WO2014169785A1 - 发光装置及相关光源系统 - Google Patents

发光装置及相关光源系统 Download PDF

Info

Publication number
WO2014169785A1
WO2014169785A1 PCT/CN2014/075194 CN2014075194W WO2014169785A1 WO 2014169785 A1 WO2014169785 A1 WO 2014169785A1 CN 2014075194 W CN2014075194 W CN 2014075194W WO 2014169785 A1 WO2014169785 A1 WO 2014169785A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
laser
area
condensing
Prior art date
Application number
PCT/CN2014/075194
Other languages
English (en)
French (fr)
Inventor
胡飞
侯海雄
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to US14/785,846 priority Critical patent/US9904160B2/en
Priority to EP14784933.5A priority patent/EP2988158B1/en
Priority to JP2016507991A priority patent/JP6176642B2/ja
Priority to KR1020157032218A priority patent/KR101825530B1/ko
Publication of WO2014169785A1 publication Critical patent/WO2014169785A1/zh
Priority to US15/904,116 priority patent/US10338461B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre

Definitions

  • the present invention relates to the field of illumination and display technology, and more particularly to a light-emitting device and associated light source system. Background technique
  • the yellow light is excited by blue light to generate yellow light, and the yellow light is mixed with the unabsorbed blue light to form white light, which is a white light source scheme commonly used in the field of projection display and the like in the prior art.
  • white light which is a white light source scheme commonly used in the field of projection display and the like in the prior art.
  • a 445 nm blue laser is more efficient in exciting the phosphor, a 445 nm blue laser is often used as the excitation source.
  • the 445nm blue light is purple, which is not suitable for direct projection display. Therefore, an improvement is to use a 445 nm blue laser to excite the yellow phosphor to produce a yellow laser, and a 462 nm blue laser to combine with the yellow laser to produce white light.
  • FIG. 1 is a schematic structural view of a light source system in the prior art.
  • the light source system includes a first light emitting device 10, a second light emitting device 20, a wavelength converting device 30, and a light collecting system 40.
  • the first light emitting device 10 includes a first laser array 101 and a converging lens 102.
  • the first laser array 101 includes a plurality of laser elements for generating a blue laser of 445 nm.
  • the light emitted by the first laser array 101 is collected by the condenser lens 102 and then emitted.
  • the second light emitting device 2 includes a second laser array 201 and a converging lens 202.
  • the light emitted by the second laser array 201 is collected by the condenser lens 202 and then emitted.
  • the light collecting system 40 includes a filter 401 and a collecting lens 402, wherein the filter 401 is for transmitting blue light and reflecting yellow light.
  • the illuminations of the first illumination device 10 and the second illumination device 20 are respectively incident from both sides of the filter 401, wherein the illumination of the first illumination device 10 sequentially transmits the filter 401 and the collection lens 402 to the wavelength conversion device 30.
  • the wavelength conversion device 30 includes a wavelength conversion layer including a yellow phosphor for absorbing the blue laser light from the first light-emitting device 10 and generating a yellow laser light.
  • the yellow received laser light passes through the collection lens 402 After being collected, it is incident on the filter 401, and is reflected by the filter 401 to be emitted by the second illuminating device 20 transmitted through the filter 401 to form a beam of light.
  • the second illuminating device 20 further includes a hook 203 located at the convergence lens 202 in order to cause the second illuminating device 20 to emit light and the yellow illuminating light to be hooked.
  • the light path is used to illuminate the blue laser light emitted from the condenser lens 202.
  • the first light-emitting device 10 further includes a light-dancing rod 103, which is located after the exit of the condenser lens 102.
  • the optical path is used to illuminate the blue laser light emitted from the condenser lens 102.
  • the structure of the light source system is very large.
  • One solution is to combine the first laser array and the second laser array into the same laser array, and use a converging lens and a hook bar to collect and illuminate the laser array.
  • the wavelength of the light is split, the blue light of 445 nm and the blue light of 462 nm are split. Since the wavelengths of the two blue light are relatively close, the steepness of the filter curve of the filter is very high. , resulting in increased costs.
  • the technical problem to be solved by the present invention is to provide a light-emitting device which produces two kinds of light beams having different amounts of optical expansion.
  • the embodiment of the invention provides a light emitting device, comprising:
  • a laser light source comprising a first laser array and a second laser array, respectively for generating first light and second light having different wavelength ranges
  • a light collecting system configured to collect light emitted from the array of laser light sources such that a ratio of a divergence angle of the collected second light to a divergence angle of the first light is less than or equal to a predetermined value, wherein the predetermined value is 0.7 .
  • the light collecting system comprises a collecting device and a collimating lens, wherein the collecting device comprises at least one collecting lens for collecting a light beam from the laser light source, wherein the collimating lens is used for performing light beam from the collecting device Collimation
  • the collecting device includes a first area and a second area, wherein the first area is an area through which the first light passes, and the second area is an area through which the second light passes; wherein the combined focal length of the first area
  • the divergence angle of the first light is greater than the divergence angle of the second light, and the divergence angle of the second light collected by the light collecting system is first
  • the ratio of the divergence angle of the light is less than or equal to the predetermined value.
  • the light collecting system includes a collecting device and a collimating lens, wherein the collecting device includes at least one collecting lens for A beam of the laser source is concentrated, the collimating lens for collimating the light beam from the collecting device;
  • the collecting device includes a first area and a second area, wherein the first area is an area through which the first light passes, and the second area is an area through which the second light passes, wherein the combined focal length of the second area and the first area The ratio of the combined focal lengths is less than or equal to the predetermined value.
  • the first region of the collecting device comprises a first collecting lens on an outgoing light path of the laser light source, wherein a part of the first collecting lens is used for collecting the first light; and the second region of the collecting lens A second collecting lens is disposed on the outgoing light path of the second light passing through the first collecting lens for collecting the second light.
  • the collecting device comprises a converging lens and a reflecting cover having a through hole, the converging lens comprising a first surface facing the laser light source and a second surface opposite to the first surface, wherein the second surface is provided a filter film that transmits the second light and reflects the first light; the reflector is located on the outgoing light path of the laser light source, and the reflective surface faces the second surface of the converging lens;
  • the first light from the laser source is incident directly on the reflector and is reflected to the first side of the converging lens and is again reflected to the collimating lens;
  • Second light from the laser source is incident directly onto the converging lens and collected to the collimating lens;
  • the emitted light of the collimator lens is emitted from the through hole of the reflector.
  • the light emitting device comprises a light-emitting rod
  • the collecting lens comprises a first collecting lens and a second collecting lens
  • the second collecting lens is located between the first collecting lens and the focus of the first collecting lens
  • the second collecting lens The first surface facing the first converging lens and the second surface opposite to the first surface, wherein the second surface is provided with a filter film that transmits the second light and reflects the first light
  • the first laser array is disposed at the first surface
  • the converging lens is opposite to a side of the second converging lens
  • the second laser array is provided with a side of the second converging lens facing away from the first converging lens
  • the first converging lens is respectively provided with a through hole corresponding to the optical axis of the collimating lens, and the hooking bar is located on the outgoing light path of the collimating lens, and sequentially passes through the first converging lens and the first laser array.
  • the first light from the first laser array is collected by the first converging lens onto the first surface of the second converging lens, and is reflected to the collimating lens, and then incident on the hook bar;
  • the second light from the second laser array is collected by the second converging lens to the collimating lens, collimated and incident on the hook bar.
  • different regions of the light collecting system through which the first light and the second light respectively pass by the laser light source have the same focal length
  • the ratio of the divergence angle of the second light to the divergence angle of the first light is less than or equal to the predetermined value.
  • the laser light source further includes a first collimating lens array and a second collimating lens array, wherein each collimating lens in the first and second collimating lens arrays is respectively associated with each laser light source in the first and second laser arrays- Correspondingly, for collimating the illumination of the corresponding laser light source; the focal length of each collimating lens in the second collimating lens array is larger than the focal length of each collimating lens in the first collimating lens array, so that after collimating The ratio of the divergence angle of the second light to the divergence angle of the collimated first light is less than or equal to the predetermined value; or
  • the degree of defocus of each laser element and its corresponding collimating lens in the first laser array is greater than the degree of defocus of each laser element in the second laser array and its corresponding collimating lens, such that the collimated second light a ratio of a divergence angle to a divergent angle of the collimated first light is less than or equal to the predetermined value; or
  • the divergence angle of the illumination of each laser element in the first laser array is greater than the divergence angle of the illumination of each laser element in the second laser array, such that the divergence angle of the collimated second light and the collimated first light
  • the ratio of the divergence angle is less than or equal to the predetermined value.
  • the first light is provided with a diffuser or a pair of complex lenses on a propagation path within the laser source, and the pair of diffusers or fly-eye lenses avoids a propagation path of the second light.
  • the illuminating device comprises a light-emitting bar for illuminating a light beam from the light collecting system, wherein the light-emitting bar is uniform in any section along a direction perpendicular to the light-emitting bar;
  • the laser light source includes a light emitting area and a non-light emitting area, wherein the first and second laser arrays are all located on the light emitting area;
  • the light collecting system includes a reflective concentrating device and a collimating lens, the reflective concentrating device includes a concentrating region and a non-concentrating region, the concentrating region focuses and reflects the emitted light from the laser source to the collimating a lens for collimating and exiting a light beam from the reflective concentrating device to the light-emitting bar;
  • the non-light-emitting area and the non-light-concentrating area of the laser light source are located on a same line parallel to the optical axis of the laser light source, and the light-emitting rod passes through the non-light-emitting area and/or the non-light-concentrating area .
  • the reflective concentrating device includes a converging lens having a through hole and a reflective element, the through hole of the converging lens is a non-light collecting area, and the other area of the converging lens except the through hole and the reflective element are Concentrating region;
  • the area of the converging lens other than the through hole is used to concentrate the outgoing light of the laser light source, and the reflective element is configured to reflect the light beam from the converging lens to the collimating lens;
  • the hook light rod passes through a through hole of the converging lens and a non-light emitting area of the laser light source.
  • the reflective concentrating device is a reflective cover
  • the middle portion of the reflective cover is a non-light-concentrating region
  • the region other than the intermediate region is a condensing region
  • the light-emitting bar passes through the non-light-emitting region of the laser light source.
  • the reflective concentrating device comprises a reflective element and a reflective cover having a through hole, the through hole of the reflective cover being a non-light collecting area, the reflective cover other than the through hole and the reflective element being a concentrating area ;
  • the light-emitting bar passes through a through hole of the reflector.
  • the third reflective element is fixed to a non-light emitting region of the laser light source.
  • the illuminating device further comprises a light-emitting bar for illuminating the light beam from the light collecting system, wherein the light-emitting bar is consistent in any section along a direction perpendicular to the light-emitting bar .
  • the predetermined value is 0.3.
  • the embodiment of the invention further provides a light source system, comprising:
  • a light-emitting device comprising: a wavelength conversion layer for absorbing first light from the light-emitting device to generate a laser light; one side of the wavelength conversion layer receives the excitation light and the first light, and is the same Exciting at least a portion of the first light, and at least a portion of the laser light or at least a portion of the laser light and the unabsorbed excitation light;
  • a scattering device comprising: a scattering layer for scattering second light from the light emitting device; one side of the scattering layer receiving the second light and emitting at least a portion of the second light on the same side; the light guiding device, including the first An area, the second light and the first light from the light emitting device are incident from the first light path to the light guiding device, wherein at least a portion of the second light is incident on the first region, and at least a portion of the first light is incident on the light guiding device Other regions than the first region; light incident on the light guiding device other than the first region is guided to the wavelength conversion device, and light incident on the first region of the light guiding device is guided to the a scattering device; the region of the light guiding device other than the first region is further configured to direct the laser light from the wavelength conversion device and the second light from the scattering device to the second light channel to exit.
  • the present invention includes the following beneficial effects:
  • the optical spread amount of the two beams is largely different, so that the subsequent light of the light-emitting device can be
  • the two beams are split by the difference in the etendue of the two beams.
  • FIG. 1 is a schematic structural view of a light source system in the prior art
  • FIG. 2A is a schematic structural view of an embodiment of a light source system of the present invention.
  • FIG. 2B is a right side view of the first collecting lens in the light source system shown in FIG. 2A;
  • FIG. 3 is a schematic structural view of still another embodiment of a light emitting device in the light source system shown in FIG. 2A;
  • FIG. 4A is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • FIG. 4B is a schematic structural view of still another embodiment of a light emitting device of the present invention.
  • FIG. 5 is a schematic structural view of still another embodiment of a light emitting device of the present invention.
  • FIG. 6 is a schematic structural view of still another embodiment of a light emitting device of the present invention
  • FIG. 7 is a schematic structural view of still another embodiment of a light emitting device of the present invention
  • FIG. 6 is a schematic structural view of still another embodiment of a light emitting device of the present invention
  • FIG. 7 is a schematic structural view of still another embodiment of a light emitting device of the present invention.
  • FIG. 8 is a schematic structural view of still another embodiment of a light emitting device of the present invention.
  • Fig. 9 is a schematic view showing the structure of still another embodiment of the light-emitting device of the present invention.
  • combined focal length refers to the equivalent focal length of the optical system composed of optical elements.
  • Fig. 2A is a schematic structural view of an embodiment of a light source system of the present invention.
  • the light source system includes a light-emitting device 1, a light guiding device 2, a scattering device 3, and a wavelength conversion device 4.
  • the light-emitting device 1 includes a laser light source 11, a light collecting system 12, and a light-emitting rod 13.
  • the laser light source 11 includes a first laser array 111 and a second laser array 112 having uniform light-emitting directions for generating first light and second light having different wavelength ranges, respectively.
  • the first light is a blue laser having a wavelength in the range of 440 nm to 460 nm
  • the second light is a blue laser having a wavelength in the range of 460 nm to 480 nm.
  • the first laser array 111 and the second laser array 112 are arranged on the same plane, wherein the first laser array 111 surrounds the second laser array 112, and the divergence angles of the respective laser elements in the two laser arrays are uniform.
  • the first and second laser arrays may not be arranged on the same plane.
  • the laser light source 11 further includes a first collimating lens array 113 and a second collimating lens array 114, wherein the collimating lenses in the first and second collimating lens arrays respectively A pair of laser light sources in the first and second laser arrays are applied to collimate the light emitted by the corresponding laser light source.
  • the laser beam collimated by the collimating lens is not a strictly parallel beam, but a beam having a certain divergence angle.
  • the divergence angle is smaller than the divergence angle of the laser element.
  • the alignment lens array may not be provided when the brightness requirement for the spot is not particularly high.
  • the light collecting system 12 includes a collecting device and a collimating lens 123, wherein the collecting device includes a first area and a second area, the first area is an area through which the first light passes, and the second area is The area through which the second light passes.
  • the collecting device includes a first collecting lens 121 and a second collecting lens 122, which are a first region and a second region, respectively. Both of the lenses are convex lenses.
  • Fig. 2B is a right side view of the first collecting lens in the light source system shown in Fig. 2A.
  • the first collecting lens 121 is located on the outgoing light path of the laser light source 11 , and the first collecting lens 121 is provided with a through hole 121 a corresponding to the second light, and the first light of the laser light source 11 is concentrated by the first collecting lens 121 .
  • the second light directly passes through the through hole 121a on the first collecting lens 121.
  • the focal length of the second collecting lens 122 (denoted as f2, i.e., the combined focal length of the second region) is smaller than the focal length of the first collecting lens 121 (denoted as fl, that is, the combined focal length of the first region).
  • f2/fl is less than or equal to 0.3.
  • the second collecting lens 122 is located on a propagation path of the second light passing through the first collecting lens 121 for focusing the second light, and the focal points of the first and second collecting lenses are coincident.
