WO2014168091A1 - 磁気エンコーダおよびその製造方法 - Google Patents
磁気エンコーダおよびその製造方法 Download PDFInfo
- Publication number
- WO2014168091A1 WO2014168091A1 PCT/JP2014/059987 JP2014059987W WO2014168091A1 WO 2014168091 A1 WO2014168091 A1 WO 2014168091A1 JP 2014059987 W JP2014059987 W JP 2014059987W WO 2014168091 A1 WO2014168091 A1 WO 2014168091A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- magnet
- multipolar magnet
- magnetic encoder
- outer diameter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2451—Incremental encoders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/443—Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
- F16C19/181—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
- F16C19/183—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
- F16C19/184—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/723—Shaft end sealing means, e.g. cup-shaped caps or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C41/00—Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
- F16C41/007—Encoders, e.g. parts with a plurality of alternating magnetic poles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2205/00—Indexing scheme relating to details of means for transferring or converting the output of a sensing member
- G01D2205/80—Manufacturing details of magnetic targets for magnetic encoders
Definitions
- the present invention relates to a magnetic encoder that is mounted on a bearing or the like and functions as a rotational speed detection and a manufacturing method thereof.
- the magnetic encoder is incorporated, for example, in a wheel bearing device of an automobile and is used as a rotation detection device that detects the number of rotations of a wheel in an antilock brake system (ABS).
- ABS antilock brake system
- This type of rotation detection device is a passive type that reads the movement of the uneven teeth provided on the rotor as the magnitude of magnetism, and an active type that reads changes in magnetism with the rotation of the magnetic encoder with a magnetic sensor such as a Hall IC. It is roughly divided into Among these, the active type rotation detection device tends to be frequently used in recent years because it is inexpensive and excellent in detecting the rotation speed in a low speed region.
- the active type rotation detection device includes, for example, a magnetic encoder provided on the rotation side member and a magnetic sensor provided on the fixed side member.
- the magnetic encoder includes an annular multipolar magnet that is magnetized in multiple directions in the circumferential direction, and a metal core fixed to the multipolar magnet.
- a so-called plastic magnet obtained by injection molding of a magnet material containing a rubber magnet, magnetic powder and resin is known.
- These multipolar magnets 50 are bonded (for example, refer to Patent Documents 1 and 2) as shown in FIG. 21, or are caulked (for example, refer to Patent Document 3) as shown in FIG. Then, it is fixed to the cored bar 51.
- Patent Document 1 Since the magnetic encoder incorporated in the wheel bearing device has a wide operating temperature range and is used in harsh environments, it is important to firmly fix the multipolar magnet to the core metal.
- Patent Document 1 it is proposed to increase the fixing strength of both of the surfaces of the cored bar by increasing the contact (bonding) area by roughening the bonding surface with the multipolar magnet. Cost increase due to surface treatment is inevitable. Further, the liquid management of the adhesive and the coating process itself are costly work processes.
- Patent Document 2 a method has been proposed in which a plastic magnet is baked on the surface of the core bar in a semi-cured state with an adhesive that undergoes a curing reaction during insert molding, but this also increases the cost due to the baking process. Inevitable. In the configuration in which the plastic magnet and the cored bar are integrally formed by insert molding, a slight gap (backlash) is generated between the plastic magnet and the cored bar due to molding shrinkage of the plastic magnet. Due to this looseness, there is a problem that the magnetic accuracy is deteriorated if the plastic magnet moves even a little.
- the present invention has been made in view of the above-described problems, and the problem is that a low-cost process capable of simple mass processing without applying an excessive load to the multipolar magnet in the manufacturing process. It is an object of the present invention to provide a magnetic encoder capable of firmly fixing a multipolar magnet and a core metal without gaps in a process and maintaining high rotation detection accuracy over a long period of time, and a manufacturing method thereof.
- a magnetic encoder is a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a core metal, the core metal having an inner diameter cylindrical portion and one end of the inner diameter cylindrical portion.
- a standing plate portion extending from the outer diameter side of the standing plate portion to the outer diameter side and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, and extending over the standing plate portion and the outer diameter cylindrical portion in the cored bar.
- the multipolar magnet is integrally formed by insert molding so that the tip end surface of the cylindrical portion of the outer diameter is buried, and a gap between the core metal and the multipolar magnet is filled with a sealing agent. It is.
- the magnetic encoder with this configuration integrally forms the multipolar magnet on the annular portion of the core metal by insert molding. Therefore, unlike caulking, the multipolar magnet is not overloaded during the manufacturing process. If only insert molding is performed, a slight gap is generated between the core and the metal core due to the shrinkage of the multi-pole magnet. The gap may cause the multi-pole magnet to rattle, but the gap is filled with a sealing agent. ing. Therefore, the cored bar and the multipolar magnet are firmly fixed, and rattling of the multipolar magnet is prevented. Thereby, it is possible to improve the adverse effect on the multipolar magnet due to the stress generated during the thermal shock, that is, the stress generated by the expansion under the high temperature environment and the contraction under the low temperature environment.
- the multipolar magnet is molded so that the tip surface of the cylindrical portion of the outer diameter of the core metal is filled, the radial direction of the detected surface of the multipole magnet is more effective than the one with the tip surface exposed.
- the length can be increased and the magnetic detection range can be widened. It is possible to make the multipolar magnet into a cross-sectional shape that fills the tip surface of such a core metal, and it is not necessary to perform a process such as caulking the outer diameter cylindrical portion of the core metal as in the conventional case. by.
- this magnetic encoder has a flexible sealing agent in the gap between the multipolar magnet and the cored bar, so that this sealing agent acts as a buffer material, and the thermal stress to the multipolar magnet is reduced. The load is reduced.
- multipolar magnets such as plastic magnets that are highly filled with magnetic powder tend to have poor fracture strength because there are few binders such as resin, and it has been difficult to adopt them for magnetic encoder applications. Since there is little load of thermal stress on the multipolar magnet, it is possible to employ a high magnetic force plastic magnet or the like highly filled with magnetic powder as the multipolar magnet.
- the work of filling the gap between the cored bar and the multipolar magnet with the above-described sealing treatment agent is performed, for example, by immersing an integrally molded product of the cored bar and the multipolar magnet in the liquid sealing treatment agent.
- the sealing agent After the sealing agent is infiltrated into the gap between the magnet and the multipolar magnet, it can be performed by a simple method of drying or heat curing. According to this method, it is possible to efficiently process a large number of products at a time as compared with the conventional method using bonding, baking, caulking, and the like, and the manufacturing cost can be reduced.
- the multipolar magnet may be a plastic magnet in which a magnetic powder and a thermoplastic resin are mixed.
- the combined use of insert molding and sealing treatment makes it possible to employ a high-magnetism plastic magnet highly filled with magnetic powder without causing a problem of magnetic accuracy due to the gap.
- the plastic magnet is excellent in productivity.
- Plastic magnets that are highly filled with magnetic powder can reduce the coefficient of linear expansion, thus reducing the difference between the coefficient of linear expansion of plastic magnets and the coefficient of linear expansion of metal-based materials used for metal cores. Can do.
- a multipolar magnet expands in a high temperature environment and contracts in a low temperature environment.
- the difference in the linear expansion coefficient between the multipolar magnet and the core metal can be reduced as described above, the amount of expansion between the multipolar magnet and the core metal and The difference in shrinkage can be reduced. Therefore, it is possible to prevent the multipolar magnet from being deformed due to an excessive load applied to the multipolar magnet during high temperature expansion. In addition, the play of the multipolar magnet at the time of low temperature shrinkage is small.
- magnetic powder is mixed in the multipolar magnet, and the magnetic powder may contain at least strontium ferrite.
- Ferrite-based magnetic powder is preferable because it shows superiority in terms of cost and weather resistance.
- strontium ferrite is excellent in these advantages.
- the multipolar magnet includes a mixture of magnetic powder and thermoplastic resin, and the thermoplastic resin includes one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11, and polyphenylene sulfide. It may be a thing.
- the thermoplastic resin a resin having low water absorption is desirable in order to suppress the deterioration of the magnetic properties of the multipolar magnet due to water absorption as much as possible.
- the thermoplastic resin contains one or more compounds, water absorption can be reduced, and deterioration of the magnetic properties of the multipolar magnet can be suppressed as much as possible.
- Polyphenylene sulfide is more desirable because it has a smaller linear expansion coefficient than that of the other workpieces and can easily achieve a linear expansion coefficient equivalent to that of the core metal.
- the sealing agent preferably contains at least one compound selected from the group consisting of acrylate, methacrylate, and epoxy.
- These sealing agents are more flexible than plastic magnets, and are excellent in cushioning effect, that is, the function as the buffer material. For this reason, it is possible to reduce the compressive / tensile stress applied to the plastic magnet caused by the temperature change, and to adopt a highly magnetized plastic powder material with a high magnetic powder without damaging even under severe temperature environment.
- the outer diameter cylindrical portion is provided with a staking portion that protrudes toward the inner diameter side, and the multi-pole magnet is attached to the annular portion of the cored bar that extends between the standing plate portion and the outer diameter cylindrical portion. It may be integrally formed by the insert molding so that the ring portion is filled.
- a staking portion that protrudes toward the inner diameter side is provided in advance on the outer diameter cylindrical portion of the core metal, and the multi-pole magnet is disposed on the annular portion of the core metal provided with the staking portion. It is integrally formed by insert molding so as to be buried. In other words, after the multi-pole magnet is insert-molded into the core metal, the staking process is not performed, but the core metal is provided with a staking portion for preventing the multi-pole magnet from coming off and preventing the rotation.
- a multi-pole magnet is integrated in gold by insert molding so that the staking portion is buried.
- a multi-pole magnet can be reliably and easily fixed to a cored bar by staking process + insert molding. Insert molding alone is insufficient to fix the multipolar magnet, but insert molding is performed so that the staking portion provided in advance in the core metal is embedded, so that part of the multipolar magnet is constrained by the staking portion.
- the pole magnet can be easily prevented from coming off and prevented from rotating, and the multipolar magnet can be firmly fixed to the cored bar.
- a manufacturing cost can be reduced rather than the case where the conventional roughening process and baking process are performed.
- the conventional one that is fixed only by caulking needs to be performed on both the inner peripheral surface and the outer peripheral surface of the multipolar magnet in order to ensure the fixing.
- the multipolar magnet since the staking portion that protrudes to the inner diameter side is provided in the outer diameter cylindrical portion of the core metal together with the insert molding, the multipolar magnet only needs to be constrained on the outer peripheral surface, and the inner peripheral surface is not constrained. Even when the multipolar magnet expands in a high temperature environment, the expansion can be released to the inner diameter side of the multipolar magnet. Thereby, it can prevent that a multipolar magnet deform
- a multipolar magnet is insert-molded after a staking portion is provided in advance in the core metal, no residual stress is generated in the multipolar magnet, and excessive stress is applied to the multipolar magnet as in caulking. It is possible to prevent a problem that a load is applied.
- the sealing treatment after the insert molding further strengthens the fixing of the multipolar magnet to the core metal.
- the multipolar magnet is a plastic magnet in which magnetic powder and a thermoplastic resin are mixed, and a difference between the linear expansion coefficient of the multipolar magnet and the linear expansion coefficient of the core metal is 2.0 ⁇ 10 ⁇ 5. What adjusted the compounding quantity of the said magnetic substance powder and the said thermoplastic resin which comprise the said plastic magnet so that it may become the following may be sufficient. In this case, it is possible to use a plastic magnet having a higher magnetic force filled with magnetic powder than a conventional product, which can improve the surface magnetic flux density and further contribute to cost reduction.
- the multipolar magnet includes a magnetic force decrease suppressing means for suppressing a magnetic force decrease due to cancellation of magnetic fields between the adjacent magnetic poles S and N at a boundary portion between the adjacent magnetic poles S and N. It may be formed by a form of magnet material molding.
- the multipolar magnet has the magnetic force reduction suppressing means that suppresses the magnetic force reduction due to the cancellation between the adjacent magnetic poles S and N. Therefore, the magnetic force reduction due to the cancellation is suppressed, and the surface magnetic flux of the multipolar magnet is reduced. The density is improved. For this reason, high rotation detection accuracy is obtained without increasing the amount of magnetic powder added to the magnet material, the high rotation detection accuracy is maintained for a long period of time, and a decrease in the material strength of the multipolar magnet is suppressed. Since the magnetic force lowering suppression means is formed by forming a magnet material, it is easy to manufacture and can be manufactured at a relatively low cost, unlike the case of adding a separate magnetic shield member.
- the magnetic force reduction suppressing means fills the magnetic material from the gates corresponding to the magnetic poles S and N of the multipolar magnets, and forms the multipolar magnets before magnetization, thereby forming the mutual magnets. It may be a weld formed at the boundary between adjacent magnetic poles S and N.
