WO2014157583A1 - 極性基含有オレフィン共重合体、多元系極性基含有オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着剤、積層体 - Google Patents
極性基含有オレフィン共重合体、多元系極性基含有オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着剤、積層体 Download PDFInfo
- Publication number
- WO2014157583A1 WO2014157583A1 PCT/JP2014/059031 JP2014059031W WO2014157583A1 WO 2014157583 A1 WO2014157583 A1 WO 2014157583A1 JP 2014059031 W JP2014059031 W JP 2014059031W WO 2014157583 A1 WO2014157583 A1 WO 2014157583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polar group
- group
- olefin copolymer
- olefin
- copolymer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/04—Homopolymers or copolymers of ethene
- C09J123/06—Polyethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B23/00—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
- B32B23/04—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B23/08—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/32—Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
- C08F220/325—Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
- C08F4/7001—Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
- C08F4/7003—Bidentate ligand
- C08F4/7004—Neutral ligand
- C08F4/7014—PO
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
- C08F4/7001—Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
- C08F4/7003—Bidentate ligand
- C08F4/7019—Monoanionic ligand
- C08F4/7031—PO
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/72—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
- C08F4/80—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/302—Applications of adhesives in processes or use of adhesives in the form of films or foils for bundling cables
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
Definitions
- the present invention relates to a polar group-containing olefin copolymer having excellent physical properties, a multi-component polar olefin copolymer, an olefin resin composition containing a polar group-containing olefin copolymer and an olefin resin, and using them. More specifically, the present invention relates to laminates and various composite products. More specifically, polar group-containing olefin copolymers and multi-component polar olefin copolymers containing specific polar groups and having excellent adhesion performance to various base materials. The present invention relates to an olefin resin composition containing a polar group-containing olefin copolymer and an olefin resin, and an adhesive and a laminate using the performance.
- olefin-based resins have high mechanical strength, excellent impact resistance, long-term durability, chemical resistance, corrosion resistance, etc., are inexpensive, have excellent moldability, and are compatible with environmental issues and resource reusability. Therefore, it is used as an industrial material, and is formed into a film, a laminate, a container, a blow bottle, etc. by, for example, injection molding, extrusion molding, blow molding, etc., and used for a wide range of applications. Furthermore, by laminating with a base material such as a gas barrier material such as ethylene-vinyl alcohol copolymer (EVOH) or aluminum foil, in addition to the above properties, properties such as gas barrier properties can be added. High-performance packaging materials and containers can be obtained.
- a base material such as a gas barrier material such as ethylene-vinyl alcohol copolymer (EVOH) or aluminum foil, in addition to the above properties, properties such as gas barrier properties can be added.
- EVOH ethylene-vinyl alcohol copolymer
- olefin polymers are generally non-polar, and when used in laminated materials, they have the disadvantage that their adhesive strength to other highly polar dissimilar materials such as synthetic resins, metals and wood is extremely low or not bonded There is.
- the polar group-containing olefin copolymer by increasing the polar group content in the polar group-containing olefin copolymer, it is possible to increase the adhesion with different polar materials, but a large amount of polar group-containing monomer is grafted onto the olefin resin by graft modification. It is not easy to do.
- a method for increasing the content of the polar group-containing monomer for example, a method for increasing the amount of the polar group-containing monomer used for graft modification and the amount of the organic peroxide can be considered. When this method is used, it leads to further intermolecular crosslinking and molecular chain breakage of the olefin resin, and various physical properties such as mechanical properties, impact resistance, long-term durability, and moldability are impaired.
- produced by graft modification is solved according to this method, It is possible to increase the content of the polar group-containing monomer in the polar group-containing olefin copolymer as compared with graft modification.
- the polymerization process is a high-pressure radical method, the obtained polar group-containing olefin copolymer has a molecular structure having many long-chain branches and short-chain branches irregularly. For this reason, only a polar group-containing olefin copolymer having a low elastic modulus and low mechanical properties is obtained as compared with a polar group-containing olefin copolymer polymerized using a transition metal catalyst, and high strength is required. The range of application to the use is limited.
- FIGS. 2 and 3 Image diagrams of the molecular structure of the polar group-containing olefin copolymer polymerized using a catalyst are shown in FIGS. 2 and 3.
- the methods described in these documents mainly contain acrylate groups such as methyl acrylate and ethyl acrylate.
- the main focus is on monomers and copolymers of ethylene or ⁇ -olefins with specific polar group-containing monomers such as vinyl acetate.
- Polar group-containing olefin copolymers having these functional groups The adhesion of is not enough.
- specific adhesion performance with different polar materials is not mentioned, and use as a specific polar group-containing olefin copolymer for the purpose of adhesion performance is not disclosed.
- an epoxy group is generally known as a polar group capable of exhibiting excellent adhesiveness with a heterogeneous material having a high polarity.
- an epoxy group-containing comonomer is copolymerized.
- polar olefin copolymers containing epoxy groups that are commercially available mainly are produced by a high-pressure radical polymerization process.
- a so-called masking method called a specific metallocene catalyst and a sufficient amount of organic aluminum (with a polar group-containing monomer)
- a polar group-containing olefin copolymer obtained by copolymerizing 1,2-epoxy-9-decene with ethylene and 1-butene is shown ( (See Patent Document 9).
- the present invention a large amount of organoaluminum is required for copolymerization of the polar group-containing olefin, and the production cost must be increased.
- a large amount of organoaluminum is present in the polar group-containing olefin copolymer as an impurity, causing deterioration of mechanical properties, discoloration, and promotion of deterioration, and further removing this leads to further cost increase.
- the effect of the invention is mainly to produce a polar group-containing olefin copolymer with high polymerization activity, and there is no mention of specific adhesion performance with different polar materials.
- this patent document does not mention at all the resin physical properties necessary for the polar group-containing olefin copolymer to obtain sufficient adhesiveness with different polar materials, and the polarity is intended for high adhesive performance. Use as a group-containing olefin copolymer is not disclosed.
- the method of introducing a polar group into an olefin copolymer which includes respective problems such as graft modification, high pressure radical polymerization process, and a method using a large amount of organoaluminum,
- a polar group-containing olefin copolymer containing an epoxy group which is produced without depending on the method of the above, and exhibits excellent adhesion performance to a highly polar different material, and It can be said that the proposal of the laminated body using it was long-awaited.
- the object of the present invention is to dissimilarly dissimilar materials with high polarity, which are produced by any conventional method and which include each problem.
- a polar group-containing olefin copolymer exhibiting excellent adhesion performance
- a multi-component polar olefin copolymer an olefin resin composition comprising a polar group-containing olefin copolymer and an olefin resin
- the present inventors have produced the copolymer by a simple and efficient production method in the production of a polar group-containing olefin copolymer, and the adhesion of the copolymer to a different material.
- the method of polar group introduction, selection of polar group and polymerization catalyst, the molecular structure of the polar group-containing olefin copolymer, and the correlation between the structure of the copolymer and the adhesion performance were considered and examined.
- the polar group-containing olefin copolymer, the multi-component polar olefin copolymer, and the olefin containing the polar group-containing olefin copolymer and the olefin resin which are excellent in adhesion performance with various different materials.
- System resin composition could be found, leading to the creation of the present invention.
- the polymer of the first invention of the present invention is a specific polar group-containing olefin copolymer (A) polymerized using a transition metal catalyst, and if the content of the polar group-containing monomer is within a specific range, it is exceptional. It is characterized by being excellent in various physical properties while exhibiting excellent adhesive properties.
- the polymer of the second invention of the present invention is a multi-component polar olefin copolymer (B) having a very narrow molecular weight distribution in a specific range and having a melting point in a specific range, and has a balance between adhesion and mechanical properties. It is characterized by a dramatic improvement in terms.
- the third invention of the present invention gives the excellent physical properties of the olefin resin by adding the olefin resin (C) at a specific ratio to the polar group-containing olefin copolymer (A ′).
- the olefin-based resin composition (D) maintains a sufficient adhesion performance of the polar group-containing olefin copolymer with respect to different polar materials.
- a polar group-containing olefin copolymer (A) obtained by polymerization and having a linear molecular structure and random copolymerization.
- R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 2 , R 3 , and R 4 each independently contains a hydrogen atom, a hydrocarbon group, or an epoxy group
- any one of R 2 to R 4 is the following specific functional group including an epoxy group.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- R 5 to R 8 each independently represents a specific functional group shown below including a hydrogen atom, a hydrocarbon group, or an epoxy group, and any one of R 5 to R 8 Is a specific functional group including an epoxy group, and m is 0-2.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- (6) The polar group-containing olefin copolymer according to any one of (1) to (5), wherein the transition metal catalyst is a transition metal containing a chelating ligand and a Group 5-11 metal ( A).
- (7) The polar group according to any one of (1) to (6), wherein the polar group-containing olefin copolymer is a transition metal catalyst in which a triarylphosphine or a triarylarsine compound is coordinated to palladium or nickel metal. Containing olefin copolymer (A).
