WO2014160092A1 - Adeno-associated virus vectors and methods of use thereof - Google Patents
Adeno-associated virus vectors and methods of use thereof Download PDFInfo
- Publication number
- WO2014160092A1 WO2014160092A1 PCT/US2014/025794 US2014025794W WO2014160092A1 WO 2014160092 A1 WO2014160092 A1 WO 2014160092A1 US 2014025794 W US2014025794 W US 2014025794W WO 2014160092 A1 WO2014160092 A1 WO 2014160092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- aav
- disease
- acid molecule
- brain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00041—Use of virus, viral particle or viral elements as a vector
- C12N2750/00043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00041—Use of virus, viral particle or viral elements as a vector
- C12N2750/00045—Special targeting system for viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14145—Special targeting system for viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/6027—Vectors comprising as targeting moiety peptide derived from defined protein from viruses ssDNA viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01031—Beta-glucuronidase (3.2.1.31)
Definitions
- This application relates to the fields of gene therapy and molecular biology. More specifically, this invention provides adeno-associated viral vectors with improved gene transfer to the brain.
- Adeno-associated virus is a helper-dependent virus (Dependo virus) of the family parvoviridae and requires a helper virus for replication. After infection, the AAV typically enters a latent phase where the AAV genome is site specifically integrated into host chromosomes. The AAV genome is only rescued, replicated, and packaged into infectious viruses again upon an infection with a helper virus. Accordingly, natural infections take place in the context of infection with a helper virus, such as adenovirus or herpes simplex virus.
- a helper virus such as adenovirus or herpes simplex virus.
- AAV vectors are nonpathogenic and result in long-term expression of the encoded heterologous gene, but they are also capable of transducing nondividing cells, which is necessary for treatment of the central nervous system (CNS).
- Adeno- associated virus (AAV) vectors are scalable, efficient, non-cytopathic gene delivery vehicles used primarily for the treatment of genetic diseases. Indeed, a broad spectrum of animal models of human diseases has been successfully treated by AAV vectors, including diseases of the brain, heart, lung, eye and liver (Mingozzi et al. (2011) Nat. Rev. Genet., 12:341-355).
- compositions and methods for improved delivery of a nucleic acid molecule to the brain, particularly the neurons therein are provided.
- the method comprises administering to a subject an AAV vector comprising the nucleic acid molecule of interest, wherein the AAV vector comprises hu.32 or rh.8 capsid proteins or variants thereof.
- the capsid protein comprises at least 90%, 95%, or more homology/identity with SEQ ID NO: 1 or 3 or is encoded by a nucleic acid molecule having at least 90%, 95%, or more homology/identity with SEQ ID NO: 2 or 4.
- the AAV may be delivered to the subject intravascularly, e.g., as part of a composition comprising at least one pharmaceutically acceptable carrier.
- the disease or disorder effects more than the brain (e.g., the disease or disorder is a multi-organ disease or disorder (e.g., LSD)).
- the method comprises administering to a subject an AAV vector comprising a nucleic acid molecule encoding a therapeutic protein or inhibitory nucleic acid molecule, wherein the AAV vector comprises hu.32 or rh.8 capsid proteins or variants thereof.
- the capsid protein comprises at least 90%, 95%, or more homology/identity with SEQ ID NO: 1 or 3 or is encoded by a nucleic acid molecule having at least 90%, 95% or more homology/identity with SEQ ID NO: 2 or 4.
- the AAV may be delivered to the subject intravascularly, e.g., as part of a composition comprising at least one pharmaceutically acceptable carrier and, optionally, at least one other therapeutic agent.
- Figure 1A provides an amino acid sequence of hu.32 capsid (SEQ ID NO: 1).
- Figure IB provides a nucleotide sequence of hu.32 capsid (SEQ ID NO: 2).
- Figure 1C provides an amino acid sequence of rh.8 capsid (SEQ ID NO: 3).
- Figure ID provides a nucleotide sequence of rh.8 capsid (SEQ ID NO: 4).
- Figures 2A and 2B provide images of various regions of the mouse brain depicting AAV infection as evidenced by GFP expression.
- Figures 3A-3D provide images of various regions of the mouse brain depicting AAV infection as evidenced by green fluorescent protein (GFP) expression.
- Figure 3A is AAV2/hu32
- Figure 3B is AAV2/rh8
- Figure 3C is AAV2/9
- Figure 3D is AAV2/hul l .
- Figure 4 provides images of various regions of the feline brain depicting AAV infection as evidenced by GFP expression.
- Figure 5A provides images of brain slices from the cortex (ctx), hippocampus (hp), cerebellum (cer), and striatum (str) showing GFP expression indicating AAV infection and NeuN (Fox-3) staining indicating neurons.
- Figure 5B provides images of brain slices from the cortex (ctx), hippocampus (hp), and striatum (str) showing GFP expression indicating AAV infection and glial fibrillary acidic protein (GFAP) staining indicating astrocytes.
- GFAP glial fibrillary acidic protein
- Figure 5C provides images of brain slices from the cortex (ctx) and striatum (str) showing GFP expression indicating AAV infection and adenomatous polyposis coli (APC) staining indicating oligodendrocytes.
- Figure 6 provides histopathology images of hippocampus, thalamus, and entorhinal cortex brain sections from normal mice, untreated MPS VII mice, and MPS VII mice transduced with AAV.hu32.hGBp.GUSB.
- Adeno-associated virus (AAV) vectors are among the most promising viral vectors for in vivo gene transfer.
- the prototype AAV2 vector results in relatively limited transduction of central nervous system (CNS) cells, and many humans are seropositive for AAV2, thereby limiting its use in clinical applications.
- CNS central nervous system
- capsid proteins from alternative AAV serotypes have resulted in improved gene transfer in a variety of tissues, including the brain (Davidson et al. (2000) Proc. Natl. Acad. Sci., 97:3428-3432; Passini et al. (2003) J. Virol., 77:7034-7040; Burger et al. (2004) Mol.
- AAV capsid sequences have been isolated from humans and nonhuman primates by molecular rescue of sequences of endogenous AAVs.
- the capsid sequences have been phylogenetically characterized into six clades: A through F (Gao et al. (2002) Proc. Natl. Acad. Sci., 99: 1 1854-1 1859; Gao et al. (2003) Proc. Natl. Acad.
- Certain AAV serotypes have a specific tropism for neurons and are unable to efficiently transduce other cell types within the brain such as astrocytes or
- oligodendrocytes while other AAV serotypes are able to undergo vector transport along neuronal projections (Davidson et al. (2000) Proc. Natl. Acad. Sci., 97:3428-3432; Burger et al. (2004) Mol. Ther., 10:302-317; Cearley et al. (2006) Mol. Ther., 13:528- 537; Kaspar et al. (2003) Science 301 :839-842; Passini et al. (2005) Mol. Ther., 1 1 :754- 762; Cearley et al. (2007) J. Neurosci., 27:9928-9940; Cearley et al. (2008) Mol. Ther., 16: 1710-1718; Foust et al. (2009) Nat. Biotech., 27:59-65).
- the instant invention demonstrates that AAV vectors comprising the hu.32 or rh.8, particularly the hu.32, capsid protein mediate AAV vector gene transfer into the brain of mice after intravascular injection.
- the first two letters of the nomenclature refer to the species of isolation (hu: human) followed by the number of the isolate from that species.
- the AAV vector specifically transduces neurons in the brain, especially the cerebral cortex, and is very widespread. The types of cells transduced by the instant AAV vectors along with the amount of distribution within the brain are unique.
- the instant AAV vector is less efficient in transducing the liver than other AAV serotypes, thereby reducing the untoward immune response to the AAV vector in vivo, a clinical drawback of many AAV vectors.
- the distribution within the brain makes the AAV vector of the instant invention an excellent vector for the treatment of a variety of disorders including genetic disorders affecting the brain (including diseases or disorders affecting other parts of the body in addition to the brain) such as lysosomal storage diseases and neurodegenerative diseases (e.g., Alzheimer's disease).
- GenBank Accession Nos. AY530597 and AAS99282 provide examples of the amino acid and nucleotide sequences of hu.32 capsid (vpl).
- GenBank Accession Nos. AA088183 and AY242997 provide examples of the amino acid and nucleotide sequences of rh.8 capsid (vpl).
- the AAV capsid is composed of three proteins, vpl, vp2 and vp3, which are alternative splice variants. In other words, vp2 and vp3 are fragments of vpl .
- Figure 1A provides SEQ ID NO: 1, which is the wild-type amino acid sequence of hu.32 vpl capsid.
- Figure IB provides SEQ ID NO: 2, which is the wild- type nucleotide sequence of hu.32 vpl capsid.
- Figure 1C provides SEQ ID NO: 3, which is the wild-type amino acid sequence of rh.8 vpl capsid.
- Figure ID provides SEQ ID NO: 4, which is the wild-type nucleotide sequence of rh.8 vpl capsid.
- the instant invention encompasses variants of the hu.32 and rh.8 capsids. In a particular
- the capsid of the instant invention has an amino acid sequence that is at least 80%, at least 90%, at least 95%, at least 97%, at least 99%, or is 100% identical with SEQ ID NO: 1 or SEQ ID NO: 3.
- the nucleic acid molecule encoding capsid of the instant invention has a nucleotide sequence that is at least 80%, at least 90%, at least 95%, at least 97%, at least 99%, or is 100% identical with SEQ ID NO: 2 or SEQ ID NO: 4.
- the instant invention encompasses methods of delivering a nucleic acid molecule of interest (e.g., heterologous) to cells, particularly in a subject (i.e., in vivo).
- the method delivers the nucleic acid molecule to neurons or the brain, particularly neurons within the brain.
- the method delivers the nucleic acid molecule to the olfactory bulb, striatum, cortex, hippocampus, hypothalamus, subthalamus, midbrain, brain stem, superior colliculus, inferiot colliculus, entorhinal cortex, subiculum, and/or cerebellum.
- the method may comprise contacting the cells with (e.g., by administering to the subject) an AAV vector comprising the hu.32 or rh.8 capsid of the instant invention, wherein the AAV vector comprises the nucleic acid molecule to be delivered.
- the packaged nucleic acid molecule may encode, for example, a protein of interest (e.g., a therapeutic protein) or an inhibitory nucleic acid molecule (e.g., antisense, siRNA, DsiRNA (Dicer siRNA/Dicer-substrate RNA), shRNA, miRNA (microRNA), etc.).
