WO2014171065A1 - 圧粉磁芯用鉄粉 - Google Patents

圧粉磁芯用鉄粉 Download PDF

Info

Publication number
WO2014171065A1
WO2014171065A1 PCT/JP2014/001559 JP2014001559W WO2014171065A1 WO 2014171065 A1 WO2014171065 A1 WO 2014171065A1 JP 2014001559 W JP2014001559 W JP 2014001559W WO 2014171065 A1 WO2014171065 A1 WO 2014171065A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
iron powder
dust core
less
Prior art date
Application number
PCT/JP2014/001559
Other languages
English (en)
French (fr)
Inventor
拓也 高下
中村 尚道
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to SE1551331A priority Critical patent/SE540046C2/en
Priority to KR1020157025638A priority patent/KR101783255B1/ko
Priority to CN201480022072.4A priority patent/CN105142823B/zh
Priority to US14/764,273 priority patent/US10410780B2/en
Priority to CA2903392A priority patent/CA2903392C/en
Publication of WO2014171065A1 publication Critical patent/WO2014171065A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a dust core iron powder for producing a dust core having a large crystal grain size and low hysteresis loss even after being molded and subjected to strain relief annealing. .
  • Magnetic cores used in motors and transformers are required to have high magnetic flux density and low iron loss.
  • a laminate of electromagnetic steel sheets has been used as such a magnetic core, but in recent years, a dust core has attracted attention as a magnetic core material for motors.
  • the biggest feature of the dust core is that a three-dimensional magnetic circuit can be formed. Since magnetic steel sheets form magnetic cores by lamination, there is a limit to the degree of freedom in shape. However, in the case of a dust core, since the soft magnetic particles coated with insulation are pressed and molded, if there is only a mold, the degree of freedom of the shape exceeding that of the electromagnetic steel sheet can be obtained.
  • press forming has a short process and low cost compared to the lamination of steel plates, and it combines with the low cost of the base powder to demonstrate excellent cost performance. Furthermore, since the magnetic steel sheets are laminated with the steel plate surfaces insulated, the magnetic characteristics are different between the steel sheet surface direction and the surface vertical direction, and the magnetic properties in the surface vertical direction are poor. Since each particle is covered with an insulating coating, the magnetic properties are uniform in all directions, and it is suitable for use in a three-dimensional magnetic circuit.
  • the dust core is an indispensable material for designing a three-dimensional magnetic circuit and has excellent cost performance. From this point of view, research and development of a motor having a three-dimensional magnetic circuit using a dust core has been actively conducted.
  • Patent Document 1 and Patent Document 2 disclose that the iron-base powder that does not pass through the sieve when sieved using a sieve having a mesh opening of 425 ⁇ m is 10% by mass or less, and the mesh opening is 75 ⁇ m.
  • the iron-base powder not passing through the sieve is 80% by mass or more, and at least 50 iron-base powder cross sections are observed, and the crystal grain size of each iron-base powder is measured.
  • the technology to improve the magnetic properties by setting the crystal grain size distribution that includes at least the maximum crystal grain size to 70% or more of the measured crystal grains with a crystal grain size of 50 ⁇ m or more is disclosed. Has been.
  • Patent Document 3 discloses that the impurity content is C ⁇ 0.005%, Si ⁇ 0.010%, Mn ⁇ 0.050%, P ⁇ 0.010%, S ⁇ 0.010%, O ⁇ 0.10% and N ⁇ 0.0020%, and the balance Consists essentially of Fe and unavoidable impurities, and its particle size composition is -60 / + 83 mesh, 5% or less, -83 / + 100 mesh in terms of weight ratio (%) using a sieve defined in JIS Z 8801 Is 4% to 10%, -100 / + 140 mesh is 10% to 25%, 330 mesh passage is 10% to 30%, and the average crystal grain size of -60 / + 200 mesh is JIS G 0052 Is a coarse crystal grain of 6.0 or less (the smaller the number is, the larger the crystal grain diameter) is, and 5 tons containing 0.75% zinc stearate as a powder metallurgical lubricant. when molding at a molding pressure of / cm 2, 7.05g / cm 3 or
  • Patent Document 4 discloses an insulating coating for a dust core, characterized in that an insulating layer is formed on the surface of iron powder particles having a micro Vickers hardness Hv of 75 or less.
  • the technology related to iron powder is disclosed in Patent Document 5 as impurities: C: 0.005% or less, Si: more than 0.01%, 0.03% or less, Mn: 0.03% or more, 0.07% or less, S: 0.01% or less, O: Iron powder containing 0.10% or less and N: 0.001% or less, and the iron powder particles have an average number of crystal grains of 4 or less and a hardness of 80 or less on average in terms of micro Vickers hardness Hv.
  • the technology about the highly compressible iron powder which it has is disclosed.
  • Japanese Patent No. 4630251 International Publication No. 08/032707 Japanese Patent Publication No.8-921 JP 2005-187918 A JP 2007-092162 A
  • Patent Document 1 and Patent Document 2 have been studied for reducing iron loss, the value is iron loss at 1.5 T, 200 Hz, and remains as high as 40 W / kg or less. It was.
  • Patent Documents 3 to 5 are all insufficiently studied for reducing iron loss, and still have problems related to reducing iron loss.
  • the present invention has been developed in view of the above-described present situation, and is an iron powder for a dust core for producing a dust core having a low hysteresis loss even after iron powder is molded and subjected to strain relief annealing.
  • the purpose is to provide.
  • the hysteresis loss of the dust core does not exceed the majority of the iron loss. It is extremely high compared to laminated steel sheets. That is, it is extremely important to reduce the hysteresis loss in order to reduce the iron loss of the dust core.
  • the inventors have found that the hysteresis loss of the dust core is particularly strongly correlated with the reciprocal of the crystal grain size of the compact, It has been found that low hysteresis loss can be obtained when the reciprocal of the grain size is small, that is, when the crystal grains are coarse.
  • the gist configuration of the present invention is as follows. 1. It is a powder mainly composed of iron, with an apparent density of 3.8 g / cm 3 or more, an average particle diameter (D50) of 80 ⁇ m or more, and a powder particle size: 100% or more of the powder of 100% or more, Average crystal grain size inside the powder: 80 ⁇ m or more, the area fraction of inclusions in the area of the parent phase of the powder is 0.4% or less, and the micro Vickers hardness (test force: 0.245N) of the powder cross section is 90Hv
  • An iron powder for a dust core characterized in that:
  • a powder magnetic core iron powder for producing a powder magnetic core having a coarse crystal grain size and low hysteresis loss even after the iron powder is molded and subjected to strain relief annealing. Obtainable.
  • the present invention will be specifically described. The reason for limiting each numerical value of the present invention product will be described.
  • a powder containing iron as a main component is used.
  • the powder containing iron as a main component means containing 50% by mass or more of iron.
  • the other components may be component compositions and ratios used for conventionally known iron powders for dust cores.
  • the powder is plastically deformed by press molding to form a high-density molded body, but the inventors have found that the smaller the amount of plastic deformation, the coarser the crystal grains after strain relief annealing. That is, in order to reduce the amount of plastic deformation of the powder during molding, it is necessary to increase the filling rate of the powder into the mold, and for that purpose, the apparent density of the powder is 3.8 g / cm 3 or more, preferably 4.0. It was found that it was necessary to make it g / cm 3 or more.