- ⁇ Second invention ⁇ One or more polar monomers (Z1) selected from one or more nonpolar monomer (X1) units selected from ethylene and an ⁇ -olefin having 3 to 10 carbon atoms and a monomer having an epoxy group
- Z1 polar monomers selected from one or more nonpolar monomer (X1) units selected from ethylene and an ⁇ -olefin having 3 to 10 carbon atoms and a monomer having an epoxy group
- a multi-component polar group-containing olefin copolymer (B) obtained by copolymerization in the presence of a transition metal catalyst and having a linear molecular structure and random copolymerization.
- the multi-component polar group-containing olefin copolymer is a transition metal catalyst in which a triarylphosphine or a triarylarsine compound is coordinated to palladium or nickel metal, according to any one of (8) to (13) Multi-component polar group-containing olefin copolymer (B).
- ⁇ Third invention ⁇ A linear molecular structure obtained by copolymerizing at least one of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms and a polar group-containing monomer containing an epoxy group in the presence of a transition metal catalyst.
- a olefin-based resin composition (D) comprising a polar group-containing olefin copolymer (A ′) that is in the form of a random copolymer and an olefin-based resin (C), the blending of the olefin-based resin (C)
- An olefin resin composition (D) having an amount of 1 to 99,900 parts by weight per 100 parts by weight of the polar group-containing olefin copolymer (A ′).
- R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 , R 3 , and R 4 each independently contains a hydrogen atom, a hydrocarbon group, or an epoxy group) And any one of R 2 to R 4 is a specific functional group including an epoxy group.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- R 5 to R 8 each independently represents a specific functional group shown below including a hydrogen atom, a hydrocarbon group, or an epoxy group, and any one of R 5 to R 8 Is a specific functional group containing an epoxy group, and m is 0-2.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- the amount of structural units derived from at least one of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms is 99.999 to 80 mol%, and includes a polar group containing an epoxy group
- the olefin resin (C) is at least one of a homopolymer and a copolymer obtained by polymerizing a monomer selected from at least one of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
- the olefin resin composition (D) according to any one of (15) to (17).
- (19) The olefin according to any one of (15) to (18), wherein the olefin resin (C) is an ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
- the melting point represented by the temperature at the maximum peak position is 50 to 140 ° C.
- the olefin resin composition (D) according to any one of (15) to (19), wherein (21)
- the polar group-containing olefin copolymer (A ′) is a copolymer polymerized in the presence of a transition metal catalyst of a Group 5-11 metal having a chelating ligand.
- the polar group-containing olefin copolymer (A ′) is a copolymer polymerized in the presence of a transition metal catalyst in which a triarylphosphine or a triarylarsine compound is coordinated to palladium or nickel metal.
- the olefin resin composition (D) according to any one of (15) to (21).
- the density of the olefin resin (C) measured in accordance with JIS K7112 is in the range of 0.890 to 1.20 g / cm 3 , according to any one of (15) to (22) Olefin resin composition (D ′).
- the melting point of the olefin resin (C) represented by the temperature at the maximum peak position of the absorption curve measured by differential scanning calorimetry (DSC) is in the range of 90 to 170 ° C.
- the melting point represented by the temperature at the maximum peak position of the absorption curve measured by differential scanning calorimetry (DSC) is in the range of 119 to 170 ° C., in any one of (15) to (24)
- the olefin-based resin composition (D) according to any one of (15) to (25), wherein the heat of fusion ⁇ H measured by differential scanning calorimetry (DSC) is in the range of 80 to 300 J / g. ').
- the melting point represented by the temperature at the maximum peak position of the absorption curve measured by differential scanning calorimetry (DSC) of the olefin resin (C) is 30 to 124 ° C. (15) to (22 ) -Based olefin resin composition (D ′′).
- the present invention provides the polar group-containing olefin copolymer (A) (first invention), the multi-component polar group-containing olefin copolymer (B) (second invention), and the olefin resin composition (D). More specifically, the present invention relates to an adhesive, a laminate, and other products for use including at least one of an olefin resin composition (D ′) and an olefin resin composition (D ′′) (third invention). Is as follows.
- the base material layer includes at least one selected from a polyamide-based resin, a fluorine-based resin, a polyester-based resin, and an ethylene-vinyl alcohol copolymer (EVOH), according to (29) or (30) Laminated body.
- the polar group-containing olefin copolymer (A) of the first invention of the present invention has a specific molecular structure and resin physical properties, so that the multi-component polar olefin copolymer (B) of the second invention is By having a very narrow molecular weight distribution in a specific range and having a melting point in a specific range, the third invention adds the olefin resin (C) at a specific ratio to the polar group-containing olefin copolymer (A ′).
- the olefin resin composition (D), the olefin resin composition (D ′), and the olefin resin composition (D ′′) high adhesiveness with other substrates is expressed and industrially produced.
- the production of useful laminates and composite materials has been made possible, and this remarkable effect is demonstrated by the data of each example of the present invention described later and the comparison between each example and each comparative example.
- the polar group-containing olefin copolymer (A) according to the present invention, a multi-component polar olefin copolymer (B), an olefin resin composition (D) comprising a polar group-containing olefin copolymer and an olefin resin, Olefin-based resin composition (D ′) and olefin-based resin composition (D ′′) are excellent in mechanical and thermal properties as well as adhesiveness, and also have chemical resistance, and are useful multilayer molding. It can be applied as a body, and formed into a multilayer film, a multilayer blow bottle, etc. by various uses such as extrusion molding and blow molding, and can be used for a wide range of applications.
- FIG. 1 is an image diagram of the molecular structure of an olefin copolymer polymerized by a high pressure radical polymerization process.
- FIG. 2 is an image diagram of a molecular structure in the case of an olefin copolymer polymerized using a metal catalyst and having no long chain branching.
- FIG. 3 is an image diagram of a molecular structure in the case of an olefin copolymer polymerized using a metal catalyst and having a small amount of long chain branching.
- FIG. 4 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-1) and the adhesive strength with polyamide.
- FIG. 1 is an image diagram of the molecular structure of an olefin copolymer polymerized by a high pressure radical polymerization process.
- FIG. 2 is an image diagram of a molecular structure in the case of an olefin copolymer polymerized
- FIG. 5 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-9) and the adhesive strength with polyamide.
- FIG. 6 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-2) and the adhesive strength with the polyamide.
- FIG. 7 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-3) and the adhesive strength with polyamide.
- FIG. 8 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-5) and the adhesive strength with polyamide.
- FIG. 9 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-4) and the adhesive strength with the fluororesin.
- FIG. 10 is a graph showing the relationship between the blending ratio of the polar group-containing olefin copolymer (A′-3-9) and the adhesive strength with the fluororesin.
- the olefin-based resin composition (D ′), the olefin-based resin composition (D ′′), and the adhesive and laminate using the same will be described specifically and in detail for each item.
- Polar group-containing olefin copolymer (1) Polar group-containing olefin copolymer (A)
- the polar group-containing olefin copolymer according to the present invention is a copolymer of ethylene or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer, wherein the monomer unit is randomly copolymerized. It is a polymer and a copolymer having a substantially linear molecular structure.
- the polar group-containing olefin copolymer (A) according to the present invention is obtained by polymerizing ethylene and / or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer in the presence of a transition metal catalyst. It is characterized by being able to.
- the ethylene or ⁇ -olefin having 3 to 20 carbon atoms to be used for the polymerization is not particularly limited, but preferably contains ethylene as essential, and may further contain an ⁇ -olefin having 3 to 20 carbon atoms as necessary.
- Ethylene or ⁇ -olefin having 3 to 20 carbon atoms to be used for polymerization may be used alone or in combination of two or more.
- the proportion of structural units derived from ethylene and / or ⁇ -olefin is usually 80 to 99.999 mol%, preferably 85 to 99.99 mol%, more preferably 90 to 99.98 mol%, more preferably 95 It is desirable to select from the range of ⁇ 99.97 mol%.
- the ⁇ -olefin according to the present invention is an ⁇ -olefin having 3 to 20 carbon atoms and represented by the structural formula: CH 2 ⁇ CHR 18 (R 18 is a hydrocarbon having 1 to 18 carbon atoms) Group, which may have a straight chain structure or a branched structure).
- it is an ⁇ -olefin having 3 to 12 carbon atoms, more preferably propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, An ⁇ -olefin selected from 4-methyl-1-pentene, more preferably an ⁇ -olefin selected from propylene, 1-butene, 1-hexene and 1-octene.
- the ⁇ -olefin used for polymerization may be used alone or in combination of two or more.
- the monomer containing no polar group in the present invention is a monomer having one or more carbon-carbon double bonds in the molecular structure, and the elements constituting the molecule are carbon and hydrogen. If it is only, it will not limit, For example, a diene, a triene, an aromatic vinyl monomer, a cyclic olefin etc. are mentioned, Preferably, it is a butadiene, isoprene, styrene, vinylcyclohexane, cyclohexene, vinyl norbornene, norbornene.
- the polar group-containing monomer according to the present invention needs to contain an epoxy group. If it is an olefin resin composition containing a polar group-containing olefin copolymer having an epoxy group, the polarity of a polyamide resin, a polyester resin, an ethylene-vinyl alcohol copolymer (EVOH), a fluororesin imparting adhesiveness, etc. It is possible to laminate and adhere to a high-temperature thermoplastic resin and a base material of a metal material such as aluminum and steel.