  • the collimating lens 123 is located on the outgoing light path of the second collecting lens 122 for collimating the first and second lights respectively concentrated by the first and second collecting lenses, wherein the focal length of the collimating lens 123 is denoted as f3.
  • the light beam collimated by the collimator lens 123 is incident on the hook light rod 13 for uniformization, wherein the hook light rod 13 is uniform in any one of the cross sections perpendicular to the hook light rod 13.
  • the light emitted from the laser light source 11 is composed of a plurality of small beams, each of which is illuminated by a laser element, each of which is parallel to each other, and each of the small beams has a certain divergence angle inside.
  • the light emitting surface of each small beam is compressed. According to the conservation of the optical spread, the divergence angle of each small beam increases, and the divergence angle of each small beam in the first light increases by a factor of fl/f3, and the divergence angle of each small beam in the second light increases.
  • the multiple is f2/f3.
  • the divergence angles of the two beams are respectively equal to the divergence angles of the small beams in the two beams.
  • f2/fl is less than or equal to 0.3
  • the ratio of the divergence angle of the second light to the first light in the light emitted by the light collecting system 12 is less than or equal to 0.3.
  • the light-emitting bar 13 is uniform in any section along the direction perpendicular to the light-emitting bar 13, only the surface distribution changes after the light beam is hooked by the light-emitting bar 13, and the angular distribution does not change.
  • the ratio of the second light to the divergence angle of the first light after homogenizing through the homogenizing rod 13 is still less than or equal to 0.3.
  • the difference in the divergence angles of the two beams is so large that the subsequent optical paths can be split by the difference in the optical spread of the two beams.
  • the small beams After passing through the first and second collecting lenses in the light collecting system 12, the small beams are only focused to a point, and the divergence angle of the large beam composed of the small beams is large, and the divergence angle inside the small beams is still small. If the light emitted by the first and second collecting lenses is directly incident into the light-emitting rod 13 for uniform light, the internal divergence angle of each small light beam after being reflected multiple times in the light-emitting rod 13 is still small, and the small light beam combination is still small. The divergence angle of the resulting large beam is still large. Thus, the spot formed on the surface of the light exiting port of the hook light bar 13 is still a plurality of small spots that are independent of each other, rather than a uniform and complete large spot. Moreover, the large beam has a large divergence angle, which is not conducive to subsequent collection.
  • the light collecting system 12 further includes a collimator lens 123.
  • the different small beams are collimated, and the divergence angle in the small beam is increased.
  • the divergence angle of the large beam after being lighted by the homogenizing rod 13 is small, and the divergence angle of each small beam in the large beam is large, so that the spot formed on the surface of the light exiting port of the light-emitting rod 13 is an illuminance.
  • the complete large spot of the hook The divergence angles of the first light and the second light emitted by the hook light bar 13 are smaller than those of the collimator lens 123, which is advantageous for the subsequent use of the optical path.
  • the light guiding device 2 includes a first filter 21 for transmitting the first light and the second light and reflecting the received laser light, and a first reflecting element 22 for reflecting the second light.
  • the first reflective element 22 is specifically a small filter for transmitting the first light and reflecting the second light.
  • the first reflective element 22 is disposed on the first region of the light guiding device 2. In the present embodiment, the first region is on the central region of the first filter 21.
  • the outgoing light of the homogenizing rod 13 is incident from the first optical path to the light guiding device 2.
  • a collimating lens 14 is preferably provided on the exiting optical path of the hooking bar 13 for collimating the outgoing light of the hooking bar 13.
  • the light-emitting surfaces of the two light beams are equal to the area of the light-emitting opening of the light-emitting bar 13, and the divergence angle of the second light and the divergence angle of the first light
  • the ratio is less than or equal to 0.3, so that the exiting light of the hook light rod 13 is collimated by the collimating lens 14 in a collimated beam, the collimated beam is along any cross section perpendicular to its optical axis, the first light and the Light spots formed by two light
  • the aperture of the light spot formed by the second light is smaller than the aperture of the spot formed by the first light.
  • the light beam collimated by the collimating lens 14 is incident on the light guiding device 4, wherein the intermediate portion of the collimated light beam (including the first light and the second light) is incident on the intermediate portion of the first filter 21, that is, Incident on the first reflective element 22 and reflected to the scattering device 3; and the remaining light beam (ie, the first light) is incident on other regions of the first filter 21 other than the first reflective element 22, and is transmitted To the wavelength conversion device 4. It is easy to see that the smaller the ratio of the divergence angle of the second light to the first light in the outgoing light of the hook light bar 13, the smaller the area of the first reflecting element 22 compared to the first filter 21.
  • the first reflective element 22 can also be a mirror or a polarizer as long as the second light can be reflected to the scattering device 3.
  • a through hole may be formed in the first position of the first filter 21, and then the first reflective member 22 is fixed in the through hole.
  • the first reflective element 22 can be fixed to the side of the first filter 21 facing away from or facing the laser light source 11, preferably the latter, so that the second light can be prevented from passing through the first before and after being reflected by the first reflective element 22. Light loss caused by the filter 21.
  • the scattering device 3 includes a scattering layer 31 and a reflective substrate 32 which are stacked.
  • the scattering layer 31 includes opposing first and second surfaces, wherein the second surface is in contact with the reflective substrate 32, the first surface for receiving the light beam from the light guiding device 2 and being emitted by the scattering device 3 on the same side beam.
  • the need to reflect the substrate 32 also allows most of the light beam to exit from the first surface.
  • the wavelength conversion device 4 includes a wavelength conversion layer 41 and a reflective substrate 42 which are stacked.
  • the wavelength conversion layer 41 includes opposing first and second surfaces, wherein the first surface faces away from the reflective substrate 42 for receiving the first light.
  • the wavelength conversion layer 41 is provided with a wavelength converting material for absorbing the first light from the light guiding means 2 and emitting the mixed light of the laser light or the laser light and the unabsorbed excitation light from the first surface.
  • the reflection substrate 42 is not required, and most of the laser light or the mixed light of the laser light and the unabsorbed excitation light is emitted from the first surface.
  • the wavelength converting material is specifically a yellow wavelength converting material, configured to receive the excitation light and convert it into a yellow laser, wherein the The laser is distributed in Lambertian.
  • the wavelength converting material may be a material having wavelength conversion capability such as a phosphor, a quantum dot or a fluorescent dye; the wavelength converting material may also be a wavelength converting material of other colors.
  • the light emitted from the scattering device 3 and the wavelength conversion device 4 is collected by the collecting lenses 23 and 24, respectively, and then incident from both sides of the light guiding device 2, wherein the laser light is reflected by the first filter 21 and exits from the second optical channel.
  • the first light absorbed by the wavelength conversion device 4 is transmitted through the first filter 21 and is lost.
  • the scattered light beams emitted from the scattering device 3 the light incident on the first reflective element 22 is reflected and lost, and the light beam incident on the first filter 21 other than the first reflective element 22 is transmitted.
  • the light guiding device 4 is combined with the laser light to form a combined light to exit from the second optical channel.
  • the area of the first reflecting element 22 is preferably less than 10% of the area of the first filter 21.
  • the difference in the optical spread amount of the first light and the second light in the light emitted from the hook light bar 13 is large, so that the light guiding device 4 can perform the light splitting by using the difference in the optical spread amounts of the two.
  • the first reflective element 22 on the light guiding device 4 is small relative to the first filter 21, and the difference between the amount of optical expansion of the second light before scattering by the scattering device and the second light after scattering can be utilized.
  • the light paths of the two beams are separated.
  • the light guiding device 4 also combines the two lights by the different wavelengths of the second light and the received laser light, so that the entire light source system has a compact structure and a small volume.
  • the ratio of the divergence angle of the second light and the first light in the emitted light is preferably less than or equal to 0.3.
  • part of the second light may also be incident on other regions of the first filter 21 other than the first reflective element 22 and transmitted.
  • the wavelength conversion device 4 is used to excite the wavelength converting material.
  • the ratio of the divergence angle of the second light and the first light emitted from the hook light bar 13 may not be controlled to a small range, and the ratio may be greater than 0.3.
  • the ratio of the divergence angles of the second light and the first light when exiting from the hook light bar 13 is less than or equal to 0.7.
  • the first light and the second light are first incident on the wavelength conversion device and the scattering device respectively through the hook light of the light-emitting bar, which makes the light spot formed on the wavelength conversion layer of the first light more uniform, and improves the first light.
  • the homogenizing rod 13 may be omitted, and then the light-emitting device 1 is emitted by the collimating lens 123.
  • the light beam is incident directly on the light guiding device 2.
  • the hook light bar in the light-emitting device can also be replaced with a fly-eye lens pair.
  • the light-emitting area of the second laser array in the laser light source 11 and the light-emitting area of the first laser array are The ratio is less than or equal to 0.3, such that the ratio of the area of the spot formed by the second light and the first light on the pair of fly-eye lenses is less than or equal to 0.3, and the pair of split-eye lenses respectively emit the second light and the first light.
  • the ratio of the spot area is less than or equal to 0.3.
  • the difference in the light-emitting surface is large, and therefore the two light beams can be split by the difference in the optical spread amount of the two light beams.
  • the collimating lens 123 in the light collecting system 12 may also be a concave lens.
  • the distance between the first collecting lens 121 and the collimating lens 123 in the light collecting system 12 is the sum of the focal lengths of the two lenses.
  • the distance between the first collecting lens 121 and the collimating lens 123 is the difference between the focal lengths of the two lenses, so that the optical path in the light collecting system 12 can be made shorter.
  • the first collecting lens 121 may not be provided with a through hole.
  • the second light emitted by the laser light source 11 is sequentially collected by the first collecting lens 121 and the second collecting lens 122 and then collimated by the collimating lens 123, that is, the second region of the collecting device in the light collecting system.
  • a first collection lens 121 and a second collection lens 122 are included.
  • the multiple of the divergence angle of the second light passing through the light collecting system 12 is the ratio of the combined focal length of the second region to the focal length of the collimating lens 123, that is, the combined focal length of the first collecting lens 121 and the second collecting lens 122.
  • the ratio of the focal length of the collimating lens 123 is the ratio of the focal length of the collimating lens 123.
  • the divergence angle of the second light and the first light after passing through the light collecting system 12 can be changed by designing the respective focal lengths of the first collecting lens 121 and the second collecting lens 122 and combining the focal lengths. Ratio.
  • the second laser array in the laser light source 11 surrounds the first laser array, and the first laser array emits light.
  • the first collecting lens and the second collecting lens are sequentially concentrated, and the second laser array emits light only through the first collecting lens 121.
  • FIG. 3 is a schematic structural view of still another embodiment of the light-emitting device in the light source system shown in FIG. 2A. Different from the light-emitting device in the embodiment shown in Fig. 2A, in the present embodiment, the first laser array 111 and the second laser array 113 are arranged side by side.
  • the first collecting lens 124 and the second collecting lens 125 in the light collecting system 12 are respectively located on the outgoing light paths of the first laser array 111 and the second laser array 112 for concentrating the light of the corresponding laser array to the collimating lens 123.
  • the focal points of the first collecting lens 124 and the second collecting lens 125 are the same as the positions of the focal points of the collimating lens 123. It can be seen from the above description that the ratio of the divergence angle of the second light and the first light after passing through the light collecting system 12 is equal to the ratio of the focal length of the second collecting lens 125 to the focal length of the first collecting lens 124, and therefore, in this embodiment The ratio of the focal length of the second collecting lens to the first collecting lens is still less than or equal to 0.7.
  • the first collecting lens 124 and the second collecting lens 125 and the collimating lens 123 in the light collecting system are both confocal.
  • the first and/or second collection lens may also not be confocal with the collimating lens.
  • the first and second collecting lenses in the light collecting system can also adopt a lens with a uniform focal length, wherein the second collecting The lens 125 is confocal with the collimating lens 123, and the focus of the first collecting lens 124 is offset from the focus of the collimating lens 123, wherein the degree of specific deviation is determined by the specific size of the divergence angle of the first light after passing through the collimating lens 123, It suffices that the ratio of the divergence angle of the second light after passing through the collimating lens 123 to the divergence angle of the first light is less than or equal to 0.7.
  • the difference between the number of laser elements required for the first laser array and the second laser array is large, so the difference between the apertures of the first and second collection lenses is also large, and the first The collecting lens and the second collecting lens need to be confocal, and the focus is on the optical axis between the first and second collecting lenses, so that the first light deflects at a large angle when refracted by the first collecting lens, and thus the light loss
  • the embodiments shown in Figures 4A and 4B provide a solution, respectively.
  • Fig. 4A is a schematic structural view showing still another embodiment of the light-emitting device of the present invention.
  • the light emitting device includes a laser light source 11, a light collecting system, and a light hooking rod 13.
  • the difference between this embodiment and the embodiment shown in Figure 3 is that:
  • the light collecting system includes a collecting device and a collimating lens 123.
  • the collection device includes a reflector 126 and a converging lens 127.
  • the first laser array 111 is arranged around the second laser array 112.
  • the condensing lens 127 is located on the outgoing light path of the second light emitted by the laser light source 11 and avoids the outgoing light path of the first light for concentrating the second light.
  • Converging lens 127 includes opposing first side 127a and second side 127b, wherein first side 127a faces laser source 11 and second side 127b is plated with a filter that transmits the second light and reflects the first light.
  • the collimating lens 123 is located on the outgoing light path of the converging lens 127 for collimating the light beam emitted from the converging lens 127.
  • the reflector 126 is located on the outgoing light path of the laser light source 11 and is located on the side facing the second surface 127b of the condenser lens 127.
  • the reflector 126 may be an aluminum reflector or a concave mirror coated with a reflective film.
  • the reflecting surface of the reflecting cover 126 faces the laser light source 11, and a through hole 126a is provided at the exiting optical axis of the collecting lens 127.
  • the first light of the laser light source 11 is directly incident on the reflective cover 126, is reflected and concentrated on the second surface 127b of the converging lens 127, and is then reflected by the second surface 127b to the collimating lens 123 for collimation.
  • the hook light bar 13 is located on the outgoing light path of the collimating lens 123 and passes through the through hole 126a of the reflecting cover 126 for receiving the collimated light beam from the collimating lens 123 and hooking it.
  • the second light sequentially passes through the second region of the collecting device (ie, the first surface 127a and the second surface 127b of the converging lens 127) and the collimating lens 123;
  • the first light sequentially passes through the first region of the collecting device (ie, the reflector 126, the second surface 127b of the condenser lens 127) and the collimating lens 123.
  • the combined focal length of the second surface 127b of the reflector and the condenser lens 127 is f5
  • the focal length of the condenser lens 127 is f6
  • the focal length of the collimating lens 123 is f3
  • the first The divergence angle of the light is increased by f5/f3 after passing through the light collecting system 12
  • the divergence angle of the second light is increased by f6/f3 after passing through the light collecting system 12, in order to ensure that the second light and the first light are
  • f6/f5 is less than or equal to 0.7.
  • the first light in the laser light source is collected by two reflecting surfaces, and the second light is collected by a collecting lens, and the number of the first laser array and the second laser array in the laser light source is greatly different.
  • the ratio of the divergence angle of the two beams of light passing through the collecting system can be adjusted by changing the focal length of the reflecting cover, and the focusing of the first light is performed by the cooperation of the reflecting cover and the second surface of the collecting lens.
  • the process is divided into optical paths at both ends, and there is overlap between the two optical paths, so that the optical path is shortened to reduce the volume of the light-emitting device.
  • the homogenizing rod 13 does not necessarily pass through the through hole 126a of the reflecting cover 126, which is determined by the length of the hooking rod 13 and the focal length of the reflecting cover 126.
  • the light-emitting rod 13 passes through the reflection cover 126 or the light-emitting opening of the light-emitting bar 13 is located at the through hole of the reflection cover 126, so that the light-emitting light of the light-emitting rod 13 is smaller in the case where the through hole 126a of the reflection cover 126 is smaller. It is not blocked by the reflector 126.
  • Fig. 4B is a schematic structural view showing still another embodiment of the light-emitting device of the present invention.
  • the illuminating device includes a laser light source, a light collecting system, and a light stick 13.
  • the light collecting system includes a collecting device and a collimating lens 123. The difference between this embodiment and the above embodiment is:
  • the collection device includes a first converging lens 128 and a second converging lens 129.