  • the apparent density is less than 3.8 g / cm 3 , a large amount of strain is introduced into the powder during molding, and the crystal grains after molding and strain relief annealing become finer.
  • the upper limit of the apparent density of the powder is not particularly limited, but is industrially about 5.0 g / cm 3 .
  • the apparent density is an index indicating the degree of powder filling rate, and can be measured by a test method defined in JIS Z 2504.
  • the upper limit of the crystal particle size of the molded body is the particle size of the base powder. This is because in the case of a dust core, since the particle surface is coated with an insulating layer, the crystal grains cannot be coarsened beyond the insulating layer. Therefore, the average particle diameter of the powder should be as large as possible, and should be 80 ⁇ m or more, preferably 90 ⁇ m or more.
  • the upper limit of the average particle size of the powder is not particularly limited, but is preferably about 425 ⁇ m.
  • the average particle diameter in the present invention is the median diameter D50 of the weight cumulative distribution, and can be evaluated by measuring the particle size distribution using a sieve defined in JIS Z 8801-1.
  • Grain boundaries tend to accumulate high strain during plastic deformation, and are likely to become nucleation sites for recrystallized grains.
  • a powder having a large powder particle size is likely to be plastically deformed during molding and easily accumulate strain. Therefore, a powder having a powder particle size of 100 ⁇ m or more should have fewer crystal grain boundaries in the powder state.
  • the ratio of the powder having an average crystal grain size of 80 ⁇ m or more is preferably 70% or more.
  • the crystal grain size of the powder in the present invention can be determined by the following method. First, iron powder, which is the object to be measured, is mixed with thermoplastic resin powder to make a mixed powder, and then the mixed powder is charged into an appropriate mold, heated to melt the resin, and then cooled and solidified. To make an iron powder-containing resin solid. Next, the iron powder-containing resin solid material is cut in an appropriate cross section, the cut surface is polished and corroded, and then the cross section of the iron powder particles is obtained using an optical microscope or a scanning electron microscope (magnification: 100 times). Observe and image the tissue. Thereafter, the captured video is subjected to image processing to determine the area of the particles. For image analysis, commercially available image analysis software such as Image J can be used.
  • the particle diameter when approximated to a sphere is obtained from the area of the particle, and particles having a particle diameter of 100 ⁇ m or more are identified.
  • the area of the particle is divided by the number of crystals present in the particle to obtain the area of the crystal grain, and the diameter obtained by approximating the sphere from the area of the crystal grain is crystallized.
  • the particle size. In the present invention this operation is performed on at least 4 fields of view and 10 or more particles having a particle size of 100 ⁇ m or more, and the abundance ratio (%) of particles having a crystal particle size of 80 ⁇ m or more in the powder is obtained. That is, by determining the abundance ratio (%), it is possible to determine the ratio (%) in the present invention in which the average crystal grain size inside the powder is 80 ⁇ m or more among the powders having a particle diameter of 100 ⁇ m or more.
  • the inclusion in the powder is not preferable because it becomes a pinning site during recrystallization and suppresses grain growth.
  • the inclusions themselves become nucleation sites for recrystallized grains, and the grains after forming and strain relief annealing are refined.
  • the inclusions themselves also increase the hysteresis loss. For this reason, it is preferable that the number of inclusions is small.
  • the area fraction of the inclusions should be 0.4% or less, preferably 0.2% or less of the area of the parent phase of the powder.
  • the lower limit is not particularly limited and may be 0%.
  • the area of the parent phase of the powder is a phase occupying 50% or more of the powder cross-sectional area when a cross section of a certain powder is observed.
  • the parent phase refers to the ferrite phase in the powder cross section.
  • the parent phase is obtained by subtracting the area of pores in the grain boundary of the powder from the area surrounded by the grain boundary of the powder.
  • oxides containing one or more of Mg, Al, Si, Ca, Mn, Cr, Ti, Fe, and the like are conceivable.
  • the area fraction of inclusions can be obtained by the following method.
  • iron powder which is the object to be measured
  • a thermoplastic resin powder is mixed with a thermoplastic resin powder to obtain a mixed powder.
  • the resin is heated to melt and then cooled and solidified. Let it be an iron powder-containing resin solid.
  • this iron powder-containing resin solid is cut in an appropriate cross section, the cut surface is polished and corroded, and then the cross section of the iron powder particles is obtained using a scanning electron microscope (magnification: 1 k to 5 k times).
  • the tissue is observed and imaged with a backscattered electron image. Since inclusions appear as black contrast in the obtained image, the area fraction of inclusions can be determined by image processing. In the present invention, this is performed in five or more fields selected from the total amount of iron powder to be measured, and the average value of the area fraction of inclusions in each field is used.
  • the amount of strain is evaluated by micro Vickers hardness. Specifically, the hardness of the powder cross section is 90 Hv or less. This is because when the hardness of the powder exceeds 90 Hv, the crystal grains after forming and strain relief annealing become finer and the hysteresis loss increases. In addition, Preferably it is 80 Hv or less.
  • the micro Vickers hardness in the present invention is measured by the following method. First, iron powder, which is the object to be measured, is mixed with thermoplastic resin powder to make a mixed powder, and then this mixed powder is charged into an appropriate mold, heated to melt the resin, then cooled and solidified, Let it be a powder-containing resin solid. Next, after cutting this iron powder-containing resin solid body with a suitable cross section and polishing the cut surface, the processing phase of polishing is removed by corrosion, and a micro Vickers hardness tester (test force: 0.245 N (25 gf)) And measured according to JIS Z 2244. In addition, the said measurement makes 1 point
  • the product of the present invention may be obtained by a method other than the method described later.
  • the powder containing iron as a main component used in the present invention is preferably produced using an atomizing method. The reason is that the powder obtained by the oxide reduction method and the electrolytic deposition method has a low apparent density, and even if it is processed to increase the apparent density such as additional cracking, the apparent density is sufficient. It is because there is a possibility that cannot be obtained.
  • any kind such as gas, water, gas + water, and centrifugal method may be used.
  • the manufacturing method when the water atomizing method is applied will be described as a representative example.
  • the composition of the molten steel to be atomized is not particularly limited as long as it contains iron as a main component.
  • the amount of oxidizable metal elements Al, Si, Mn, Cr, etc.