- the polar group-containing monomer according to the present invention is preferably a monomer containing an epoxy group represented by the following structural formula (I) or structural formula (II).
- R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 , R 3 , and R 4 each independently contains a hydrogen atom, a hydrocarbon group, or an epoxy group) And any one of R 2 to R 4 is a specific functional group including an epoxy group.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- R 5 to R 8 each independently represents a specific functional group shown below including a hydrogen atom, a hydrocarbon group, or an epoxy group, and any one of R 5 to R 8 Is a specific functional group containing an epoxy group, and m is 0-2.
- Specific functional group a group that contains an epoxy group as essential and has a molecular structure consisting of carbon, oxygen, and hydrogen
- the molecular structure of the polar group-containing monomer is not particularly limited, but considering the ease of copolymerization in the presence of a transition metal catalyst and the handling of the polar group-containing monomer, the polar group-containing monomer represented by the structural formula (I) is More preferred.
- R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 2 , R 3 and R 4 are each independently a hydrogen atom, More preferably, it is any of the following specific functional groups including a hydrocarbon group or an epoxy group, and any one of R 2 to R 4 is a specific functional group including an epoxy group. .
- Specific functional group a group having a molecular structure composed of a carbon atom, an oxygen atom, and a hydrogen atom, which essentially includes an epoxy group and further includes any of a hydrocarbon group, a carbonyl group, and an ether group
- Examples of the polar group-containing monomer represented by the structural formula (I) or the structural formula (II) include 5-hexene epoxide, 6-heptene epoxide, 7-octene epoxide, 8-nonene epoxide, 9-decene epoxide, ⁇ -alkenyl epoxides such as 10-undecene epoxide, 11-dodecene epoxide, 2-methyl-6-heptene epoxide, 2-methyl-7-octene epoxide, 2-methyl-8-nonene epoxide, 2-methyl ⁇ -alkenyl epoxides having a branch in the molecular structure such as -9-decene epoxide, 2-methyl-10-undecene epoxide, allyl glycidyl ether, 2-methylallyl glycidyl ether, glycidyl
- Cyclic olefins containing epoxy groups such as glycidyl esters of unsaturated carboxylic acids, epoxy hexyl norbornene, epoxy cyclohexane norbornene, methyl glycidyl ether norbornene, and others, 2- (o-vinylphenyl) ethylene oxide, 2- (p-vinylphenyl) Ethylene oxide, 2- (o Allylphenyl) ethylene oxide, 2- (p-allylphenyl) ethylene oxide, 2- (o-vinylphenyl) propylene oxide, 2- (p-vinylphenyl) propylene oxide, 2- (o-allylphenyl) propylene oxide, 2- (P-allylphenyl) propylene oxide, p-glycidylstyrene, 3,4-epoxy-1-butene, 3,4-epoxy-3-methyl-1-butene, 3,4-epoxy-1-pentene, 3, 4-epoxy
- 1,2-epoxy-9-decene, 4-hydroxybutyl acrylate glycidyl ether, glycidyl methacrylate, 1,2-epoxy-4-vinylcyclohexane and the like represented by the following structural formula are particularly preferable.
- the epoxy group-containing monomer used for the polymerization may be used alone or in combination of two or more.
- cross-linking between molecular chains may occur due to the reaction between the contained epoxy groups.
- intermolecular chain crosslinking may occur.
- Structural unit of polar group-containing olefin copolymer (A) The structural unit and the structural unit amount of the polar group-containing olefin copolymer according to the present invention will be described. A structure derived from one molecule of ethylene or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer is defined as one structural unit in the polar group-containing olefin copolymer. And what represented the ratio of each structural unit in a polar group containing olefin copolymer in mol% is a structural unit amount.
- the structural unit amount derived from the epoxy group-containing monomer of the polar group-containing olefin copolymer (A) according to the present invention is usually in the range of 20 to 0.001 mol%, preferably It is selected from the range of 15 to 0.01 mol%, more preferably in the range of 10 to 0.02 mol%, more preferably in the range of 5 to 0.03 mol%, and it must be present in the polar group-containing olefin copolymer of the present invention. It is preferable. If the amount of the structural unit derived from the epoxy group-containing monomer is less than this range, the adhesion with a different polar material is not sufficient, and if it exceeds this range, sufficient mechanical properties cannot be obtained.
- 1 H-NMR was measured at a pulse angle of 1 °, a pulse interval of 1.8 seconds, and an integration frequency of 1,024 times or more.
- the chemical shift was set so that the peak of methyl proton of hexamethyldisiloxane was 0.088 ppm, and the chemical shift of the peak due to other protons was based on this.
- 13 C-NMR was measured by a proton complete decoupling method with a pulse angle of 90 °, a pulse interval of 20 seconds, and a cumulative number of 512 times or more.
- the chemical shift was set such that the methyl carbon peak of hexamethyldisiloxane was set to 1.98 ppm, and the chemical shifts of peaks due to other carbons were based on this.
- the polar group-containing olefin copolymer (A) comprises ethylene and / or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer. It is a random copolymer of the copolymer. Examples of the molecular structure of the polar group-containing olefin copolymer (A) in the present invention are shown in the following paragraphs.
- the random copolymer is the type of the adjacent structural unit that has a probability of finding each structural unit at a position in a given molecular chain of the A structural unit and the B structural unit in the example of the molecular structure shown in the following paragraph. Is a copolymer unrelated to.
- the molecular chain terminal of the polar group-containing olefin copolymer may be ethylene and / or an ⁇ -olefin having 3 to 20 carbon atoms, or may be an epoxy group-containing monomer.
- the molecular structure (example) of the polar group-containing olefin copolymer in the present invention is such that ethylene or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer form a random copolymer. Yes.
- the polar group-containing olefin copolymer (A) according to the present invention is produced in the presence of a transition metal catalyst, and its molecular structure is linear.
- FIG. 1 and FIG. 2 and FIG. 3 respectively, an image diagram of an olefin copolymer polymerized by a high pressure radical polymerization process is illustrated in FIG.
- This difference in molecular structure can be controlled by selecting a production method. For example, as described in Japanese Patent Application Laid-Open No. 2010-150532, the difference in molecular structure can also be controlled by a complex elastic modulus measured with a rotary rheometer. The molecular structure can be estimated.
- the molecular structure is as shown in FIG. 3 and a linear structure as shown in FIG. 3 that does not include any long-chain branching (FIG. 2) or a structure that includes a small amount of long-chain branching that does not affect the mechanical strength ( FIG. 3) is shown.
- the molecular structure is as shown in FIG.
- Weight average molecular weight (Mw) of polar group-containing olefin copolymer (A) is usually 1,000 to 2,000,000, preferably 10,000 to 1,500,000, and more preferably 20 It is desirable that the range is from 31,000 to 1,000,000, preferably from 31,000 to 800,000, more preferably from 33,000 to 800,000.
- Mw is less than 1,000, physical properties such as mechanical strength and impact resistance are not sufficient, and adhesion with a different material with high polarity is also inferior.
- Mw exceeds 2,000,000 the melt viscosity becomes very high and molding processing becomes difficult.
- the polar group-containing olefin copolymer (A) weight average molecular weight (Mw) according to the present invention is determined by gel permeation chromatography (GPC).
- the molecular weight distribution parameter (Mw / Mn) is a value obtained by further obtaining the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculating the ratio of Mw to Mn, Mw / Mn.
- the GPC measurement method according to the present invention is as follows. (Measurement conditions) Model used: 150C manufactured by Waters Inc. Detector: MIRAN1A / IR detector manufactured by FOXBORO (measurement wavelength: 3.42 ⁇ m) Measurement temperature: 140 ° C. Solvent: Orthodichlorobenzene (ODCB) Column: AD806M manufactured by Showa Denko KK / S (3) Flow rate: 1.0 mL / min Injection volume: 0.2 mL (Sample preparation) A 1 mg / mL solution was prepared using ODCB (containing 0.5 mg / mL BHT (2,6-di-t-butyl-4-methylphenol)) at 140 ° C. It takes about 1 hour to dissolve.
- ODCB Orthodichlorobenzene
- the standard polystyrene method is used, and the conversion from the retention capacity to the molecular weight is performed using a standard curve prepared in advance by standard polystyrene.
- the standard polystyrene used is a brand (F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000) manufactured by Tosoh Corporation.
- a calibration curve is created by injecting 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL.
- the calibration curve uses a cubic equation obtained by approximation by the least square method.
- the melting point of the olefin resin (A) according to the present invention is indicated by the maximum peak temperature of the endothermic curve measured by a differential scanning calorimeter (DSC).
- the maximum peak temperature is the height from the baseline when DSC measurement shows multiple peaks in the endothermic curve when the heat flow (mW) is taken on the vertical axis and the temperature (° C) is taken on the horizontal axis. Indicates the maximum peak temperature, and when there is only one peak, it indicates the peak temperature.
- the melting point is preferably 50 ° C. to 140 ° C., more preferably 60 ° C. to 138 ° C., and most preferably 70 ° C. to 135 ° C. If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the adhesiveness is poor.
