WO2014167950A1 - 複合形成材料、射出成形品及び複合形成材料の製造方法 - Google Patents

複合形成材料、射出成形品及び複合形成材料の製造方法 Download PDF

Info

Publication number
WO2014167950A1
WO2014167950A1 PCT/JP2014/057233 JP2014057233W WO2014167950A1 WO 2014167950 A1 WO2014167950 A1 WO 2014167950A1 JP 2014057233 W JP2014057233 W JP 2014057233W WO 2014167950 A1 WO2014167950 A1 WO 2014167950A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming material
composite forming
reinforcing material
thermoplastic resin
average fiber
Prior art date
Application number
PCT/JP2014/057233
Other languages
English (en)
French (fr)
Inventor
鉦則 藤田
村上 徹
雅也 塚本
Original Assignee
Fujita Masanori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Masanori filed Critical Fujita Masanori
Priority to EP14782962.6A priority Critical patent/EP2985319B1/en
Priority to ES14782962T priority patent/ES2739632T3/es
Priority to KR1020157030819A priority patent/KR20150138284A/ko
Priority to CN201480020125.9A priority patent/CN105102545B/zh
Priority to US14/782,371 priority patent/US10066085B2/en
Publication of WO2014167950A1 publication Critical patent/WO2014167950A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/286Raw material dosing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements

