WO2014163029A1 - ラックガイド装置及びこれを含むステアリング装置 - Google Patents

ラックガイド装置及びこれを含むステアリング装置 Download PDF

Info

Publication number
WO2014163029A1
WO2014163029A1 PCT/JP2014/059401 JP2014059401W WO2014163029A1 WO 2014163029 A1 WO2014163029 A1 WO 2014163029A1 JP 2014059401 W JP2014059401 W JP 2014059401W WO 2014163029 A1 WO2014163029 A1 WO 2014163029A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
disc spring
holding member
guide
rack guide
Prior art date
Application number
PCT/JP2014/059401
Other languages
English (en)
French (fr)
Inventor
真 妙中
秀年 隅原
渡邉 和宏
康登 高木
哲次 宮野
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013076311A external-priority patent/JP6137533B2/ja
Priority claimed from JP2013111202A external-priority patent/JP6086233B2/ja
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to EP14779859.9A priority Critical patent/EP2982569B1/en
Priority to US14/781,202 priority patent/US10202142B2/en
Priority to CN201480019816.7A priority patent/CN105339237B/zh
Priority to BR112015025216A priority patent/BR112015025216A2/pt
Publication of WO2014163029A1 publication Critical patent/WO2014163029A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • B62D3/123Steering gears mechanical of rack-and-pinion type characterised by pressure yokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/26Racks
    • F16H55/28Special devices for taking up backlash