- Multi-component polar group-containing olefin copolymer (B) (1) Multi-component polar group-containing olefin copolymer (B) The multi-component polar group-containing olefin copolymer (B) according to the present invention contains a polar group selected from a non-polar monomer (X1) selected from ethylene and an ⁇ -olefin having 3 to 10 carbon atoms and a monomer having an epoxy group. This is a multi-component polar olefin copolymer (B) that essentially contains three components consisting of a monomer (Z1) and another monomer (Z2).
- the multi-component polar group-containing olefin copolymer (B) obtained by copolymerizing (X1), (Z1) and (Z2) is already known in graft polymerization, high-pressure radical polymerization and other polymerization methods described above.
- the known multi-component polar group-containing olefin copolymer is a random copolymer polymerized in the presence of a transition metal, and the molecular structure is substantially reduced. It has a characteristic that it is linear, and also has a requirement of having an extraordinary adhesive effect, so that it is significantly different from known copolymers.
- Nonpolar monomer (X1) examples of the nonpolar monomer (X1) according to the present invention include ethylene and / or an ⁇ -olefin having 3 to 10 carbon atoms. Preferable specific examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, and 4-methyl-1-pentene. A specific example is ethylene. One kind of ⁇ -olefin may be used, or a plurality of ⁇ -olefins may be used in combination.
- Examples of the two combinations include ethylene-propylene, ethylene-1-butene, ethylene-1-hexene, ethylene-1-octene, propylene-1-butene, propylene-1-hexene, and propylene-1-octene.
- Examples of the three combinations include ethylene-propylene-1-butene, ethylene-propylene-1-hexene, ethylene-propylene-1-octene, propylene-1-butene-hexene, and propylene-1-butene-1-octene. It is done.
- Polar group-containing monomer containing an epoxy group (Z1) The polar group-containing monomer (Z1) according to the present invention needs to contain an epoxy group.
- polar group-containing monomer containing an epoxy group those exemplified in the description of the polar group-containing olefin copolymer (A) can be appropriately used.
- the other monomer (Z2) which is the third component can be any monomer as long as it is not the same as (X1) and (Z1).
- the other monomer (Z2) which is the third component can be any monomer as long as it is not the same as (X1) and (Z1).
- ethylene is selected as (X1)
- ethylene cannot be used as (Z2), but other ⁇ -olefins such as 1-butene and 1-hexene can be used.
- 4-hydroxybutyl glycidylether is selected as (Z1)
- 4-hydroxybutyryl glyceryl is not 4-hydroxybutyryl acrylate monomer that is not 4-hydroxybutyryl glycidylether or a monomer that contains acid anhydride. I can do it.
- the other monomer (Z2) is a compound that essentially contains a carbon-carbon double bond in the molecule, and may have a substituent (polar group) containing an atom having an electronegativity different from that of the carbon atom. It may be good or not.
- the other monomer (Z2) according to the present invention is classified into an acyclic monomer or a cyclic monomer depending on the position of the carbon-carbon double bond in the molecule.
- the acyclic monomer may have a cyclic structure in the molecule as long as the carbon-carbon double bond is located in the acyclic portion of the molecule.
- Acyclic monomer examples include ⁇ -olefins, unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides (when the carbon-carbon double bond is not cyclic), (meth) acrylic acid esters, and the like. Can be mentioned.
- the ⁇ -olefin according to the present invention is an ⁇ -olefin having 3 to 20 carbon atoms and is represented by the structural formula: CH 2 ⁇ CHR 18 .
- R 18 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and may be linear, branched or cyclic, and may have an unsaturated bond. Furthermore, it may contain a hetero atom at any position within R 18.
- preferred ⁇ -olefins include those in which R 18 is a hydrogen atom or an ⁇ -olefin having 1 to 10 carbon atoms.
- ⁇ -olefin examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, Vinylcyclohexene, 1,2-epoxy-4-vinylcyclohexene, styrene, 6-hydroxy-1-hexene, 8-hydroxy-1-octene, 9,10-oxy-1-decene, 7- (N, N-dimethyl) Amino) -1-peptene, 3-triethoxysilyl-1-propene, allyl alcohol, 2-allyloxyethanol, allyl acetate and the like.
- unsaturated carboxylic acid examples include methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo [2,2,1] hept-2- And ene-5,6-dicarboxylic acid.
- unsaturated carboxylic acid anhydride when the carbon-carbon double bond is not cyclic
- unsaturated carboxylic acid anhydride include itaconic anhydride, 2,7-octadien-1-yl succinic anhydride, and the like.
- the (meth) acrylic acid ester according to the present invention is a compound represented by the structural formula: CH 2 ⁇ C (R 21 ) CO 2 (R 22 ).
- R 21 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, which may be linear, branched or cyclic, and may have an unsaturated bond.
- R 22 is a hydrocarbon group having 1 to 30 carbon atoms, and may be linear, branched, or cyclic, and may have an unsaturated bond. Furthermore, it may contain a hetero atom at any position within R 22.
- Preferable (meth) acrylic acid ester includes (meth) acrylic acid ester in which R 21 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms. More preferable examples include acrylic acid esters in which R 21 is a hydrogen atom or methacrylic acid esters in which R 21 is a methyl group.
- (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylic acid n.
- a single (meth) acrylic acid ester may be used, or a plurality of (meth) acrylic acid esters may be used in combination.
- Preferred compounds include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, and (4-hydroxybutyl) acrylate glycidyl ether.
- Cyclic monomer examples include norbornene-based olefins and unsaturated carboxylic acid anhydrides (when the carbon-carbon double bond is cyclic), such as cyclopentene, cyclohexene, norbornene, and ethylidene norbornene.
- Examples of compounds having a cyclic olefin skeleton and derivatives thereof include compounds containing a hydroxyl group, an alkoxide group, a carboxylic acid group, an ester group, an aldehyde group, an acid anhydride group, and an epoxy group.
- unsaturated carboxylic acid anhydride when the carbon-carbon double bond is cyclic
- unsaturated carboxylic acid anhydride include maleic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, 3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, tetracyclo [6.2.1.13,6.02,7] dodec-9-ene-4,5-dicarboxylic anhydride Etc.
- Examples of norbornene-based olefins include compounds represented by the following structural formula (E) and structural formula (F).
- Structural formula (E) is norbornene having an acid anhydride group (Diels-Alder reaction product of cyclopentadiene and maleic anhydride, ie, 5-norbornene-2,3-dicarboxylic acid anhydride),
- (F) is norbornene having a hydroxyl group.
- the multidimensional polar group-containing olefin copolymer (B) according to the present invention comprises (X1), (Z1), and (Z2), respectively. It is necessary to contain one or more types and to contain a total of three or more types of monomer units.
- the structural unit amount of (X1) is 80.000 mol% to 99.998 mol%, preferably 80.000 mol% to 99.98 mol%, more preferably 80.000 mol% to 99.94 mol%.
- the structural unit amount of (Z1) is 0.001 mol% to 19.999 mol%, preferably 0.01 mol% to 15.000 mol%, more preferably 0.02 mol% to 10.000 mol%, still more preferably 0.02 mol%. To 5.000 mol%.
- the structural unit amount of (Z2) is 0.001 mol% to 19.999 mol%, preferably 0.01 mol% to 15.000 mol%, more preferably 0.02 mol% to 10.000 mol%, still more preferably 0.02 mol%. To 5.000 mol%.
- (X1) + (Z1) + (Z2) must be 100 mol%.
- the degree of crystallinity of the copolymer is that of monomers other than ethylene. It depends on the content. For example, in the case of a copolymer of ethylene and (Z1), the content of (Z1) is a strong factor that determines the crystallinity of the copolymer.
- the present inventors have found that, in addition to the (Z1) content of the copolymer, the lower melting point shows higher adhesiveness as a factor affecting the adhesive performance. .
- the copolymer has a lower melting point and is more flexible so that the adhesiveness can be improved.
- JIS K6854-1 to 4 (1999) “Adhesives—Peeling bond strength test method” When carrying out a peel test as exemplified in the above, if the adhesive is flexible, the adhesive itself is greatly deformed, and the amount of deformation is measured as stress, resulting in high adhesion. I guess it is.
- the present invention which can arbitrarily adjust the melting point of the copolymer without changing the content of the polar group derived from the monomer (Z1), can improve the adhesion performance and mechanical properties of the copolymer, particularly impact resistance. It is possible to achieve both.
- the structural unit amount of (Z1) according to the present invention is usually in the range of 0.001 mol% to 19.999 mol%, preferably 0.01 mol% to 15.000 mol. %, More preferably in the range of 0.02 mol% to 10.000 mol%, more preferably in the range of 0.02 mol% to 5.000 mol%, and is always present in the copolymer of the present invention. It is preferable. If the amount of the structural unit derived from the polar group-containing monomer is less than this range, the adhesiveness with a different polar material is not sufficient, and if it exceeds this range, sufficient mechanical properties cannot be obtained. Furthermore, the polar group-containing monomer used may be used alone or in combination of two or more. The structural unit amount of each monomer can be measured by the method using 1 H-NMR described above.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) of multi-component polar group-containing olefin copolymer (B) The weight average molecular weight (Mw) of the multi-component polar group-containing olefin copolymer (B) according to the present invention is usually 1,000 to 2,000,000, preferably 10,000 to 1,500,000, more preferably. Is preferably in the range of 20,000 to 1,000,000, preferably 31,000 to 800,000, more preferably 33,000 to 800,000. If the Mw is less than 1,000, physical properties such as mechanical strength and impact resistance are not sufficient, and if the Mw exceeds 2,000,000, the melt viscosity becomes very high and the molding process becomes difficult.