- the nucleic acid molecule to be delivered to the subject is a gain-of- function manipulation.
- the delivery of a nucleic acid molecule of interest in accordance with the instant invention may be used to create a disease model (e.g., a brain disease model) in the subject (e.g., the expression of at least one protein of interest (e.g., a mutant) associated with a disease or disorder).
- a disease model e.g., a brain disease model
- the delivery of a nucleic acid molecule of interest in accordance with the instant invention may be used to create a disease model of a neurodegenerative disease such as Alzheimer's disease (e.g., by expressing at least one gene (e.g., a mutant) associated with Alzheimer's disease (see, e.g., Chin, J. (201 1) Methods Mol. Biol, 670: 169-89; Mineur et al.
- the instant invention also encompasses the disease models generated by the methods of the instant invention.
- the nucleic acid molecule of the instant invention may further comprise appropriate regulatory elements such as promoters or expression operons to express the encoded for protein or inhibitory nucleic acid molecule.
- the method comprises administering to a subject in need thereof an AAV vector comprising the hu.32 or rh.8 capsid of the instant invention, wherein the AAV vector comprises a nucleic acid molecule of interest (e.g., therapeutic nucleic acid molecule) to be delivered.
- the AAV vector is administered as part of a composition comprising at least one pharmaceutically acceptable carrier.
- the AAV vectors of the instant invention may be co-administered with any other therapeutic method for the treatment of the disease or disorder.
- the nucleic acid molecule of the AAV vector may encode a therapeutic protein or a therapeutic inhibitory nucleic acid molecule (e.g., siRNA).
- the nucleic acid molecule may further comprise appropriate regulatory elements such as promoters or expression operons to express the encoded for protein or inhibitory nucleic acid molecule.
- the disease or disorder is a genetic disease or disorder affecting the brain.
- diseases or disorders that may treated include, without limitation: neurological degenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease (HD), stroke, trauma, infections, meningitis, encephalitis, gliomas, cancers (including brain metastasis), multiple system atrophy, progressive supranuclear palsy, Lewy body disease, neuroinflammatory disease, spinal muscular atrophy, amyotrophic lateral sclerosis, neuroAIDS, Creutzfeldt- Jakob disease, Pick's Disease, multi-infarct dementia, frontal lobe degeneration, corticobasal degeneration, HIV-1 associated dementia (HAD), HIV associated neurocognitive disorders (HAND), paralysis, amyotrophic lateral sclerosis (ALS or Lou Gerhig's disease), multiple sclerosis (MS), CNS-associated cardiovascular disease, prion disease, obesity, metabolic disorders, inflammatory disease, metabolic disorders, and lysosom
- Gene transfer may be used to provide therapy for a variety of disease states.
- gene transfer may be used to treat: 1) deficiency states, wherein a protein (e.g., an enzyme) is expressed at abnormally low levels or is defective (e.g., mutated) and has diminished activity, which can be treated by introducing a nucleic acid encoding for the protein (e.g., wild-type protein); and 2) over-expression states, wherein a protein is expressed to abnormally high levels or is defective (e.g., mutated) and has increased or uncontrolled activity, which can be treated by introducing an inhibitory nucleic acid molecule directed against the protein.
- the use of site-specific integration of nucleic acid sequences to cause mutations or to correct defects is also encompassed by the instant invention.
- a therapeutic protein is a peptide or protein that alleviates or reduces symptoms that result from an absence or defect in a protein in a cell or subject.
- a therapeutic protein may be a peptide or protein that may be used in the treatment of a disease or disorder.
- Therapeutic proteins include, but are not limited to, enzymes, antibodies, hormones, growth factors, other polypeptides, which administration to cells (e.g., neurons) can effect amelioration and/or cure of a disease, disorder, pathology, and/or the symptoms associated therewith.
- Neuroactive polypeptides useful in this invention include but are not limited to endocrine factors, growth factors, hypothalamic releasing factors, neurotrophic factors, paracrine factors, neurotransmitter polypeptides, antibodies and antibody fragments which bind to any of the above polypeptides (such as neurotrophic factors, growth factors, and others), antibodies and antibody fragments which bind to the receptors of these polypeptides (such as neurotrophic factor receptors), cytokines, endorphins, enzymes, polypeptide antagonists, agonists for a receptor expressed by a CNS cell, polypeptides involved in lysosomal storage diseases, and the like.
- the therapeutic protein exerts its effect on the CNS, particularly the brain.
- Examples of specific therapeutic proteins include, without limitation, ⁇ - glucuronidase (e.g., for the treatment of lysosomal storage disorders), catalase, telomerase, superoxide dismutase (SOD), glutathionperoxidase, glutaminase, cytokines, endorphins (e.g., enkephalin), growth factors (e.g., epidermal growth factor (EGF)), acidic and basic fibroblast growth factor (aFGF and bFGF), insulin-like growth factor I (IGF-I; e.g., Oppenheim, RW (1996) Neuron 17:195-197; Thoenen et al. (1993) Exp.
- ⁇ - glucuronidase e.g., for the treatment of lysosomal storage disorders
- catalase telomerase
- SOD superoxide dismutase
- glutathionperoxidase glutaminase
- BDNF brain-derived neurotrophic factor
- GDNF glial-derived neurotrophic factor
- NT-3 neurotrophin-3
- NT-4/5 neurotrophin-3
- PNI protease nexin I
- SPI3 serine protease inhibitor protein
- PDGF platelet derived growth factor
- VEF vascular growth factor
- NGF nerve growth factor
- IGF-II insulin-like growth factor-II
- TGF-B tumor necrosis factor-B
- SNS survival motor neuron
- LIF leukemia inhibitory factor
- anti-apoptotic proteins e.g., BCL-2, PI3 kinase
- amyloid beta binders e.g.
- ⁇ -, ⁇ -, and/or ⁇ -secretases modulators of ⁇ -, ⁇ -, and/or ⁇ -secretases, vasoactive intestinal peptide, leptin, acid alpha-glucosidase (GAA), acid sphingomyelinase, iduronate-2- sultatase (I2S), a-L-iduronidase (IDU), ⁇ -Hexosaminidase A (HexA), ⁇ - ⁇ - acetylhexosaminidase A Acid ⁇ -glucocerebrosidase, N-acetylgalactosamine-4-sulfatase, a-galactosidase A, and neurotransmitters (e.g., ⁇ -glucocerebrosidase, N-acetylgalactosamine-4-sulfatase, a-galactosidase A, and neurotransmitters (e
- the therapeutic protein is ⁇ -glucuronidase.
- the AAV of the instant invention may deliver a nucleic acid molecule encoding a detectable protein (e.g., either alone or in combination with a therapeutic protein).
- Detectable proteins include, without limitation, fluorescent proteins (e.g., GFP), horseradish peroxidase, urease, alkaline phosphatase, glucoamylase, ferritin, dopamine receptor, and ⁇ -galactosidase.
- Methods of synthesizing AAV vectors are well known in the art (see, e.g., PCT/US04/028817 and Gao et al. (2002) Proc. Natl. Acad.
- the method comprises culturing host cells comprising a nucleic acid sequence encoding hu.32 or rh.8 capsid, a nucleic acid encoding rep, and a nucleic acid construct comprising AAV inverted terminal repeats (ITRs) flanking at least the nucleic acid molecule of interest, such that the nucleic acid of interest is packaged in to AAV vectors.
- ITRs AAV inverted terminal repeats
- scAAV self-complimentary vector
- the full coding capacity found in rAAV is about 4.5 kb or larger, whereas scAAV typically have a capacity of about 2.3 kb.
- proteins of interest e.g., enzymes
- the host cell may also provide helper functions (e.g., those supplied by a herpesvirus or adenovirus) to package the AAV vectors.
- the components required of the host cell to package nucleic acid molecules into AAV vectors may be provided in trans or by a stably transduced host cell.
- the rep gene and/or the AAV ITRs may be from any AAV serotype.
- the rep gene and/or the AAV ITRs may be from, without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, etc.
- the AAV ITRs are from the AAV2 serotype.
- the encapsulated nucleic acid molecule may encode more than one protein or polypeptide.
- the encoding regions may be separated by an internal ribozyme entry site (IRES) or nucleic acid sequence encoding a self-cleaving peptide such as a 2A peptide.
- IRS internal ribozyme entry site
- the instant invention encompasses methods of treating a disease or disorder in a subject (e.g., a neurological disease or disorder) comprising the administration of a composition comprising the AAV vectors of the instant invention and at least one pharmaceutically acceptable carrier to a subject in need thereof.
- a subject e.g., a neurological disease or disorder
- composition comprising the AAV vectors of the instant invention and at least one pharmaceutically acceptable carrier to a subject in need thereof.
- subject refers to human or animal (particularly mammalian) subjects.
- the AAV vectors of the invention may be conveniently formulated for administration with any pharmaceutically acceptable carrier.
- the viral vectors may be formulated with an acceptable medium such as water, buffered saline, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), dimethyl sulfoxide (DMSO), oils, detergents, suspending agents or suitable mixtures thereof.
- concentration of the AAV vectors in the chosen medium may be varied and the medium may be chosen based on the desired route of administration of the pharmaceutical preparation. Except insofar as any conventional media or agent is incompatible with the AAV vector to be administered, its use in the pharmaceutical preparation is contemplated.
- compositions according to the invention that are suitable for administration to a particular patient may be determined by a
- physician/veterinarian/medical specialist considering the patient's age, sex, weight, general medical condition, and the specific condition for which the AAV vector is being administered and the severity thereof.
- the physician/veterinarian/medical specialist may also take into account the route of administration, the pharmaceutical carrier, and the
- AAV vector's biological activity Exemplary doses for achieving therapeutic effects are AAV titers of at least about 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , 10 15 ,10 16 transducing units or more, particularly about 10 8 to 10 13 transducing units.
- more than one administration e.g., two, three, four, or more administrations
- the pharmaceutical preparation comprises the AAV vector preferably dispersed in a medium that is compatible with the site of injection.
- AAV vectors of the instant invention may be administered by any method such as injection into the blood stream, oral administration, or by subcutaneous, intracranial, intramuscular or intraperitoneal injection.
- the AAV vector of the invention may be administered by direct injection into an area proximal to or across the blood brain barrier.