- the magnet material is filled from the gate corresponding to each of the magnetic poles S and N
- the magnet material filled from each gate collides with the boundary portion between the location where the magnetic pole S is to be formed and the location where the magnetic pole N is to be formed.
- a weld is formed. By interposing this weld, when a multipolar magnet is magnetized later, a decrease in magnetic force due to cancellation between adjacent magnetic poles S and N can be suppressed.
- the weld is a layered portion generated by collision of the magnet material when simultaneously filling the magnet material.
- the magnetic force decrease suppressing means forms the multipolar magnet before magnetization by filling the magnetic material with a time difference between the S pole portion and the N pole portion in each of the magnetic poles S and N of the multipole magnet. Accordingly, it may be a boundary layer formed at the boundary between the magnetic poles S and N adjacent to each other.
- the boundary layer is a layer generated at the boundary when the magnetic material is filled with a time difference.
- the types of the magnet material used for forming the S pole part and the magnet material used for forming the N pole part may be different from each other.
- a boundary layer is formed at the boundary between the magnetic pole part filled with the magnet material first and the magnetic pole part filled with the magnet material later.
- the boundary layer By interposing this boundary layer, when the multipolar magnet is magnetized later, a magnetic force drop due to cancellation between the adjacent magnetic poles S and N can be suppressed. If the magnet material used for forming the S pole part and the magnet material used for forming the N pole part are different from each other, the boundary layer becomes more prominent, and the effect of suppressing a decrease in magnetic force is great. Become.
- the magnetic force decrease suppressing means may be a groove that separates the S-pole magnetized surface and the N-pole magnetized surface of each of the magnetic poles S and N of the multipolar magnet.
- this groove can be formed by insert molding, in some cases, it may be formed by cutting or the like after insert molding.
- the S—N magnetized surface is not the same continuous flat surface but has a groove separating the S pole magnetized surface and the N pole magnetized surface, the magnetic field lines are concentrated to improve the surface magnetic flux density. The magnetic force drop due to the cancellation between the adjacent magnetic poles S and N can be suppressed.
- a method for manufacturing a magnetic encoder according to the present invention is a method for manufacturing a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a core metal, wherein the core metal includes an inner diameter cylindrical portion, A standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion;
- the core metal and the multipolar magnet are formed by an insert molding process in which the multipolar magnet is insert-molded in an annular portion extending over the outer diameter cylindrical portion so that a tip surface of the outer diameter cylindrical portion is buried, and a sealing agent. And a sealing process for filling the gap.
- a staking process in which a staking part protruding toward an inner diameter side is provided on the outer diameter cylindrical part is provided before the insert molding process.
- the multipolar magnet is provided in the insert molding process. May be integrally formed by insert molding so that the staking portion is buried.
- the magnetic material when the magnet material is insert-molded into the core metal, the magnetic material is filled in each part to be the individual magnetic poles S and N, thereby adjacent the magnetic poles S and N.
- a weld or boundary layer serving as a magnetic force reduction suppressing means for suppressing magnetic force reduction due to cancellation of the magnetic field between the magnetic poles S and N adjacent to each other may be formed at the boundary portion.
- the magnetic encoder 20 includes an annular cored bar 1 and a multipolar magnet 2 provided on the cored bar 1. These minute gaps between the metal core 1 and the multipolar magnet 2 are filled with a sealing agent 11.
- the multipolar magnet 2 has magnetic poles N and S formed alternately in the circumferential direction.
- the magnetic encoder 20 is attached to a rotation-side member (not shown), and is used for rotation detection with the magnetic sensor 3 facing the multipolar magnet 2.
- the metal core 1 is formed of a magnetic material, particularly a ferromagnetic metal steel plate, for example, a ferritic stainless steel plate (JIS standard SUS430), a cold rolled steel plate (JIS standard SPCC), or the like.
- the metal core 1 includes an inner diameter cylindrical portion 4 fitted to the rotation side member, a standing plate portion 5 extending from one end of the inner diameter cylindrical portion 4 to the outer diameter side, and an outer diameter side end of the standing plate portion 5. And an outer diameter cylindrical portion 6 extending in the axial direction.
- the inner diameter cylindrical portion 4 extends in the axial direction from the inner diameter side end of the standing plate portion 5, and the outer diameter cylindrical portion 6 extends from the outer diameter side end of the standing plate portion 5 in the other axial direction.
- the axial length of the outer diameter cylindrical portion 6 in this example is shorter than the axial length of the inner diameter cylindrical portion 4.
- the multipolar magnet 2 is, for example, a plastic magnet in which magnetic powder and thermoplastic resin are mixed.
- the multipolar magnet 2 is integrally formed by insert molding in the annular portion 8 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6 of the core metal 1.
- the cross-sectional shape of the multipolar magnet 2 is such that the main body portion 9 located on the magnetic sensor 3 side of the standing plate portion 5 of the core metal 1 and the outer diameter cylindrical portion 6 of the core metal 1 following the outer diameter side of the main body portion 9. And an outer diameter end portion 10 covering the front end surface of the outer periphery. Therefore, the distal end surface 6 a of the outer diameter cylindrical portion 6 of the core metal 1 is buried in the multipolar magnet 2. Since the tip end surface 6a of the outer diameter cylindrical portion 6 is thus buried, the reduction of the magnetic detection range due to the reduction of the effective diameter of the multipolar magnet 2 can be suppressed.
- the main body portion 9 of the multipolar magnet 2 has a flat portion 9a whose surface faces the magnetic sensor 3 and is flush with the outer diameter end portion 10, and an inner diameter side of the flat portion 9a continues to the inner diameter side. It consists of the inclined surface part 9b which inclines so that it may approach the standing board part 5 as it goes.
- the surface of the flat surface portion 9 a and the outer diameter end portion 10 of the main body portion 9 becomes the detected surface 2 a of the multipolar magnet 2.
- the detected surface 2a is formed so as to be within a predetermined perpendicularity tolerance and a predetermined circumferential runout tolerance with respect to the fitting surface 4a which is a reference surface of the inner diameter cylindrical portion 4.
- magnetic powder for example, anisotropic or isotropic ferrite-based magnetic powder represented by strontium ferrite or barium ferrite, neodymium-iron-boron, samarium-cobalt, samarium-iron-nitrogen, etc.
- ferrite magnetic powder is mainly used because it shows superiority in terms of cost and weather resistance.
- thermoplastic resin in order to suppress the deterioration of the magnetic properties of the multipolar magnet due to water absorption as much as possible, those having low water absorption are desirable.
- polyamide 11 PA11
- PA12 polyamide 12
- PA612 polyamide 612
- PPS polyphenylene sulfide
- Polyphenylene sulfide (PPS) is more desirable because it has a smaller linear expansion coefficient than the other workpieces and can easily achieve a linear expansion coefficient equivalent to that of the core metal.
- the compounding quantity of the said magnetic substance powder and the said thermoplastic resin which comprises the said plastic magnet is adjusted as follows.
- the blending amount is adjusted so that the difference between the linear expansion coefficient of the multipolar magnet 2 and the linear expansion coefficient of the cored bar 1 is 2.0 ⁇ 10 ⁇ 5 or less.
- the difference between the blending amount and the linear expansion coefficient is derived from the test results of the thermal endurance test described later.
- the sealing agent 11 is made of, for example, at least one compound selected from the group consisting of acrylate, methacrylate, and epoxy. These compounds are suitable as the sealing agent 11 because they are flexible and have an excellent function as a buffer material.
- FIG. 3 is a flowchart schematically showing a method for manufacturing the magnetic encoder.
- the magnetic encoder manufacturing method according to this embodiment includes a preparation process (step S0), an insert / magnetic field forming process (step S1), a sealing process (step S2), and a demagnetization / magnetization process (step S3). ) And an inspection, packing and shipping process (step S4).
- the metal core 1 processed into a predetermined shape and the material of the multipolar magnet 2 are prepared.
- the insert / magnetic field forming process as shown in FIG. 4, the cored bar 1 is set in the cavity of the injection molding machine 12, and the multipolar magnet 2 is integrally formed in the annular part 8 of the cored bar 1 by insert molding. After insert molding, a slight gap 21 remains between the cored bar 1 and the multipolar magnet 2 due to molding shrinkage of the material. In FIG. 4, the gap 21 is exaggerated.
- anisotropic magnetic powder is used for the multipolar magnet 2
- magnetic field molding is performed while applying magnetic field orientation simultaneously with the insert molding.
- the magnetic field orientation at this time results in a single-pole magnetized state in which the orientation of the magnetic particles (easy magnetization axis) is aligned in the axial direction, and can improve the surface magnetic flux density after magnetization in the demagnetization / magnetization process described later. it can.
- the injection molding machine 12 has, for example, first and second molds 12a and 12b to be combined.
- the first mold 12a holds the cored bar 1 in a positioned state.
- An annular cavity for forming the multipolar magnet 2 is formed in a state where the first and second molds 12a and 12b are combined with each other.
- a gate (not shown) for filling the cavity with the material of the multipolar magnet 2 is provided.
- the cored bar 1 and the multipolar magnet 2 generated during insert molding are formed on the cored bar 1 and the multipole magnet 2 taken out from the injection molding machine 12 as shown in FIG.
- the gap 21 is filled with the sealing agent 11 and the core 1 and the multipolar magnet 2 are bonded.
- the integrally molded product 22 is put into the melted sealing agent 11 to seal the gap 21 between the core metal 1 and the multipolar magnet 2.
- the integral molded product 22 is taken out from the sealing treatment agent 11 and the integral molded product 22 is heated to cure the sealing treatment agent 11 in the gap 21 as shown in FIG. To do.
- the residual magnetism at the time of magnetic field orientation in the insert / magnetic field molding process is completely demagnetized with respect to the integrally formed product 22 of the cored bar 1 and the multipolar magnet 2 subjected to the sealing process,
- the multipolar magnet 2 is magnetized using a magnetizing yoke that satisfies the required accuracy.
- the magnetic encoder 20 is completed.
- the completed magnetic encoder 20 is checked and then packed and shipped.
- the multipolar magnet 2 is integrally formed on the annular portion 8 of the core metal 1 by insert molding, and then the gap 21 between the core metal 1 and the multipolar magnet 2 is filled with the sealing agent 11.
- the sealing agent 11 the sealing agent 11
- the cored bar 1 and the multipolar magnet 2 are firmly fixed, and rattling of the multipolar magnet 2 is prevented.
- the magnetic encoder 20 having this configuration can be firmly fixed by a simple method of insert molding and embedding with the sealing agent 11 without bonding or caulking. Since it can be firmly fixed, high rotation detection accuracy can be maintained over a long period of time.
- the multipolar magnet 2 Since the multipolar magnet 2 is formed so that the distal end surface 6a of the outer diameter cylindrical portion 6 of the core metal 1 is filled, the detected surface 2a of the multipolar magnet 2 is compared with the case where the distal end surface 6a is exposed. It is possible to increase the length in the radial direction, and the magnetic detection range can be widened. The reason why the multipolar magnet 2 can have a cross-sectional shape as described above is that it is not necessary to perform a process such as caulking the outer diameter cylindrical portion 6 of the cored bar 1 as in the prior art.
- the sealing agent 11 When the core metal 1 and the multipolar magnet 2 are fixed using the sealing agent 11, many products can be processed at one time and the manufacturing cost is reduced as compared with the conventional fixing by bonding, baking, caulking, or the like. Can be planned.
- the sealing agent 11 rich in flexibility is interposed in the gap between the core metal 1 and the multipolar magnet 2, the sealing agent 11 acts as a buffer material, and the thermal stress to the multipolar magnet 2 is reduced. The load is reduced.
- a multipolar magnet such as a plastic magnet highly filled with magnetic powder has a tendency to be inferior in fracture strength due to a small amount of binder material such as a resin, and is difficult to use for a magnetic encoder. Since the load of thermal stress on the multipolar magnet 2 is small, it is possible to employ a high magnetic force plastic magnet or the like highly filled with magnetic powder as the multipolar magnet 2.
- the multipolar magnet 2 is a plastic magnet in which magnetic powder and thermoplastic resin are mixed. Since the plastic magnet highly filled with magnetic powder can reduce the linear expansion coefficient, the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the metal material used for the core metal 1 is reduced. be able to.
- the multipolar magnet 2 expands in a high temperature environment and contracts in a low temperature environment.
- the difference in coefficient of linear expansion between the multipolar magnet 2 and the core metal 1 can be reduced as described above, the multipolar magnet 2 and the core metal 1 can be reduced. The difference between the amount of expansion and the amount of contraction can be reduced. Therefore, it is possible to prevent an excessive load from being applied to the multipolar magnet 2 when the multipolar magnet 2 is expanded at a high temperature. Further, the play of the multipolar magnet 2 at the time of low temperature shrinkage is also slight.