Definitions

  • the present invention relates to a rack guide device and a steering device including the same.
  • a rack and pinion type steering device is provided with a rack guide device for suppressing backlash between the rack and the pinion.
  • a rack guide device for suppressing backlash between the rack and the pinion.
  • a compression coil spring interposed between the rack guide and the plug pushes the rack guide toward the rack shaft, The gap between the rack guide and the plug is compensated.
  • Patent Document 1 a disc spring is interposed in series with a compression coil spring between a rack guide and a plug.
  • the disc spring is bent and absorbs an impact only when a large impact load is input.
  • FIG. 4 of Patent Document 1 there is a disc spring and an interposition member interposed between the compression coil spring and the disc spring (referred to as a second rack support in Patent Document 1) in a cylindrical portion provided in the plug. Contain) and hold.
  • the interposition member is held using the retaining rings engaged with the respective circumferential grooves of the inner periphery of the cylindrical portion that guides the outer diameter of the disc spring and the outer periphery of the interposition member, A disc spring is held between the member and the bottom of the cylindrical portion.
  • An object of the present invention is to provide a rack guide device with good assemblability as a whole and a steering device including the same.
  • the invention of claim 1 is housed in a housing portion formed in a housing through which a rack shaft meshing with a pinion shaft is inserted so as to be able to advance and retract toward the rack shaft side, and the rack shaft is mounted on the rack.
  • a rack guide that is slidably supported in the axial direction of the shaft, a sealing member fixed to an external opening end provided on a side opposite to the rack shaft side in the housing portion, the sealing member and the rack guide And at least one disc spring for biasing the rack guide toward the rack shaft side, and holding held by holding the disc spring in direct or indirect frictional engagement with the sealing member And a rack guide device.
  • a friction engagement member that is held by at least one of the sealing member and the holding member and frictionally engages the other may be provided.
  • the friction engagement member may include an elastic member.
  • the holding member receives a load of the disc spring extending in a radial direction from one end of the guide tube in the axial direction and guiding a radial end of the disc spring.
  • an annular seat plate receives a load of the disc spring extending in a radial direction from one end of the guide tube in the axial direction and guiding a radial end of the disc spring.
  • an annular seat plate receives a load of the disc spring extending in a radial direction from one end of the guide tube in the axial direction and guiding a radial end of the disc spring.
  • an annular seat plate a facing portion that faces the circumferential surface of the guide tube, and the friction engagement member is a facing portion of the circumferential surface of the guide tube and the sealing member.
  • the friction engagement member is held on a peripheral surface of the guide tube, and a sub-assembly including the holding member, the friction engagement member, and the disc spring is configured,
  • the friction engagement member and the disc spring are disposed on the same side in the radial direction of the guide tube, and the disc spring is disposed between the friction engagement member and the seat plate with respect to the axial direction of the guide tube.
  • the friction engagement member may be partially overlapped with a part of the disc spring as viewed from the axial direction of the guide tube in the subassembly state.
  • the holding member includes a first portion that frictionally engages with an inner periphery of a recess provided in one of the rack guide and the sealing member, and an inner diameter portion of the disc spring.
  • the holding member includes an annular seat plate that extends in a radial direction from one axial end of the guide tube and receives a load of the disc spring, and the guide plate includes the guide plate.
  • a second slit may be formed that is continuous with the first slit as the slit of the cylinder.
  • a holding member unit that includes the disc spring and the holding member and can be handled integrally.
  • an outer diameter of the first portion is the first portion.
  • the outer diameter of the two portions may be larger than the inner diameter of the disc spring.
  • a compression coil spring may be provided that is interposed between the sealing member and the rack guide and biases the rack guide toward the rack shaft.
  • the compression coil spring may be arranged in series with the disc spring, and the set load of the compression coil spring may be lower than the set load of the disc spring.
  • connection for connecting the holding member to the sealing member so as to regulate the maximum gap amount between the sealing member and the holding member with respect to the advancing / retreating direction of the rack guide.
  • a member may be provided.
  • the invention of claim 13 provides a steering device including the rack guide device.
  • the holding member that holds the disc spring is integrally held by the sealing member by friction engagement. Since the sub-assembly can be configured by easily integrating the disc spring, the holding member, and the sealing member with a simple operation of frictional engagement, the assembly performance as a whole can be improved. According to the second aspect of the present invention, the holding member that holds the disc spring can be held on the sealing member via the friction engagement member.
  • the holding member since the error of dimensional accuracy between the holding member and the sealing member can be absorbed by the elastic member as the friction engagement member, the holding member is securely held by the sealing member. can do.
  • the holding member receives the load of the disc spring by the seat plate provided at one end of the guide tube that guides the radial end portion (for example, the inner diameter) of the disc spring. Generation
  • production of abrasion etc. of the rack guide by a spring can be suppressed.
  • the axial size can be reduced.
  • the assemblability can be further improved by configuring the unit including the disc spring as a subassembly.
  • the disk spring and the holding member can be easily adjusted by easily adjusting the amount of elastic contraction of the guide cylinder of the holding member by increasing / decreasing the slit width and frictionally engaging the guide cylinder with the recess.
  • the holding member since the holding member receives the load of the disc spring by the seat plate provided at one end of the guide tube for guiding the inner diameter portion of the disc spring, The occurrence of wear can be suppressed.
  • the holding member unit including the disc spring and the holding member since the holding member unit including the disc spring and the holding member is configured, the assembly property as a whole is further improved.
  • the set load of the compression coil spring arranged in series with the disc spring is made lower than the set load of the disc spring, the disc spring is bent after the compression coil spring is bent.
  • the degree of freedom of load setting can be improved, for example, by obtaining a two-stage load characteristic by using
  • the set load of the disc spring is set as desired by restricting the maximum gap amount between the sealing member and the holding member in the advancing / retreating direction of the rack guide by the connecting member. Therefore, a desired two-stage load characteristic can be obtained.
  • FIG. 1 is a schematic diagram of a schematic configuration of a rack and pinion type steering device according to a first embodiment of the present invention. It is sectional drawing of the principal part of a steering device containing a rack guide apparatus. It is an expanded sectional view of a rack guide device. It is sectional drawing of the 1st subassembly containing a disc spring, a holding member, and an elastic member (friction engagement member). It is sectional drawing of the 2nd subassembly containing a disc spring, a holding member, an elastic member (friction engagement member), and a sealing member.
  • FIG. 10 is a cross-sectional view of a second subassembly including a disc spring, a holding member, an elastic member (friction engagement member), and a sealing member in the fifth embodiment of FIG. 10. It is sectional drawing of the 2nd subassembly which concerns on 6th Embodiment of this invention.
  • FIG. 13 is a cross-sectional view of a first subassembly included in a second subassembly in the sixth embodiment of FIG. 12. It is sectional drawing of the principal part of the rack guide apparatus of 7th Embodiment of this invention, and has shown the example of a change of 5th Embodiment of FIG. It is sectional drawing of the principal part of the rack guide apparatus of 8th Embodiment of this invention.
  • FIG. 20 is a cross-sectional view of a first subassembly included in a second subassembly in the ninth embodiment of FIG. 19.
  • 12th Embodiment it is sectional drawing of the sealing member unit (2nd subassembly) containing a disk spring, a holding member, and a sealing member. It is an expanded sectional view of the principal part of the rack guide apparatus of 13th Embodiment of this invention, and has shown the example of a change of 12th Embodiment of FIG. In 13th Embodiment, it is sectional drawing of the holding member unit (1st subassembly) containing a disk spring and a holding member. In a 13th embodiment, it is a sectional view of a rack guide unit (2nd subassembly SA2) containing a disk spring, a holding member, a rack guide, etc.
  • a steering device 1 includes a steering shaft 3 connected to a steering member 2 such as a steering wheel, an intermediate shaft 5 connected to the steering shaft 3 via a universal joint 4, and an intermediate shaft 5
  • a rack shaft 8 as a steered shaft extending in the left-right direction of the automobile having a pinion shaft 7 connected to the vehicle through a universal joint 6 and a rack 8a meshing with the pinion 7a provided in the vicinity of the end of the pinion shaft 7 And have.
  • the pinion shaft 7 and the rack shaft 8 constitute a rack and pinion mechanism A as a steering mechanism.
  • the rack shaft 8 is supported in a rack housing 9 fixed to the vehicle body through a plurality of bearings (not shown) so as to be capable of linear reciprocation along the axial direction Z1. Both end portions of the rack shaft 8 protrude to both sides of the rack housing 9, and tie rods 10 are coupled to the respective end portions. Each tie rod 10 is connected to a corresponding steered wheel 11 via a corresponding knuckle arm (not shown).
  • the pinion shaft 7 is constituted by a pinion housing 14 by a first bearing 12 made of, for example, a ball bearing and a second bearing 13 made of, for example, a cylindrical roller bearing. It is supported in a rotatable manner.
  • the pinion 7 a of the pinion shaft 7 and the rack 8 a of the rack shaft 8 are meshed with each other in the pinion housing 14.
  • the steering device 1 is equipped with a rack guide device 15.
  • the rack guide device 15 includes a housing 17 that forms a housing portion 16 formed of a circular hole and through which the rack shaft 8 is inserted.
  • the rack guide device 15 is housed in the housing portion 16 so as to be able to advance and retract toward the rack shaft 8 side.
  • a rack guide 18 that slidably supports the back surface 8b.
  • the rack guide device 15 includes a sealing member 20 formed of a plug (plug) fixed to an external opening end 19 provided on the side opposite to the rack shaft 8 side in the housing portion 16, and a rack guide 18 and a sealing member.
  • a compression coil spring 21 interposed between the member 20 and one or a plurality of disc springs 22 (which will be described according to a plurality of cases in the present embodiment) are provided.
  • the rack guide device 15 includes a holding member 24 that holds the disc spring 22 and is frictionally engaged with and held by the sealing member 20 via an annular elastic member 23 as a friction engagement member.
  • the housing 17 of the rack guide device 15 is integrally formed of a single material with the pinion housing 14, and is disposed on the opposite side of the rack shaft 8 from the pinion shaft 7.
  • the pinion housing 14 and the housing 17 are manufactured by die casting, for example.
  • the rack guide 18 has a first surface 181 facing the rack shaft 8, a second surface 182 provided on the opposite side of the first surface 181, and an outer periphery 183 formed of a cylindrical surface.
  • a concave surface 25 having a shape that substantially matches the shape of the back surface 8 b of the rack shaft 8 is formed.
  • a curved sliding contact plate 26 is attached along the concave surface 25, and the sliding contact plate 26 is in sliding contact with the back surface 8 b of the rack shaft 8.
  • a plate having a low friction coefficient is preferably used.
  • a metal plate or a metal plate coated with a fluororesin can be used.
  • An annular elastic member 28 such as an O-ring is accommodated and held in each of a plurality of annular accommodation grooves 27 provided on the outer periphery 183 of the rack guide 18.
  • the outer diameter of the rack guide 18 is slightly smaller than the inner diameter of the accommodating portion 16, and the elastic member 28 slides on the inner periphery 16 a of the accommodating portion 16, so that the rack guide 18 moves inside the accommodating portion 16. It moves in a direction that advances and retreats with respect to the rack shaft 8.
  • the elastic member 28 functions to prevent the rack guide 18 from falling over in the accommodating portion 16.
  • the second surface 182 of the rack guide 18 is provided with an accommodation recess 29 made of, for example, a circular hole for accommodating a part of the compression coil spring 21.
  • the first end 211 of the compression coil spring 21 is received by the bottom 291 of the housing recess 29.
  • the inner periphery 292 of the housing recess 29 serves to guide the outer diameter portion of the compression coil spring 21.
  • the sealing member 20 has a first surface 201 facing the rack guide 18 (second surface 182 thereof) and a second surface 202 opposite to the first surface 201. It consists of a plug. That is, the male screw 30 is formed on the outer periphery 203 of the sealing member 20. On the other hand, a female screw 31 is formed within a predetermined length from the external opening end 19 of the housing portion 16, and the male screw 30 of the sealing member 20 is screwed into the female screw 31, so that the sealing member 20 is fixed to the housing 17. ing.
  • the second surface 202 of the sealing member 20 is provided with a tool engagement hole 32 having a polygonal cross section with which a tool for screwing the sealing member 20 is engaged.
  • a sealing member made of an annular elastic member such as an O-ring is formed in one or more annular housing grooves 33 provided on the outer periphery 203 of the sealing member 20 (corresponding to an outer periphery 363 of a cylindrical portion 36 described later). 34 is accommodated and held.
  • the seal member 34 functions to seal between the outer periphery 203 of the sealing member 20 and the inner periphery 16 a of the housing portion 16.
  • the first surface 201 of the sealing member 20 is provided with an accommodation recess 35 that is recessed toward the second end 202 and accommodates a part of the compression coil spring 21 and a part of the holding member 24.
  • the sealing member 20 is provided with a bottomed cylindrical portion 36 that surrounds the periphery of the housing recess 35.
  • the second end portion 212 of the compression coil spring 21 is received by the bottom 361 of the cylindrical portion 36 (corresponding to the bottom of the housing recess 35). That is, the compression coil spring 21 is interposed in a compressed state between the bottom 361 of the cylindrical portion 36 of the sealing member 20 and the bottom 291 of the receiving recess 29 of the rack guide 18, and the rack guide 18 is attached to the rack shaft. It is elastically biased toward the 8 side.
  • the end surface 362 of the cylindrical portion 36 of the sealing member 20 (corresponding to the first surface 201 of the sealing member 20) functions as a seat that receives the disc spring 22 in an annular shape that surrounds the periphery of the housing recess 35.
  • the holding member 24 includes a guide cylinder 37 that guides an inner diameter portion 22a serving as a radial end of the disc spring 22, and a first end 371 in the axial direction X1 of the guide cylinder 37 (corresponding to an end on the rack guide 18 side). And a seat plate 38 that extends outward in the radial direction Y1 and receives the disc spring 22.
  • the disc spring 22 and the seat plate 38 are interposed between the end surface 362 (seat portion) of the cylindrical portion 36 of the sealing member 20 and the second surface 182 of the rack guide 18.
  • the seat plate 38 is interposed between the disc spring 22 and the second surface 182 of the rack guide 18 in a state along the second surface 182 of the rack guide 18. That is, the seat plate 38 includes a first surface 381 along the second surface 182 of the rack guide 18 and a second surface 382 that is a seat surface that receives the load of the disc spring 22.
  • the distance between the end surface 362 (seat portion) of the cylindrical portion 36 and the second surface 382 of the seat plate 38 is set larger than the contact length of the plurality of disc springs 22.
  • the holding member 24 including the seat plate 38 is made of, for example, steel or resin.
  • Most of the guide cylinder 37 is inserted and accommodated in the accommodating recess 35 of the sealing member 20.
  • the compression coil spring 21 is inserted through the guide tube 37. A predetermined amount of gap is provided between the inner periphery 374 of the guide cylinder 37 and the outer diameter of the compression coil spring 21.
