はクロロトリフルオロエチレンなどが挙げられる。これらの中でも、機械的強度に優れ、かつタンパク質などの夾雑物の高い吸着容量が得られる点で、ポリエチレン又はポリフッ化ビニリデンが好ましく、ポリエチレンがより好ましい。
 実施の形態で使用する基材は、例えば複数の細孔を有する。細孔径は、特に限定されないが、例えば5~1000nmであり、好ましくは10~700nmであり、さらに好ましくは20~500nmである。細孔径が5nm以下であると、分離できる抗体タンパク質の分子量が低くなる傾向にある。また細孔径が1000nm以上であると、基材の表面積が少なくなり、抗体タンパク質の結合容量が小さくなる傾向にある。
 実施の形態では、基材にカチオン交換基を有するポリマーが固定される。その固定方法としては、基材表面に原子移動ラジカル重合開始剤を固定し、その開始剤から触媒の存在下で温度応答性ポリマーを成長反応させる「原子移動ラジカル法」や、基材に放射線を照射してラジカルを生成し、生成したラジカルを起点としてポリマーを成長反応させる「放射線グラフト重合法」等があるが、特に限定されない。他の固定方法としては、表面リビングラジカル重合法である「原子移動ラジカル重合法」がある。「原子移動ラジカル重合法」は、基材表面にポリマーを高密度に固定することができるため、好適に用いられる。
 ポリマーが「原子移動ラジカル重合法」で基材表面に固定される場合、その際に使用する開始剤は特に限定されるものではないが、基材が水酸基を有している場合、例えば、1-トリクロロシリル-2-(m,p-クロロメチルフェニル)エタン、2-(4-クロロスルホニルフェニル)エチルトリメトキシシラン、(3-(2-ブロモイソブチリル)プロピル)ジメチルエトキシシラン、及び2-ブロモイソ酪酸ブロミドなどが挙げられる。この開始剤よりポリマー鎖を成長させる。その際の触媒としては特に限定されるものでないが、ハロゲン化銅(CuIX)としてCuICl、CuIBr等を挙げることができる。また、そのハロゲン化銅に対するリガンド錯体も特に限定されるものではないが、トリス(2-(ジメチルアミノ)エチル)アミン(Me6TREN)、N,N,N´´,N´´-ペンタメチルジエチレントリアミン(PMDETA)、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラアミン(HMTETA)、1,4,8,11-テトラメチル 1,4,8,11-アザシクロテトラデカン(Me4Cyclam)、及びビピリジン等が挙げられる。
 ポリマーが「放射線グラフト重合法」で基材表面に固定される場合、基材にラジカルを生成させるためにはいかなる手段も採用しうるが、基材に電離性放射線を照射すると、基材全体に均一なラジカルが生成するため、好適である。電離性放射線の種類としては、γ線、電子線、β線、及び中性子線等が利用できるが、工業規模での実施には電子線又はγ線が好ましい。電離性放射線はコバルト60、ストロンチウム90、及びセシウム137などの放射性同位体から、又はX線撮影装置、電子線加速器及び紫外線照射装置等により得られる。
 電離性放射線の照射線量は、1kGy以上1000kGy以下が好ましく、より好ましくは2kGy以上500kGy以下、さらに好ましくは5kGy以上200kGy以下である。照射線量が1kGy未満では、ラジカルが均一に生成しにくくなる傾向にある。また、照射線量が1000kGyを超えると、基材の物理的強度の低下を引き起こす傾向にある。
 電離性放射線の照射によるグラフト重合法には、一般に基材にラジカルを生成した後、次いでラジカルを反応性化合物と接触させる前照射法と、膜を反応性化合物と接触させた状態で基材にラジカルを生成させる同時照射法と、に大別される。実施の形態においては、いかなる方法も適用しうるが、オリゴマーの生成が少ない前照射法が好ましい。
 実施の形態において重合時に使用する溶媒は、反応性化合物を均一溶解できるものであれば特に限定されない。このような溶媒として、例えば、エタノールやイソプロパノール、t-ブチルアルコール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2-ブタノン等のケトン類、水、又はそれらの混合物等が挙げられる。
 例えば、基材表面に固定されるポリマーは、N-イソプロピルアクリルアミドを有する。ポリ(N-イソプロピルアクリルアミド)は32度に下限臨界温度を有することが知られている。N-イソプロピルアクリルアミドを有するポリマーを基材表面に導入した固体吸着剤は、臨界温度で親水性/疎水性の表面物性を大きく変化させる。そのため、N-イソプロピルアクリルアミドを有するポリマーをクロマトグラフィーの充填剤の表面にグラフトもしくはコーティングして固体吸着剤とすることにより、固体吸着剤が抗体タンパク質を保持する力を温度によって変えることが可能となる。その結果、溶出液の組成を変化させずに、固体吸着剤の保持挙動を温度によって制御することができるようになる。
 下限臨界温度を32℃以上にするためには、イソプロピルアクリルアミドよりも親水性のモノマーであるアクリルアミド、メタクリル酸、アクリル酸、ジメチルアクリルアミド、及びビニルピロリドンなどを、親水性のコモノマーとしてN-イソプロピルアクリルアミドと共重合させることによって調整することが可能である。
 また、下限臨界温度を32℃以下にしたいときは、疎水性モノマーであるスチレン、アルキルメタクリレート、アルキルアクリレートなどを、疎水性のコモノマーとしてN-イソプロピルアクリルアミドと共重合させることによって調整することが可能である。
 基材が中空糸状である場合、フロースルーでの処理温度が低いと不純物除去性能が低下する傾向にあり、精製可能な抗体の量を表す抗体処理量が低下する傾向にある。高温で処理すると抗体処理量が増加するが、高温では抗体が凝集しやすい傾向にある。そのため、温度応答性ポリマーを重合する際には、疎水性モノマーを共重合させ、下限臨界温度を下げることが望ましい。ここで、全モノマーに対する疎水性モノマーの割合は、処理温度低下の観点から例えば2%以上であり、好ましくは5%以上であり、より好ましくは10%以上であり、更に好ましくは20%以上である。
 例えば、基材表面に固定されるポリマーは、カチオン交換基として、スルホン酸基等の強カチオン交換基を有する。強カチオン交換基を与える方法は特に限定されないが、第1の方法として、基材表面に固定されるポリマー鎖を合成する際、強カチオン交換基を有するモノマーを含めて共重合する方法が挙げられる。スルホン酸基を有するモノマー単位の例として、スルホン酸を有するポリマーの構成単位である(メタ)アクリルアミドアルキルスルホン酸、ビニルスルホン酸、アクリルアミドt-ブチルスルホン酸、及びスチレンスルホン酸等が挙げられる。
 例えば、共重合体のモノマー単位の少なくとも一部がビニルスルホン酸等のスルホン酸基を有するビニルモノマー由来である場合、スルホン酸基が、リンカーを介さず、主鎖に結合する。そのため、リンカーと、抗体タンパク質と、の疎水性相互作用が生じないため、抗体タンパク質が基材表面に吸着されにくい傾向にある。なお、強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部は、R1、R2、R3のそれぞれをH又はMeとして、下記化学式(1)でも表すことができる。
 -CR12-CR3(-SO3H)-   ・・・(1)
 実施の形態において、基材表面に固定されるポリマーに強カチオン交換基を与える第2の方法として、「強カチオン交換基導入前駆体」を有するモノマーを含めて共重合した後、前駆体をスルホン酸基に変換する方法が挙げられる。なお、「強カチオン交換基導入前駆体」とは、「強カチオン交換基の前駆体」を含みうる。また、「強カチオン交換基の前駆体」とは、例えば強カチオン交換基に保護基がついたものである。スルホン酸基の前駆体を有するモノマーとして、フェニルビニルスルホネート等が挙げられるが、これらに限定されるものではない。