- the thermoplastic resin in the multipolar magnet 2 contains one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11 and polyphenylene sulfide, thereby reducing water absorption and magnetic properties of the multipolar magnet 2. Can be suppressed as much as possible.
- the blending amount of the magnetic powder and the thermoplastic resin constituting the plastic magnet is adjusted so that the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the core metal 1 is 2.0 ⁇ 10 ⁇ 5 or less.
- FIG. 7 is a longitudinal sectional view of a main part of a wheel bearing device using the magnetic encoder 20.
- the wheel bearing device is interposed between an inner member 14 that is a rotation side member, an outer member 15 that is attached to a knuckle (not shown) in the vehicle, and the inner member 14 and the outer member 15.
- the rolling element 16 is provided.
- a ball is applied as the rolling element 16, but it is also possible to apply a roller.
- the core metal 1 of the magnetic encoder 20 according to the embodiment is fitted in a press-fit state on the outer peripheral surface of the inner member 14 on the inboard side that is closer to the center in the vehicle width direction.
- the protective cover 17 is press-fitted into the inner peripheral surface of the outer member 15 on the inboard side, and the inboard side opening of the outer member 15 is closed.
- the protective cover 17 can prevent leakage of grease enclosed in the bearing and prevent muddy water, foreign matter, and the like from entering the bearing from the outside.
- the protective cover 17 is made of, for example, a non-magnetic steel plate such as an austenitic stainless steel plate that does not affect the sensing performance of the magnetic sensor 3 facing the multipolar magnet 2 of the magnetic encoder 20.
- a sealing device (not shown) is provided on the inner peripheral surface of the outer member 15 so that the lip is in sliding contact with the outer peripheral surface of the inner diameter cylindrical portion 4 and the inner surface of the upright plate portion 5. Also good.
- a magnetic encoder 20A according to a second embodiment of the present invention will be described with reference to FIGS.
- the following description also includes a description of a method for manufacturing the magnetic encoder.
- the same or corresponding parts as those of the preceding first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the second embodiment is different from the first embodiment in that, in addition to the sealing agent 11, a plurality of staking portions 7 projecting toward the inner diameter side are provided on the outer diameter cylindrical portion 6 of the core metal 1. 1, the multipolar magnet 2 is integrally formed by insert molding so that the staking portion 7 is embedded in the annular portion 8 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6.
- the magnetic encoder 20 ⁇ / b> A includes an annular cored bar 1 and a multipolar magnet 2 provided on the cored bar 1.
- the multipolar magnet 2 has magnetic poles N and S formed alternately in the circumferential direction.
- This magnetic encoder is attached to a rotation side member (not shown), and is used for rotation detection with the magnetic sensor 3 facing the multipolar magnet 2.
- the multipolar magnet 2 shown in FIG. 8 is formed so that the thickness t1 of an axial direction may become thicker than the conventional multipolar magnet.
- the multipolar magnet 2 has a main body portion 9 having a thick portion on the outer diameter side and a thin portion 9d connected to the main body portion 9 via an inclined step portion 9c on the inner diameter side.
- the step portion 9c is formed in a cross-sectional shape that is inclined so as to approach the upright plate portion 5 toward the inner diameter side.
- FIG. 9 is a longitudinal sectional view of the core bar 1 of the magnetic encoder.
- the metal core 1 is formed of a magnetic material, particularly a ferromagnetic metal steel plate, for example, a ferritic stainless steel plate (JIS standard SUS430), a cold rolled steel plate (JIS standard SPCC), or the like.
- the metal core 1 includes an inner diameter cylindrical portion 4 fitted to the rotation side member, a standing plate portion 5 extending from one end of the inner diameter cylindrical portion 4 to the outer diameter side, and an outer diameter side end of the standing plate portion 5. And an outer diameter cylindrical portion 6 extending in the axial direction.
- the inner diameter cylindrical portion 4 extends in the axial direction from the inner diameter side end of the standing plate portion 5, and the outer diameter cylindrical portion 6 extends from the outer diameter side end of the standing plate portion 5 in the other axial direction.
- the axial length of the outer diameter cylindrical portion 6 in this example is shorter than the axial length of the inner diameter cylindrical portion 4.
- FIG. 10 is a front view of the cored bar 1
- FIG. 11 is an enlarged view of the main part of FIG.
- staking portions 7 projecting toward the inner diameter side are provided at a plurality of locations in the circumferential direction of the outer diameter cylindrical portion 6. These staking portions 7 are provided at regular intervals in the circumferential direction.
- the staking portion 7 is provided for fixing the multipolar magnet 2 (FIG. 8) to the core metal 1 and for preventing the multipolar magnet 2 from coming off and preventing rotation with respect to the core metal 1.
- Each staking portion 7 is plastically deformed so that the tip end portion in the axial direction of the outer diameter cylindrical portion 6 protrudes toward the inner diameter side and becomes substantially V-shaped in a front view.
- the multipolar magnet 2 formed in the next insert molding process is locked in the direction of arrow A in FIG. Is done.
- FIG. 8 it is possible to prevent the multipolar magnet 2 from undesirably coming off in the axial direction with respect to the core metal 1 and to prevent the multipolar magnet 2 from rotating relative to the core metal 1.
- the multipolar magnet 2 is integrally formed by insert molding on the annular portion 8 of the core metal 1 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6. ing. After this insert molding, the gap between the cored bar 1 and the multipolar magnet 2 is filled with the sealing agent 11.
- the surface 2 a facing the magnetic sensor 3 is connected to form the same plane as the axial tip of the outer diameter cylindrical portion 6. The polar magnet 2 is formed such that the thickness t1 in the axial direction is larger than that of the conventional multipolar magnet.
- the thermal durability test In the second embodiment, the magnetic encoder examples 1 to 7 in which only the staking portion 7 is provided and the sealing agent 11 is not used, and ten comparative examples 1 and 2 of the conventional magnetic encoder are prepared.
- a cold endurance test was conducted under the same test conditions. After carrying out this cold endurance test for 500 cycles, the presence or absence of cracks in the plastic magnet was confirmed, and if even one out of 10 cracks was found in each example, it was judged as “x”, that is, the endurance of cold heat was not possible. If none of the 10 cracks in each example was cracked, it was judged that “ ⁇ ”, that is, the durability of cold heat was acceptable. Similar test results were obtained also in the first embodiment using only the sealing agent 11 without providing the staking part 7.
- the blending amount of the magnetic powder of the plastic magnet and the thermoplastic resin is adjusted so that the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the core metal is 2.0 ⁇ 10 ⁇ 5 or less.
- there were no cracks. In Table 1, the data of +2.1 is taken as Example 5 as the data of the difference in linear expansion coefficient. Please confirm.)
- FIG. 12 is a flowchart schematically showing a method for manufacturing the magnetic encoder. This will be described with reference to FIG.
- the magnetic encoder manufacturing method according to this embodiment includes a staking process (step s1), an insert molding process (step s2), and a magnetization process (step s3).
- the aforementioned staking portions 7 are provided at a plurality of locations in the circumferential direction of the outer diameter cylindrical portion 6 of the core metal 1.
- the staking portion 7 may be provided at the same time as the outer diameter cylindrical portion 6 of the core 1 is provided, or the outer diameter cylindrical portion 6 may be provided after the staking portion 7 is provided.
- the cored bar 1 provided with the staking portion 7 is set in the cavity of the injection molding machine 12, and a multipolar magnet is formed on the annular portion 8 of the cored bar 1.
- 2 is integrally formed by insert molding.
- the injection molding machine 12 has, for example, first and second molds 12a and 12b to be combined.
- the first mold 12a holds the cored bar 1 in a positioned state.
- An annular cavity for forming the multipolar magnet 2 is formed in a state where the first and second molds 12a and 12b are combined with each other.
- a gate (not shown) for filling the cavity with the material of the multipolar magnet 2 is provided. Magnetic field shaping is performed while applying magnetic field orientation simultaneously with the insert molding.
- the magnetic field orientation at this time is in a state of being monopolarly magnetized in the axial direction, but before taking out (after cooling in the mold), a demagnetizing process is performed by applying a reverse magnetic field. If the demagnetization is insufficient, the accuracy of the magnetic properties after magnetization is affected, so that a complete demagnetization process may be performed in a separate process if necessary.
- the magnetic field forming is performed while integrally forming the multipolar magnet 2 on the core metal 1, the first and second molds 12a and 12b are opened, and the multipolar magnet 2 and the core metal 1 are taken out.
- the magnetic field molding machine 13 may sequentially magnetize the multipolar magnet 2 at a desired circumferential pitch while rotating it around its axis L1.
- surface magnetic flux density after magnetization can be improved by performing magnetic field shaping while applying magnetic field orientation.
- a complete demagnetization process may be added before magnetization. In this case, the peak difference between the N pole and the S pole after magnetization can be reduced. Further, the magnetic pole pattern may be transferred at once by the magnetizing yoke.
- the multipolar magnet 2 can be reliably and easily fixed to the cored bar 1 by staking process + insert molding. Although the fixing of the multipolar magnet is insufficient only by the insert molding, a part of the multipolar magnet 2 is formed on the staking portion 7 by insert molding so that the staking portion 7 provided in advance on the core metal 1 is buried. The multipolar magnet 2 can be easily prevented from coming off and prevented from being rotated, and the multipolar magnet 2 can be firmly fixed to the cored bar 1. Moreover, since it is a staking process, a manufacturing cost can be reduced rather than the case where the conventional roughening process and baking process are performed.
- the multipolar magnet 2 Since the multipolar magnet 2 is insert-molded after the staking portion 7 is provided in advance on the cored bar 1, no residual stress is generated in the multipolar magnet 2 so that the multipolar magnet 2 can be multipolar as in caulking. It is possible to prevent an excessive load from being applied to the magnet 2. (4) The sealing treatment after the insert molding further strengthens the fixing of the multipolar magnet to the core metal.
- the multipolar magnet 2 is a plastic magnet in which magnetic powder and thermoplastic resin are mixed. Since the plastic magnet highly filled with magnetic powder can reduce the linear expansion coefficient, the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the metal material used for the core metal 1 is reduced. be able to.
- the multipolar magnet 2 expands in a high temperature environment and contracts in a low temperature environment. However, since the difference in coefficient of linear expansion between the multipolar magnet 2 and the core metal 1 can be reduced as described above, the multipolar magnet 2 and the core metal 1 can be reduced. The difference between the amount of expansion and the amount of contraction can be reduced. Therefore, it is possible to prevent the multipolar magnet 2 from being deformed due to an excessive load applied to the multipolar magnet 2 during high temperature expansion. Further, the play of the multipolar magnet 2 at the time of low temperature shrinkage is also slight.
- the thermoplastic resin in the multipolar magnet 2 contains one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11 and polyphenylene sulfide, thereby reducing water absorption and magnetic properties of the multipolar magnet 2. Can be suppressed as much as possible.
- the blending amount of the magnetic powder and the thermoplastic resin constituting the plastic magnet is adjusted so that the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the core metal 1 is 2.0 ⁇ 10 ⁇ 5 or less.
- FIG. 15 is a longitudinal sectional view of a main part of a wheel bearing device using this magnetic encoder.
- the wheel bearing device includes an inner member 14 that is a rotation side member, an outer member 15 that is attached to a knuckle (not shown) in the vehicle, and a roller interposed between the inner member 14 and the outer member 15.
- the moving body 16 is provided.
- a ball is applied as the rolling element 16, but it is also possible to apply a roller.
- the core bar 1 of the magnetic encoder 20A according to the present embodiment is fitted in a press-fit state on the outer peripheral surface of the inner member 14 on the inboard side that is closer to the center in the vehicle width direction.
- the protective cover 17 is press-fitted into the inner peripheral surface of the outer member 15 on the inboard side, and the inboard side opening of the outer member 15 is closed.
- the protective cover 17 can prevent leakage of grease enclosed in the bearing and prevent muddy water, foreign matter, and the like from entering the bearing from the outside.
- the protective cover 17 is made of, for example, a non-magnetic steel plate such as an austenitic stainless steel plate that does not affect the sensing performance of the magnetic sensor 3 facing the multipolar magnet 2 of the magnetic encoder.
- a sealing device (not shown) is provided on the inner peripheral surface of the outer member 15 so that the lip is in sliding contact with the outer peripheral surface of the inner diameter cylindrical portion 4 and the inner surface of the upright plate portion 5. Also good.