  • the guide tube 37 has a second end 372 that is an end opposite to the first end 371 from which the seat plate 38 is extended. Between the second end portion 372 of the guide tube 37 and the bottom 361 of the cylindrical portion 36 in the forward / backward direction of the rack guide 18 (corresponding to the depth direction of the circular hole as the accommodating portion 16), for example, the rack guide 18 is provided. A gap equal to or greater than the amount of advance / retreat is provided.
  • the inner periphery 364 of the cylindrical portion 36 of the sealing member 20 functions as a facing portion that faces the outer periphery 373 of the guide tube 37 with a predetermined gap.
  • the elastic member 23 as a friction engagement member is held by an accommodation groove 39 provided on the outer periphery 373 of the guide tube 37 and frictionally engages with the inner periphery 364 (opposing portion) of the cylindrical portion 36.
  • the elastic member 23 is made of, for example, an O-ring.
  • the elastic member 23 may or may not be elastically compressed between the inner periphery 364 of the tubular portion 36 and the outer periphery 373 of the guide tube 37.
  • the disc spring 22, the elastic member 23 (friction engagement member), and the holding member 24 constitute a first sub-ensemble SA1 that can be handled as an integral unit.
  • the disc spring 22 and the elastic member 23 are arranged on the same side of the guide tube 37 in the radial direction Y1 (in the present embodiment, outward in the radial direction).
  • the disc spring 22 is arranged between the elastic member 23 and the seat plate 38 with respect to the axial direction X1 of the guide cylinder 37.
  • a part of the elastic member 23 overlaps a part of the disc spring 22 when viewed from the axial direction of the guide cylinder 37. That is, the outer diameter D1 of the annular elastic member 23 held in the receiving groove 39 on the outer periphery 373 of the guide cylinder 37 of the holding member 24 is larger than the inner diameter D2 of the disc spring 22 (D1> D2). Thereby, the elastic member 23 suppresses the withdrawal of the disc spring 22 from the guide tube 37.
  • the elastic member 23 (friction engaging member) held in the holding member 24 (the receiving groove 39 of the guide tube 37) is formed on the sealing member 20 (the inner periphery 364 of the cylindrical portion 36).
  • the second subassembly SA2 is a unit subassembly larger than the first subassembly SA1. At the time of assembly, first, the first subassembly SA1 is assembled, and then the first subassembly SA1 is combined with the sealing member 20 to assemble the second subassembly SA2.
  • the holding member 24 that holds the disc spring 22 is integrally held by the sealing member 20 by friction engagement. Since the disc spring 22, the holding member 24, the sealing member 20, and the like can be easily integrated by a simple operation for frictional engagement, a subassembly (corresponding to the second subassembly SA ⁇ b> 2) can be configured. Assemblability can be improved. As a result, in the steering device 1, the assemblability can be improved.
  • the plurality of disc springs 22 that are easily separated are held together, so that the disc discs 22 can be prevented from being misaligned even during operation. ,preferable.
  • the elastic member 23 as a friction engagement member becomes the sealing member 20 (the cylindrical portion of the sealing member 20). Friction sliding with respect to the inner periphery 364) of 36 generates a frictional resistance load.
  • the contact surfaces between the plurality of disc springs 22 frictionally slide with the compression displacement of the disc springs 22.
  • the total resistance load can be increased including the resistance load due to the resistance load.
  • the holding member 24 holding the disc spring 22 can be held on the sealing member 20 via a friction engagement member (elastic member 23). Further, since the elastic member 23 is used as the friction engagement member, the holding member 24 (specifically, the outer periphery 373 of the guide cylinder 37 of the holding member 24) and the sealing member 20 (specifically, the cylinder of the sealing member 20). Since the error of the dimensional accuracy with respect to the inner periphery 364) of the shaped portion 36 can be absorbed, the holding member 24 can be reliably held by the sealing member 20.
  • the holding member 24 extends in the radial direction from one end in the axial direction X1 of the guide cylinder 37 and receives the load of the disk spring 22 by guiding the inner diameter portion 22a (radial end portion) of the disc spring 22. And a seat plate 38.
  • the seat plate 38 prevents the rack guide 18 (specifically, the second surface 182 of the rack guide 18) from being worn by the disc spring 22.
  • the sealing member 20 includes a facing portion (an inner periphery 364 of the cylindrical portion 36) that faces the outer periphery 373 of the guide tube 37, and the elastic member 23 (friction engagement member) is connected to the outer periphery 373 of the guide tube 37.
  • the guide cylinder 37 and the facing portion of the sealing member 22 can be arranged so as to overlap in the axial direction X1, the axial direction X1 (circular hole as the accommodating portion 16) (Corresponding to the depth direction) can be reduced.
  • the disc spring 22 and the elastic member 23 are disposed on the same side of the guide tube 37 in the radial direction Y1 (in the present embodiment, outward in the radial direction).
  • the elastic member 23 (friction engagement member) is seen from the axial direction X1 of the guide tube 37 in a state where the disc spring 22 is disposed between the elastic member 23 and the seat plate 38. ) Partly overlaps part of the disc spring 22. That is, the outer diameter D1 of the annular elastic member 23 held in the receiving groove 39 on the outer periphery 373 of the guide cylinder 37 of the holding member 24 is larger than the inner diameter D2 of the disc spring 22 (D1> D2).
  • the unit including the disc spring 22, the elastic member 23 (friction engagement member), and the holding member 24 can be handled integrally. It can be configured as a possible subassembly (corresponding to the first subassembly SA1). Therefore, the assemblability can be further improved.
  • FIG. 6 is a cross-sectional view of a main part of the rack guide device 15A according to the second embodiment of the present invention.
  • the second embodiment of FIG. 6 is mainly different from the first embodiment of FIG.
  • the elastic member 23 as a friction engagement member is held in the receiving groove 39 provided on the outer periphery 373 of the guide cylinder 37 of the holding member 24 and is cylindrical in the sealing member 20.
  • the inner periphery 364 of the portion 36 is frictionally engaged.
  • the elastic member 23A as the friction engagement member is held in the accommodation groove 39A provided on the inner periphery 364A of the cylindrical portion 36A of the sealing member 20A. You may frictionally engage with the outer periphery 373A of the guide cylinder 37A of the holding member 24A.
  • the same components as those of the first embodiment are denoted by the same reference numerals as those of the components of the first embodiment.
  • FIG. 7 is a cross-sectional view of a main part of a rack guide device according to a third embodiment of the present invention.
  • the third embodiment is mainly different from the first embodiment in FIG. 3 in that the sealing member 20 ⁇ / b> B is provided with a protruding portion 40 that protrudes into the cylindrical portion 36.
  • An annular housing recess 35 ⁇ / b> B is formed between the portion 40 and the tubular portion 36.
  • An elastic member 23B (for example, an O-ring) as a friction engagement member is accommodated and held in an accommodation groove 39B formed on the outer periphery 401 of the convex portion 40.
  • the elastic member 23B is frictionally engaged with the inner periphery 374B of the guide tube 37B of the holding member 24B.
  • the outer periphery 373B of the guide cylinder 37B of the holding member 24B is fitted to the inner periphery 364 of the cylindrical portion 36 so as to be movable in the axial direction.
  • the convex portion 40 has an end surface 402 that faces the bottom 291 of the housing concave portion 29 of the rack guide 18.
  • a compression coil spring 21 ⁇ / b> B that biases the rack guide 18 toward the rack shaft 8 is interposed between the end surface 402 of the convex portion 40 and the bottom 291 of the accommodating concave portion 29 in a compressed state.
  • the same components as those of the second embodiment of FIG. 3 are denoted by the same reference symbols as those of the components of the second embodiment of FIG. It is.
  • the first subassembly SA1 as shown in FIG. 4 of the first embodiment cannot be configured. Except for this point, the second embodiment can achieve the same effects as the first embodiment.
  • the elastic member 23B (friction engagement member) held by the sealing member 20B is frictionally engaged with the holding member 24B, whereby the disc spring 22 and the elastic member 23B, the holding member 24B, the sealing member 20B, and the seal member 34 constitute a second sub-ensemble SA2B that can be handled as an integral unit. That is, according to the present embodiment, the disc spring 22, the holding member 24 ⁇ / b> B, and the sealing member 20 ⁇ / b> B can be easily assembled by holding the holding member 24 ⁇ / b> B holding the disc spring 22 integrally with the sealing member 20 ⁇ / b> B by friction engagement. Since it can be integrated easily and a subassembly (corresponding to the second subassembly SA2B) can be formed, the assembly property as a whole can be improved.
  • FIG. 9 is a cross-sectional view of a main part of a rack guide device according to a fourth embodiment of the present invention.
  • the fourth embodiment of FIG. 9 is mainly different from the third embodiment of FIG. 7 in the following.
  • the elastic member 23B as the friction engagement member is held in the receiving groove 39B provided on the outer periphery 401 of the convex portion 40 of the sealing member 20B, and the guide cylinder of the holding member 24B.
  • the inner periphery 374B of 37B is frictionally engaged.
  • the frictional engagement with the outer periphery 401C of the convex portion 40C of the sealing member 20C is held in the housing groove 39C provided on the inner periphery 374C of the guide tube 37C of the holding member 24C.
  • An outer periphery 373C of the guide tube 37C is fitted to an inner periphery 364 of the cylindrical portion 36 so as to be movable in the axial direction X1.
  • the same constituent elements as those in the third embodiment in FIG. 7 are denoted by the same reference numerals as those in the third embodiment in FIG.
  • FIG. 10 is a cross-sectional view of a main part of a rack guide device according to a fifth embodiment of the present invention.
  • the fifth embodiment of FIG. 10 is mainly different from the third embodiment of FIG.
  • the outer periphery 412 of the winding bush 41 as a friction engagement member is press-fitted and fixed to the inner periphery 364 of the cylindrical portion 36 of the sealing member 20B.
  • the inner periphery 411 of the winding bush 41 is frictionally engaged with the outer periphery 373D of the guide cylinder 37D of the holding member 24D.
  • An inner circumference 374D of the guide cylinder 37D is fitted to the outer circumference 401 of the convex portion 40 so as to be movable in the axial direction X1.
  • the inner periphery 411 of the winding bush 41 may be formed of a metal layer as a friction engagement layer as long as friction engagement with the outer periphery 373D of the guide tube 37D is possible.
  • the inner periphery 411 of the winding bush 41 may be formed of a resin layer as a friction engagement layer having elasticity in the radial direction, and the winding bush 41 may function as an elastic member.
  • the same components as those of the third embodiment of FIG. 7 are denoted by the same reference symbols as those of the components of the third embodiment of FIG. It is.
  • the winding bush 41 (friction engagement member, elastic member) held by the sealing member 20B is frictionally engaged with the holding member 24D, so that the disc spring 22 and the winding spring are wound.
  • the bush 41, the holding member 24D, the sealing member 20B, and the seal member 34 constitute a second sub-ensemble SA2D that can be handled as an integral unit. That is, according to the present embodiment, the disc spring 22, the holding member 24 ⁇ / b> D, and the sealing member 20 ⁇ / b> B can be easily attached to the sealing member 20 ⁇ / b> B by friction engagement with the holding member 24 ⁇ / b> D that holds the disc spring 22.
  • ⁇ Sixth Embodiment> 12 and 13 show a second assembly SA2E and a first assembly SA1E, respectively, according to the sixth embodiment of the present invention.
  • the sixth embodiment of the present invention differs from the fifth embodiment of FIGS. 10 and 11 in the following.
  • the winding bush 41 is held by press fitting to the sealing member 20B and frictionally engaged with the holding member 24D.
  • the winding bush 41E as the friction engagement member is held in the holding member 24D by press fitting and frictionally engaged with the sealing member 24D.
  • the inner periphery 411E of the winding bush 41E is held by press fitting to the outer periphery 373D of the guide cylinder 37D of the holding member 24D.
  • the outer periphery 412E of the winding bush 41E is frictionally engaged with the inner periphery 364 of the cylindrical portion 36 of the sealing member 20B.
  • FIG. 14 is a cross-sectional view of a main part of a rack guide device 15F according to the seventh embodiment of the present invention.
  • the seventh embodiment of FIG. 14 is mainly different from the fifth embodiment of FIG. 10 in the following.
  • the rack guide device 15D of the fifth embodiment shown in FIG. 10 includes a winding bush 41F as a friction engagement member held on the outer periphery 401 of the convex portion 40. Specifically, the inner periphery 411F of the winding bush 41F is fitted and held on the outer periphery 401 of the convex portion 40 by press fitting.
  • the outer periphery 412F of the winding bush 41F is frictionally engaged with the inner periphery 374F of the guide tube 37F of the holding member 24F.
  • An outer periphery 373F of the guide tube 37F is fitted to an inner periphery 364 of the cylindrical portion 36 so as to be movable in the axial direction X1.
  • the compression coil spring 21 and the disc spring 22 are interposed in parallel between the sealing member 20 and the rack guide 18.
  • the compression coil spring 21G and the disc spring 22 are interposed in series between the sealing member and the rack guide 18. That is, the holding member 24G is interposed between the sealing member and the rack guide 18.
  • the disc spring 22 is interposed between the end surface 362 of the cylindrical portion 36 of the sealing member 20 and the second surface 382 of the seat plate 38 of the holding member 24G.
  • the compression coil spring 21G is interposed between the bottom 291 of the housing recess 29 of the rack guide 18 and the first end 371G of the guide cylinder 37G of the holding member 24G in an elastically compressed state.
  • the first end 211G of the compression coil spring 21G is received by the bottom 291 of the housing recess 29, and the second end 212G of the compression coil spring 21G is received by the first end 371G of the guide cylinder 37G of the holding member 24G. ing.
  • the rack guide device 15G is held so as to regulate the maximum gap amount Smax between the sealing member 20G and the holding member 24G in the forward / backward direction of the rack guide 18 (corresponding to the axial direction X1 of the guide cylinder 37G).
  • a connecting member 42 that connects the member 24G to the sealing member 20G is provided.
  • the first end portion 211G of the guide cylinder 37G of the holding member 24G is covered by a gap regulating plate 43 (corresponding to the bottom plate of the guide cylinder 37G) facing the bottom 361 of the cylindrical portion 36 of the sealing member 20. It has been broken.
  • the connecting member 42 is made of, for example, a bolt.
  • the connecting member 42 is inserted into the insertion hole 44 formed in the gap regulating plate 43 so as to be slidable in the axial direction, and is screwed into the screw hole 45 of the bottom 361 of the cylindrical portion 36 of the sealing member 20G.
  • a shaft 46 and a head 47 provided at one end of the screw shaft 46 are provided.
  • the gap regulating plate 43 includes a first surface 431 as a gap regulating surface facing the bottom 361 of the cylindrical portion 36 of the sealing member 20, and a second surface 432 opposite to the first surface 431. .
  • a preload is applied to the disc spring 22, and the set load of the disc spring 22 is higher than the set load of the compression coil spring 21G.
  • FIG. 19 and FIG. 20 show the second subassembly SA2H and the first subassembly SA1H of the ninth embodiment of the present invention, respectively.
  • a plurality of rubber or resin elastic rods 23H extending in the axial direction X1 of the guide tube 36H of the holding member 24H are used as the guide tube 36H.
  • Each elastic bar 23H is frictionally engaged with the inner periphery 364 (opposing portion) of the cylindrical portion 36 of the sealing member 20.
  • Housing grooves 39H extending in the axial direction X1 are formed on the outer periphery 373H of the guide cylinder 37H at equal intervals in the circumferential direction K1, and the corresponding elastic rods 23H are housed and held in the housing grooves 39H.
  • the elastic rod 23H held in the accommodation groove 39H is restricted from moving in the axial direction X1 with respect to the guide tube 36H.
  • the diameter D1H of the circle circumscribing the plurality of elastic bars 23H is larger than the inner diameter D2 of the disc spring 22 (D1H> D2), and the disc springs 22 from the holding member 24H are held by the plurality of elastic rods 23H. Removal is suppressed.
  • the elastic rods are accommodated and held in the accommodating grooves provided on the inner periphery of the cylindrical portion of the sealing member, and each elastic rod is guided to the guide tube. You may make it friction-engage with the outer periphery.
  • the holding member is indirectly held by the sealing member via the friction engagement member.
  • the holding member 24J is formed by, for example, an elastic resin and is held. The member 24J may be held in direct frictional engagement with the sealing member 20.