 実施の形態において、基材表面に固定されるポリマーに強カチオン交換基を与える第3の方法としては、強カチオン交換基導入前駆体モノマーとして強カチオン交換基を付与しうる官能基を有するモノマーを含めて共重合した後、強カチオン交換基を付与しうる官能基をスルホン酸基に変換する方法が挙げられる。強カチオン交換基を付与しうる官能基を有するモノマーとして、スチレン及びグリシジルメタクリレート等が挙げられる。強カチオン交換基を有するモノマーを表面リビングラジカル重合法により重合する場合、十分な重合速度が得られない場合が多いが、グリシジルメタクリレート等の少なくとも一部がメタクリル酸誘導体又はアクリル酸誘導体である強カチオン交換基導入前駆体モノマーを用いることで、十分な重合速度を得ることができる。
 また、強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部がメタクリル酸誘導体又はアクリル酸誘導体であることにより、基材あるいは共重合体の他の部分と、凝集体等の不純物と、の疎水性相互作用を増大させ、凝集体等の不純物の吸着量を増大させることが可能になりうる。
 さらに、強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部がメタクリル酸誘導体又はアクリル酸誘導体であることにより、強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部は、下記化学式(2)又は(3)で示される基を有する。
 -CH(-OH)-CH2-SO3H   ・・・(2)
 -CH(-SO3H)-CH2-OH   ・・・(3)
 上記化学式(2)のモノマー単位のスルホン酸基は、少なくとも-CH(-OH)-CH2-を含むリンカーを介して、主鎖に結合している。また、上記化学式(3)のモノマー単位のスルホン酸基は、少なくとも-CH-を含むリンカーを介して、主鎖に結合している。リンカーにより立体障害が減るため、凝集体等の不純物が、スルホン酸基にすばやく結合することが可能になりうる。
 実施の形態においては、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー及び/又は強カチオン交換基導入前駆体モノマーの比率が、0.01~500.00mol%であるモノマー組成物を、表面グラフト重合法によって重合する。これにより、共重合体が、強カチオン交換基を、N-イソプロピルアクリルアミドに対してモノマー換算で0.01~500.00mol%含有する。上記比率は、好ましくは0.1~400.0mol%、より好ましくは1~300.0mol%、さらに好ましくは1.5~200.0mol%、最も好ましくは4~150mol%である。上記比率が500.00mol%を超えると、抗体タンパク質の吸着量が多くなり、抗体タンパク質の回収率が下がる傾向にある。一方、上記比率が0.01mol%未満では、強カチオン交換基導入量が少なすぎるため、固体吸着剤への凝集体等の不純物の吸着量自体が少なくなってしまう傾向にある。
 また、共重合体中のN-イソプロピルアクリルアミドの質量割合は、1%~99%であることが望ましく、好ましくは、10%~90%、より好ましくは、20%~80%、更に好ましくは30~70%である。N-イソプロピルアクリルアミドの割合が少ないと、温度応答性が小さくなりすぎ、温度の調整により、回収率や回収抗体の純度のバランスを調整することが出来なくなる傾向にある。また、N-イソプロピルアクリルアミドの割合が多いと、温度応答性が強く、温度に敏感になりすぎ、操作しにくくなる傾向にある。20%~80%、さらに、30~70%以下であれば、温度制御を必要とせず、室温で、効率的に凝集体を除去できる傾向にある。
 また、抗体精製に使用した後のアルカリ再生に対する耐性が増す傾向にあることから、カチオン交換体のスルホン酸基密度は30mmol/L以上であることが望ましい。
 実施の形態おいて、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー単位の共重合比率(組成)は、基材表面に固定された共重合体を分析することによって定量することが可能である。共重合比率の分析には、元素分析やNMR等の様々な分析手法を用いることが可能である。共重合体を基材から単離した後に共重合比率を分析することは、分析に与える基材の影響を排除することができるため、分析精度の観点から好ましい。共重合体を基材から単離出来ない場合は、溶液中で基材を用いずに共重合体を重合することによって、共重合比率の分析に用いる共重合体を得ることができる。
 基材表面に固定されているポリマーは温度を変えることで水和、脱水和を起こすものであり、その温度域は、例えば0℃~80℃である。80℃を越えると移動相が水であるので蒸発等が生じ、作業性が悪くなる傾向にある。また、0℃より低いと移動相が凍結する傾向にある。
 実施の形態によって得られる固体吸着剤は、通常の液体クロマトグラフィー装置のカラムに格納されて、液体クロマトグラフィーシステムとして利用される。その際、固体吸着剤への温度の負荷方法は特に限定されないが、例えば固体吸着剤を所定の温度にしたアルミブロック、水浴、及び空気層に接触させるか、あるいは固体吸着剤をジャケットなどに装着すること等が挙げられる。
 実施の形態に係る固体吸着剤を用いて抗体タンパク質を精製する際には、1つの温度領域で固体吸着剤に目的とする抗体タンパク質の単量体成分を通過させ、凝集体成分を吸着させることで、抗体タンパク質の単量体成分のみを実質的に溶出させる、フロースルー(FT)法が用いられる。固体吸着剤に与えられる抗体タンパク質の量は、固体吸着剤が不純物を吸着しうる量を超えていてもよく、超えていなくてもよい。抗体タンパク質の凝集体は、単量体よりも荷電量が多いため、イオン交換樹脂との結合が、単量体よりも強くなる傾向にある。さらに、凝集体は、単量体よりも疎水性が強いため、固体吸着剤の疎水性部分と相互作用(疎水性相互作用)し、固体吸着剤との結合が強くなる傾向にある。
 実施の形態に係るクロマトグラフィーの移動相としては、中性の緩衝液を利用すればよく、有機溶媒を必要としないものである。ここで、緩衝液とは無機塩類を含む水溶液であって、具体的には、リン酸緩衝液、トリス緩衝液、及び酢酸緩衝液等が挙げられるが、通常利用される緩衝液であれば特に限定されるものではない。その無機塩類の濃度は1~50mmol/Lがよく、好ましくは3~40mmol/Lがよく、さらに好ましくは5~30mmol/Lがよい。
 緩衝液における無機塩類の濃度が1mmol/Lより低いと、溶質である抗体タンパク質の活性を損ねる傾向にある。さらに、緩衝液における無機塩類の濃度が1mmol/Lより低いと、温度応答性吸着剤表面のイオン交換基の解離度が高くなり、温度応答性吸着剤表面へ抗体タンパク質が強固に吸着してしまい、抗体タンパク質の回収率が低くなる傾向にある。
 また、緩衝液における無機塩類の濃度が50mmol/Lより高いと、吸着剤表面のイオン交換基の解離度が低くなるため、吸着剤表面が凝集体等の不純物を保持することが困難となる傾向にある。そのため、凝集体成分から、抗体タンパク質を効率的に分離することが困難となる傾向にある。無機塩類の濃度を電気伝導度という尺度で表すと、好ましくは0.5~20mS/cmであることが好ましい。より好ましくは0.5mS/cm~10mS/cm、さらに好ましくは0.5mS/cm~5mS/cmである。