- the staking portion 7 provided in advance on the metal core 1 can easily prevent the multipolar magnet 2 from coming off and prevent it from rotating. Manufacturing cost can be reduced. Moreover, since the multipolar magnet 2 is insert-molded in the core metal 1 provided with the staking portion 7, it is possible to prevent a problem that an excessive load is applied to the multipolar magnet as in caulking. Since the multipolar magnet 2 is integrally formed by insert molding in the annular portion 8 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6 of the core metal 1, even when the multipolar magnet 2 expands in a high temperature environment, Can be released to the inner diameter side of the multipolar magnet 2. Thereby, it can prevent that the multipolar magnet 2 deform
- the presence of the staking portion 7 makes the multipolar magnet and the core metal strong and inexpensive without causing problems in the multipolar magnet. A certain degree of effect can be obtained in that it can be fixed and high rotation detection accuracy can be maintained over a long period of time.
- a magnetic encoder 20B according to a third embodiment of the present invention will be described with reference to FIGS.
- the following description also includes a description of a method for manufacturing the magnetic encoder 20B.
- the same or corresponding parts as those in the preceding first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
- the third embodiment is different from the first and second embodiments in that the magnetic field between the magnetic poles S and N adjacent to each other at the boundary between the magnetic poles S and N adjacent to each other in the multipolar magnet 2 in FIG.
- the magnetic force lowering suppressing means 24 for suppressing the magnetic force lowering due to cancellation of each other is formed in the form of molding of the magnet material.
- the multipolar magnet 2 may be a rubber magnet obtained by injection molding a magnet material containing magnetic powder and rubber.
- a magnet material is filled into the cavity from a gate 23 corresponding to each of the magnetic poles S and N.
- the magnet material filled from each gate 23 collides with the boundary part of the location used as the magnetic pole S and the location used as the magnetic pole N, and the weld 24 is formed in this boundary part.
- the weld 24 serves as a magnetic force reduction suppressing means for suppressing magnetic force reduction due to cancellation between the magnetic poles S and N adjacent to each other.
- the gate 23 is removed and magnetized.
- simplified shapes of the multipolar magnet 2 are shown.
- a magnetic material is formed with a time difference between the S pole portion 2S and the N pole portion 2N in each of the magnetic poles S and N of the multipolar magnet 2. It is good also as the insert molding method which fills and shape
- the S pole part 2S is formed by the first filling (FIG. 18A)
- the N pole part 2N is formed by the second filling (FIG. 18B).
- the boundary portion between the magnetic pole portion filled with the magnet material first and the magnetic pole portion filled with the magnet material later.
- the boundary layer 25 is formed on the surface.
- the boundary layer 25 serves as a magnetic force reduction suppressing unit that suppresses magnetic force reduction due to cancellation between the adjacent magnetic poles S and N.
- the types of magnet materials used for forming the S pole portion 2S and the magnet materials used for forming the N pole portion 2N may be different from each other. If the types of magnet materials are different from each other, the boundary layer 25 becomes more prominent, and the effect of suppressing a decrease in magnetic force is increased.
- grooves 26 and 27 for separating the magnetized surface of the S pole portion 2S and the magnetized surface of the N pole portion 2N in the magnetic poles S and N of the multipolar magnet 2 are formed. These grooves 26 and 27 may be magnetic force reduction suppressing means for suppressing magnetic force reduction due to cancellation between adjacent magnetic poles S and N.
- the groove 26 in FIG. 19 has a V-shaped cross section
- the groove 27 in FIG. 20 has a rectangular cross section, but the cross sections of the grooves 26 and 27 are not particularly limited.
- the grooves 26 and 27 can be formed by insert molding. However, in some cases, the grooves 26 and 27 may be formed by cutting or the like after insert molding.
- the multipolar magnet 2 includes magnetic force reduction suppressing means 24, 25, 26, and 27 that suppress magnetic force reduction due to cancellation between the adjacent magnetic poles S and N. A decrease in magnetic force is suppressed, and the surface magnetic flux density of the multipolar magnet 2 can be improved. For this reason, high rotation detection accuracy is obtained and a magnetic encoder ring higher than the conventional product can be achieved. Since the multipolar magnet 2 has the magnetic force reduction suppressing means 24, 25, 26, and 27, it is not necessary to increase the amount of magnetic powder added to the magnet material in order to improve the surface magnetic flux density. Reduction is suppressed.
- each magnetic force reduction suppressing means 24, 25, 26, 27 is formed according to the form of the magnet material, and does not require any material other than the magnet material and can be formed by insert molding. Almost no cost increase.
- the second embodiment shown in FIGS. 8 to 15 includes the following aspect 1 that does not include the sealing agent required in the present invention.
- a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a cored bar, the cored bar extending from an end of the inner diameter cylindrical part and one end of the inner diameter cylindrical part to the outer diameter side.
- the plate portion and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, and a staking portion projecting to the inner diameter side is provided in the outer diameter cylindrical portion, in the core metal,
- the third embodiment shown in FIGS. 16 to 20 includes the following aspect 2 that does not include one or both of the staking portion and the sealing agent.
- a magnetic force decrease suppressing means for suppressing a magnetic force decrease due to cancellation of magnetic fields between the adjacent magnetic poles S and N is provided at a boundary portion between the adjacent magnetic poles S and N.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
この磁気エンコーダは、芯金(1)に、円周方向に交互に磁極が形成された多極磁石(2)を設けた磁気エンコーダである。芯金(1)は、内径円筒部(4)と、この内径円筒部(4)の一端から外径側へ延びる立板部(5)と、この立板部の外径側端から軸方向に延びる外径円筒部(6)を有し、芯金(1)における、立板部(5)および外径円筒部(6)にわたる環状部分(8)に、多極磁石(2)を、外径円筒部(6)の先端面が埋まるように、インサート成形によって一体成形し、封孔処理剤(11)によって、前記芯金と前記多極磁石の隙間を埋めた。
Description
本出願は、2013年4月9日出願の特願2013-081086、2014年1月31日出願の特願2014-016788、および2014年1月31日出願の特願2014-016789の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、軸受等に装着されて回転数検出用として機能する磁気エンコーダおよびその製造方法に関する。
磁気エンコーダは、例えば、自動車の車輪用軸受装置に組み込まれ、アンチロックブレーキシステム(ABS)における車輪の回転数を検出する回転検出装置として用いられる。この種の回転検出装置は、ロータに設けられた凹凸歯の動きを磁気の大きさとして読み取るパッシブタイプと、磁気エンコーダの回転に伴う磁気の強弱の変化をホールIC等の磁気センサで読み取るアクティブタイプとに大別される。これらのうちアクティブタイプの回転検出装置は、安価かつ低速域での回転速度検出に優れるため、近年多用される傾向にある。
アクティブタイプの回転検出装置は、例えば、回転側部材に設けられた磁気エンコーダと、固定側部材に設けられた磁気センサとからなる。前記磁気エンコーダは、円周方向に多極に着磁された円環状の多極磁石と、この多極磁石に固定した芯金とを備える。前記多極磁石としては、磁性粉と非磁性粉とを含む磁石材料を圧粉・焼結して得られるいわゆる焼結磁石、磁性粉とゴムとを含む磁石材料を射出成形して得られるいわゆるゴム磁石、磁性粉と樹脂とを含む磁石材料を射出成形して得られるいわゆるプラスチック磁石等が公知である。これら多極磁石50は、図21に示すように、接着(例えば、特許文献1、2を参照)するか、または図22に示すように、かしめ(例えば、特許文献3を参照)等の手段で芯金51に固定される。