- the composition comprising the AAV vector is administered directly to or to an area proximal to a neuron(s).
- the composition comprising the AAV vector is administered intravascularly or
- the AAV vectors of the instant invention may be administered into any fluid space of the subject including, without limitation, blood or cerebrospinal fluid (CSF).
- CSF cerebrospinal fluid
- Pharmaceutical preparations for injection are known in the art. If injection is selected as a method for administering the AAV vectors, steps must be taken to ensure that sufficient amounts of the viral vectors reach their target cells to exert a biological effect.
- compositions containing an AAV vector the present invention as the active ingredient in intimate admixture with a pharmaceutically acceptable carrier can be prepared according to conventional pharmaceutical techniques.
- the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravascular, direct injection, intracranial, and intramuscular.
- a pharmaceutical preparation of the invention may be formulated in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form refers to a physically discrete unit of the pharmaceutical preparation appropriate for the patient undergoing treatment. Each dosage should contain a quantity of active ingredient calculated to produce the desired effect in association with the selected pharmaceutical carrier. Procedures for determining the appropriate dosage unit are well known to those skilled in the art.
- the appropriate dosage unit for the administration of AAV vectors may be determined by evaluating toxicity, if any, in animal models.
- Various concentrations of AAV vectors in pharmaceutical preparations may be administered to mice or other animals (e.g., models of the disease to be treated), and the minimal and maximal dosages may be determined based on the beneficial results and side effects observed as a result of the treatment.
- Appropriate dosage unit may also be determined by assessing the efficacy of the AAV vector treatment in combination with other standard drugs.
- the dosage units of AAV vector may be determined individually or in combination with each treatment according to the effect detected.
- the AAV vectors, reagents, and methods of the present invention can be used to direct a nucleic acid to either dividing or non-dividing cells, and to stably express the nucleic acid therein.
- the vectors of the present invention can thus be useful in gene therapy for disease states or for experimental modification of cell physiology. Definitions
- Gene therapy is the insertion of nucleic acids (e.g., genes) into an individual's cells and/or tissues to treat a disease or disorder, commonly hereditary or genetic diseases (e.g., wherein a defective mutant allele is replaced or supplemented with a functional one).
- nucleic acids e.g., genes
- treat refers to any type of treatment that imparts a benefit to a patient afflicted with a disease, including improvement in the condition of the patient (e.g., in one or more symptoms), delay in the progression of the condition, etc.
- a "therapeutically effective amount" of a compound or a pharmaceutical composition refers to an amount effective to prevent, inhibit, treat, or lessen a particular disorder or disease and/or the symptoms associated with it.
- the treatment of a neurological disease or disorder herein may refer to curing, relieving, inhibiting, and/or preventing the neurological disease or disorder, a symptom(s) of it, or the predisposition towards it.
- an “inhibitory nucleic acid molecule” generally refers to small nucleic acid molecules which are capable of modulating expression levels of a target mRNA, (e.g., siRNA, shRNA, miRNA, DsiRNA, antisense oligonucleotides etc.). These molecules may inhibit expression of a target gene involved in mediation of a disease process, thereby preventing or alleviating the disease and/or the symptoms associated with it.
- a target mRNA e.g., siRNA, shRNA, miRNA, DsiRNA, antisense oligonucleotides etc.
- small, interfering RNA refers to a short (typically less than 30 nucleotides long, particularly 12-30 or 20-25 nucleotides in length) double stranded RNA molecule (although the siRNA may be generated by cleavage of longer dsRNA molecules).
- the siRNA modulates the expression of a gene to which the siRNA is targeted.
- siRNAs have homology (e.g., complete complementarity) with the sequence of the cognate mRNA of the targeted gene. Methods of identifying and synthesizing siRNA molecules are known in the art (see, e.g., Ausubel et al, Current
- siRNA molecules preferably employ a strong promoter which may be constitutive or regulated.
- promoters are well known in the art and include, but are not limited to, RNA polymerase II promoters, the T7 RNA polymerase promoter, and the RNA polymerase III promoters U6 and HI (see, e.g., Myslinski et al. (2001) Nucl. Acids Res., 29:2502-09).
- shRNA short hairpin RNA
- shRNA refers to an siRNA precursor that is a single RNA molecule folded into a hairpin structure comprising an siRNA and a single stranded loop portion of at least one, typically 1-10, nucleotide.
- shRNA molecules are typically processed into an siRNA within the cell by endonucleases.
- microRNA refers to any type of interfering RNA, including but not limited to, endogenous microRNA (naturally present in the genome) and artificial microRNA.
- MicroRNA typically have a length in the range of from about 18 to about 30 nucleotides, particularly about 21 to about 25 nucleotides.
- MicroRNA may be single-stranded RNA molecules.
- the microRNA may be in the form of pre-miRNA, typically a short stem-loop structure having a length of about 50 to about 90 nucleotides, particularly about 60 to about 80 nucleotides, which are subsequently processed into functional miRNAs.
- RNA interference refers generally to a sequence-specific or selective process by which a target molecule (e.g., a target gene, protein or RNA) is downregulated via a double-stranded RNA.
- a target molecule e.g., a target gene, protein or RNA
- the double-stranded RNA structures that typically drive RNAi activity are siRNAs, shRNAs, microRNAs, and other double- stranded structures that can be processed to yield a small RNA species that inhibits expression of a target transcript by RNA interference.
- DsiRNA refers to oligonucleotides which comprise at least one siRNA molecule and which serve as a substrate for Dicer to release the siRNA molecule, typically 21 nucleotides in length.
- DsiRNA are double-stranded and comprise RNA or DNA and RNA.
- DsiRNA are less than about 100 nucleotides in length, less than about 50 nucleotides in length, less than about 40 nucleotides in length, less than about 35 nucleotides in length, or less than about 30 nucleotides in length.
- the DsiRNA is 27 nucleotides in length. Examples of DsiRNA are provided in U.S. Patent Application Publication Nos. 2005/0244858; 2005/0277610; 2007/0265220; and 2010/0184841.
- Antisense nucleic acid molecules or “antisense oligonucleotides” include nucleic acid molecules (e.g., single stranded molecules) which are targeted
- antisense molecules are typically between about 10 and about 100 nucleotides in length, particularly between about 15 and about 50 nucleotides, more particularly between about 15 and about 30 nucleotides, and often span the translational start site of mRNA molecules.
- Antisense constructs may also be generated which contain the entire sequence of the target nucleic acid molecule in reverse orientation.
- Antisense oligonucleotides targeted to any known nucleotide sequence can be prepared by oligonucleotide synthesis according to standard methods.
- “Pharmaceutically acceptable” indicates approval by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- a “carrier” refers to, for example, a diluent, adjuvant, preservative (e.g.,
- promoter can refer to a DNA sequence that is located adjacent to a DNA sequence that encodes a recombinant product.
- a promoter is preferably linked operatively to an adjacent DNA sequence.
- a promoter typically increases an amount of recombinant product expressed from a DNA sequence as compared to an amount of the expressed recombinant product when no promoter exists.
- a promoter from one organism can be utilized to enhance recombinant product expression from a DNA sequence that originates from another organism.
- a vertebrate promoter may be used for the expression of jellyfish GFP in vertebrates.
- one promoter element can increase an amount of recombinant products expressed for multiple DNA sequences attached in tandem.
- one promoter element can enhance the expression of one or more recombinant products.
- Multiple promoter elements are well-known to persons of ordinary skill in the art. Inducible promoters, tissue-specific promoters, native promoters, or constitutive or high level promoters may be used. In a particular embodiment, high-level constitutive expression may be desired.
- promoters examples include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter/enhancer, the cytomegalovirus (CMV) immediate early promoter/enhancer, the SV40 promoter, the dihydrofolate reductase promoter, the cytoplasmic ⁇ -actin promoter and the phosphoglycerol kinase (PGK) promoter.
- RSV Rous sarcoma virus
- CMV cytomegalovirus
- SV40 promoter the dihydrofolate reductase promoter
- PGK phosphoglycerol kinase
- the native promoter for the transgene or nucleic acid sequence of interest is used. The native promoter may be preferred when it is desired that expression of the transgene or the nucleic acid sequence should mimic the native expression.
- the native promoter may be used when expression of the transgene or other nucleic acid sequence must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli.
- other native expression control elements such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.
- the tissue-specific promoter is neuron specific. Examples of neuron specific protomers include, without limitation: neuron-specific enolase (NSE) promoter (Andersen et al. (1993) Cell. Mol. NeurobioL, 13:503-15); neurofilament light- chain gene (Piccioli et al. (1991) Proc. Natl. Acad. Sci., 88:5611-5); the neuron-specific vgf gene (Piccioli et al. (1995) Neuron, 15:373-84)]; and the like.
- NSE neuron-specific enolase
- Enhancer can refer to a DNA sequence that is located adjacent to the DNA sequence that encodes a recombinant product.
- Enhancer elements are typically located upstream of a promoter element or can be located downstream of or within a coding DNA sequence (e.g., a DNA sequence transcribed or translated into a recombinant product or products).
- a coding DNA sequence e.g., a DNA sequence transcribed or translated into a recombinant product or products.
- an enhancer element can be located 100 base pairs, 200 base pairs, or 300 or more base pairs upstream or downstream of a DNA sequence that encodes recombinant product.
- Enhancer elements can increase an amount of recombinant product expressed from a DNA sequence above increased expression afforded by a promoter element. Multiple enhancer elements are readily available to persons of ordinary skill in the art.
- nucleic acid or a “nucleic acid molecule” as used herein refers to any DNA or RNA molecule, either single or double stranded and, if single stranded, the molecule of its complementary sequence in either linear or circular form.
- a sequence or structure of a particular nucleic acid molecule may be described herein according to the normal convention of providing the sequence in the 5' to 3' direction.
- isolated nucleic acid is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous in the naturally occurring genome of the organism in which it originated.
- an "isolated nucleic acid” may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a prokaryotic or eukaryotic cell or host organism.
- a “vector” is a replicon, such as a plasmid, cosmid, bacmid, phage or virus, to which another genetic sequence or element (either DNA or RNA) may be attached so as to bring about the expression and/or replication of the attached sequence or element.
- the term “gene” refers to a nucleic acid comprising an open reading frame encoding a polypeptide, including exon and (optionally) intron sequences. The nucleic acid may also optionally include non-coding sequences such as promoter or enhancer sequences.