 緩衝液の水素イオン濃度は、例えばpH3.0~9.0であり、好ましくはpH4.5~8.5であり、さらに好ましくはpH5.0~8.0、特に好ましくはpH5.0~7.5である。緩衝液のpHが9.0より高くなると、抗体タンパク質同士の静電反発が小さくなり、凝集しやすい傾向にある。また、pHが3.0より低くなると、抗体タンパク質の変性が起こり、活性の低下や、凝集体の生成等の品質低下が引き起こされる傾向にある。
 混合溶液をフロースルーさせる時の流速は、例えば、イオン交換クロマトグラフィー担体の体積の0.1倍の体積/分以上、担体の体積の30倍の体積/分以下、好ましくは、イオン交換クロマトグラフィー担体の体積の1倍の体積/分以上、担体の体積の10倍の体積/分以下である。基材が中空糸状の場合、処理効率が高いため高流速が可能となる。しかし、担体の体積の30倍の体積/分を超えると、不純物除去性が低下する傾向にある。一方、基材の形状がビーズ状の場合は、特に、担体の体積の0.1倍の体積/分以上3倍の体積/分以下、0.1倍の体積/分以上2倍の体積/分以下、0.1倍の体積/分以上1倍の体積/分以下が好ましい。これは、3倍の体積/分の流速を超えると、抗体溶液がビーズの間を素通りし、不純物除去性が低下する傾向があるためである。
 以上に示してきた実施の形態に係るカチオン性イオン交換担体に、担体に不純物を質量分率で50%以上吸着させられ、かつ、生理活性物質を質量分率で70%以上回収できる温度で抗体タンパク質の凝集体を吸着させ、抗体タンパク質の単量体をカチオン性イオン交換担体から回収すると、抗体タンパク質の凝集体の生成を抑制しつつ、効率的に抗体タンパク質の単量体を精製可能である。そのため、実施の形態に係る抗体タンパク質の精製方法によれば、医薬品等に利用できる極めて有用な抗体タンパク質を効率的に精製可能である。
 さらに、本発明者らは、イオン交換クロマトグラフィー担体で生理活性物質を精製する前に、アフィニティークロマトグラフィーで不純物と生理活性物質を含む混合溶液を精製することにより、不純物をより少なくし、より効果的にイオンクロマトグラフィー担体による精製を行うことができることを見出した。この方法によれば、抗体と担体の接触時間を短くすることができ、さらに精製した抗体をすぐに適温にすることができるため、抗体の変性を抑制し、抗体を効率的に精製できることを本発明者らは見出した。アフィニティークロマトグラフィーには、プロテインA担体、酸溶出型アフィニティークロマトグラフィー担体、ないしは温度応答性アフィニティークロマトグラフィー担体を使用可能である。
 本実施形態において、温度応答性アフィニティークロマトグラフィー担体が温度に依存して抗体との結合性が変化するよう変異されたプロテインAである温度応答性プロテインAを備える場合、温度応答性プロテインAは、特許文献(WO2008/143199号パンフレット)を参考に調製することができる。
 本実施形態において、NHS活性化されたカルボキシル基と、温度応答性プロテインAと、のカップリング反応は、例えば以下のように行われる。まず、クエン酸緩衝液(pH3.0~6.2)、酢酸緩衝液(pH3.6~5.6)、リン酸緩衝生理食塩水(PBS、pH5.8~8.5)、又は炭酸緩衝液(pH9.2~10.6)などのアミノ基成分を含まない緩衝液を用いて、0.1~100mg/mLの温度応答性プロテインA溶液を準備する。この水溶液を活性エステル表面と接触させると、温度応答性プロテインAに含まれるアミノ基等の官能基が活性エステルと反応し、アミド結合が形成される。その結果、温度応答性プロテインAは共有結合によって表面に固定化される。ここで、接触時間は2分~16時間の範囲で設定するとよい。温度応答性プロテインAを固定化した後は、適当な洗浄液で担体を洗浄することが望ましい。このとき、洗浄液は0.5mol/L程度の塩(NaCl)及び0.1%程度の非イオン性界面活性剤を含む緩衝液であることが望ましい。これによって、共有結合せずに物理吸着しているだけの温度応答性プロテインAを取り除くことができるからである。
 温度応答性プロテインAを担体表面に固定化した後(好ましくは更に温度応答性プロテインA固定化担体を洗浄した後)は、未反応のカルボキシル基又は活性エステルを、アミノ基を有する低分子化合物と結合させることにより、当該カルボキシル基又は活性エステルを反応性のより低い官能基に変換させることが好ましい。これによって、不純物等の精製対象外の分子が不本意に担体表面に固定化されるのを防ぐことができる。特に温度応答性プロテインA固定用担体の末端の官能基が活性エステルである場合、この操作がされることが好ましい。
 ここでは、活性エステル基にアミノ基を有する低分子化合物を反応させる操作を特に「ブロッキング」と記述することがある。ただし、カルボキシル基又は活性エステルを低分子化合物と反応させた後の担体表面は、親水性であることが望ましい。なぜなら、親水性の表面は一般に生体関連物質の非特異的吸着を抑制する効果をもつからである。このためにはアミノ基を含有する低分子化合物として、アミノ基以外に親水性基を更に有する低分子化合物を使用することが好ましい。このような低分子化合物の非限定的な例としては、エタノールアミン、トリスヒドロキシメチルアミノメタン、及びジグリコールアミン(IUPAC名:2-(2-アミノエトキシ)エタノール)が挙げられる。これらの低分子化合物はPBSなどの緩衝液に10~1,000mmol/Lとなるように溶解し、溶解液を温度応答性プロテインAを固定化した担体と接触させる。例えば、反応温度は4~37℃、反応時間は2分~16時間の範囲で設定するとよい。
 温度応答性プロテインA固定化担体は、pH4~8の範囲の中性溶液を保存液とし、2~10℃程度の低温で保存する。保存液としては、抗菌性を考慮して、20%エタノールが好ましい。
 温度応答性プロテインAは、低温で抗体を結合し、結合時の温度よりも高い温度で抗体を溶出できるといった特性がある。あらかじめ温度応答性プロテインAの特性が変わる温度を確認しておき、その温度を挟むようにして温度変化させることにより抗体を吸脱着させることが好ましい。抗体を温度応答性プロテインAに吸着させる温度領域は、例えば0℃以上20℃以下、好ましくは1℃以上15℃以下、最も好ましくは2℃以上13℃以下の低温領域である。抗体を温度応答性プロテインAから脱離させる温度は、例えば20℃以上60℃以下、好ましくは25℃以上50℃以下、最も好ましくは30℃以上45℃以下の高温領域である。
 以下に、実施の形態を実施例に基づいて更に詳しく説明するが、これらは実施の形態を何ら限定するものではない。
 実施例1では、原子移動ラジカル重合法によって、スルホン酸基を有するビーズ状のカチオン性イオン交換担体を合成した。
1)開始剤の固定
 架橋ポリビニルアルコールビーズ1g(粒径100μm)を純水で湿潤させ、300mLのガラス製三角フラスコに入れた。三角フラスコに、テトラヒドラフラン(安定剤不含、関東化学(株)社製)200mL、2-ブロモイソ酪酸ブロミド(東京化成工業(株)製)1.23mL、及びトリエチルアミン(和光純薬工業(株)社製)1.40mLを加え、室温で16時間震とうさせた。反応後、ろ過してから200mLエタノールで3回洗浄し、脱水イソプロパノール中で保存した。これにより、架橋ポリビニルアルコールビーズ表面に原子移動ラジカル重合(ATRP)開始剤である2-ブロモイソ酪酸ブロミドが導入された。
2)表面グラフト重合