  • the first converging lens 128 is specifically a convex lens having a through hole 128a, and the non-via area 128b other than the through hole 128a is a condensing area, and the condensing area 128b can focus the light beam, thereby reducing the cross-sectional area of the laser beam.
  • the light emitted from the first laser array 111 is collimated by the first collimating lens array 113 and directly incident on the condensing area 128b of the first converging lens 128.
  • the focal length of the second converging lens 129 (denoted as F2) is smaller than the focal length of the first converging lens 128.
  • the second converging lens 129 includes an opposite first surface 129a and a second surface 129b between the first converging lens 128 and the focus of the first converging lens 128, wherein the first surface 129a faces the first converging lens 128, and One side 129a is plated with a filter film that reflects the first light and transmits the second light.
  • the collimating lens 123 is located between the first converging lens 128 and the second converging lens 129. First The outgoing light of a converging lens 128 is directly incident on the first surface 129a of the second converging lens 129, is reflected and remains in focus, and is incident on the collimating lens 123 for collimation.
  • the light homogenizing rod 13 is located on the outgoing light path of the collimator lens 123.
  • the first laser array 111 and the first collimating lens array 113 are respectively provided with through holes 111a and 113a at the optical axes of the collimating lens 123.
  • the hooking bar 13 sequentially passes through the through hole 128a of the first converging lens 128, the through hole 113a of the first collimating lens array 113, and the through hole 111a of the first laser array 111.
  • the first light incident collimated rod 13 collimated by the collimating lens 123 is emitted after being hooked.
  • the second laser array 112 in the laser light source and the second collimating lens array 114 corresponding thereto are located on the side of the second converging lens 129 facing away from the first converging lens 128, and are collimated by the second collimating lens array 114.
  • the second light is directly incident on the second surface 129b of the second converging lens 129, and is concentrated to the collimating lens 123, and then collimated to the hooking bar 13 for hooking.
  • the second light sequentially passes through the second region of the collecting device (that is, the second surface 129b and the first surface 129a of the second converging lens 129) and the collimating lens 123;
  • the first light sequentially passes through the collecting device A region (i.e., two faces of the first converging lens 128, a first face 129a of the second converging lens 129) and a collimating lens 123.
  • the combined focal length of the first converging lens 128 and the first surface 129a of the second converging lens is F1
  • the focal length of the collimating lens is F3
  • the divergence angle of the first light is increased by F1/ after passing through the light collecting system.
  • the divergence angle of the second light is increased by F2/F3 after passing through the light collecting system.
  • F2/F1 is less than or equal to 0.7.
  • the width of the laser light source and the first converging lens can be reduced.
  • the first laser light source array and the second laser array are located on the same plane, which is advantageous for uniform heat dissipation, and the hook light bar does not pass through the laser light source, which is advantageous for the heat sink device of the laser light source.
  • the components included in the light collecting system are not limited to the examples in the embodiments shown in FIGS. 3, 4A, and 4B, and may be other components as long as the second light and the first light in the laser light source can be made to emit light.
  • the ratio of the multiple of the divergence angle increase after passing through the optical element in the light collecting system may be less than or equal to 0.7.
  • Embodiment 2 In the first embodiment, the divergence angles of the first light and the second light in the light emitted by the laser light source of the light-emitting device are the same, and the two light beams are changed by the difference of the optical elements in the light collecting system through which the two light beams respectively pass.
  • the divergence angle at which the hook light is incident is such that the ratio of the divergence angle of the second light and the first light when incident to the homogenizing rod is less than or equal to 0.7. In the present embodiment, however, the ratio of the divergence angle of the second light and the first light when exiting from the laser light source is less than or equal to 0.7.
  • FIG. 5 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • the illuminating device includes a laser light source 21, a light collecting system 22, and a hook bar 23.
  • the laser light source 21 includes a first laser array 211 and a second laser array 212, and a first collimating lens array 213 and a second collimating lens array 214 corresponding to the first and second laser arrays, respectively, wherein the two laser arrays
  • the divergence angles of the respective laser elements are uniform, and the focal lengths of the collimating lenses in the second collimating lens array 214 are larger than the focal lengths of the collimating lenses in the first collimating lens array 213, so that the second collimating lens array is
  • the ratio of the divergence angle of the second light emitted by 214 to the divergence angle of the first light emitted through the first collimating lens array 213 is less than or equal to 0.7.
  • the light collecting system 22 includes a converging lens 221 and a collimating lens 222 which are sequentially located on the exiting light path of the laser light source 21, wherein the two lenses are confocal.
  • the light emitted from the laser light source 21 is collected by the condenser lens 221, collimated by the collimator lens 222, and then incident on the hook bar 23.
  • the divergence angles of the first light and the second light are increased by the light collecting system 22, wherein the multiple of the increase is the ratio of the focal length of the condenser lens 221 and the collimating lens 222.
  • the focal points of the converging lens 221 and the collimating lens 222 may also be shifted from each other, which may cause the divergence angle of the first light and the second light to increase by a larger multiple.
  • the first collimating lens array 213 and the second collimating lens in the laser light source 21 The mirror 214 can also employ the same collimating lens.
  • the lens in the first laser array and the first collimating lens array is defocused, that is, each laser element in the first laser array is located on the optical axis of the collimating lens in the collimating lens array corresponding thereto and deviates from the collimation
  • the predetermined position of the focus of the lens is such that each laser element in the first laser array emits a predetermined divergence angle that is greater than the divergence angle of each of the laser elements in the second laser array.
  • the first and second collimating lens arrays may all adopt the same collimating lens, and there is no defocusing phenomenon, but the divergence angle of each laser element in the first laser array is greater than that in the second laser array.
  • the divergence angle of the laser element is such that the ratio of the divergence angle of the collimated second light to the divergence angle of the collimated first light is less than or equal to 0.7.
  • the first collimating lens array 213 and the second collimating lens 214 of the laser light source 21 may also adopt the same collimating lens.
  • a astigmatism sheet or a fly-eye lens pair is disposed on the propagation path of the first light in the laser light source, and the astigmatism sheet or the fly-eye lens pair avoids the propagation path of the second light, so that the two can increase the first light Divergence angle.
  • FIG. 6 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • the illuminating device includes a laser light source 21, a light collecting system 22, and a hook bar 23.
  • the light collecting system 22 includes a converging lens 221, a second reflecting element 223, and a collimating lens 222.
  • the converging lens 221 is specifically a convex lens including the through hole 221a, and the non-via area 221b other than the through hole 221a is a condensing area.
  • the condensing area 221b can focus the outgoing light of the laser light source 21, thereby reducing the cross-sectional area of the laser beam.
  • the second reflective element 223 is specifically a convex lens including a convex reflecting surface (for example, a reflective film is plated on the surface of the convex lens).
  • the convex lens 223 is located between the converging lens 221 and the focus 0 of the converging lens 221, and its convex reflecting surface is used to emit light from the converging lens 221. Reflect and keep the reflected light still in focus.
  • the collimating lens 222 is located on the outgoing light path of the convex lens 223 for collimating the light beam.
  • a through hole 21a is formed in the through hole 221a of the laser light source 21 corresponding to the converging lens 221, and the laser element and the collimator lens are not provided at the through hole 21a.
  • the hooking bar 23 is disposed such that it passes through the through hole 221a of the converging lens 221, the through hole 21a of the laser light source 21, and the light entrance of the homogenizing rod 23 is adjacent to the collimating lens 222, so that the collimating lens 222 The collimated beam is incident on the hook bar 23 for hooking.
  • the focusing process of the light beam is divided into two optical paths, and the optical paths between the two optical paths are overlapped, so that the light collecting system in the present embodiment causes the light emitted from the laser light source 21 to be emitted.
  • the distance required for focusing becomes shorter, thereby reducing the volume of the light-emitting device.
  • Fig. 7 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • the light emitting device includes a laser light source 21, a light collecting system 22, and a light homogenizing rod 23.
  • the light collection system 22 includes a reflective concentrating device 224 and a collimating lens 222.
  • the reflective concentrating device 224 is specifically a reflector, and the reflector may be an aluminum reflector or a concave mirror coated with a reflective film.
  • the reflector 224 is located on the outgoing light path of the laser light source 21 for reflecting and condensing the light emitted by the laser light source 21.
  • a collimating lens 222 is positioned between the laser source 21 and the reflector 224 for collimating the beam from the reflector 224.
  • the laser light source 21 is provided with a through hole 21a on the exiting optical axis of the collimating lens 222, and the laser element and the collimating lens are not provided at the through hole 21a.
  • the hook bar 23 is located on the outgoing light path of the collimating lens 222 and passes through the through hole 21a of the laser light source 21.
  • the light beam collimated by the collimator lens 222 is incident on the hook light bar 23 to be hooked and emitted.
  • the light path in the light collecting system 22 is folded by using the reflection cover to make the optical path shorter, and the light-emitting bar 23 passes through the laser light source 21, so that part of the light path in the light-emitting bar 23 overlaps with the laser light source 21. Further shortening the optical path in the light-emitting device makes the structure of the light-emitting device more compact and smaller.
  • the area of the reflection cover 224 is also large enough to collect all of the light emitted from the laser light source 21, which makes the reflection cover 224 The focal length will be longer and the size of the illuminating device will be larger.
  • FIG. 8 is a schematic structural view of still another embodiment of a light-emitting device of the present invention.
  • the light emitting device includes a laser light source 21, a light collecting system 22, and a hook bar 23.
  • the laser light source 21 is not provided with a through hole.
  • Reflective concentrating device 224 includes a reflector 225 and a third reflective element 226.
  • a through hole 225a is formed in a central portion of the reflector 225.
  • the through hole 225a is a non-light collecting region, and a region other than the through hole 225a is a collecting region 225b.
  • the reflector 225 is located on the outgoing light path of the laser light source 21 for reflecting the light emitted from the laser light source 21 and focusing.
  • the third reflective element 226 is specifically a mirror.
  • the mirror 226 is located between the reflector 225 and the laser source 21, and is disposed between the reflector 225 and the focus of the reflector 225, and is disposed perpendicular to the optical axis of the exit of the reflector 225 to shield the reflector 225.
  • the exiting light reflects and the reflected light remains focused.
  • a collimating lens 222 is located between the mirror 226 and the reflector 225 for receiving and collimating the beam from the mirror 226.
  • the hook bar 23 is located on the outgoing light path of the collimating lens 226 and passes through the through hole 225a of the reflecting cover 225 for receiving the light beam from the collimating lens 222. Perform a hook and then exit.
  • the focusing process of the light beam is divided into two optical paths, and the optical paths of the two optical fibers are overlapped, so that the distance required for the focusing of the light emitted by the laser light source 21 is shortened. Thereby reducing the volume of the illuminating device.
  • the advantage of the mirror is that it is simple in construction and low in cost.
  • the laser element and the collimating lens may not be disposed near the intersection of the laser light source 21 and the exiting optical axis of the reflecting cover 225, but The mirror 226 is fixed to the laser light source 21 on the region where the laser element is not provided, so as to solve the problem that the mirror 226 is difficult to fix by being suspended.
  • the third reflective element 226 may also be replaced by a concave lens or a convex lens comprising a reflective surface (for example, a surface coated with a reflective film). Relative to the mirror, the light reflected by the convex lens can be focused at a closer distance, the light reflected by the concave lens can be focused at a greater distance, and the concave lens and the convex lens can be designed as needed to control the focus of the reflected light. The distance of the location.
  • the third reflecting member is preferably a concave lens having a concave reflecting surface or a convex lens having a convex reflecting surface.
  • the concave lens with concave reflecting surface can also be replaced by a reflective aluminum plate with a concave reflecting surface, and the concave reflecting surface can achieve the same effect.
  • the convex lens with convex reflecting surface can also be used with a belt. A reflective aluminum plate having a convex reflecting surface is replaced.
  • the light-emitting surface of the homogenizing rod 23 exceeds the through hole 225a of the reflector 225, which facilitates the clamping and fixing of the homogenizing rod 23.
  • the reflective concentrating device 224 and the light-emitting bar 23 can be adjusted so that the light-emitting surface of the light-shading rod 23 is located at the through-hole 225a of the reflector 225, so that the overall structure of the illuminating device can be compared. compact.
  • the light-emitting surface of the light-emitting bar 23 can also be sealed with a transparent glass sheet, so that a closed space can be formed to prevent dust from entering the interior.
  • the reflective concentrating device 224 and the light-emitting bar 23 may further include a lens for the lens.
  • the exiting light of the hook light bar 23 is collimated or focused for use by subsequent optical elements, and the lens can be fixed at the through hole 225a of the reflecting cover 225, so that the overall structure of the light emitting device can be made compact.
  • the second light and the first light have the same divergence angle in the outgoing light of the laser light source, and then respectively pass through different elements in the light collecting system, so that the divergence angles of the two light beams are amplified to different degrees. And further implementing the second light and the first light emitted by the light collecting system
  • the ratio of the divergence angle is less than or equal to 0.7.
  • the ratio of the divergence angle of the second light and the first light in the emitted light of the laser light source is less than or equal to 0.7, and then is amplified by the light collecting system in an equal proportion, thereby implementing the light emitting system.
  • the ratio of the divergence angle of the dichroic light to the first light is less than or equal to 0.7.
  • the methods respectively adopted in Embodiment 1 and Embodiment 2 may also be combined, that is, the divergence angle of the former light of the second light and the first light in the emitted light of the laser light source is smaller than the divergence angle of the latter, and then When the light collecting system passes through, different proportions of amplification are obtained, wherein the magnification of the latter is larger than the magnification of the former, and the ratio of the divergence angle of the second light and the first light emitted by the light collecting system is less than or equal to 0.7.
  • the light emitted by the laser light source is collected by the collecting elements in the light collecting system and is incident on the collimating lens for collimation.
  • each of the first light and the second light are parallel to each other, and therefore the divergence angles of the first light and the second light are respectively the divergence angles of the small light beams inside each.
  • the collimating lens may not be disposed in the light collecting system, and the laser light source emits light. Directly incident on the hook bar after convergence. The following is explained in detail.
  • FIG. 9 is a schematic structural view of still another embodiment of a light-emitting device of the present invention.
  • the illuminating device includes a laser light source 31, a light collecting system, and a hook bar 33.
  • the laser light source 31 includes a first laser array 311, a second laser array 312, a first collimating lens array 313, and a second collimating lens array 314, wherein the first laser array 311 is arranged around the second laser array 312, and the second laser The array 312 is arranged around the optical axis M.
  • the collimating lenses in the first and second collimating lens arrays are respectively in one-to-one correspondence with the laser elements in the first and second laser arrays, and are used to align the illumination of the corresponding laser elements. straight.
  • the difference in the divergence angles of the second light and the first light in the outgoing light of the light-emitting device is controlled by controlling the apertures of the second light and the first light incident on the converging lens 31, respectively.
  • the ratio of arctan (L2 / F) to arctan (Ll / F) is less than or equal to 0.7.
  • the first light and the second light are respectively blue light having different wavelength ranges.
  • the first light and the second light may be other color lights in actual use, and are not limited to the above examples.
  • each of the light-emitting devices is used in the light source system shown in Fig. 2A.
  • each illuminating device can also be used in other applications.
  • the first light is a blue laser and the second light is a red laser.
  • a small mirror is used for reflecting the second light in the light emitted by the illuminating device to split the two beams; or a mirror with a through hole is used to connect the illuminating device The light is emitted, wherein the second light is transmitted from the through hole of the mirror, and the first light is reflected by the mirror other than the through hole to split the two lights.
  • the first light is a red laser and the second light is a blue laser, which is determined by actual needs.
  • Embodiments of the present invention also provide a projection system including a light source system, which may have the structure and function in the above embodiments.
  • the projection system can employ various projection technologies such as liquid crystal display (LCD) projection technology and digital light processor (DLP) projection technology.
  • LCD liquid crystal display
  • DLP digital light processor
  • the above-described illuminating device can also be applied to a lighting system such as stage lighting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种发光装置(1)及相关光源系统。发光装置(1)包括激光光源(11、21、31)和光收集系统(12、22)。激光光源(11、21、31)包括第一激光阵列(111、211、311)和第二激光阵列(112、212、312),分别用于产生波长范围不同的第一光和第二光。光收集系统(12、22)用于对来自激光光源阵列所发光进行收集。经收集后的第二光的发散角度与第一光的发散角度的比值小于或等于预定值。预定值为0.7。该发光装置(1)能产生具有不同光学扩展量的两种光束。