- the term “intron” refers to a DNA sequence present in a given gene that is not translated into protein and is generally found between exons.
- an "expression operon” refers to a nucleic acid segment that may possess transcriptional and translational control sequences, such as promoters, enhancers, translational start signals (e.g., ATG or AUG codons), polyadenylation signals, terminators, and the like, and which facilitate the expression of a polypeptide coding sequence in a host cell or organism.
- transcriptional and translational control sequences such as promoters, enhancers, translational start signals (e.g., ATG or AUG codons), polyadenylation signals, terminators, and the like, and which facilitate the expression of a polypeptide coding sequence in a host cell or organism.
- operably linked means that the regulatory sequences necessary for expression of the coding sequence are placed in the DNA molecule in the appropriate positions relative to the coding sequence so as to effect expression of the coding sequence. This same definition is sometimes applied to the arrangement of transcription units and other transcription control elements (e.g. enhancers) in an expression vector.
- oligonucleotide refers to sequences, primers and probes of the present invention, and is defined as a nucleic acid molecule comprised of two or more ribo- or deoxyribonucleotides, preferably more than three. The exact size of the oligonucleotide will depend on various factors and on the particular application and use of the oligonucleotide.
- isolated may refer to protein, nucleic acid, compound, or cell that has been sufficiently separated from the environment with which it would naturally be associated, e.g., so as to exist in “substantially pure” form. "Isolated” does not necessarily mean the exclusion of artificial or synthetic mixtures with other compounds or materials, or the presence of impurities that do not interfere with the fundamental activity, and that may be present, for example, due to incomplete purification.
- percent identity refers to the percentage of sequence identity found in a comparison of two or more nucleic acid sequences. Percent identity can be determined by standard alignment algorithms, for example, the Basic Local Alignment Search Tool (BLAST) described by Altshul et al. (J. Mol. Biol. (1990) 215:403-10) as well as GAP, BESTFIT, FASTA, and TFASTA (available as part of the GCG® Wisconsin Package® (Accelrys Inc., Burlington, MA)).
- BLAST Basic Local Alignment Search Tool
- Polypeptide and “protein” are sometimes used interchangeably herein and indicate a molecular chain of amino acids.
- the term polypeptide encompasses peptides, oligopeptides, and proteins.
- the terms also include post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like.
- protein fragments, analogs, mutated or variant proteins, fusion proteins and the like are included within the meaning of polypeptide.
- AAV hu.32 capsid was cloned into an AAV2 -based packaging plasmid to obtain a hybrid construct with AAV2 rep and the alternative cap in frame as described (Gao et al. (2002) Proc. Natl. Acad. Sci., 99: 1 1854-11859). All vectors comprised the cytomegalovirus promoter and enhanced GFP transgene and were cross-packaged into an AAV2 recombinant genome with heterologous cap sequence from the tested AAV variant using a triple-transfection procedure as described (Gao et al. (2002) Proc. Natl. Acad. Sci., 99: 11854-11859).
- mice were injected intravenously with the hu.32 AAV vector comprising the GFP transgene.
- mice were anesthetized with a mixture of ketamine and xylazine ( ⁇ 0.15 ml per mouse) and perfused transcardially with a solution of phosphate-buffered saline followed by 4% paraformaldehyde.
- Brains from animals were then removed and put in 4% paraformaldehyde overnight, following which they were transferred to 30% sucrose for cryoprotection. Once the brains sank in the sucrose, they were mounted in optimum cutting temperature solution (Sakura, Torrance, CA) and frozen at -20°C until sectioning. Sectioning was done at a thickness of 20 ⁇ using a cryostat (Leica Microsystems, Wetzlar, Germany) and the sections were mounted on three sets of slides which were then kept at -20°C until imaging by confocal microscopy.
- GFP was expressed intensely throughout the brain after intravenous injection. More specifically, GFP expression was detected in neurons in the olfactory bulb, cortex, striatum, hippocampus, midbrain, superior colliculus, entorhinal cortex, and cerebellum. These results demonstrate substantially greater levels of transduction than observed with AAV9 (Foust et al. (2009) Nat. Biotechnol, 27:59-65). Further, the widespread expression of GFP has been observed in Balb/c, C3H, and C57B1/6 mice.
- Figure 3 shows a comparison of gene transfer for AAV2/9, AAV2/hul 1, AAV2/rh8, and AAV2/hu32. Mice were injected intravenously with the same quantity of virus. However, as evidenced by Figure 3, hu32 dramatically increased the delivery to the brain over the other strains. Indeed, hul 1 showed minimal targeting to the brain, AAV9 showed weak targeting, rh8 showed improved targeting, and hu32 showed unexpectedly robust targeting.
- the targeting of the AAV vectors of the instant invention was also tested in cats.
- GFP expression was monitored 8 weeks post-infection. As seen in Figure 4, GFP was expressed intensely throughout the brain after intravascular (carotid) injection. More specifically, GFP expression was detected in neurons in the prefrontal cortex, caudate nucleus, putamen, cortex, hippocampus, midbrain, cerebellum, and brain stem.
- hu32 AAV vectors of the instant invention are infecting neurons
- cells of infected brain regions were studied for GFP expression (indicating infection by the AAV vector) and cell-type specific markers.
- GFP expression indicating infection by the AAV vector
- cell-type specific markers Specifically, expression of NeuN (Fox-3) was used to identify neurons, expression of glial fibrillary acidic protein (GFAP) was used to identify astrocytes, and expression of adenomatous polyposis coli (APC) was used to identify oligodendrocytes.
- Figure 5A shows the double staining of neurons (GFP+, NeuN+) in the cortex, hippocampus, cerebellum, and striatum, indicating that the neurons were infected with GFP encoding hu32 AAV vector.
- Figures 5B and 5C show that there is no double staining of astrocytes or oligodendrocytes, respectively, thereby indicating that the hu32 AAV vector did not transduce these cell types. Accordingly, these results demonstrate that the AAV vector of the instant invention is able to selectively infect neurons to the exclusion of astrocytes and oligodendrocytes.
- Adeno-associated virus serotype 9 can cross the blood-brain barrier and infect neurons and astrocytes and other tissues (Foust et al. (2009) Nat Biotechnol, 27:59-65; Cearley et al. (2008) Mol. Ther., 16: 1710-1718). However, it has recently been determined that AAV9 was unable to transduce CNS neurons in a mouse model of the lysosomal storage disease (LSD) mucopolysaccharidosis (MPS) VII (Chen et al. (2012) Mol. Ther., 20: 1393-1399).
- LSD lysosomal storage disease
- MPS mucopolysaccharidosis
- the hu32 AAV vectors of the instant invention were capable of transducing neurons upon systemic administration.
- Table 1 shows ⁇ -glucuronidase (GUSB) activity of lysates of cryostat cut brain sections from 4 MPS VII mice treated with AAV.hu32.hGBp.GUSB. Briefly, GUSB enzyme activity was determined by the cleavage of a substrate to 4-methylumbelliferone (4-MU) by GUSB, where 4-MU can be detected fluorometrically.
- the intravascular delivery of the hu32 AAV vector leads to transduction of brain neurons and very high - well above therapeutic levels - expression of GUSB.
- Table 1 ⁇ -glucuronidase activity as percent of normal is provided from 4 cryostat cut brain samples obtained from 4 MPS VII mice transduced with AAV.hu32.hGBp. GUSB.