 スルホン酸基の前駆体モノマーであるグリシジルメタクリレート(GMA、東京化成工業(株)製)を、N-イソプロピルアクリルアミドに対して1mol%の割合で含有するモノマー組成物を調整した。具体的には、N-イソプロピルアクリルアミド(IPAAm、和光純薬工業(株)製)18.40g、GMA0.231g、ブチルメタクリレート(BMA、東京化成工業(株)製)1.217g、塩化銅I(CuCl、和光純薬工業(株)製) 0.085g、及び塩化銅II(CuCl2、和光純薬工業(株)製)0.012gを90容量%イソプロパノール(IPA)水溶液42.8mLに溶解させ、30分間、窒素バブリングした。その後、窒素雰囲気下で溶液にトリス(2-ジメチルアミノエチル)アミン(Me6TREN)(Alfa Aesar社製)0.221gを加えて、5分間攪拌しCuCl/CuCl2/Me6TRENの触媒を形成させた。この反応溶液を窒素雰囲気下で開始剤導入架橋ポリビニルアルコールビーズに反応させ、室温で16時間のATRPをおこなった。反応後、エタノール、50mmol/L―EDTA水溶液、純水の順に洗浄し、モノマー、ポリマー、及び銅触媒を洗浄した。
3)スルホン酸基の導入
 原子移動ラジカル重合法によりグラフト鎖を導入したビーズを、亜硫酸ナトリウムと、IPAと、の混合水溶液(亜硫酸ナトリウム/IPA/純水=10/15/75wt%)200gに投入し、80℃で24時間反応を行い、グラフト鎖中のエポキシ基をスルホン酸基に変換した。反応後、このビーズを純水で洗浄した。その後、このビーズを0.5mol/L硫酸中に投入し、80℃で2時間反応を行うことで、グラフト鎖中に残存していたエポキシ基をジオール基に変換した。反応後、このビーズを純水で洗浄し、実施例1に係るカチオン性イオン交換担体とした。カチオン性イオン交換担体を、カラムに充填した。
4)共重合比率の測定
 スルホン酸基の前駆体モノマーであるグリシジルメタクリレート(GMA、東京化成工業(株)製)を、N-イソプロピルアクリルアミドに対して1mol%の割合で含有するモノマー組成物を用い、基材を用いずに共重合体を重合した。具体的には、上記2)記載の反応溶液を窒素雰囲気下で2-ブロモイソ酪酸エチルに反応させ、室温で16時間のATRPをおこなった。反応後、反応溶液を透析膜(Spectra/por Dialysis Membrane,MWCO1000,Spectrum Laboratories社製)に入れ、エタノール、50mmol/L―EDTA水溶液、純水の順に浸漬することにより、モノマー、及び銅触媒を除去した。次に反応溶液を凍結乾燥することで得られた共重合体を、亜硫酸ナトリウムと、IPAと、の混合水溶液(亜硫酸ナトリウム/IPA/純水=10/15/75wt%)200gに投入し、80℃で24時間反応を行い、グラフト鎖中のエポキシ基をスルホン酸基に変換した。反応後、反応溶液を透析膜に入れ、純水に浸漬することにより、亜硫酸ナトリウムとIPAを除去し、さらに反応溶液を凍結乾燥することで共重合体を得た。
 上記共重合体30mgを重水670mgに溶解し、核磁気共鳴装置(Bruker Avenve-600)を用いて1H-NMRを測定した。その後、N-イソプロピルアクリルアミド単位由来シグナル積分値と、スルホン酸基由来シグナル積分値と、から、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー単位の共重合比率(組成)を計算した。その結果、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー単位の共重合比率(組成)は0.72mol%であった。また、合成した樹脂は、31mmol/Lのスルホン酸基密度を有していることをリチウムイオン交換によって確認した。
 (細胞培養液の調整)
 抗体タンパク質として、AE6F4抗体(ヒトモノクロナール抗体)を0.115mg/L含む培養上澄みを用意した。AE6F4産生細胞は、九州大学大学院農学研究院、片倉喜範准教授よりご提供頂いた。AE6F4抗体産生細胞の培養は、文献(日本生物工学会講演要旨集、1994年、65巻、65ページ)を参考に培養した。AE6F4抗体産生細胞を含む培養液を、ろ過膜(旭化成メディカル社製、商品名 BioOptimal(登録商標) MF-SL)を用いてろ過し、不純物と抗体を含む混合溶液(培養上澄)を取得した。ろ過は、提供者の取扱い説明書を参考に実施した。
 (プロテインAカラムによる抗体タンパク質の精製)
 リン酸緩衝液(20mmol/Lリン酸ナトリウム+150mmol/L NaCl(pH8.0))150mLで平衡化したプロテインAカラム(GEヘルスケアバイオサイエンス製、MabSelect Sureを充填したもの)に、ろ過した混合溶液を2L添加し、プロテインAに抗体タンパク質を吸着させた。次に、カラムにリン酸緩衝液(20mmol/Lのリン酸ナトリウム+150mmol/L NaCl(pH8.0))20mLを通液して洗浄した後、カラムに溶出緩衝液(100mmol/Lクエン酸ナトリウム(pH3.6))を240mL通液して、プロテインAカラムから抗体タンパク質を溶出させて、不純物がある程度低減された混合溶液を回収した。
 (ウイルス不活性化処理)
 得られた溶出画分に、溶出画分の体積の0.5%の1mol/LTris-HCl(pH8.0)を加えて、溶出画分の水素イオン指数をpH4に調整した。さらに、溶出画分に酢酸を滴下して、溶出画分の水素イオン指数をpH3.5にして、溶出画分を一時間放置し、ウイルスの不活性化処理を行った。その後、トリス緩衝液を用いて、溶出画分の水素イオン指数をpH5.0にし、酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))にバッファー交換を行い、混合溶液1を得た。
 混合溶液1の吸光度を、下記の条件により、サイズ排除クロマトグラフィー(SEC:Size Exclusion Chromatography)装置を用いて測定した。
 カラム:Tskgel G3000SWXL(東ソー社製)
 カラム温度:30℃
 ポンプ:LC-20AD(島津製作所社製)
 検出器:SPD-20A(島津製作所社製)
 オートサンプラー:SIL-20AC(島津製作所社製)
 カラムオーブン:CTO-20AC(島津製作所社製)
 デガッサー:DGU-20AC3
 移動相:0.1mol/Lリン酸水素二ナトリウム+0.2mol/L L(+)-アルギニン水溶液(塩酸でpH6.7に調整)
 その結果、図1に示すように、吸光ピークの立ち上がりが急峻ではなく、抗体タンパク質の単量体のみならず、抗体タンパク質の凝集体成分(不純物)も含んでいることを示していた。図1のピークを拡大したものが図2である。ここで、図2のように単量体のピークを(3)、それより短時間で回収された凝集体ピークをそれぞれ(1)、(2)とすると、(1)のピークで現れる凝集体成分の含有量は0.67mg、含有率は1.2%であり、(2)のピークで現れる凝集体成分の含有量は0.95mg、含有率は1.7%であり、(3)のピークで現れる抗体タンパク質の単量体の含有量は54.44mg、含有率は97.1%であった。回収された抗体の凝集体及び単量体の総量は56.06mgであった(混合溶液1)。
 (凝集体成分の除去)
 カチオン性イオン交換担体脂を充填したカラムに、ウイルス不活性化処理を行ったプロテインAカラムからの溶出画分(混合溶液1)を加え、カチオン性イオン交換担体に、抗体タンパク質の凝集体成分(不純物)と単量体成分(目的の生理活性物質)を含む混合溶液を接触させた。加えた溶出画分の量は12mL(4.7mg/ml)であり、流速は0.4mL/minであり、温度は20℃であった。その後、流速は0.4mL/minで流れる20℃の酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))で温度応答性カチオン性イオン交換担体を充填したカラムを洗浄した。フロースルー工程と洗浄工程で、32ml(1.6mg/ml)の溶液を回収した。回収した溶液をサイズ排除クロマトグラフィー(SEC:Size Exclusion Chromatography)にかけた。この場合も、吸光度を示すグラフ(不図示)において、抗体タンパク質の単量体のみならず、抗体タンパク質の凝集体成分(不純物)も含んでいることを示していた。ただし、図5に示すように、不純物の含有量は僅かであった。