Definitions

  • the present invention relates to a composite forming material, an injection-molded article, and a method for manufacturing the composite forming material, and in particular, a composite forming material capable of filling a minute part of a mold with a reinforcing material at the time of injection molding, and the composite forming
  • the present invention relates to an injection-molded product obtained by injection-molding a material, and a method for producing a composite forming material.
  • Plastics are used for various applications because they are lightweight, but their elasticity is low and they are not suitable as structural materials. Therefore, it has been used as a lightweight and high-strength material by forming a composite material with a material having a high elastic modulus such as glass fiber.
  • a reinforcing material for forming the composite forming material a fibrous reinforcing material such as carbon fiber, high-strength resin fiber, Kevlar, Dyneema and the like is known in addition to the glass fiber.
  • composite forming materials are used in a wide range of fields such as mechanical mechanism parts, electrical parts, aircraft parts, ship parts, automobile parts, office parts, building materials, textile products, sundries, etc. If the dispersion is not uniform, problems such as warping occur during use of the product, and therefore it is important to uniformly disperse the reinforcing material in the resin.
  • the reinforcing material since the reinforcing material is preliminarily formed into a uniform mesh shape and infiltrated into the plastic, the reinforcing material can be uniformly dispersed in the resin.
  • a reinforcing material is kneaded with a thermoplastic resin heated and melted by an extruder to produce a composite forming material pellet first, and then the pellet is supplied to an injection molding machine.
  • the product is manufactured by a two-stage process performed by heating and kneading, melting the resin, injecting into a mold, and shaping, or (2) a one-stage process in which kneading and injection molding are performed in series. Therefore, there is a merit that it is excellent in mass productivity.
  • glass fibers having an average fiber diameter of about 10 to 18 ⁇ m (see Patent Document 1) and glass fibers of about 10 to 20 ⁇ m (see Patent Document 2) are known.
  • Chopped strands are generally used, which are glass fibers obtained by collecting 50 to 200 single fibers of a size and cut into a predetermined length.
  • the inventors of the present invention have introduced the short glass fiber in the composite forming material obtained by heating the short glass fiber and adding it to the thermoplastic resin when the short glass fiber is put into the molten thermoplastic resin. It has been found that the fibers are difficult to cut compared to the case where the fibers are added without heating and can be dispersed in the thermoplastic resin in a state where the fiber length is maintained relatively long (see Patent Document 4). .
  • an injection molded product produced by injection molding has a complicated and fine structure, for example, a part of the injection molded product has a different thickness, a part of the injection molded product is bent, A fine shape such as a lattice shape is provided on a part of the injection molded product (hereinafter, a portion having a different thickness, a bent portion, and a fine shape portion in the injection molded product may be referred to as a “fine portion”.
  • JP 2009-7179 A JP 2007-277391 A JP 2011-183638 A Japanese Patent Application No. 2012-089067
  • the present invention has been made in order to solve the above-mentioned problems, and as a result of intensive research, a composite forming material is produced using a thermoplastic resin and two or more fibrous reinforcing materials having different average fiber diameters.
  • a composite forming material is produced using a thermoplastic resin and two or more fibrous reinforcing materials having different average fiber diameters.
  • an object of the present invention is to provide a composite forming material, an injection molded article, and a method for manufacturing the composite forming material.
  • the present invention relates to a composite forming material, an injection-molded product, and a method for manufacturing the composite forming material shown below.
  • a composite comprising a thermoplastic resin, a short glass fiber having an average fiber diameter of 1 to 7 ⁇ m and a fiber length before kneading of 300 to 1000 ⁇ m, and a fibrous reinforcing material having an average fiber diameter of 7 to 20 ⁇ m Forming material.
  • Said short glass fiber is what was surface-treated with at least 1 sort (s) selected from a silane coupling agent, a lubricant, and a film formation material, The said (1) or (2) characterized by the above-mentioned Composite forming material.
  • the glass fiber has been surface-treated with at least one selected from a silane coupling agent, a lubricant, and a film forming material, as described in (2) or (3) above Composite forming material.
  • a composite forming material comprising a thermoplastic resin, short glass fibers having an average fiber diameter of 1 to 7 ⁇ m and a fiber length of 300 to 1000 ⁇ m before kneading, and a fibrous reinforcing material having an average fiber diameter of 7 to 20 ⁇ m.
  • at least the short glass fiber of the reinforcing material is heated to ⁇ 150 to + 50 ° C. based on the temperature of the molten thermoplastic resin and then charged into the molten thermoplastic resin. Forming material.
  • a method for producing a composite forming material comprising a thermoplastic resin, short glass fibers having an average fiber diameter of 1 to 7 ⁇ m and a fiber length of 300 to 1000 ⁇ m before kneading, and a fibrous reinforcing material having an average fiber diameter of 7 to 20 ⁇ m Wherein at least short glass fibers of the reinforcing material are heated to ⁇ 150 to + 50 ° C. on the basis of the temperature of the molten thermoplastic resin and then charged into the molten thermoplastic resin. Manufacturing method. (9) The method for producing a composite-forming material as described in (8) above, wherein the fibrous reinforcing material having an average fiber diameter of 7 to 20 ⁇ m is glass fiber.
  • the reinforcing material can be filled up to the fine part of the obtained injection molded product. Therefore, while maintaining the strength of the injection-molded product itself, the strength of the fine part can be improved, and products such as small cooling fans and semiconductor burn-in sockets that have a complicated structure and require the strength of the fine part are injection-molded. Can be produced efficiently.
  • the composite forming material of the present invention includes two or more fibrous reinforcing materials having different average fiber diameters.
  • the proportion of the reinforcing material having a large average fiber diameter can be reduced.
  • the viscosity of the composite forming material at the time of molding can be lowered. Therefore, the pressure for pushing the molten composite forming material into the mold can be lowered, so that the wear of the mold is reduced and the durability is improved.
  • the dispersibility of a reinforcing material having a large average fiber diameter is improved, so that there is little variation in strength depending on individual products and / or locations in the same product.
  • the product yield can be increased.
  • the reinforcing material having the lowest bulk density was heated to ⁇ 150 to + 50 ° C. based on the temperature of the molten thermoplastic resin and then melted.
  • the fiber length of the reinforcing material in the composite forming material can be kept longer, and the strength of an injection molded product using the composite forming material can be improved.
  • FIG. 1 is an image diagram illustrating an outline of a cooling module turbofan manufactured in the third embodiment.
  • FIG. 2 is a drawing-substituting photograph showing a state in which a load is applied to the fan with the jig of the testing machine in the breaking strength test of the cooling module turbofan manufactured in Example 3.
  • FIG. 3 is a drawing-substituting photograph showing a state in which a load is applied to the blade with a jig of a testing machine in a bending test of the blade cut out from the cooling module turbofan manufactured in Example 3.
  • FIG. 4 is a graph showing the results of the breaking strength test of the cooling module turbofan manufactured in Example 3, Comparative Example 4 and Comparative Example 5 and the bending test of the blade cut out from the cooling module turbofan.
  • FIG. 1 is an image diagram illustrating an outline of a cooling module turbofan manufactured in the third embodiment.
  • FIG. 2 is a drawing-substituting photograph showing a state in which a load is applied to the fan with the
  • FIG. 5 is a drawing substitute photograph showing a blade fixed to a sample holder for X-ray CT imaging.
  • the tip portion surrounded by a circle is a portion taken by X-ray CT.
  • FIG. 6 is a drawing-substituting photograph, in which (a) shows a transmission 3D image of the tip portion of the blade cut out from the fan manufactured in Example 3 and (b) in Comparative Example 4.
  • FIG. 7 is a photograph substituted for a drawing and showing the semiconductor burn-in socket obtained in Example 4. A portion surrounded by a circle indicates a lattice-shaped fine portion.
  • FIG. 6 is a drawing-substituting photograph, in which (a) shows a transmission 3D image of the tip portion of the blade cut out from the fan manufactured in Example 3 and (b) in Comparative Example 4.
  • FIG. 7 is a photograph substituted for a drawing and showing the semiconductor burn-in socket obtained in Example 4. A portion surrounded by a circle indicates a lattice-shaped fine portion.
  • FIG. 8 is a drawing-substituting photograph showing a state in which the lattice-like portion of the semiconductor burn-in socket obtained in Example 4 is fixed to the sample holder.
  • FIG. 9 is a drawing-substituting photograph, (a) is a photograph of a transmission 3D image of a lattice-like portion of the semiconductor burn-in socket obtained in Example 4, and (b) is Comparative Example 6.
  • thermoplastic resin constituting the composite forming material of the present invention is not particularly limited as long as the reinforcing material can be dispersed.
  • general-purpose plastics, engineering plastics, super engineering plastics, and the like have been conventionally used.
  • polyethylene PE
  • polypropylene PP
  • polyvinyl chloride PVC
  • polyvinylidene chloride PS
  • polyvinyl acetate PVAc
  • polytetrafluoroethylene PTFE
  • ABS resin Acrylonitrile butadiene styrene resin
  • AS resin styrene acrylonitrile copolymer
  • acrylic resin PMMA
  • Engineering plastics include polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT), polyethylene terephthalate (typified by nylon) PET), syndiotactic polystyrene (SPS), cyclic polyolefin (COP) and the like.
  • PA polyamide
  • POM polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PPE polybutylene terephthalate
  • PET polyethylene terephthalate
  • SPS syndiotactic polystyrene
  • COP cyclic polyolefin
  • Super engineering plastics include polyetherimide (PEI), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), poly Examples include ether ether ketone (PEEK), thermoplastic polyimide (PI), and polyamideimide (PAI). These resins may be used alone or in combination of two or more.
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PSF polysulfone
  • PES polyethersulfone
  • PAR amorphous polyarylate
  • PEEK ether ether ketone
  • PI thermoplastic polyimide
  • PAI polyamideimide
  • fibrous reinforcing material examples include glass fiber, glass short fiber, carbon fiber, Examples thereof include cellulose fiber, aramid fiber, polyimide fiber, polyamideimide fiber, heterocyclic high-performance fiber, polyarylate fiber, Kevlar, Dyneema, potassium titanate fiber, and ceramic fiber.
  • the composite forming material of the present invention contains at least two reinforcing materials having different average fiber diameters, and may be appropriately selected according to the shape of the target injection molded product.
  • the composite forming material of the present invention may be added with a filler such as quartz, silica, talc, calcium oxide, magnesium hydroxide, aluminum hydroxide as necessary. May be.
  • a filler such as quartz, silica, talc, calcium oxide, magnesium hydroxide, aluminum hydroxide as necessary. May be.
  • the “reinforcing material” means an aggregate of selected one type of reinforcing material, and does not mean individual fibers included in the reinforcing material.
  • the average fiber diameters of the selected at least two kinds of reinforcing materials are different, and due to variations in individual fiber diameters included in the reinforcing material, the individual fiber diameters of the two kinds of selected reinforcing materials are different. There is no problem even if some of them overlap.
  • the two or more reinforcing materials having different average fiber diameters may be fibers of different materials as long as the average fiber diameters of the reinforcing materials are different, for example, glass fibers and short glass fibers. Alternatively, fibers having the same material but different average fiber diameters may be used.
  • the composite forming material of the present invention includes two or more reinforcing materials having different average fiber diameters, so that the reinforcing material having a small average fiber diameter is a reinforcing material having a large average fiber diameter while maintaining the strength of the injection molded product.
  • the strength of the fine part of the injection-molded product can also be improved.
  • the composite forming material needs to maintain the strength of the injection-molded product, for example, 7 to 20 ⁇ m, preferably Preferably, a reinforcing material having an average fiber diameter of about 10 to 18 ⁇ m is included.
  • the average fiber diameter is larger than 20 ⁇ m, the surface of the injection-molded product becomes rough, and the fluidity of the composite forming material is deteriorated, so that it is necessary to increase the pressing pressure into the mold at the time of injection molding. Tends to wear, which is not preferable. Further, since it is preferable that the fine part of the injection molded product can be filled with the reinforcing material, for example, a reinforcing material having an average fiber diameter of about 1 to 7 ⁇ m, preferably about 3 to 4 ⁇ m is preferably included.
  • the manufacturing cost becomes extremely high, and the bulk density of the fibers increases, making it difficult to homogenize kneading into the thermoplastic resin. Since it becomes easy to cut
  • the reinforcing material having a different average fiber diameter there is no particular limitation as long as the reinforcing material is added as long as the average fiber diameter is 1 to 20 ⁇ m, and the strength of the injection molded product itself or the fine part is improved. What is necessary is just to select the reinforcement material to add suitably according to.
  • Examples of the reinforcing material satisfying the combination of the average fiber diameters include, for example, short glass fiber + glass fiber, short glass fiber + carbon fiber, ceramic fiber + glass fiber, potassium titanate fiber + glass fiber, short glass fiber + Kevlar, and glass.
  • Short fiber + polyimide fiber short glass fiber + glass fiber + carbon fiber, short glass fiber + glass fiber + ceramic fiber, short glass fiber + glass fiber + potassium titanate fiber, short glass fiber + glass fiber + Kevlar, short glass fiber + Glass fiber + polyimide fiber, etc.
  • the above-mentioned reinforcing material is not particularly limited as long as it is generally manufactured or available in the technical field.
  • the glass fiber chopped strand obtained by cutting glass fibers obtained by collecting 50 to 200 single fibers having an average fiber diameter of 7 to 20 ⁇ m into a predetermined length can be used.
  • the short glass fibers glass fibers having an average fiber diameter of about 1 to 7 ⁇ m and a fiber length of about 300 to 1000 ⁇ m can be used.
  • the carbon fiber a single fiber filament of a PAN-based carbon fiber having an average fiber diameter of 5 to 7 ⁇ m and a single fiber filament of a pitch-based carbon fiber having an average fiber diameter of 7 to 10 ⁇ m can be used.
  • amorphous alumina silica fiber having an average fiber diameter of 2 to 4 ⁇ m and crystalline fiber (AF) having an average fiber diameter of 2 to 5 ⁇ m
  • potassium titanate fiber one having an average fiber diameter of about 1 to 2 ⁇ m can be used.
  • the above-mentioned illustration shows an average fiber diameter that is commonly used, and in addition to the fibers exemplified above, cellulose fiber, aramid fiber, polyimide fiber, polyamideimide fiber, heterocyclic high-performance fiber, The average fiber diameter of fibers such as polyarylate fibers, Kevlar, and Dyneema can be adjusted by adjusting the production process.
  • thermoplastic resin is an organic material, so the inorganic reinforcing material is simply dispersed in the thermoplastic resin. Then, the adhesiveness between the inorganic reinforcing material and the thermoplastic resin is weakened. Therefore, it is preferable to disperse the inorganic reinforcing material in the thermoplastic resin after surface treatment with a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as it is conventionally used, and may be determined in consideration of the reactivity with the thermoplastic resin constituting the composite forming material, thermal stability, etc.
  • examples thereof include silane coupling agents such as aminosilane, epoxysilane, allylsilane, and vinylsilane.
  • silane coupling agents such as aminosilane, epoxysilane, allylsilane, and vinylsilane.
  • commercially available products such as Z series manufactured by Toray Dow Corning, KBM series manufactured by Shin-Etsu Chemical Co., Ltd., KBE series, and JNC manufactured may be used.
  • the above-mentioned silane coupling agent can be surface-treated with an inorganic reinforcing material by being dissolved in a solvent and sprayed and dried on the inorganic reinforcing material.
  • the weight percentage of the silane coupling agent with respect to the inorganic reinforcing material is 0.1 to 2.0 wt%, preferably 0.15 to 0.4 wt%, and more preferably 0.24 wt%.
  • the inorganic reinforcing material may be surface-treated with a lubricant.
  • the lubricant is not particularly limited as long as the inorganic reinforcing material is kneaded into the thermoplastic resin so that the inorganic reinforcing material can be easily slipped and easily dispersed in the thermoplastic resin.
  • the lubricant used can be used, but calixarene is particularly preferred. Silicon is poor in affinity with thermoplastic resin because it is oil, but calixarene is phenolic resin, so it improves slipping of inorganic reinforcing material, but has excellent affinity with thermoplastic resin Therefore, the addition amount of the inorganic reinforcing material in the composite forming material can be increased while maintaining the inorganic reinforcing material.
  • the calixarene is a cyclic oligomer in which a plurality of (for example, in the range of 4 to 8) phenol units or resorcin units are cyclically bonded.
  • examples of tetramers include resorcin represented by the following formula (1).
  • a cyclic tetramer can be mentioned.
  • R 1 represents a hydroxyl group
  • R 2 represents a linear alkyl group having 1 to 17 carbon atoms or a phenyl group.
  • resorcinol or a resorcinol derivative and an aldehyde compound (paraformaldehyde or paraaldehyde) at a predetermined molar ratio in an ethanol or acetic acid solvent under hydrochloric acid or sulfuric acid catalyst