- Figure 6 provides histopathology images of normal mice, untreated MPS VII mice, and MPS VII mice transduced with AAV.hu32.hGUSB.GFP. Sections of the hippocampus, thalamus, and entorhinal cortex were examined. The untreated MPS VII mice brain slices show the characteristic lesions observed with MPS VII. In stark contrast, the MPS VII mice treated with AAV.hu32.hGBp.GUSB show a histopathology similar to normal mice without the hallmark lesions of MPS.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016501968A JP2016514152A (ja) | 2013-03-13 | 2014-03-13 | アデノ随伴ウイルスベクターおよびその使用の方法 |
| CA2905952A CA2905952A1 (en) | 2013-03-13 | 2014-03-13 | Adeno-associated virus vectors and methods of use thereof |
| AU2014244167A AU2014244167A1 (en) | 2013-03-13 | 2014-03-13 | Adeno-associated virus vectors and methods of use thereof |
| EP14776247.0A EP2970946A4 (en) | 2013-03-13 | 2014-03-13 | ADENOASSOZED VIRUS VECTORS AND METHOD FOR USE THEREOF |
| US14/850,292 US20150374803A1 (en) | 2013-03-13 | 2015-09-10 | Adeno-associated virus vectors and methods of use thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361780423P | 2013-03-13 | 2013-03-13 | |
| US61/780,423 | 2013-03-13 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/850,292 Continuation-In-Part US20150374803A1 (en) | 2013-03-13 | 2015-09-10 | Adeno-associated virus vectors and methods of use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014160092A1 true WO2014160092A1 (en) | 2014-10-02 |
Family
ID=51625331
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/025794 Ceased WO2014160092A1 (en) | 2013-03-13 | 2014-03-13 | Adeno-associated virus vectors and methods of use thereof |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20150374803A1 (enExample) |
| EP (1) | EP2970946A4 (enExample) |
| JP (1) | JP2016514152A (enExample) |
| AU (1) | AU2014244167A1 (enExample) |
| CA (1) | CA2905952A1 (enExample) |
| WO (1) | WO2014160092A1 (enExample) |
Cited By (62)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016172008A1 (en) * | 2015-04-24 | 2016-10-27 | University Of Massachusetts | Modified aav constructions and uses thereof |
| WO2017075335A1 (en) | 2015-10-28 | 2017-05-04 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| US9701984B2 (en) | 2010-04-23 | 2017-07-11 | University Of Massachusetts | CNS targeting AAV vectors and methods of use thereof |
| WO2017197355A2 (en) | 2016-05-13 | 2017-11-16 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
| US9885057B2 (en) | 2011-04-21 | 2018-02-06 | University Of Massachusetts | RAAV-based compositions and methods for treating alpha-1 anti-trypsin deficiencies |
| US10035825B2 (en) | 2009-05-28 | 2018-07-31 | University Of Massachusetts | AAV's and uses thereof |
| US10072251B2 (en) | 2014-02-19 | 2018-09-11 | University Of Massachusetts | Recombinant AAVS having useful transcytosis properties |
| EP3329017A4 (en) * | 2015-07-30 | 2018-12-26 | Massachusetts Eye & Ear Infirmary | Ancestral virus sequences and uses thereof |
| US10166297B2 (en) | 2008-05-28 | 2019-01-01 | University Of Massachusetts | Isolation of novel AAV's and uses thereof |
| US10202600B2 (en) | 2010-04-23 | 2019-02-12 | University Of Massachusetts | AAV-based treatment of cholesterol-related disorders |
| WO2019060454A2 (en) | 2017-09-20 | 2019-03-28 | 4D Molecular Therapeutics Inc. | CAPSID VARIANT ADENO-ASSOCIATED VIRUSES AND METHODS OF USE |
| US10280418B2 (en) | 2014-03-18 | 2019-05-07 | Univeristy Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| WO2019104279A1 (en) | 2017-11-27 | 2019-05-31 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and use for inhibiting angiogenesis |
| US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
| US10370432B2 (en) | 2014-10-03 | 2019-08-06 | University Of Massachusetts | Heterologous targeting peptide grafted AAVS |
| EP3403675A4 (en) * | 2016-01-15 | 2019-09-18 | Jichi Medical University | ADENO-ASSOCIATED VIRUSVIRION FOR USE IN THE TREATMENT OF EPILEPSIA |
| US10457940B2 (en) | 2016-09-22 | 2019-10-29 | University Of Massachusetts | AAV treatment of Huntington's disease |
| US10480011B2 (en) | 2014-10-21 | 2019-11-19 | University Of Massachusetts | Recombinant AAV variants and uses thereof |
| US10526584B2 (en) | 2013-10-11 | 2020-01-07 | The Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
| US10584321B2 (en) | 2015-02-13 | 2020-03-10 | University Of Massachusetts | Compositions and methods for transient delivery of nucleases |
| US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| EP3632923A1 (en) | 2015-01-16 | 2020-04-08 | Voyager Therapeutics, Inc. | Central nervous system targeting polynucleotides |
| WO2020079580A1 (en) | 2018-10-15 | 2020-04-23 | Novartis Ag | Trem2 stabilizing antibodies |
| US10689653B2 (en) | 2014-06-03 | 2020-06-23 | University Of Massachusetts | Compositions and methods for modulating dysferlin expression |
| US10711270B2 (en) | 2014-10-03 | 2020-07-14 | University Of Massachusetts | High efficiency library-identified AAV vectors |
| WO2020174369A2 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
| WO2020174368A1 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
| US10829783B2 (en) | 2010-04-23 | 2020-11-10 | University Of Massachusetts | Multicistronic expression constructs |
| US10881548B2 (en) | 2015-05-07 | 2021-01-05 | Massachusetts Eye And Ear Infirmary | Methods of delivering an agent to the eye |
| US10975391B2 (en) | 2014-04-25 | 2021-04-13 | University Of Massachusetts | Recombinant AAV vectors useful for reducing immunity against transgene products |
| US11034732B2 (en) | 2017-05-10 | 2021-06-15 | Massachusetts Eye And Ear Infirmary | Methods and compositions for modifying assembly-activating protein (AAP)-dependence of viruses |
| US11060088B2 (en) | 2016-02-12 | 2021-07-13 | University Of Massachusetts | Anti-angiogenic miRNA therapeutics for inhibiting corneal neovascularization |
| US11103596B2 (en) | 2015-05-11 | 2021-08-31 | Ucl Business Plc | Fabry disease gene therapy |
| US11207426B2 (en) | 2016-04-05 | 2021-12-28 | University Of Massachusetts | Compositions and methods for selective inhibition of grainyhead-like protein expression |
| US11253576B2 (en) | 2015-10-22 | 2022-02-22 | University Of Massachusetts | Methods and compositions for treating metabolic imbalance in neurodegenerative disease |
| US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
| US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
| US11413356B2 (en) | 2016-04-15 | 2022-08-16 | University Of Massachusetts | Methods and compositions for treating metabolic imbalance |
| US11426469B2 (en) | 2015-10-22 | 2022-08-30 | University Of Massachusetts | Prostate-targeting adeno-associated virus serotype vectors |
| US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
| US11512327B2 (en) | 2017-08-03 | 2022-11-29 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of AAV |
| US11578340B2 (en) | 2016-10-13 | 2023-02-14 | University Of Massachusetts | AAV capsid designs |
| US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
| US11739330B2 (en) | 2017-09-22 | 2023-08-29 | University Of Massachusetts | SOD1 dual expression vectors and uses thereof |
| US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
| US11759506B2 (en) | 2017-06-15 | 2023-09-19 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
| WO2023214346A1 (en) | 2022-05-06 | 2023-11-09 | Novartis Ag | Novel recombinant aav vp2 fusion polypeptides |
| US11826433B2 (en) | 2016-02-02 | 2023-11-28 | University Of Massachusetts | Method to enhance the efficiency of systemic AAV gene delivery to the central nervous system |
| US11859179B2 (en) | 2017-05-09 | 2024-01-02 | University Of Massachusetts | Methods of treating amyotrophic lateral sclerosis (ALS) |
| US11882815B2 (en) | 2016-06-15 | 2024-01-30 | University Of Massachusetts | Recombinant adeno-associated viruses for delivering gene editing molecules to embryonic cells |
| US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
| US12037707B2 (en) | 2018-04-05 | 2024-07-16 | Massachusetts Eye And Ear Infirmary | Methods of making and using combinatorial barcoded nucleic acid libraries having defined variation |
| US12146150B2 (en) | 2017-09-29 | 2024-11-19 | Voyager Therapeutics, Inc. | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery |
| US12163129B2 (en) | 2018-06-08 | 2024-12-10 | University Of Massachusetts | Antisense oligonucleotides to restore dysferlin protein expression in dysferlinopathy patient cells |
| US12281321B2 (en) | 2018-09-28 | 2025-04-22 | Voyager Therapeutics, Inc. | Frataxin expression constructs having engineered promoters and methods of use thereof |
| US12319929B2 (en) | 2018-05-15 | 2025-06-03 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of Parkinson's disease |
Families Citing this family (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10983110B2 (en) | 2015-12-02 | 2021-04-20 | Voyager Therapeutics, Inc. | Assays for the detection of AAV neutralizing antibodies |
| MA44873A (fr) | 2016-04-15 | 2019-03-13 | Univ Pennsylvania | Composition pour le traitement de la dégénérescence maculaire liée a l'âge exsudative |
| WO2017184463A1 (en) | 2016-04-17 | 2017-10-26 | The Trustees Of The University Of Pennsylvania | Compositions and methods useful for prophylaxis of organophosphates |
| US11326182B2 (en) | 2016-04-29 | 2022-05-10 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
| MX2019004784A (es) * | 2016-11-04 | 2019-08-12 | Baxalta Inc | Metodos de purificacion del virus adeno-asociado. |
| WO2018191666A1 (en) | 2017-04-14 | 2018-10-18 | Regenxbio Inc. | Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2 sulfatase (ids) produced by human neural or glial cells |