 なお、カチオン性イオン交換担体で処理前の混合溶液及びカチオン性イオン交換担体で処理後の回収溶液に含まれる凝集体成分及び単量体成分の質量割合を含有率として示した。
 また、プロテインA溶出画分に含まれる抗体タンパク質の総量(凝集体成分と単量体成分を含む)を100%としたとき、カチオン性イオン交換担体を充填したカラムをフロースルーして回収された抗体タンパク質の総量(凝集体成分と単量体成分を含む)を抗体回収率として示した。
 凝集体の吸着率は、カチオン性イオン交換担体を充填したカラムをフロースルーした後の(1)及び(2)のピークで現れる凝集体成分の合計含有量を、カチオン性イオン交換担体を充填したカラムをフロースルーする前の(1)及び(2)のピークで現れる凝集体成分の合計含有量で除したものを、1から引いてパーセント表示したものである。単量体回収率は、カチオン性イオン交換担体を充填したカラムをフロースルーした後の単量体の含有量を、カチオン性イオン交換担体を充填したカラムをフロースルーする前の単量体の含有量で除したものをパーセント表示したものである。
 ウイルス不活化処理を行ったプロテインAからの溶出画分(実施例1に同じ組成)をカラムに充填されたカチオン性イオン交換担体に25℃で接触させ、洗浄した以外は、実施例1と同様に操作した。結果を図5に示す。
 凝集体除去工程において混合溶液2((1)のピークで現れる凝集体成分の含有率は0.5%であり、(2)のピークで現れる凝集体成分の含有率は1.2%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は98.3%)を46mL(5.5mg/mL)加え、カラムに充填されたカチオン交換樹脂に25℃で接触させ、洗浄した。フロースルーと洗浄工程で66mL(3.6mg/mL)の溶液を回収した。それ以外は実施例2と同様に操作した。結果を図5に示す。
 実施例4では、放射線グラフト重合法によって、スルホン酸基を有する中空糸状のカチオン交換膜を合成した。
1)放射線グラフト重合
 N-イソプロピルアクリルアミド8.090g、グリシジルメタクリレート0.102g、ブチルメタクリレート0.208gを25容量%t-ブチルアルコール(和光純薬工業(株)社製)水溶液500mLに溶解させ、30分間、窒素バブリングしたものを反応液として用いた。外径3.0mm、内径2.0mm、平均孔径0.25umのポリエチレン多孔質中空糸6.000g(15cm、30本)を密閉容器に入れて、容器内の空気を窒素で置換した。その後、容器の外側からドライアイスで冷却しながら、γ線200kGyを照射し、ラジカルを発生させた。得られたラジカルを有するポリエチレン多孔質中空糸をガラス反応管に移し、200Pa以下に減圧することにより、反応管内の酸素を除いた。これに40℃に調整した上記反応液を、250mL導入し、16時間静置した。その後、中空糸をエタノールで洗浄し、真空乾燥機中で真空乾燥させた。
2)スルホン酸基の導入
 放射線グラフト重合法によりグラフト鎖を導入した中空糸を、亜硫酸ナトリウムと、IPAと、の混合水溶液(亜硫酸ナトリウム/IPA/純水=10/15/75wt%)200gに投入し、80℃で24時間反応を行い、グラフト鎖中のエポキシ基をスルホン酸基に変換した。反応後、この中空糸を純水で洗浄した。その後、この中空糸を0.5mol/L硫酸中に投入し、80℃で2時間反応を行うことで、グラフト鎖中に残存していたエポキシ基をジオール基に変換した。これをモジュール化(膜体積0.6mL)し、実施例3に係るカチオン交換膜とした。
3)N-イソプロピルアクリルアミドの検出は下記の条件により、熱分解GC/MSにより行った。
 熱分解装置:PY2020D(フロンティア・ラボ株式会社)
 熱分解温度:600℃
 GC装置:アジレント6890(アジレント・テクノロジー株式会社) 
 MS装置:アジレント6973(アジレント・テクノロジー株式会社)
 カラム:DB-1(アジレント・テクノロジー株式会社)
     0.25mm i.d. × 30m  液相厚 0.25um
 カラム温度:40℃(5分保持)→(20℃/分昇温)→320℃(11min保持)
 注入口温度:320℃
 スプリット比:1/100
 カラム流量:1.0ml/分 (ヘリウム)
 イオン化法:電子イオン化(EI法)
 イソプロピルアミン部位の検出時間:1分24秒
 イソプロピルイソシアネートの検出時間:1分46秒
 N-イソプロピルアクリルアミドモノマー部位の検出時間:8分9秒
 実施例1と同様の方法で、プロテインAカラムによる抗体タンパク質の精製、及びウイルス不活化処理を行い、溶出画分を15mol/L酢酸バッファー(pH6.0)にバッファー交換した混合溶液3を得た。
 混合溶液3の吸光度を、下記の条件により、サイズ排除クロマトグラフィー(SEC:Size Exclusion Chromatography)装置を用いて測定した。
 カラム;ACQUITY YPLC BEH200 SEC1.7um(Waters社製)
 カラム温度:30℃
 システム:ACQUITY UPLC H CLASS(waters社製)
 移動相:0.1mol/Lリン酸水素二ナトリウム+0.2mol/L L(+)-アルギニン水溶液(塩酸でpH6.7に調整)
 その結果、図3のピークが得られ、それを拡大したものが図4である。なお、実施例3では、実施例1及び2とは異なる装置で吸光度を測定したが、装置の同等性は確認できた。ここでも、図4のように単量体のピークを(3)、それより短時間で回収された凝集体ピークをそれぞれ(1)、(2)とすると(1)のピークで現れる凝集体成分の含有量は1.41mg、含有率は1.9%であり、(2)のピークで現れる凝集体成分の含有量は1.11mg、含有率は1.5%であり、(3)のピークで現れる抗体タンパク質の単量体の含有量は71.65g、含有率は96.6%であった。回収された抗体の凝集体及び単量体の総量は74.17gであった。
 (凝集体成分の除去)
 モジュール化したカチオン交換膜に、ウイルス不活性化処理を行ったプロテインAカラムからの溶出画分(混合溶液3)を加え、カチオン交換膜に、抗体タンパク質の凝集体成分(不純物)と単量体成分(目的の生理活性物質)を含む混合溶液を接触させた。加えた溶出画分の量は15mL(4.9mg/ml)であり、流速は6.0mL/minであり、温度は35℃であった。その後、流速は6.0mL/minで流れる35℃の酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、27ml(2.3mg/ml)の溶液を回収した。回収した溶液をサイズ排除クロマトグラフィー(SEC:Size Exclusion Chromatography)にかけた。この場合も、吸光度を示すグラフ(不図示)において、抗体タンパク質の単量体のみならず、抗体タンパク質の凝集体成分(不純物)も含んでいることを示していた。ただし、図5に示すように、不純物の含有量は僅かであった。
 実施例5では凝集体除去工程において、混合溶液4((1)のピークで現れる凝集体成分の含有率は1.5%であり、(2)のピークで現れる凝集体成分の含有率は0.9%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は97.6%)を用い、30℃で行った以外は、実施例4と同様に操作した。結果を図5に示す。なお、実施例4の温度35℃で結果に比べ、凝集物除去性能が悪化していることからも明らかなように、実施例4に記載の中空糸状のカチオン交換膜を用いて、温度を下げていくと、凝集体除去性能が低下する。したがって、室温で用いるのには適さない。