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the multi-component polar group-containing olefin copolymer (B) according to the present invention is usually 1.5 to 3.5, preferably It is desirable that the range is 1.6 to 3.3, more preferably 1.7 to 3.0. If the Mw / Mn is less than 1.5, various workability including molding of the laminate is not sufficient, and if it exceeds 3.5, the adhesive strength is inferior. Moreover, (Mw / Mn) may be expressed as a molecular weight distribution parameter.
- the melting point of the copolymer according to the present invention exceeds 128-6.0 [Z1]
- an improvement in adhesiveness cannot be expected and sufficient adhesiveness cannot be exhibited.
- fusing point is less than 60 degreeC, the heat resistance required minimum as an ethylene-type copolymer cannot be hold
- Polar group-containing olefin copolymer (B) is a random copolymer of (X1), (Z1), (Z2). It is.
- the multi-component polar group-containing olefin copolymer (B) according to the present invention is produced in the presence of a transition metal catalyst, and its molecular structure is linear.
- Polymerization catalyst for polar group-containing olefin copolymer (A), polar group-containing olefin copolymer (A ′), multi-component polar group-containing olefin copolymer (B) The polar group-containing olefin copolymer according to the present invention
- the kind of the polymerization catalyst used for the production of the polymer (A), the polar group-containing olefin copolymer (A ′), and the multi-component polar group-containing olefin copolymer (B) is ethylene and / or 3 to 20 carbon atoms.
- transition metal compound of Groups 5 to 11 having a chelating ligand examples include vanadium atom, niobium atom, tantalum atom, chromium atom, molybdenum atom, tungsten atom, manganese atom, iron atom, platinum atom, ruthenium atom, cobalt atom, rhodium atom, nickel atom, palladium atom, A copper atom etc. are mentioned.
- vanadium atoms, iron atoms, platinum atoms, cobalt atoms, nickel atoms, palladium atoms, and rhodium atoms are preferable, and platinum atoms, cobalt atoms, nickel atoms, and palladium atoms are particularly preferable.
- These metals may be single or plural.
- the transition metal of the transition metal complex of the present invention is an element in which M is selected from the group consisting of nickel (II), palladium (II), platinum (II), cobalt (II) and rhodium (III).
- M is selected from the group consisting of nickel (II), palladium (II), platinum (II), cobalt (II) and rhodium (III).
- nickel (II) is particularly preferable from the viewpoint of polymerization activity.
- the chelating ligand has at least two atoms selected from the group consisting of P, N, O, and S, and is bidentate or multidentate. It contains a ligand and is electronically neutral or anionic. The structure is illustrated in a review by Brookhart et al. (Chem. Rev., 2000, 100, 1169).
- examples of the bidentate anionic P and O ligand include phosphorus sulfonic acid, phosphorus carboxylic acid, phosphorus phenol, and phosphorus enolate.
- Other examples of the bidentate anionic N and O ligand include salicyl. Examples thereof include aldoiminate and pyridinecarboxylic acid, and other examples include diimine ligands, diphenoxide ligands, and diamide ligands.
- the structure of the metal complex obtained from the chelating ligand is represented by the following structural formulas (A) and / or (B) coordinated by an arylphosphine compound, arylarsine compound or arylantimony compound which may have a substituent. expressed.
- M represents a transition metal belonging to any of Groups 5 to 11 of the periodic table of elements, that is, the aforementioned transition metal.
- X 1 represents oxygen, sulfur,- Represents SO 3 — or —CO 2 —
- Y 1 represents carbon or silicon
- n represents an integer of 0 or 1
- E 1 represents phosphorus, arsenic or antimony
- R 3 and R 4 Each independently represents hydrogen or a hydrocarbon group that may contain a heteroatom having 1 to 30 carbon atoms
- R 5 each independently contains hydrogen, a halogen, or a heteroatom having 1 to 30 carbon atoms.
- R 6 and R 7 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group that may contain 1 to 30 carbon atoms, OR 2 , CO 2; R 2 , CO 2 M ′, C (O) N (R 1 ) 2 , C (O ) R 2 , SR 2 , SO 2 R 2 , SOR 2 , OSO 2 R 2 , P (O) (OR 2 ) 2-y (R 1 ) y , CN, NHR 2 , N (R 2 ) 2 , Si (OR 1 ) 3-x (R 1 ) x , OSi (OR 1 ) 3-x (R 1 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) (OR 2 ) 2 M ′ represents an epoxy-containing group, M ′ represents an alkali metal, alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x is an integer from 0 to 3, and
- the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
- .L 1 representing a hydrocarbon group having 1 to 20 carbon atoms represents a ligand coordinated to M. Further, R 3 And L 1 may be bonded to each other to form a ring.) More preferably, it is a transition metal complex represented by the following structural formula (C).
- M represents a transition metal belonging to any of Groups 5 to 11 of the periodic table of the elements, that is, the above-described transition metal.
- X1 represents oxygen, sulfur, —SO 3 —, or Represents —CO 2 —
- Y 1 represents carbon or silicon
- n represents an integer of 0 or 1.
- E1 represents phosphorus, arsenic or antimony
- R 3 and R 4 each independently represent Represents hydrogen or a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms
- each R 5 independently represents hydrogen, halogen, or a hydrocarbon optionally containing a heteroatom having 1 to 30 carbon atoms
- R 8 , R 9 , R 10 and R 11 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group which may contain a C 1-30 hetero atom, OR 2 , CO 2.
- R 2 CO 2 M ', C (O) N (R 1) , C (O) R 2, SR 2, SO 2 R 2, SOR 2, OSO 2 R 2, P (O) (OR 2) 2-y (R 1) y, CN, NHR 2, N (R 2 ) 2 , Si (OR 1 ) 3-x (R 1 ) x , OSi (OR 1 ) 3-x (R 1 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) ( OR 2 ) 2 M ′ or an epoxy-containing group, where M ′ represents an alkali metal, alkaline earth metal, ammonium, quaternary ammonium, or phosphonium, x is an integer from 0 to 3, and y is Represents an integer of 0 to 2.
- a plurality of groups appropriately selected from R 8 to R 11 are connected to each other to form an alicyclic ring, an aromatic ring, or a heteroatom selected from oxygen, nitrogen, and sulfur. It may form a heterocyclic ring containing at this time, the number of ring members is 5 to 8, and is substituted on the ring.
- the catalyst of the group 5-11 transition metal compound having a chelating ligand there are typically known so-called catalysts called SHOP type and Drent type.
- the SHOP-based catalyst is a catalyst in which a phosphorus-based ligand having an aryl group which may have a substituent is coordinated to nickel metal (see, for example, International Publication No. 2010/050256).
- the Drent system is a catalyst in which a phosphorus-based ligand having an aryl group which may have a substituent is coordinated to palladium metal (see, for example, Japanese Patent Application Laid-Open No. 2010-202647).
- the organometallic compound is an organometallic compound including a hydrocarbon group which may have a substituent, and can be represented by the following structural formula (H).
- R 30 n M30X30 mn structural formula (H) (In the formula, R 30 represents a hydrocarbon group which may have a substituent having 1 to 12 carbon atoms, and M 30 represents from the first group, the second group, the 12th group, and the 13th group of the periodic table.
- a metal selected from the group consisting of X30 represents a halogen atom or a hydrogen atom, m is a valence of M30, and n is 1 to m.)
- Examples of the organometallic compound represented by the structural formula (H) include alkylaluminums such as tri-n-butylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, tri-n-decylaluminum, and methylaluminum.
- alkylaluminum halides such as dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, and diethylaluminum ethoxide, and trialkylaluminum is preferably selected.
- a trialkylaluminum having a hydrocarbon group having 4 or more carbon atoms more preferably a trialkylaluminum having a hydrocarbon group having 6 or more carbon atoms, more preferably tri-n-hexylaluminum or trialkylaluminum.
- -N-octylaluminum and tri-n-decylaluminum are selected, and tri-n-octylaluminum can be most preferably used.
- the organometallic compound may be brought into contact in an amount such that the molar ratio to the polar group-containing comonomer is 10 ⁇ 5 to 0.9, preferably 10 ⁇ 4 to 0.2, and more preferably 10 ⁇ 4 to 0.1. It is preferable from the viewpoint of polymerization activity and cost.
- (2-1) Residual amount of aluminum (Al) Polar group-containing olefin copolymer (A), polar group-containing olefin copolymer (A ′), multi-component polar group-containing olefin copolymer (B aluminum (Al) content remaining in 1g of) is preferably less 100,000 micrograms Al / g, more preferably not more than 70,000 ⁇ g Al / g, or less more preferably 20,000 ⁇ g Al / g, 10,000 ⁇ g Al / g or less and particularly preferably a suitably below 5,000 micrograms Al / g, and more preferably less 1,000 .mu.g Al / g, is most preferred less 500 [mu] g Al / g.