| AU2018350990A1 (en) | 2017-10-18 | 2020-05-21 | Regenxbio Inc. | Treatment of ocular diseases and metastatic colon cancer with human post-translationally modified VEGF-Trap |
| AU2018350992A1 (en) | 2017-10-18 | 2020-05-21 | Regenxbio Inc. | Fully-human post-translationally modified antibody therapeutics |
| BR112020015798A2 (pt) | 2018-02-01 | 2021-03-09 | Homology Medicines, Inc. | Composições de vírus adeno-associado para restaurar função de gene da pah e métodos de uso das mesmas |
| US10610606B2 (en) | 2018-02-01 | 2020-04-07 | Homology Medicines, Inc. | Adeno-associated virus compositions for PAH gene transfer and methods of use thereof |
| JP7244547B2 (ja) | 2018-02-19 | 2023-03-22 | ホモロジー・メディシンズ・インコーポレイテッド | F8遺伝子機能を回復させるためのアデノ随伴ウイルス組成物及びその使用の方法 |
| CA3098566A1 (en) | 2018-04-29 | 2019-11-07 | Zhuchun WU | Systems and methods of spectrophotometry for the determination of genome content, capsid content and full/empty ratios of adeno-associated virus particles |
| EP3787771A1 (en) | 2018-04-29 | 2021-03-10 | REGENXBIO Inc. | Scalable clarification process for recombinant aav production |
| WO2019241535A2 (en) | 2018-06-14 | 2019-12-19 | Regenxbio Inc. | Anion exchange chromatography for recombinant aav production |
| KR20210043580A (ko) | 2018-08-10 | 2021-04-21 | 리젠엑스바이오 인크. | 재조합 aav 생산을 위한 규모 조정 가능한 방법 |
| EP3867412A1 (en) | 2018-10-15 | 2021-08-25 | REGENXBIO Inc. | Method for measuring the infectivity of replication defective viral vectors and viruses |
| CN113966236A (zh) | 2019-04-03 | 2022-01-21 | 再生生物股份有限公司 | 眼睛病状的基因疗法 |
| TW202102526A (zh) | 2019-04-04 | 2021-01-16 | 美商銳進科斯生物股份有限公司 | 重組腺相關病毒及其用途 |
| EP4310495A3 (en) | 2019-04-11 | 2024-04-24 | REGENXBIO Inc. | Methods of size exclusion chromatography for the characterization of recombinant adeno-associated virus compositions |
| JP7630443B2 (ja) | 2019-04-19 | 2025-02-17 | レジェンクスバイオ インコーポレーテッド | アデノ随伴ウイルスベクター製剤及び方法 |
| BR112021021156A2 (pt) | 2019-04-24 | 2022-02-08 | Regenxbio Inc | Terapêuticos anticorpos totalmente humanos pós-tradução modificados |
| WO2021005223A1 (en) | 2019-07-10 | 2021-01-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment of epilepsy |
| US20230042103A1 (en) | 2019-07-26 | 2023-02-09 | Regenxbio Inc. | Engineered nucleic acid regulatory element and methods of uses thereof |
| WO2021041373A1 (en) | 2019-08-26 | 2021-03-04 | Regenxbio Inc. | Treatment of diabetic retinopathy with fully-human post-translationally modified anti-vegf fab |
| CN114728049A (zh) | 2019-10-07 | 2022-07-08 | 再生生物股份有限公司 | 腺相关病毒载体药物组合物和方法 |
| WO2021099394A1 (en) | 2019-11-19 | 2021-05-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antisense oligonucleotides and their use for the treatment of cancer |
| KR20220107222A (ko) | 2019-11-28 | 2022-08-02 | 리젠엑스바이오 인크. | 마이크로디스트로핀 유전자 치료 작제물 및 이의 용도 |
| TW202140791A (zh) | 2020-01-13 | 2021-11-01 | 美商霍蒙拉奇醫藥公司 | 治療苯酮尿症之方法 |
| JP2023511382A (ja) | 2020-01-22 | 2023-03-17 | レジェンクスバイオ インコーポレーテッド | 完全ヒトグリコシル化ヒトα-L-イズロニダーゼ(IDUA)を用いたムコ多糖症I型の治療 |
| TW202142695A (zh) | 2020-01-29 | 2021-11-16 | 美商銳進科斯生物股份有限公司 | 用人類神經或神經膠質細胞產生之重組人類艾杜糖醛酸—2—硫酸酯酶(ids)對ii型黏多糖病之治療 |
| EP4097238A1 (en) | 2020-01-29 | 2022-12-07 | REGENXBIO Inc. | Treatment of mucopolysaccharidosis iva |
| TW202208632A (zh) | 2020-05-27 | 2022-03-01 | 美商同源醫藥公司 | 用於恢復pah基因功能的腺相關病毒組成物及其使用方法 |
| IL299771A (en) | 2020-07-10 | 2023-03-01 | Inst Nat Sante Rech Med | Methods and compounds for the treatment of epilepsy |
| WO2022060916A1 (en) | 2020-09-15 | 2022-03-24 | Regenxbio Inc. | Vectorized antibodies for anti-viral therapy |
| EP4213890A1 (en) | 2020-09-15 | 2023-07-26 | RegenxBio Inc. | Vectorized lanadelumab and administration thereof |
| WO2022076549A1 (en) | 2020-10-07 | 2022-04-14 | Regenxbio Inc. | Formulations for suprachoroidal administration such as high viscosity formulations |
| WO2022076750A2 (en) | 2020-10-07 | 2022-04-14 | Regenxbio Inc. | Recombinant adeno-associated viruses for cns or muscle delivery |
| US20230414788A1 (en) | 2020-10-07 | 2023-12-28 | Regenxbio Inc. | Formulations for suprachoroidal administration such as gel formulations |
| AU2021358964A1 (en) | 2020-10-07 | 2023-05-25 | Regenxbio Inc. | Formulations for suprachoroidal administration such as formulations with aggregate formation |
| IL301647A (en) | 2020-10-07 | 2023-05-01 | Regenxbio Inc | Adeno-associated viruses for ocular delivery of gene therapy |
| WO2022094157A1 (en) | 2020-10-28 | 2022-05-05 | Regenxbio Inc. | Vectorized anti-cgrp and anti-cgrpr antibodies and administration thereof |
| CN116528892A (zh) | 2020-10-28 | 2023-08-01 | 再生生物股份有限公司 | 用于眼部适应症的载体化抗TNF-α抗体 |
| EP4236974A2 (en) | 2020-10-29 | 2023-09-06 | RegenxBio Inc. | Vectorized factor xii antibodies and administration thereof |
| CN116457373A (zh) | 2020-10-29 | 2023-07-18 | 再生生物股份有限公司 | 用于眼部适应症的载体化TNF-α拮抗剂 |
| CA3201743A1 (en) | 2020-12-16 | 2022-06-23 | Robert STADELMAN | Method of producing a recombinant adeno-associated virus particle |
| WO2022147087A1 (en) | 2020-12-29 | 2022-07-07 | Regenxbio Inc. | Tau-specific antibody gene therapy compositions, methods and uses thereof |
| JP2024503895A (ja) | 2021-01-21 | 2024-01-29 | リジェネクスバイオ インコーポレイテッド | 組換えポリペプチド及びウイルスの生成の改善 |
| CA3209611A1 (en) | 2021-02-10 | 2022-08-18 | Regenxbio Inc. | Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2-sulfatase (ids) |
| CA3216744A1 (en) | 2021-04-26 | 2022-11-03 | Regenxbio Inc. | Microdystrophin gene therapy administration for treatment of dystrophinopathies |
| US20240218397A1 (en) | 2021-05-04 | 2024-07-04 | Regenxbio Inc. | Novel aav vectors and methods and uses thereof |
| US20240358857A1 (en) | 2021-05-11 | 2024-10-31 | Regenxbio Inc. | Treatment of duchenne muscular dystrophy and combinations thereof |
| EP4373947A1 (en) | 2021-07-19 | 2024-05-29 | New York University | Auf1 combination therapies for treatment of muscle degenerative disease |
| CN118202060A (zh) | 2021-10-05 | 2024-06-14 | 再生生物股份有限公司 | 用于重组aav生产的组合物和方法 |
| WO2023060113A1 (en) | 2021-10-05 | 2023-04-13 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
| WO2023060272A2 (en) | 2021-10-07 | 2023-04-13 | Regenxbio Inc. | Recombinant adeno-associated viruses for cns tropic delivery |
| WO2023060269A1 (en) | 2021-10-07 | 2023-04-13 | Regenxbio Inc. | Recombinant adeno-associated viruses for targeted delivery |
| EP4423285A1 (en) | 2021-10-28 | 2024-09-04 | RegenxBio Inc. | Engineered nucleic acid regulatory elements and methods and uses thereof |
| EP4493226A1 (en) | 2022-03-13 | 2025-01-22 | RegenxBio Inc. | Modified muscle-specific promoters |
| EP4499154A1 (en) | 2022-03-25 | 2025-02-05 | REGENXBIO Inc. | Dominant-negative tumor necrosis factor alpha adeno-associated virus gene therapy |
| TW202345913A (zh) | 2022-04-06 | 2023-12-01 | 美商銳進科斯生物股份有限公司 | 用於脈絡膜上投與之調配物諸如凝膠調配物 |
| AU2023250660A1 (en) | 2022-04-06 | 2024-10-24 | Regenxbio Inc. | Pharmaceutical composition comprising a recombinant adenoassociated virus vector with an expression cassette encoding a transgene for suprachoroidal administration |
| TW202404651A (zh) | 2022-04-06 | 2024-02-01 | 美商銳進科斯生物股份有限公司 | 用於脈絡膜上投與之調配物諸如形成聚集體之調配物 |
| US20250249127A1 (en) | 2022-04-14 | 2025-08-07 | Regenxbio Inc. | Gene therapy for treating an ocular disease |
| WO2023201277A1 (en) | 2022-04-14 | 2023-10-19 | Regenxbio Inc. | Recombinant adeno-associated viruses for cns tropic delivery |
| US20250288697A1 (en) | 2022-05-03 | 2025-09-18 | Regenxbio Inc. | Vectorized anti-tnf-alpha inhibitors for ocular indications |
| EP4518972A2 (en) | 2022-05-03 | 2025-03-12 | RegenxBio Inc. | Vectorized anti-complement antibodies and complement agents and administration thereof |
| WO2023239627A2 (en) | 2022-06-08 | 2023-12-14 | Regenxbio Inc. | Methods for recombinant aav production |
| JP2023181674A (ja) * | 2022-06-13 | 2023-12-25 | 国立大学法人 東京大学 | 核酸とカチオン性ポリマーとのポリイオンコンプレックスであって、正の表面電位を有し、核酸を脳組織に送達することができるポリイオンコンプレックス |
| EP4558149A1 (en) | 2022-07-21 | 2025-05-28 | Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating chronic pain disorders |
| EP4577663A2 (en) | 2022-08-24 | 2025-07-02 | RegenxBio Inc. | Recombinant adeno-associated viruses and uses thereof |
| IL319873A (en) | 2022-09-30 | 2025-05-01 | Regenxbio Inc | Treatment of eye diseases with recombinant viral vectors containing anti-VEGF FAB |
| JP2025534666A (ja) | 2022-10-11 | 2025-10-17 | リジェネックスバイオ インコーポレイテッド | 操作された核酸調節エレメントならびにその使用方法 |
| CN120752339A (zh) | 2023-01-06 | 2025-10-03 | 国家医疗保健研究所 | 静脉内施用用于治疗疼痛的反义寡核苷酸 |
| WO2024192281A2 (en) | 2023-03-15 | 2024-09-19 | Regenxbio Inc. | Exon skipping gene therapy constructs, vectors and uses thereof |
| WO2024211780A1 (en) | 2023-04-07 | 2024-10-10 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
| WO2024216244A2 (en) | 2023-04-13 | 2024-10-17 | Regenxbio Inc. | Targeting aav capsids, methods of manufacturing and using same |
| WO2024233529A2 (en) | 2023-05-07 | 2024-11-14 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
| WO2024238859A1 (en) | 2023-05-16 | 2024-11-21 | Regenxbio Inc. | Vectorized c5 inhibitor agents and administration thereof |
| WO2024238853A1 (en) | 2023-05-16 | 2024-11-21 | Regenxbio Inc. | Adeno-associated viruses for ocular delivery of gene therapy |
| WO2024238867A1 (en) | 2023-05-16 | 2024-11-21 | Regenxbio Inc. | Vectorized anti-complement antibodies and administration thereof |
| WO2025008406A1 (en) | 2023-07-04 | 2025-01-09 | Institut National de la Santé et de la Recherche Médicale | Antisense oligonucleotides and their use for the treatment of cancer |
| WO2025075963A1 (en) | 2023-10-02 | 2025-04-10 | Regenxbio Inc. | Methods and formulations for treating mucopolysaccharidosis ii-associated hearing loss with recombinant human iduronate-2-sulfatase |
| WO2025090962A1 (en) | 2023-10-25 | 2025-05-01 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