  • Al ⁇ 0.01 mass%, Si ⁇ 0.03 mass%, Mn ⁇ 0.1 mass%, Cr ⁇ 0.05 mass% are preferable.
  • the atomized powder is decarburized and reduced annealed.
  • Annealing is preferably a high-load treatment in a reducing atmosphere containing hydrogen, for example, 700 ° C. or more and less than 1200 ° C., preferably 900 ° C. or more and less than 1100 ° C. in a reducing atmosphere containing hydrogen, It is preferable to perform one or more stages of heat treatment with a holding time of 1 to 7 hours, preferably 2 to 5 hours. This coarsens the crystal grain size in the powder.
  • what is necessary is just to select the dew point in atmosphere according to the amount of C contained in the powder after atomization, and it is not necessary to specifically limit it.
  • the first crushing is performed. Thereby, the apparent density is set to 3.8 g / cm 3 or more.
  • annealing in 600 to 850 ° C hydrogen is carried out to remove strain in the iron powder.
  • the reason why the annealing is performed at 600 to 850 ° C. is to make the micro Vickers hardness of the powder cross section less than 90 Hv.
  • the particle size distribution is adjusted by sieving using a sieve specified in JIS Z 8801-1 so that the apparent density and average particle diameter are within the scope of the present invention.
  • the iron powder described above becomes a dust core by forming with an insulating coating.
  • Any insulating coating may be applied to the powder as long as the insulation between the particles can be maintained.
  • Such insulating coatings include glassy insulating amorphous layers based on silicone resins, metal phosphates and borate salts, metal oxides such as MgO, forsterite, talc and Al 2 O 3 , Alternatively, there is a crystalline insulating layer based on SiO 2 .
  • the iron-based powder having the particle surface coated with an insulating coating by such a method is charged into a mold and press-molded into a desired dimensional shape (a dust core shape) to form a dust core.
  • a desired dimensional shape a dust core shape
  • the pressure molding method any ordinary molding method such as a room temperature molding method or a die lubrication molding method can be applied.
  • the molding pressure is appropriately determined depending on the application, but if the molding pressure is increased, the green density becomes higher. Therefore, the preferred molding pressure is 10 t / cm 2 (981MN / m 2 ) or more, more preferably 15 t. / cm 2 (1471MN / m 2 ) or more.
  • a lubricant can be applied to the mold wall surface or added to the powder as necessary.
  • the friction between the mold and the powder during pressure molding can be reduced, so that the decrease in the density of the molded body can be suppressed, and the friction during extraction from the mold can also be reduced. It is possible to effectively prevent cracking of the green body (dust core).
  • Preferred lubricants at that time include metal soaps such as lithium stearate, zinc stearate and calcium stearate, and waxes such as fatty acid amides.
  • the powder magnetic core thus molded is subjected to heat treatment for the purpose of reducing hysteresis loss due to strain removal and increasing the strength of the molded body after pressure molding.
  • the heat treatment time for this heat treatment is preferably about 5 to 120 minutes.
  • the heating atmosphere may be in the air, in an inert atmosphere, in a reducing atmosphere, or in a vacuum, but there is no problem even if any of them is adopted. Moreover, what is necessary is just to determine an atmospheric dew point suitably according to a use. Furthermore, a step of holding at a constant temperature when the temperature is raised or lowered during the heat treatment may be provided.
  • the iron powder used in this example was 10 kinds of atomized pure iron powders having different apparent density, D50, crystal grain size, inclusion amount and micro Vickers hardness.
  • those having an apparent density of 3.8 g / cm 3 or more are gas atomized iron powders
  • those having an apparent density of less than 3.8 g / cm 3 are water atomized iron powders.
  • % By mass O ⁇ 0.10% by mass, N ⁇ 0.002% by mass, Si ⁇ 0.025% by mass, P ⁇ 0.02% by mass, and S ⁇ 0.002% by mass.
  • Silicone resin is dissolved in toluene to prepare a resin diluted solution with a resin content of 0.9% by mass, and then the powder and the resin diluted solution are mixed so that the resin addition ratio to the powder is 0.15% by mass. Mixed and dried in air. After drying, a resin baking treatment at 200 ° C. for 120 minutes was performed in the air to obtain a coated iron-based soft magnetic powder.
  • These powders were molded at a molding pressure of 15 t / cm 2 (1471 MN / m 2 ) using mold lubrication to produce ring-shaped test pieces having an outer diameter of 38 mm, an inner diameter of 25 mm, and a height of 6 mm.
  • test piece thus prepared was heat-treated in nitrogen at 650 ° C. for 45 minutes to prepare a sample, and then wound (primary volume: 100 turns, secondary volume: 40 turns), and DC magnetized.
  • Hysteresis loss measurement with a device 1.5T, DC magnetism measurement device manufactured by Metron Giken
  • iron loss measurement 1.5T, 200Hz, model 5060A manufactured by Agilent Technologies
  • the sample after the iron loss measurement was disassembled and the crystal grain size was measured.
  • the crystal grain size of the cross section of the compact was measured by the following method. First, the molded object (sample), which is the object to be measured, is cut into an appropriate size (for example, 1 cm square), mixed with thermoplastic resin powder, placed in an appropriate mold, and heated to heat the resin. After melting, it is cooled and solidified to form a molded product-containing resin solid.
  • the molded body-containing resin solid was cut so that the observation cross section was perpendicular to the circumferential direction of the ring molded body, and the cut surface was polished and corroded, and then optical microscope or scanning electron microscope (magnification: 200) Magnification) is used to image the cross-sectional tissue.
  • Five vertical lines and five horizontal lines are drawn on the photographed image, and the number of crystal grains crossed by each line is counted.
  • the crystal grain size is obtained by dividing by the number of crystal grains crossing the entire length of five vertical lines and five horizontal lines. If the line crosses the hole, the length of the hole is subtracted from the entire length. This measurement was performed for 4 fields for each sample, and the average value was obtained and used. Table 2 shows the measurement results of the crystal grains.
  • the crystal grain size of the comparative example is 21.2 ⁇ m at the maximum, whereas the crystal grain size of the invention example is 27.0 ⁇ m at the minimum and 33.6 ⁇ m at the maximum.
  • Table 3 shows measurement results obtained by performing magnetic measurements on the samples.
  • the acceptance criterion for iron loss was set to 30 W / kg or less, which is lower than the acceptance criterion (40 W / kg or less) in the example shown in Patent Document 1.
  • the invention examples all have lower hysteresis loss than the comparative example, and thereby the iron loss is suppressed to a low level. You can see that it meets.
  • the samples having an apparent density of 3.8 g / cm 3 or more have an eddy current loss of less than 10 W / kg. This indicates that the insulation between the particles is maintained even after the 650 ° C strain relief annealing, and the increase in the apparent density is a reduction of either hysteresis loss or eddy current loss. It also shows that it is effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明に従い、圧粉磁芯用鉄粉を、見掛密度:3.8g/cm3以上で、平均粒子径(D50):80μm以上とし、さらに、粒子径100μm以上の粉末のうち、60%以上の粉末内部の結晶粒径を80μm以上とし、粉末の母相の面積に占める介在物の面積分率を0.4%以下として、粉末断面のマイクロビッカース硬度(試験力:0.245N)を90Hv以下とすることによって、鉄粉を成形し歪取焼鈍した後であっても、ヒステリシス損が低い圧粉磁芯を製造するための圧粉磁芯用鉄粉を得ることができる。