- Aluminum (Al) residual amounts of good lesser the extent possible may be a very small amount of about 1 [mu] g Al / g, it may be a 0 Pg Al / g.
- ⁇ g Al / g means that the amount of aluminum (Al) contained in 1 g of the polar group-containing olefin copolymer is expressed in ⁇ g.
- the amount of aluminum (Al) contained can be calculated as a value obtained by dividing the amount of aluminum contained in the alkylaluminum subjected to polymerization by the yield of the obtained polar group-containing olefin copolymer.
- the amount of aluminum (Al) contained in the polar group-containing olefin copolymer (A), the polar group-containing olefin copolymer (A ′), and the multi-component polar group-containing olefin copolymer (B) is the polymerization of alkyl aluminum.
- it may be measured by fluorescent X-ray analysis or inductively coupled plasma emission (ICP) analysis.
- ICP inductively coupled plasma emission
- Fluorescent X-ray analysis 3 to 10 g of a measurement sample is weighed and heated and pressed with a heating press to produce a flat sample having a diameter of 45 mm. The measurement is performed on a portion having a central diameter of 30 mm of the flat sample, and measurement is performed under the following conditions using a scanning fluorescent X-ray analyzer “ZSX100e” (Rh tube 4.0 kW) manufactured by Rigaku Denki Kogyo.
- the aluminum content can be obtained from a calibration curve prepared in advance and the results measured under the above conditions.
- a calibration curve can be prepared by measuring the aluminum content of a plurality of polyethylene resins by ICP analysis and further subjecting these polyethylene resins to fluorescent X-ray analysis under the above conditions.
- ICP Inductively coupled plasma emission
- Slurry polymerization in which at least a part of the produced polymer becomes a slurry in the medium, bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization carried out in the vaporized monomer, or polymer produced in a monomer liquefied at high temperature and high pressure
- High-pressure ionic polymerization in which at least a part of the polymer is dissolved is preferably used.
- the polymerization format may be any of batch polymerization, semi-batch polymerization, and continuous polymerization.
- living polymerization may be sufficient and it may superpose
- chain shunting agent may be used in combination to perform chain shunting reaction or coordinative chain transfer polymerization (CCTP).
- CSA chain shunting agent
- CCTP coordinative chain transfer polymerization
- Olefin resin composition (D) (1) About Olefin Resin Composition (D)
- the olefin resin composition (D) according to the present invention contains the olefin resin (C) with respect to 100 parts by weight of the polar group-containing olefin copolymer (A ′). 1 to 99,900 parts by weight are blended.
- the amount of the olefin resin (C) is preferably 1 to 99,000 parts by weight, more preferably 1 to 90,000 parts by weight, still more preferably 1 to 50,000 parts by weight, and particularly 1 to 19,900 parts by weight. Part is suitable.
- the adhesiveness of the olefin resin composition (D) becomes poor.
- the polar group-containing olefin copolymer (A ′) in the olefin resin composition (D) is a polar group-containing olefin copolymer produced by a high pressure radical process, a small amount of the olefin resin (C) is used. Just by blending, the adhesiveness is drastically lowered.
- the polar group-containing olefin copolymer in the olefin resin composition is the polar group-containing olefin copolymer (A ′) according to the present invention, the blending ratio of the olefin resin (C) is increased. However, sufficient adhesion performance is maintained.
- the polar group-containing olefin copolymer (A ′) contained in the olefin resin composition (D) according to the present invention may be single or plural. Moreover, the olefin resin (C) may be used alone or in combination.
- the olefin resin composition (D) according to the present invention can be produced using a known method.
- a polar group-containing olefin copolymer ( A), the olefin resin (C), and other components added as required such as single screw extruder, twin screw extruder, kneader, Banbury mixer, reciprocating kneader (BUSS KNEADER), roll kneader, etc.
- a polar group-containing olefin copolymer (A ′) and an olefin-based resin (C), and other components to be added as required in a suitable good solvent for example, hexane, heptane, decane, In a solvent such as cyclohexane and xylene, and then the solvent is removed.
- olefin resin composition (D) according to the present invention, various resin modifiers and the like may be blended without departing from the spirit of the function of the composition of the present invention.
- the component include butadiene rubber, isobutylene rubber, isoprene rubber, natural rubber, nitrile rubber, and petroleum resin, and these may be used alone or in a mixture.
- the polar group-containing olefin copolymer (A ′) is a copolymer of ethylene and / or an ⁇ -olefin having 3 to 20 carbon atoms and an epoxy group-containing monomer.
- the molecular structure and production method of the polar group-containing olefin copolymer (A ′) are the polar group-containing olefin copolymer (A) and multi-component polar group-containing in the first and second inventions of the present invention. It is basically the same as the olefin copolymer (B).
- the structural unit amount derived from the polar group-containing monomer in the polar group-containing olefin copolymer (A ′) according to the present invention is usually in the range of 20 to 0.001 mol%.
- the polar group-containing olefin copolymer of the present invention is necessarily selected from the range of preferably 15 to 0.01 mol%, more preferably 10 to 0.02 mol%, and more preferably 5 to 0.02 mol%. It is preferable that it exists in.
- the amount of the structural unit derived from the polar group-containing monomer is less than this range, the adhesiveness with a different polar material is not sufficient, and if it exceeds this range, sufficient mechanical properties cannot be obtained.
- the polar group-containing monomer used may be used alone or in combination of two or more.
- Weight average molecular weight (Mw) of polar group-containing olefin copolymer (A ′) is usually 1,000 to 2,000,000, preferably 10,000 to 1,500,000, more preferably. Desirably, it is in the range of 20,000 to 1,000,000, preferably 31,000 to 800,000, more preferably 33,000 to 800,000.
- Mw is less than 1,000, physical properties such as mechanical strength and impact resistance are not sufficient, and adhesion with a different material with high polarity is also inferior.
- Mw exceeds 2,000,000 the melt viscosity becomes very high and molding processing becomes difficult.
- Olefin resin (C) The olefin resin (C) according to the present invention is not particularly specified.
- the olefin-based resin (C) is an ethylene homopolymer or ⁇ 3 to 20 carbon atoms obtained by a high-pressure radical polymerization method, a high-medium-low pressure method using a Ziegler-type, Phillips type or single-site catalyst, and other known methods.
- an ethylene homopolymer, a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms, or a copolymer of ethylene and a vinyl monomer containing a polar group is preferable.
- the homopolymer according to the present invention is obtained by polymerizing only one type of monomer selected from ethylene or an ⁇ -olefin having 3 to 20 carbon atoms. More preferred homopolymers are ethylene homopolymers, propylene homopolymers, 1-butene homopolymers, 1-hexene homopolymers, 1-octene homopolymers, 1-dodecene homopolymers, and the like. Are ethylene homopolymer and propylene homopolymer.
- the olefin copolymer according to the present invention is a monomer selected from ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, a cyclic olefin, other vinyl monomers not containing a polar group, and vinyl monomers containing a polar group. It is a copolymer obtained by polymerizing two or more kinds, and is an olefin copolymer containing at least one monomer selected from ethylene or an ⁇ -olefin having 3 to 20 carbon atoms. . Two or more types of monomers may be used for the polymerization.
- the olefin copolymer is a copolymer of ethylene and one or more ⁇ -olefins selected from ⁇ -olefins having 3 to 20 carbon atoms, and one or more types selected from ethylene and cyclic olefins. It is a copolymer with a cyclic olefin. More preferred is a copolymer of ethylene and one or more ⁇ -olefins selected from propylene, 1-butene, 1-hexene and 1-octene, and a copolymer of ethylene and norbornene. .
- Examples of the cyclic olefin according to the present invention include monocyclic olefins such as cyclohexene and cyclooctene, norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, tricyclopentadiene, dihydrotricyclopentadiene, and tetracyclopentadiene. And polycyclic olefins such as dihydrotetracyclopentadiene, and substituted products in which a functional group is bonded to these olefins.
- norbornene is mentioned as a preferable cyclic olefin.
- an olefin copolymer obtained by copolymerization of norbornene has low hygroscopicity because the main chain skeleton has an alicyclic structure, and the addition polymer also has excellent heat resistance.
- the monomer that does not contain a polar group according to the present invention is a monomer that has one or more carbon-carbon double bonds in the molecular structure, and the elements constituting the molecule are carbon and hydrogen.
- examples include diene, triene, aromatic vinyl monomer, and the like, and preferred are butadiene, isoprene, styrene, vinylcyclohexane, and vinylnorbornene.
- the monomer containing the polar group according to the present invention is not limited, for example, carboxylic acid group or acid anhydride group-containing monomer (a), ester group-containing monomer (b), hydroxyl group-containing monomer (c), amino group-containing monomer It can be selected from (d) and a silane group-containing monomer (e).
- Examples of the carboxylic acid group or acid anhydride group-containing monomer (a) include ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid and itaconic acid, or anhydrides thereof, acrylic acid, methacrylic acid, and furanic acid. , Unsaturated monocarboxylic acids such as crotonic acid, vinyl acetate and pentenoic acid.