  • a cyclic compound and a linear compound can be synthesized by reacting at a predetermined temperature for several hours. Only the calixarene can be obtained by isolation from the synthesized product by recrystallization from methanol or the like.
  • the reaction represented by the following formula (2) can be mentioned, and only the calixarene can be isolated from the product.
  • R 3 represents C 10 H 21.
  • the p-polyhydroxycalix [6] arene can be synthesized, for example, by the procedure of the following formula (4), and details are described in Macromolecules 2005, 38, 6871-6875.
  • the solvent for dissolving the synthesized calixarene is not particularly limited as long as it can dissolve calixarene.
  • the surface treatment of the inorganic reinforcing material is performed by spraying and drying a solution in which calixarene is dissolved on the inorganic reinforcing material.
  • the solution in which the calixarene is dissolved can be produced by the above-described production method, but for example, a plastic modifier nanodaX (registered trademark) manufactured by Nanodax may be used.
  • the weight percentage of the plastic modifier nanodaX (registered trademark) relative to the inorganic reinforcing material is preferably 0.001 to 0.5 wt%, more preferably 0.01 to 0.3 wt%.
  • the inorganic reinforcing material may be treated with the silane coupling agent or the lubricant, or may be treated with the silane coupling agent and the lubricant.
  • the inorganic reinforcing material is used to form a known film such as epoxy resin, vinyl acetate resin, vinyl acetate copolymer resin, urethane resin, acrylic resin, etc. You may surface-treat with an agent.
  • film forming agents can be used alone or in admixture of two or more kinds, and the weight percentage of the film forming agent is preferably 5 to 15 times that of the silane coupling agent.
  • the inorganic reinforcing material may be subjected to the above-mentioned surface treatment before kneading with the thermoplastic resin, or an inorganic reinforcing material surface-treated with only a lubricant is prepared, depending on the thermoplastic resin to be used. Before kneading, surface treatment with a desired silane coupling agent may be performed. Further, it may be surface-treated with a lubricant and a silane coupling agent in advance, or may be further pretreated with a film forming agent as required.
  • the composite-forming material of the present invention includes known UV absorbers, stabilizers, antioxidants, plasticizers, colorants, color-adjusting agents, flame retardants, antistatic agents, fluorescent substances, as long as the object of the present invention is not impaired. Additives such as brighteners, matting agents, impact strength improvers and the like can also be blended.
  • the composite-forming material of the present invention comprises a thermoplastic resin, two or more reinforcing materials having different average fiber diameters that are surface-treated as necessary, and various additives that are added as necessary. It can be produced by melt kneading at a temperature of 200 to 400 ° C. using a known melt kneader such as an extruder, kneader, mixin gall, Banbury mixer and the like.
  • the production apparatus is not particularly limited, but melt kneading using a twin screw extruder is simple and preferable.
  • the kneaded composite forming material may be directly injection-molded into a mold, or may be injection-molded after being once pelletized.
  • the composite forming material of the present invention may be prepared by first preparing a plurality of types of pellets containing only one type of reinforcing material, and melting and mixing the pellets containing reinforcing materials having different average fiber diameters. Alternatively, it may be produced by dry blending a combination of pellets containing reinforcing materials having different average fiber diameters. Furthermore, a pellet containing at least one type of reinforcing material may be first prepared, and after the pellet is melted, reinforcing materials having different average fiber diameters may be added and kneaded.
  • the reinforcing material having the lowest bulk density may be heated and added to the molten thermoplastic resin.
  • the apparent volume of the short glass fiber with respect to the thermoplastic resin of the same weight is about 20 times, and contains a lot of air. Therefore, when glass short fibers are sequentially added to the molten thermoplastic resin, only the portion of the thermoplastic resin in contact with the injected glass short fibers is held between the cotton-like short glass fibers. And the viscosity changes with other thermoplastic resin parts.
  • thermoplastic resin in the state from which a viscosity differs, it will be for the load which is different to a glass short fiber to be applied, and as a result, a glass short fiber becomes easy to cut
  • heating in advance is not limited to the reinforcing material having the lowest bulk density, and other reinforcing materials may be added after heating.
  • the heating temperature of the reinforcing material is preferably about ⁇ 150 ° C. to + 50 ° C. based on the temperature of the molten thermoplastic resin. Increasing the melting temperature of the thermoplastic resin decreases the viscosity and facilitates dispersion of the reinforcing material. However, if the temperature of the thermoplastic resin is excessively increased, the characteristics may change rapidly. Therefore, in the present invention, it is desirable to heat the reinforcing material while melting the thermoplastic resin at a temperature normally performed in this field. Although the heating temperature of the reinforcing material depends on the type of the thermoplastic resin used, in order to avoid deterioration of the thermoplastic resin, it is more preferable to heat to about + 20 ° C. based on the melting temperature of the thermoplastic resin.
  • the lower limit is not particularly limited since an effect can be obtained by heating, but is preferably about ⁇ 100 ° C., more preferably about ⁇ 50 ° C. based on the melting temperature of the thermoplastic resin. Most preferably, the reinforcement is heated to the same temperature as the molten resin.
  • the heating of the reinforcing material is not particularly limited as long as the reinforcing material can be heated and charged into the molten thermoplastic resin, for example, a heating means is provided in the hopper portion of the reinforcing material charging device of the kneading apparatus.
  • the heating means is heated by passing the reinforcing material through a tube provided around it, and then poured into a molten thermoplastic resin. Good.
  • the reinforcing material in the composite forming material produced by the above method is difficult to cut because there is little change in the viscosity of the thermoplastic resin during kneading. Therefore, since the fiber length of the reinforcing material can be dispersed in the thermoplastic resin while maintaining a longer length, the strength of the composite forming material can be increased, and the strength of the injection molded product using the composite forming material can be increased. Can also be improved. Furthermore, when inorganic reinforcing materials are used, the surface treatment with a lubricant, particularly calixarene, improves the sliding properties of the inorganic reinforcing materials. The reinforcing material can be dispersed in the thermoplastic resin.
  • the blending ratio of the total reinforcing material to the thermoplastic resin, and the blending ratio of the reinforcing material and the reinforcing material are determined depending on the strength of the desired injection molded product, the shape of the fine part of the injection molded product, and the like. What is necessary is just to select suitably.
  • the composite forming material of the present invention is particularly useful as a raw material for injection molding. Moreover, as an application of the injection molded product of this invention, it can be used in fields, such as a motor vehicle field
  • vehicle fans such as radiator tanks, fans, radiator fans, fasteners, wheel caps, cylinder head covers, door handles, seat belt parts, bumpers, valves, electrical parts, interior parts, etc. .
  • fans such as cooling module turbo fans, semiconductor burn-in sockets and other evaluation jigs, connectors, reflectors, coil bobbins, switch parts, signal tubes, terminal blocks, electronic washing machines, refrigerators,
  • a vacuum cleaner, a telephone, a mobile phone, a television, a personal computer, a heating / cooling device, a lighting device, a fan, an electric kettle, an iron, a player, and the like can be given.
  • Others include sash parts, screws, gears, rack and pinions, bearings, shafts, springs, sliding parts of door wheels, bearings, gears, resin casters, solid tires, general machine fields and home appliance parts.
  • the composite forming material of the present invention has a particularly excellent effect for use in injection molding, but can be used for other than injection molding such as press molding of a sheet-like material.
  • the kneading conditions were as follows: screw rotation speed 120 rpm, resin pressure 0.9 Mpa, current 36 A, feed amount 15 Kg / hr. Moreover, the resin temperature of PBT at the time of kneading
  • Example 1 The short glass fiber 1-containing pellets produced by the above procedure and the pellets containing 6 wt% of glass fibers (average fiber diameter: 13 ⁇ m) (Japan Polyplastics 6840GF30) are mixed at a ratio of 1: 1, and the number of rotations by a tumbler A composite forming material was prepared by dry blending at 30 rpm for 10 minutes.
  • Comparative Example 1 A pellet (6840GF30 manufactured by Japan Polyplastics) containing 30 wt% of the glass fiber was used as the composite forming material of Comparative Example 1.
  • Comparative Example 2 The short glass fiber 1-containing pellet produced above was used as the composite forming material of Comparative Example 2.
  • Table 1 shows the content of the reinforcing material in the composite forming materials of Example 1, Comparative Example 1, and Comparative Example 2 above.
  • a short glass fiber 2 was prepared in the same manner as the short glass fiber 1 except that an aminosilane coupling agent S330 (manufactured by Chisso Corporation) was used as the silane coupling agent and no film forming agent was used.
  • S330 aminosilane coupling agent (manufactured by Chisso Corporation) was used as the silane coupling agent and no film forming agent was used.
  • Example 2 The produced short glass fiber 2-containing pellets and pellets containing 20 wt% of glass fibers (average fiber diameter: 13 ⁇ m) (ULTEM 2200 manufactured by SABIC Innovative Plastics) were mixed at a ratio of 1: 1, and rotated at 30 rpm with a tumbler. A composite forming material was produced by dry blending for 10 minutes.
  • Comparative Example 3 A pellet containing 20 wt% of glass fiber (ULTEM 2200 manufactured by SABIC Innovative Plastics) was used as Comparative Example 3.
  • Table 2 shows the content of the reinforcing material in the composite forming materials of Example 2 and Comparative Example 3 above.
  • Example 3 ⁇ Production of cooling module turbofan>
  • the composite forming material produced in Example 1 is injection-molded into a mold for producing a cooling module turbofan (hereinafter sometimes simply referred to as “fan”) having the shape shown in FIG. It was.
  • the injection molding machine uses the HXF33J8 model of NING BO HAI XING PLASTICS MACHINERY MANUFACTURERING CO., LTD., And the temperature of the injection cylinder nozzle when filling the mold with the composite forming material.
  • the obtained fan had a radius R of 23 mm, the height of the portion 1 where the blades were formed (total thickness of the fan) was 9 mm, and the thickness 2 of each blade was about 0.5 mm.
  • FIG. 2 is a photograph showing a state in which a load is applied to the fan with the jig of the testing machine.
  • a universal testing machine model AG-1 manufactured by Shimadzu Corporation was used as a testing machine, and a breaking strength test was performed with a circular breaking jig having a diameter of 20 mm under a head speed of 1.0 mm / min.
  • the breaking strength of the fan was evaluated based on the maximum load (maximum point test force / N) when the outer edge portion of the fan was broken by applying a load. For the evaluation, six fans produced under the same conditions were used.
  • FIG. 3 is a photograph showing a state in which a load is applied to the blade with the jig of the testing machine.
  • a universal testing machine model AG-1 manufactured by Shimadzu Corporation was used as the testing machine, and a bending test was performed with a minus-type bending jig at a distance between fulcrums of 6.0 mm and a head speed of 1.0 mm / min. It was.
  • the bending strength of the blade was evaluated by a load (maximum point test force / N) which was bent by applying a load to a position 5 mm inside from the outer periphery of the blade. For evaluation, 19 blades cut out from the same fan were used.
  • Comparative Example 4 Using the composite forming material of Comparative Example 1, a fan was injection molded in the same manner as in Example 3 except that the temperature of the injection cylinder nozzle was 275 ° C., the injection pressure was 115 MPa, and the holding pressure was 120 MPa. A blade bending test was performed.
  • Comparative Example 5 Using the composite forming material of Comparative Example 2, a fan was injection molded in the same manner as in Example 3 except that the holding pressure was 60 MPa, and a fracture strength test and a blade bending test were performed.
  • Table 3 and FIG. 4 show the results of the breaking strength test of the fan manufactured in Example 3, Comparative Example 4 and Comparative Example 5 and the bending test of the blade cut out from the fan.
  • Example 3 As is clear from Table 3 and FIG. 4, the strength of the fan of Example 3 manufactured by injection molding using the composite forming material of Example 1 was close to that of the fan of Comparative Example 4.
  • the content of the glass fiber contained in the fan of Example 3 is half that of Comparative Example 4
  • the content of the short glass fiber is half that of Comparative Example 5
  • the content of the entire reinforcing material in the fan is that of Example 3, Comparative.
  • a clear synergistic effect was found in improving the strength of the fan by mixing glass fibers and short glass fibers.
  • the fan containing only the glass fiber of Comparative Example 4 as a reinforcing material is difficult to uniformly disperse the glass fiber in the mold at the time of injection molding. Even if it is the same product, the strength varies depending on the location, but in the fan of Example 3, the glass fibers are uniformly dispersed in the mold, while the short glass fibers are supplemented between the glass fibers. Therefore, it is considered that the dispersibility of the glass fiber and the short glass fiber in the fan has increased.
  • the bending strength of the blade is weaker in Comparative Example 4 including only glass fibers than in Comparative Example 5 including only short glass fibers.
  • the blade cut out from the fan of Example 3 showed almost the same strength as the blade of the fan of Comparative Example 5 containing only short glass fibers as a reinforcing material.
  • the blade of Example 3 is considered to be because, when the composite forming material of Example 1 was injection-molded in a mold, the short glass fibers contained in the composite forming material were uniformly filled to the fine part of the mold. It is done.
  • X-ray CT imaging Next, in order to confirm whether the improvement in the strength of the blade of the fan produced in Example 3 and Comparative Example 4 was due to the short glass fibers being filled, X-ray CT imaging of the blade was performed.
  • the blade cut out from the fan produced in Example 3 was fixed to the sample holder at the base side of the blade main body of the blade using an adhesive.
  • FIG. 5 shows the blade fixed to the sample holder, and the tip portion surrounded by a circle is photographed. Photographing was performed using a SkyScan 1172 Micro-CT (manufactured by Bruker micro) according to the following procedure.
  • the scan software “SKYSCAN- ⁇ CT” was activated, and after aging the X-ray source, a sample holder to which a blade as a measurement sample was fixed was fixed in the chamber.
  • the resolution (number of pixels) of the X-ray image acquisition camera is set to Standard resolution (2000 ⁇ 1048 pixels), the holder is slowly rotated up to 180 degrees, and a transmission image is taken every time it is rotated by 0.6 degrees. Scanning was done.
  • a software “Nrecon” was used to reconstruct a tomogram from the obtained transmission image.
  • a transmission 3D image was obtained from the tomographic image by 3D display software “CTVox”.
  • the fan blade produced in Comparative Example 4 was also subjected to X-ray CT imaging in the same procedure as described above.
  • FIG. 6A shows a transmission 3D image of the tip portion of the blade cut out from the fan manufactured in Example 3 and FIG. 6B in Comparative Example 4.
  • FIG. 6A shows a transmission 3D image of the tip portion of the blade cut out from the fan manufactured in Example 3 and FIG. 6B in Comparative Example 4.
  • FIG. 6A shows a transmission 3D image of the tip portion of the blade cut out from the fan manufactured in Example 3 and FIG. 6B in Comparative Example 4.
  • FIG. As is apparent from the photograph, the glass short fiber was clearly confirmed in the blade of Example 3 even at the most distal end portion of the blade extended from the fan (the thickness of the thinnest portion was about 0.5 mm). On the other hand, almost no glass fiber was confirmed in the blade of Comparative Example 4.
  • Example 4 The composite forming material produced in Example 2 was injection molded into a mold for producing a semiconductor burn-in socket (hereinafter sometimes simply referred to as “socket”).
  • the injection molding machine was an HXF33J8 model manufactured by NING BO HAI XING PLASTICS MACHINERY MANUFACTURERING CO., LTD., Except that the temperature of the injection cylinder nozzle was 380 ° C.
  • Example 3 The injection molding was performed in the same procedure.
  • FIG. 7 is a photograph of the obtained socket.
  • the portion surrounded by ⁇ is a lattice-shaped fine portion, the size is 7 ⁇ 7 mm, and the thickness is 2 mm. Further, the width of the line constituting the lattice-shaped fine portion was about 0.1 mm, and the size of the lattice was 0.2 ⁇ 0.25 mm.
  • FIG. 8 shows a grid-like portion fixed to the sample holder. Photographing was performed in the same procedure as in Example 3 to obtain a transmitted 3D image of 2 ⁇ 2 mm approximately at the center of the lattice portion.
  • Comparative Example 6 (Comparative Example 6) Except that the composite forming material of Comparative Example 3 was used and the temperature of the injection cylinder nozzle was 380 ° C., the socket was injection molded in the same procedure as in Comparative Example 4, and X-ray CT imaging was performed in the same procedure as in Example 3. The transmission 3D image of 2 ⁇ 2 mm at the approximate center of the lattice portion was obtained.
  • FIG. 9A is a photograph of a transmission 3D image obtained in Example 4 and FIG. As is apparent from the photograph, it was clearly confirmed that the socket of Example 4 was filled with the short glass fibers up to the center of the lattice portion. On the other hand, in the socket of Comparative Example 6, only a few glass fiber pieces that were thought to have been cut and refined during kneading and / or injection molding were confirmed, and the lattice-like portions were not sufficiently filled with glass fibers. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