| WO2025106374A1 (en) | 2023-11-13 | 2025-05-22 | Juno Therapeutics, Inc. | Aav production method |
| WO2025108407A2 (en) | 2023-11-23 | 2025-05-30 | Neuexcell Therapeutics (Suzhou) Co., Ltd. | Gene therapy compositions and methods for treating glioma |
| WO2025113676A1 (en) | 2023-11-29 | 2025-06-05 | Neuexcell Therapeutics (Suzhou) Co., Ltd. | Compositions and methods for treating stroke in primates |
| WO2025217214A2 (en) | 2024-04-08 | 2025-10-16 | Regenxbio Inc. | Recombinant adeno-associated viruses and uses thereof |
| WO2025217230A1 (en) | 2024-04-08 | 2025-10-16 | Regenxbio Inc. | Vectorized anti-complement antibodies and complement agents and administration thereof |
| WO2025237990A1 (en) | 2024-05-14 | 2025-11-20 | Institut National de la Santé et de la Recherche Médicale | Antisense oligonucleotides and their use for the treatment of pulmonary fibrosis |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011143557A2 (en) * | 2010-05-14 | 2011-11-17 | The Children's Hospital Of Philadelphia | Humanized ttc and methods of use thereof |
| WO2012057363A1 (ja) * | 2010-10-27 | 2012-05-03 | 学校法人自治医科大学 | 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6582692B1 (en) * | 1999-11-17 | 2003-06-24 | Avigen, Inc. | Recombinant adeno-associated virus virions for the treatment of lysosomal disorders |
| EP2298926A1 (en) * | 2003-09-30 | 2011-03-23 | The Trustees of The University of Pennsylvania | Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses thereof |
| EP3514232A1 (en) * | 2010-04-23 | 2019-07-24 | University of Massachusetts | Cns targeting aav vectors and methods of use thereof |
| EP4234571A3 (en) * | 2011-02-10 | 2023-09-27 | The University of North Carolina at Chapel Hill | Viral vectors with modified transduction profiles and methods of making and using the same |
| JP6224459B2 (ja) * | 2011-02-17 | 2017-11-01 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | 組織特異性を改変し、aav9媒介遺伝子導入を改善するための組成物および方法 |
-
2014
- 2014-03-13 EP EP14776247.0A patent/EP2970946A4/en not_active Withdrawn
- 2014-03-13 WO PCT/US2014/025794 patent/WO2014160092A1/en not_active Ceased
- 2014-03-13 JP JP2016501968A patent/JP2016514152A/ja active Pending
- 2014-03-13 AU AU2014244167A patent/AU2014244167A1/en not_active Abandoned
- 2014-03-13 CA CA2905952A patent/CA2905952A1/en not_active Abandoned
-
2015
- 2015-09-10 US US14/850,292 patent/US20150374803A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011143557A2 (en) * | 2010-05-14 | 2011-11-17 | The Children's Hospital Of Philadelphia | Humanized ttc and methods of use thereof |
| WO2012057363A1 (ja) * | 2010-10-27 | 2012-05-03 | 学校法人自治医科大学 | 神経系細胞への遺伝子導入のためのアデノ随伴ウイルスビリオン |
Non-Patent Citations (4)
| Title |
|---|
| CEARLEY ET AL.: "Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain.", MOL THER., vol. 16, no. 10, 2008, pages 1710 - 8, XP055022703 * |
| DATABASE GENBANK 14 May 2003 (2003-05-14), GAO, G: "Non-human primate Adeno-associated virus isolate AAVrh.32 capsid protein (VP1) gene , complete cds.", XP055283390, retrieved from NCBI Database accession no. AY243003.1 * |
| ROSS ET AL.: "Development of small alginate microcapsules for recombinant gene product delivery to the rodent brain.", J BIOMATER SCI POLYM ED., vol. 13, no. 8, 2002, pages 953 - 62, XP055283387 * |
| See also references of EP2970946A4 * |
Cited By (122)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11826434B2 (en) | 2008-05-28 | 2023-11-28 | University Of Massachusetts | Isolation of novel AAV's and uses thereof |
| US10905776B2 (en) | 2008-05-28 | 2021-02-02 | University Of Massachusetts | Isolation of novel AAV's and uses thereof |
| US10300146B2 (en) | 2008-05-28 | 2019-05-28 | University Of Massachusetts | Isolation of novel AAV's and uses thereof |
| US10166297B2 (en) | 2008-05-28 | 2019-01-01 | University Of Massachusetts | Isolation of novel AAV's and uses thereof |
| US11834474B2 (en) | 2009-05-28 | 2023-12-05 | University Of Massachusetts | AAV's and uses thereof |
| US10689420B2 (en) | 2009-05-28 | 2020-06-23 | University Of Massachusetts | AAV's and uses thereof |
| US10035825B2 (en) | 2009-05-28 | 2018-07-31 | University Of Massachusetts | AAV's and uses thereof |
| US10829783B2 (en) | 2010-04-23 | 2020-11-10 | University Of Massachusetts | Multicistronic expression constructs |
| US11421230B2 (en) | 2010-04-23 | 2022-08-23 | University Of Massachusetts | AAV-based treatment of cholesterol-related disorders |
| US10202600B2 (en) | 2010-04-23 | 2019-02-12 | University Of Massachusetts | AAV-based treatment of cholesterol-related disorders |
| US10731158B2 (en) | 2010-04-23 | 2020-08-04 | University Of Massachusetts | AAV-based treatment of cholesterol-related disorders |
| US10731178B2 (en) | 2010-04-23 | 2020-08-04 | University Of Massachusetts | CNS targeting AAV vectors and methods of use thereof |
| US9701984B2 (en) | 2010-04-23 | 2017-07-11 | University Of Massachusetts | CNS targeting AAV vectors and methods of use thereof |
| US11920133B2 (en) | 2011-04-21 | 2024-03-05 | University Of Massachusetts | RAAV-based compositions and methods |
| US11254939B2 (en) | 2011-04-21 | 2022-02-22 | University Of Massachusetts | RAAV-based compositions and methods |
| US10597656B2 (en) | 2011-04-21 | 2020-03-24 | University Of Massachusetts | RAAV-based compositions and methods |
| US9885057B2 (en) | 2011-04-21 | 2018-02-06 | University Of Massachusetts | RAAV-based compositions and methods for treating alpha-1 anti-trypsin deficiencies |
| US12359174B2 (en) | 2013-10-11 | 2025-07-15 | The Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US10526584B2 (en) | 2013-10-11 | 2020-01-07 | The Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US11466258B2 (en) | 2013-10-11 | 2022-10-11 | The Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US11104885B2 (en) | 2013-10-11 | 2021-08-31 | The Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US12134786B2 (en) | 2013-10-11 | 2024-11-05 | Schepens Eye Research Institute, Inc. | Methods of predicting ancestral virus sequences and uses thereof |
| US10072251B2 (en) | 2014-02-19 | 2018-09-11 | University Of Massachusetts | Recombinant AAVS having useful transcytosis properties |
| US10894949B2 (en) | 2014-02-19 | 2021-01-19 | University Of Massachusetts | Recombinant AAVS having useful transcytosis properties |
| US11760999B2 (en) | 2014-03-18 | 2023-09-19 | University Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| US10954518B2 (en) | 2014-03-18 | 2021-03-23 | University Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| US10280418B2 (en) | 2014-03-18 | 2019-05-07 | Univeristy Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| US10851375B2 (en) | 2014-03-18 | 2020-12-01 | University Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| US10711274B2 (en) | 2014-03-18 | 2020-07-14 | University Of Massachusetts | RAAV-based compositions and methods for treating amyotrophic lateral sclerosis |
| US12467063B2 (en) | 2014-04-25 | 2025-11-11 | University Of Massachusetts | Recombinant AAV vectors useful for reducing immunity against transgene products |
| US10975391B2 (en) | 2014-04-25 | 2021-04-13 | University Of Massachusetts | Recombinant AAV vectors useful for reducing immunity against transgene products |
| US10689653B2 (en) | 2014-06-03 | 2020-06-23 | University Of Massachusetts | Compositions and methods for modulating dysferlin expression |
| US11827886B2 (en) | 2014-06-03 | 2023-11-28 | University Of Massachusetts | Compositions and methods for modulating dysferlin expression |
| US12180500B2 (en) | 2014-06-09 | 2024-12-31 | Voyager Therapeutics, Inc. | Chimeric capsids |
| US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
| US10711270B2 (en) | 2014-10-03 | 2020-07-14 | University Of Massachusetts | High efficiency library-identified AAV vectors |
| US11014976B2 (en) | 2014-10-03 | 2021-05-25 | University Of Massachusetts | Heterologous targeting peptide grafted AAVS |
| US12291719B2 (en) | 2014-10-03 | 2025-05-06 | University Of Massachusetts | Heterologous targeting peptide grafted AAVs |
| US12091659B2 (en) | 2014-10-03 | 2024-09-17 | University Of Massachusetts | High efficiency library-identified AAV vectors |
| US10370432B2 (en) | 2014-10-03 | 2019-08-06 | University Of Massachusetts | Heterologous targeting peptide grafted AAVS |
| US10480011B2 (en) | 2014-10-21 | 2019-11-19 | University Of Massachusetts | Recombinant AAV variants and uses thereof |
| US11542525B2 (en) | 2014-10-21 | 2023-01-03 | University Of Massachusetts | Recombinant AAV variants and uses thereof |
| US11027000B2 (en) | 2014-11-05 | 2021-06-08 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
| US11975056B2 (en) | 2014-11-05 | 2024-05-07 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
| US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
| US12071625B2 (en) | 2014-11-14 | 2024-08-27 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US11198873B2 (en) | 2014-11-14 | 2021-12-14 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US12123002B2 (en) | 2014-11-14 | 2024-10-22 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US10920227B2 (en) | 2014-11-14 | 2021-02-16 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US11542506B2 (en) | 2014-11-14 | 2023-01-03 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
| EP3632923A1 (en) | 2015-01-16 | 2020-04-08 | Voyager Therapeutics, Inc. | Central nervous system targeting polynucleotides |
| US11920168B2 (en) | 2015-02-13 | 2024-03-05 | University Of Massachusetts | Compositions and methods for transient delivery of nucleases |
| US10584321B2 (en) | 2015-02-13 | 2020-03-10 | University Of Massachusetts | Compositions and methods for transient delivery of nucleases |
| US12054715B2 (en) | 2015-04-24 | 2024-08-06 | University Of Massachusetts | Modified AAV constructs and uses thereof |