Description

圧粉磁芯用鉄粉
 本発明は、成形して歪取焼鈍をした後であっても、結晶粒径が粗大で、かつヒステリシス損が低い圧粉磁芯を製造するための圧粉磁芯用鉄粉に関するものである。
 モータやトランスなどに用いられる磁芯には、磁束密度が高く鉄損が低いといった特性が要求される。従来、このような磁芯には電磁鋼板を積層したものが用いられてきたが、近年では、モータ用磁芯材料として、圧粉磁芯が注目されている。
 圧粉磁芯の最大の特徴は、三次元的な磁気回路が形成可能な点である。電磁鋼板は、積層によって磁芯を成形するために、形状の自由度に限界がある。しかしながら、圧粉磁芯であれば、絶縁被覆された軟磁性粒子をプレスして成形されるため、金型さえあれば、電磁鋼板を上回る形状の自由度を得ることができる。
 また、プレス成形は、鋼板の積層に比べて工程が短く、かつコストが安いため、ベースとなる粉末の安さも相まって、優れたコストパフォーマンスを発揮する。更に、電磁鋼板は、鋼板表面が絶縁されたものを積層するため、鋼板面方向と面垂直方向で磁気特性が異なって、面垂直方向の磁気特性が悪いという欠点を有するが、圧粉磁芯は、粒子一つ一つが絶縁被覆に覆われているため、あらゆる方向に対して磁気特性が均一であって、3次元的な磁気回路に用いるのに適しているのである。
 このように、圧粉磁芯は、三次元磁気回路を設計する上で不可欠な素材であって、かつコストパフォーマンスに優れることから、近年、モータの小型化や、レアアースフリー化、低コスト化などの観点より、圧粉磁芯を利用し、三次元磁気回路を有するモータの研究開発が盛んに行われている。
 このような粉末冶金技術によって高性能の磁性部品を製造する場合、成形後の優れた鉄損特性(低ヒステリシス損および低渦電流損)が要求される。
 この要求に対して、特許文献1および特許文献2には、目開き:425μmの篩を用いて篩い分けした時に、該篩を通過しない鉄基粉末が10質量%以下で、目開き:75μmの篩を用いて篩い分けした時に、該篩を通過しない鉄基粉末が80質量%以上であり、かつ、少なくとも50個の鉄基粉末断面を観察し、各鉄基粉末について結晶粒径を測定して最大結晶粒径を少なくとも含む結晶粒径分布を求めた時に、測定した結晶粒のうち結晶粒径が50μm以上である結晶粒が70%以上とすることで、磁気特性を改善する技術が公開されている。
 また、特許文献3には、不純物含有量が、C≦0.005%、Si≦0.010%、Mn≦0.050%、P≦0.010%、S≦0.010%、O≦0.10%およびN≦0.0020%で、残部が実質的にFeおよび不可避不純物からなり、その粒度構成が、JIS Z 8801号に定める篩を用いた篩わけ重量比(%)で、-60/+83メッシュが5%以下、-83/+100メッシュが4%以上10%以下、-100/+140メッシュが10%以上25%以下、330メッシュ通過分が10%以上30%以下であり、-60/+200メッシュの平均結晶粒径がJIS G 0052号に規定されるフェライト結晶粒径測定法で、6.0以下の粗大結晶粒(数字の少ない方が結晶粒径が大きい)であって、粉末冶金用潤滑剤としてステアリン酸亜鉛を0.75%配合して5t/cm2の成形圧力で金型成形した時、7.05g/cm3以上の圧粉体密度が得られる、圧縮性と磁気特性に優れた粉末冶金用純鉄粉に関する技術が公開されている。
 さらに、特許文献4には、鉄粉粒子の硬さがマイクロビッカース硬さHvで75以下である鉄粉粒子の表面に、絶縁層を形成したことを特徴とする、圧粉磁芯用絶縁被覆鉄粉に関する技術が、また、特許文献5には、不純物として、質量%でC:0.005%以下、Si:0.01%超0.03%以下、Mn:0.03%以上0.07%以下、S:0.01%以下、O:0.10%以下、N:0.001%以下を含む鉄粉であって、該鉄粉の粒子が、平均で4個以下の結晶粒数と、マイクロビッカース硬さHvで平均80以下の硬さを有する、高圧縮性鉄粉に関する技術が公開されている。
特許第4630251号公報 国際公開第08/032707 号 特公平8-921号公報 特開2005-187918号公報 特開2007-092162号公報
 しかしながら、特許文献1および特許文献2に記載の技術については、鉄損の低減について検討されてはいるものの、その値は1.5T、200Hzにおける鉄損で、40W/kg以下という高い値に留まっていた。
 また、特許文献3~特許文献5に記載された技術は、鉄損の低減に関する検討がいずれも不十分であって、依然として、鉄損の低減に関する問題が残っていた。
 本発明は、上記した現状に鑑み開発されたもので、鉄粉を成形し歪取焼鈍した後であっても、ヒステリシス損が低い圧粉磁芯を製造するための圧粉磁芯用鉄粉を提供することを目的とする。
 モータ鉄芯の様に、比較的低周波(~3kHz)で使用される磁芯の場合、鉄損の大部分は、ヒステリシス損が占めているにもかかわらず、圧粉磁芯のヒステリシス損は、積層鋼板に比べ極めて高い。すなわち、圧粉磁芯の鉄損低減のためには、ヒステリシス損の低減が極めて重要となってくる。
 そこで、発明者らは圧粉磁芯のヒステリシス損について鋭意検討を重ねた結果、圧粉磁芯のヒステリシス損というのは、特に、成形体の結晶粒径の逆数と強い相関があって、結晶粒径の逆数が小さい、つまり、結晶粒が粗大な場合に、低いヒステリシス損が得られることを見出した。
 さらに、結晶粒が粗大な圧粉磁芯を得るためには、
(I) 元の粉末の粒子径や結晶粒径が粗大であること、