 射出成形品自体の強度を維持しつつ、射出成形品の微細部の強度を向上することができる複合形成材料を提供する。 熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維及び平均繊維径が7~20μmの繊維状の補強材を含むことを特徴とする複合形成材料を用いることで、射出成形品自体の強度を維持しつつ、射出成形品の微細部の強度を向上することができる。

Description

複合形成材料、射出成形品及び複合形成材料の製造方法
 本発明は、複合形成材料、射出成形品及び複合形成材料の製造方法に関するもので、特に、射出成形時に、金型の微細部にも補強材を充填することができる複合形成材料、該複合形成材料を射出成形した射出成形品、及び複合形成材料の製造方法に関する。
 プラスチックは軽量であることから様々な用途に用いられているが、弾性率が低く構造用材料としては適していない。そのため、ガラス繊維のように弾性率の高い材料との複合形成材料とすることで、軽量で強度が高い材料として用いられてきている。複合形成材料を形成するための補強材としては、ガラス繊維の他、炭素繊維、強度の高い樹脂繊維、ケブラー、ダイニーマ等の繊維状の補強材が知られている。
 こうした複合形成材料は、機械機構部品、電気部品、航空機部品、船舶部品、自動車部品、事務用部品、建築資材、繊維製品、雑貨等の幅広い分野に利用されているが、樹脂中の補強材の分散が不均一であると、製品の使用中に反りが生じる等の不都合が生じることから、樹脂中に補強材を均一に分散させることが重要である。
 樹脂中への補強材の混入・分散方法には大きく分けて2種類ある。一つは、補強材に方向性を持たせたままプラスチックに浸潤させる方法で、もう一つは、樹脂中に補強材を分散させる方法である。
 前者の方法では、予め補強材を均一な網目状にした後でプラスチックに浸潤させることから、樹脂中に補強材を均一に分散させることが可能である。しかしながら、通常は薄い補強材層を補強材の方向が異なるように複数枚重ねる必要があり、補強材層の積層及びプラスチック硬化の手順を繰り返す為、製造コストが増大するとともに、量産性に乏しく、更に、複雑な形状の部品の製造が難しいという問題がある。
 一方、後者の方法では、(1)押出機により加熱溶融した熱可塑性樹脂に補強材を混練して複合形成材料のペレットを先ず製造し、次いでこのペレットを射出成形機に供給して該成形機内で加熱混練し、樹脂を溶融して金型内に射出して賦形することにより行われる2段工程、又は(2)混練と射出成形とを一連に行う1段工程、により製品を製造することができるので量産性に優れるというメリットがある。
 後者の方法に使用される補強材としては、平均繊維径10~18μm程度のガラス繊維(特許文献1参照)、10~20μm(特許文献2参照)程度のガラス繊維等が知られており、これらサイズの単繊維を50~200本集めたグラスファイバーを所定の長さに切断したものである、チョップドストランドが一般的に用いられている。
 また、チョップドストランド以外の補強材として、リサイクルガラスから作製することもでき、資源を有効活用でき且つ住宅用建材として断熱効果も優れていることから近年注目を集めている素材であるガラス短繊維(Glass Wool)を用いると外観不良を少なくすることができることが知られている(特許文献3参照)。
 更に、本発明者らは、上記ガラス短繊維を溶融した熱可塑性樹脂に投入する際に、ガラス短繊維を加熱して熱可塑性樹脂に添加することで、得られた複合形成材料中のガラス短繊維が、加熱せずに添加した場合と比較して切断されにくく、繊維長が比較的長く維持された状態で熱可塑性樹脂に分散できることを見出し、特許出願も行っている(特許文献4参照)。
 一般的に、射出成形品を作製する際には、溶融した複合形成材料を金型の充填口から圧力を加えて金型に押し込み、金型全体に複合形成材料を充填して成形する。ところで、近年、射出成形により作製する射出成形品は構造が複雑・微細化しており、例えば、射出成形品中の一部の厚さが異なっていたり、射出成形品の一部が折れ曲がっていたり、射出成形品の一部に格子状等の微細な形状を設ける等(以下、射出成形品中の厚さが異なる部分、折れ曲がり部分、微細な形状部分のことを「微細部」と記載することがある。)、複雑な形状を射出成形で作製することが求められている。
 しかしながら、微細部を含む製品を射出成形で作製する場合、ガラス繊維等の比較的平均繊維径の大きな補強材を用いると、金型の製品の微細部に相当する部分は、屈曲等している複雑な形状となっており、ガラス繊維が微細部に相当する部分に入り難く、その結果、射出成形品中の微細部の強度が劣るという問題がある。一方、ガラス短繊維等の比較的平均繊維径の小さな補強材を用いた場合、射出成形品の微細部の強度は向上するものの、射出成形品全体の強度が劣るという問題がある。更に、ガラス繊維等の比較的平均繊維径の大きな補強材を含む複合形成材料を、微細部を含む金型に射出成形すると、金型中での補強材の均一分散性が悪く、個々の製品及び/又は同一製品であっても場所による強度のばらつきがあり、製品の歩留まりが悪くなるという問題がある。
特開2009-7179号公報 特開2007-277391号公報 特開2011-183638号公報 特願2012-089067号
 本発明は、上記問題点を解決するためになされたものであり、鋭意研究を行ったところ、熱可塑性樹脂及び平均繊維径の異なる2以上の繊維状の補強材で複合形成材料を作製し、該複合形成材料を用いて射出成形品を作製することで、製品の基本部分の強度を維持しつつ、製品の微細部には平均繊維径の小さな補強材が充填されることで微細部の強度を向上させることができることを新たに見出した。
 すなわち、本発明の目的は、複合形成材料、射出成形品及び複合形成材料の製造方法を提供することにある。
 本発明は、以下に示す、複合形成材料、射出成形品及び複合形成材料の製造方法に関する。
(1)熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維及び平均繊維径が7~20μmの繊維状の補強材を含むことを特徴とする複合形成材料。
(2)前記平均繊維径が7~20μmの繊維状の補強材が、ガラス繊維であることを特徴とする上記(1)に記載の複合形成材料。
(3)前記ガラス短繊維が、シランカップリング剤、潤滑剤及び皮膜形成材から選択される少なくとも1種で表面処理されたものであることを特徴とする上記(1)又は(2)に記載の複合形成材料。
(4)前記ガラス繊維が、シランカップリング剤、潤滑剤及び皮膜形成材から選択される少なくとも1種で表面処理されたものであることを特徴とする上記(2)又は(3)に記載の複合形成材料。
(5)熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維及び平均繊維径が7~20μmの繊維状の補強材を含む複合形成材料であって、前記補強材の内、少なくともガラス短繊維が、溶融した熱可塑性樹脂の温度を基準に-150~+50℃に加熱してから溶融した熱可塑性樹脂に投入したものであることを特徴とする複合形成材料。
(6)前記複合形成材料が、射出成形用であることを特徴とする上記(1)~(5)の何れか一に記載の複合形成材料。
(7)上記(1)~(6)の何れか一に記載の複合形成材料を射出成形して作製した射出成形品。
(8)熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維及び平均繊維径が7~20μmの繊維状の補強材を含む複合形成材料の製造方法において、前記補強材の内、少なくともガラス短繊維を、溶融した熱可塑性樹脂の温度を基準に-150~+50℃に加熱してから溶融した熱可塑性樹脂に投入することを特徴とする複合形成材料の製造方法。
(9)前記平均繊維径が7~20μmの繊維状の補強材が、ガラス繊維であることを特徴とする上記(8)に記載の複合形成材料の製造方法。
 本発明の複合形成材料を用いて射出成形すると、得られた射出成形品の微細部まで補強材を充填することができる。したがって、射出成形品自体の強度を維持しつつ、微細部の強度を向上させることができ、小型冷却ファン、半導体バーンインソケット等、構造が複雑で且つ微細部の強度が要求される製品を射出成形で効率よく作製することができる。
 本発明の複合形成材料は、平均繊維径の異なる2以上の繊維状の補強材を含むこと、つまり、同じ質量の補強材であれば平均繊維径の大きな補強材の割合を少なくできるので、射出成形時の複合形成材料の粘度を下げることができる。したがって、金型へ溶融した複合形成材料を押し込む圧力を下げることができるので、金型の摩耗が少なくなり耐久性が向上する。
 また、本発明の複合形成材料を用いて射出成形品を作製すると、平均繊維径の大きな補強材の分散性が向上するので、個々の製品及び/又は同一製品中の場所による強度のばらつきが少なくなり、製品の歩留まりを高くすることができる。
 更に、平均繊維径の異なる2以上の繊維状の補強材の内、少なくとも嵩密度の最も低い補強材を、溶融した熱可塑性樹脂の温度を基準に-150~+50℃に加熱してから溶融した熱可塑性樹脂に投入することで複合形成材料中の補強材の繊維長をより長く保つことができ、前記複合形成材料を用いた射出成型品の強度を向上することができる。
図1は、実施例3で作製した冷却モジュール用ターボファンの概略を示すイメージ図である。 図2は、図面代用写真で、実施例3で作製した冷却モジュール用ターボファンの破壊強度試験において、試験機の治具でファンに荷重をかけている様子を示す写真である。 図3は、図面代用写真で、実施例3で作製した冷却モジュール用ターボファンから切り出したブレードの曲げ試験において、試験機の治具でブレードに荷重をかけている様子を示す写真である。 図4は、実施例3、比較例4及び比較例5で作製した冷却モジュール用ターボファンの破壊強度試験及び冷却モジュール用ターボファンから切り出したブレードの曲げ試験の結果を示すグラフである。 図5は、図面代用写真で、X線CT撮影のために試料ホルダに固定したブレードを示している。写真中、○で囲ってある先端部分は、X線CTで撮影した箇所である。 図6は、図面代用写真で、(a)は実施例3、(b)は比較例4で作製したファンから切り出したブレードの先端部分の透過3D像を示す。 図7は、図面代用写真で、実施例4で得られた半導体バーンインソケットを示す写真である。○で囲んである部分は格子状の微細部を示す。 図8は、図面代用写真で、実施例4で得られた半導体バーンインソケットの格子状部分を試料ホルダに固定した状態を示す。 図9は、図面代用写真で、(a)は実施例4、(b)は比較例6で得られた半導体バーンインソケットの格子状部分の透過3D像の写真である。
 以下に、本発明の複合形成材料、射出成形品及び複合形成材料の製造方法について詳しく説明する。
 先ず、本発明の複合形成材料を構成する熱可塑性樹脂は、補強材を分散できるものであれば、特に限定されず、例えば、汎用プラスチック、エンジニアリング・プラスチック、スーパーエンジニアリングプラスチック等、従来から使用されている熱可塑性樹脂が挙げられる。具体的には、汎用プラスチックとしては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、スチレンアクリロニトリルコポリマー(AS樹脂)、アクリル樹脂(PMMA)等が挙げられる。エンジニアリング・プラスチックとしては、ナイロンに代表されるポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、シンジオタクチックポリスチレン(SPS)、環状ポリオレフィン(COP)等が挙げられる。スーパーエンジニアリングプラスチックとしては、ポリエーテルイミド(PEI)、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等が挙げられる。これら樹脂は、1種或いは2種以上を組み合わせて用いてもよい。
 本発明に用いられる繊維状の補強材(以下、繊維状の補強材を、単に「繊維」又は「補強材」と記載することもある。)としては、ガラス繊維、ガラス短繊維、炭素繊維、セルロース繊維、アラミド繊維、ポリイミド繊維、ポリアミドイミド繊維、ヘテロ環高性能繊維、ポリアリレート繊維、ケブラー、ダイニーマ、チタン酸カリウム繊維、セラミックファイバー等が挙げられる。本発明の複合形成材料には、平均繊維径の異なる補強材が少なくとも2以上含まれており、目的とする射出成形品の形状に応じて適宜選択すればよい。また、本発明の複合形成材料は、平均繊維径の異なる2以上の補強材に加え、必要に応じて、石英、シリカ、タルク、酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等のフィラーを添加してもよい。
 本発明において、「補強材」とは、選択した1種の補強材の集合体を意味し、補強材に含まれる個々の繊維を意味するものではない。また、本発明においては、選択した少なくとも2種の補強材の平均繊維径が異なればよく、補強材に含まれる個々の繊維径のばらつきにより、選択した2種の補強材の個々の繊維径の一部が重複していても問題はない。更に、本発明において、平均繊維径の異なる2以上の補強材は、補強材の平均繊維径が異なっていれば、異なる材質の繊維であってもよいし、例えば、ガラス繊維とガラス短繊維等、同じ材質で平均繊維径の異なる繊維であってもよい。