  • the outer periphery 373J formed of the cylindrical surface of the guide cylinder 37J of the holding member 24J is fitted (press fit) in a state of being elastically compressed to the inner periphery 364 of the cylindrical portion 36 of the sealing member 20.
  • the holding member 24J is directly held by the sealing member 20 by the frictional engagement force between the holding member 24J and the sealing member 20.
  • the same constituent elements as those in the first embodiment in FIG. 5 are denoted by the same reference numerals as the constituent elements in the first embodiment in FIG. is there. According to the tenth embodiment, the same operational effects as those of the first embodiment of FIG. 5 can be obtained.
  • the eleventh embodiment of FIG. 22 shows a modification of the fifth embodiment of FIG. That is, in the second subassembly SA2K of the eleventh embodiment shown in FIG. 22, the holding member 24K is formed of, for example, an elastic resin, and at least one of the outer periphery 373K and the inner periphery 374K of the guide tube 37K of the holding member 24K.
  • the cylindrical member 36 corresponding to the sealing member 20B is directly frictionally engaged with the inner periphery 364 of the cylindrical portion 36 and the outer periphery 401 of the convex portion 40 and held.
  • the outer periphery 373K and the inner periphery 374K of the guide tube 37K of the holding member 24K is fitted into the inner periphery 364 of the corresponding cylindrical portion 36 and the outer periphery 401 of the convex portion 40 in a state where it is elastically compressed. (Press fit).
  • the holding member 24K is directly held by the sealing member 20B by the frictional engagement force between the holding member 24K and the sealing member 20B.
  • the same reference numerals as those of the constituent elements of the fifth embodiment in FIG. is there. According to the eleventh embodiment, the same effects as the fifth embodiment of FIG. 11 can be achieved.
  • the eleventh embodiment it is not necessary to provide a friction engagement member separately from the holding member 24K. Therefore, the structure can be simplified. In the eleventh embodiment, even if one of the outer periphery 373K and the inner periphery 374K of the guide tube 37K of the holding member 24K is fitted to the corresponding mating surface by a loose fit. The gap may be opposed to the corresponding counterpart surface.
  • FIGS. 23 to 27 shows a modification of the tenth embodiment of FIG.
  • FIG. 23 is a cross-sectional view of a main part of a steering device including a rack guide device according to a twelfth embodiment.
  • FIG. 24 is an enlarged cross-sectional view of a main part of the rack guide device of the twelfth embodiment.
  • FIG. 25 is a perspective view of a holding member according to a twelfth embodiment.
  • FIG. 26 is a cross-sectional view of a holding member unit (first subassembly) including a disc spring and a holding member in the twelfth embodiment.
  • FIG. 27 is a cross-sectional view of a sealing member unit (second subassembly) including a disc spring, a holding member, and a sealing member in the twelfth embodiment.
  • a sealing member unit second subassembly
  • the same reference numerals as those of the tenth embodiment of FIG. 21 denote the same constituent elements as those of the tenth embodiment of FIG. It is.
  • This embodiment is mainly different from the tenth embodiment of FIG. 21 in that a slit is provided in the guide tube 37Q of the holding member 24Q.
  • the guide cylinder 37J of the holding member 24J of the tenth embodiment has an outer diameter smaller than the inner diameter of the disc spring 22, whereas the guide cylinder 37Q of the present embodiment has a first portion whose outer diameter is larger than the inner diameter of the disc spring 22. 391.
  • the holding member 24Q includes a guide cylinder 37Q that guides an inner diameter portion 22a as a radial end portion of the disc spring 22, and a first end portion 371Q (in the axial direction X1 of the guide cylinder 37Q).
  • a seat plate 38 ⁇ / b> Q that extends outward in the radial direction Y ⁇ b> 1 from the end of the rack guide 18 and receives the disc spring 22.
  • the outer periphery 39Q of the guide cylinder 37Q has a first portion 391Q that frictionally engages with the inner periphery 352 of the recess 35, and a second portion 392Q that guides the inner diameter portion 22a of the disc spring 22.
  • the second portion 392Q is disposed between the first portion 391Q and the seat plate 38Q.
  • the guide cylinder 37Q is formed with a first slit 41Q extending in the axial direction X1 or in a direction inclined with respect to the axial direction X1 so as to enable elastic diameter reduction.
  • the seat plate 38Q is formed with a second slit 42Q that is continuous with the first slit 41Q of the guide tube 37Q.
  • the disc spring 22 and the seat plate 38 ⁇ / b> Q are interposed between the end surface 361 (seat portion) of the cylindrical portion 36 of the sealing member 20 and the second surface 182 of the rack guide 18. .
  • the seat plate 38 ⁇ / b> Q is interposed between the disc spring 22 and the second surface 182 of the rack guide 18 in a state along the second surface 182 of the rack guide 18. That is, the seat plate 38 ⁇ / b> Q includes a first surface 381 ⁇ / b> Q along the second surface 182 of the rack guide 18, and a second surface 382 ⁇ / b> Q that is a seat surface that receives the load of the disc spring 22.
  • the distance between the end surface 361 (seat portion) of the tubular portion 36 and the second surface 382Q of the seat plate 38Q is set larger than the contact length of the plurality of disc springs 22.
  • the holding member 24Q including the seat plate 38Q is made of, for example, steel or resin.
  • Most of the guide tube 37Q is inserted and accommodated in the recess 35 of the sealing member 20.
  • the compression coil spring 21 is inserted through the guide tube 37Q. A predetermined amount of gap is provided between the inner periphery 43Q of the guide tube 37Q and the outer diameter of the compression coil spring 21.
  • the guide tube 37Q has a second end 372Q which is an end opposite to the first end 371Q from which the seat plate 38Q is extended. Between the second end 372Q of the guide tube 37Q and the bottom 351 of the recess 35 of the sealing member 20 with respect to the forward / backward direction of the rack guide 18 (corresponding to the depth direction of the circular hole as the accommodating portion 16), for example, A clearance equivalent to or greater than the advance / retreat amount of the rack guide 18 is provided.
  • the disc spring 22 and the holding member 24Q constitute a first sub-ensemble SA1Q as a holding member unit that can be handled integrally.
  • the outer diameter D1Q of the first portion 391Q is larger than the inner diameter D3 of the inner diameter portion 22a of the disc spring 22 (D1Q> D3).
  • the disc spring 22 disposed between the first portion 391Q and the seat plate 38Q with respect to the axial direction X1 of the guide tube 37Q is restricted from being removed from the guide tube 37Q.
  • the disc spring 22 and the holding member 24Q can constitute a first sub-ensemble SA1Q (holding member unit) that can be handled integrally.
  • the outer diameter D2Q of the second portion 392Q that guides and holds the disc spring 22 along the inner diameter portion 22a is smaller than the outer diameter D1Q of the first portion 391Q (D2Q ⁇ D1Q).
  • the outer diameter D2Q of the second portion 392Q is smaller than the inner diameter D3 of the disc spring 22 (D2Q ⁇ D3).
  • the first portion 391Q may extend around the entire circumference of the outer periphery 39Q of the guide tube 37Q, or may be constituted by a plurality of convex ribs (not shown) spaced apart in the circumferential direction of the outer periphery 39Q. .
  • the outer diameter D1Q of the first portion 391Q corresponds to the diameter of the circumscribed cylinder that circumscribes the plurality of convex ribs.
  • the first portion 391Q of the outer periphery 39Q of the holding member 24Q is frictionally engaged with the inner periphery 352 of the recess 35 of the sealing member 20, whereby the disc spring 22, the holding member 24Q, and the sealing member 20 are engaged.
  • the sealing member 34 constitute a second sub-ensebly SA2Q as a sealing member unit that can be handled integrally.
  • the second subassembly SA2Q (sealing member unit) is a subassembly having a larger unit than the first subassembly SA1Q (holding member unit). At the time of assembly, first, the first subassembly SA1Q is assembled, and then the first subassembly SA1Q is combined with the sealing member 20 to assemble the second subassembly SA2Q.
  • the outer diameter D1Q of the first portion 391Q of the outer periphery 39Q of the guide tube 37Q in the state of the first subassembly SA1Q (holding member unit) in FIG. 26 is larger than the inner diameter D4 of the recess 35 of the sealing member 20 shown in FIG. It is increased (D1Q> D4). Therefore, when the guide tube 37Q of the holding member 24Q of the first subassembly SA1Q is fitted into the recess 35 of the sealing member 20, the guide tube 37Q is elastically reduced in diameter (that is, the width of the first slit 41Q). (Shrink).
  • the guide cylinder 37 ⁇ / b> Q that is elastically reduced in diameter and fitted into the recess 35 frictionally engages with the inner periphery 352 of the recess 35.
  • the outer diameter D2Q of the second portion 392Q is smaller than the inner diameter D3 of the disc spring 22 (D2Q ⁇ D3).
  • the guide cylinder 37Q is frictionally engaged with the recess 35 of the sealing member 20 by easily adjusting the elastic diameter reduction amount of the guide cylinder 37Q of the holding member 24Q by increasing or decreasing the width of the first slit 41Q.
  • the disc spring 22 and the holding member 24Q can be easily integrated with the sealing member 20 to form a unit (second subassembly SA2Q as a sealing member unit) that can be handled integrally. it can. Therefore, the assemblability of the rack guide device 15Q as a whole can be improved. As a result, the steering apparatus 1 excellent in assemblability can be provided.
  • the dimensional error of each component (the holding member 24Q having the guide cylinder 37Q, the sealing member 20 having the recess 35, etc.) to be combined is absorbed, and the guide cylinder of the holding member 24Q is obtained.
  • 37Q can be reliably frictionally engaged with the inner periphery 352 of the recess 35.
  • the holding member 24Q receives the load of the disc spring 22 by the seat plate 38Q provided at one end of the guide tube 37Q that guides the inner diameter portion 22a of the disc spring 22, the wear of the rack guide 18 due to the disc spring 22 is reduced. Occurrence can be suppressed.
  • first portion 391Q of the outer periphery 39Q of the guide cylinder 37Q of the holding member 24Q can suppress the withdrawal of the disc spring 22 from the guide cylinder 37Q. Therefore, a unit (first subassembly SA1Q as a holding member unit) that can be handled integrally including the disc spring 22 and the holding member 24Q can be configured, so that the overall assemblability can be improved. it can.
  • the plurality of disc springs 22 that are easily separated are held together, so that the disc discs 22 can be prevented from being misaligned even during operation. ,preferable.
  • the guide cylinder 37Q of the holding member 24Q (the first portion 391Q of the outer periphery 39Q) is A frictional resistance load is generated by sliding on the inner periphery 352 of the recess 35 of the sealing member 20.
  • the contact surfaces between the disc springs 22 frictionally slide with the compression displacement of the disc springs 22 to generate a frictional resistance load. Since the friction resistance load by the holding member 24Q and the disc spring 22 contributes as a counter load against the load input from the rack shaft 8 side, the counter load by the compression coil spring 21 and the disc spring 22 and the counter load by the friction resistance load are reduced. In addition, the overall counter load can be increased.
  • FIG. 28 is an enlarged cross-sectional view of a main part of a rack guide device 15P according to the thirteenth embodiment of the present invention.
  • the rack guide device 15P of the second embodiment shown in FIG. 28 is mainly different from the rack guide device 15Q of the twelfth embodiment shown in FIG. That is, in the rack guide device 15Q of the twelfth embodiment of FIG. 24, the guide cylinder 37Q of the holding member 24Q holding the disc spring 22 is frictionally engaged with the inner periphery 352 of the recess 35 of the sealing member 20.
  • the guide cylinder 37P of the holding member 24P holding the disc spring 22 is frictionally engaged with the inner periphery 292P of the recess 29P of the rack guide 18.
  • the guide cylinder 37P includes a first end 371P (corresponding to an end on the sealing member 20 side) and a second end 372P (corresponding to an end on the rack guide 18P side) in the axial direction X1.
  • the seat plate 38P extends outward in the radial direction Y1 from the first end 371P.
  • the compression coil spring 21 is interposed in a compressed state between the bottom 351 of the recess 35 of the sealing member 20 and the bottom 291P of the recess 29P of the rack guide 18P.
  • the outer periphery 39P of the guide cylinder 37P has a first portion 391P that frictionally engages with the inner periphery 292P of the recess 29P, and a second portion 392P that guides the inner diameter portion 22a of the disc spring 22.
  • the guide cylinder 37P is formed with a first slit 41P extending in the axial direction X1 or in a direction inclined with respect to the axial direction X1 so as to allow elastic diameter reduction.
  • the seat plate 38P is formed with a second slit 42P that is continuous with the first slit 41P of the guide cylinder 37P.
  • the seat plate 38P includes a first surface 381P along the end surface 201 (corresponding to the end surface of the tubular portion 36) of the sealing member 20 of the sealing member 20, and a second surface 382P that is a seat surface that receives the load of the disc spring 22P. And.
  • the same reference numerals as the constituent elements of the twelfth embodiment shown in FIG. is there.
  • the elastic contraction amount of the guide cylinder 37P of the holding member 24 is easily adjusted by increasing / decreasing the width of the first slit 41P, and the guide cylinder 37P is frictionally engaged with the recess 29P of the rack guide 18P.
  • the second subassembly SA2P) as a rack guide unit including the elastic member 28 and the sliding contact plate 26 can be configured. Therefore, the assemblability of the rack guide device 15P as a whole can be improved. As a result, the steering apparatus 1 excellent in assemblability can be provided.
  • the holding member 24P having the guide cylinder 37P, the rack guide 18P having the concave portion 29P, etc. is absorbed, thereby Can be reliably frictionally engaged with the inner periphery 292P of the recess 29P.
  • the holding member 24P receives the load of the disc spring 22 by the seat plate 38P provided at one end of the guide cylinder 37P that guides the inner diameter portion 22a of the disc spring 22, the wear of the sealing member 20 by the disc spring 22 is caused. Can be suppressed.
  • the first spring 391P on the outer periphery 39P of the guide cylinder 37P of the holding member 24P can suppress the withdrawal of the disc spring 22 from the guide cylinder 37P. Therefore, the unit (first subassembly SA1P as the holding member unit shown in FIG. 29) that can be handled integrally including the disc spring 22 and the holding member 24P can be configured, and therefore, the assembly property as a whole is improved. Can be improved.
  • the plurality of disc springs 22 that are easily separated are held together, so that the disc discs 22 can be prevented from being misaligned even during operation. ,preferable.
  • the guide cylinder 37P of the holding member 24P (the first portion 391P of the outer periphery 39P thereof). However, it frictionally slides against the inner periphery 292P of the recess 29P of the rack guide 18P to generate a frictional resistance load.
  • the compression coil spring 21 interposed between the sealing member 20 and the rack guide 18P and biasing the rack guide 18P toward the rack shaft 8 is used together with the disc spring 22, the degree of freedom in setting the load is improved. be able to.
  • the thirteenth embodiment of FIG. 28 even if an interposition plate made of, for example, iron or resin is interposed between the end surface of the rack guide 18P and the disc spring, the occurrence of wear of the rack guide 18P by the disc spring 22 is suppressed. Good.
  • the present invention is not limited to the above-described embodiments.
  • a ring (not shown) having a square cross section is used regardless of a round cross section O-ring. Can do.
  • the guide cylinder of the holding member functions as an inner diameter guide that guides the inner diameter portion 22 a as the radial end of the disc spring 22, but the guide cylinder of the holding member serves as the diameter of the disc spring 22. You may make it function as an outer-diameter guide which guides the outer-diameter part as a direction edge part.
  • the present invention can be variously modified within the scope of the claims.
  • elastic member (friction engagement member) 23H Elastic bar (elastic member, friction engagement member) 24; 24C; 24F; 24G; 24H; 24J; 24K ... holding member 29 ... receiving recess 291 ... bottom 35 ... receiving recess 36; 36A ... cylindrical portion 361 ... bottom 362 ... end face 363 ... outer periphery 364; 364A ... periphery (opposite part) 37F; 37G; 37H; 37J; 37K ... guide tube 371 ... first end 372 ... second end 373; 373A; 373D; 373H; 373J; 374F; 374J; 374K ... inner periphery 38 ... seat plate 381 ...
  • Diameter D2 inner diameter P1 ... first characteristic part P2 ... second characteristic part SA1; SA1E; SA1H ... first subassembly SA2; SA2B; SA2D; SA2E; SA2H; SA2J; 15Q; 15P ... Rack guide device 24Q; 24P ... Holding member 29Q; 29P ... Recess 291Q; 291P ... Bottom 292Q; 292P ... Inner circumference 35 ... Recess 351 ... Bottom 352 ... Inner circumference 37Q; One end (one end) 372Q; 372P ... second end 38Q; 38P ... seat plate 39Q; 39P ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Gears, Cams (AREA)