 実施例6では、放射線グラフト重合で、N-イソプロピルアクリルアミド5.380g、グリシジルメタクリレート0.098g、ブチルメタクリレート2.939gを50容量%t-ブチルアルコール(和光純薬工業(株)社製)水溶液500mLに溶解させた溶液を用い、凝集体除去工程において混合溶液5((1)のピークで現れる凝集体成分の含有率は2.1%であり、(2)のピークで現れる凝集体成分の含有率は1.1%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は96.8%)を用いた以外は実施例5と同様に操作した。結果を図5に示す。
 実施例7では、放射線グラフト重合で、N-イソプロピルアクリルアミド5.187g、グリシジルメタクリレート0.292g、ブチルメタクリレート2.919gを50容量%t-ブチルアルコール(和光純薬工業(株)社製)水溶液500mLに溶解させた溶液を用い、凝集体除去工程において混合溶液6((1)のピークで現れる凝集体成分の含有率は2.0%であり、(2)のピークで現れる凝集体成分の含有率は1.7%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は96.3%)を用いた以外は実施例6と同様に操作した。結果を図5に示す。
 実施例8では、放射線グラフト重合で、N-イソプロピルアクリルアミド3.6g、グリシジルメタクリレート0.6g、ブチルメタクリレート1.8gを50容量%t-ブチルアルコール(和光純薬(株)社製)水溶液280mLに溶解させた溶液を140mL用いて、ポリエチレン多孔質中空糸3.000g(15cm、15本)と反応させた。その後、スルホン化により、カチオン交換膜を合成し、膜体積0.25mLでモジュール化した。凝集体除去工程において混合溶液7((1)のピークで現れる凝集体成分の含有率は4.0%であり、(2)のピークで現れる凝集体成分の含有率は2.8%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は93.2%)を20mL(5.1mg/mL)加えた。流速は1.5mL/minであり、温度は25℃であった。その後、流速1.5mL/minで流れる25℃の酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、27.5ml(3.1mg/ml)の溶液を回収した。それ以外は実施例6と同様に操作した。結果を図5に示す。
 実施例9では、凝集体除去工程において、15mmol/Lトリス緩衝液(pH7.0)にバッファー交換した混合溶液8((1)のピークで現れる凝集体成分の含有率は2.3%であり、(2)のピークで現れる凝集体成分の含有率は2.4%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は95.4%)を20mL(5.0mg/mL)加えた。流速は1.5mL/minであり、温度は25℃であった。その後、流速1.5mL/minで流れる25℃のトリス緩衝液(15mmol/Lトリス緩衝液(pH7.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、27.5ml(2.9mg/ml)の溶液を回収した。それ以外は実施例8と同様に操作した。結果を図5に示す。
 実施例10では、凝集体除去工程において、15mmol/Lトリス緩衝液(pH8.0)にバッファー交換した混合溶液9((1)のピークで現れる凝集体成分の含有率は1.6%であり、(2)のピークで現れる凝集体成分の含有率は2.3%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は96.1%)を20mL(4.8mg/mL)加えた。流速は1.5mL/minであり、温度は25℃であった。その後、流速1.5mL/minで流れる25℃のトリス緩衝液(15mmol/Lトリス緩衝液(pH8.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、27.5ml(2.9mg/ml)の溶液を回収した。それ以外は実施例8と同様に操作した。結果を図5に示す。
 実施例11では、放射線グラフト重合で、N-イソプロピルアクリルアミド3.6g、グリシジルメタクリレート1.2g、ブチルメタクリレート1.2gを50容量%t-ブチルアルコール(和光純薬(株)社製)水溶液280mLに溶解させた溶液を140mL用いて、ポリエチレン多孔質中空糸3.000g(15cm、15本)と反応させた。その後、スルホン化により、カチオン交換膜を合成し、膜体積0.25mLでモジュール化した。合成した膜は、35mmol/Lのスルホン酸基密度を有していることをリチウムイオン交換によって確認した。凝集体除去工程において混合溶液10((1)のピークで現れる凝集体成分の含有率は1.8%であり、(2)のピークで現れる凝集体成分の含有率は2.8%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は95.4%)を25mL(5.2mg/mL)加えた。流速は0.3mL/minであり、温度は25℃であった。その後、流速0.3mL/minで流れる25℃の酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、32.5ml(3.2mg/ml)の溶液を回収した。それ以外は実施例8と同様に操作した。結果を図5に示す。
 実施例11では、放射線グラフト重合で、N-イソプロピルアクリルアミド3.6g、グリシジルメタクリレート1.3g、ブチルメタクリレート1.1gを50容量%t-ブチルアルコール(和光純薬(株)社製)水溶液280mLに溶解させた溶液を140mL用いて、ポリエチレン多孔質中空糸3.000g(15cm、15本)と反応させた。その後、スルホン化により、カチオン交換膜を合成し、膜体積0.25mLでモジュール化した。合成した膜は、41mmol/Lのスルホン酸基密度を有していることをリチウムイオン交換によって確認した。凝集体除去工程において混合溶液11((1)のピークで現れる凝集体成分の含有率は1.5%であり、(2)のピークで現れる凝集体成分の含有率は2.3%であり、(3)のピークで現れる抗体タンパク質の単量体の含有率は96.2%)を25mL(5.0mg/mL)加えた。流速は0.3mL/minであり、温度は25℃であった。その後、流速0.3mL/minで流れる25℃の酢酸バッファー(15mmol/L酢酸バッファー(pH6.0))でモジュール化したカチオン交換膜を洗浄した。フロースルー工程と洗浄工程で、32.5ml(3.1mg/ml)の溶液を回収した。それ以外は実施例8と同様に操作した。結果を図5に示す。
 図5に示す通り、実施例1ないし12では、(1)のピークで現れる凝集体成分の含有量、及び(2)のピークで現れる凝集体成分の含有量を、イオン交換クロマトグラフィー担体によって、50%未満にすることができた。このことから、20℃、25℃、30℃、35℃において、担体に不純物を質量比で50%以上吸着させられることが示された。また、抗体の単量体を70%以上回収できることが示された。さらには、回収した溶液の質量に対する不純物(凝集体成分1と凝集体成分2の合計)の質量の割合(含有率)が2%以下になることが示された。
 実施の形態に係る方法に依れば、抗体タンパク質の単量体を温度変化によって工業規模で精製できるようになる。