 本発明の複合形成材料には平均繊維径の異なる2以上の補強材が含まれることで、射出成形品の強度を維持しつつ、平均繊維径の細い補強材は平均繊維径の太い補強材と比較して射出成形品の微細部に充填されやすいことから、射出成形品の微細部の強度も向上することができる。前記のとおり、補強材の平均繊維径が異なれば本発明の効果が達成されるが、複合形成材料には、射出成形品の強度を維持する必要があることから、例えば、7~20μm、好ましくは10~18μm程度の平均繊維径の補強材が含まれることが好ましい。平均繊維径が20μmより太くなると、射出成形品の表面が荒くなり、また、複合形成材料の流動性が悪くなり射出成形時の金型への押し込み圧力を高くする必要があることから、金型が摩耗しやすくなり好ましくない。また、射出成形品の微細部にも補強材を充填できることが好ましいことから、例えば、1~7μm、好ましくは3~4μm程度の平均繊維径の補強材が含まれることが好ましい。補強材の平均繊維径が1μmより細くなると、製造コストが極めて高くなる上、繊維の嵩密度が増して熱可塑性樹脂への均質な混錬が難しくなる他、複合形成材料の作製中及び/又は射出成形中に切断されやすくなり、射出成形品の強度が低下するので好ましくない。また、前記平均繊維径の異なる補強材以外に、更に補強材を加える場合は、平均繊維径が1~20μmの補強材であれば特に制限は無く、射出成形品自体又は微細部の強度を向上するのかによって、加える補強材を適宜選択すればよい。前記平均繊維径の組み合わせを満たす補強材としては、例えば、ガラス短繊維+ガラス繊維、ガラス短繊維+炭素繊維、セラミックファイバー+ガラス繊維、チタン酸カリウム繊維+ガラス繊維、ガラス短繊維+ケブラー、ガラス短繊維+ポリイミド繊維、ガラス短繊維+ガラス繊維+炭素繊維、ガラス短繊維+ガラス繊維+セラミックファイバー、ガラス短繊維+ガラス繊維+チタン酸カリウム繊維、ガラス短繊維+ガラス繊維+ケブラー、ガラス短繊維+ガラス繊維+ポリイミド繊維、等の組み合わせが挙げられる。
 上記の補強材は当該技術分野で一般的に製造又は入手できる物であれば特に限定はされない。例えば、ガラス繊維としては、平均繊維径7~20μmの単繊維を50~200本集めたガラスファイバーを所定の長さに切断したものであるチョップドストランドを用いることができる。また、ガラス短繊維としては、平均繊維径が約1~7μm、繊維長が300~1000μm程度のガラス繊維が綿状になったものを用いることができる。炭素繊維としては、平均繊維径が5~7μmのPAN系炭素繊維の単繊維のフィラメント、平均繊維径が7~10μmのピッチ系炭素繊維の単繊維のフィラメントを用いることができる。セラミックファイバーとしては、平均繊維径が2~4μmの非晶質のアルミナシリカ繊維(RCF)、平均繊維径が2~5μmの結晶質繊維(AF)を用いることができる。チタン酸カリウム繊維としては、平均繊維径が1~2μm程度のものを用いることができる。なお、前記の例示は、一般的によく使用されている平均繊維径を示すもので、前記に例示した繊維に加え、セルロース繊維、アラミド繊維、ポリイミド繊維、ポリアミドイミド繊維、ヘテロ環高性能繊維、ポリアリレート繊維、ケブラー、ダイニーマ等の繊維は、製造工程を調整することで、平均繊維径を調整することができる。
 補強材として、ガラス繊維、ガラス短繊維、セラミックファイバー、炭素繊維等の無機系補強材を用いた場合、熱可塑性樹脂は有機材料であるため、無機系補強材を単に熱可塑性樹脂に分散させるのみでは、無機系補強材と熱可塑性樹脂の接着性が弱くなる。そのため、無機系補強材をシランカップリング剤で表面処理してから、熱可塑性樹脂に分散することが好ましい。
 シランカップリング剤としては、従来から用いられているものであれば特に限定されず、複合形成材料を構成する熱可塑性樹脂との反応性、熱安定性等を考慮しながら決めればよく、例えば、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシランカップリング剤が挙げられる。これらのシランカップリング剤は、東レ・ダウコーニング社製のZシリーズ、信越化学工業社製のKBMシリーズ、KBEシリーズ、JNC社製等の市販品を用いればよい。
 上記シランカップリング剤は、溶媒に溶解し、無機系補強材に噴霧・乾燥することで、無機系補強材の表面処理をすることができる。前記無機系補強材に対するシランカップリング剤の重量百分率は、0.1~2.0wt%、好ましくは0.15~0.4wt%、さらに好ましくは0.24wt%である。
 本発明においては、無機系補強材を、潤滑剤で表面処理してもよい。潤滑剤は、無機系補強材を熱可塑性樹脂に混練する際に、無機系補強材の滑りがよくなり熱可塑性樹脂に分散し易くなるものであれば特に制限は無く、シリコンオイル等、従来から用いられている潤滑剤を使用することができるが、カリックスアレーンが特に好ましい。シリコンはオイルであるため熱可塑性樹脂との親和性に乏しいが、カリックスアレーンはフェノール樹脂であるので、無機系補強材の滑りを向上する一方で、熱可塑性樹脂との親和性に優れていることから、無機系補強材を維持したまま、複合形成材料中の無機系補強材の添加量を多くすることができる。
 カリックスアレーンとは、複数個(例えば4~8個の範囲内)のフェノール単位又はレゾルシン単位が環状に結合した環状オリゴマーであり、4量体の例としては、下記式(1)で示されるレゾルシン環状4量体を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1はヒドロキシル基を表し、R2は炭素数が1~17の直鎖状アルキル基又はフェニル基を示す。)
 上記一般式(1)に示されるカリックスアレーンの製造方法としては、レゾルシノールあるいはレゾルシノール誘導体とアルデヒド化合物(パラホルムアルデヒドあるいはパラアルデヒド)とを所定のモル比で、エタノールあるいは酢酸溶媒中塩酸あるいは硫酸触媒下、所定の温度で数時間反応させることで環状化合物、線状化合物を合成することができる。この合成された生成物から、メタノール等で再結晶することにより単離して、カリックスアレーンのみを得ることができる。例えば、下記式(2)に示されるような反応を挙げることができ、生成物から、カリックスアレーンのみを単離して得ることができる。
Figure JPOXMLDOC01-appb-C000002
(式中、R3はC1021を示す。)
 このようなカリックスアレーンの製造方法においては、レゾルシノール誘導体とアルデヒド化合物のモル比を等しくすることが、カリックスアレーンを得るのに好ましい。アルデヒド化合物が多くなると、線状体や分枝状物が優先して生成する可能性がある。
 また、6量体の例としては、下記式(3)で示されるp-ポリヒドロキシカリックス〔6〕アレーンが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記p-ポリヒドロキシカリックス〔6〕アレーンは、例えば、下記式(4)の手順で合成することができ、詳細は、Macromolecules 2005,38,6871-6875に記載されている。
Figure JPOXMLDOC01-appb-C000004
 合成されたカリックスアレーンを溶解する溶媒は、カリックスアレーンを溶解できるものであれば特に制限はなく、例えば、メタノール、エタノール、アセトン、テトラヒドロフラン(THF)、クロロホルム、ジメチルスルホキシド(DMSO)、ジエチレングリコール(DEG)、ジグライム、トリグライム、ジオキサン、メチルイソブチルケトン、メチルt-ブチルエーテル、ポリエチレングリコール、トルエン、キシレン、塩化メチレン、ジエチルエーテルなどを挙げることができる。
 無機系補強材の表面処理は、カリックスアレーンを溶解した溶液を、無機系補強材に噴霧・乾燥することで行われる。
 上記カリックスアレーンを溶解した溶液は、上記の製法により製造することもできるが、例えば、ナノダックス社製のプラスチック改質剤nanodaX(登録商標)を用いてもよい。無機系補強材に対するプラスチック改質剤nanodaX(登録商標)の重量百分率は、0.001~0.5wt%が好ましくは、0.01~0.3wt%がより好ましい。
 無機系補強材は、上記シランカップリング剤又は潤滑剤で処理されてもよいし、シランカップリング剤及び潤滑剤で処理されてもよい。
 また、無機系補強材は、上記のシランカップリング剤及び/又は潤滑剤による表面処理に加え、エポキシ樹脂、酢酸ビニル樹脂、酢酸ビニル共重合体樹脂、ウレタン樹脂、アクリル樹脂等の公知の皮膜形成剤で表面処理してもよい。これら皮膜形成剤は単独あるいは2種類以上を混合して使用でき、皮膜形成剤の重量百分率はシランカップリング剤に対して5~15倍であることが好ましい。
 無機系補強材は、熱可塑性樹脂と混練する前に、上記の表面処理を行ってもよいし、潤滑剤のみで表面処理した無機系補強材を準備しておき、使用する熱可塑性樹脂に応じて混練する前に所望のシランカップリング剤で表面処理してもよい。また、潤滑剤及びシランカップリング剤で予め表面処理しておいてもよいし、更に、必要に応じて皮膜形成剤で予め処理しておいてもよい。
 本発明の複合形成材料には、本発明の目的を損なわない範囲で、公知の紫外線吸収剤、安定剤、酸化防止剤、可塑剤、着色剤、整色剤、難燃剤、帯電防止剤、蛍光増白剤、つや消し剤、衝撃強度改良剤等の添加剤を配合することもできる。
 本発明の複合形成材料は、熱可塑性樹脂及び必要に応じて表面処理された平均繊維径の異なる2以上の補強材、並びに必要に応じて添加される各種添加剤を、単軸又は多軸の押出機、ニーダー、ミキシングロ-ル、バンバリ-ミキサ-等の公知の溶融混練機を用いて、200~400℃の温度で溶融混練することで製造することができる。製造装置については特に限定されないが、二軸押出機を用いて溶融混練することが簡便で好ましい。混練された複合形成材料は、金型に直接射出形成されてもよいし、一度ペレットにした後射出成形されてもよい。また、本発明の複合形成材料は、先ず補強材を1種のみ含むペレットを複数種類作製し、平均繊維径の異なる補強材を含むペレットを組み合わせて溶融・混合することで作製してもよいし、平均繊維径の異なる補強材を含むペレットを組み合わせてドライブレンドすることで作製してもよい。更に、少なくとも1種の補強材を含むペレット先ず作製し、該ペレットを溶融した後、平均繊維径の異なる補強材を添加・混練してもよい。
 また、ガラス短繊維等の直径が細く嵩密度の低い補強材を用いる場合は、少なくとも嵩密度の最も低い補強材を加熱してから溶融した熱可塑性樹脂に加えてもよい。例えばガラス短繊維の場合、同重量の熱可塑性樹脂に対するガラス短繊維の見掛け体積は約20倍もあり、多くの空気を含んでいる。その為、溶融している熱可塑性樹脂にガラス短繊維を逐次投入すると、投入されたガラス短繊維と接触する部分の熱可塑性樹脂のみが、綿状のガラス短繊維の間に保持されている空気で冷却され、他の熱可塑性樹脂部分と粘度が変わる。そして、粘度が異なる状態で熱可塑性樹脂を混練すると、ガラス短繊維に異なった負荷がかかり、その結果、ガラス短繊維が切断されやすくなるためである。そのため、ガラス短繊維を投入しても熱可塑性樹脂の粘度が変わらないようにするため、予めガラス短繊維を加熱してから投入することが望ましい。勿論、予め加熱するのは嵩密度の最も低い補強材に限定されず、他の補強材についても加熱してから添加してもよい。
 補強材の加熱温度は、溶融した熱可塑性樹脂の温度を基準に、-150℃~+50℃程度にすることが好ましい。熱可塑性樹脂の溶融温度を高くすれば粘度は下がり、補強材を分散し易くなるが、熱可塑性樹脂は温度を高くし過ぎると、特性が急激に変化することがある。したがって、本発明では、熱可塑性樹脂の溶融温度は、当分野で通常行われている温度で溶融する一方、補強材を加熱することが望ましい。補強材の加熱温度は、用いる熱可塑性樹脂の種類にもよるが、熱可塑性樹脂の劣化を避けるため、熱可塑性樹脂の溶融温度を基準に+20℃程度まで加熱することがより好ましい。一方、下限値は、加熱すれば効果が得られるので特に限定はされないが、熱可塑性樹脂の溶融温度を基準に-100℃程度がより好ましく、-50℃程度が更に好ましい。補強材を、溶融した樹脂と同じ温度に加熱することが、最も好ましい。
 補強材の加熱は、例えば、混練装置の補強材投入装置のホッパー部分に加熱手段を設ける等、溶融した熱可塑性樹脂に、補強材を加熱して投入できるものであれば特に制限はない。また、ガラス繊維のストランド等の長い繊維状の補強材を用いる場合は、加熱手段を周りに設けた管の中に補強材を通すことで加熱してから、溶融した熱可塑性樹脂に投入すればよい。
 上記方法により製造された複合形成材料中の補強材は、混練時の熱可塑性樹脂の粘性の変化が少ないことから切断されにくい。したがって、補強材の繊維長をより長く保ったまま熱可塑性樹脂中に分散することができるので、複合形成材料の強度を上げることができ、また、前記複合形成材料を用いた射出成型品の強度も向上することができる。更に、無機系補強材を用いる場合、潤滑剤、特にカリックスアレーンで表面処理すると、無機系補強材の滑りが良くなることから、より無機系補強材の繊維長を維持したまま、多くの無機系補強材を熱可塑性樹脂に分散することができる。
 本発明の複合形成材料において、熱可塑性樹脂に対する全補強材の配合比率、並びに補強材と補強材の配合比率は、所望とする射出成形品の強度及び射出成形品の微細部の形状等により、適宜選択すればよい。
 本発明の複合形成材料は、射出成形用の原料として特に有用である。また、本発明の射出成形品の用途としては、例えば、自動車分野、電気・電子分野、一般機械分野、家電機器等の分野に使用できる。
 自動車分野であれば、ラジエータタンク、ファン、ラジエータファンなどの車両用ファン、ファスナー、ホイールキャップ、シリンダーヘッドカバー、ドアハンドル、シートベルト部品、バンパー、バルブ、電装部品、内装部品類などを挙げることができる。
 電気・電子分野であれば、冷却モジュール用ターボファン等のファン、半導体バーンインソケット等の評価用治具、コネクター、リフレクター、コイルボビン、スイッチ部品、信号筒、端子台、電気製品の洗濯機、冷蔵庫、掃除機、電話機、携帯電話、テレビ、パソコン、暖冷房機器、照明機器、扇風機、電気ポット、アイロン、プレーヤー等を挙げることができる。
 その他にも、サッシ部品、ネジ、ギア、ラックアンドピニオン、ベアリング、シャフト、バネ、摺動部品の戸車・軸受・歯車・樹脂キャスター・ソリッドタイヤ、一般機械分野や家電機器の部品等が挙げられる。