- ester group-containing monomer (b) examples include methyl (meth) acrylate, ethyl (meth) acrylate, (n-, iso-) propyl (meth) acrylate, (n-, iso-, tert-) butyl (meth) acrylate Among them, methyl acrylate is particularly preferable.
- the hydroxyl group-containing monomer (c) examples include hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
- amino group-containing monomer (d) examples include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, cyclohexylaminoethyl (meth) acrylate, and the like.
- silane group-containing monomer (e) examples include unsaturated silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetylsilane, and vinyltrichlorosilane.
- Manufacturing method of olefin resin (C) The manufacturing method of the olefin resin (C) according to the present invention is not limited. The low pressure method and other known methods can be exemplified.
- MFR Melt flow rate of olefin resin
- the MFR of the olefin resin (C) is measured under the condition of a load of 2.16 kg at a temperature of 190 ° C. based on the condition D in accordance with JIS K7120 (1999), and usually 0.01 to 100 g / 10 minutes, preferably It is desirable that the amount be in the range of 0.1 to 80 g / 10 minutes, more preferably 0.3 to 50 g / 10 minutes.
- the MFR exceeds 100 g / 10 min, the physical properties such as mechanical strength and impact resistance are not sufficient, and when it is less than 0.01 g / 10 min, the melt viscosity becomes very high and the molding process becomes difficult.
- the density of the olefin resin (C) is measured in accordance with JIS K7112-A method (1999), and is usually 0.840 to 1.20 g / cm 3 , preferably 0.850 ⁇ 0.990g / cm 3, more preferably 0.860 ⁇ 0.980g / cm 3, it is desirable preferably in the range of 0.870 ⁇ 0.970g / cm 3.
- the density exceeds 1.20 g / cm 3 , physical properties such as impact resistance are not sufficient, and when it is less than 0.840 g / cm 3 , the heat resistance is inferior.
- Olefin resin composition (D ′) (1) Olefin Resin Composition (D ′)
- the olefin resin composition (D ′) further increases the density range and melting point range of the olefin resin (C) contained in the olefin resin composition (D).
- the olefin resin composition (D ′) is basically different from the olefin resin composition (D) except that the density range and melting point range of the olefin resin (C) contained as a component are different. Are the same.
- the density of the olefin resin (C) contained in the olefin resin composition (D ′) is determined according to JIS K7112-A (1999), preferably 0.890 to 1.20 g / cm 3 , more preferably 0.895 to 0.990 g / cm 3 , and 0.900 to 0.000. More preferably, it is 980 g / cm 3 . If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the impact resistance is poor.
- Melting point of olefin resin (C) contained in olefin resin composition (D ′) is a differential scanning calorimeter. Indicated by the maximum peak temperature of the endothermic curve measured by (DSC).
- the olefin resin (C) contained in the olefin resin composition (D ′) includes a crystalline one and an amorphous one. In the case of crystallinity, the melting point can be measured by the above-mentioned melting point measurement method, but the amorphous one may not show the melting point.
- the olefin resin (C) also preferably has a melting point, but the olefin resin composition (D ′) is preferable.
- An amorphous olefin resin may be used as long as it exhibits a melting point range and adhesiveness.
- a preferable melting point range of the olefin resin (C) contained in the olefin resin composition (D ′) whose melting point is measured by the melting point measurement method is 90 ° C. to 170 ° C., and is a range of 100 ° C. to 155 ° C.
- the range of 110 ° C. to 140 ° C. is particularly preferable. If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the adhesiveness is poor.
- the melting point of olefin-based resin composition (D ′) is indicated by the maximum peak temperature of the endothermic curve measured by a differential scanning calorimeter (DSC). It is.
- the melting point of the olefin resin composition (D ′) is preferably 119 ° C. to 170 ° C., more preferably 119.5 ° C. to 155 ° C., and most preferably 120 ° C. to 140 ° C. If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the adhesiveness is poor.
- Heat of fusion ⁇ H of olefin resin composition (D ′) The heat of fusion ⁇ H of the olefin resin composition (D ′) according to the present invention is measured in accordance with JIS K7122 (1987). That is, it is measured from the peak area of the endothermic curve measured by a differential scanning calorimeter (DSC).
- the heat of fusion ⁇ H is preferably in the range of 80 to 300 J / g, more preferably in the range of 85 to 290 J / g, and even more preferably in the range of 100 to 280 J / g. If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the adhesiveness is poor.
- Olefin resin composition (D ) (1) About Olefin Resin Composition (D ′′)
- the olefin resin composition (D ′′) further increases the density range and melting point range of the olefin resin (C) contained in the olefin resin composition (D).
- the adhesion performance with dissimilar materials can be drastically improved and the epoxy group content in the olefin resin composition can be kept low.
- the possibility of impairing the mechanical properties, impact resistance, moldability, and the like associated with the improvement of the process can be avoided. That is, the olefin resin composition (D ′′) is basically different from the olefin resin composition (D) except that the density range and melting point range of the olefin resin (C) contained as a component are different. Are identical.
- the density of olefin resin (C) according to the present invention is based on JIS K7112-A method (1999). 0.840 to 0.932 g / cm 3 is preferable, 0.840 to 0.928 g / cm 3 is more preferable, 0.840 to 0.922 g / cm 3 is still more preferable, and 0.840 to 0.83. 915 g / cm 3 is preferable, and 0.840 to 0.910 g / cm 3 is more preferable. If it is higher than this range, the adhesiveness will be inferior.
- the olefin resin (C) is more flexible, that is, as the density is lower, the adhesiveness is improved.
- the lower limit is not particularly limited. However, when polyethylene is assumed, it is difficult to produce an olefin resin having a density lower than 0.840 g / cm 3 .
- Melting point of olefin resin (C) contained in olefin resin composition (D ′′) is a differential scanning calorimeter. Indicated by the maximum peak temperature of the endothermic curve measured by (DSC).
- the melting point is preferably 30 to 124 ° C., more preferably 30 to 120 ° C., further preferably 30 to 115 ° C., preferably 30 to 110 ° C., and more preferably 30 to 100 ° C.
- the adhesiveness improves as the olefinic resin (C) contained in the olefinic resin composition (D ′′) that is inferior in adhesiveness is softer, that is, as the melting point is lower.
- the lower limit is not particularly limited, but when polyethylene is assumed, it is difficult to produce an olefin resin having a melting point lower than 30 ° C.
- ⁇ H the heat of fusion ⁇ H (J / g) calculated from the peak area of the endothermic curve of DSC measurement depends on the crystallinity of the olefin resin, ⁇ H decreases as the crystallinity of the olefin resin decreases. However, it is difficult to observe the endothermic curve peak.
- the melting point defined by the maximum peak temperature of the endothermic curve may not be measured.
- the gist of the present invention is to blend flexible olefinic resins, and even if the melting point cannot be defined, such a resin may be used as long as it is a flexible resin with low crystallinity.
- the amount of heat of fusion ⁇ H (J / g) is a value calculated from the peak area of the endothermic curve obtained when the DSC measurement shows the heat flow (mW) on the vertical axis and the temperature (° C.) on the horizontal axis. The total amount of heat energy absorbed when the crystals contained therein are melted is expressed in J units.
- Laminate and Composite Product (1) Material of Laminate
- the laminate according to the present invention comprises a polar group-containing olefin copolymer (A), a multi-component polar group-containing olefin copolymer (B), and an olefinic material.
- a laminate comprising a layer composed of any one of a resin composition (D), an olefinic resin composition (D ′), and an olefinic resin composition (D ′′) and a base material layer, and a specific example of the base material
- the base material examples include polyethylene resins such as high density polyethylene, medium density polyethylene, low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, ionomer, homopolypropylene resin, propylene and other ⁇ - Polypropylene resins such as copolymers with olefins, olefin resins such as poly-1-butene and poly-4-methyl-1-pentene, polyvinyl chloride, poly Vinyl polymers such as vinylidene chloride, polystyrene, polyacrylate, polyacrylonitrile, nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, nylon 610, polyamide resins such as polymetaxylylene adipamide
- the base material layer according to the present invention can be appropriately selected depending on the use and the type of the package.
- the package is a perishable food, such as polyamide, polyvinylidene chloride, ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyester, it has transparency, rigidity and gas permeation resistance. An excellent resin can be used.
- the package is a confectionery or a fiber, it is preferable to use polypropylene or the like having good transparency, rigidity, and water permeation resistance.
- resins having excellent fuel permeation prevention performance such as EVOH, polyamides and fluororesins can be used.
- barrier resin examples include polyamide resin, polyester resin, EVOH, polyvinylidene chloride resin, polycarbonate resin, stretched polypropylene (OPP), stretched polyester (OPET), stretched polyamide, alumina vapor deposition film, silica vapor deposition film, and the like.
- examples include metal, inorganic oxide vapor deposition films, metal vapor deposition films such as aluminum vapor deposition, and metal foils.
- the laminated body which concerns on this invention is suitable as a packaging material of foodstuffs, for example.
- food include snacks such as potato chips, confectionery such as biscuits, rice crackers and chocolates, powder seasonings such as powdered soup, foods such as shavings and smoked foods, and the like.
- the pouch container can be formed by facing the ethylene copolymer layer surfaces of the laminate and heat-sealing at least a part thereof.