車輪用軸受装置に組み込まれる磁気エンコーダは使用温度範囲が広く、過酷な環境下で使用されるため、多極磁石を芯金に強固に固定することが重要である。特許文献1では、芯金の表面のうち、多極磁石との接着面を粗面化して接触(接着)面積を増大させることにより、両者の固定強度を高めることが提案されているが、粗面処理を施すことによるコスト増が避けられない。また、接着剤の液管理や塗布工程そのものがコストのかかる作業工程となる。
また、特許文献2のようにプラスチック磁石をインサート成形時に硬化反応が進む接着剤を半硬化状態で芯金の表面に焼き付ける方法も提案されているが、これも焼付処理を施すことによるコスト増が避けられない。プラスチック磁石と芯金とをインサート成形により一体成形する構成では、その一体成形後、プラスチック磁石の成形収縮により芯金との間に僅かな隙間(ガタ)が発生する。このガタによって、プラスチック磁石が僅かでも動くと磁気精度を悪化させるという問題点もある。
一方、特許文献3のように多極磁石を芯金にかしめて固定すれば、かしめ加工時に多極磁石に過度の負荷がかかるため、かしめ加工に格別の配慮を要す。ゴム磁石やプラスチック磁石は、かしめ加工時等の過度の負荷は効果的に回避することが可能であるが、一般に膨張収縮し易い。したがって、特許文献3のように多極磁石の内周面および外周面を芯金でかしめていると、特に高温環境下で多極磁石が膨張した場合にその膨張分を、多極磁石の内周面および外周面のいずれにも逃がすことができず、多極磁石が変形等して回転検出精度が低下するおそれがある。
この発明は、上記の問題点に鑑みてなされたものであり、その課題とするところは、製造工程で多極磁石に過大な負荷を与えることなく、簡易的な大量処理が可能な低コストの工程で、多極磁石と芯金とを強固に隙間なく固定でき、高い回転検出精度を長期にわたって維持することができる磁気エンコーダ、およびその製造方法を提供することである。
この発明の磁気エンコーダは、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記外径円筒部の先端面が埋まるように、インサート成形によって一体成形し、封孔処理剤によって、前記芯金と前記多極磁石の隙間を埋めたものである。
この構成の磁気エンコーダは、芯金の環状部分に多極磁石をインサート成形によって一体成形するため、かしめ固定と異なり、製造工程で多極磁石に過大な負荷を与えることがない。インサート成形しただけでは、多極磁石の成形収縮により芯金との間に僅かな隙間が発生し、この隙間によって多極磁石がガタつく可能性があるが、前記隙間を封孔処理剤により埋めている。そのため、芯金と多極磁石とが強固に固定され、多極磁石のガタつきが防止される。これにより、冷熱衝撃時に発生する応力、つまり高温環境下の膨張、低温環境下の収縮により発生する応力で、多極磁石に悪影響を与えることきが改善できる。また、低温収縮時における多極磁石のガタつきも皆無となる。そのため、高い回転検出精度を長期にわたって維持することができる。このように、接着やかしめをしなくても、インサート成形と封孔処理剤による隙間の埋め込みという簡易的で大量処理が可能方法で強固に固定することができる。
また、芯金の外径円筒部の先端面が埋まるように多極磁石が成形されているため、先端面が露出している物と比べて、多極磁石の被検出面の径方向の有効長さを長くすることが可能となり、磁気検出範囲を広くすることができる。多極磁石をこのような芯金の前記先端面を埋める断面形状とすることが可能であるのは、従来のように芯金の外径円筒部をかしめる等の処理をする必要がないことによる。
さらに、この磁気エンコーダは、多極磁石と芯金の隙間に柔軟性に富む封孔処理剤が介在することで、この封孔処理剤が緩衝材として作用し、多極磁石への熱応力の負荷が軽減する。一般に、磁性粉を高充填したプラスチック磁石等の多極磁石は、樹脂分等のつなぎ材が少ないため破壊強度が劣る傾向があり、磁気エンコーダ用途への採用が難しかったが、この構成の磁気エンコーダは、多極磁石への熱応力の負荷が少ないため、磁性粉を高充填した高磁力のプラスチック磁石等を多極磁石に採用することが可能である。
なお、上記の封孔処理剤によって芯金と多極磁石の隙間を埋める作業は、例えば、液状の封孔処理剤の中に芯金と多極磁石の一体成形品を浸漬させて、芯金と多極磁石の隙間に封孔処理剤を浸透させた後、乾燥ないし加熱硬化させるという簡易な方法で行える。この方法によると、従来の接着、焼付け、かしめ等による方法と比べて、一度に多数の製品を効率良く処理することができ、製造コストの低減を図れる。
この発明において、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であっても良い。上記のように、インサート成形と封孔処理の併用により、磁性体粉を高充填した高磁力のプラスチック磁石の採用が、隙間による磁気精度の問題を生じることなく可能となる。プラスチック磁石によると、生産性等に優れる。磁性体粉を高充填したプラスチック磁石は、線膨張係数を小さくすることができるため、プラスチック磁石の線膨張係数と、芯金に使用される金属系材料の線膨張係数との差を少なくすることができる。多極磁石は高温環境下で膨張し低温環境下で収縮するが、前記のように多極磁石と芯金の線膨張係数の差を少なくできるため、多極磁石と芯金との膨張量および収縮量の差を少なくすることができる。したがって、多極磁石が高温膨張時にこの多極磁石に過度の負荷がかかって変形するのを防止できる。また多極磁石の低温収縮時のガタつきも僅かとなる。
この発明において、前記多極磁石には磁性体粉が混入され、この磁性体粉は、少なくともストロンチウムフェライトを含有するものであっても良い。フェライト系磁性粉は、コストおよび耐候性の面で優位を示すため、好ましい。特に、ストロンチウムフェライトは、これらの利点に優れる。
また、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合され、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含むものであっても良い。熱可塑性樹脂としては、吸水による多極磁石の磁気特性の低下を極力抑制するため、吸水性の少ないものが望ましい。熱可塑性樹脂は、前記1以上の化合物を含むものとすることで吸水性を少なくし、多極磁石の磁気特性の低下を極力抑制することができる。なお、ポリフェニレンサルファイドは、線膨張係数が前記他の加工物よりも小さく、芯金と同等の線膨張係数を達成しやすいため、より望ましい。
この発明において、前記封孔処理剤は、アクリレート系、メタクリレート系、およびエポキシ系の群から選択される少なくとも1つの化合物を含むものが適する。これらの封孔処理剤は、プラスチック磁石よりも柔軟性に富み、クッション効果、つまり前記緩衝材としての機能に優れる。そのため、温度変化からち生じるプラスチック磁石への圧縮・引張応力を緩和させ、過酷な温度環境下でも損傷させることなく、磁力の高い磁性粉高充填のプラスチック磁石材料の採用が可能になる。
この発明において、前記外径円筒部に内径側に突出するステーキング部を設け、前記芯金における、前記立板部および前記外径円筒部にわたる前記環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、前記インサート成形によって一体成形しても良い。
この構成によると、芯金の外径円筒部に、内径側に突出するステーキング部を予め設け、このステーキング部を設けた芯金における環状部分に、多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形している。つまり、芯金に多極磁石をインサート成形した後、ステーキング加工を行うのではなく、芯金に、多極磁石の抜け止め及び回り止めのためのステーキング部を設けた状態で、この芯金に多極磁石を、ステーキング部が埋まるように、インサート成形によって一体化している。
(1)ステーキング加工+インサート成形により、芯金に多極磁石を確実かつ容易に固定できる。インサート成形だけでは多極磁石の固定が不十分であるが、芯金に予め設けたステーキング部が埋まるようにインサート成形することで、多極磁石の一部がステーキング部に拘束されて多極磁石の抜け止め及び回り止めを容易に行うことができ、芯金に多極磁石を強固に固定し得る。また、ステーキング加工であるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金の外径円筒部に内径側に突出するステーキング部を設けているため、多極磁石は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石が膨張した場合でも、その膨張分を多極磁石の内径側に逃がすことが可能となる。これにより、多極磁石が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金にステーキング部を予め設けたうえで、多極磁石をインサート成形しているため、多極磁石に残留応力が発生せず、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止することができる。
(4)インサート成形後の封孔処理によって、さらに、芯金に対する多極磁石の固定が強固になる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金の外径円筒部に内径側に突出するステーキング部を設けているため、多極磁石は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石が膨張した場合でも、その膨張分を多極磁石の内径側に逃がすことが可能となる。これにより、多極磁石が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金にステーキング部を予め設けたうえで、多極磁石をインサート成形しているため、多極磁石に残留応力が発生せず、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止することができる。
(4)インサート成形後の封孔処理によって、さらに、芯金に対する多極磁石の固定が強固になる。
前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であり、前記多極磁石の線膨張係数と前記芯金の線膨張係数との差が2.0×10-5以下となるように、前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量を調整したものであっても良い。この場合、従来品よりも磁性体粉を高充填した磁力の高いプラスチック磁石を使用することが可能となり、表面磁束密度を向上させ、さらにコスト低減に寄与することができる。
この発明において、前記多極磁石は、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段が、前記磁石材料の成形の形態によって形成されたものであっても良い。
この構成によると、多極磁石が、隣合う磁極S,N間の打消し合いによる磁力低下を抑える磁力低下抑制手段を有するため、上記打ち消しあいによる磁力低下が抑えられ、多極磁石の表面磁束密度が向上する。このため、磁石材料の磁粉添加量を増やすことなく、高い回転検出精度が得られ、その高い回転検出精度を長期にわたって維持され、かつ多極磁石の材料強度の低下が抑えられる。前記磁力低下抑制手段は、磁石材料の成形の形態によって形成されるものであるため、別部材の磁気シールド部材を追加するものと異なり、製造が簡単で比較的低コストで製造可能である。
この発明において、前記磁力低下抑制手段は、前記多極磁石のそれぞれの磁極S,Nに相当する箇所のゲートから磁石材料を充填して着磁前の前記多極磁石を成形することによって前記互いに隣合う磁極S,Nの境界部に形成されたウェルドであっても良い。それぞれの磁極S,Nに相当する箇所のゲートから磁石材料を充填すると、各ゲートから充填された磁石材料が磁極Sとなる箇所と磁極Nとなる箇所の境界部でぶつかり合い、この境界部にウェルドが形成される。このウェルドが介在することで、後で多極磁石に着磁した場合、互いに隣合う磁極S,N間の打消し合いによる磁力低下が抑えられる。前記ウェルドは、磁石材料を同時充填するときに磁石材料の衝突によって生じる層状の部分である。
また、前記磁力低下抑制手段は、前記多極磁石の各磁極S,NにおけるS極部とN極部とで時間差をあけて磁石材料を充填して着磁前の前記多極磁石を成形することによって前記互いに隣合う磁極S,Nの境界部に形成された境界層であっても良い。前記境界層は、時間差を開けて磁石材料を充填したときにその境界に生じる層である。この場合に、前記S極部の成形に使用される磁石材料と前記N極部の成形に使用される磁石材料の種類が互いに異なっていても良い。S極部とN極部とで時間差をあけて磁石材料を充填すると、先に磁石材料が充填された磁極部と、後で磁石材料が充填された磁極部の境界部に境界層が形成される。この境界層が介在することで、後で多極磁石に着磁した場合、互いに隣合う磁極S,N間の打消し合いによる磁力低下が抑えられる。S極部の成形に使用される磁石材料とN極部の成形に使用される磁石材料の種類が互いに異なっていれば、前記境界層がより顕著なものとなり、磁力低下を抑制する効果が大きくなる。
さらに、前記磁力低下抑制手段は、前記多極磁石の各磁極S,NにおけるS極部の着磁面とN極部の着磁面とを隔てる溝であっても良い。この溝は、インサート成形により形成することが可能であるが、場合によっては、インサート成形後に切削加工等により形成しても良い。S-Nの着磁面を同一の連続したフラット面ではなく、S極部の着磁面とN極部の着磁面とを隔てる溝を有すると、磁力線を集中させて表面磁束密度を向上させることができ、互いに隣合う磁極S,N間の打消し合いによる磁力低下が抑えられる。
この発明の磁気エンコーダの製造方法は、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダの製造方法であって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記外径円筒部の先端面が埋まるようにインサート成形するインサート成形過程と、封孔処理剤によって、前記芯金と前記多極磁石の隙間を埋める封孔処理過程とを有する。
この発明の磁気エンコーダの製造方法において、前記インサート成形過程の前に、前記外径円筒部に内径側に突出するステーキング部を設けるステーキング過程を備え、前記インサート成形過程において、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形するものであっても良い。
この発明の磁気エンコーダの製造方法において、前記芯金に磁石材料をインサート成形するにあたり、個々の磁極S,Nとなる部分毎に前記磁石材料を充填することによって、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段となるウェルドまたは境界層を形成しても良い。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る磁気エンコーダの縦断面図である。
同磁気エンコーダの破断斜視図である。
同磁気エンコーダの製造方法を概略的に示すフローチャートである。
同磁気エンコーダのインサート成形過程を概略的に示す説明図である。
同磁気エンコーダの封孔処理過程を概略的に示す説明図である。
同磁気エンコーダの封孔処理過程の具体的な処理手順を示す説明図である。
同磁気エンコーダを使用した車輪用軸受装置の要部の縦断面図である。
この発明の第2実施形態に係る磁気エンコーダの縦断面図である。
同磁気エンコーダの芯金の縦断面図である。
同芯金の正面図である。
図3の要部の拡大図である。
同磁気エンコーダの製造方法を概略示すフローチャートである。
同磁気エンコーダのインサート成形過程を概略的に示す説明図である。
同磁気エンコーダの着磁過程を概略的に示す説明図である。
同磁気エンコーダを使用した車輪用軸受装置の要部の縦断面図である。
この発明の第3実施形態に係る磁気エンコーダの破断斜視図である。
同磁気エンコーダの多極磁石における磁力低下抑制手段を形成する方法の一例を示し、前記抑制手段の形成時の様子を示す説明図である。
同じく、前記抑制手段が形成された様子を示す説明図である。
同磁気エンコーダの多極磁石における磁力低下抑制手段を形成する方法の異なる例を示し、1回目の磁石材料の重点によりS極部を形成する様子を示す説明図である。
同じく、2回目の磁石材料の重点によりN極部を形成する様子を示す説明図である。