 上記の例示は射出成形品の典型的な例であって、その他、各種樹脂成形品、ガラス代用のプラスチック製品、航空機内装樹脂部材、土木建築樹脂資材、農業用資材製品、漁業用資材製品、各種車両用部品、鉄道電車内装材、船舶の樹脂用品並びに樹脂構造物、各種インテリア・エクステリア製品、FRP樹脂製品、産業用電気部品、自転車用具、一般の樹脂容器、家庭用台所用品、樹脂衣装箱、樹脂食器、樹脂ビン、梱包用資材製品、清掃用具、工具箱、各種レジャー用品、遊戯機器、ゲーム用具、パチンコ機器、スロット機器、太陽電池取付機器、道路標識、道路保安用品、釣竿及び釣具、樹脂化粧板、コンセント、OA機器樹脂部品、複写機樹脂部品、カメラ部品、医療用機器、文房具製品、各種事務機器及び用品、看板樹脂資材、美容・理容器具及び用品、眼鏡樹脂枠、園芸資材用品、樹脂人工芝、工業用樹脂バルブ、樹脂ファスナー、樹脂パッキン、樹脂パイプ、樹脂ホース、送水管用樹脂バルブ、電線被覆材、樹脂結節バンド、樹脂浴槽、樹脂タンク、ダクト配管ロープ、ネット、風防、荷役用樹脂パレット、樹脂コンテナ、樹脂トレー、樹脂敷板等、射出成形により作製できるものであれば特に制限は無い。本発明の複合形成材料を用いることで、従来品と比較して強度等の付加価値を高めた射出成形品を得ることができる。
 なお、本発明の複合形成材料は、射出成形の用途に特に優れた効果を奏するが、例えば、シート状物のプレス成形等、射出成形以外にも用いることができる。
 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。
〔複合形成材料の作製〕
(ガラス短繊維1の作製)
 先ず、遠心法により製造されたガラス短繊維(平均繊維径:約3.6μm)に、バインダースプレーノズルよりシランカップリング剤及び皮膜形成剤を含む溶液を噴霧することにより表面処理を行った。シランカップリング剤はエポキシシランカップリング剤Z4060(東レ・ダウコーニング社製)、皮膜形成剤にはエポキシフィルムフォーマEM-058(アデカ社製)を用いた。この時、ガラス短繊維に対する重量百分率は、エポキシシランカップリング剤が0.24wt%、皮膜形成剤が2.4wt%であった。この後、ガラス短繊維を150℃で1時間乾燥させた後、カッタミルで平均繊維長850μmに解砕処理した。
(ガラス短繊維1含有ペレットの作製)
 押出成形機として同方向二軸混練押出機ZE40A((φ43 L/D=40)、ベルストルフ社製)、計量装置として重量式スクリューフィーダS210(K-トロン社製)を用い、溶融したポリブチレンテレフタレート(PBT、ポリプラスチックス社製 XFR4840)に、ペレット中の比率が30wt%となるようにガラス短繊維を添加し混練した。混練条件は、スクリュー回転数120rpm、樹脂圧力0.9Mpa、電流36A、フィード量15Kg/hrで行った。また、混練時のPBTの樹脂温度は250℃、ガラス短繊維は25℃で添加した。混練後は、スクリューの排出ディスク回転によりバレルの先端に設けられたダイスから押出されたストランド(棒状ライン)をストランドバスで冷却してからストランドカッターで切断して、ガラス短繊維1含有ペレットを作製した。
(実施例1)
 上記の手順で作製したガラス短繊維1含有ペレット、及びガラス繊維(平均繊維径:13μm)を30wt%含有するペレット(日本ポリプラスチック製6840GF30)を1:1の割合で混合し、タンブラーで回転数30rpm、10分間、ドライブレンドすることで複合形成材料を作製した。
(比較例1)
 上記ガラス繊維を30wt%含有するペレット(日本ポリプラスチック製6840GF30)を比較例1の複合形成材料とした。
(比較例2)
 上記で作製したガラス短繊維1含有ペレットを比較例2の複合形成材料とした。
 上記実施例1、比較例1及び比較例2の複合形成材料中の補強材の含有量を表1に示す。
Figure JPOXMLDOC01-appb-T000005
(ガラス短繊維2の作製)
 シランカップリング剤として、アミノシランカップリング剤S330(チッソ社製)を用い、皮膜形成剤を用いなかった以外は、ガラス短繊維1と同様の手順でガラス短繊維2を作製した。
(ガラス短繊維2含有ペレットの作製)
 押出成形機として同方向二軸混練押出機 BT-40-S2-36-L型((φ39 L/D=36)、プラスチック工学研究所社製)を用い、計量装置として重量式スクリューフィーダS210(K-トロン社製)を用い、溶融したポリエーテルイミド(PEI、SABICイノベーティブプラスチックス社製 Ultem 1000)に、ペレット中の比率が20wt%となるようにガラス短繊維を添加し混練した。混練条件は、スクリュー回転数200rpm、樹脂圧力0.6Mpa、電流26~27A、フィード量3.75Kg/hrで行った。また、混練時のPEIの樹脂温度は380℃、ガラス短繊維は25℃で添加した。混練後は、ガラス短繊維1含有ペレットと同様の手順でペレットを作製した。
(実施例2)
 作製したガラス短繊維2含有ペレット、及びガラス繊維(平均繊維径:13μm)を20wt%含有するペレット(SABICイノベーティブプラスチックス社製 Ultem 2200)を1:1の割合で混合し、タンブラーで回転数30rpm、10分間、ドライブレンドすることで複合形成材料を作製した。
(比較例3)
 ガラス繊維を20wt%含有するペレット(SABICイノベーティブプラスチックス社製 Ultem 2200)を比較例3とした。
 上記実施例2及び比較例3の複合形成材料中の補強材の含有量を表2に示す。
Figure JPOXMLDOC01-appb-T000006
〔射出成形品の作製及び評価〕
(実施例3)
<冷却モジュール用ターボファンの作製>
 上記実施例1で作製した複合形成材料を、図1に示す形状の冷却モジュール用ターボファン(以下、単に「ファン」と記載することもある。)を製造するための金型に射出成形を行った。射出成形機は、▲チョ▼波海星塑料机械制造有限公司(NING BO HAI XING PLASTICS MACHINERY MANUFACTURING CO., LTD)のHXF33J8モデルを用い、複合形成材料を金型に充填する際の射出シリンダーノズルの温度は265℃、射出圧力は100MPa、射出速度は55/mm s-1、保持圧力は80MPaの条件で射出成形を行った。得られたファンの半径Rは23mm、ブレードが形成されている部分1の高さ(ファン全体の厚さ)は9mm、個々のブレードの厚さ2は約0.5mmであった。
〔冷却モジュール用ターボファン破壊強度試験〕
 次に、上記実施例3で作製したファンの破壊強度試験を行った。図2は、試験機の治具でファンに荷重をかけている様子を示す写真である。試験機には、島津製作所社製の万能試験機 型式AG-1を用い、直径20mmの円型破壊用治具で、ヘッドスピード1.0mm/minの条件で破壊強度試験を行った。ファンの破壊強度は、ファンの外縁部分に荷重をかけて破壊したときの最大となる荷重(最大点試験力/N)で評価した。評価には、同一条件で作製したファン6個を用いた。
〔ブレード曲げ試験〕
 次に、上記実施例3で作製したファンからブレードを切り出して、個々のブレードの曲げ試験を行った。図3は、試験機の治具でブレードに荷重をかけている様子を示す写真である。試験機には、島津製作所社製の万能試験機 型式AG-1を用い、マイナス型の曲げ用治具で、支点間距離6.0mm、ヘッドスピード1.0mm/minの条件で曲げ試験を行った。ブレードの曲げ強度は、ブレードの外周部から5mm内側の位置に荷重をかけて曲げ、最大となった荷重(最大点試験力/N)で評価した。評価には、同じファンから切り出したブレード19個を用いた。
(比較例4)
 比較例1の複合形成材料を用いて、射出シリンダーノズルの温度を275℃、射出圧力を115MPa、保持圧力を120MPaとした以外は、実施例3と同様にファンを射出成形し、破壊強度試験及びブレード曲げ試験を行った。
(比較例5)
 比較例2の複合形成材料を用いて、保持圧力を60MPaとした以外は、実施例3と同様にファンを射出成形し、破壊強度試験及びブレード曲げ試験を行った。
 上記実施例3、比較例4及び比較例5で作製したファンの破壊強度試験及びファンから切り出したブレードの曲げ試験の結果を表3及び図4に示す。
Figure JPOXMLDOC01-appb-T000007
 表3及び図4から明らかなように、実施例1の複合形成材料を用いて射出成形して作製した実施例3のファンの強度は、比較例4のファンに近い強度を示した。実施例3のファン中に含まれるガラス繊維の含有量は比較例4の半分、ガラス短繊維の含有量は比較例5の半分で、ファン中の補強材全体の含有量は実施例3、比較例4及び比較例5とも同じであるにもかかわらず、ガラス繊維及びガラス短繊維を混合することでファンの強度向上に明らかな相乗効果が見られた。その理由としては、標準偏差が示すように、比較例4のガラス繊維のみを補強材として含むファンは、射出成形時に金型中でガラス繊維が均一に分散され難く、その結果、個々の製品及び/又は同一製品であっても場所によって強度にばらつきが発生するが、実施例3のファンでは、金型中でガラス繊維が均一に分散される一方、ガラス繊維間をガラス短繊維が補充することで、ファン中のガラス繊維及びガラス短繊維の分散性が高まったためと考えられる。
 また、ブレードの曲げ強度については、表3及び図4から明らかなように、ガラス繊維のみを含む比較例4の強度はガラス短繊維のみを含む比較例5に比べ弱い。しかしながら、実施例3のファンから切り出したブレードは、ガラス短繊維のみを補強材として含む比較例5のファンのブレードとほぼ同程度の強度を示した。実施例3のブレードは、金型中に実施例1の複合形成材料を射出成形した際に、複合形成材料中に含まれるガラス短繊維が金型の微細部分にまで均一に充填されたためと考えられる。
〔X線CT撮影〕
 次に、実施例3及び比較例4で作製したファンのブレードの強度の向上が、ガラス短繊維が充填されたためであるか確認するため、ブレードのX線CT撮影を行った。先ず、上記実施例3で作製したファンから切り出したブレードを、ブレードのファン本体の付け根側の部分を試料ホルダに接着剤を用いて固定した。図5は、試料ホルダに固定したブレードを示し、○で囲ってある先端部分を撮影した。撮影は、SkyScan 1172 Micro-CT(Bruker micro社製)を用い以下の手順で行った。
(1)スキャンソフトウェアである「SKYSCAN-μCT」を起動し、X線源のエージングを実行後、測定試料であるブレードを固定した試料ホルダを、チャンバー内に固定した。
(2)X線イメージ取得用カメラの解像度(ピクセル数)をStandard resolution(2000×1048 pixel)に設定し、ホルダを180度までゆっくり回転させ、0.6度回転する毎に透過イメージを撮影することでスキャニングを行った。
(3)ソフトウェア「Nrecon」を使用し、得られた透過イメージから断層像を再構成した。
(4)3D表示用ソフトウェア「CTVox」により、断層像から透過3D像を得た。
 比較例4で作製したファンのブレードについても、上記と同様の手順でX線CT撮影を行った。
 図6の(a)は実施例3、(b)は比較例4で作製したファンから切り出したブレードの先端部分の透過3D像を示す。写真から明らかなように、ファンから延伸したブレード(最薄部の厚さは約0.5mm)の最末端部位においても、実施例3のブレードはガラス短繊維がはっきりと確認できた。一方、比較例4のブレードは、ガラス繊維はほとんど確認されなかった。
<半導体バーンインソケットの作製及び評価>
(実施例4)
 上記実施例2で作製した複合形成材料を、半導体バーンインソケット(以下、単に「ソケット」と記載する場合がある。)を作製するための金型に射出成形した。射出成形機は、▲チョ▼波海星塑料机械制造有限公司(NING BO HAI XING PLASTICS MACHINERY MANUFACTURING CO., LTD)のHXF33J8モデルを用い、射出シリンダーノズルの温度を380℃とする以外は、実施例3と同様の手順で射出成形を行った。図7は得られたソケットの写真で、○で囲んである部分は格子状の微細部で、サイズは7×7mm、厚さ2mmであった。また、格子状の微細部を構成する線の幅は約0.1mm、格子のサイズは0.2×0.25mmであった。
〔X線CT撮影〕
 次に、実施例4で作製したソケット中央の格子状部分を切り出し、試料ホルダに接着剤を用いて固定した。図8は、試料ホルダに固定した格子状部分を示す。撮影は、実施例3と同様の手順で行い、格子状部分のほぼ中央の2×2mmの透過3D像を得た。
(比較例6)
 比較例3の複合形成材料を用い、射出シリンダーノズルの温度を380℃とした以外は、比較例4と同様の手順でソケットを射出成形し、実施例3と同様の手順でX線CT撮影を行い、格子状部分のほぼ中央の2×2mmの透過3D像を得た。
 図9(a)は実施例4、(b)は比較例6で得られた透過3D像の写真である。写真から明らかなように、実施例4のソケットは、格子状部分の中央までガラス短繊維が充填されていることがはっきりと確認できた。一方、比較例6のソケットでは、混練及び/又は射出成形中に切断・微細化したと思われるガラス繊維片がわずかに確認されたに過ぎず、格子状部分にはガラス繊維は十分充填されなかった。
 上記の実施例及び比較例から明らかなように、本発明の複合形成材料を用いて射出成形品を製造すると、射出成形品自体の強度を保持しつつ、複合形成材料に含まれる平均繊維径の小さな補強材を射出成形品の微細部に均一に充填することができるので、射出成形品及び微細部の強度を向上することができる。更に、本発明の複合形成材料を用いて射出成形品を作製すると、個々の製品及び/又は製品中の場所による強度のばらつきが少なくなるので、不良品の発生数を減少することができ、製品の歩留まりが向上する。
 本発明の平均繊維径の異なる2以上の補強材を熱可塑性樹脂に混練した複合形成材料を用いて射出成形品を作製すると、射出成形品の微細部まで平均繊維径の小さな補強材を充填することができ、且つ、射出成形品自体の強度は平均繊維径の大きな補強材のみを含む複合形成材料を用いて射出成形した射出成形品とほぼ同程度の強度を有することから、微細部を含む射出成形品への使用が期待される。