(II) 粉末内に余計な歪が入っていないこと、
(III) 成形時に歪が蓄積しにくいこと、
(IV) 粉末内に歪取焼鈍時に結晶粒の成長を妨げるものが無いこと
が重要であることを突き止めた。
 本発明は、上記知見に基づいてなされたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.鉄を主成分とする粉末であって、見掛密度が3.8g/cm3以上で、かつ平均粒子径(D50)が80μm以上で、粉末粒径:100μm以上の粉末のうち60%以上が、粉末内部の平均結晶粒径:80μm以上であって、粉末の母相の面積に占める介在物の面積分率が0.4%以下であり、粉末断面のマイクロビッカース硬度(試験力:0.245N)が90Hv以下であることを特徴とする圧粉磁芯用鉄粉。
2.前記粉末粒径:100μm以上の粉末のうち、70%以上が粉末内部の平均結晶粒径:80μm以上であることを特徴とする前記1に記載の圧粉磁芯用鉄粉。
 本発明によれば、鉄粉を成形し、歪取焼鈍した後であっても、結晶粒径が粗大でかつヒステリシス損が低い圧粉磁芯を製造するための圧粉磁芯用鉄粉を得ることができる。
 以下、本発明を具体的に説明する。
 本発明品の各数値の限定理由について述べる。なお、本発明では、鉄を主成分とする粉末を用いるが、本発明において、鉄を主成分とする粉末とは、鉄を、50質量%以上含有していることを意味する。また、その他の成分は、従来公知の圧粉磁芯用鉄粉に用いられる成分組成および比率で良い。
〔見掛密度〕
 粉末は、プレス成形により塑性変形して高密度の成形体となるが、発明者らは、この塑性変形量が小さいほど、歪取焼鈍後の結晶粒が粗大になることを突き止めた。
 すなわち、成形時の粉末の塑性変形量を低減するには、粉末の金型への充填率を上げる必要があり、そのためには、粉末の見掛密度を3.8g/cm3以上、好ましくは4.0g/cm3以上とする必要があることを突き止めたのである。
 というのは、見掛密度が3.8g/cm3を下回ると、成形時に粉末に多量の歪が導入されて、成形、歪取焼鈍後の結晶粒が微細化してしまうからである。なお、粉末の見掛密度の上限は、特に限定されないが、工業的に5.0g/cm3程度である。
 上記見掛密度とは、粉末の充填率の程度を示す指標であり、JIS Z 2504に規定される試験方法によって測定することができる。
〔平均粒子径:D50〕
 成形体の結晶粒径は、ベースとなる粉末の粒子径が上限となる。圧粉磁芯の場合、粒子表面が絶縁層で被覆されているため、結晶粒が絶縁層を超えて粗大化できないからである。そのため、粉末の平均粒径は、可能な限り大きい方が良く、80μm以上、好ましくは90μm以上とするのが良い。なお、粉末の平均粒径の上限は、特に限定されないが、425μm程度とするのが良い。
 本発明における平均粒径とは、重量累積分布のメジアン径D50のことであって、JIS Z 8801-1に規定される篩を用いて粒度分布を測定することで評価できる。
〔粒子径:100μm以上の粒子内部の結晶粒径〕
 結晶粒界は、塑性変形時に高い歪が蓄積しやすく、再結晶粒の核生成サイトとなりやすい。特に、粉末粒径の大きな粉末は、成形時に塑性変形しやすく、歪が蓄積しやすい。そのため、粉末粒径が100μm以上の粉末は、粉末状態において結晶粒界が少ない方が良い。具体的には、粉末粒径が100μm以上の粉末の60%以上が、粉末断面観察により測定される粉末内部の結晶粒径の平均で、80μm以上になっていることが必要である。なお、上記平均結晶粒径が80μm以上である粉末の割合は、70%以上が好ましい。
 本発明における粉末の結晶粒径は、以下の方法によって求めることができる。
 まず、被測定物である鉄粉末を、熱可塑性樹脂粉に混合して混合粉としたのち、この混合粉を適当な型に装入し、加熱して樹脂を溶融させたのち、冷却固化させて鉄粉含有樹脂固形物とする。
 ついで、上記鉄粉含有樹脂固形物を適当な断面で切断し、切断した面を研磨して腐蝕したのち、光学顕微鏡または走査型電子顕微鏡(倍率:100倍)を用いて、鉄粉粒子の断面組織を観察および撮像する。その後、撮影した映像を画像処理して、粒子の面積を求める。なお、画像解析には、Image Jなどの市販の画像解析ソフトを用いることができる。
 粒子の面積から、球近似した時の粒子径を求め、粒子径が100μm以上の粒子を識別する。ついで、粒子径:100μm以上の粒子について、粒子の面積を粒子内に存在する結晶数で割って、結晶粒の面積を求め、さらにこの結晶粒の面積から、球近似して求めた径を結晶粒径とする。
 本発明では、この操作を少なくとも4視野、10個以上の粒径:100μm以上の粒子に対して行い、粉末内部の結晶粒径:80μm以上の粒子の存在比率(%)を求める。すなわち、上記存在比率(%)を求めることによって、本発明における、粒子径:100μm以上の粉末のうち、粉末内部の平均結晶粒径が80μm以上である割合(%)を求めることができる。
〔介在物の面積分率〕
 粉末内に介在物が存在すると、再結晶時にピニングサイトとなり、粒成長を抑制するため好ましくない。また、介在物自体が再結晶粒の核生成サイトとなり、成形、歪取焼鈍後の結晶粒を微細化する。さらに、介在物自身がヒステリシス損の増加要因ともなる。そのため、介在物は少ない方が好ましく、粉末の断面を観察したときに、介在物の面積分率が、粉末の母相の面積の0.4%以下、好ましくは0.2%以下とするのが良い。なお、下限に特に限定はなく0%であっても良い。また、粉末の母相の面積とは、ある粉末の断面を観察したとき、粉末断面積の50%以上を占める相のことである。例えば純鉄粉の場合、母相とは当該粉末断面中のフェライト相のことを指す。純鉄粉の場合、母相は当該粉末の粒界により囲まれた面積から当該粉末の粒界内の空孔部の面積を引いたものである。