同じく、S極部とN極部の境界部に境界層が形成された様子を示す説明図である。
さらに異なる磁力低下抑制手段を有する多極磁石の斜視図とその部分拡大図である。
さらに異なる別の磁力低下抑制手段を有する多極磁石の斜視図とその部分拡大図である。
従来例の磁気エンコーダの縦断面図である。
他の従来例の磁気エンコーダの縦断面図である。
この発明の第1実施形態に係る磁気エンコーダを図1ないし図7と共に説明する。以下の説明は、磁気エンコーダの製造方法についての説明をも含む。図1、図2に示すように、磁気エンコーダ20は、環状の芯金1と、この芯金1に設けた多極磁石2とを有する。これら芯金1と多極磁石2の間の微小な隙間は、封孔処理剤11で埋められている。多極磁石2は、円周方向に交互に磁極N,Sが形成されている。この磁気エンコーダ20は、図示外の回転側部材に取り付けられ、多極磁石2に磁気センサ3を対面させて回転検出に使用される。
芯金1は、磁性体、特に強磁性体の金属鋼板、例えば、フェライト系ステンレス鋼板(JIS規格のSUS430)や冷間圧延鋼板(JIS規格のSPCC)等で形成される。この芯金1は、前記回転側部材に嵌合される内径円筒部4と、この内径円筒部4の一端から外径側へ延びる立板部5と、この立板部5の外径側端から軸方向に延びる外径円筒部6とを有する。内径円筒部4は、立板部5の内径側端から軸方向一方に延び、外径円筒部6は、立板部5の外径側端から軸方向他方に延びる。この例の外径円筒部6の軸方向長さは、内径円筒部4の軸方向長さよりも短く形成される。
多極磁石2は、例えば、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であり、芯金1における立板部5および外径円筒部6にわたる環状部分8に、インサート成形によって一体成形されている。多極磁石2の断面形状は、芯金1の立板部5の前記磁気センサ3側に位置する本体部9と、この本体部9の外径側に続き芯金1の外径円筒部6の先端面に被さる外径端部10とからなる。よって、芯金1の外径円筒部6の先端面6aは、多極磁石2に埋もれた状態となっている。このように外径円筒部6の先端面6aまでもが埋まるようにしたため、多極磁石2の有効径が小さくなることによる磁気検出範囲の縮小を抑えることができる。
また、多極磁石2の本体部9は、表面が磁気センサ3に対面し外径端部10と同一平面とされた平面部9aと、この平面部9aの内径側に続き表面が内径側に向かうに従って立板部5に近づくように傾斜する傾斜面部9bとからなる。本体部9の平面部9aおよび外径端部10の表面が、多極磁石2の被検出面2aとなる。この被検出面2aは、内径円筒部4の基準面である嵌合面4aに対し、定められた直角度公差内で且つ定められた円周振れ公差内に収まるように形成されている。
磁性体粉として、例えば、ストロンチウムフェライトやバリウムフェライト等に代表される異方性あるいは等方性のフェライト系磁性粉や、ネオジウム-鉄-ボロン,サマリウム-コバルト,サマリウム-鉄-窒素等に代表される希土類系磁性粉等、公知の磁性粉を使用することができ、これらは単独で、あるいは複数組み合わせて使用される。本実施形態では、コストおよび耐候性の面で優位性を示すことから、フェライト系磁性粉を主として使用している。
熱可塑性樹脂としては、吸水による多極磁石の磁気特性の低下を極力抑制するため、吸水性の少ないものが望ましく、例えば、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド612(PA612)、ポリフェニレンサルファイド(PPS)の群から選択される少なくとも1つの化合物を含むものが使用される。なお、ポリフェニレンサルファイド(PPS)は、線膨張係数が前記他の加工物よりも小さく、芯金と同等の線膨張係数を達成しやすいため、より望ましい。
前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量は、次のように調整される。多極磁石2の線膨張係数と芯金1の線膨張係数との差が2.0×10-5以下となるように、前記配合量が調整される。この配合量および線膨張係数の差は、後述する冷熱耐久試験の試験結果から導き出されたものである。
前記封孔処理剤11は、例えばアクリレート系、メタクリレート系、およびエポキシ系の群から選択される少なくとも1つの化合物からなる。これらの化合物は、柔軟性に富み、緩衝材としての機能に優れるので、封孔処理剤11として適している。
図3は、磁気エンコーダの製造方法を概略的に示すフローチャートである。この実施形態に係る磁気エンコーダの製造方法は、準備過程(ステップS0)と、インサート・磁場成形過程(ステップS1)と、封孔処理過程(ステップS2)と、脱磁/着磁過程(ステップS3)と、検査、梱包・発送過程(ステップS4)とを有する。
準備過程では、所定の形状に加工された芯金1と、多極磁石2の材料(例えばプラスチック磁石の場合、磁性体粉および熱可塑性樹脂)とを準備する。インサート・磁場成形過程では、図4に示すように、芯金1を射出成形機12のキャビティ内にセットし、この芯金1の環状部分8に多極磁石2をインサート成形によって一体成形する。インサート成形後には、材料の成形収縮により、芯金1と多極磁石2との間に僅かな隙間21が残る。なお、図4では、隙間21を誇張して図示してある。
また、多極磁石2に異方性の磁性粉を使用する場合には、上記インサート成形と同時に、磁場配向を加えながら磁場成形を行う。このときの磁場配向によって、磁紛の配向(磁化容易軸)がアキシャル方向に揃う単極着磁された状態となり、後記脱磁/着磁過程における着磁後の表面磁束密度を向上することができる。
前記射出成形機12は、例えば、組み合わされる第1,第2の金型12a,12bを有する。第1の金型12aは、芯金1を位置決めした状態で保持する。第1および第2の金型12a,12bを互いに組み合わせた状態で、多極磁石2を成形する環状のキャビティが形成される。射出成形機12において、キャビティに多極磁石2の材料を充填する図示外のゲートが設けられている。多極磁石2を芯金1に一体成形しつつ磁場成形を行った後、第1,第2の金型12a,12bを開きこの多極磁石2及び芯金1を取り出す。
封孔処理過程では、射出成形機12から取り出した芯金1と多極磁石2の一体成形品22に対して、図5のように、インサート成形時に生じた芯金1と多極磁石2の間の前記隙間21を封孔処理剤11によって埋めて、芯金1と多極磁石2を接着する処理を行う。その処理方法は、例えば、図6(A)のように、溶融した封孔処理剤11の中に一体成形品22を投入して、芯金1と多極磁石2の隙間21に封孔処理剤11を浸透させた後、同図(B)のように、封孔処理剤11から一体成形品22を取り出し、この一体成形品22を加熱して隙間21内の封孔処理剤11を硬化させることで行う。
脱磁/着磁過程では、封孔処理を施した芯金1と多極磁石2の一体成形品22に対して、前記インサート・磁場成形過程における磁場配向時の残留磁気を完全脱磁し、要求精度を満足する着磁ヨークを用いて、多極磁石2を着磁させる。これにより、磁気エンコーダ20が完成する。その後、検査、梱包・発送過程において、完成した磁気エンコーダ20を、検査をしてから、梱包および発送をする。
作用効果について説明する。この構成の磁気エンコーダ20は、芯金1の環状部分8に多極磁石2をインサート成形によって一体成形した後、封孔処理剤11によって芯金1と多極磁石2の隙間21を埋めることにより製造される。芯金1の環状部分8に多極磁石2をインサート成形しただけでは、多極磁石2の成形収縮により芯金1との間に僅かな隙間21が発生し、この隙間21によって多極磁石2がガタつく可能性がある。多極磁石2が僅かでも動くと、磁気精度が悪化する。そこで、前記隙間21を封孔処理剤11で埋めることにより、芯金1と多極磁石2とが強固に固定され、多極磁石2のガタつきが防止される。これにより、高温環境下の膨張や低温環境下の収縮により発生する応力で、多極磁石2が変形するのを防止できる。また、低温収縮時における多極磁石2のガタつきも皆無となる。つまり、この構成の磁気エンコーダ20は、接着やかしめをしなくても、インサート成形と封孔処理剤11による埋め込みという簡易的な方法で強固に固定することができる。強固に固定できるため、高い回転検出精度を長期にわたって維持することができる。
芯金1の外径円筒部6の先端面6aが埋まるように多極磁石2が成形されているため、先端面6aが露出している場合と比べて、多極磁石2の被検出面2aの径方向長さを長くすることが可能となり、磁気検出範囲を広くすることができる。多極磁石2を上記のような断面形状とすることが可能なのは、従来のように芯金1の外径円筒部6をかしめる等の処理をする必要がないからである。
封孔処理剤11を用いて芯金1と多極磁石2を固定すると、従来の接着、焼付け、かしめ等による固定と比べて、一度に多数の製品を処理することができ、製造コストの低減を図れる。また、芯金1と多極磁石2の隙間に柔軟性に富む封孔処理剤11が介在することで、この封孔処理剤11が緩衝材として作用し、多極磁石2への熱応力の負荷が軽減する。一般に、磁性粉を高充填したプラスチック磁石等の多極磁石は、樹脂分等のつなぎ材が少ないため破壊強度が劣る傾向があり、磁気エンコーダに用いることが難しかったが、この構成の磁気エンコーダ20は、多極磁石2への熱応力の負荷が少ないため、磁性粉を高充填した高磁力のプラスチック磁石等を多極磁石2に採用することが可能である。
この実施形態では、多極磁石2は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石とされている。磁性体粉を高充填したプラスチック磁石は、線膨張係数を小さくすることができるため、プラスチック磁石の線膨張係数と、芯金1に使用される金属製材料の線膨張係数との差を少なくすることができる。多極磁石2は高温環境下で膨張し低温環境下で収縮するが、前記のように多極磁石2と芯金1の線膨張係数の差を少なくできるため、多極磁石2と芯金1との膨張量および収縮量の差を少なくすることができる。したがって、多極磁石2が高温膨張時にこの多極磁石2に過度の負荷がかかるのを防止できる。また多極磁石2の低温収縮時のガタつきも僅かとなる。
多極磁石2における熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含むものとすることで吸水性を少なくし、多極磁石2の磁気特性の低下を極力抑制することができる。プラスチック磁石の線膨張係数と芯金1の線膨張係数との差が2.0×10-5以下となるように、前記プラスチック磁石を構成する磁性体粉と熱可塑性樹脂の配合量を調整したため、従来品よりも磁性体粉を高充填した磁力の高いプラスチック磁石を使用することが可能となり、表面磁束密度を向上させ、さらにコスト低減に寄与することができる。
図7は、この磁気エンコーダ20を使用した車輪用軸受装置の要部の縦断面図である。車輪用軸受装置は、回転側部材である内方部材14と、車両における図示外のナックル等に取付けられる外方部材15と、これら内方部材14と外方部材15との間に介在される転動体16とを備えている。この例では、転動体16としてボールが適用されているが、ころを適用することも可能である。内方部材14における、車幅方向中央寄り側であるインボード側の外周面に、実施形態に係る磁気エンコーダ20の芯金1が圧入状態に嵌合されている。
この例では、外方部材15のインボード側の内周面に、保護カバー17が圧入され、外方部材15のインボード側の開口部を閉塞している。この保護カバー17により、軸受内部に封入されたグリースの漏洩を防止できると共に、外部から軸受内部に泥水や異物等が侵入することを防止し得る。この保護カバー17は、磁気エンコーダ20の多極磁石2に対向する磁気センサ3の感知性能に影響を及ぼさないような、例えば、非磁性体の鋼板、例えば、オーステナイト系ステンレス鋼板が使用されている。なお保護カバー17に代えて、例えば、外方部材15の内周面に、内径円筒部4の外周面および立板部5の内側面にリップが摺接するシール装置(図示せず)を設けても良い。
この発明の第2実施形態に係る磁気エンコーダ20Aを図8ないし図15と共に説明する。以下の説明は、磁気エンコーダの製造方法についての説明をも含む。この第2実施形態の構成において、先行する第1実施形態の構成と同一または相当する部分には同一の符号を付して、その詳しい説明は省略する。この第2実施形態が第1実施形態と相違する点は、封孔処理剤11に加え、芯金1の外径円筒部6に内径側に突出する複数のステーキング部7を設け、芯金1における、立板部5および外径円筒部6にわたる環状部分8に、多極磁石2を、前記ステーキング部7が埋まるように、インサート成形によって一体成形した点にある。
図8に示すように、磁気エンコーダ20Aは、環状の芯金1と、この芯金1に設けた多極磁石2とを有する。多極磁石2は、円周方向に交互に磁極N,Sが形成されている。この磁気エンコーダは、図示しない回転側部材に取り付けられ、多極磁石2に磁気センサ3を対面させて回転検出に使用される。なお、図8に示す多極磁石2は、従来の多極磁石よりも軸方向の厚みt1が厚くなるように形成されている。多極磁石2は、外径側の厚肉部の本体部9と、この本体部9に傾斜状の段部9cを介して内径側に繋がる薄肉部9dとを有する。前記段部9cは、内径側に向かうに従って立板部5に近づくように傾斜する断面形状に形成されている。
図9は、磁気エンコーダの芯金1の縦断面図である。芯金1は、磁性体、特に強磁性体の金属鋼板、例えば、フェライト系ステンレス鋼板(JIS規格のSUS430)や冷間圧延鋼板(JIS規格のSPCC)等で形成される。この芯金1は、前記回転側部材に嵌合される内径円筒部4と、この内径円筒部4の一端から外径側へ延びる立板部5と、この立板部5の外径側端から軸方向に延びる外径円筒部6とを有する。内径円筒部4は、立板部5の内径側端から軸方向一方に延び、外径円筒部6は、立板部5の外径側端から軸方向他方に延びる。この例の外径円筒部6の軸方向長さは、内径円筒部4の軸方向長さよりも短く形成される。
図10は芯金1の正面図であり、図11は図10の要部の拡大図である。図10および図11に示すように、外径円筒部6における円周方向の複数箇所に、内径側に突出するステーキング部7を設けている。これらステーキング部7は円周方向一定間隔おきに設けられる。ステーキング部7は、芯金1に多極磁石2(図8)を固定すると共に、芯金1に対する多極磁石2の抜け止めおよび回り止めのために設けられる。各ステーキング部7は、外径円筒部6の軸方向先端部が内径側に突出して、正面視で略V字形状になるように塑性変形されて成る。外径円筒部6の軸方向先端部のみにステーキング部7を設けたことで、つぎのインサート成形過程で形成される多極磁石2がステーキング部7によって図9の矢印A方向に係止される。これにより、図8に示すように、芯金1に対し多極磁石2が軸方向に不所望に抜けることを防止し得るうえ、芯金1に対し多極磁石2が相対回転することを防止し得る。
この第2実施形態では、前記ステーキング部7を設けた後で、多極磁石2を、芯金1における、立板部5および外径円筒部6にわたる環状部分8にインサート成形によって一体成形している。このインサート成形後に封孔処理剤11によって芯金1と多極磁石2の隙間を埋めている。芯金1の環状部分8に設けられた多極磁石2のうち、磁気センサ3に対面する表面2aは、外径円筒部6の軸方向先端と同一面を成して繋がっており、この多極磁石2は、従来の多極磁石よりも軸方向の厚みt1が厚くなるように形成されている。
冷熱耐久試験について説明する。第2実施形態において、ステーキング部7のみを設け、封孔処理剤11を使用しなかった磁気エンコーダの実施例1~7、従来形状の磁気エンコーダの比較例1,2をそれぞれ10個準備し、同一の試験条件で冷熱耐久試験を行った。この冷熱耐久試験を500サイクル実施後、プラスチック磁石のクラックの有無を確認し、各例につき10個中1個でもクラックが有ると「×」つまり冷熱の耐久性不可と判定した。各例につき10個中のいずれもクラックが無ければ「○」つまり冷熱の耐久性可と判定した。ステーキング部7を設けないで封孔処理剤11のみを使用した第1実施形態でも同様な試験結果が得られた。
試験結果より、プラスチック磁石の線膨張係数と芯金の線膨張係数との差が2.0×10-5以下となるように、前記プラスチック磁石の磁性体粉と熱可塑性樹脂の配合量が調整された例は、クラックが無かった。
(表1の中に、線膨張係数の差のデータとして、+2.1のデータを実施例5としました。ご確認下さい。)
(表1の中に、線膨張係数の差のデータとして、+2.1のデータを実施例5としました。ご確認下さい。)
図12は、磁気エンコーダの製造方法を概略的に示すフローチャートである。図8も参照しつつ説明する。この実施形態に係る磁気エンコーダの製造方法は、ステーキング過程(ステップs1)と、インサート成形過程(ステップs2)と、着磁過程(ステップs3)とを有する。先ず、ステーキング過程において、芯金1の外径円筒部6における円周方向の複数箇所に、前述のステーキング部7を設ける。なお芯金1の外径円筒部6を設けるのと同時にステーキング部7を設けても良いし、ステーキング部7を設けた後に外径円筒部6を設けても良い。