Abstract

ラックガイド装置が、ラックガイド(18)と、封止部材(20)と、少なくとも1枚の皿ばね(22)と、保持部材(24)と、を備える。前記ラックガイド(18)は、ピニオン軸(7)に噛み合うラック軸(8)を挿通させるハウジング(17)に形成された収容部(16)内に、ラック軸(8)側に向かって進退可能に収容され、且つラック軸(8)を当該ラック軸(8)の軸方向に摺動可能に支持する。前記封止部材(20)は、前記収容部(16)においてラック軸(8)側とは反対側に設けられた外部開口端(19)に固定される。皿ばね(22)は、前記封止部材(20)と前記ラックガイド(18)との間に介在し前記ラックガイド(18)をラック軸(8)側へ付勢する。 前記保持部材(24)は、前記皿ばね(22)を保持し前記ラックガイド(18)または前記封止部材(20)に直接または間接的に摩擦係合されて保持される。

Description

ラックガイド装置及びこれを含むステアリング装置
 本発明は、ラックガイド装置及びこれを含むステアリング装置に関する。
 一般に、ラックピニオン式のステアリング装置には、ラックとピニオンとの間のバックラッシを抑制するためのラックガイド装置が設けられている。そのラックガイド装置においては、ラック軸を摺動可能に支持するラックガイドが摩耗した場合に、ラックガイドとプラグとの間に介在する圧縮コイルばねが、ラックガイドをラック軸側へ押し出すことにより、ラックガイドとプラグとの間の間隙を補償するようにしている。
 特許文献1では、ラックガイドとプラグとの間に、圧縮コイルばねに対して直列に皿ばねを介在させている。皿ばねは、多大な衝撃荷重が入力されたときのみに撓んで衝撃を吸収する。
日本国特開平11-43055号公報
 特許文献1の図4では、プラグに設けられた筒状部内に、皿ばねと、圧縮コイルばねと皿ばねとの間に介在する介在部材(特許文献1では、第2ラックサポートと称されている)とを収容し、保持している。具体的には、皿ばねの外径を案内する筒状部の内周と、介在部材の外周とのそれぞれの周溝に係合させた止め輪を用いて、介在部材を保持し、その介在部材と筒状部の底との間に皿ばねを保持している。
 特許文献1では、プラグに、皿ばねおよび介在部材を保持するにあたって、止め輪をプラグおよび介在部材の双方の周溝に嵌め入れる煩雑な作業が必要である。このため、プラグを含むユニットをサブ組立する作業を含めた全体の組立工数が増えて、組立性が悪いという問題がある。
 本発明の目的は、全体としての組立性の良いラックガイド装置およびこれを含むステアリング装置を提供することである。
 前記目的を達成するため、請求項1の発明は、ピニオン軸に噛み合うラック軸を挿通させるハウジングに形成された収容部内に、ラック軸側に向かって進退可能に収容され、且つラック軸を当該ラック軸の軸方向に摺動可能に支持するラックガイドと、前記収容部においてラック軸側とは反対側に設けられた外部開口端に固定された封止部材と、前記封止部材と前記ラックガイドとの間に介在し前記ラックガイドをラック軸側へ付勢する少なくとも1枚の皿ばねと、前記皿ばねを保持し前記封止部材に直接または間接的に摩擦係合されて保持された保持部材と、を備えるラックガイド装置を提供する。
 また、請求項2のように、前記封止部材および前記保持部材の少なくとも一方に保持されて他方に摩擦係合する摩擦係合部材と、を備えていてもよい。
 また、請求項3のように、前記摩擦係合部材は、弾性部材を含んでいてもよい。
 また、請求項4のように、前記保持部材は、前記皿ばねの径方向端部を案内する案内筒と、前記案内筒の軸方向の一端から径方向に延びて前記皿ばねの荷重を受ける環状の座板と、を含んでいてもよい。
 また、請求項5のように、前記封止部材は、前記案内筒の周面に対向する対向部を含み、前記摩擦係合部材は、前記案内筒の周面と前記封止部材の対向部との間に介在していてもよい。
 また、請求項6のように、前記摩擦係合部材は、前記案内筒の周面に保持されて、前記保持部材と前記摩擦係合部材と前記皿ばねとを含むサブアンセンブリが構成され、前記摩擦係合部材および前記皿ばねは、前記案内筒の径方向の同側に配置され、前記皿ばねは、前記案内筒の軸方向に関して、前記摩擦係合部材と前記座板との間に配置され、前記サブアセンブリの状態で、前記案内筒の軸方向から見て、前記摩擦係合部材の一部が前記皿ばねの一部と重なっていてもよい。
 また、請求項7のように、前記保持部材は、前記ラックガイドおよび前記封止部材の何れか一方に設けられた凹部の内周に摩擦係合する第1部分と前記皿ばねの内径部を案内する第2部分とを有する外周を設けた案内筒を含み、前記案内筒には、弾性的な縮径を可能とするように軸方向または軸方向に対して傾斜する方向に延びるスリットが形成されていてもよい。
 また、請求項8のように、前記保持部材は、前記案内筒の軸方向の一端から径方向に延びて前記皿ばねの荷重を受ける環状の座板を含み、前記座板には、前記案内筒のスリットとしての第1スリットに連続する第2スリットが形成されていてもよい。
 また、請求項9のように、前記皿ばねと前記保持部材とを含み、一体に取り扱うことのできる保持部材ユニットが構成され、前記保持部材ユニットにおいて、前記第1部分の外径が、前記第2部分の外径よりも大きく且つ前記皿ばねの内径よりも大きくされていてもよい。
 また、請求項10のように、前記封止部材と前記ラックガイドとの間に介在し前記ラックガイドを前記ラック軸側に付勢する圧縮コイルばねを備えていてもよい。
 また、請求項11のように、前記圧縮コイルばねは、前記皿ばねと直列に配置され、前記圧縮コイルばねのセット荷重は、前記皿ばねのセット荷重よりも低くされていてもよい。
 また、請求項12のように、前記ラックガイドの進退方向に関して、前記封止部材と前記保持部材との間の最大隙間量を規制するように、前記保持部材を前記封止部材に連結する連結部材を備えていてもよい。
 また、請求項13の発明は、前記ラックガイド装置を含むステアリング装置を提供する。
 請求項1の発明によれば、皿ばねを保持する保持部材が摩擦係合により封止部材に一体に保持される。摩擦係合させる簡単な作業で、皿ばね、保持部材および封止部材を容易に一体化させて、サブアセンブリを構成することができるので、全体としての組立性を向上することができる。
 また、請求項2の発明によれば、皿ばねを保持する保持部材を、摩擦係合部材を介して封止部材に保持することができる。
 また、請求項3の発明によれば、摩擦係合部材としての弾性部材によって、保持部材と封止部材の寸法精度の誤差を吸収することができるので、保持部材を封止部材に確実に保持することができる。
 また、請求項4の発明によれば、保持部材が、皿ばねの径方向端部(例えば内径)を案内する案内筒の一端に設けられた座板によって、皿ばねの荷重を受けるので、皿ばねによるラックガイドの摩耗等の発生を抑制することができる。
 また、請求項5の発明によれば、案内筒と封止部材の対向部を軸方向に重ねて配置することができるので、軸方向の小型化を図ることができる。
 また、請求項6の発明によれば、皿ばねを含むユニットをサブアセンブリとして構成することで、組立性をより向上することができる。
 請求項7の発明によれば、スリット幅の増減によって保持部材の案内筒の弾性縮径量を容易に調節して、案内筒を凹部に摩擦係合させる簡単な作業で、皿ばねおよび保持部材を、ラックガイドおよび封止部材の何れか一方に容易に一体化させ、一体に取り扱うことのできるユニット(サブアセンブリ)を構成することができる。したがって、全体としての組立性を向上することができる。
 また、請求項8の発明によれば、保持部材が、皿ばねの内径部を案内する案内筒の一端に設けられた座板によって、皿ばねの荷重を受けるので、皿ばねによるラックガイド等の摩耗の発生を抑制することができる。
 また、請求項9の発明によれば、皿ばねと保持部材とを含む保持部材ユニットを構成するので、全体としての組立性が一層、向上する。
 また、請求項10の発明によれば、封止部材とラックガイドとの間に介在してラックガイドをラック軸側に付勢する圧縮コイルばねを皿ばねと併用するので、荷重設定の自由度を向上することができる。
 また、請求項11の発明によれば、皿ばねに直列に配置される圧縮コイルばねのセット荷重を、皿ばねのセット荷重よりも低くしているので、圧縮コイルばねが撓んで後、皿ばねを働かせるようにして二段荷重特性を得る等、荷重設定の自由度を向上することができる。
 また、請求項12の発明によれば、連結部材によって、ラックガイドの進退方向に関する封止部材と保持部材との間の最大隙間量を規制することにより、皿ばねのセット荷重を所望に設定することができるので、所望の二段荷重特性を得ることができる。
 また、請求項13の発明によれば、組立性に優れたステアリング装置を提供することができる。
本発明の第1実施形態のラックピニオン式のステアリング装置の概略構成の模式図である。 ラックガイド装置を含むステアリング装置の要部の断面図である。 ラックガイド装置の拡大断面図である。 皿ばねと保持部材と弾性部材(摩擦係合部材)とを含む第1サブアセンブリの断面図である。 皿ばねと保持部材と弾性部材(摩擦係合部材)と封止部材とを含む第2サブアセンブリの断面図である。 本発明の第2実施形態のラックガイド装置の要部の断面図であり、図3の第1実施形態の変更例を示している。 本発明の第3実施形態のラックガイド装置の要部の断面図である。 図7の第3実施形態において、皿ばねと保持部材と弾性部材(摩擦係合部材)と封止部材とを含む第2サブアセンブリの断面図である。 本発明の第4実施形態のラックガイド装置の断面図であり、図7の第3実施形態の変更例を示している。 本発明の第5実施形態のラックガイド装置の要部の断面図である。 図10の第5実施形態において、皿ばねと保持部材と弾性部材(摩擦係合部材)と封止部材とを含む第2サブアセンブリの断面図である。 本発明の第6実施形態に係る第2サブアセンブリの断面図である。 図12の第6実施形態において、第2サブアセンブリに含まれる第1サブアセンブリの断面図である。 本発明の第7実施形態のラックガイド装置の要部の断面図であり、図10の第5実施形態の変更例を示している。 本発明の第8実施形態のラックガイド装置の要部の断面図である。 図15に示す状態から、圧縮コイルばねのみが撓んでラックガイドが封止部材側へ所定量移動した状態を示している。 図16に示す状態から、皿ばねが撓んでラックガイドが封止部材側へさらに移動した状態を示している。 図15から図17に示す状態へとラックガイドが変位したときの変位と荷重の関係を示すグラフ図である。 本発明の第9実施形態に係る第2サブアセンブリの断面図である。 図19の第9実施形態において、第2サブアセンブリに含まれる第1サブアセンブリの断面図である。 本発明の第10実施形態に係る第2サブアセンブリの断面図である。 本発明の第11実施形態に係る第2サブアセンブリの断面図である。 第12実施形態のラックガイド装置を含むステアリング装置の要部の断面図である。 第12実施形態のラックガイド装置の要部の拡大断面図である。 第12実施形態の保持部材の斜視図である。 第12実施形態において、皿ばねと保持部材とを含む保持部材ユニット(第1サブアセンブリ)の断面図である。 第12実施形態において、皿ばねと保持部材と封止部材とを含む封止部材ユニット(第2サブアセンブリ)の断面図である。 本発明の第13実施形態のラックガイド装置の要部の拡大断面図であり、図3の第12実施形態の変更例を示している。 第13実施形態において、皿ばねと保持部材とを含む保持部材ユニット(第1サブアセンブリ)の断面図である。 第13実施形態において、皿ばねと保持部材とラックガイド等とを含むラックガイドユニット(第2サブアセンブリSA2)の断面図である。
 以下、添付図面を参照しつつ本発明の実施の形態について説明する。
 図1を参照して、ステアリング装置1は、ステアリングホイール等の操舵部材2に連結しているステアリングシャフト3と、ステアリングシャフト3に自在継手4を介して連結された中間軸5と、中間軸5に自在継手6を介して連結されたピニオン軸7と、ピニオン軸7の端部近傍に設けられたピニオン7aに噛み合うラック8aを有して自動車の左右方向に延びる転舵軸としてのラック軸8とを有している。ピニオン軸7およびラック軸8により舵取り機構としてのラックアンドピニオン機構Aが構成されている。
 ラック軸8は、車体に固定されるラックハウジング9内に、図示しない複数の軸受を介して、軸方向Z1に沿って直線往復動可能に支持されている。ラック軸8の両端部はラックハウジング9の両側へ突出し、各端部にはそれぞれタイロッド10が結合されている。各タイロッド10は対応するナックルアーム(図示せず)を介して対応する転舵輪11に連結されている。
 操舵部材2が操作されてステアリングシャフト3が回転されると、この回転がピニオン7aおよびラック8aによって、ラック軸8の軸方向Z1の直線運動に変換される。これにより、転舵輪11の転舵が達成される。
 ステアリング装置1の要部の断面図である図2を参照して、ピニオン軸7は、例えば玉軸受からなる第1軸受12と、例えば円筒ころ軸受からなる第2軸受13とによって、ピニオンハウジング14内に回転可能に支持されている。ピニオン軸7のピニオン7aとラック軸8のラック8aとは、ピニオンハウジング14内で相互に噛み合わされている。
 ステアリング装置1には、ラックガイド装置15が装備されている。ラックガイド装置15は、円孔からなる収容部16を形成しラック軸8が挿通するハウジング17と、収容部16内にラック軸8側に向かって進退可能に収容され且つラック軸8のラック8aの背面8bを摺動可能に支持するラックガイド18とを備えている。また、ラックガイド装置15は、収容部16においてラック軸8側とは反対側に設けられた外部開口端19に固定されたプラグ(栓)からなる封止部材20と、ラックガイド18と封止部材20との間に介在する圧縮コイルばね21および1ないし複数(本実施形態では複数の場合に則して説明する。)の皿ばね22とを備えている。また、ラックガイド装置15は、皿ばね22を保持し、摩擦係合部材としての環状の弾性部材23を介して封止部材20に摩擦係合されて保持された保持部材24を備えている。
 ラックガイド装置15のハウジング17は、ピニオンハウジング14と単一の材料で一体に形成され、ラック軸8を隔ててピニオン軸7とは反対側に配置されている。ピニオンハウジング14およびハウジング17は例えばダイキャストにより製作される。
 ラックガイド18は、ラック軸8に対向する第1面181と、第1面181の反対側に設けられた第2面182と、円筒面からなる外周183とを有している。ラックガイド18の第1面181には、ラック軸8の背面8bの形状に概ね一致する形状の凹面25が形成されている。凹面25に沿うように湾曲状の摺接板26が取り付けられており、摺接板26が、ラック軸8の背面8bに摺接する。摺接板26としては、低摩擦係数を有する板を用いることが好ましく、例えば金属板や、フッ素樹脂を被覆した金属板を用いることができる。
 ラックガイド18の外周183に設けられた複数の環状の収容溝27のそれぞれに、例えばOリング等の環状の弾性部材28が収容され、保持されている。ラックガイドの18の外径は、収容部16の内径よりも僅かに小さくされており、弾性部材28が収容部16の内周16aを摺動することで、ラックガイド18が収容部16内をラック軸8に対して進退する方向に移動するようになっている。弾性部材28は、収容部16内でのラックガイド18の倒れを抑制する機能を果たす。
 図2の一部を拡大した図3を参照して、ラックガイド18の第2面182には、圧縮コイルばね21の一部を収容する例えば円孔からなる収容凹部29が設けられている。圧縮コイルばね21の第1端部211は、収容凹部29の底291によって受けられている。収容凹部29の内周292は、圧縮コイルばね21の外径部を案内する機能を果たしている。
 図2および図3を参照して、封止部材20は、ラックガイド18(の第2面182)と対向する第1面201と、第1面201の反対側の第2面202とを有するプラグからなる。すなわち、封止部材20の外周203には、雄ねじ30が形成されている。一方、収容部16の外部開口端19から所定長の範囲に、雌ねじ31が形成され、この雌ねじ31に、封止部材20の雄ねじ30がねじ込まれて、封止部材20がハウジング17に固定されている。
 封止部材20の第2面202には、封止部材20をねじ込む工具が係合する多角形断面の工具係合孔32が設けられている。また、封止部材20の外周203(後述する筒状部36の外周363に相当)に設けられた1ないし複数の環状の収容溝33に、例えばOリング等の環状の弾性部材からなるシール部材34が収容され、保持されている。シール部材34は、封止部材20の外周203と収容部16の内周16aとの間を封止する機能を果たす。
 封止部材20の第1面201には、第2端部202側に向けて窪み、圧縮コイルばね21の一部および保持部材24の一部を収容する収容凹部35が設けられている。これにより、封止部材20は、収容凹部35の周囲を取り囲む有底の筒状部36を設けている。圧縮コイルばね21の第2端部212は、筒状部36の底361(収容凹部35の底に相当)によって受けられている。すなわち、圧縮コイルばね21は、封止部材20の筒状部36の底361と、ラックガイド18の収容凹部29の底291との間に圧縮された状態で介在し、ラックガイド18をラック軸8側へ弾性的に付勢している。
 封止部材20の筒状部36の端面362(封止部材20の第1面201に相当)は、収容凹部35の周囲を取り囲む環状をなして、皿ばね22を受ける座部として機能する。保持部材24は、皿ばね22の径方向端部としての内径部22aを案内する案内筒37と、案内筒37の軸方向X1の第1端部371(ラックガイド18側の端部に相当)から径方向Y1の外方に延びて皿ばね22を受ける座板38とを備えている。
 封止部材20の筒状部36の端面362(座部)とラックガイド18の第2面182との間に、皿ばね22と座板38とが介在している。座板38は、ラックガイド18の第2面182に沿った状態で、皿ばね22とラックガイド18の第2面182との間に介在している。すなわち、座板38は、ラックガイド18の第2面182に沿う第1面381と、皿ばね22の荷重を受ける座面である第2面382とを備えている。筒状部36の端面362(座部)と座板38の第2面382との間隔は、複数の皿ばね22の密着長よりも大きくされている。
 座板38は、例えばラックガイド18がアルミニウム製である場合に、ラックガイド18の第2面182と皿ばね22との接触を回避することで、ラックガイド18の第2面182に摩耗が発生することを抑制する機能を果たす。そのため、座板38を含む保持部材24は、例えば鋼製や樹脂製である。
 案内筒37の大部分は、封止部材20の収容凹部35内に挿入され収容されている。圧縮コイルばね21は、案内筒37内を挿通している。案内筒37の内周374と圧縮コイルばね21の外径との間には、所定量の隙間が設けられている。
 案内筒37は、座板38が延設されている第1端部371とは反対側の端部である第2端部372を有している。ラックガイド18の進退方向(収容部16としての円孔の深さ方向に相当)に関する、案内筒37の第2端部372と筒状部36の底361との間には、例えばラックガイド18の進退量と同等または同等以上の隙間が設けられている。
 封止部材20の筒状部36の内周364は、案内筒37の外周373と所定の隙間を設けて対向する対向部として機能する。摩擦係合部材としての弾性部材23は、案内筒37の外周373に設けられた収容溝39によって保持されて、筒状部36の内周364(対向部)に摩擦係合している。弾性部材23は、例えばOリングからなる。弾性部材23は、筒状部36の内周364と案内筒37の外周373との間で、弾性圧縮されていてもよいし、されていなくてもよい。
 図4に示すように、皿ばね22と弾性部材23(摩擦係合部材)と保持部材24とは、一体のユニットとして取り扱うことのできる第1サブアンセブリSA1を構成している。具体的には、皿ばね22と弾性部材23とが、案内筒37の径方向Y1の同側(本実施形態では、径方向の外方)に配置されている。また、案内筒37の軸方向X1に関して、皿ばね22が、弾性部材23と座板38との間に配置されている。