 介在物としては、Mg、Al、Si、Ca、Mn、Cr、TiおよびFe等を1種または2種以上含む酸化物が考えられる。なお、介在物の面積分率は以下の手法によって求めることができる。
 まず、被測定物である鉄粉末を、熱可塑性樹脂粉に混合して混合粉としたのち、この混合粉を適当な型に装入後、加熱して樹脂を溶融させたのち冷却固化させ、鉄粉含有樹脂固形物とする。ついで、この鉄粉含有樹脂固形物を、適当な断面で切断し、切断した面を研磨して腐蝕したのち、走査型電子顕微鏡(倍率:1k~5k倍)を用いて、鉄粉粒子の断面組織を反射電子像で観察および撮像する。得られた像画中、介在物は黒いコントラストとなって現れるので、画像処理することで、介在物の面積分率を求めることができる。本発明では、これを、測定対象となる鉄粉末全量から選んだ任意の5視野以上で行い、各視野の介在物の面積分率の平均値を用いる。
〔粉末断面のマイクロビッカース硬度〕
 粉末内部に成形前から歪が蓄積されていると、たとえ前述したような粉末調整を行なったとしても、蓄積された歪の分だけ成形、歪取焼鈍後の結晶粒が微細化してしまう。従って、粉末内の歪は極力低減する方が好ましい。
 しかしながら、アトマイズ鉄粉は、製造上、酸素を低減するための還元焼鈍を実施した後に、機械的な解砕を行なわなくてはならない。そのため、粉末に歪が蓄積してしまう。
 ここに、発明者らは、前述したように、粉末の歪と粉末の硬度との間には相関があり、硬度が低いほど歪が少ないことを突き止めている。
 そこで、本発明では、歪量をマイクロビッカース硬度で評価することとし、具体的には、粉末断面の硬度を90Hv以下とする。粉末の硬度が90Hvを上回る場合、成形、歪取焼鈍後の結晶粒が微細化してヒステリシス損が増加してしまうからである。なお、好ましくは80Hv以下である。
 本発明におけるマイクロビッカース硬度については、以下の方法で測定する。
 まず、被測定物である鉄粉末を、熱可塑性樹脂粉に混合し混合粉としたのち、この混合粉を適当な型に装入後、加熱して樹脂を溶融させたのち冷却固化させ、鉄粉含有樹脂固形物とする。ついで、この鉄粉含有樹脂固形物を適当な断面で切断し、切断した面を研磨したのち、腐蝕により研磨の加工相を除去し、マイクロビッカース硬度計(試験力:0.245N(25gf))を用いて、JIS Z 2244に準拠して測定する。なお、上記測定は、各粒子につき1点とし、少なくとも10個の粉末の硬度を測定し、その平均値を用いる。
 次に、本発明品を得るための代表的な製造方法を記す。無論、後述する方法以外によって本発明品を得ても構わない。
 本発明に用いる鉄を主成分とする粉末は、アトマイズ法を用いて製造するのが好ましい。その理由は、酸化物還元法、電解析出法によって得られる粉末は、見掛密度が低く、たとえ追解砕等の見掛密度を上げる為の加工を行ったとしても、十分な見掛密度が得られないおそれがあるためである。
 これに対して、アトマイズ法であれば、ガス、水、ガス+水、遠心法など、その種類は問わない。しかしながら、実用面を考えると安価な水アトマイズ法、もしくは水アトマイズ法よりは高価であるものの、比較的大量に生産が可能なガスアトマイズ法を用いるのが好ましい。以下、代表例として水アトマイズ法を適用した場合の製造方法について述べる。
 アトマイズを行なう溶鋼の組成は、鉄を主成分とするものであれば良い。しかしながら、アトマイズ時に多量の酸化物系介在物が生成する可能性があるため、易酸化性金属元素(Al、Si、MnおよびCr等)の量が少ない方が良く、Al≦0.01質量%、Si≦0.03質量%、Mn≦0.1質量%、Cr≦0.05質量%とするのが好ましい。無論、これ以外の易酸化性金属元素も可能な限り低減しておくことが好ましい。
 ついで、アトマイズ後の粉末は、脱炭、還元焼鈍を実施する。焼鈍は、水素を含む還元性雰囲気中での高負荷処理とすることが好ましく、例えば、水素を含む還元性雰囲気中で700℃以上1200℃未満、好ましくは900℃以上1100℃未満の温度で、保持時間を1~7h、好ましくは2~5hとする熱処理を、1段または複数段施すことが好ましい。これにより、粉末内の結晶粒径を粗大化させる。なお、雰囲気中の露点は、アトマイズ後の粉末に含まれるC量に応じて選択すれば良く、特に限定する必要はない。
 還元焼鈍後、1度目の解砕を実施する。これにより、見掛密度を3.8g/cm3以上とする。1度目の解砕の後、600~850℃の水素中での焼鈍を実施し、鉄粉中の歪取りを行う。焼鈍を600~850℃で行うのは、粉末断面のマイクロビッカース硬度を90Hv以下にするためである。歪取後は極力歪が加わらないように解砕する。解砕後、見掛密度、平均粒径が本発明の範囲内となるようにJIS Z 8801-1に規定される篩を用いた篩分けにより粒度分布を調整する。
 さらに、前記した鉄粉は、絶縁被覆を施して成形することにより圧粉磁芯となる。
 粉末に施す絶縁被覆は、粒子間の絶縁性を保てるものであれば何でも良い。その様な絶縁被覆としては、シリコーン樹脂、リン酸金属塩やホウ酸金属塩をベースとしたガラス質の絶縁性アモルファス層や、MgO、フォルステライト、タルクおよびAl2O3などの金属酸化物、或いはSiO2をベースとした結晶質の絶縁層などがある。