次に、インサート成形過程において、図13に示すように、ステーキング部7を設けた芯金1を、射出成形機12のキャビティ内にセットし、この芯金1の環状部分8に多極磁石2をインサート成形によって一体成形する。射出成形機12は、例えば、組み合わされる第1,第2の金型12a,12bを有する。第1の金型12aは、芯金1を位置決めした状態で保持する。第1および第2の金型12a,12bを互いに組み合わせた状態で、多極磁石2を成形する環状のキャビティが形成される。射出成形機12において、キャビティに多極磁石2の材料を充填する図示しないゲートが設けられている。前記インサート成形と同時に磁場配向を加えながら磁場成形を行う。このときの磁場配向によってアキシャル方向に単極着磁された状態となるが、取り出し前に(金型内で冷却後)逆磁場を加えて脱磁処理を行う。脱磁が不十分な場合、着磁後の磁気特性の精度に影響があるので、必要により別工程で完全脱磁処理を行う場合もある。多極磁石2を芯金1に一体成形しつつ磁場成形を行った後、第1,第2の金型12a,12bを開きこの多極磁石2及び芯金1が取り出される。
なお参考提案例として、図14に示すように、磁場成形機13により、多極磁石2をその軸心L1回りに回転させながら、所望の円周方向ピッチで順次に着磁しても良い。このとき、プラスチック磁石に異方性の磁性粉を使用する場合、磁場配向を加えながら磁場成形を行うことで、着磁後の表面磁束密度を向上し得る。なお着磁前に、完全脱磁処理工程を追加しても良い。この場合、着磁後のN極-S極のピーク差の低減を図ることができる。また、着磁ヨークにより磁極のパターンを一度に転写させても良い。
作用効果について説明する。
(1)ステーキング加工+インサート成形により、芯金1に多極磁石2を確実かつ容易に固定できる。インサート成形だけでは多極磁石の固定が不十分であるが、芯金1に予め設けたステーキング部7が埋まるようにインサート成形することで、多極磁石2の一部がステーキング部7に拘束されて多極磁石2の抜け止め及び回り止めを容易に行うことができ、芯金1に多極磁石2を強固に固定し得る。また、ステーキング加工であるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金1の外径円筒部6に内径側に突出するステーキング部7を設けているため、多極磁石2は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石2が膨張した場合でも、その膨張分を多極磁石2の内径側に逃がすことが可能となる。これにより、多極磁石2が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金1にステーキング部7を予め設けたうえで、多極磁石2をインサート成形しているため、多極磁石2に残留応力が発生せず、かしめ加工時のように多極磁石2に過度の負荷がかかるのを防止することができる。
(4)インサート成形後の封孔処理によって、さらに、芯金に対する多極磁石の固定が強固になる。
(1)ステーキング加工+インサート成形により、芯金1に多極磁石2を確実かつ容易に固定できる。インサート成形だけでは多極磁石の固定が不十分であるが、芯金1に予め設けたステーキング部7が埋まるようにインサート成形することで、多極磁石2の一部がステーキング部7に拘束されて多極磁石2の抜け止め及び回り止めを容易に行うことができ、芯金1に多極磁石2を強固に固定し得る。また、ステーキング加工であるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金1の外径円筒部6に内径側に突出するステーキング部7を設けているため、多極磁石2は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石2が膨張した場合でも、その膨張分を多極磁石2の内径側に逃がすことが可能となる。これにより、多極磁石2が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金1にステーキング部7を予め設けたうえで、多極磁石2をインサート成形しているため、多極磁石2に残留応力が発生せず、かしめ加工時のように多極磁石2に過度の負荷がかかるのを防止することができる。
(4)インサート成形後の封孔処理によって、さらに、芯金に対する多極磁石の固定が強固になる。
多極磁石2は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石である。磁性体粉を高充填したプラスチック磁石は、線膨張係数を小さくすることができるため、プラスチック磁石の線膨張係数と、芯金1に使用される金属製材料の線膨張係数との差を少なくすることができる。多極磁石2は高温環境下で膨張し低温環境下で収縮するが、前記のように多極磁石2と芯金1の線膨張係数の差を少なくできるため、多極磁石2と芯金1との膨張量および収縮量の差を少なくすることができる。したがって、多極磁石2が高温膨張時にこの多極磁石2に過度の負荷がかかって変形するのを防止できる。また多極磁石2の低温収縮時のガタつきも僅かとなる。
多極磁石2における熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含むものとすることで吸水性を少なくし、多極磁石2の磁気特性の低下を極力抑制することができる。プラスチック磁石の線膨張係数と芯金1の線膨張係数との差が2.0×10-5以下となるように、前記プラスチック磁石を構成する磁性体粉と熱可塑性樹脂の配合量を調整したため、従来品よりも磁性体粉を高充填した磁力の高いプラスチック磁石を使用することが可能となり、表面磁束密度を向上させ、さらにコスト低減に寄与することができる。
図15は、この磁気エンコーダを使用した車輪用軸受装置の要部の縦断面図である。車輪用軸受装置は、回転側部材である内方部材14と、車両における図示しないナックル等に取付けられる外方部材15と、これら内方部材14と外方部材15との間に介在される転動体16とを備えている。この例では、転動体16としてボールが適用されているが、ころを適用することも可能である。内方部材14における、車幅方向中央寄り側であるインボード側の外周面に、本実施形態に係る磁気エンコーダ20Aの芯金1が圧入状態に嵌合されている。
この例では、外方部材15のインボード側の内周面に、保護カバー17が圧入され、外方部材15のインボード側の開口部を閉塞している。この保護カバー17により、軸受内部に封入されたグリースの漏洩を防止できると共に、外部から軸受内部に泥水や異物等が侵入することを防止し得る。この保護カバー17は、磁気エンコーダの多極磁石2に対向する磁気センサ3の感知性能に影響を及ぼさないような、例えば、非磁性体の鋼板、例えば、オーステナイト系ステンレス鋼板が使用されている。なお保護カバー17に代えて、例えば、外方部材15の内周面に、内径円筒部4の外周面および立板部5の内側面にリップが摺接するシール装置(図示せず)を設けても良い。
車輪用軸受装置に、第2実施形態に係る磁気エンコーダ20Aを適用すると、芯金1に予め設けたステーキング部7により、多極磁石2の抜け止め及び回り止めを容易に図れるため、従来技術よりも製造コストの低減を図れる。またステーキング部7を設けた芯金1に、多極磁石2をインサート成形しているため、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止し得る。芯金1における、立板部5および外径円筒部6にわたる環状部分8に、多極磁石2をインサート成形によって一体成形したため、高温環境下で多極磁石2が膨張した場合でも、その膨張分を多極磁石2の内径側に逃がすことが可能となる。これにより、多極磁石2が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
なお、この第2実施形態において、封孔処理を省略した場合でも、ステーキング部7の存在によって、多極磁石に不具合を生じさせることなく、多極磁石と芯金とを強固かつ低コストで固定できる点と、高い回転検出精度を長期にわたって維持できる点について、ある程度の効果が得られる。
この発明の第3実施形態に係る磁気エンコーダ20Bを図16ないし図19と共に説明する。以下の説明は、磁気エンコーダ20Bの製造方法についての説明をも含む。この第3実施形態の構成において、先行する第1および第2実施形態の構成と同一または相当する部分には同一の符号を付して、その詳しい説明は省略する。この第3実施形態が第1および第2実施形態と相違する点は、図16の多極磁石2における互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段24が、磁石材料の成形の形態によって形成されている点にある。必要に応じて外径円周部6にはステーキング部(図示せず)が設けられる。また、芯金1と多極磁石2との隙間が封孔処理剤11により埋められる。なお、多極磁石2は、磁性体粉とゴムを含む磁石材料を射出成形して得られるゴム磁石であっても良い。
この第3実施形態において、インサート成形に際しては、例えば図17Aに示すように、それぞれの磁極S,Nに相当する箇所のゲート23から、キャビティ内に磁石材料を充填する。これにより、各ゲート23から充填された磁石材料が磁極Sとなる箇所と磁極Nとなる箇所の境界部でぶつかり合い、この境界部にウェルド24が形成される。ウェルド24が形成されることで、後で多極磁石2に着磁するとき、互いに隣合う磁極S,N間の打消し合いによる磁力低下が抑えられる。つまり、ウェルド24が、互いに隣合う磁極S,N間の打消し合いによる磁力低下を抑える磁力低下抑制手段となっている。その後、図17Bのように、ゲート23を除去し、着磁される。なお、図17A,Bおよび後で示す図18~図20では、多極磁石2を単純化した形状を図示している。
図17A,17Bのインサート成形方法に代えて、図18A~18Cに示すように、多極磁石2の各磁極S,NにおけるS極部2SとN極部2Nとで時間差をあけて磁石材料を充填して、着磁前の多極磁石2を成形するインサート成形方法としても良い。図示の例では、1回目の充填でS極部2Sを成形し(図18A)、2回目の充填でN極部2Nを成形する(図18B)。このように、S極部2SとN極部2Nとで時間差をあけて磁石材料を充填すると、先に磁石材料が充填された磁極部と、後で磁石材料が充填された磁極部の境界部に境界層25が形成される。境界層25が形成されることで、前記ウェルド24と同様に、後で多極磁石2に着磁するとき(図18C)、互いに隣合う磁極S,N間の打消し合いによる磁力低下が抑えられる。つまり、境界層25が、互いに隣合う磁極S,N間の打消し合いによる磁力低下を抑える磁力低下抑制手段となっている。
図18A~18Cのインサート成形方法において、S極部2Sの成形に使用される磁石材料とN極部2Nの成形に使用される磁石材料の種類が互いに異なっていても良い。磁石材料の種類が互いに異なっていれば、境界層25がより顕著なものとなり、磁力低下を抑制する効果が大きくなる。
また、図19、図20に示すように、多極磁石2の各磁極S,NにおけるS極部2Sの着磁面とN極部2Nの着磁面とを隔てる溝26,27を形成し、これら溝26,27を、互いに隣合う磁極S,N間の打消し合いによる磁力低下を抑える磁力低下抑制手段としても良い。図19の溝26は断面形状がV字形とされ、図20の溝27は断面形状が矩形とされているが、溝26,27の断面形状は特に限定しない。また、溝26,27は、インサート成形により形成することが可能であるが、場合によっては、インサート成形後に切削加工等により形成しても良い。
作用効果について説明する。この構成の磁気エンコーダ20Bは、多極磁石2が、互いに隣合う磁極S,N間の打消し合いによる磁力低下を抑える磁力低下抑制手段24,25,26,27を有するため、上記打ち消しあいによる磁力低下が抑えられ、多極磁石2の表面磁束密度向上が可能である。このため、高い回転検出精度が得られ、従来品よりも高い磁気エンコーダリングを達成することができる。多極磁石2が磁力低下抑制手段24,25,26,27を有することで、表面磁束密度の向上のために磁石材料の磁粉添加量を増やさなくてもよくなり、多極磁石の材料強度の低下が抑えられる。また、多極磁石2が磁力低下抑制手段24,25,26,27を有することで、磁石材料に高価な希土類系磁粉を添加しなくても良い。各磁力低下抑制手段24,25,26,27は、磁石材料の形態により形成されるものであり、磁石材料以外の材料を必要とせず、かつインサート成形により形成することが可能であるため、製造コストの向上をほとんど招かない。
図8~図15に示した第2実施形態には、この発明で要件とした封孔処理剤を含まないつぎの態様1が含まれる。
[態様1]
芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設け、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形した磁気エンコーダ。
[態様1]
芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設け、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形した磁気エンコーダ。
また、図16~図20に示した第3実施形態には、ステーキング部および封孔処理剤の一方または両方を含まないつぎの態様2が含まれる。
[態様2]
環状の芯金に、円周方向に交互に磁極S,Nが形成された多極磁石を設けた磁気エンコーダであって、前記芯金に磁石材料のインサート成形によって前記多極磁石が一体成形され、前記多極磁石は、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段が、前記磁石材料の成形の形態によって形成された磁気エンコーダ。
[態様2]
環状の芯金に、円周方向に交互に磁極S,Nが形成された多極磁石を設けた磁気エンコーダであって、前記芯金に磁石材料のインサート成形によって前記多極磁石が一体成形され、前記多極磁石は、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段が、前記磁石材料の成形の形態によって形成された磁気エンコーダ。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…芯金
2…多極磁石
4…内径円筒部
5…立板部
6…外径円筒部
6a…先端面
7…ステーキング部
8…環状部分
11…封孔処理剤
20…磁気エンコーダ
21…隙間
23…ゲート
24…ウェルド(磁力低下抑制手段)
25…境界層(磁力低下抑制手段)
26,27…溝(磁力低下抑制手段)
2…多極磁石
4…内径円筒部
5…立板部
6…外径円筒部
6a…先端面
7…ステーキング部
8…環状部分
11…封孔処理剤
20…磁気エンコーダ
21…隙間
23…ゲート
24…ウェルド(磁力低下抑制手段)
25…境界層(磁力低下抑制手段)
26,27…溝(磁力低下抑制手段)
Claims (15)
- 芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、
前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記外径円筒部の先端面が埋まるように、インサート成形によって一体成形し、封孔処理剤によって、前記芯金と前記多極磁石の隙間を埋めた磁気エンコーダ。 - 請求項1記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石である磁気エンコーダ。
- 請求項1または請求項2に記載の磁気エンコーダにおいて、前記多極磁石には磁性体粉が混入され、この磁性体粉は、少なくともストロンチウムフェライトを含有する磁気エンコーダ。
- 請求項1から3のいずれか1項に記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合され、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含む磁気エンコーダ。
- 請求項1から4のいずれか1項に記載の磁気エンコーダにおいて、前記封孔処理剤は、アクリレート系、メタクリレート系、およびエポキシ系の群から選択される少なくとも1つの化合物を含む磁気エンコーダ。
- 請求項1から5いずれか一項に記載の磁気エンコーダであって、
前記外径円筒部に内径側に突出するステーキング部を設け、
前記芯金における前記環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、前記インサート成形によって一体成形した磁気エンコーダ。 - 請求項1から6のいずれか一項に記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であり、前記多極磁石の線膨張係数と前記芯金の線膨張係数との差が2.0×10-5以下となるように、前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量を調整した磁気エンコーダ。