 また、サブアセンブリSA1の状態で、案内筒37の軸方向から見て、弾性部材23(摩擦係合部材)の一部が皿ばね22の一部と重なっている。すなわち、保持部材24の案内筒37の外周373の収容溝39に保持された環状の弾性部材23の外径D1が、皿ばね22の内径D2よりも大きくされている(D1>D2)。これにより、弾性部材23によって、案内筒37からの皿ばね22の抜脱が抑制されている。
 図5に示すように、保持部材24(の案内筒37の収容溝39)に保持された弾性部材23(摩擦係合部材)が封止部材20(の筒状部36の内周364)に摩擦係合することにより、皿ばね22と弾性部材23と保持部材24と封止部材20とシール部材34とが、一体のユニットとして取り扱うことのきる第2サブアンセブリSA2を構成している。第2サブアセンブリSA2は、第1サブアセンブリSA1よりも大きい単位のサブアセンブリである。組立時には、まず、第1サブアセンブリSA1を組み立てた後、第1サブアセンブリSA1を、封止部材20と組み合わせて、第2サブアセンブリSA2を組み立てることになる。
 本実施形態によれば、皿ばね22を保持する保持部材24が摩擦係合により封止部材20に一体に保持される。摩擦係合させる簡単な作業で、皿ばね22、保持部材24および封止部材20等を容易に一体化させて、サブアセンブリ(第2サブアセンブリSA2に相当)を構成することができるので、全体としての組立性を向上することができる。ひいてはステアリング装置1において、組立性を向上することができる。
 また、皿ばね22が複数である場合に、ばらけ易い複数の皿ばね22を一括して保持するので、作動時においても複数の皿ばね22が芯ずれを起こすことを抑制することができて、好ましい。
 また、ラック軸8側からのラックガイド18に荷重が入力されて、ラックガイド18とともに保持部材24が変位するときに、摩擦係合部材としての弾性部材23が封止部材20(の筒状部36の内周364)に対して摩擦摺動して摩擦抵抗荷重を発生する。また、皿ばね22が複数である場合には、弾性部材23による摩擦抵抗荷重の発生に加えて、複数の皿ばね22間の接触面どうしが、皿ばね22の圧縮変位に伴って摩擦摺動して摩擦抵抗荷重を発生する。弾性部材23(摩擦係合部材)および皿ばね22による摩擦抵抗荷重が、ラック軸8側からの荷重入力に抗する対抗荷重として寄与するので、圧縮コイルばね21および皿ばね22による対抗荷重と摩擦抵抗荷重による対抗荷重を含めて、全体としての対抗荷重を増大させることができる。
 また、ラック軸8側からラックガイド8に大荷重が入力されたときに、ラックガイド18が保持部材24とともに封止部材20側へ移動する。このとき、圧縮された皿ばね22が発生する荷重に、封止部材20に対する弾性部材23の摩擦係合の摩擦荷重を付加することができる。したがって、大荷重に対向する対抗荷重を増加できる。しかも、ラックガイド18がラック軸8側へ戻るときは、スムーズに戻れる。
 また、皿ばね22を保持する保持部材24を、摩擦係合部材(弾性部材23)を介して封止部材20に保持することができる。
 また、摩擦係合部材としての弾性部材23を用いるので、保持部材24(具体的には保持部材24の案内筒37の外周373)と封止部材20(具体的には封止部材20の筒状部36の内周364)との寸法精度の誤差を吸収することができるので、保持部材24を封止部材20に確実に保持することができる。
 また、保持部材24が、皿ばね22の内径部22a(径方向端部)を案内する案内筒37と、案内筒37の軸方向X1の一端から径方向に延びて皿ばね22の荷重を受ける座板38とを備える。座板38が、皿ばね22によるラックガイド18(具体的にはラックガイド18の第2面182)の摩耗等の発生を防止する。
 また、封止部材20は、案内筒37の外周373に対向する対向部(筒状部36の内周364)を含み、弾性部材23(摩擦係合部材)が、案内筒37の外周373と封止部材20の対向部(筒状部36の内周364)との間に介在している。したがって、案内筒37と封止部材22の対向部(筒状部36の内周364)とを軸方向X1に重ねて配置することができるので、軸方向X1(収容部16としての円孔の深さ方向に相当)の小型化を図ることができる。
 また、皿ばね22と弾性部材23とが、案内筒37の径方向Y1の同側(本実施形態では、径方向の外方)に配置されている。案内筒37の軸方向X1に関して、皿ばね22が、弾性部材23と座板38との間に配置された状態で、案内筒37の軸方向X1から見て、弾性部材23(摩擦係合部材)の一部が皿ばね22の一部と重なっている。すなわち、保持部材24の案内筒37の外周373の収容溝39に保持された環状の弾性部材23の外径D1が、皿ばね22の内径D2よりも大きくされている(D1>D2)。これにより、案内筒37からの皿ばね22の抜脱を抑制することができるので、皿ばね22と弾性部材23(摩擦係合部材)と保持部材24とを含むユニットを、一体に取り扱うことのできるサブアセンブリ(第1サブアセンブリSA1に相当)として構成することができる。したがって、組立性をより向上することができる。
 また、封止部材22とラックガイド18との間に介在してラックガイド18をラック軸8側に付勢する圧縮コイルばね21を皿ばね22と併用するので、荷重設定の自由度を向上することができる。
<第2実施形態>
 次いで、図6は、本発明の第2実施形態のラックガイド装置15Aの要部の断面図である。図6の第2実施形態が、図3の第1実施形態と主に異なるのは、下記である。
 すなわち、図3の第1実施形態では、摩擦係合部材としての弾性部材23が、保持部材24の案内筒37の外周373に設けられた収容溝39に保持されて封止部材20の筒状部36の内周364に摩擦係合している。
 これに対して、図6の第2実施形態では、摩擦係合部材としての弾性部材23Aが、封止部材20Aの筒状部36Aの内周364Aに設けられた収容溝39Aに保持されて、保持部材24Aの案内筒37Aの外周373Aに摩擦係合してもよい。図6の第2実施形態の構成要素において、第1実施形態と同じ構成要素には、第1実施形態の構成要素の参照符号と同じ参照符号を付してある。
 本第2実施形態においては、弾性部材23Aが封止部材20Aに保持されているので、第1実施形態の図4のような第1サブアセンブリSA1を構成することができない。この点を除いて、本第2実施形態においても第1実施形態と同じ作用効果を奏することができる。
<第3実施形態>
 次いで、図7は本発明の第3実施形態のラックガイド装置の要部の断面図である。図7を参照して、本第3実施形態が図3の第1実施形態と主に異なるのは、封止部材20Bが、筒状部36内に突出する凸部40を設けることで、凸部40と筒状部36との間に、環状の収容凹部35Bが形成されている点にある。凸部40の外周401に形成された収容溝39Bに摩擦係合部材としての弾性部材23B(例えばOリング)が収容され保持されている。弾性部材23Bは、保持部材24Bの案内筒37Bの内周374Bに摩擦係合している。
 保持部材24Bの案内筒37Bの外周373Bは、軸方向に移動可能に筒状部36の内周364に嵌合している。凸部40は、ラックガイド18の収容凹部29の底291と対向する端面402を有している。凸部40の端面402と収容凹部29の底291との間に、ラックガイド18をラック軸8側へ付勢する圧縮コイルばね21Bが圧縮された状態で介在している。
 図7の第3実施形態の構成要素のうち、図3の第2実施形態の構成要素と同じ構成要素には、図3の第2実施形態の構成要素の参照符号と同じ参照符号を付してある。
 本第3実施形態においては、弾性部材23Bが封止部材20Bに保持されているので、第1実施形態の図4のような第1サブアセンブリSA1を構成することができない。この点を除いて、本第2実施形態においても第1実施形態と同じ作用効果を奏することができる。
 例えば、本実施形態においても、図8に示すように、封止部材20Bに保持された弾性部材23B(摩擦係合部材)が保持部材24Bに摩擦係合することにより、皿ばね22と弾性部材23Bと保持部材24Bと封止部材20Bとシール部材34とが、一体のユニットとして取り扱うことのできる第2サブアンセブリSA2Bを構成する。
 すなわち、本実施形態によれば、皿ばね22を保持する保持部材24Bを摩擦係合により封止部材20Bに一体に保持させる簡単な作業で、皿ばね22、保持部材24Bおよび封止部材20Bを容易に一体化させて、サブアセンブリ(第2サブアセンブリSA2Bに相当)を構成することができるので、全体としての組立性を向上することができる。
 また、保持部材24Bの案内筒37Bが、環状の収容凹部35B内に挿入されているので、案内筒37Bの倒れを抑制して、保持部材24Bをスムーズに軸方向X1に変位させることができる。
<第4実施形態>
 図9は、本発明の第4実施形態のラックガイド装置の要部の断面図である。図9の第4実施形態が、図7の第3実施形態と主に異なるのは、下記である。
 すなわち、図7の第3実施形態では、摩擦係合部材としての弾性部材23Bが、封止部材20Bの凸部40の外周401に設けられた収容溝39Bに保持されて保持部材24Bの案内筒37Bの内周374Bに摩擦係合している。
 これに対して、図9の第4実施形態では、保持部材24Cの案内筒37Cの内周374Cに設けられた収容溝39Cに保持されて封止部材20Cの凸部40Cの外周401Cに摩擦係合している。案内筒37Cの外周373Cは、筒状部36の内周364に軸方向X1に移動可能に嵌合している。図9の第4実施形態の構成要素のうち、図7の第3実施形態と同じ構成要素には、図7の第3実施形態の構成要素の参照符号と同じ参照符号を付してある。
 本第4実施形態によれば、弾性部材23Cが封止部材20Cに保持されているので、第1実施形態の図4のような第1サブアセンブリSA1を構成することができない。この点を除いて、本第2実施形態においても第1実施形態と同じ作用効果を奏することができる。
<第5実施形態>
 図10は、本発明の第5実施形態のラックガイド装置の要部の断面図である。図10の第5実施形態が、図7の第3実施形態と主に異なるのは、下記である。
 すなわち、図7の第3実施形態では、封止部材20Bの凸部40の外周401(の収容溝39B)に保持された弾性部材23Bが、保持部材24Bの案内筒37Bの内周374Bに摩擦係合している。
 これに対して、図10の第5実施形態では、封止部材20Bの筒状部36の内周364に、摩擦係合部材としての巻きブッシュ41の外周412が圧入され固定されている。巻きブッシュ41の内周411が、保持部材24Dの案内筒37Dの外周373Dに摩擦係合している。案内筒37Dの内周374Dは、凸部40の外周401に軸方向X1に移動可能に嵌合している。
 巻きブッシュ41の内周411は、案内筒37Dの外周373Dに摩擦係合が可能であれば、摩擦係合層としての金属層で形成されていてもよい。巻きブッシュ41の内周411が、径方向の弾性を有する摩擦係合層としての樹脂層で形成されて、巻きブッシュ41が弾性部材として機能していてもよい。
 図10の第5実施形態の構成要素のうち、図7の第3実施形態の構成要素と同じ構成要素には、図7の第3実施形態の構成要素の参照符号と同じ参照符号を付してある。
 本実施形態においても、図11に示すように、封止部材20Bに保持された巻きブッシュ41(摩擦係合部材。弾性部材)が保持部材24Dに摩擦係合することにより、皿ばね22と巻きブッシュ41と保持部材24Dと封止部材20Bとシール部材34とが、一体のユニットとして取り扱うことのできる第2サブアンセブリSA2Dを構成している。
 すなわち、本実施形態によれば、皿ばね22を保持する保持部材24Dを摩擦係合により封止部材20Bに一体に保持させる簡単な作業で、皿ばね22、保持部材24Dおよび封止部材20Bを容易に一体化させて、サブアセンブリ(第2サブアセンブリSA2Dに相当)を構成することができるので、全体としての組立性を向上することができる。
<第6実施形態>
 図12および図13は、本発明の第6実施形態の第2アセンブリSA2Eおよび第1アセンブリSA1Eをそれぞれ示している。本発明の第6実施形態が図10,図11の第5実施形態と異なるのは、下記である。
 すなわち、図11の第5実施形態では、巻きブッシュ41が、封止部材20Bに圧入により保持されて、保持部材24Dに対して摩擦係合する。
 これに対して、図12の第6実施形態では、摩擦係合部材としての巻きブッシュ41Eが、保持部材24Dに圧入により保持されて封止部材24Dに摩擦係合する。具体的には、巻きブッシュ41Eの内周411Eが、保持部材24Dの案内筒37Dの外周373Dに圧入により保持されている。また、巻きブッシュ41Eの外周412Eが、封止部材20Bの筒状部36の内周364に摩擦係合している。これにより、皿ばね22と保持部材24Dと巻きブッシュ41Eと封止部材20Bとシール部材34とを含む第2サブアセンブリSA2Eが構成されている。
 また、図13に示すように、案内筒37Dの外周373Dに保持された巻きブッシュ41Eの外径D1Eが、案内筒37Dの外周373Dを取り囲む皿ばね22の内径D2よりも大きくされているので(D1E>D2)、巻きブッシュ41Eによって、案内筒37Dからの皿ばね22の抜脱を抑制することができる。これにより、皿ばね22と巻きブッシュ41Eと保持部材24Dとを含む第1サブアセンブリSA1Eを構成することができる。
<第7実施形態>
 図14は、本発明の第7実施形態のラックガイド装置15Fの要部の断面図である。図14の第7実施形態が、図10の第5実施形態と主に異なるのは、下記である。
 すなわち、図10の第5実施形態のラックガイド装置15Dでは、摩擦係合部材としての巻きブッシュ41が、封止部材20Bの筒状部36の内周364に保持されて、保持部材24Dの案内筒37Dの外周373Dに摩擦係合している。
 これに対して、図14の第7実施形態のラックガイド装置15Fでは、凸部40の外周401に保持された摩擦係合部材としての巻きブッシュ41Fが備えられている。具体的には、巻きブッシュ41Fの内周411Fが、凸部40の外周401にプレスフィットにより嵌合保持されている。巻きブッシュ41Fの外周412Fが、保持部材24Fの案内筒37Fの内周374Fに摩擦係合している。案内筒37Fの外周373Fは、筒状部36の内周364に軸方向X1に移動可能に嵌合されている。
 図14の第7実施形態の構成要素のうち、図10の第5実施形態と同じ構成要素には、図10の第5実施形態の構成要素の参照符号と同じ参照符号を付してある。本第4実施形態によれば、図10の第5実施形態と同じ作用効果を奏することができる。
<第8実施形態>
 次いで、図15~図17は、本発明の第8実施形態のラックガイド装置15Gの断面図である。図15を参照して、本第8実施形態が図3の第1実施形態と主に異なるのは、下記である。
 すなわち、図3の第1実施形態では、封止部材20とラックガイド18との間に、圧縮コイルばね21と皿ばね22とが、並列に介在している。これに対して、本実施形態では、封止部材とラックガイド18との間に、圧縮コイルばね21Gと皿ばね22とが、直列に介在している。
 すなわち、封止部材とラックガイド18との間に保持部材24Gが介在している。皿ばね22は、封止部材20の筒状部36の端面362と保持部材24Gの座板38の第2面382との間に介在している。圧縮コイルばね21Gは、ラックガイド18の収容凹部29の底291と保持部材24Gの案内筒37Gの第1端部371Gとの間に弾性的に圧縮された状態で介在している。圧縮コイルばね21Gの第1端部211Gが、収容凹部29の底291によって受けられ、圧縮コイルばね21Gの第2端部212Gが、保持部材24Gの案内筒37Gの第1端部371Gによって受けられている。
 また、ラックガイド装置15Gは、ラックガイド18の進退方向(案内筒37Gの軸方向X1に相当)に関して、封止部材20Gと保持部材24Gとの間の最大隙間量Smaxを規制するように、保持部材24Gを封止部材20Gに連結する連結部材42を備えている。
 具体的には、保持部材24Gの案内筒37Gの第1端部211Gは、封止部材20の筒状部36の底361に対向する隙間規制板43(案内筒37Gの底板に相当)によって覆われている。連結部材42は、例えばボルトからなる。連結部材42は、隙間規制板43に形成された挿通孔44を軸方向に摺動可能に挿通して、封止部材20Gの筒状部36の底361のねじ孔45にねじ込み固定されたねじ軸46と、ねじ軸46の一端に設けられた頭部47とを備えている。
 隙間規制板43は、封止部材20の筒状部36の底361に対向する隙間規制面としての第1面431と、第1面431とは反対側の第2面432とを備えている。連結部材42の頭部47が、隙間規制板43の第2面432に当接した状態で、隙間規制板43の第1面(隙間規制面)と筒状部の底361との最大隙間量Smaxが規制される。
 また、皿ばね22には、予圧が与えられており、皿ばね22のセット荷重は、圧縮コイルばね21Gのセット荷重よりも高くされている。したがって、ラック軸8側から入力される荷重が通常レベルの通常時は、ラックガイド18の進退に伴って、圧縮コイルばね21Gのみが伸縮する。すなわち、図15に示すように、ラックガイド18の第2面182と保持部材24Gの座板38の第1面381との間に隙間が形成される状態から、図16に示すように、ラックガイド18の第2面182と保持部材24Gの座板38の第1面381とが密着する状態までの間で、ラックガイド18が変位する。
 また、ラック軸8側から通常レベルを超える大荷重が入力されるときには、ラックガイド18および保持部材24Gが一体に移動して、皿ばね22が圧縮変位される。例えば図17に示すように、皿ばね22が密着する程度まで圧縮変位される場合がある。これにより、図18に示すように、圧縮コイルばね21Gおよび皿ばね22の合成ばねの特性として、圧縮コイルばねのみが変位する第1特性部P1と、皿ばねのみが変位する第2特性部P2との二段荷重特性を得ることができる。また、最大隙間量Smaxの設定により、所望の二段荷重特性をチューニングすることができる。
<第9実施形態>
 第1~第8実施形態では、摩擦係合部材を提供する弾性部材として環状のものを用いている。本第9実施形態のように、摩擦係合部材を提供する弾性部材として環状でないものを用いてもよい。
 すなわち、図19および図20は、本発明の第9実施形態の第2サブアセンブリSA2Hおよび第1サブアセンブリSA1Hをそれぞれ示している。図19および図20に示すように、摩擦係合部材を提供する弾性部材として、保持部材24Hの案内筒36Hの軸方向X1に延びる複数のゴム製または樹脂製の弾性棒23Hを、案内筒36Hの周方向K1の等間隔に配置している。各弾性棒23Hは封止部材20の筒状部36の内周364(対向部)に摩擦係合している。
 案内筒37Hの外周373Hに、軸方向X1に延びる収容溝39Hが、周方向K1の等間隔に形成され、各収容溝39Hに、対応する弾性棒23Hを収容され、保持されている。収容溝39Hに保持された弾性棒23Hは、案内筒36Hに対する軸方向X1への移動を規制されている。また、複数の弾性棒23Hに外接する円の直径D1Hが、皿ばね22の内径D2よりも大きくされており(D1H>D2)、複数の弾性棒23Hによって、保持部材24Hからの皿ばね22の抜脱が抑制されている。
 図示していないが、図19および図20の実施形態の変更例として、封止部材の筒状部の内周に設けられた収容溝に、弾性棒を収容保持し、各弾性棒を案内筒の外周に摩擦係合させてもよい。
<第10実施形態>
 各前記実施形態(第1~第9実施形態)では、保持部材が摩擦係合部材を介して封止部材に間接的に保持されている。これに対して、例えば図5の第1実施形態の変更例としての、図21の第10実施形態の第2サブアセンブリSA2Jでは、保持部材24Jが、例えば弾性を有する樹脂により形成されて、保持部材24Jが、封止部材20に直接摩擦係合されて保持されていてもよい。
 すなわち、保持部材24Jの案内筒37Jの円筒面からなる外周373Jが、封止部材20の筒状部36の内周364に弾性的に圧縮された状態で嵌合(プレスフィット)している。保持部材24Jと封止部材20との摩擦係合力により、保持部材24Jが、直接、封止部材20により保持されている。
 図21の第10実施形態の構成要素において、図5の第1実施形態の構成要素と同じ構成要素には、図5の第1実施形態の構成要素の参照符号と同じ参照符号を付してある。本第10実施形態によれば、図5の第1実施形態と同じ作用効果を奏することができる。さらに、本第10実施形態によれば、保持部材24Jとは別に摩擦係合部材を設ける必要がない。したがって、構造を簡素化することができる。