Description

发光装置及相关光源系统
技术领域
本发明涉及照明及显示技术领域, 特别是涉及一种发光装置及相关 光源系统。 背景技术
利用蓝光激发黄光荧光粉以产生黄光, 再将该黄光与未被吸收的蓝 光混合而成白光, 是现有技术的投影显示等领域中常用的白光光源方案。 在该种光源方案中, 由于 445 nm的蓝色激光激发荧光粉的效率较高, 因此常采用 445nm的蓝光激光作为激发光源。 但是 445nm的蓝光的颜 色偏紫, 不适合直接用于直接投影显示。 因此, 一种改进方案为采用 445nm的蓝光激光来激发黄光荧光粉以产生黄色受激光, 再采用 462nm 的蓝光激光来和该黄色受激光进行合光以产生白光。
如图 1所示, 图 1为现有技术中的一种光源系统的结构示意图。 光 源系统包括第一发光装置 10、 第二发光装置 20、 波长转换装置 30和光 收集系统 40。第一发光装置 10包括第一激光阵列 101和汇聚透镜 102。 第一激光阵列 101包括多个激光元件, 用于产生 445nm的蓝色激光。 第 一激光阵列 101所发光经汇聚透镜 102收集后出射。 第二发光装置 2包 括第二激光阵列 201和汇聚透镜 202。 该第二激光阵列 201所发光经汇 聚透镜 202收集后出射。
光收集系统 40包括滤光片 401和收集透镜 402, 其中该滤光片 401 用于透射蓝光并反射黄光。 第一发光装置 10和第二发光装置 20所发光 分别从该滤光片 401 的两侧入射, 其中第一发光装置 10所发光依次透 射滤光片 401和收集透镜 402后至波长转换装置 30。 波长转换装置 30 包括波长转换层, 该波长转换层包括黄色荧光粉, 用于吸收来自第一发 光装置 10的蓝色激光并产生黄色受激光。该黄色受激光经收集透镜 402 收集后入射至滤光片 401, 并被滤光片 401反射至和经滤光片 401透射 的第二发光装置 20所发光合为一束光出射。
由于激光呈高斯分布, 受激光呈朗伯分布, 为使第二发光装置 20 所发光和黄色受激光合光均勾,因此第二发光装置 20还包括勾光棒 203, 位于汇聚透镜 202的出射光路上, 用于对经汇聚透镜 202出射的蓝光激 光进行勾光。 同时, 为使第一发光装置 10所发光在波长转换装置 30上 形成的光斑的光功率密度均勾, 提高激发效率, 第一发光装置 10 还包 括匀光棒 103, 位于汇聚透镜 102的出射后光路上, 用于对经汇聚透镜 102出射的蓝光激光进行勾光。
但由于该光源系统中包括的光学元件较多, 导致光源系统的结构很 庞大。 一种解决方案为将第一激光阵列和第二激光阵列合为同一激光阵 列, 并采用一个汇聚透镜以及勾光棒来对该激光阵列进行收集和勾光。 但是,在后续的光路中若采用波长分光的方法将 445nm的蓝光和 462nm 的蓝光进行分光, 由于该两中蓝光的波长距离较近, 这对滤光片的滤光 曲线的陡度要求很高, 导致成本增加。
发明内容
本发明主要解决的技术问题是提供一种产生具有不同光学扩展量 的两种光束的发光装置。
本发明实施例提供一种发光装置, 包括:
激光光源, 包括第一激光阵列和第二激光阵列, 分别用于产生波长 范围不同的第一光和第二光;
光收集系统, 用于对来自所述激光光源阵列所发光进行收集, 使得 经收集后的第二光的发散角度与第一光的发散角度的比值小于或等于 预定值, 其中该预定值为 0.7。
优选地, 所述光收集系统包括收集装置和准直透镜, 其中收集装置 包括至少一汇聚透镜, 用于对来自激光光源的光束进行汇聚, 该准直透 镜用于对来自该收集装置的光束进行准直;
所述收集装置包括第一区域和第二区域, 该第一区域为第一光所经 过的区域, 第二区域为第二光所经过的区域; 其中第一区域的组合焦距 大于第二区域的组合焦距, 且所述激光光源的出射中, 第一光的发散角 大于第二光的发散角, 使得经所述光收集系统收集后的第二光的发散角 度与第一光的发散角度的比值小于或等于所述预定值。
优选地, 所述激光光源的出射光中, 第一光和第二光的发散角相同; 所述光收集系统包括收集装置和准直透镜, 其中收集装置包括至少 一汇聚透镜, 用于对来自激光光源的光束进行汇聚, 该准直透镜用于对 来自该收集装置的光束进行准直;
所述收集装置包括第一区域和第二区域, 该第一区域为第一光所经 过的区域, 第二区域为第二光所经过的区域, 其中第二区域的组合焦距 与第一区域的组合焦距的比值小于或等于所述预定值。
优选地, 所述收集装置的第一区域包括第一收集透镜, 位于所述激 光光源的出射光路上, 其中部分第一收集透镜用于对第一光进行汇聚; 所述收集透镜的第二区域包括第二收集透镜, 位于经过第一收集透镜的 第二光的出射光路上, 用于对该第二光进行汇聚。
优选地, 所述收集装置包括汇聚透镜和具有通孔的反射罩, 该汇聚 透镜包括面对所述激光光源的第一面和与第一面相对的第二面, 其中第 二面上设有透射第二光并反射第一光的滤光膜; 该反射罩位于所述激光 光源的出射光路上, 其反射面面向该汇聚透镜的第二面;
来自所述激光光源的第一光直接入射至所述反射罩, 并被反射至所 述汇聚透镜的第一面上, 并再次被反射至所述准直透镜;
来自所述激光光源的第二光直接入射至所述汇聚透镜, 并被收集至 所述准直透镜;
所述准直透镜的出射光从该反射罩的通孔出射。
优选地, 所述发光装置包括勾光棒, 所述收集透镜包括第一汇聚透 镜和第二汇聚透镜, 第二汇聚透镜位于第一汇聚透镜和第一汇聚透镜的 焦点之间, 第二汇聚透镜包括面向第一汇聚透镜的第一面和与第一面相 对的第二面, 其中第二面上设有透射第二光并反射第一光的滤光膜; 第一激光阵列设于第一汇聚透镜背向第二汇聚透镜的一侧, 第二激 光阵列设有第二汇聚透镜背向第一汇聚透镜的一侧, 且第一激光阵列和 第一汇聚透镜分别对应所述准直透镜的光轴处均设有通孔, 该勾光棒位 于所述准直透镜的出射光路上, 并依次穿过第一汇聚透镜和第一激光阵 列的通孔;
来自第一激光阵列的第一光经第一汇聚透镜收集至第二汇聚透镜 的第一面上, 并被反射至所述准直透镜, 然后入射至所述勾光棒;
来自第二激光阵列的第二光经第二汇聚透镜收集至所述准直透镜, 经准直后入射至所述勾光棒。
优选地, 所述激光光源的出射光中第一光和第二光分别经过的所述 光收集系统的不同区域具有相同的焦距;
所述激光光源出射的光束中, 第二光的发散角度与第一光的发散角 度的比值小于或等于所述预定值。
优选地, 所述激光光源还包括第一准直透镜阵列和第二准直透镜阵 列, 其中第一、 二准直透镜阵列中各准直透镜分别与第一、 二激光阵列 中各激光光源——对应, 用于对与其对应的激光光源所发光进行准直; 第二准直透镜阵列中各准直透镜的焦距大于第一准直透镜阵列中 各准直透镜的焦距, 使得经准直后的第二光的发散角度与经准直后的第 一光的发散角度的比值小于或等于所述预定值; 或者,
第一激光阵列中各激光元件和与其对应的准直透镜的离焦程度大 于第二激光阵列中各激光元件和与其对应的准直透镜的离焦程度, 使得 经准直后的第二光的发散角度与经准直后的第一光的发散角度的比值 小于或等于所述预定值; 或者,
第一激光阵列中各激光元件所发光的发散角大于第二激光阵列中 各激光元件所发光的发散角, 使得经准直后的第二光的发散角度与经准 直后的第一光的发散角度的比值小于或等于所述预定值。
优选地, 第一光在所述激光光源内的传播路径上设有散光片或者复 眼透镜对, 且该散光片或者复眼透镜对避开第二光的传播路径。
优选地, 所述发光装置包括勾光棒, 用于对来自所述光收集系统的 光束进行勾光, 其中该勾光棒在沿垂直于该勾光棒的走向上的任意一个 截面均一致; 所述激光光源包括发光区域和非发光区域, 其中第一、 二激光阵列 均位于该发光区域上;
所述光收集系统包括反射聚光装置和准直透镜, 该反射聚光装置包 括聚光区域和非聚光区域, 该聚光区域将来自所述激光光源的出射光聚 焦并反射至该准直透镜, 该准直透镜用于将来自该反射聚光装置的光束 准直并出射至该勾光棒;
所述激光光源的非发光区域以及非聚光区域位于平行于所述激光 光源出射光光轴的同一直线上, 且所述勾光棒经过所述非发光区域和 / 或所述非聚光区域。
优选地, 所述反射聚光装置包括具有通孔的汇聚透镜和反射元件, 所述汇聚透镜的通孔为非聚光区域, 所述汇聚透镜除通孔以外的其他区 域和该反射元件为所述聚光区域;
所述汇聚透镜除通孔以外的其他区域用于对所述激光光源的出射 光进行汇聚, 该反射元件用于将来自所述汇聚透镜的光束反射至所述准 直透镜;
所述勾光棒经过所述汇聚透镜的通孔和所述激光光源的非发光区 域。
优选地, 所述反射聚光装置为反射罩, 该反射罩的中间区域为非聚 光区域, 该中间区域以外的区域为聚光区域, 所述勾光棒经过所述激光 光源的非发光区域。
优选地, 所述反射聚光装置包括反射元件和具有通孔的反射罩, 该 反射罩的通孔为非聚光区域, 该反射罩除通孔以外的其他区域和该反射 元件为聚光区域;
所述勾光棒经过所述反射罩的通孔。
优选地, 第三反射元件固定在所述激光光源的非发光区域。
优选地, 所述发光装置还包括勾光棒, 用于对来自所述光收集系统 的光束进行勾光, 其中该勾光棒在沿垂直于该勾光棒的走向上的任意一 个截面均一致。
优选地, 所述预定值为 0.3。 本发明实施例还提供一种光源系统, 包括:
上述发光装置; 波长转换装置, 包括用于吸收来自所述发光装置的第一光以产生受 激光的波长转换层; 该波长转换层的一侧接收所述激发光和第一光, 并 于同一侧出射至少部分第一光, 以及至少部分受激光或者受激光和未被 吸收的激发光的至少部分混合光;
散射装置, 包括用于对来自所述发光装置的第二光进行散射的散射 层; 该散射层的一侧接收第二光, 并于同一侧出射至少部分第二光; 导光装置, 包括第一区域, 来自所述发光装置的第二光和第一光从 第一光通道入射至该导光装置, 其中至少部分第二光入射第一区域, 至 少部分第一光入射该导光装置除第一区域以外的其他区域; 入射于该导 光装置除第一区域以外的其他区域的光被引导至所述波长转换装置, 入 射于该导光装置的第一区域的光被引导至所述散射装置; 该导光装置除 第一区域以外的区域还用于将来自所述波长转换装置的受激光和来自 所述散射装置的第二光引导至第二光通道出射。
与现有技术相比, 本发明包括如下有益效果:
本发明中, 由于发光装置中的光收集系统出射的第一光与第二光的 发散角度的比值小于等于 0.7, 该两束光的光学扩展量差异较大, 因此 能够在发光装置的后续光路上利用该两束光束的光学扩展量的差异来 对该两束光进行分光。 附图说明
图 1是现有技术中的一种光源系统的结构示意图;
图 2A是本发明的光源系统的一个实施例的结构示意图;
图 2B为图 2A所示光源系统中第一收集透镜的右视图;
图 3为图 2A所示光源系统中发光装置的又一实施例的结构示意图; 图 4A为本发明的发光装置的又一实施例的结构示意图;
图 4B为本发明的发光装置的又一实施例的结构示意图;
图 5为本发明的发光装置的又一实施例的结构示意图;
图 6为本发明的发光装置的又一实施例的结构示意图; 图 7为本发明的发光装置的又一实施例的结构示意图;
图 8为本发明的发光装置的又一实施例的结构示意图;
图 9为本发明的发光装置的又一实施例的结构示意图。
具体实施方式
为描述清楚, 下文中所描述的 "组合焦距" 指的是各光学元件组成 的光学系统的等效焦距。
下面结合附图和实施方式对本发明实施例进行详细说明。
实施例一
请参阅图 2A, 图 2A是本发明的光源系统的一个实施例的结构示意 图。 光源系统包括发光装置 1、 导光装置 2、 散射装置 3和波长转换装 置 4。
发光装置 1包括激光光源 11、 光收集系统 12和勾光棒 13。 激光光 源 11包括发光方向一致的第一激光阵列 111和第二激光阵列 112, 分别 用于产生波长范围不同的第一光和第二光。 本实施中, 第一光为波长位 于范围 440nm至 460nm内的蓝色激光, 第二光为波长位于范围 460nm 至 480nm的蓝色激光。 第一激光阵列 111和第二激光阵列 112位于同一 平面上排布, 其中第一激光阵列 111 环绕第二激光阵列 112, 且该两个 激光阵列中各激光元件所发光的发散角一致。 当然, 在实际运用中, 第 一、 二激光阵列也可以不是位于同一平面上排布。
由于激光元件所发光是具有一定发散角的, 因此, 激光光源 11还包 括第一准直透镜阵列 113和第二准直透镜阵列 114, 其中第一、 二准直 透镜阵列中各准直透镜分别与第一、 二激光阵列中各激光光源一一对应 用于对与其对应的激光光源所发光进行准直。 在实际运用中, 经准直透 镜准直的激光光束并不是严格的平行光束, 而是具有一定发散角的光束 当然, 该发散角要小于激光元件所发光的发散角。 但是当对光斑的亮度 要求不是特别高的时候可以不设置准直透镜阵列。
光收集系统 12包括收集装置和准直透镜 123, 其中该收集装置包括 第一区域和第二区域, 该第一区域为第一光所经过的区域, 第二区域为 第二光所经过的区域。
本实施中, 收集装置包括第一收集透镜 121和第二收集透镜 122, 分别为第一区域和第二区域。 该两个透镜均为凸透镜。 如图 2B 所示, 图 2B 为图 2A所示光源系统中第一收集透镜的右视图。 第一收集透镜 121位于激光光源 11的出射光路上, 且第一收集透镜 121对应第二光的 传播路径处设有通孔 121a, 激光光源 11所发光中第一光经第一收集透 镜 121汇聚, 而第二光直接穿过第一收集透镜 121上的通孔 121a。 第二 收集透镜 122的焦距 (记为 f2, 也即第二区域的组合焦距) 小于第一收 集透镜 121的焦距(记为 fl,也即第一区域的组合焦距)。本实施中, f2/fl 小于或等于 0.3。 第二收集透镜 122位于穿过第一收集透镜 121 的第二 光的传播路径上, 用于对第二光进行汇聚, 且第一、 二收集透镜的焦点 重合。
准直透镜 123位于第二收集透镜 122的出射光路上, 用于对分别经 第一、 二收集透镜汇聚的第一、 二光进行准直, 其中该准直透镜 123的 焦距记为 f3。 经准直透镜 123准直的光束入射至勾光棒 13进行匀光, 其中该勾光棒 13在沿垂直于该勾光棒 13的走向上的任意一个截面均一 致。
激光光源 11的出射光由多个小光束组成,其中每个小光束为一个激 光元件所发光, 各小光束相互平行,每个小光束内部具有一定的发散角。 该出射光中第一光和第二光分别经不同的收集透镜和同一准直透镜准 直后, 每个小光束的发光面被压縮。 根据光学扩展量守恒可知, 每个小 光束的发散角增大, 而第一光中各小光束的发散角的增大倍数为 fl/f3, 第二光中各小光束的发散角的增大倍数为 f2/f3。 由于第一光和第二光入 射匀光棒 13 时均为准直光束, 因此该两束光各自的发散角分别等于该 两束光内的小光束的发散角。 本实施例中, 由于 f2/fl小于或等于 0.3, 因此光收集系统 12 出射的光中第二光与第一光的发散角的比值小于或 等于 0.3。
由于勾光棒 13在沿垂直于该勾光棒 13的走向上的任意一个截面均 一致, 光束经勾光棒 13 勾光后只有面分布改变, 角分布并未改变, 因 此第二光与第一光经匀光棒 13匀光后的发散角的比值仍小于或等于 0.3。 而该两束光的发散角的差异如此大, 使得后续光路上可以利用该两束光 的光学扩展量的差异来对该两束光进行分光。
经过光收集系统 12 中的第一、 二收集透镜后, 各小光束只是向一 点聚焦, 各小光束组成的大光束的发散角很大, 而各小光束内部的发散 角依然很小。 若第一、 二收集透镜所出射光直接入射至勾光棒 13 内进 行匀光, 各小光束在勾光棒 13 内多次反射后出射时的内部发散角依然 很小, 而各小光束组合成的大光束的发散角依然很大。 这样, 勾光棒 13 的出光口所在面上形成的光斑依然是多个相互独立的小光斑, 而不是一 个均匀的完整大光斑。而且该大光束的发散角较大, 不利于后续的收集。
因此, 光收集系统 12中优选还包括准直透镜 123。 第一、 二收集透 镜的出射光经准直透镜 123准直后, 不同的小光束之间变准直了, 而小 光束内的发散角反而会变大。 这样, 经匀光棒 13 勾光后的大光束的发 散角较小, 而该大光束中各小光束的发散角较大, 使得勾光棒 13 的出 光口所在面上形成的光斑是个照度均勾的完整大光斑。 而勾光棒 13 出 射的第一光和第二光的发散角相比没有准直透镜 123时更小, 进而有利 于后续光路上的利用。