Claims (40)

  1.  不純物と生理活性物質を含む混合溶液から、前記生理活性物質を精製する精製方法であって、
     基材と、前記基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、
     前記混合溶液を、前記担体を格納する容器に一定温度でフロースルーさせることによって、前記生理活性物質を回収する、
     生理活性物質を精製する方法。
  2.  不純物と生理活性物質を含む混合溶液から、前記生理活性物質を精製する精製方法であって、
     少なくとも1つの温度応答性イオン交換クロマトグラフィー担体を使用し、
     前記混合溶液を、前記担体を格納する容器に一定温度でフロースルーさせることによって、前記生理活性物質を回収する、
     生理活性物質を精製する方法。
  3.  不純物と生理活性物質を含む混合溶液から、前記不純物を除去する方法であって、
     基材と、前記基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体を使用し、
     前記混合溶液を、前記担体を格納する容器に一定温度でフロースルーさせることによって、不純物を除去する方法。
  4.  不純物と生理活性物質を含む混合溶液から、前記不純物を除去する方法であって、
     少なくとも1つの温度応答性イオン交換クロマトグラフィー担体を使用し、
     前記混合溶液を、前記担体を格納する容器に一定温度でフロースルーさせることによって、不純物を除去する方法。
  5.  前記一定温度が、前記担体に前記不純物を質量分率で50%以上吸着させられ、かつ、前記生理活性物質を質量分率で70%以上回収できる温度である、請求項1ないし4のいずれか1項に記載の方法。
  6.  前記担体を格納する容器から回収した溶液の質量に対する前記不純物の質量の割合が2%以下である、請求項1ないし5のいずれか1項に記載の方法。
  7.  前記温度が5℃以上60℃以下である、請求項1ないし6のいずれか1項に記載の方法。
  8.  前記温度が20℃以上35℃以下である、請求項1ないし7のいずれか1項に記載の方法。
  9.  前記混合溶液をフロースルーさせる時の流速が、前記イオン交換クロマトグラフィー担体の体積の0.1倍の体積/分以上、前記担体の体積の30倍の体積/分以下である、請求項1ないし8のいずれか1項に記載の方法。
  10.  前記混合溶液をフロースルーさせる時の流速が、前記イオン交換クロマトグラフィー担体の体積の1倍の体積/分以上、前記担体の体積の10倍の体積/分以下である、請求項1ないし9のいずれか1項に記載の方法。
  11.  前記生理活性物質が抗体タンパク質の単量体である、請求項1ないし10のいずれか1項に記載の方法。
  12.  前記不純物が前記抗体タンパク質の二量体以上の凝集体成分である、請求項1ないし11のいずれか1項に記載の方法。
  13.  前記イオン交換クロマトグラフィー担体が、カチオン交換担体であり、ビーズ状である、請求項1ないし12のいずれか1項に記載の方法。
  14.  前記イオン交換クロマトグラフィー担体が、カチオン交換担体であり、膜状である、請求項1ないし12のいずれか1項に記載の方法。
  15.  前記カチオン交換担体が、中空糸膜である、請求項14に記載の方法。
  16.  前記イオン交換クロマトグラフィー担体を格納する容器に前記混合液をフロースルーさせることの前に、
     アフィニティークロマトグラフィーにより前記混合溶液を精製することを更に含む、
     請求項1ないし15のいずれか1項に記載の方法。
  17.  前記アフィニティークロマトグラフィーにプロテインA担体を使用する、請求項16に記載の方法。
  18.  前記アフィニティークロマトグラフィーに、酸溶出型アフィニティークロマトグラフィー担体を使用する、請求項16又は17に記載の方法。
  19.  前記アフィニティークロマトグラフィーに、温度応答性アフィニティークロマトグラフィー担体を使用する、請求項16又は17に記載の方法。
  20.  当該精製方法において移動相として用いられる緩衝液が0.5~20mS/cmの伝導率を有する、請求項1ないし19のいずれか1項に記載の方法。
  21.  当該精製方法において移動相として用いられる緩衝液の水素イオン指数がpH3.0~9.0範囲内にある、請求項1ないし20のいずれか1項に記載の方法。
  22.  前記イオン交換クロマトグラフィー担体が少なくとも強カチオン交換基を有する共重合体を備え、
     前記共重合体が、前記強カチオン交換基を、N-イソプロピルアクリルアミドに対してモノマー換算で0.01~500.00mol%含有する、
     請求項1ないし21のいずれか1項に記載の方法。
  23.  前記イオン交換クロマトグラフィー担体が少なくとも強カチオン交換基を有する共重合体を備え、
     前記共重合体が、前記強カチオン交換基を、N-イソプロピルアクリルアミドに対してモノマー換算で1~300.00mol%含有する、
     請求項1ないし21のいずれか1項に記載の方法。
  24.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、アクリル酸誘導体又はメタクリル酸誘導体であり、下記化学式(1)又は(2)で示される基を有する、請求項22又は23に記載の方法。
     -CH(-OH)-CH2-SO3H   ・・・(1)
     -CH(-SO3H)-CH2-OH   ・・・(2)
  25.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、スルホン酸基を有するビニルモノマー由来である、請求項22又は23に記載の方法。
  26.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、R1、R2、R3のそれぞれをH又はMeとして下記化学式(3)で示される、請求項22ないし25のいずれか1項に記載の方法。
     -CR12-CR3(-SO3H)-   ・・・(3)
  27.  前記イオン交換クロマトグラフィー担体が少なくとも強カチオン交換基を有する共重合体を備え、
     前記共重合体が、前記強カチオン交換基を有するモノマー及び/又は強カチオン交換基導入前駆体モノマーを、N-イソプロピルアクリルアミドに対して0.01~500.00mol%の割合で含有するモノマー組成物を、重合法によって重合して形成された、
     請求項1ないし21のいずれか1項に記載の方法。
  28.  前記イオン交換クロマトグラフィー担体が少なくとも強カチオン交換基を有する共重合体を備え、
     前記共重合体が、前記強カチオン交換基を有するモノマー及び/又は強カチオン交換基導入前駆体モノマーを、N-イソプロピルアクリルアミドに対して1~300.00mol%の割合で含有するモノマー組成物を、重合法によって重合して形成された、
     請求項1ないし21のいずれか1項に記載の方法。
  29.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、アクリル酸誘導体又はメタクリル酸誘導体であり、下記化学式(4)又は(5)で示される基を有する、請求項27又は28に記載の方法。
     -CH(-OH)-CH2-SO3H   ・・・(4)
     -CH(-SO3H)-CH2-OH   ・・・(5)
  30.  前記強カチオン交換基導入前駆体モノマーの少なくとも一部が、アクリル酸誘導体又はメタクリル酸誘導体であり、前記共重合体が、下記化学式(6)又は(7)で示される側鎖を有する、請求項27又は28に記載の方法。
     -CH(-OH)-CH2-SO3H   ・・・(6)
     -CH(-SO3H)-CH2-OH   ・・・(7)
  31.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、スルホン酸基を有するビニルモノマー由来である、請求項27又は28に記載の方法。
  32.  前記強カチオン交換基を有するモノマーの少なくとも一部が、スルホン酸基を有するビニルモノマーである、請求項27ないし31のいずれか1項に記載の方法。
  33.  前記強カチオン交換基を有する共重合体のモノマー単位の少なくとも一部が、R1、R2、R3のそれぞれをH又はMeとして下記化学式(8)で示される、請求項27ないし32のいずれか1項に記載の方法。
     -CR12-CR3(-SO3H)-   ・・・(8)
  34.  前記強カチオン交換基がスルホン酸基である、請求項22ないし33のいずれか1項に記載の方法。
  35.  前記カチオン交換基密度が30mmol/L以上である、請求項22ないし34のいずれか1項に記載の方法。
  36.  前記重合法が、表面リビングラジカル重合法である、請求項27ないし33のいずれか1項に記載の方法。
  37.  前記重合法が、放射線グラフト重合法である、請求項27ないし33のいずれか1項に記載の方法。
  38.  基材と、前記基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体であって、
     前記共重合体が少なくとも強カチオン交換基を有し、
     前記共重合体が、前記強カチオン交換基を有するモノマー及び/又は強カチオン交換基導入前駆体モノマーを、N-イソプロピルアクリルアミドに対して0.01~500.00mol%の割合で含有するモノマー組成物を、重合法によって重合して形成されている、カチオン交換担体であるイオン交換クロマトグラフィー担体。
  39.  基材と、前記基材表面に固定された、少なくともN-イソプロピルアクリルアミドをモノマー単位として含む共重合体と、を備えるイオン交換クロマトグラフィー担体であって、
     前記共重合体が少なくとも強カチオン交換基を有し、
     前記共重合体中のN-イソプロピルアクリルアミドの質量割合が、1~99%である、
    カチオン交換担体であるイオン交換クロマトグラフィー担体。
  40.  前記共重合体中のN-イソプロピルアクリルアミドの質量割合が、20~80%である請求項39に記載のカチオン交換担体であるイオン交換クロマトグラフィー担体。
PCT/JP2014/060677 2013-04-16 2014-04-15 抗体タンパク質の精製方法 WO2014171437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14785266.9A EP2987801B1 (en) 2013-04-16 2014-04-15 Method for the removal of aggregates from a solution containing an antibody protein
US14/785,069 US10400007B2 (en) 2013-04-16 2014-04-15 Method for purifying antibody protein
JP2015512479A JP6163541B2 (ja) 2013-04-16 2014-04-15 抗体タンパク質の精製方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013086123 2013-04-16
JP2013-086123 2013-04-16
JP2013-221510 2013-10-24
JP2013221510 2013-10-24
JP2014032149 2014-02-21
JP2014-032149 2014-02-21