- 請求項1から7のいずれか一項に記載の磁気エンコーダにおいて、前記多極磁石は、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段が、前記磁石材料の成形の形態によって形成された磁気エンコーダ。
- 請求項8に記載の磁気エンコーダにおいて、前記磁力低下抑制手段は、前記多極磁石のそれぞれの磁極S,Nに相当する箇所のゲートから磁石材料を充填して着磁前の前記多極磁石を成形することによって前記互いに隣合う磁極S,Nの境界部に形成されたウェルドである磁気エンコーダ。
- 請求項8に記載の磁気エンコーダにおいて、前記磁力低下抑制手段は、前記多極磁石の各磁極S,NにおけるS極部とN極部とで時間差をあけて磁石材料を充填して着磁前の前記多極磁石を成形することによって前記互いに隣合う磁極S,Nの境界部に形成された境界層である磁気エンコーダ。
- 請求項10に記載の磁気エンコーダにおいて、前記S極部の成形に使用される磁石材料と前記N極部の成形に使用される磁石材料の種類が互いに異なる磁気エンコーダ。
- 請求項8に記載の磁気エンコーダにおいて、前記磁力低下抑制手段は、前記多極磁石の各磁極S,NにおけるS極部の着磁面とN極部の着磁面とを隔てる溝である磁気エンコーダ。
- 芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダの製造方法であって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、
前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記外径円筒部の先端面が埋まるように、インサート成形するインサート成形過程と、封孔処理剤によって、前記芯金と前記多極磁石の隙間を埋める封孔処理過程とを有する磁気エンコーダの製造方法。 - 請求項13に記載の磁気エンコーダの製造方法において、前記インサート成形過程の前に、前記外径円筒部に内径側に突出するステーキング部を設けるステーキング過程を備え、
前記インサート成形過程において、前記多極磁石を、前記ステーキング部が埋まるようにインサート成形によって一体成形する磁気エンコーダの製造方法。 - 請求項13または14に記載の磁気エンコーダの製造方法において、前記芯金に磁石材料のインサート成形するにあたり、個々の磁極S,Nとなる部分毎に前記磁石材料を充填することによって、前記互いに隣合う磁極S,Nの境界部に、これら互いに隣合う磁極S,N間の磁界の打消し合いによる磁力低下を抑える磁力低下抑制手段となるウェルドまたは境界層を形成する磁気エンコーダの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14783372.7A EP2988102A4 (en) | 2013-04-09 | 2014-04-04 | MAGNETIC ENCODER AND METHOD FOR PRODUCING THE SAME |
CN201480020073.5A CN105122011A (zh) | 2013-04-09 | 2014-04-04 | 磁性编码器及其制造方法 |
US14/877,364 US20160033303A1 (en) | 2013-04-09 | 2015-10-07 | Magnetic encoder and production method therefor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013081086A JP2014202684A (ja) | 2013-04-09 | 2013-04-09 | 磁気エンコーダおよびその製造方法 |
JP2013-081086 | 2013-04-09 | ||
JP2014016788A JP2015143638A (ja) | 2014-01-31 | 2014-01-31 | 磁気エンコーダおよびその製造方法 |
JP2014016789A JP6215071B2 (ja) | 2014-01-31 | 2014-01-31 | 磁気エンコーダおよびその製造方法 |
JP2014-016788 | 2014-01-31 | ||
JP2014-016789 | 2014-01-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/877,364 Continuation US20160033303A1 (en) | 2013-04-09 | 2015-10-07 | Magnetic encoder and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014168091A1 true WO2014168091A1 (ja) | 2014-10-16 |
Family
ID=51689500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059987 WO2014168091A1 (ja) | 2013-04-09 | 2014-04-04 | 磁気エンコーダおよびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160033303A1 (ja) |
EP (1) | EP2988102A4 (ja) |
CN (1) | CN105122011A (ja) |
WO (1) | WO2014168091A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190337332A1 (en) * | 2016-09-16 | 2019-11-07 | Jtekt Corporation | Method for manufacturing hub unit |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6536104B2 (ja) * | 2014-06-05 | 2019-07-03 | 中西金属工業株式会社 | 円環状インサート成形品の製造方法 |
DE102014111685A1 (de) * | 2014-08-15 | 2016-02-18 | Elkamet Kunststofftechnik Gmbh | Kunststoffformteil und Verfahren seiner Herstellung |
CN106225813B (zh) * | 2016-07-07 | 2018-08-17 | 航天鑫创自控装备发展有限公司 | 编码器磁钢结构、编码器以及窗口余数区间判断矫正算法 |
CN106197482B (zh) * | 2016-07-07 | 2018-06-26 | 航天鑫创自控装备发展股份有限公司 | 有限转角编码器磁钢结构及具有该磁钢结构的编码器 |
CN109883453A (zh) * | 2019-03-11 | 2019-06-14 | 安徽库伯密封技术有限公司 | 一种塑料磁性编码器及其制造工艺 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003057070A (ja) | 2001-08-17 | 2003-02-26 | Ntn Corp | 磁気エンコーダおよびそれを用いた車輪用軸受 |
JP2005274436A (ja) | 2004-03-25 | 2005-10-06 | Nsk Ltd | エンコーダ及び当該エンコーダを備えた転がり軸受 |
JP2006145365A (ja) * | 2004-11-19 | 2006-06-08 | Ntn Corp | 磁気エンコーダおよびそれを備えた車輪用軸受 |
JP2006153576A (ja) * | 2004-11-26 | 2006-06-15 | Ntn Corp | 磁気エンコーダおよびそれを備えた車輪用軸受 |
JP2008233110A (ja) | 2004-08-23 | 2008-10-02 | Nsk Ltd | 磁気エンコーダの製造方法 |
JP2012098221A (ja) * | 2010-11-04 | 2012-05-24 | Jtekt Corp | 着磁パルサリング、転がり軸受装置、及び、着磁パルサリングの製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6789948B2 (en) * | 2001-09-25 | 2004-09-14 | Ntn Corporation | Magnetic encoder and wheel bearing assembly using the same |
CN100385240C (zh) * | 2003-09-16 | 2008-04-30 | Ntn株式会社 | 磁性编码器及具有该磁性编码器的车辆用轴承 |
JP4682529B2 (ja) * | 2004-01-22 | 2011-05-11 | 日本精工株式会社 | 自動車車輪用センサ付転がり軸受 |
CN100567904C (zh) * | 2004-01-22 | 2009-12-09 | 日本精工株式会社 | 磁编码器和轴承 |
US7456715B2 (en) * | 2004-05-12 | 2008-11-25 | Ntn Corporation | Magnetic encoder and wheel support bearing assembly utilizing the same |
JP4633480B2 (ja) * | 2005-01-11 | 2011-02-16 | Ntn株式会社 | 磁気エンコーダおよびそれを備えた車輪用軸受 |
JP4705854B2 (ja) * | 2006-01-11 | 2011-06-22 | 内山工業株式会社 | トーンホイール及びその製造方法 |
CN101639367A (zh) * | 2008-07-29 | 2010-02-03 | 上海人本集团有限公司 | 多极磁性编码器的制造工艺 |
-
2014
- 2014-04-04 CN CN201480020073.5A patent/CN105122011A/zh active Pending
- 2014-04-04 EP EP14783372.7A patent/EP2988102A4/en not_active Withdrawn
- 2014-04-04 WO PCT/JP2014/059987 patent/WO2014168091A1/ja active Application Filing
-
2015
- 2015-10-07 US US14/877,364 patent/US20160033303A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003057070A (ja) | 2001-08-17 | 2003-02-26 | Ntn Corp | 磁気エンコーダおよびそれを用いた車輪用軸受 |
JP2005274436A (ja) | 2004-03-25 | 2005-10-06 | Nsk Ltd | エンコーダ及び当該エンコーダを備えた転がり軸受 |
JP2008233110A (ja) | 2004-08-23 | 2008-10-02 | Nsk Ltd | 磁気エンコーダの製造方法 |
JP2006145365A (ja) * | 2004-11-19 | 2006-06-08 | Ntn Corp | 磁気エンコーダおよびそれを備えた車輪用軸受 |
JP2006153576A (ja) * | 2004-11-26 | 2006-06-15 | Ntn Corp | 磁気エンコーダおよびそれを備えた車輪用軸受 |
JP2012098221A (ja) * | 2010-11-04 | 2012-05-24 | Jtekt Corp | 着磁パルサリング、転がり軸受装置、及び、着磁パルサリングの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2988102A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190337332A1 (en) * | 2016-09-16 | 2019-11-07 | Jtekt Corporation | Method for manufacturing hub unit |
US10962061B2 (en) * | 2016-09-16 | 2021-03-30 | Jtekt Corporation | Method for manufacturing hub unit |
Also Published As
Publication number | Publication date |
---|---|
CN105122011A (zh) | 2015-12-02 |
EP2988102A1 (en) | 2016-02-24 |
US20160033303A1 (en) | 2016-02-04 |
EP2988102A4 (en) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014168091A1 (ja) | 磁気エンコーダおよびその製造方法 | |
US9976874B2 (en) | Magnetic encoder device and rotation detection device | |
EP3495782B1 (en) | Magnetic encoder and bearing | |
KR100924717B1 (ko) | 자기 엔코더 및 이를 구비한 차륜용 베어링 | |
WO2009098851A1 (ja) | 回転検出装置付き車輪用軸受装置 | |
EP1965090B1 (en) | Magnetized pulsar ring, and rolling bearing device with sensor using the same | |
EP2085630A1 (en) | Sensor-equipped sealing device, and rolling bearing device adapted for use in vehicle and using the sealing device | |
JP2008309717A (ja) | 磁気エンコーダ、及び該磁気エンコーダを備えた転がり軸受ユニット | |
JP6215071B2 (ja) | 磁気エンコーダおよびその製造方法 | |
JP2007333142A (ja) | 転がり軸受 | |
JP2014202684A (ja) | 磁気エンコーダおよびその製造方法 | |
JP2015143638A (ja) | 磁気エンコーダおよびその製造方法 | |
JP5061652B2 (ja) | 着磁パルサリング、及びこれを用いたセンサ付き転がり軸受装置 | |
JP2006046628A (ja) | 環状部材 | |
JP2007333184A (ja) | 転がり軸受 | |
JP2009036335A (ja) | 回転速度検出装置付き車輪用軸受装置 | |
EP4321766A1 (en) | Magnetic encoder and method of manufacturing magnetic encoder | |
JP6211381B2 (ja) | 磁気エンコーダ装置および回転検出装置 | |
JP6227967B2 (ja) | 磁気エンコーダ装置および回転検出装置 | |
JP2014098483A (ja) | 磁気エンコーダ付シール部材及びその製造方法 | |
JP4925451B2 (ja) | 磁気エンコーダ | |
JP2009020047A (ja) | 磁気エンコーダ | |
JP5286674B2 (ja) | センサ付き転がり軸受装置 | |
JP2007101443A (ja) | 磁気エンコーダ付転がり軸受ユニット及びその製造方法 | |
WO2010013411A1 (ja) | 回転検出装置付き車輪用軸受装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14783372 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014783372 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014783372 Country of ref document: EP |