导光装置 2包括第一滤光片 21 与第一反射元件 22, 其中第一滤光 片 21用于透射第一光和第二光并反射受激光, 第一反射元件 22用于反 射第二光。 本实施例中, 第一反射元件 22 具体为小滤光片, 用于透射 第一光并反射第二光。第一反射元件 22设在导光装置 2的第一区域上, 本实施例中, 该第一区域为第一滤光片 21的中心区域上。
匀光棒 13的出射光从第一光通道入射至导光装置 2。为了方便和提 高该两束光在后续光路上的利用率, 勾光棒 13 的出射光路上优选还设 有准直透镜 14, 用于对勾光棒 13的出射光进行准直。 由于第一光和第 二光从勾光棒 13出射时, 该两束光的发光面均等于勾光棒 13的出光口 的面积, 且第二光的发散角与第一光的发散角的比值小于或等于 0.3, 因此, 勾光棒 13的出射光经准直透镜 14准直后的准直光束中, 该准直 光束沿垂直于其光轴的任意一个截面上, 第一光和第二光形成的光斑均 以该光轴为中心, 且第二光形成的光斑的口径小于第一光形成的光斑的 口径。 当勾光棒 13 的出射光中第二光与第一光的发散角的比值越小, 第二光形成的光斑相对第一光形成的光斑也就越小。
经准直透镜 14准直的光束入射至导光装置 4, 其中该准直光束的中 间部分光束 (包括第一光和第二光) 入射至第一滤光片 21 的中间区域 上, 也即入射至第一反射元件 22上, 并被反射至散射装置 3 ; 而其余光 束 (也即第一光) 入射至第一滤光片 21上除第一反射元件 22以外的其 他区域上, 被透射至波长转换装置 4。 容易看出, 当勾光棒 13的出射光 中第二光与第一光的发散角的比值越小时, 第一反射元件 22 相比第一 滤光片 21的面积就可以越小。
在实际运用中, 第一反射元件 22 也可以为反射镜或者偏振片, 只 要能够将第二光反射至散射装置 3 即可。 可在第一滤光片 21 的第一位 置上设有一通孔, 然后将第一反射元件 22 固定于该通孔内。 为加工方 便, 优选直接将第一反射元件 22层叠固定在第一滤光片 21的第一区域 上。 第一反射元件 22可以固定于第一滤光片 21背向或者面向激光光源 11 的一侧, 优选为后者, 这样可以避免第二光在经第一反射元件 22反 射前后都需经过第一滤光片 21而造成的光损失。
散射装置 3包括层叠设置的散射层 31和反射基底 32。散射层 31包 括相对的第一表面和第二表面, 其中第二表面与反射基底 32 相接触, 第一表面用于接收来自导光装置 2的光束并于同一侧出射经散射装置 3 散射后的光束。 当然, 在散射层 31 足够厚的情况下, 不需要反射基底 32也可以使得大部分光束从第一表面出射。
波长转换装置 4包括层叠设置的波长转换层 41和反射基底 42。 波 长转换层 41 包括相对的第一表面和第二表面, 其中第一表面背向反射 基底 42, 用于接收第一光。 波长转换层 41设有波长转换材料, 用于吸 收来自导光装置 2的第一光并从第一表面出射受激光或者受激光和未被 吸收的激发光的混合光。 当然, 在波长转换层 41 足够厚的情况下, 不 需要反射基底 42 也可以使得大部分受激光或者受激光和未被吸收的激 发光的混合光从第一表面出射。 本实施例中, 波长转换材料具体为黄光 波长转换材料, 用于接收激发光并将其转化为黄色受激光出射, 其中该 受激光呈朗伯分布。 在实际运用中, 波长转换材料可以是荧光粉、 量子 点或荧光染料等具有波长转换能力的材料; 该波长转换材料也可以是其 他颜色的波长转换材料。
散射装置 3和波长转换装置 4出射的光分别经收集透镜 23和 24收 集后分别从导光装置 2的两侧入射, 其中受激光被第一滤光片 21反射 从第二光通道出射, 未被波长转换装置 4吸收的第一光则透射第一滤光 片 21 而损失掉。 散射装置 3 出射的经散射的光束中, 入射于第一反射 元件 22上的光被反射而损失掉, 入射于第一滤光片 21上除第一反射元 件 22 以外的其他区域上的光束透射导光装置 4并和受激光合为一束合 光从第二光通道出射。为使散射装置 3出射的光束中被第一反射元件 22 反射而损失掉的光尽量小, 第一反射元件 22 的面积优选小于第一滤光 片 21的面积的 10%。
本实施例中, 勾光棒 13 出射的光中第一光和第二光的光学扩展量 的差异较大, 因此导光装置 4可以利用该两者的光学扩展量的差异来进 行分光, 这样, 导光装置 4上的第一反射元件 22相对第一滤光片 21很 小, 进而可以利用经散射装置散射前的第二光和散射后的第二光的光学 扩展量的差异来将该两束光的光路区分开来。 同时, 导光装置 4还利用 第二光和受激光的波长不同来对该两束光进行合光, 使得整个光源系统 的结构紧凑, 体积较小。
本实施例中, 为使散射装置 3的出射光在入射导光装置 2时被第一 反射元件 22反射而损失掉的光束尽量小, 第一反射元件 22 的面积优选 尽量小。 这样, 为保证勾光棒 13 的出射光中第二光能够全部入射于第 二反射元件 22,该出射光中第二光和第一光的发散角的比例优选小于或 等于 0.3。 然而, 在实际运用中, 在对激发光的激发效率要求不是很高 的场合中, 部分第二光也可以入射至第一滤光片 21 上除第一反射元件 22以外的其他区域上并透射至波长转换装置 4用于激发波长转换材料。 在这种情况下, 从勾光棒 13 出射的第二光和第一光的发散角的比值也 可以不用控制在很小范围内, 该比值也可以大于 0.3。 为能实现利用该 两束光的光学扩展量的差异来进行分光, 从勾光棒 13 出射时第二光和 第一光的发散角的比值小于或等于 0.7。 本实施例中, 第一光和第二光先经过勾光棒的勾光再分别入射到波 长转换装置和散射装置, 这使得第一光在波长转换层上形成的光斑更加 均匀, 提高了第一光的激发效率, 而第二光则经匀光棒进行消相干和匀 光, 使得散射装置对其进行散射的效果更好。 然而, 在对发光装置出射 后的第一光和第二光的均勾度要求不是很高的场合中, 也可以省略掉匀 光棒 13, 那么, 发光装置 1 中经准直透镜 123出射的光束直接入射至导 光装置 2上。
或者, 发光装置中的勾光棒也可以替换为复眼透镜对。 同时, 为使 光束经该复眼透镜对勾光后出射时第一光和第二光的光学扩展量差异 较大, 激光光源 11 中第二激光阵列的发光面积与第一激光阵列的发光 面积的比值小于或等于 0.3, 以使得第二光和第一光分别在该复眼透镜 对上形成的光斑面积的比值小于或等于 0.3, 进而该复眼透镜对分别出 射该第二光和第一光的出射光斑面积的比值小于或等于 0.3。 由于该复 眼透镜对出射的第一光和第二光的发散角一致, 但发光面差异较大, 因 此也可以利用该两束光的光学扩展量的差异来对该两束光进行分光。
本实施例中, 光收集系统 12 中的准直透镜 123也可以是凹透镜。 准直透镜 123采用凸透镜时, 光收集系统 12 中第一收集透镜 121和准 直透镜 123之间的距离为这两个透镜的焦距之和。 而准直透镜 123采用 凹透镜时, 第一收集透镜 121和准直透镜 123之间的距离为这两个透镜 的焦距之差, 因此能够使得光收集系统 12中光路更短。
本实施例中, 第一收集透镜 121上也可以不设有通孔。 这样, 激光 光源 11所发光中的第二光依次经第一收集透镜 121和第二收集透镜 122 收集后再经准直透镜 123进行准直, 也即光收集系统中的收集装置的第 二区域包括第一收集透镜 121和第二收集透镜 122。 那么第二光经光收 集系统 12 后发散角增大的倍数为第二区域的组合焦距与准直透镜 123 的焦距的比值, 也即第一收集透镜 121和第二收集透镜 122的组合焦距 与准直透镜 123的焦距的比值。
因此, 可通过设计第一收集透镜 121和第二收集透镜 122各自的焦 距以及组合焦距来改变经光收集系统 12 后的第二光与第一光的发散角 比值。 在第一收集透镜 121和第二收集透镜 122的组合焦距大于第一收 集透镜 121 的焦距的情况下, 激光光源 11 中则是第二激光阵列环绕第 一激光阵列, 且第一激光阵列所发光依次经第一收集透镜和第二收集透 镜汇聚, 第二激光阵列所发光只经过第一收集透镜 121。
本实施例中, 第一激光阵列 111和第二激光阵列 112的位置关系也 可以不是前者环绕后者, 而是并列排布。 如图 3所示, 图 3为图 2A所 示光源系统中发光装置的又一实施例的结构示意图。 与图 2A所示实施 例中的发光装置不同的是, 本实施例中, 第一激光阵列 111和第二激光 阵列 113并列排布。 光收集系统 12 中的第一收集透镜 124和第二收集 透镜 125分别位于第一激光阵列 111和第二激光阵列 112的出射光路上, 用于将与其对应的激光阵列所发光汇聚至准直透镜 123。
本实施例中, 第一收集透镜 124和第二收集透镜 125 的焦点与准直 透镜 123 的焦点的位置均一样。 由上述描述可知, 经光收集系统 12后 的第二光和第一光的发散角的比值等于第二收集透镜 125的焦距与第一 收集透镜 124的焦距的比值, 因此, 本实施例中第二收集透镜与第一收 集透镜的焦距的比值仍为小于或等于 0.7。
在图 3所示的发光装置中, 光收集系统中的第一收集透镜 124和第 二收集透镜 125以及准直透镜 123均共焦。 在实际运用中, 第一和 /或第 二收集透镜也可以不和准直透镜共焦。 由于收集透镜和准直透镜离焦时 会导致准直透镜出射的光束的发散角变大, 因此, 光收集系统中的第一 和第二收集透镜也可以采用焦距一致的透镜, 其中第二收集透镜 125与 准直透镜 123共焦, 而第一收集透镜 124的焦点偏离准直透镜 123的焦 点, 其中具体偏离的程度决定于经准直透镜 123后的第一光的发散角的 具体大小, 只要保证经准直透镜 123后第二光的发散角与第一光的发散 角的比值小于或等于 0.7 即可。 或者, 也可以同时结合第一、 二收集透 镜的焦距不同以及第一收集透镜与准直透镜离焦来使得经准直透镜后 第二光和第一光的发散角的差异变大。
在一些场合中, 第一激光阵列和第二激光阵列所需要的激光元件数 量差异较大, 因此第一和第二收集透镜的口径的差异也较大, 而第一收 集透镜和第二收集透镜需共焦, 且该焦点位于第一、 二收集透镜之间的 光轴上, 这使得第一光在经第一收集透镜折射时偏折角度很大, 进而光 损失较大, 而且第一激光阵列的数量较多时, 第一收集透镜的口径相对 很大, 进而焦距很大, 导致光路很长。 针对这个问题, 图 4A和图 4B所 示实施例分别提供了一种解决方案。
如图 4A所示,图 4A为本发明的发光装置的又一实施例的结构示意 图。 发光装置包括激光光源 11、 光收集系统和勾光棒 13。 本实施例与 图 3所示实施例的区别在于:
光收集系统包括收集装置和准直透镜 123。 本实施例中, 收集装置 包括反射罩 126和汇聚透镜 127。 第一激光阵列 111环绕第二激光阵列 112排布。汇聚透镜 127位于激光光源 11所发光中第二光的出射光路上, 并避开第一光的出射光路, 用于对该第二光进行汇聚。 汇聚透镜 127包 括相对的第一面 127a和第二面 127b,其中第一面 127a面向激光光源 11, 且第二面 127b 上还镀有透射第二光并反射第一光的滤光膜。 准直透镜 123位于该汇聚透镜 127的出射光路上, 用于对经汇聚透镜 127出射的 光束进行准直。
反射罩 126位于激光光源 11 的出射光路上, 且位于面向汇聚透镜 127的第二面 127b—侧。 本实施例中, 该反射罩 126可以是铝反射板, 或者是镀有反射膜的凹面镜。 反射罩 126的反射面面向激光光源 11, 对 应汇聚透镜 127的出射光轴处设有通孔 126a。 激光光源 11所发光中第 一光直接入射至反射罩 126, 被反射并汇聚至汇聚透镜 127 的第二面 127b上, 然后被第二面 127b反射至准直透镜 123进行准直。 勾光棒 13 位于准直透镜 123的出射光路上, 并穿过反射罩 126上的通孔 126a, 用 于接收来自准直透镜 123的准直光束并进行勾光。
从以上描述可知, 第二光依次经过收集装置的第二区域 (也即汇聚 透镜 127的第一面 127a和第二面 127b)和准直透镜 123 ; 第一光依次经 过收集装置的第一区域(也即反射罩 126、汇聚透镜 127的第二面 127b) 和准直透镜 123。 其中, 反射罩和汇聚透镜 127的第二面 127b的组合焦 距为 f5, 汇聚透镜 127的焦距为 f6, 准直透镜 123的焦距为 f3, 则第一 光的发散角经光收集系统 12后增大的倍数为 f5/f3, 第二光的发散角经 光收集系统 12后增大的倍数为 f6/f3, 为保证第二光和第一光在入射匀 光棒 13时的发散角比值小于或等于 0.7, 则 f6/f5小于或等于 0.7。
本实施例中, 激光光源所发光中第一光由两个反射面进行收集, 而 第二光由一个收集透镜进行收集, 在激光光源的第一激光阵列和第二激 光阵列的数量差异较大的情况下, 本实施例中能通过改变反射罩的焦距 来调整该两束光经收集系统后的发散角的比值, 而且通过反射罩和收集 透镜的第二面的配合, 第一光的聚焦过程被分成两端光程, 且这两段光 程之间有重叠, 使得光路变短进而减小发光装置的体积。
当然, 在实际运用中, 匀光棒 13并不一定穿过反射罩 126上的通 孔 126a, 这决定于勾光棒 13的长度以及反射罩 126的焦距。 优选匀光 棒 13穿过反射罩 126或者勾光棒 13的出光口位于反射罩 126的通孔处, 以使得反射罩 126的通孔 126a在较小的情况下勾光棒 13的出射光也不 会被反射罩 126阻挡。
如图 4B所示, 图 4B为本发明的发光装置的又一实施例的结构示意 图。 发光装置包括激光光源、 光收集系统和勾光棒 13。 光收集系统包括 收集装置和准直透镜 123。 本实施例与以上实施例的区别在于:
本实施例中, 激光光源中的第一激光阵列 111和第二激光阵列 112 并不位于同一平面上。 收集装置包括第一汇聚透镜 128和第二汇聚透镜 129。
第一汇聚透镜 128具体为具有通孔 128a的凸透镜, 通孔 128a以外 的非通孔区域 128b为聚光区域,该聚光区域 128b可以对光束进行聚焦, 从而縮小激光光束截面积。 第一激光阵列 111的出射光经第一准直透镜 阵列 113准直后直接入射至第一汇聚透镜 128的聚光区域 128b上。
第二汇聚透镜 129的焦距 (记为 F2) 小于第一汇聚透镜 128焦距。 第二汇聚透镜 129包括相对的第一面 129a和第二面 129b, 位于第一汇 聚透镜 128和该第一汇聚透镜 128的焦点之间,其中第一面 129a面向第 一汇聚透镜 128, 且第一面 129a上镀有反射第一光并透射第二光的滤光 膜。 准直透镜 123位于第一汇聚透镜 128和第二汇聚透镜 129之间。 第 一汇聚透镜 128 的出射光直接入射至第二汇聚透镜 129 的第一面 129a 上, 被反射并依然保持聚焦, 入射至准直透镜 123上进行准直。
匀光棒 13位于准直透镜 123的出射光路上。第一激光阵列 111和第 一准直透镜阵列 113对应准直透镜 123 的光轴处分别设有通孔 111a和 113a。 勾光棒 13依次穿过第一汇聚透镜 128上的通孔 128a、 第一准直 透镜阵列 113的通孔 113a和第一激光阵列 111的通孔 111a。经准直透镜 123准直的第一光入射勾光棒 13, 经勾光后出射。
激光光源中的第二激光阵列 112和与其一一对应的第二准直透镜阵 列 114位于第二汇聚透镜 129背向第一汇聚透镜 128的一侧, 经第二准 直透镜阵列 114 准直的第二光直接入射至第二汇聚透镜 129 的第二面 129b,并被汇聚至准直透镜 123,然后经准直出射至勾光棒 13进行勾光。
从以上描述可知, 第二光依次经过收集装置的第二区域 (也即第二 汇聚透镜 129的第二面 129b和第一面 129a)和准直透镜 123 ; 第一光依 次经过收集装置的第一区域 (也即第一汇聚透镜 128的两个面、 第二汇 聚透镜 129的第一面 129a) 和准直透镜 123。 其中, 第一汇聚透镜 128 和第二汇聚透镜的第一面 129a的组合焦距为 F1,准直透镜的焦距为 F3, 则第一光的发散角经光收集系统后增大的倍数为 F1/F3, 第二光的发散 角经光收集系统后增大的倍数为 F2/F3。 为保证第二光和第一光在入射 匀光棒 13时的发散角比值小于或等于 0.7, 则 F2/ F1小于或等于 0.7。