<第11実施形態>
 図22の第11実施形態は、図11の第5実施形態の変更例を示している。すなわち、図22の第11実施形態の第2サブアセンブリSA2Kでは、保持部材24Kが、例えば弾性を有する樹脂により形成されて、保持部材24Kの案内筒37Kの外周373Kおよび内周374Kの少なくとも一方が、封止部材20Bの対応する筒状部36の内周364および凸部40の外周401に直接摩擦係合されて保持されている。
 すなわち、保持部材24Kの案内筒37Kの外周373Kおよび内周374Kの少なくとも一方が、弾性的に圧縮された状態で、対応する筒状部36の内周364および凸部40の外周401に嵌合(プレスフィット)している。保持部材24Kと封止部材20Bとの摩擦係合力により、保持部材24Kが、直接、封止部材20Bにより保持されている。
 図22の第11実施形態の構成要素において、図11の第5実施形態の構成要素と同じ構成要素には、図11の第5実施形態の構成要素の参照符号と同じ参照符号を付してある。本第11実施形態によれば、図11の第5実施形態と同じ作用効果を奏することができる。さらに、本第11実施形態によれば、保持部材24Kとは別に摩擦係合部材を設ける必要がない。したがって、構造を簡素化することができる。なお、本第11実施形態において、保持部材24Kの案内筒37Kの外周373Kおよび内周374Kの何れか一方が、対応する相手面に対して、すきま嵌め(ルーズフィット)で嵌合されていてもよく、対応する相手面に対して、隙間を設けて対向していてもよい。
<第12実施形態>
 図23乃至図27の第12実施形態は、図21の第10実施形態の変更例を示している。
 図23は、第12実施形態のラックガイド装置を含むステアリング装置の要部の断面図である。図24は、第12実施形態のラックガイド装置の要部の拡大断面図である。図25は、第12実施形態の保持部材の斜視図である。図26は、第12実施形態において、皿ばねと保持部材とを含む保持部材ユニット(第1サブアセンブリ)の断面図である。図27は、第12実施形態において、皿ばねと保持部材と封止部材とを含む封止部材ユニット(第2サブアセンブリ)の断面図である。
 図23乃至図27の第12実施形態の構成要素のうち、図21の第10実施形態と同じ構成要素には、図21の第10実施形態の構成要素の参照符号と同じ参照符号を付してある。
 本実施形態が図21の第10実施形態と主に異なるのは、保持部材24Qの案内筒37Qにスリットが設けられることである。また第10実施形態の保持部材24Jの案内筒37Jの外径が皿ばね22の内径より小さいのに対して、本実施形態の案内筒37Qは外径が皿ばね22の内径より大きい第1部分391を有する。
 図24および図25を参照して、保持部材24Qは、皿ばね22の径方向端部としての内径部22aを案内する案内筒37Qと、案内筒37Qの軸方向X1の第1端部371Q(ラックガイド18側の端部に相当)から径方向Y1の外方に延びて皿ばね22を受ける座板38Qとを備えている。
 案内筒37Qの外周39Qは、凹部35の内周352に摩擦係合する第1部分391Qと、皿ばね22の内径部22aを案内する第2部分392Qとを有している。第2部分392Qは、第1部分391Qと座板38Qとの間に配置されている。案内筒37Qには、弾性的な縮径を可能とするように軸方向X1または軸方向X1に対して傾斜する方向に延びる第1スリット41Qが形成されている。また、座板38Qには、案内筒37Qの第1スリット41Qに連続する第2スリット42Qが形成されている。
 図24に示すように、封止部材20の筒状部36の端面361(座部)とラックガイド18の第2面182との間に、皿ばね22と座板38Qとが介在している。座板38Qは、ラックガイド18の第2面182に沿った状態で、皿ばね22とラックガイド18の第2面182との間に介在している。すなわち、座板38Qは、ラックガイド18の第2面182に沿う第1面381Qと、皿ばね22の荷重を受ける座面である第2面382Qとを備えている。筒状部36の端面361(座部)と座板38Qの第2面382Qとの間隔は、複数の皿ばね22の密着長よりも大きくされている。
 座板38Qは、例えばラックガイド18がアルミニウム製である場合に、ラックガイド18の第2面182と皿ばね22との接触を回避することで、ラックガイド18の第2面182に摩耗が発生することを抑制する機能を果たす。そのため、座板38Qを含む保持部材24Qは、例えば鋼製や樹脂製である。
 案内筒37Qの大部分は、封止部材20の凹部35内に挿入され収容されている。圧縮コイルばね21は、案内筒37Q内を挿通している。案内筒37Qの内周43Qと圧縮コイルばね21の外径との間には、所定量の隙間が設けられている。
 案内筒37Qは、座板38Qが延設されている第1端部371Qとは反対側の端部である第2端部372Qを有している。ラックガイド18の進退方向(収容部16としての円孔の深さ方向に相当)に関する、案内筒37Qの第2端部372Qと封止部材20の凹部35の底351との間には、例えばラックガイド18の進退量と同等または同等以上の隙間が設けられている。
 図26に示すように、皿ばね22と保持部材24Qとは、一体に取り扱うことのできる保持部材ユニットとしての第1サブアンセブリSA1Qを構成している。第1サブアンセブリSA1Qの状態で、第1部分391Qの外径D1Qが、皿ばね22の内径部22aの内径D3よりも大きくされている(D1Q>D3)。これにより、案内筒37Qの軸方向X1に関して第1部分391Qと座板38Qとの間に配置された皿ばね22は、案内筒37Qからの抜脱を規制されている。その結果、皿ばね22と保持部材24Qとによって、一体に取り扱うことのできる第1サブアンセブリSA1Q(保持部材ユニット)を構成することが可能となる。
 皿ばね22を内径部22aを案内し保持する第2部分392Qの外径D2Qは、第1部分391Qの外径D1Qよりも小さくされている(D2Q<D1Q)。また、第2部分392Qの外径D2Qは、皿ばね22の内径D3よりも小さくされている(D2Q<D3)。
 第1部分391Qは、案内筒37Qの外周39Qの全周に延びていてもよいし、外周39Qの周方向に離隔して複数設けられた凸リブ(図示せず)により構成されていてもよい。第1部分391Qを複数の凸リブによって構成する場合、第1部分391Qの外径D1Qは、複数の凸リブの外接する外接円筒の直径に相当することになる。
 図27に示すように、保持部材24Qの外周39Qの第1部分391Qが封止部材20の凹部35の内周352に摩擦係合することにより、皿ばね22と保持部材24Qと封止部材20とシール部材34とが、一体に取り扱うことのできる封止部材ユニットとしての第2サブアンセブリSA2Qを構成している。
 第2サブアセンブリSA2Q(封止部材ユニット)は、第1サブアセンブリSA1Q(保持部材ユニット)よりも大きい単位のサブアセンブリである。組立時には、まず、第1サブアセンブリSA1Qを組み立てた後、第1サブアセンブリSA1Qを、封止部材20と組み合わせて、第2サブアセンブリSA2Qを組み立てることになる。
 図26の第1サブアセンブリSA1Q(保持部材ユニット)の状態での案内筒37Qの外周39Qの第1部分391Qの外径D1Qは、図27に示す封止部材20の凹部35の内径D4よりも大きくされている(D1Q>D4)。したがって、第1サブアセンブリSA1Qの保持部材24Qの案内筒37Qを、封止部材20の凹部35に嵌合させるときに、案内筒37Qを弾性的に縮径させて(すなわち第1スリット41Qの幅を縮めて)嵌合させる。弾性的に縮径されて凹部35に嵌合した案内筒37Qは、凹部35の内周352に摩擦係合する。これにより、第1サブアセンブリSA1Q(保持部材ユニット)が封止部材20に保持されて、第2サブアセンブリSA2Q(封止部材ユニット)が構成される。
 図26の例では、サブアセンブリSA1Qの状態で、第2部分392Qの外径D2Qが、皿ばね22の内径D3よりも小さくされている(D2Q<D3)。図示していないが、仮に、第1サブアセンブリSA1Qの状態で、第2部分392Qの外径D2Qが、皿ばね22の内径D3と同等とされる(D2Q=D3)場合、第2サブアセンブリSA2Qの状態では、第2部分392Qの外径が、皿ばね22の内径D3よりも小さいことが好ましい(D2Q<D3)。第2部分392Qが、皿ばね22の弾性変形を阻害することを抑制できるからである。
 本実施形態によれば、第1スリット41Qの幅の増減によって保持部材24Qの案内筒37Qの弾性縮径量を容易に調節して、案内筒37Qを封止部材20の凹部35に摩擦係合させる簡単な作業で、皿ばね22および保持部材24Qを封止部材20に容易に一体化させ、一体に取り扱うことのできるユニット(封止部材ユニットとしての第2サブアセンブリSA2Q)を構成することができる。したがって、ラックガイド装置15Q全体としての組立性を向上することができる。ひいては、組立性に優れたステアリング装置1を提供することができる。
 特に、第1スリット41Qの幅の増減によって、組み合わされる各部品(案内筒37Qを有する保持部材24Q、凹部35を有する封止部材20等)の寸法誤差を吸収して、保持部材24Qの案内筒37Qを凹部35の内周352に確実に摩擦係合させることができる。
 また、保持部材24Qが、皿ばね22の内径部22aを案内する案内筒37Qの一端に設けられた座板38Qによって、皿ばね22の荷重を受けるので、皿ばね22によるラックガイド18の摩耗の発生を抑制することができる。
 また、保持部材24Qの案内筒37Qの外周39Qの第1部分391Qによって、案内筒37Qからの皿ばね22の抜脱を抑制することができる。したがって、皿ばね22と保持部材24Qとを含んで一体に取り扱うことのできるユニット(保持部材ユニットとしての第1サブアセンブリSA1Q)を構成することができるので、全体としての組立性を向上することができる。
 また、皿ばね22が複数である場合に、ばらけ易い複数の皿ばね22を一括して保持するので、作動時においても複数の皿ばね22が芯ずれを起こすことを抑制することができて、好ましい。
 また、ラック軸8側からのラックガイド18に荷重が入力されて、ラックガイド18とともに保持部材24Qが変位するときに、保持部材24Qの案内筒37Qの(外周39Qの第1部分391Q)が、封止部材20の凹部35の内周352に対して摩擦摺動して摩擦抵抗荷重を発生する。また、皿ばね22が複数である場合には、複数の皿ばね22間の接触面どうしが、皿ばね22の圧縮変位に伴って摩擦摺動して摩擦抵抗荷重を発生する。保持部材24Qおよび皿ばね22による摩擦抵抗荷重が、ラック軸8側からの荷重入力に抗する対抗荷重として寄与するので、圧縮コイルばね21および皿ばね22による対抗荷重と摩擦抵抗荷重による対抗荷重を含めて、全体としての対抗荷重を増大させることができる。
 また、ラック軸8側からラックガイド18に大荷重が入力されたときに、ラックガイド18が保持部材24Qとともに封止部材20側へ移動する。このとき、圧縮された皿ばね22が発生する荷重に、封止部材20に対する保持部材24Qの(案内筒37Qの)摩擦係合の摩擦荷重を付加することができる。したがって、大荷重に対向する対抗荷重を増加できる。しかも、ラックガイド18がラック軸8側へ戻るときは、スムーズに戻れる。
 また、封止部材22とラックガイド18との間に介在してラックガイド18をラック軸8側に付勢する圧縮コイルばね21を皿ばね22と併用するので、荷重設定の自由度を向上することができる。
<第13実施形態>
 図28は、本発明の第13実施形態のラックガイド装置15Pの要部の拡大断面図である。図28の第2実施形態のラックガイド装置15Pが、図24の第12実施形態のラックガイド装置15Qと主に異なるのは、下記である。すなわち、図24の第12実施形態のラックガイド装置15Qでは、皿ばね22を保持した保持部材24Qの案内筒37Qが、封止部材20の凹部35の内周352に摩擦係合している。
 これに対して、図28の第13実施形態のラックガイド装置15Pでは、皿ばね22を保持した保持部材24Pの案内筒37Pが、ラックガイド18の凹部29Pの内周292Pに摩擦係合している。案内筒37Pは、軸方向X1に関して、第1端部371P(封止部材20側の端部に相当)と、第2端部372P(ラックガイド18P側の端部に相当)とを備えている。座板38Pは、第1端部371Pから径方向Y1の外方に延びている。
 圧縮コイルばね21は、封止部材20の凹部35の底351と、ラックガイド18Pの凹部29Pの底291Pとの間に圧縮された状態で介在している。
 案内筒37Pの外周39Pは、凹部29Pの内周292Pに摩擦係合する第1部分391Pと、皿ばね22の内径部22aを案内する第2部分392Pとを有している。案内筒37Pには、弾性的な縮径を可能とするように軸方向X1または軸方向X1に対して傾斜する方向に延びる第1スリット41Pが形成されている。また、座板38Pには、案内筒37Pの第1スリット41Pに連続する第2スリット42Pが形成されている。
 座板38Pは、封止部材20の封止部材20の端面201(筒状部36の端面に相当)に沿う第1面381Pと、皿ばね22Pの荷重を受ける座面である第2面382Pとを備えている。
 図28の第13実施形態の構成要素において、図24の第12実施形態の構成要素と同じ構成要素には、図24の第12実施形態の構成要素の参照符号と同じ参照符号を付してある。
 第13実施形態によれば、第1スリット41Pの幅の増減によって保持部材24の案内筒37Pの弾性縮径量を容易に調節して、案内筒37Pをラックガイド18Pの凹部29Pに摩擦係合させる簡単な作業で、皿ばね22および保持部材24をラックガイド18Pに容易に一体化させ、一体に取り扱うことのできるユニット(図30に示すように、皿ばね22と保持部材24Pとラックガイド18Pと弾性部材28と摺接板26とを含むラックガイドユニットとしての第2サブアセンブリSA2P)を構成することができる。したがって、ラックガイド装置15P全体としての組立性を向上することができる。ひいては、組立性に優れたステアリング装置1を提供することができる。
 特に、第1スリット41Pの幅の増減によって、組み合わされる各部品(案内筒37Pを有する保持部材24P、凹部29Pを有するラックガイド18P等)の寸法誤差を吸収して、保持部材24Pの案内筒37Pを凹部29Pの内周292Pに確実に摩擦係合させることができる。
 また、保持部材24Pが、皿ばね22の内径部22aを案内する案内筒37Pの一端に設けられた座板38Pによって、皿ばね22の荷重を受けるので、皿ばね22による封止部材20の摩耗の発生を抑制することができる。
 また、保持部材24Pの案内筒37Pの外周39Pの第1部分391Pによって、案内筒37Pからの皿ばね22の抜脱を抑制することができる。したがって、皿ばね22と保持部材24Pとを含んで一体に取り扱うことのできるユニット(図29に示す保持部材ユニットとしての第1サブアセンブリSA1P)を構成することができるので、全体としての組立性を向上することができる。
 また、皿ばね22が複数である場合に、ばらけ易い複数の皿ばね22を一括して保持するので、作動時においても複数の皿ばね22が芯ずれを起こすことを抑制することができて、好ましい。
 また、ラック軸8側からのラックガイド18Pに荷重が入力されて、ラックガイド18Pが保持部材24Pに対して変位するときに、保持部材24Pの案内筒37P(の外周39Pの第1部分391P)が、ラックガイド18Pの凹部29Pの内周292Pに対して摩擦摺動して摩擦抵抗荷重を発生する。また、皿ばね22が複数である場合には、弾性部材23による摩擦抵抗荷重の発生に加えて、複数の皿ばね22間の接触面どうしが、皿ばね22の圧縮変位に伴って摩擦摺動して摩擦抵抗荷重を発生する。保持部材24Pおよび皿ばね22による摩擦抵抗荷重が、ラック軸8側からの荷重入力に抗する対抗荷重として寄与するので、圧縮コイルばね21および皿ばね22による対抗荷重と摩擦抵抗荷重による対抗荷重を含めて、全体としての対抗荷重を増大させることができる。
 また、ラック軸8側からラックガイド18Pに大荷重が入力されたときに、ラックガイド18Pが保持部材24Pに対して移動する。このとき、圧縮された皿ばね22が発生する荷重に、ラックガイド18Pに対する保持部材24Pの(案内筒37Pの)摩擦係合の摩擦荷重を付加することができる。したがって、大荷重に対向する対抗荷重を増加できる。しかも、ラックガイド18Pがラック軸8側へ戻るときは、スムーズに戻れる。
 また、封止部材20とラックガイド18Pとの間に介在してラックガイド18Pをラック軸8側に付勢する圧縮コイルばね21を皿ばね22と併用するので、荷重設定の自由度を向上することができる。
 図28の第13実施形態において、ラックガイド18Pの端面と皿ばねとの間に、例えば鉄製や樹脂製の介在板を介在させて、皿ばね22によるラックガイド18Pの摩耗発生を抑制してもよい。
 本発明は、各前記実施形態に限定されるものではなく、例えば、摩擦係合部材を提供する弾性部材として、丸断面のOリングに拘らず、角断面のリング(図示せず)を用いることができる。
 また、各前記実施形態では、保持部材の案内筒が皿ばね22の径方向端部としての内径部22aを案内する内径ガイドとして機能しているが、保持部材の案内筒が皿ばね22の径方向端部としての外径部をガイドする外径ガイドとして機能するようにしてもよい。その他、本発明は請求項記載の範囲内で種々の変更を施すことができる。
1…ステアリング装置
7…ピニオン軸
7a…ピニオン
8…ラック軸
8a…ラック
15;15A;15B;15C;15D;15F;15G…ラックガイド装置
16…収容部
16a…内周
17…ハウジング
18…ラックガイド
181…第1面
182…第2面
19…外部開口端
20;20A;20B;20C;20G…封止部材
21;21B;21G…圧縮コイルばね
211;211G…第1端部
212;212G…第2端部
22…皿ばね
22a…内径部(径方向端部)
23;23A;23B…弾性部材(摩擦係合部材)
23H…弾性棒(弾性部材。摩擦係合部材)
24;24A;24B;24C;24F;24G;24H;24J;24K…保持部材
29…収容凹部
291…底
35…収容凹部
36;36A…筒状部
361…底
362…端面
363…外周
364;364A…外周(対向部)
37;37A;37B;37C;37D;37F;37G;37H;37J;37K…案内筒
371…第1端部
372…第2端部
373;373A;373D;373H;373J;373K…外周
374B;374C;374F;374J;374K…内周
38…座板
381…第1面
382…第2面
39;39A;39B;39C;39H…収容溝
40…凸部
401;401C…外周(対向部)
41;41E;41F…巻きブッシュ(弾性部材。摩擦係合部材)
411;411E;411F…内周
412;412E;412F…外周
42…連結部材
43…隙間規制板
431…第1面(隙間規制面)
432…第2面
44…挿通孔
45…ねじ孔
46…ねじ軸
47…頭部
D1;D1E…(摩擦係合部材の)外径
D1H…(摩擦係合部材としての弾性棒に外接する円の)直径
D2…(皿ばねの)内径
P1…第1特性部
P2…第2特性部
SA1;SA1E;SA1H…第1サブアセンブリ
SA2;SA2B;SA2D;SA2E;SA2H;SA2J;SA2K…第2サブアセンブリ
15Q;15P…ラックガイド装置
24Q;24P…保持部材
29Q;29P…凹部
291Q;291P…底
292Q;292P…内周
35…凹部
351…底
352…内周
37Q;37P…案内筒
371Q;371P…第1端部(一端)
372Q;372P…第2端部
38Q;38P…座板
39Q;39P…外周
391Q;391P…第1部分
392Q;392P…第2部分
41Q;41P…第1スリット
42Q;42P…第2スリット
D1Q…(第1部分の)外径
D2Q…(第2部分の)外径
D3…(皿ばねの)内径
SA1Q;SA1P…第1サブアセンブリ(保持部材ユニット)
SA2Q…第2サブアセンブリ(封止部材ユニット)
SA2P…第2サブアセンブリ(ラックガイドユニット)
X1…(案内筒の)軸方向
Y1…(案内筒の)径方向