 かかる方法で粒子表面に絶縁被覆を施された鉄基粉末は、金型に装入され、所望の寸法形状(圧粉磁芯形状)に加圧成形され、圧粉磁芯とされる。ここで、加圧成形方法は、常温成形法や、金型潤滑成形法など通常の成形方法がいずれも適用できる。なお、成形圧力は用途に応じて適宜決定されるが、成形圧力を増加すれば、圧粉密度が高くなるため、好ましい成形圧力は10t/cm2(981MN/m2)以上、より好ましくは15t/cm2(1471MN/m2)以上である。
 上記した加圧成形に際しては、必要に応じ、潤滑材を金型壁面に塗布するかあるいは粉末に添加することができる。これにより、加圧成形時に金型と粉末との間の摩擦を低減することができるので、成形体密度の低下を抑制するとともに、金型から抜出す際の摩擦も併せて低減でき、取出時の成形体(圧粉磁芯)の割れを効果的に防止することができる。その際の好ましい潤滑材としては、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸カルシウムなどの金属石鹸、脂肪酸アミド等のワックスが挙げられる。
 かくして成形された圧粉磁芯は、加圧成形後に、歪取りによるヒステリシス損の低減や成形体強度の増加を目的とした熱処理を行なう。この熱処理の熱処理時間は5~120分程度とすることが好ましい。なお、加熱雰囲気としては、大気中、不活性雰囲気中、還元雰囲気中あるいは真空中が考えられるが、いずれを採用してもなんら問題はない。また、雰囲気露点は、用途に応じ適宜決定すればよい。更に、熱処理中の昇温、あるいは降温時に一定の温度で保持する段階を設けても良い。
 本実施例に用いた鉄粉は、見掛密度、D50、結晶粒径、介在物量およびマイクロビッカース硬度の異なる10種類のアトマイズ純鉄粉とした。
 また、見掛密度が3.8g/cm3以上のものはガスアトマイズ鉄粉、見掛密度が3.8g/cm3未満のものは水アトマイズ鉄粉であって、成分は、いずれの粉末もC<0.005質量%、O<0.10質量%、N<0.002質量%、Si<0.025質量%、P<0.02質量%、S<0.002質量%であった。
Figure JPOXMLDOC01-appb-T000001
 これらの粉末に対して、シリコーン樹脂による絶縁被覆を施した。シリコーン樹脂は、トルエンに溶解させて、樹脂分が0.9質量%となるような樹脂希釈溶液を作製し、ついで、粉末に対する樹脂添加率が0.15質量%となるように、粉末と樹脂希釈溶液とを混合し、大気中で乾燥させた。乾燥後に、大気中で、200℃、120分の樹脂焼付け処理を行うことにより被覆鉄基軟磁性粉末を得た。これらの粉末を、成形圧:15t/cm2(1471MN/m2)で、金型潤滑を用いて成形し、外形:38mm、内径:25mm、高さ:6mmのリング状試験片を作製した。
 かようにして作製した試験片に、窒素中で650℃、45分の熱処理を行い、試料とした後、巻き線を行い(1次巻:100ターン、2次巻:40ターン)、直流磁化装置によるヒステリシス損測定(1.5T、メトロン技研製 直流磁化測定装置)と鉄損測定装置による鉄損測定(1.5T、200Hz、アジレント・テクノロジー(株)製5060A型)を行なった。
 鉄損測定後の試料は解体し、結晶粒径を測定した。なお、解体後の試料は、成形体断面の結晶粒径を維持しているため、成形体断面の結晶粒径は、以下の方法で測定した。
 まず、被測定物である成形体(試料)を、適当な大きさ(例えば、1cm四方)に切断した後、熱可塑性樹脂粉に混合して適当な型に装入し、加熱して樹脂を溶融させたのち、冷却固化させて成形体含有樹脂固形物とする。
 ついで、該成形体含有樹脂固形物を、観察断面がリング成形体周方向と垂直になるように切断し、切断した面を研磨して腐蝕したのち、光学顕微鏡または走査型電子顕微鏡(倍率:200倍)を用いて断面組織を撮像する。撮影した画像に、縦5本、横5本の線を引き、それぞれの線が横切った結晶粒の個数を数える。縦5本、横5本の線の全長を横切った結晶粒の個数で割ることで結晶粒径を求める。なお、線が空孔を横切っている場合は、空孔分の長さを全長から引く。
 かかる測定を、各試料につき4視野行い、その平均値を求めて用いた。
 表2に結晶粒の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 同表より、比較例の結晶粒径は、最大であっても21.2μmであるのに対して、発明例の結晶粒径は、最小でも27.0μm、最大では33.6μmにもなっていることが分かる。
 また、表3に、試料の磁気測定を行なって得た測定結果を示す。なお、本実施例では、鉄損の合格基準を、特許文献1に示された実施例における合格基準(40W/kg以下)よりも、更に低い30W/kg以下とした。
Figure JPOXMLDOC01-appb-T000003
 同表より、発明例は、比較例に比べて、そのいずれもヒステリシス損が低く抑えられていて、それにより鉄損が低く抑えられており、全て上記した本実施例における鉄損の合格基準を満たしていることが分かる。
 また、発明例、比較例共に見掛密度が3.8g/cm3以上の試料は、いずれも渦電流損が10W/kg未満となっていることが分かる。これは、シリコーン樹脂による被覆のみで、650℃の歪取焼鈍後も粒子間の絶縁が保たれていることを示しており、見掛密度の増加は、ヒステリシス損、渦電流損のいずれの低減にも有効であることを示している。