本实施例中, 由于第一激光阵列和第二激光阵列没有位于同一平面 上, 这样可以减小激光光源和第一汇聚透镜的宽度。 而在图 4A所示实 施例中, 第一激光光源阵列和第二激光阵列位于同一平面上, 有利于统 一散热, 且勾光棒没有穿过激光光源, 有利于激光光源的散热装置的设 置。
在实际运用中, 光收集系统所包括的元件并不限于图 3、 4A、 4B所 示实施例中的举例, 还可以是其他元件, 只要能够使得激光光源所发光 中第二光和第一光分别经过光收集系统中的光学元件后发散角增大的 倍数的比值小于或等于 0.7即可。
实施例二 在实施例一中, 发光装置的激光光源所发光中第一光和第二光的发 散角一致, 并通过该两束光分别经过的光收集系统中的光学元件的不同 来改变该两束光在入射勾光棒时的发散角, 使得该第二光和第一光在入 射匀光棒时的发散角的比值小于或等于 0.7。 而在本实施例中, 使得第 二光和第一光在从激光光源出射时的发散角比值已经小于或等于 0.7。 由于激光光源所出射光的准直性较好, 即使第二光和第一光的发散角有 差异, 但该差异仍然很小, 因此通过后续光路上的光收集系统使得该两 束光的发散角得到同等比例的放大。 以下具体解释。
请参阅图 5,图 5为本发明的发光装置的又一实施例的结构示意图。 发光装置包括激光光源 21、 光收集系统 22和勾光棒 23。
本实施例与图 4所示实施例中发光装置的区别在于:
激光光源 21包括第一激光阵列 211和第二激光阵列 212, 以及分别 与第一、 二激光阵列相对应的第一准直透镜阵列 213和第二准直透镜阵 列 214, 其中该两个激光阵列中各激光元件所发光的发散角一致, 而第 二准直透镜阵列 214中各准直透镜的焦距大于第一准直透镜阵列 213中 各准直透镜的焦距, 使得经第二准直透镜阵列 214出射的第二光的发散 角与经第一准直透镜阵列 213出射的第一光的发散角的比值小于或等于 0.7。
光收集系统 22 包括依次位于激光光源 21 出射光路上的汇聚透镜 221和准直透镜 222, 其中该两个透镜共焦。 激光光源 21所出射光经汇 聚透镜 221收集后再经准直透镜 222准直, 然后入射至勾光棒 23。 从以 上描述可知, 第一光和第二光经光收集系统 22 后发散角均增大, 其中 增大的倍数均为汇聚透镜 221和准直透镜 222的焦距的比值。 当然, 在 实际运用中,汇聚透镜 221和准直透镜 222的焦点也可以相互错开一些, 这会使得第一光和第二光的发散角增大的倍数更大。
本实施例中, 由于无需控制光收集系统中各透镜或反射罩的焦点与 焦距, 只是对激光光源中各准直透镜进行设计, 相比实施例一在设计上 更为简便。
本实施例中, 激光光源 21 中第一准直透镜阵列 213和第二准直透 镜 214也可以采用相同的准直透镜。 同时, 设置第一激光阵列与第一准 直透镜阵列中的透镜离焦, 即第一激光阵列中各激光元件位于与其对应 的准直透镜阵列中准直透镜的光轴上且偏离该准直透镜的焦点的预定 位置, 使得第一激光阵列中各激光元件所发光具有较第二激光阵列中各 激光元件的发散角更大的预定发散角。 或者, 还可以是第一、 二准直透 镜阵列均采用一样的准直透镜, 且均没有离焦的现象, 但第一激光阵列 中各激光元件所发光的发散角大于第二激光阵列中各激光元件所发光 的发散角, 使得经准直后的第二光的发散角与经准直后的第一光的发散 角的比值小于或等于 0.7。 当然, 也可以同时采用不同发散角的激光元 件、 离焦设置、 不同焦距的准直透镜该三种方法中的至少两种, 来加大 激光光源所发光中第一光和第二光的发散角的差异。
或者, 本实施例中, 激光光源 21 中第一准直透镜阵列 213和第二 准直透镜 214也可以采用相同的准直透镜。 同时, 在激光光源内第一光 的传播路径上设置散光片或者复眼透镜对, 且该散光片或者复眼透镜对 避开第二光的传播路径, 这样, 该两者能够增大第一光的发散角。
在激光光源 21 的出光面较大的情况下, 汇聚透镜 221 的口径也要 足够大以对激光光源 21 的出射光全部进行收集。 而汇聚透镜 221 的焦 距与口径有关,其口径越大,焦距越长,而发光装置中的光路也就越长。 针对这个问题, 图 6所示实施例提供了一种解决方案。 如图 6所示, 图 6 为本发明的发光装置的又一实施例的结构示意图。 发光装置包括激光 光源 21、 光收集系统 22和勾光棒 23。
本实施例与图 5所示实施例中的发光装置的区别在于:
本实施例中, 光收集系统 22包括汇聚透镜 221、 第二反射元件 223 和准直透镜 222。汇聚透镜 221具体为包括通孔 221a的凸透镜,通孔 221a 以外的非通孔区域 221b为聚光区域。聚光区域 221b可以对激光光源 21 的出射光进行聚焦, 从而縮小激光光束截面积。
本实施例中,第二反射元件 223具体为包括一凸反射面的凸透镜(例 如在凸透镜的表面镀反射膜)。 该凸透镜 223位于汇聚透镜 221和该汇 聚透镜 221的焦点 0之间, 且其凸反射面用于将汇聚透镜 221的出射光 反射, 并使得反射光依然保持聚焦。 而准直透镜 222位于凸透镜 223的 出射光路上, 用于对光束进行准直。
同时, 激光光源 21 中对应汇聚透镜 221的通孔 221a处也设有一通 孔 21a, 该通孔 21a处未设有激光元件和准直透镜。 勾光棒 23的设置使 得其依次穿过汇聚透镜 221的通孔 221a、激光光源 21的通孔 21a, 且匀 光棒 23的入光口与准直透镜 222相邻, 使得经准直透镜 222准直的光 束入射至勾光棒 23进行勾光。
这样, 通过汇聚透镜 221和凸透镜 223的配合, 光束的聚焦过程被 分成了两段光程, 并且这两段光程之间是有重叠的, 因此本实施例中的 光收集系统使得激光光源 21 的出射光的聚焦所需要的距离变短了, 从 而减小了发光装置的体积。
在图 5所示的实施例中, 光收集系统 22中的汇聚透镜 221还可以 采用反射曲面来替代。 如图 7所示, 图 7为本发明的发光装置的又一实 施例的结构示意图。 发光装置包括激光光源 21、 光收集系统 22和匀光 棒 23。
与图 5所示实施例中发光装置不同的是, 光收集系统 22包括反射 聚光装置 224和准直透镜 222。 本实施例中, 反射聚光装置 224具体为 反射罩, 该反射罩可以是铝反射板, 或者是镀有反射膜的凹面镜。 反射 罩 224位于激光光源 21的出射光路上, 用于对激光光源 21所发光进行 反射和汇聚。 准直透镜 222位于激光光源 21和反射罩 224之间, 用于 对来自反射罩 224的光束进行准直。
同时, 激光光源 21在对应准直透镜 222的出射光光轴上设有通孔 21a, 该通孔 21a处未设有激光元件和准直透镜。 勾光棒 23位于准直透 镜 222的出射光路上, 并穿过激光光源 21的通孔 21a。 经准直透镜 222 准直的光束入射至勾光棒 23进行勾光并出射。
本实施例中, 通过采用反射罩使得光收集系统 22 中的光路进行折 叠以使得光路变短, 而且勾光棒 23穿过激光光源 21, 使得勾光棒 23中 的部分光路与激光光源 21 重叠, 进一步縮短了发光装置中的光路, 使 得发光装置的结构更加紧凑, 体积更小。 在图 7所示的实施例中, 在激光光源 21的出光面很大的情况下, 反射罩 224的面积也要足够大以对激光光源 21的出射光全部进行收集, 这使得反射罩 224的焦距会较长而使得发光装置的体积较大。 针对这个 问题, 图 8所示实施例提供了一种解决方案。 如图 8所示, 图 8为本发 明的发光装置的又一实施例的结构示意图。 发光装置包括激光光源 21、 光收集系统 22和勾光棒 23。
本实施与图 7所示实施例的区别在于:
本实施例中, 激光光源 21上未设有通孔。 反射聚光装置 224包括 反射罩 225和第三反射元件 226。反射罩 225的中心区域上设有通孔 225a 该通孔 225a为非聚光区域, 通孔 225a以外的区域为聚光区域 225b。 反 射罩 225位于激光光源 21的出射光路上, 用于反射激光光源 21的出射 光并聚焦。
本实施例中, 第三反射元件 226具体为反射镜。 该反射镜 226位于 反射罩 225和激光光源 21之间, 且位于反射罩 225和该反射罩 225的 聚光焦点之间,并垂直于反射罩 225的出射光光轴设置,以将反射罩 225 的出射光反射, 并使得反射光依然保持聚焦。
准直透镜 222位于反射镜 226和反射罩 225之间, 用于接收来自反 射镜 226的光束并进行准直。 为了使准直透镜 222出射的准直光束能够 出射, 勾光棒 23位于准直透镜 226的出射光路上, 并穿过反射罩 225 的通孔 225a, 用于接收来自准直透镜 222的光束并进行勾光然后出射。
这样, 通过反射罩 225和反射镜 226的配合, 光束的聚焦过程被分 成了两段光程, 并且这两段光程之间是有重叠的, 因此使得激光光源 21 出射光的聚焦所需要的距离变短了, 从而减小了发光装置的体积。 反射 镜的优点在于结构简单, 成本很低。
另外, 由于反射镜 226与激光光源 21的距离比较近,如图 8所示, 可以在激光光源 21 与反射罩 225的出射光光轴交点处附近未设有激光 元件和准直透镜, 而是将反射镜 226固定在激光光源 21该未设有激光 元件的区域上, 以解决反射镜 226悬空难以固定的问题。
本实施例中, 在反射镜 226的位置保持不变的情况下, 自身反射光 的聚焦点的位置也是固定的。 在实际运用中, 第三反射元件 226还可以 用凹透镜或者凸透镜代替, 该凹透镜或者凸透镜包括一个反射面 (例如 在表面镀有反射膜)。 相对于反射镜, 凸透镜反射后的光可以在更近的 距离聚焦, 凹透镜反射后的光可以在更远的距离聚焦, 并且凹透镜和凸 透镜可以根据需要来设计自身曲面以控制自身反射光的聚焦点位置的 远近。 这样, 通过选择反射镜、 凹透镜或者凸透镜, 可以控制反射光聚 焦点的位置, 进而控制激光光源所出射光经光收集系统后发散角的方法 倍数。
另外, 由于反射罩 225 的尺寸很大, 其反射光会产生明显的像差, 其无法通过单独设计反射罩 225的曲面消除, 而利用反射罩 225和凹透 镜或者凸透镜的反射面可以配合消除像差。 因此, 在对成本不是非常敏 感的情况下, 第三反射元件优选为带有凹反射面的凹透镜或者带有凸反 射面的凸透镜。 值得说明的是, 带有凹反射面的凹透镜还可以用带有凹 反射面的反射铝板等代替, 其凹反射面也可以达到同样的效果; 同样, 带有凸反射面的凸透镜还可以用带有凸反射面的反射铝板等代替。
另外, 值得说明的是, 本实施例中匀光棒 23 的出光面超出了反射 罩 225的通孔 225a, 这样有利于匀光棒 23的夹持固定。 而在本发明其 它实施方式中, 可以通过调整反射聚光装置 224和勾光棒 23使得匀光 棒 23的出光面刚好位于反射罩 225的通孔 225a处, 这样可以使得发光 装置的整体结构比较紧凑。 此时还可以用透明玻璃片封住勾光棒 23 的 出光面, 这样就可以形成一个封闭的空间, 防止灰尘进入内部。 当然, 还可以通过调整反射聚光装置 224和勾光棒 23使得勾光棒 23的出光面 位于反射罩 225和激光光源 21之间, 此时光收集系统 22还可以包括一 个透镜, 该透镜用于对勾光棒 23 的出射光进行准直或者聚焦以供后续 光学元件使用, 并且该透镜可以固定在反射罩 225的通孔 225a处, 这样 就可以使得发光装置的整体结构比较紧凑。
在实施例一中, 第二光和第一光在激光光源的出射光中具有相同的 发散角, 然后分别经过光收集系统中的不同元件, 使得该两束光的发散 角得到不同程度的放大, 进而实现光收集系统所出射的第二光与第一光 的发散角的比例小于或等于 0.7。 在实施例二中, 第二光和第一光在激 光光源的出射光中的发散角比值已经小于或等于 0.7, 然后经过光收集 系统得到等比例的放大, 进而实现光收集系统所出射的第二光与第一光 的发散角的比例小于或等于 0.7。 在实际运用中, 也可以将实施例一和 实施例二中分别采用的方法结合起来, 即第二光和第一光在激光光源的 出射光中前者的发散角小于后者的发散角, 然后经过光收集系统时得到 不同比例的放大, 其中后者放大的倍数大于前者放大的倍数, 进而实现 光收集系统所出射的第二光与第一光的发散角的比例小于或等于 0.7。
实施例三
在实施例一和实施例二中, 激光光源所发光经光收集系统中的收集 元件收集后均入射准直透镜进行准直。 这样, 准直透镜的出射光中, 第 一光和第二光中各小光束均相互平行, 因此第一光和第二光的发散角分 别为各自内部的小光束的发散角。 然而, 在实际运用中, 当对发光装置 所出射的第一光和第二光的均勾度要求不是很高的场合中, 光收集系统 中也可以不设置准直透镜, 激光光源所发光经汇聚后直接入射勾光棒。 下面具体进行解释。
请参阅图 9,图 9为本发明的发光装置的又一实施例的结构示意图。 发光装置包括激光光源 31、 光收集系统和勾光棒 33。
本实施例与图 5所示实施例的区别在于:
激光光源 31包括第一激光阵列 311、 第二激光阵列 312、 第一准直 透镜阵列 313和第二准直透镜阵列 314, 其中第一激光阵列 311环绕第 二激光阵列 312排布, 第二激光阵列 312环绕光轴 M排布, 第一、 二准 直透镜阵列中各准直透镜分别与第一、 二激光阵列中各激光元件一一对 应, 用于对与其对应的激光元件所发光进行准直。
光收集系统包括汇聚透镜 32, 用于将激光光源 31所发光汇聚至匀 光棒 33内进行勾光, 其中汇聚透镜 31的光轴和光轴 M重合。 由于激光 光源所发光经汇聚透镜 31 汇聚后直接入射勾光棒 33, 那么在勾光棒的 入光口处, 第一光的发散角为 θ。 激光光源 31所发光中距离光轴 Μ最 远的第一光与光轴 Μ的距离为 L1,汇聚透镜 31的焦距为 F,则 tan0=Ll/F。 而第二光的发散角为 α, 激光光源 31所发光中距离光轴 Μ最远的第二 光与光轴 Μ的距离为 L2, 则 tana=L2/F。
因此, 本实施例中, 要控制发光装置的出射光中第二光和第一光的 发散角的不同, 是通过分别控制入射于汇聚透镜 31 上的第二光和第一 光的口径。 本实施例中, 要使 α/θ 小于或等于 0.7, 则 arctan(L2/F)与 arctan(Ll/F)的比值小于或等于 0.7。
在以上的举例中, 第一光和第二光分别为波长范围不同的蓝光。 当 然, 实际运用中第一光和第二光也可以是其他颜色光, 并不限于以上举 例。
在以上实施例的描写中, 各发光装置均运用在图 2A所示的光源系 统中。 然而, 在实际运用中, 各发光装置也可以运用在其他场合中。 例 如,第一光是蓝色激光,第二光是红色激光。在发光装置的后续光路上, 利用一个小反射镜用于反射发光装置所出射光中的第二光来将该两束 光分光; 或者利用一个带通孔的反射镜来接来自发光装置的出射光, 其 中第二光从该反射镜的通孔透射出射, 第一光被该反射镜除通孔以外的 区域反射, 以将该两种光分光。 当然, 也可以是第一光是红色激光, 第 二光是蓝色激光, 这决定于实际需要。
本说明书中各个实施例采用递进的方式描述, 每个实施例重点说明 的都是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参 见即可。
本发明实施例还提供一种投影系统, 包括光源系统, 该光源系统可 以具有上述各实施例中的结构与功能。 该投影系统可以采用各种投影技 术, 例如液晶显示器 (LCD, Liquid Crystal Display) 投影技术、 数码光 路处理器 (DLP, Digital Light Processor) 投影技术。 此外, 上述发光装 置也可以应用于照明系统, 例如舞台灯照明。
以上所述仅为本发明的实施方式, 并非因此限制本发明的专利范围 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或 直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围内。