Claims (9)

  1.  熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維、及び平均繊維径が7~20μmの繊維状の補強材を含むことを特徴とする複合形成材料。
  2.  前記平均繊維径が7~20μmの繊維状の補強材が、ガラス繊維であることを特徴とする請求項1に記載の複合形成材料。
  3.  前記ガラス短繊維が、シランカップリング剤、潤滑剤及び皮膜形成材から選択される少なくとも1種で表面処理されたものであることを特徴とする請求項1又は2に記載の複合形成材料。
  4.  前記ガラス繊維が、シランカップリング剤、潤滑剤及び皮膜形成材から選択される少なくとも1種で表面処理されたものであることを特徴とする請求項2又は3に記載の複合形成材料。
  5.  熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維、及び平均繊維径が7~20μmの繊維状の補強材を含む複合形成材料であって、前記補強材の内、少なくともガラス短繊維が、溶融した熱可塑性樹脂の温度を基準に-150~+50℃に加熱してから溶融した熱可塑性樹脂に投入したものであることを特徴とする複合形成材料。
  6.  前記複合形成材料が、射出成形用であることを特徴とする請求項1~5の何れか一項に記載の複合形成材料。
  7.  請求項1~6の何れか一項に記載の複合形成材料を射出成形して作製した射出成形品。
  8.  熱可塑性樹脂、平均繊維径が1~7μmで混練前の繊維長が300~1000μmのガラス短繊維、及び平均繊維径が7~20μmの繊維状の補強材を含む複合形成材料の製造方法において、前記補強材の内、少なくともガラス短繊維を、溶融した熱可塑性樹脂の温度を基準に-150~+50℃に加熱してから溶融した熱可塑性樹脂に投入することを特徴とする複合形成材料の製造方法。
  9.  前記平均繊維径が7~20μmの繊維状の補強材が、ガラス繊維であることを特徴とする請求項8に記載の複合形成材料の製造方法。
     