Publications (1)

Publication Number Publication Date
WO2014171437A1 true WO2014171437A1 (ja) 2014-10-23

Family

ID=51731376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060677 WO2014171437A1 (ja) 2013-04-16 2014-04-15 抗体タンパク質の精製方法

Country Status (4)

Country Link
US (1) US10400007B2 (ja)
EP (1) EP2987801B1 (ja)
JP (1) JP6163541B2 (ja)
WO (1) WO2014171437A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143215A1 (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 吸着材、それを用いた分離精製装置及び分離精製方法
WO2016175337A1 (en) * 2015-04-30 2016-11-03 Showa Denko K.K. Method of removing protein aggregate
DE102015011884A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, Verfahren zu dessen Herstellung, sowie Verwendung desselben zur Aufreinigung von Biomolekülen
JP2017128554A (ja) * 2016-01-22 2017-07-27 旭化成メディカル株式会社 タンパク質の精製方法
WO2018047906A1 (ja) 2016-09-09 2018-03-15 旭化成メディカル株式会社 強カチオン交換クロマトグラフィー担体及びその使用方法
RU2694637C1 (ru) * 2015-10-23 2019-07-16 Фуджифилм Корпорэйшн Носитель для аффинной хроматографии и способ очистки биологического вещества

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406623A4 (en) * 2016-01-22 2019-09-25 Asahi Kasei Medical Co., Ltd. PROTEIN PURIFICATION PROCESS
EP3769083A1 (en) 2018-03-21 2021-01-27 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbents, devices and methods
CN112871147B (zh) * 2020-12-30 2023-07-14 北京石油化工学院 一种用于去除单抗中多聚体的层析介质的制备方法
CN113908589B (zh) * 2021-10-08 2022-09-27 天津工业大学 一种表面印迹抗体的疏水电荷诱导模式膜层析介质及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061904A1 (fr) 1998-05-22 1999-12-02 Amersham Pharmacia Biotech K. K. Remplissage pour chromatographie ayant une nouvelle caracteristique et procede d'isolation d'une substance utilisant ledit remplissage
WO2001074482A1 (fr) 2000-04-05 2001-10-11 Japan Chemical Innovation Institute Nouveau materiau utilise pour la separation et procede de separation
JP2007069193A (ja) 2005-09-02 2007-03-22 Mitsuo Okano 温度応答性クロマトグラフィー担体、製造方法及びそれを用いた温度応答性クロマトグラフィー法
WO2008143199A1 (ja) 2007-05-21 2008-11-27 Nomadic Bioscience Co., Ltd. 新規ポリペプチド,アフィニティークロマトグラフィー用材,及びイムノグロブリンの分離及び/又は精製方法
JP2009085933A (ja) 2007-09-27 2009-04-23 Mitsuo Okano 温度応答性クロマトグラフィー担体製造方法、それより得られるクロマトグラフィー担体及びその利用方法
JP2011041475A (ja) * 2009-08-19 2011-03-03 Asahi Kasei Medical Co Ltd 抗体製造方法
JP2011174944A (ja) * 2011-05-02 2011-09-08 Tokyo Women's Medical College 温度応答性クロマトグラフィー担体の製造方法及び当該製造方法によって製造された温度応答性クロマトグラフィー担体
JP2012502924A (ja) * 2008-09-22 2012-02-02 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション タンパク質分離処理における温度応答性重合体粒子
WO2012081727A1 (ja) * 2010-12-17 2012-06-21 旭化成メディカル株式会社 強カチオン交換基を有する温度応答性吸着剤、及びその製造方法
WO2012121409A1 (ja) * 2011-03-10 2012-09-13 旭化成メディカル株式会社 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
WO2013187512A1 (ja) * 2012-06-15 2013-12-19 旭化成メディカル株式会社 アルカリ耐性を有するイオン交換温度応答性吸着材、及びその製造方法
WO2014034644A1 (ja) * 2012-08-27 2014-03-06 旭化成メディカル株式会社 温度応答性クロマトグラフィーによる抗体の精製方法
WO2014065276A1 (ja) * 2012-10-23 2014-05-01 旭化成メディカル株式会社 液体クロマトグラフィーによる物質の精製方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE480573T1 (de) * 2002-07-29 2010-09-15 Life Technologies Corp Pfropfcopolymere, deren herstellung und verwendung bei der kapillarelektrophorese
EP1617936B1 (en) * 2003-02-19 2009-11-18 Natrix Separations Inc. Composite materials comprising supported porous gels
CA2687930C (en) * 2007-05-25 2016-05-17 Merck Patent Gesellschaft Mit Beschraenkter Haftung Graft copolymers for cation exchange chromatography
PT2848625T (pt) * 2008-08-14 2019-10-25 Genentech Inc Métodos para remover um contaminante com a utilização de cromatografia de membrana de permuta iónica de deslocação de proteína indígena.
SG10201804385YA (en) * 2010-05-17 2018-06-28 Emd Millipore Corp Stimulus responsive polymers for the purification of biomolecules
JP5460651B2 (ja) * 2010-07-28 2014-04-02 ローム アンド ハース カンパニー クロマトグラフィー媒体性能を向上させるグラフト化方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061904A1 (fr) 1998-05-22 1999-12-02 Amersham Pharmacia Biotech K. K. Remplissage pour chromatographie ayant une nouvelle caracteristique et procede d'isolation d'une substance utilisant ledit remplissage
WO2001074482A1 (fr) 2000-04-05 2001-10-11 Japan Chemical Innovation Institute Nouveau materiau utilise pour la separation et procede de separation
JP2007069193A (ja) 2005-09-02 2007-03-22 Mitsuo Okano 温度応答性クロマトグラフィー担体、製造方法及びそれを用いた温度応答性クロマトグラフィー法
WO2008143199A1 (ja) 2007-05-21 2008-11-27 Nomadic Bioscience Co., Ltd. 新規ポリペプチド,アフィニティークロマトグラフィー用材,及びイムノグロブリンの分離及び/又は精製方法
JP2009085933A (ja) 2007-09-27 2009-04-23 Mitsuo Okano 温度応答性クロマトグラフィー担体製造方法、それより得られるクロマトグラフィー担体及びその利用方法
JP2012502924A (ja) * 2008-09-22 2012-02-02 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション タンパク質分離処理における温度応答性重合体粒子
JP2011041475A (ja) * 2009-08-19 2011-03-03 Asahi Kasei Medical Co Ltd 抗体製造方法
WO2012081727A1 (ja) * 2010-12-17 2012-06-21 旭化成メディカル株式会社 強カチオン交換基を有する温度応答性吸着剤、及びその製造方法
WO2012121409A1 (ja) * 2011-03-10 2012-09-13 旭化成メディカル株式会社 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
JP2011174944A (ja) * 2011-05-02 2011-09-08 Tokyo Women's Medical College 温度応答性クロマトグラフィー担体の製造方法及び当該製造方法によって製造された温度応答性クロマトグラフィー担体
WO2013187512A1 (ja) * 2012-06-15 2013-12-19 旭化成メディカル株式会社 アルカリ耐性を有するイオン交換温度応答性吸着材、及びその製造方法
WO2014034644A1 (ja) * 2012-08-27 2014-03-06 旭化成メディカル株式会社 温度応答性クロマトグラフィーによる抗体の精製方法
WO2014065276A1 (ja) * 2012-10-23 2014-05-01 旭化成メディカル株式会社 液体クロマトグラフィーによる物質の精製方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POLYMER PREPRINTS, JAPAN, vol. 58, no. 2, 2009, pages 3T1 - 13
See also references of EP2987801A4
SUMMARY OF LECTURE OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 65, 1994, pages 65

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143215A1 (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 吸着材、それを用いた分離精製装置及び分離精製方法
JP2016165677A (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 吸着材、それを用いた分離精製装置及び分離精製方法
WO2016175337A1 (en) * 2015-04-30 2016-11-03 Showa Denko K.K. Method of removing protein aggregate
JP2016210705A (ja) * 2015-04-30 2016-12-15 昭和電工株式会社 タンパク質凝集体の除去方法
DE102015011884A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, Verfahren zu dessen Herstellung, sowie Verwendung desselben zur Aufreinigung von Biomolekülen
WO2017041868A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, verfahren zu dessen herstellung, sowie verwendung desselben zur aufreinigung von biomolekülen
RU2694637C1 (ru) * 2015-10-23 2019-07-16 Фуджифилм Корпорэйшн Носитель для аффинной хроматографии и способ очистки биологического вещества
US10888841B2 (en) 2015-10-23 2021-01-12 Fujifilm Corporation Affinity chromatography carrier and method for purifying biological substance
JP2017128554A (ja) * 2016-01-22 2017-07-27 旭化成メディカル株式会社 タンパク質の精製方法
WO2018047906A1 (ja) 2016-09-09 2018-03-15 旭化成メディカル株式会社 強カチオン交換クロマトグラフィー担体及びその使用方法
US11801505B2 (en) 2016-09-09 2023-10-31 Asahi Kasei Medical Co., Ltd. Strong cation exchange chromatographic matrix and method for using same

Also Published As

Publication number Publication date
US20160083419A1 (en) 2016-03-24
US10400007B2 (en) 2019-09-03
EP2987801B1 (en) 2019-06-12
JP6163541B2 (ja) 2017-07-12
JPWO2014171437A1 (ja) 2017-02-23
EP2987801A1 (en) 2016-02-24
EP2987801A4 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6163541B2 (ja) 抗体タンパク質の精製方法
JP5981133B2 (ja) 強カチオン交換基を有する温度応答性吸着剤、及びその製造方法
JP6253584B2 (ja) 温度応答性クロマトグラフィーによる抗体の精製方法
JP6437553B2 (ja) 陽イオン交換クロマトグラフィー担体及びその使用方法
US10682640B2 (en) Anionic exchange-hydrophobic mixed mode
JPWO2014003137A1 (ja) 高アフィニティー抗体、及びその製造方法
EP2986625B1 (en) Mixed mode ligands
WO2016093251A1 (ja) 生理活性物質の精製方法
US20220126282A1 (en) Strong cation exchange chromatographic matrix and method for using same
WO2012121409A1 (ja) 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
WO2012086837A1 (ja) 温度応答性プロテインaの固定化方法
JP2014129319A (ja) 抗体タンパク質の精製方法
JP2016108287A (ja) カチオン交換クロマトグラフィー担体を用いた生理活性物質の精製方法
JP6621176B2 (ja) タンパク質の精製方法
WO2012086838A1 (ja) 温度応答性リガンド固定化膜モジュールを用いた生理活性物質の分離方法
WO2014003142A1 (ja) 抗体
JP2015124177A (ja) 吸着材、吸着材の製造方法、及び抗体の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785069

Country of ref document: US

Ref document number: 2014785266

Country of ref document: EP