Claims

权 利 要 求 书
1、 一种发光装置, 其特征在于, 包括:
激光光源, 包括第一激光阵列和第二激光阵列, 分别用于产生波长 范围不同的第一光和第二光;
光收集系统, 用于对来自所述激光光源阵列所发光进行收集, 使得 经收集后的第二光的发散角度与第一光的发散角度的比值小于或等于 预定值, 其中该预定值为 0.7。
2、 根据权利要求 1所述的发光装置, 其特征在于,
所述光收集系统包括收集装置和准直透镜, 其中收集装置包括至少 一汇聚透镜, 用于对来自激光光源的光束进行汇聚, 该准直透镜用于对 来自该收集装置的光束进行准直;
所述收集装置包括第一区域和第二区域, 该第一区域为第一光所经 过的区域, 第二区域为第二光所经过的区域; 其中第一区域的组合焦距 大于第二区域的组合焦距, 且所述激光光源的出射中, 第一光的发散角 大于第二光的发散角, 使得经所述光收集系统收集后的第二光的发散角 度与第一光的发散角度的比值小于或等于所述预定值。
3、 根据权利要求 1所述的发光装置, 其特征在于,
所述激光光源的出射光中, 第一光和第二光的发散角相同; 所述光收集系统包括收集装置和准直透镜, 其中收集装置包括至少 一汇聚透镜, 用于对来自激光光源的光束进行汇聚, 该准直透镜用于对 来自该收集装置的光束进行准直;
所述收集装置包括第一区域和第二区域, 该第一区域为第一光所经 过的区域, 第二区域为第二光所经过的区域, 其中第二区域的组合焦距 与第一区域的组合焦距的比值小于或等于所述预定值。
4、 根据权利要求 2或 3所述的发光装置, 其特征在于, 所述收集 装置的第一区域包括第一收集透镜, 位于所述激光光源的出射光路上, 其中部分第一收集透镜用于对第一光进行汇聚; 所述收集透镜的第二区 域包括第二收集透镜, 位于经过第一收集透镜的第二光的出射光路上, 用于对该第二光进行汇聚。
5、 根据权利要求 2或 3所述的发光装置, 其特征在于, 所述收集 装置包括汇聚透镜和具有通孔的反射罩, 该汇聚透镜包括面对所述激光 光源的第一面和与第一面相对的第二面, 其中第二面上设有透射第二光 并反射第一光的滤光膜; 该反射罩位于所述激光光源的出射光路上, 其 反射面面向该汇聚透镜的第二面;
来自所述激光光源的第一光直接入射至所述反射罩, 并被反射至所 述汇聚透镜的第一面上, 并再次被反射至所述准直透镜;
来自所述激光光源的第二光直接入射至所述汇聚透镜, 并被收集至 所述准直透镜;
所述准直透镜的出射光从该反射罩的通孔出射。
6、 根据权利要求 2或 3所述的发光装置, 其特征在于, 所述发光 装置包括勾光棒, 所述收集透镜包括第一汇聚透镜和第二汇聚透镜, 第 二汇聚透镜位于第一汇聚透镜和第一汇聚透镜的焦点之间, 第二汇聚透 镜包括面向第一汇聚透镜的第一面和与第一面相对的第二面, 其中第二 面上设有透射第二光并反射第一光的滤光膜;
第一激光阵列设于第一汇聚透镜背向第二汇聚透镜的一侧, 第二激 光阵列设有第二汇聚透镜背向第一汇聚透镜的一侧, 且第一激光阵列和 第一汇聚透镜分别对应所述准直透镜的光轴处均设有通孔, 该勾光棒位 于所述准直透镜的出射光路上, 并依次穿过第一汇聚透镜和第一激光阵 列的通孔;
来自第一激光阵列的第一光经第一汇聚透镜收集至第二汇聚透镜 的第一面上, 并被反射至所述准直透镜, 然后入射至所述勾光棒;
来自第二激光阵列的第二光经第二汇聚透镜收集至所述准直透镜, 经准直后入射至所述勾光棒。
7、 根据权利要求 1所述的发光装置, 其特征在于,
所述激光光源的出射光中第一光和第二光分别经过的所述光收集 系统的不同区域具有相同的焦距;
所述激光光源出射的光束中, 第二光的发散角度与第一光的发散角 度的比值小于或等于所述预定值。
8、 根据权利要求 2或 7所述的发光装置, 其特征在于, 所述激光 光源还包括第一准直透镜阵列和第二准直透镜阵列, 其中第一、 二准直 透镜阵列中各准直透镜分别与第一、 二激光阵列中各激光光源一一对应 用于对与其对应的激光光源所发光进行准直;
第二准直透镜阵列中各准直透镜的焦距大于第一准直透镜阵列中 各准直透镜的焦距, 使得经准直后的第二光的发散角度与经准直后的第 一光的发散角度的比值小于或等于所述预定值; 或者,
第一激光阵列中各激光元件和与其对应的准直透镜的离焦程度大 于第二激光阵列中各激光元件和与其对应的准直透镜的离焦程度, 使得 经准直后的第二光的发散角度与经准直后的第一光的发散角度的比值 小于或等于所述预定值; 或者,
第一激光阵列中各激光元件所发光的发散角大于第二激光阵列中 各激光元件所发光的发散角, 使得经准直后的第二光的发散角度与经准 直后的第一光的发散角度的比值小于或等于所述预定值。
9、 根据权利要求 2或 7所述的发光装置, 其特征在于, 第一光在 所述激光光源内的传播路径上设有散光片或者复眼透镜对, 且该散光片 或者复眼透镜对避开第二光的传播路径。
10、 根据权利要求 2或 7所述的发光装置, 其特征在于, 所述发光 装置包括勾光棒, 用于对来自所述光收集系统的光束进行勾光, 其中该 匀光棒在沿垂直于该勾光棒的走向上的任意一个截面均一致;
所述激光光源包括发光区域和非发光区域, 其中第一、 二激光阵列 均位于该发光区域上;
所述光收集系统包括反射聚光装置和准直透镜, 该反射聚光装置包 括聚光区域和非聚光区域, 该聚光区域将来自所述激光光源的出射光聚 焦并反射至该准直透镜, 该准直透镜用于将来自该反射聚光装置的光束 准直并出射至该勾光棒;
所述激光光源的非发光区域以及非聚光区域位于平行于所述激光 光源出射光光轴的同一直线上, 且所述勾光棒经过所述非发光区域和 / 或所述非聚光区域。
11、 根据权利要求 10所述的发光装置, 其特征在于, 所述反射聚光 装置包括具有通孔的汇聚透镜和反射元件, 所述汇聚透镜的通孔为非聚 光区域, 所述汇聚透镜除通孔以外的其他区域和该反射元件为所述聚光 区域;
所述汇聚透镜除通孔以外的其他区域用于对所述激光光源的出射 光进行汇聚, 该反射元件用于将来自所述汇聚透镜的光束反射至所述准 直透镜;
所述勾光棒经过所述汇聚透镜的通孔和所述激光光源的非发光区 域。
12、 根据权利要求 10 所述的发光装置, 其特征在于, 所述反射聚 光装置为反射罩, 该反射罩的中间区域为非聚光区域, 该中间区域以外 的区域为聚光区域, 所述勾光棒经过所述激光光源的非发光区域。
13、 根据权力要求 10 所述的发光装置, 其特征在于, 所述反射聚 光装置包括反射元件和具有通孔的反射罩, 该反射罩的通孔为非聚光区 域, 该反射罩除通孔以外的其他区域和该反射元件为聚光区域;
所述勾光棒经过所述反射罩的通孔。
14、 根据权力要求 13 所述的发光装置, 其特征在于, 第三反射元 件固定在所述激光光源的非发光区域。
15、 根据权利要求 1、 2、 3或 7所述的发光装置, 其特征在于, 所 述发光装置还包括勾光棒, 用于对来自所述光收集系统的光束进行匀光 其中该勾光棒在沿垂直于该勾光棒的走向上的任意一个截面均一致。
16、 根据权利要求 1、 2、 3或 7所述的发光装置, 其特征在于, 所 述预定值为 0.3。
17、 一种光源系统, 其特征在于, 包括:
如权利要求 1至 16中任一项所述的发光装置;
波长转换装置, 包括用于吸收来自所述发光装置的第一光以产生受 激光的波长转换层; 该波长转换层的一侧接收所述激发光和第一光, 并 于同一侧出射至少部分第一光, 以及至少部分受激光或者受激光和未被 吸收的激发光的至少部分混合光;
散射装置, 包括用于对来自所述发光装置的第二光进行散射的散射 层; 该散射层的一侧接收第二光, 并于同一侧出射至少部分第二光; 导光装置, 包括第一区域, 来自所述发光装置的第二光和第一光从 第一光通道入射至该导光装置, 其中至少部分第二光入射第一区域, 至 少部分第一光入射该导光装置除第一区域以外的其他区域; 入射于该导 光装置除第一区域以外的其他区域的光被引导至所述波长转换装置, 入 射于该导光装置的第一区域的光被引导至所述散射装置; 该导光装置除 第一区域以外的区域还用于将来自所述波长转换装置的受激光和来自 所述散射装置的第二光引导至第二光通道出射。
PCT/CN2014/075194 2013-04-20 2014-04-11 发光装置及相关光源系统 WO2014169785A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/785,846 US9904160B2 (en) 2013-04-20 2014-04-11 Light-emitting device and related light source system
EP14784933.5A EP2988158B1 (en) 2013-04-20 2014-04-11 Light-emitting device and related light source system
JP2016507991A JP6176642B2 (ja) 2013-04-20 2014-04-11 発光装置及び関連する光源システム
KR1020157032218A KR101825530B1 (ko) 2013-04-20 2014-04-11 발광 장치 및 관련 광원 시스템
US15/904,116 US10338461B2 (en) 2013-04-20 2018-02-23 Light-emitting device and related light source system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310138613.7 2013-04-20
CN201310138613.7A CN104111532B (zh) 2013-04-20 2013-04-20 发光装置及相关光源系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/785,846 A-371-Of-International US9904160B2 (en) 2013-04-20 2014-04-11 Light-emitting device and related light source system
US15/904,116 Continuation US10338461B2 (en) 2013-04-20 2018-02-23 Light-emitting device and related light source system