PCT/JP2014/057233 2013-04-09 2014-03-18 複合形成材料、射出成形品及び複合形成材料の製造方法 WO2014167950A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14782962.6A EP2985319B1 (en) 2013-04-09 2014-03-18 Composite molding material, its use to produce an extrusion molded article, and production method for said composite molding material
ES14782962T ES2739632T3 (es) 2013-04-09 2014-03-18 Material de moldeo de material compuesto, su uso para producir un artículo moldeado por extrusión y método de producción para dicho material de moldeo de material compuesto
KR1020157030819A KR20150138284A (ko) 2013-04-09 2014-03-18 복합 형성 재료, 사출 성형품 및 복합 형성 재료의 제조 방법
CN201480020125.9A CN105102545B (zh) 2013-04-09 2014-03-18 复合形成材料、射出成形品及复合形成材料的制造方法
US14/782,371 US10066085B2 (en) 2013-04-09 2014-03-18 Composite molding material, injection-molded article, and method for manufacturing composite molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081164 2013-04-09
JP2013081164A JP5437514B1 (ja) 2013-04-09 2013-04-09 複合形成材料、射出成形品及び複合形成材料の製造方法

Publications (1)

Publication Number Publication Date
WO2014167950A1 true WO2014167950A1 (ja) 2014-10-16

Family

ID=50396679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057233 WO2014167950A1 (ja) 2013-04-09 2014-03-18 複合形成材料、射出成形品及び複合形成材料の製造方法

Country Status (8)

Country Link
US (1) US10066085B2 (ja)
EP (1) EP2985319B1 (ja)
JP (1) JP5437514B1 (ja)
KR (1) KR20150138284A (ja)
CN (1) CN105102545B (ja)
ES (1) ES2739632T3 (ja)
TW (1) TWI547514B (ja)
WO (1) WO2014167950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112835A (ja) * 2014-12-17 2016-06-23 Jfeケミカル株式会社 熱可塑性樹脂の加熱方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437514B1 (ja) * 2013-04-09 2014-03-12 鉦則 藤田 複合形成材料、射出成形品及び複合形成材料の製造方法
JP2016117834A (ja) * 2014-12-22 2016-06-30 鉦則 藤田 無機材料の表面改質用組成物、表面改質された無機材料、表面改質用組成物を含む複合形成材料、該複合形成材料の成形品、複合形成材料の製造方法、及びカリックスアレーン含有組成物
EP3309211B1 (en) * 2016-10-17 2018-12-12 Borealis AG Fiber reinforced polypropylene composite
US11524428B2 (en) * 2017-09-19 2022-12-13 Masanori Fujita Cleaning agent for molding-machine cleaning and cleaning method
JP7300273B2 (ja) * 2019-02-04 2023-06-29 株式会社ムーンスター 微細径繊維を用いた防滑履物底

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115132A (ja) * 1973-03-09 1974-11-02
JPS5986636A (ja) * 1982-11-10 1984-05-18 Fuji Fiber Glass Kk ガラス繊維強化反応射出成形用樹脂組成物
JP2001335688A (ja) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd 熱可塑性樹脂組成物、その製造方法、並びに半導体素子収納用パッケージ
JP2006028390A (ja) * 2004-07-20 2006-02-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2007277391A (ja) 2006-04-06 2007-10-25 Asahi Kasei Chemicals Corp ガラス長繊維強化ポリアミド樹脂組成物および成形品
JP2008013702A (ja) * 2006-07-07 2008-01-24 Toray Ind Inc 液晶性ポリエステル組成物
JP2008144119A (ja) * 2006-12-13 2008-06-26 Nippon Shokubai Co Ltd 樹脂組成物、光学系装置用成型体、その製造方法及び用途
JP2008208257A (ja) * 2007-02-27 2008-09-11 Toray Ind Inc 液晶性樹脂組成物からなるl字型成形品の製造方法
JP2009007179A (ja) 2007-06-26 2009-01-15 Nippon Electric Glass Co Ltd ガラス繊維用集束剤、ガラス繊維、ガラス繊維の製造方法及びガラス繊維強化熱可塑性樹脂
JP2009275172A (ja) * 2008-05-16 2009-11-26 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物及び鏡筒用射出成形体
JP2011183638A (ja) 2010-03-08 2011-09-22 Mag Isover Kk 複合成形材料
JP2012089067A (ja) 2010-10-22 2012-05-10 Sharp Corp ポインティング装置及びこれを備えた電子機器
JP5126453B2 (ja) * 2010-12-27 2013-01-23 東レ株式会社 液晶性ポリエステルおよびその製造方法
JP2013216003A (ja) * 2012-04-10 2013-10-24 Mag Isover Kk 複合形成材料、表面処理したガラス短繊維及び複合形成材料の製造方法
JP5437514B1 (ja) * 2013-04-09 2014-03-12 鉦則 藤田 複合形成材料、射出成形品及び複合形成材料の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126453B2 (ja) * 1971-12-15 1976-08-06
US4026478A (en) * 1975-04-03 1977-05-31 Jim Walter Corporation Process for making uniform short non-cellulosic fibers
JPS601256A (ja) 1983-06-19 1985-01-07 Nippon Steel Chem Co Ltd ポリアミド樹脂組成物
DE4017184A1 (de) * 1989-06-01 1990-12-06 Hollingsworth & Vose Co Praegbares filtergewebe
JP4224894B2 (ja) * 1999-06-04 2009-02-18 チッソ株式会社 複合強化ポリオレフィン樹脂組成物の製造方法及びその製造装置
US6495615B1 (en) * 2001-02-16 2002-12-17 General Electric Company High modulus polyether sulfone compositions with improved impact
KR100515406B1 (ko) 2003-03-20 2005-09-14 강명호 극세 단섬유를 함유하는 합성수지 조성물 및 이의 제품
JP2006028389A (ja) * 2004-07-20 2006-02-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
PL1826242T3 (pl) * 2004-11-22 2014-11-28 Ube Industries Kompozycja żywicy poliamidowej zawierająca włókno szklane
JP2010015091A (ja) * 2008-07-07 2010-01-21 Teijin Chem Ltd ガラス繊維強化樹脂組成物からなる鏡筒
JP5210068B2 (ja) * 2008-07-23 2013-06-12 パナソニック株式会社 レーザ溶着用熱可塑性樹脂組成物、樹脂成形品の製造方法、及び樹脂成形品
JP2010121108A (ja) * 2008-10-22 2010-06-03 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物及び成形品
CN101760009A (zh) 2008-12-23 2010-06-30 上海普利特复合材料股份有限公司 一种可直接注塑粘接tpe的增强尼龙合金材料及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115132A (ja) * 1973-03-09 1974-11-02
JPS5986636A (ja) * 1982-11-10 1984-05-18 Fuji Fiber Glass Kk ガラス繊維強化反応射出成形用樹脂組成物
JP2001335688A (ja) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd 熱可塑性樹脂組成物、その製造方法、並びに半導体素子収納用パッケージ
JP2006028390A (ja) * 2004-07-20 2006-02-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2007277391A (ja) 2006-04-06 2007-10-25 Asahi Kasei Chemicals Corp ガラス長繊維強化ポリアミド樹脂組成物および成形品
JP2008013702A (ja) * 2006-07-07 2008-01-24 Toray Ind Inc 液晶性ポリエステル組成物
JP2008144119A (ja) * 2006-12-13 2008-06-26 Nippon Shokubai Co Ltd 樹脂組成物、光学系装置用成型体、その製造方法及び用途
JP2008208257A (ja) * 2007-02-27 2008-09-11 Toray Ind Inc 液晶性樹脂組成物からなるl字型成形品の製造方法
JP2009007179A (ja) 2007-06-26 2009-01-15 Nippon Electric Glass Co Ltd ガラス繊維用集束剤、ガラス繊維、ガラス繊維の製造方法及びガラス繊維強化熱可塑性樹脂
JP2009275172A (ja) * 2008-05-16 2009-11-26 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物及び鏡筒用射出成形体
JP2011183638A (ja) 2010-03-08 2011-09-22 Mag Isover Kk 複合成形材料
JP2012089067A (ja) 2010-10-22 2012-05-10 Sharp Corp ポインティング装置及びこれを備えた電子機器
JP5126453B2 (ja) * 2010-12-27 2013-01-23 東レ株式会社 液晶性ポリエステルおよびその製造方法
JP2013216003A (ja) * 2012-04-10 2013-10-24 Mag Isover Kk 複合形成材料、表面処理したガラス短繊維及び複合形成材料の製造方法
JP5437514B1 (ja) * 2013-04-09 2014-03-12 鉦則 藤田 複合形成材料、射出成形品及び複合形成材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 38, 2005, pages 6871 - 6875
See also references of EP2985319A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112835A (ja) * 2014-12-17 2016-06-23 Jfeケミカル株式会社 熱可塑性樹脂の加熱方法

Also Published As

Publication number Publication date
EP2985319A1 (en) 2016-02-17
JP5437514B1 (ja) 2014-03-12
EP2985319B1 (en) 2019-05-22
CN105102545A (zh) 2015-11-25
CN105102545B (zh) 2019-01-22
TWI547514B (zh) 2016-09-01
TW201446854A (zh) 2014-12-16
EP2985319A4 (en) 2016-07-13
ES2739632T3 (es) 2020-02-03
KR20150138284A (ko) 2015-12-09
US10066085B2 (en) 2018-09-04
US20160053092A1 (en) 2016-02-25
JP2014201712A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5437514B1 (ja) 複合形成材料、射出成形品及び複合形成材料の製造方法
TWI591121B (zh) 具有抗靜電性的全芳香族液晶聚酯樹脂複合物及含有其的物品
JP5220934B1 (ja) 複合形成材料、表面処理したガラス短繊維及び複合形成材料の製造方法
JP6741834B1 (ja) 液晶ポリエステル樹脂ペレット、及びその製造方法、並びに成形体の製造方法
US20170275458A1 (en) Polyamide resin composition comprising fiber reinforced polyamide pellet and molded article thereof
WO2021029267A1 (ja) 液晶ポリエステル樹脂成形体
JP6741835B1 (ja) 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体
CN114174425B (zh) 液晶聚酯树脂颗粒和液晶聚酯树脂成型体
WO2021029271A1 (ja) 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体、並びに液晶ポリエステル樹脂成形体の製造方法
CN110862655B (zh) 一种pbt/san复合材料及其制备方法和应用
KR20200078749A (ko) 내후성이 우수한 장섬유 강화 열가소성 수지 조성물 및 그로부터 제조되는 성형품
JP6741832B1 (ja) 射出成形品及びその製造方法
WO2021029276A1 (ja) 射出成形品
JP2005272661A (ja) ガラス繊維強化熱可塑性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020125.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14782371

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030819

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014782962

Country of ref document: EP