| US11046955B2 (en) | 2015-04-24 | 2021-06-29 | University Of Massachusetts | Modified AAV constructs and uses thereof |
| WO2016172008A1 (en) * | 2015-04-24 | 2016-10-27 | University Of Massachusetts | Modified aav constructions and uses thereof |
| US11963905B2 (en) | 2015-05-07 | 2024-04-23 | Massachusetts Eye And Ear Infirmary | Methods of delivering an agent to the eye |
| US10881548B2 (en) | 2015-05-07 | 2021-01-05 | Massachusetts Eye And Ear Infirmary | Methods of delivering an agent to the eye |
| US12370268B2 (en) | 2015-05-11 | 2025-07-29 | Ucl Business Ltd | Fabry disease gene therapy |
| US11103596B2 (en) | 2015-05-11 | 2021-08-31 | Ucl Business Plc | Fabry disease gene therapy |
| US10738087B2 (en) | 2015-07-30 | 2020-08-11 | Massachusetts Eye And Ear Infirmary | Ancestral virus sequences and uses thereof |
| US12227543B2 (en) | 2015-07-30 | 2025-02-18 | Massachusetts Eye And Ear Infirmary | Ancestral virus sequences and uses thereof |
| EP3872085A1 (en) * | 2015-07-30 | 2021-09-01 | Massachusetts Eye & Ear Infirmary | Ancestral aav sequences and uses thereof |
| EP3329017A4 (en) * | 2015-07-30 | 2018-12-26 | Massachusetts Eye & Ear Infirmary | Ancestral virus sequences and uses thereof |
| EP4134375A1 (en) * | 2015-07-30 | 2023-02-15 | Massachusetts Eye & Ear Infirmary | Ancestral adeno associated virus sequences and uses thereof |
| US11426469B2 (en) | 2015-10-22 | 2022-08-30 | University Of Massachusetts | Prostate-targeting adeno-associated virus serotype vectors |
| US11253576B2 (en) | 2015-10-22 | 2022-02-22 | University Of Massachusetts | Methods and compositions for treating metabolic imbalance in neurodegenerative disease |
| US12491235B2 (en) | 2015-10-22 | 2025-12-09 | University Of Massachusetts | Methods and compositions for treating metabolic imbalance in neurodegenerative disease |
| WO2017075335A1 (en) | 2015-10-28 | 2017-05-04 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| US12263231B2 (en) | 2016-01-15 | 2025-04-01 | Jichi Medical University | Adeno-associated virus virions for treatment of epilepsy |
| EP3403675A4 (en) * | 2016-01-15 | 2019-09-18 | Jichi Medical University | ADENO-ASSOCIATED VIRUSVIRION FOR USE IN THE TREATMENT OF EPILEPSIA |
| US11826433B2 (en) | 2016-02-02 | 2023-11-28 | University Of Massachusetts | Method to enhance the efficiency of systemic AAV gene delivery to the central nervous system |
| US11851657B2 (en) | 2016-02-12 | 2023-12-26 | University Of Massachusetts | Anti-angiogenic miRNA therapeutics for inhibiting corneal neovascularization |
| US11060088B2 (en) | 2016-02-12 | 2021-07-13 | University Of Massachusetts | Anti-angiogenic miRNA therapeutics for inhibiting corneal neovascularization |
| US11207426B2 (en) | 2016-04-05 | 2021-12-28 | University Of Massachusetts | Compositions and methods for selective inhibition of grainyhead-like protein expression |
| US11413356B2 (en) | 2016-04-15 | 2022-08-16 | University Of Massachusetts | Methods and compositions for treating metabolic imbalance |
| US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
| EP4209501A1 (en) | 2016-05-13 | 2023-07-12 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
| WO2017197355A2 (en) | 2016-05-13 | 2017-11-16 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
| EP4206216A1 (en) | 2016-05-13 | 2023-07-05 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
| US11193129B2 (en) | 2016-05-18 | 2021-12-07 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US12084659B2 (en) | 2016-05-18 | 2024-09-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
| US11882815B2 (en) | 2016-06-15 | 2024-01-30 | University Of Massachusetts | Recombinant adeno-associated viruses for delivering gene editing molecules to embryonic cells |
| US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
| US12318183B2 (en) | 2016-08-30 | 2025-06-03 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
| US11773392B2 (en) | 2016-09-22 | 2023-10-03 | University Of Massachusetts | AAV treatment of Huntington's disease |
| US11046957B2 (en) | 2016-09-22 | 2021-06-29 | University Of Massachusetts | AAV treatment of Huntington's disease |
| US10457940B2 (en) | 2016-09-22 | 2019-10-29 | University Of Massachusetts | AAV treatment of Huntington's disease |
| US11578340B2 (en) | 2016-10-13 | 2023-02-14 | University Of Massachusetts | AAV capsid designs |
| US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
| US11859179B2 (en) | 2017-05-09 | 2024-01-02 | University Of Massachusetts | Methods of treating amyotrophic lateral sclerosis (ALS) |
| US11034732B2 (en) | 2017-05-10 | 2021-06-15 | Massachusetts Eye And Ear Infirmary | Methods and compositions for modifying assembly-activating protein (AAP)-dependence of viruses |
| US11958884B2 (en) | 2017-05-10 | 2024-04-16 | Massachusetts Eye And Ear Infirmary | Methods and compositions for modifying assembly-activating protein (AAP)-dependence of viruses |
| US11759506B2 (en) | 2017-06-15 | 2023-09-19 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
| US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
| US11512327B2 (en) | 2017-08-03 | 2022-11-29 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of AAV |
| US12305189B2 (en) | 2017-08-03 | 2025-05-20 | Voyager Therapeutics, Inc. | Compositions and methods for delivery of AAV |
| WO2019060454A2 (en) | 2017-09-20 | 2019-03-28 | 4D Molecular Therapeutics Inc. | CAPSID VARIANT ADENO-ASSOCIATED VIRUSES AND METHODS OF USE |
| EP4218828A2 (en) | 2017-09-20 | 2023-08-02 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
| US12312587B2 (en) | 2017-09-22 | 2025-05-27 | University Of Massachusetts | SOD1 dual expression vectors and uses thereof |
| US11739330B2 (en) | 2017-09-22 | 2023-08-29 | University Of Massachusetts | SOD1 dual expression vectors and uses thereof |
| US12146150B2 (en) | 2017-09-29 | 2024-11-19 | Voyager Therapeutics, Inc. | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery |
| US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US12116589B2 (en) | 2017-10-16 | 2024-10-15 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| EP4272728A2 (en) | 2017-11-27 | 2023-11-08 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and use for inhibiting angiogenesis |
| WO2019104279A1 (en) | 2017-11-27 | 2019-05-31 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and use for inhibiting angiogenesis |
| EP4219695A2 (en) | 2017-11-27 | 2023-08-02 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and use for inhibiting angiogenesis |
| US12037707B2 (en) | 2018-04-05 | 2024-07-16 | Massachusetts Eye And Ear Infirmary | Methods of making and using combinatorial barcoded nucleic acid libraries having defined variation |
| US12319929B2 (en) | 2018-05-15 | 2025-06-03 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of Parkinson's disease |
| US12163129B2 (en) | 2018-06-08 | 2024-12-10 | University Of Massachusetts | Antisense oligonucleotides to restore dysferlin protein expression in dysferlinopathy patient cells |
| US12281321B2 (en) | 2018-09-28 | 2025-04-22 | Voyager Therapeutics, Inc. | Frataxin expression constructs having engineered promoters and methods of use thereof |
| WO2020079580A1 (en) | 2018-10-15 | 2020-04-23 | Novartis Ag | Trem2 stabilizing antibodies |
| WO2020174368A1 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
| WO2020174369A2 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
| WO2023214346A1 (en) | 2022-05-06 | 2023-11-09 | Novartis Ag | Novel recombinant aav vp2 fusion polypeptides |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2970946A1 (en) | 2016-01-20 |
| US20150374803A1 (en) | 2015-12-31 |
| AU2014244167A1 (en) | 2015-10-08 |
| JP2016514152A (ja) | 2016-05-19 |
| EP2970946A4 (en) | 2016-09-07 |
| CA2905952A1 (en) | 2014-10-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2014160092A1 (en) | Adeno-associated virus vectors and methods of use thereof | |
| JP6873699B2 (ja) | Aav5カプシドタンパク質を含むアデノ随伴ウイルス(aav)を用いた神経学的疾患の処置 | |
| CN111566220A (zh) | 制备病毒载体的手段和方法及其用途 | |
| EP4334332A1 (en) | Recombinant aavs for delivery to central nervous system and brain vasculature | |
| TW202305124A (zh) | 具有腦特異性靶向模體的新穎構成物及含有其之組成物 | |
| CN111718947B (zh) | 用于治疗ⅲa或ⅲb型粘多糖贮积症的腺相关病毒载体及用途 | |
| AU2021218703A1 (en) | Gene therapy for treating CDKL5 deficiency disorder | |
| JP2025069281A (ja) | 調節可能な発現系 | |
| US20240384298A1 (en) | Novel aav capsids and compositions containing same | |
| US20230174994A1 (en) | Engineered parkin and uses thereof | |
| IL285350B2 (en) | Polynucleotides | |
| CN116096904A (zh) | 改进的aav-abcd1构建体和用于治疗或预防肾上腺脑白质营养不良(ald)和/或肾上腺脊髓神经病(amn)的用途 | |
| TW202328446A (zh) | 肌肉萎縮症之治療 | |
| JP2025149978A (ja) | アルツハイマー病および他の神経変性障害の処置のためのレトロマーの安定化 | |
| EP3356395B1 (en) | Diabetes gene therapy | |
| KR20230078805A (ko) | 아데노-연관 바이러스의 농축 공정 | |
| US20250019721A1 (en) | Compositions and methods for treating a muscular dystrophy | |
| KR20250142386A (ko) | 파킨슨병에 사용하기 위한 유전자 요법 벡터 | |
| TW202525832A (zh) | 衣殼多肽及其使用方法(二) | |
| JP2024515623A (ja) | 髄腔内送達によってピット・ホプキンス症候群を治療するためのメチル-cpg結合タンパク質2をコードする組換えアデノ随伴ウイルス | |
| JP2024515612A (ja) | 球脊髄性筋萎縮症(sbma)の治療に有用な組成物 | |
| EP4486900A2 (en) | Materials and methods for the treatment of eif2b5 mutations and diseases resulting therefrom | |
| TW202340467A (zh) | 有用於治療c9orf72介導之病症之組成物及方法 | |
| WO2025157137A1 (zh) | Aav载体、载体组合物、嵌合载体和治疗或预防sma的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14776247 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2016501968 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2905952 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014776247 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2014244167 Country of ref document: AU Date of ref document: 20140313 Kind code of ref document: A |