Publications (1)

Publication Number Publication Date
WO2014169785A1 true WO2014169785A1 (zh) 2014-10-23

Family

ID=51708373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075194 WO2014169785A1 (zh) 2013-04-20 2014-04-11 发光装置及相关光源系统

Country Status (6)

Country Link
US (2) US9904160B2 (zh)
EP (1) EP2988158B1 (zh)
JP (1) JP6176642B2 (zh)
KR (1) KR101825530B1 (zh)
CN (2) CN107632487B (zh)
WO (1) WO2014169785A1 (zh)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190432B (zh) * 2013-04-22 2017-07-28 日立麦克赛尔株式会社 光源装置和投影型影像显示装置
JP5804101B2 (ja) * 2014-02-12 2015-11-04 ウシオ電機株式会社 レーザ光源装置及び画像投影装置
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影系统
JP6464644B2 (ja) * 2014-09-30 2019-02-06 日亜化学工業株式会社 光源装置及びこの光源装置を備えたプロジェクタ
JP6551723B2 (ja) * 2014-11-13 2019-07-31 株式会社リコー 光学センサ、光学検査装置、及び光学特性検出方法
CN110928125B (zh) * 2015-08-06 2021-10-08 深圳光峰科技股份有限公司 光源系统和投影系统
CN106764470A (zh) * 2015-11-19 2017-05-31 深圳市绎立锐光科技开发有限公司 一种光源系统及照明装置
CN106950785B (zh) * 2016-01-07 2020-10-16 深圳光峰科技股份有限公司 一种光源装置及照明装置
CN107688274A (zh) 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
CN107783360A (zh) * 2016-08-25 2018-03-09 深圳市光峰光电技术有限公司 光源装置及显示系统
CN106308731A (zh) * 2016-08-31 2017-01-11 北京数字精准医疗科技有限公司 一种内窥式多光谱激发成像系统
JP6737084B2 (ja) * 2016-09-05 2020-08-05 セイコーエプソン株式会社 照明装置及びプロジェクター
CN106597791A (zh) * 2017-02-14 2017-04-26 上海晟智电子科技有限公司 一种双向荧光激发结构
JP6866677B2 (ja) * 2017-02-17 2021-04-28 セイコーエプソン株式会社 照明装置及びプロジェクター
CN106886767B (zh) * 2017-02-23 2019-07-05 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影系统
CN110431482B (zh) * 2017-03-23 2022-01-04 夏普Nec显示器解决方案株式会社 光源装置、投影仪和散斑减少方法
WO2018210735A1 (en) * 2017-05-16 2018-11-22 Philips Lighting Holding B.V. Color mixing in laser-based light source
CN109085733A (zh) * 2017-06-13 2018-12-25 艾优优(深圳)技术有限公司 多组激光光源装置
CN109557754B (zh) * 2017-09-26 2024-05-28 深圳光峰科技股份有限公司 光源系统及投影设备
CN109557752B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN108421165B (zh) * 2018-01-15 2024-03-01 北京燕阳高科医疗技术有限公司 免疫诱导治疗仪
JP7003678B2 (ja) * 2018-01-17 2022-01-20 セイコーエプソン株式会社 照明装置およびプロジェクター
CN110082998A (zh) * 2018-01-25 2019-08-02 深圳光峰科技股份有限公司 激光合光装置及显示设备
CN108020926A (zh) * 2018-02-07 2018-05-11 北京镭创高科光电科技有限公司 一种激光显示系统及其匀光装置
CN108533980B (zh) * 2018-03-30 2020-06-02 杨毅 激光光源、发光装置和灯具
CN108501722B (zh) * 2018-03-30 2020-06-02 京东方科技集团股份有限公司 一种车载显示系统
CN110376833B (zh) * 2018-04-12 2022-03-25 深圳光峰科技股份有限公司 光源系统和投影系统
CN108761981B (zh) * 2018-04-28 2020-10-20 苏州佳世达光电有限公司 投影机
CN110440150A (zh) * 2018-05-04 2019-11-12 上海午井光电科技有限公司 设有双光源的反射式激光照明系统
CN110500517A (zh) * 2018-05-16 2019-11-26 上海午井光电科技有限公司 反射式激光照明系统
US10867198B2 (en) * 2018-07-03 2020-12-15 Gingy Technology Inc. Image capturing device and image capturing module
TWM570473U (zh) * 2018-07-03 2018-11-21 金佶科技股份有限公司 取像模組
CN110876021B (zh) * 2018-08-31 2022-02-08 深圳光峰科技股份有限公司 投影系统及其光源模组
CN110874005B (zh) * 2018-09-03 2021-10-26 深圳光峰科技股份有限公司 光源系统、提高其光效的方法及显示设备
CN110967904A (zh) * 2018-09-30 2020-04-07 无锡视美乐激光显示科技有限公司 一种二向色镜、激光光源系统及激光投影机
CN111381425B (zh) * 2018-12-29 2022-04-15 深圳光峰科技股份有限公司 光源系统及投影装置
JP6888637B2 (ja) * 2019-01-10 2021-06-16 セイコーエプソン株式会社 光源装置、プロジェクター及び蛍光体ロッド
CN112241100B (zh) * 2019-07-16 2024-02-20 深圳光峰科技股份有限公司 一种照明系统的颜色校正方法及照明系统
CN112445005B (zh) * 2019-08-29 2023-08-11 深圳市中光工业技术研究院 激光光源及激光光源系统
CN113946091A (zh) * 2020-07-15 2022-01-18 无锡视美乐激光显示科技有限公司 光源结构和投影机
CN114063375B (zh) * 2020-08-10 2024-01-23 成都极米科技股份有限公司 一种光源系统
CN112628618A (zh) * 2021-01-14 2021-04-09 苏州视奥光电科技有限公司 混合激光发光装置
JP2022138068A (ja) * 2021-03-09 2022-09-22 株式会社リコー 導光部材、光源装置、および投射装置
KR102489545B1 (ko) * 2021-03-16 2023-01-19 주식회사 아이코어 고휘도의 광원 장치
JP2022167694A (ja) 2021-04-23 2022-11-04 株式会社リコー 導光光学装置、光源装置、および画像投射装置
CN115016213B (zh) * 2022-07-16 2023-09-29 福州大学 一种实现Micro-LED彩色化投影的光学引擎
JP7482282B1 (ja) 2022-11-22 2024-05-13 株式会社ライトショー・テクノロジー 投射型表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223810A (ja) * 1985-03-29 1986-10-04 Fujitsu Ltd 光波長合分波器
CN102608855A (zh) * 2012-03-19 2012-07-25 中国科学院半导体研究所 3-lcos激光投影显示照明光学系统
CN102734659A (zh) * 2011-10-17 2012-10-17 深圳市绎立锐光科技开发有限公司 一种光源和显示系统
CN102929086A (zh) * 2012-08-22 2013-02-13 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103279005A (zh) * 2013-05-13 2013-09-04 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745153A (en) * 1992-12-07 1998-04-28 Eastman Kodak Company Optical means for using diode laser arrays in laser multibeam printers and recorders
EP0660157A1 (en) 1993-12-20 1995-06-28 Agfa-Gevaert N.V. Device for combining laser beams in a common light spot
WO1997001787A1 (fr) * 1995-06-26 1997-01-16 Nissho Giken Kabushiki Kaisha Appareil de projection
KR100239237B1 (ko) * 1995-09-12 2000-01-15 가나이 쓰도무 광디스크장치 및 그의 광헤드
US6457828B1 (en) * 1999-04-21 2002-10-01 Minolta Co., Ltd. Display optical apparatus
JP2000329925A (ja) * 1999-05-18 2000-11-30 Sony Corp 光発散角制限装置および方法並びに投写型画像表示装置
DE19939750C2 (de) * 1999-08-21 2001-08-23 Laserline Ges Fuer Entwicklung Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Laserdiodenanordnung mit einer solchen optischen Anordnung
KR100534575B1 (ko) * 2001-04-24 2005-12-07 삼성에스디아이 주식회사 프로젝션시스템의 광전환장치
EP1480467A3 (en) * 2003-03-28 2011-09-14 Samsung Electronics Co., Ltd. Video projector
CN1554982A (zh) * 2003-12-25 2004-12-15 上海交通大学 用于投影机的多光源照明系统
JP5100963B2 (ja) * 2004-11-30 2012-12-19 株式会社Sen ビーム照射装置
JP2007058163A (ja) * 2005-07-27 2007-03-08 Ricoh Co Ltd 光源装置、光変調装置、表示装置、集光照明装置、及び投射型カラー表示装置
JP4989936B2 (ja) * 2006-07-27 2012-08-01 株式会社朝日ラバー 照明装置
CN101387815B (zh) * 2007-09-12 2010-09-29 鸿富锦精密工业(深圳)有限公司 投影机
JP2010286799A (ja) * 2008-11-21 2010-12-24 Nikon Corp 走査型顕微鏡
US7843653B2 (en) * 2009-02-13 2010-11-30 Coherent, Inc. Achromatic flat top beam shaping
CN101709833B (zh) * 2009-10-16 2014-01-08 海洋王照明科技股份有限公司 一种led聚泛光灯具
US9329379B2 (en) * 2009-12-21 2016-05-03 Martin Professional Aps Projecting illumination device with multiple light sources
JP2011176276A (ja) * 2010-02-01 2011-09-08 Mitsubishi Chemicals Corp 白色発光装置、照明装置および照明方法
US20110222024A1 (en) * 2010-03-15 2011-09-15 Walsin Lihwa Corporation Illumination system for projection display
CN101975953A (zh) * 2010-09-27 2011-02-16 北京航空航天大学 一种手持昼夜激光成像测距仪
CN102652281B (zh) * 2010-10-19 2015-01-28 松下电器产业株式会社 光合波装置及投影仪
JP5699568B2 (ja) * 2010-11-29 2015-04-15 セイコーエプソン株式会社 光源装置、プロジェクター
JP5541175B2 (ja) * 2011-01-24 2014-07-09 株式会社Jvcケンウッド 蛍光物質を用いた光源装置
TWI572821B (zh) * 2011-02-23 2017-03-01 瓦維安股份有限公司 具有再利用功能之發光二極體陣列照明系統
JP5648556B2 (ja) * 2011-03-28 2015-01-07 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置
JP5851140B2 (ja) * 2011-07-28 2016-02-03 オリンパス株式会社 光源装置
CN105549311B (zh) * 2011-08-27 2018-11-13 深圳市光峰光电技术有限公司 投影系统及其发光装置
CN104267506B (zh) * 2011-08-29 2017-02-15 深圳市绎立锐光科技开发有限公司 光源、合光装置及带该光源的投影装置
JP5979365B2 (ja) * 2011-10-06 2016-08-24 パナソニックIpマネジメント株式会社 光源装置及び画像表示装置
JP2013101317A (ja) * 2011-10-20 2013-05-23 Panasonic Corp 照明装置およびそれを用いた投写型画像表示装置
CN102722072B (zh) * 2011-12-25 2014-12-31 深圳市光峰光电技术有限公司 投影显示装置
CN102591120B (zh) * 2012-02-22 2014-10-15 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
CN202548363U (zh) * 2012-03-19 2012-11-21 光越科技(深圳)有限公司 一种四端口环行器
CN102938534A (zh) * 2012-11-09 2013-02-20 维林光电(苏州)有限公司 一种半导体激光器及其产生高质量和高稳定光束的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223810A (ja) * 1985-03-29 1986-10-04 Fujitsu Ltd 光波長合分波器
CN102734659A (zh) * 2011-10-17 2012-10-17 深圳市绎立锐光科技开发有限公司 一种光源和显示系统
CN102608855A (zh) * 2012-03-19 2012-07-25 中国科学院半导体研究所 3-lcos激光投影显示照明光学系统
CN102929086A (zh) * 2012-08-22 2013-02-13 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103279005A (zh) * 2013-05-13 2013-09-04 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统

Also Published As

Publication number Publication date
CN104111532A (zh) 2014-10-22
US20160085143A1 (en) 2016-03-24
EP2988158B1 (en) 2020-06-24
US9904160B2 (en) 2018-02-27
KR101825530B1 (ko) 2018-02-05
CN107632487B (zh) 2020-03-24
EP2988158A4 (en) 2016-11-09
JP6176642B2 (ja) 2017-08-09
CN104111532B (zh) 2017-08-29
US10338461B2 (en) 2019-07-02
JP2016522986A (ja) 2016-08-04
CN107632487A (zh) 2018-01-26
US20180348616A1 (en) 2018-12-06
EP2988158A1 (en) 2016-02-24
KR20160008543A (ko) 2016-01-22

Similar Documents

Publication Publication Date Title
WO2014169785A1 (zh) 发光装置及相关光源系统
US10197900B2 (en) Light-emitting device employing a reflective light focusing system having a focusing region and a non-focusing region and projection system incorporating the same
US11402736B2 (en) Light source system and projection device
EP3722874B1 (en) Light source device, image projection apparatus, light source optical system
US10372028B2 (en) Light source device and projection type display apparatus
JP7123231B2 (ja) 光源装置
JP2002184206A (ja) 照明装置、均一照明装置、及びこれらを用いた投射装置、露光装置、レーザ加工装置
WO2019071951A1 (zh) 复眼透镜组及投影装置
US20100321596A1 (en) Projection optical system and projection display unit using the same
TW201935085A (zh) 照明系統與投影裝置
US10634981B2 (en) Light source device and projection type display apparatus
KR101679061B1 (ko) 광 출력 장치 및 방법
WO2021027212A1 (zh) 一种激光照明光源
JP6551215B2 (ja) 蛍光光源装置
TWI764310B (zh) 照明系統及其製作方法
CN113126404B (zh) 光源装置
WO2021008330A1 (zh) 光源系统与显示设备
JP2019045529A (ja) 光源装置、照明装置およびプロジェクター
WO2019095661A1 (zh) 一种缩束装置及激光投影设备
JP2011171122A (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785846

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032218

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014784933

Country of ref document: EP