Claims (2)

  1.  鉄を主成分とする粉末であって、見掛密度が3.8g/cm3以上で、かつ平均粒子径(D50)が80μm以上で、粉末粒径:100μm以上の粉末のうち60%以上が、粉末内部の平均結晶粒径:80μm以上であって、粉末の母相の面積に占める介在物の面積分率が0.4%以下であり、粉末断面のマイクロビッカース硬度(試験力:0.245N)が90Hv以下であることを特徴とする圧粉磁芯用鉄粉。
  2.  前記粉末粒径:100μm以上の粉末のうち、70%以上が粉末内部の平均結晶粒径:80μm以上であることを特徴とする請求項1に記載の圧粉磁芯用鉄粉。
PCT/JP2014/001559 2013-04-19 2014-03-18 圧粉磁芯用鉄粉 WO2014171065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SE1551331A SE540046C2 (en) 2013-04-19 2014-03-18 Iron powder for dust core
KR1020157025638A KR101783255B1 (ko) 2013-04-19 2014-03-18 압분 자심용 철분
CN201480022072.4A CN105142823B (zh) 2013-04-19 2014-03-18 压粉磁芯用铁粉
US14/764,273 US10410780B2 (en) 2013-04-19 2014-03-18 Iron powder for dust core
CA2903392A CA2903392C (en) 2013-04-19 2014-03-18 Iron powder for dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013088720A JP5929819B2 (ja) 2013-04-19 2013-04-19 圧粉磁芯用鉄粉
JP2013-088720 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171065A1 true WO2014171065A1 (ja) 2014-10-23

Family

ID=51731030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001559 WO2014171065A1 (ja) 2013-04-19 2014-03-18 圧粉磁芯用鉄粉

Country Status (7)

Country Link
US (1) US10410780B2 (ja)
JP (1) JP5929819B2 (ja)
KR (1) KR101783255B1 (ja)
CN (1) CN105142823B (ja)
CA (1) CA2903392C (ja)
SE (1) SE540046C2 (ja)
WO (1) WO2014171065A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240012412A (ko) * 2021-05-28 2024-01-29 소에이 가가쿠 고교 가부시키가이샤 절연 피복 연자성 분말

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187918A (ja) * 2003-12-26 2005-07-14 Jfe Steel Kk 圧粉磁心用絶縁被覆鉄粉
JP2005248274A (ja) * 2004-03-05 2005-09-15 Sumitomo Electric Ind Ltd 軟磁性材料および圧粉成形体の製造方法
JP2006024869A (ja) * 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
JP2006283166A (ja) * 2005-04-04 2006-10-19 Jfe Steel Kk 圧粉磁芯用被覆鉄基粉末および圧粉磁芯
JP2007092162A (ja) * 2005-02-03 2007-04-12 Jfe Steel Kk 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
JP2008277775A (ja) * 2007-04-04 2008-11-13 Hitachi Metals Ltd 圧粉磁心およびその製造方法
JP2010043361A (ja) * 2009-11-16 2010-02-25 Jfe Steel Corp 圧粉磁心用の軟磁性金属粉末および圧粉磁心
JP2012140679A (ja) * 2010-12-28 2012-07-26 Kobe Steel Ltd 圧粉磁心用鉄基軟磁性粉末およびその製造方法並びに圧粉磁心

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08921B2 (ja) 1992-06-19 1996-01-10 株式会社神戸製鋼所 圧縮性と磁気特性に優れた粉末冶金用純鉄粉
JP4457682B2 (ja) 2004-01-30 2010-04-28 住友電気工業株式会社 圧粉磁心およびその製造方法
SE0401042D0 (sv) 2004-04-21 2004-04-21 Hoeganaes Ab Lubricants for metallurgical powder compositions
JP4630251B2 (ja) 2006-09-11 2011-02-09 株式会社神戸製鋼所 圧粉磁心および圧粉磁心用の鉄基粉末
CN101534979B (zh) * 2007-01-30 2011-03-09 杰富意钢铁株式会社 高压缩性铁粉及使用该高压缩性铁粉的压粉磁芯用铁粉和压粉磁芯
JP4957859B2 (ja) 2010-08-31 2012-06-20 Jfeスチール株式会社 種子被覆用鉄粉及び種子
JP5565453B2 (ja) * 2012-12-19 2014-08-06 Jfeスチール株式会社 圧粉磁芯用鉄粉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187918A (ja) * 2003-12-26 2005-07-14 Jfe Steel Kk 圧粉磁心用絶縁被覆鉄粉
JP2005248274A (ja) * 2004-03-05 2005-09-15 Sumitomo Electric Ind Ltd 軟磁性材料および圧粉成形体の製造方法
JP2006024869A (ja) * 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
JP2007092162A (ja) * 2005-02-03 2007-04-12 Jfe Steel Kk 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
JP2006283166A (ja) * 2005-04-04 2006-10-19 Jfe Steel Kk 圧粉磁芯用被覆鉄基粉末および圧粉磁芯
JP2008277775A (ja) * 2007-04-04 2008-11-13 Hitachi Metals Ltd 圧粉磁心およびその製造方法
JP2010043361A (ja) * 2009-11-16 2010-02-25 Jfe Steel Corp 圧粉磁心用の軟磁性金属粉末および圧粉磁心
JP2012140679A (ja) * 2010-12-28 2012-07-26 Kobe Steel Ltd 圧粉磁心用鉄基軟磁性粉末およびその製造方法並びに圧粉磁心

Also Published As

Publication number Publication date
KR101783255B1 (ko) 2017-10-23
SE540046C2 (en) 2018-03-06
US10410780B2 (en) 2019-09-10
JP2014210966A (ja) 2014-11-13
US20150364236A1 (en) 2015-12-17
CN105142823A (zh) 2015-12-09
CA2903392A1 (en) 2014-10-23
JP5929819B2 (ja) 2016-06-08
CN105142823B (zh) 2017-07-28
SE1551331A1 (sv) 2015-10-15
CA2903392C (en) 2017-06-27
KR20150122180A (ko) 2015-10-30

Similar Documents

Publication Publication Date Title
JP5501970B2 (ja) 圧粉磁心及びその製造方法
JP6052419B2 (ja) 圧粉磁芯用鉄粉および圧粉磁芯用鉄粉の選別方法
JP6056862B2 (ja) 圧粉磁芯用鉄粉および圧粉磁芯用絶縁被覆鉄粉
JP5565453B2 (ja) 圧粉磁芯用鉄粉
JP6064539B2 (ja) 圧粉磁芯用粉末の製造方法および圧粉磁芯用粉末
JP5929819B2 (ja) 圧粉磁芯用鉄粉
JP6035788B2 (ja) 圧粉磁芯用粉末
WO2022196315A1 (ja) 磁心用粉末とその製造方法および圧粉磁心

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022072.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764273

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2903392

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157025638

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785856

Country of ref document: EP

Kind code of ref document: A1