Claims (13)

  1.  ピニオン軸に噛み合うラック軸を挿通させるハウジングに形成された収容部内に、ラック軸側に向かって進退可能に収容され、且つラック軸を当該ラック軸の軸方向に摺動可能に支持するラックガイドと、
     前記収容部においてラック軸側とは反対側に設けられた外部開口端に固定された封止部材と、
     前記封止部材と前記ラックガイドとの間に介在し前記ラックガイドをラック軸側へ付勢する少なくとも1枚の皿ばねと、
     前記皿ばねを保持し前記ラックガイドまたは前記封止部材に直接または間接的に摩擦係合されて保持された保持部材と、を備えるラックガイド装置。
  2.  請求項1において、前記封止部材および前記保持部材の少なくとも一方に保持されて他方に摩擦係合する摩擦係合部材と、を備えるラックガイド装置。
  3.  請求項2において、前記摩擦係合部材は、弾性部材を含むラックガイド装置。
  4.  請求項2又は3において、前記保持部材は、前記皿ばねの径方向端部を案内する案内筒と、前記案内筒の軸方向の一端から径方向に延びて前記皿ばねの荷重を受ける環状の座板と、を含むラックガイド装置。
  5.  請求項4において、前記封止部材は、前記案内筒の周面に対向する対向部を含み、
     前記摩擦係合部材は、前記案内筒の周面と前記封止部材の対向部との間に介在しているラックガイド装置。
  6.  請求項5において、前記摩擦係合部材は、前記案内筒の周面に保持されて、前記保持部材と前記摩擦係合部材と前記皿ばねとを含むサブアンセンブリが構成され、
     前記摩擦係合部材および前記皿ばねは、前記案内筒の径方向の同側に配置され、
     前記皿ばねは、前記案内筒の軸方向に関して、前記摩擦係合部材と前記座板との間に配置され、
     前記サブアセンブリの状態で、前記案内筒の軸方向から見て、前記摩擦係合部材の一部が前記皿ばねの一部と重なっているラックガイド装置。
  7.  請求項1において、前記保持部材は、前記ラックガイドおよび前記封止部材の何れか一方に設けられた凹部の内周に摩擦係合する第1部分と前記皿ばねの内径部を案内する第2部分とを有する外周を設けた案内筒を含み、
     前記案内筒には、弾性的な縮径を可能とするように軸方向または軸方向に対して傾斜する方向に延びるスリットが形成されているラックガイド装置。
  8.  請求項7において、前記保持部材は、前記案内筒の軸方向の一端から径方向に延びて前記皿ばねの荷重を受ける環状の座板を含み、
     前記座板には、前記案内筒のスリットとしての第1スリットに連続する第2スリットが形成されているラックガイド装置。
  9.  請求項7または8において、前記皿ばねと前記保持部材とを含み、一体に取り扱うことのできる保持部材ユニットが構成され、
     前記保持部材ユニットにおいて、前記第1部分の外径が、前記第2部分の外径よりも大きく且つ前記皿ばねの内径よりも大きくされているラックガイド装置。
  10.  請求項1から9の何れか一項において、前記封止部材と前記ラックガイドとの間に介在し前記ラックガイドを前記ラック軸側に付勢する圧縮コイルばねを備えるラックガイド装置。
  11.  請求項10において、前記圧縮コイルばねは、前記皿ばねと直列に配置され、
     前記圧縮コイルばねのセット荷重は、前記皿ばねのセット荷重よりも低くされているラックガイド装置。
  12.  請求項11において、前記ラックガイドの進退方向に関して、前記封止部材と前記保持部材との間の最大隙間量を規制するように、前記保持部材を前記封止部材に連結する連結部材を備えるラックガイド装置。
  13.  請求項1から12の何れか一項に記載のラックガイド装置を含むステアリング装置。
PCT/JP2014/059401 2013-04-01 2014-03-31 ラックガイド装置及びこれを含むステアリング装置 WO2014163029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14779859.9A EP2982569B1 (en) 2013-04-01 2014-03-31 Rack guide device and steering apparatus including same
US14/781,202 US10202142B2 (en) 2013-04-01 2014-03-31 Rack guide device and steering apparatus including same
CN201480019816.7A CN105339237B (zh) 2013-04-01 2014-03-31 齿条导引装置以及包括该齿条导引装置的转向设备
BR112015025216A BR112015025216A2 (pt) 2013-04-01 2014-03-31 dispositivo de guia de cremalheira e aparelho de direção incluindo o mesmo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013076311A JP6137533B2 (ja) 2013-04-01 2013-04-01 ラックガイド装置及びこれを含むステアリング装置
JP2013-076311 2013-04-01
JP2013-111202 2013-05-27
JP2013111202A JP6086233B2 (ja) 2013-05-27 2013-05-27 ラックガイド装置及びこれを含むステアリング装置

Publications (1)

Publication Number Publication Date
WO2014163029A1 true WO2014163029A1 (ja) 2014-10-09

Family

ID=51658325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059401 WO2014163029A1 (ja) 2013-04-01 2014-03-31 ラックガイド装置及びこれを含むステアリング装置

Country Status (5)

Country Link
US (1) US10202142B2 (ja)
EP (1) EP2982569B1 (ja)
CN (1) CN105339237B (ja)
BR (1) BR112015025216A2 (ja)
WO (1) WO2014163029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534961A (en) * 2015-02-05 2016-08-10 Showa Corp Rack and pinion mechanism
CN107635852A (zh) * 2015-05-04 2018-01-26 捷太格特欧洲公司 具有带有锥形基部的减震器的动力转向按钮

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563745B2 (en) * 2017-08-29 2020-02-18 Jtekt Automotive North America, Inc. Steering rack wear compensator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174284U (ja) * 1988-05-30 1989-12-11
JPH0939805A (ja) * 1995-07-27 1997-02-10 Toyota Motor Corp ラック・ピニオン式ステアリング装置
JPH1143055A (ja) * 1997-07-25 1999-02-16 Nippon Seiko Kk ステアリング装置
JP2008307966A (ja) * 2007-06-13 2008-12-25 Jtekt Corp ラックガイド装置
US8327731B2 (en) * 2008-11-18 2012-12-11 Mando Corporation Rack bar supporting device of steering apparatus for vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB976661A (en) 1960-03-02 1964-12-02 Cam Gears Ltd A new or improved rack and pinion steering gear
US3157061A (en) * 1962-03-22 1964-11-17 Eng Productions Clevedon Ltd Steering gear
JP3018502B2 (ja) * 1990-12-26 2000-03-13 豊田工機株式会社 ラックアンドピニオン形舵取装置
US5660078A (en) * 1995-03-21 1997-08-26 Techco Corporation Yoke apparatus for rack and pinion
GB2333079A (en) 1998-01-09 1999-07-14 Trw Steering Systems Limited Rack and pinion assembly
GB9922483D0 (en) * 1999-09-23 1999-11-24 Delphi Tech Inc Rack and pinion steering system
JP3676661B2 (ja) * 2000-08-30 2005-07-27 光洋精工株式会社 ラックピニオン式ステアリング装置
DE102004053462A1 (de) * 2004-11-05 2006-05-11 Zf Lenksysteme Gmbh Vorrichtung zum Andrücken einer Zahnstange
US7930951B2 (en) * 2008-03-07 2011-04-26 Nexteer (Beijing) Technology Co., Ltd. Rack and pinion steering gear with self-adjusting rack bearing
KR101268245B1 (ko) * 2011-06-17 2013-05-31 주식회사 만도 자동차 조향장치의 랙바 지지장치
US9657832B2 (en) * 2013-03-11 2017-05-23 Steering Solutions Ip Holding Corporation Steering rack wear compensator assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174284U (ja) * 1988-05-30 1989-12-11
JPH0939805A (ja) * 1995-07-27 1997-02-10 Toyota Motor Corp ラック・ピニオン式ステアリング装置
JPH1143055A (ja) * 1997-07-25 1999-02-16 Nippon Seiko Kk ステアリング装置
JP2008307966A (ja) * 2007-06-13 2008-12-25 Jtekt Corp ラックガイド装置
US8327731B2 (en) * 2008-11-18 2012-12-11 Mando Corporation Rack bar supporting device of steering apparatus for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534961A (en) * 2015-02-05 2016-08-10 Showa Corp Rack and pinion mechanism
CN105857386A (zh) * 2015-02-05 2016-08-17 株式会社昭和 齿条和小齿轮机构
US9469333B2 (en) 2015-02-05 2016-10-18 Showa Corporation Rack and pinion mechanism
CN105857386B (zh) * 2015-02-05 2019-02-05 株式会社昭和 齿条和小齿轮机构
CN107635852A (zh) * 2015-05-04 2018-01-26 捷太格特欧洲公司 具有带有锥形基部的减震器的动力转向按钮
CN107635852B (zh) * 2015-05-04 2021-02-02 捷太格特欧洲公司 用于机动车转向模块内的齿条的间隙补偿装置

Also Published As

Publication number Publication date
CN105339237A (zh) 2016-02-17
EP2982569B1 (en) 2019-06-19
CN105339237B (zh) 2018-11-02
US10202142B2 (en) 2019-02-12
EP2982569A4 (en) 2016-12-21
BR112015025216A2 (pt) 2017-07-18
EP2982569A1 (en) 2016-02-10
US20160052538A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP6137537B2 (ja) ラックガイド装置及びこれを含むステアリング装置
JP6112350B2 (ja) ラックガイド装置及びこれを含むステアリング装置
CN107031700B (zh) 转向装置
EP3141456B1 (en) Steering system
EP2684770B1 (en) Apparatus for pressing a rack against a pinion of a steering gear assembly
WO2014163029A1 (ja) ラックガイド装置及びこれを含むステアリング装置
JP5196259B2 (ja) ラック軸支持装置および車両用操舵装置
KR100861544B1 (ko) 랙 피니언 방식 조향장치의 서포트 요크 자동 유격보상장치
EP3093530A1 (en) Rack guide unit
JP5305092B2 (ja) ラック軸支持装置および車両用操舵装置
JP6137533B2 (ja) ラックガイド装置及びこれを含むステアリング装置
JP6132147B2 (ja) ラックガイド装置
JP6112354B2 (ja) ラックガイド装置
JP6086233B2 (ja) ラックガイド装置及びこれを含むステアリング装置
JP5321134B2 (ja) ラック軸支持装置及びこれを用いたラックアンドピニオン式ステアリング装置
JP5408497B2 (ja) ラック軸支持装置および車両用操舵装置
JP2008296752A (ja) 電動テレスコ調整式ステアリング装置
JP5954574B2 (ja) ラック軸支持装置及びこれを用いたステアリング装置
JP2015044486A (ja) ラック軸支持構造
JP2017001623A (ja) ラックガイド装置
JP2009191950A (ja) 伸縮軸
JP2009227029A (ja) ラックリテーナ及びこれを用いたラックピニオン式ステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019816.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781202

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014779859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025216

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015025216

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151001