- water packaging for example, water packaging, general bags, liquid soup bags, liquid paper containers, laminating fabrics, special shaped liquid packaging bags (standing pouches, etc.), standard bags, heavy bags, semi-heavy bags, wrap films, It is suitably used for sugar bags, oil packaging bags, various packaging containers for food packaging, infusion bags, and the like.
- the laminate laminate according to the present invention is a laminate that can be produced by a known laminating method such as extrusion laminating, sand laminating, or dry laminating.
- the extruded product according to the present invention is a polar group-containing olefin copolymer (A), a multi-component polar group-containing olefin copolymer (B), an olefin resin composition ( D), an olefin-based resin composition (D ′), or an olefin-based resin composition (D ′′) is an extrusion-molded product formed by extrusion molding.
- the multilayer coextrusion molded product according to the present invention is a multilayer coextrusion molded product that can be molded by a known multilayer coextrusion molding, and the polar group-containing olefin copolymer of the present invention.
- Multilayer film is a multilayer film that can be produced by a known multilayer film molding method.
- Layer containing olefin copolymer (B), olefin resin composition (D), olefin resin composition (D ′), olefin resin composition (D ′′) Is a multilayer film containing at least.
- the multilayer blow molded product according to the present invention is a multilayer blow molded product that can be manufactured by a known multilayer blow molding, and the polar group-containing olefin copolymer (A) of the present invention.
- a multilayer blow-molded product including at least a layer and a base material layer.
- the multilayer tubular molded article according to the present invention is a multilayer tubular molded article that can be molded by a known multilayer tubular molding method, and the polar group-containing olefin copolymer (A ), A multi-component polar group-containing olefin copolymer (B), an olefin resin composition (D), an olefin resin composition (D ′), or an olefin resin composition (D ′′).
- a multilayer tubular molded article including at least a layer and a base material layer.
- the multilayer sheet according to the present invention is a multilayer sheet that can be produced by known multilayer sheet molding, and includes the polar group-containing olefin copolymer (A) of the present invention and a multi-component polar group-containing material.
- a layer comprising any one of the olefin copolymer (B), the olefin resin composition (D), the olefin resin composition (D ′), and the olefin resin composition (D ′′), and a base material layer; Is a multilayer sheet containing at least
- the injection-molded article according to the present invention is a polar group-containing olefin copolymer (A), a multi-component polar group-containing olefin copolymer (B), an olefin resin composition ( D), an injection-molded article obtained by molding any one of the olefin-based resin composition (D ′) and the olefin-based resin composition (D ′′).
- A polar group-containing olefin copolymer
- B multi-component polar group-containing olefin copolymer
- D olefin resin composition
- D injection-molded article obtained by molding any one of the olefin-based resin composition
- D ′′ olefin-based resin composition
- the multilayer injection-molded article according to the present invention is the polar group-containing olefin copolymer (A), multi-component polar group-containing olefin copolymer (B), or olefin resin composition of the present invention. (D), including at least a layer containing any of the olefin-based resin composition (D ′) and the olefin-based resin composition (D ′′), and by multilayering a plurality of layers using injection molding.
- a multilayer injection molded article that can be manufactured as long as two or more kinds of materials are formed into a multilayered structure. Can be molded.
- the coated metal member according to the present invention is a metal containing a polar group-containing olefin copolymer (A), a multi-component polar group-containing olefin copolymer (B), and an olefin resin composition (D).
- the coated metal member can be produced by coating any one of the olefin resin composition (D ′) and the olefin resin composition (D ′′) as a metal coating material and coating the metal coating material on a metal.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). Further, the molecular weight distribution parameter (Mw / Mn) was further calculated by the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculated by the ratio of Mw to Mn, Mw / Mn. Details are described above.
- Adhesive strength is obtained by preparing a measurement sample processed into a press plate and various substrate films, making a laminate by superimposing the two types and hot pressing them, and performing a peel test. It was measured. The preparation method / measurement method of each step will be described in order.
- the measurement sample press plate obtained by the above press plate preparation method and the polyamide film obtained by the above polyamide film preparation method have dimensions of 50 mm x 60 mm.
- the cut pieces were stacked and placed in a hot press mold having dimensions of 50 mm ⁇ 60 mm and a thickness of 0.5 mm, and pressed at 4.9 MPa for 5 minutes using a hot press machine having a surface temperature of 250 ° C. Then, it transferred to the press machine with a surface temperature of 25 degreeC, it cooled by hold
- a measurement sample press plate obtained by the press plate preparation method and a polyester film obtained by the polyester film preparation method have dimensions of 50 mm ⁇ 60 mm.
- the cut pieces were superposed, put into a hot press mold having dimensions of 50 mm ⁇ 60 mm and a thickness of 0.5 mm, and pressurized at 4.9 MPa for 3 minutes using a hot press machine having a surface temperature of 200 ° C. Then, it transferred to the press machine with a surface temperature of 25 degreeC, it cooled by hold
- the measurement sample press plate prepared by the measurement sample press plate preparation method was cut into a width of 10 mm to prepare a chemical resistance evaluation test piece.
- This test piece for evaluation was placed in a pressure vessel, and a mixed solution of three kinds of isooctane 455 ml / toluene 455 ml / ethanol 90 ml was further added.
- the pressure vessel was placed in an oven adjusted to 60 ° C., and after 24 hours, the test specimen for evaluation was taken out and air-dried in a draft for another 24 hours.
- the chemical resistance was judged as “X”, and when the original shape was maintained, the chemical resistance was judged as “ ⁇ ”.
- a press plate made of a sample processed into a circular shape with a diameter of 25 mm is used as a sample, and a dynamic viscoelasticity is measured using a RHEometrics ARES rotary rheometer as a measuring device for dynamic viscoelasticity under a nitrogen atmosphere under the following conditions. It was measured.
- Aluminum (Al) amount The amount of aluminum (Al) contained in the polar group-containing olefin copolymer is the same as the amount of aluminum (Al) contained in the alkylaluminum subjected to the polymerization. It can be determined by a method of calculating as a value divided by the yield of the copolymer and a method of measuring by fluorescent X-ray analysis.
- Example 1-1 Drent type ligand Synthesis of (2-isopropyl-phenyl) (2′-methoxy-phenyl) (2 ′′ -sulfonyl-phenyl) phosphine (I) benzenesulfonic anhydride (2 g, 12.6 mmol) in tetrahydrofuran (2 20 mL), normal butyllithium hexane solution (2.5 M, 10 mL, 25.3 mmol) was slowly added dropwise at 0 ° C., and the mixture was stirred for 1 hour while raising the temperature to room temperature.
- normal butyllithium hexane solution 2.5 M, 10
- reaction solution A phosphorus trichloride (1.0 mL, 12.6 mmol) was added, and the mixture was stirred for 2 hours (reaction solution A).
- Magnesium was dispersed in tetrahydrofuran (20 mL), 1-bromo-2-methoxybenzene (2.3 g, 12.6 mmol) was added, and the mixture was stirred at room temperature for 3 hours. This solution was added dropwise to the reaction solution A at ⁇ 78 ° C. and stirred for 1 hour (reaction solution B).
- the temperature was kept at 100 ° C., ethylene was continuously supplied so as to maintain the pressure, polymerized for 120 minutes, and then cooled and depressurized to stop the reaction.
- the reaction solution was poured into 1 liter of acetone to precipitate a polymer, and then collected by filtration, washing, and further dried under reduced pressure at 60 ° C. until a constant weight was obtained.
- the polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2. Note that “ND” in Table 2 means unmeasured (the same applies in the following description).
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization. The polymerization activity was calculated on the assumption that the ligand and palladium bisdibenzylideneacetone reacted 1: 1 to form a palladium complex.
- Example 1-2 Copolymerization of ethylene with 4-vinyl-1,2-epoxycyclohexane Using 20.9 ml (0.2 mol) of 4-vinyl-1,2-epoxycyclohexane as a polar group-containing comonomer, the amount of transition metal complex was performed in the same manner as in Example 1-1 except that the polymerization pressure was 2.3 MPa, the polymerization temperature was 100 ° C., and the polymerization time was 240 minutes. The polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2.
- Example 1-3 Copolymerization of ethylene and 4-hydroxybutyl acrylate glycidyl ether (4-HBAGE) Using 54 ml (0.3 mol) of 4-HBAGE as a polar group-containing comonomer, the amount of transition metal complex is 50 ⁇ mol, the polymerization temperature is 90 ° C., and the polymerization time is The same procedure as in Example 1-1 was performed except that the time was 70 minutes.
- the polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2.
- Ni (COD) 2 bis-1,5-cyclooctadiene nickel (0)
- the total amount of Ni (COD) 2-toluene solution (20 ml) obtained here was added to an eggplant-shaped flask containing B-27DM and stirred in a hot water bath at 40 ° C. for 30 minutes, whereby B-27DM and Ni (COD 20 ml of a 10 mmol / l solution of the reaction product of 2) was obtained.
- the polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization.
- the polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Examples 1-5 to 1-12 Among the methods described in Example 1-4, the polarities of Examples 1-5 to 1-12 were changed by performing polymerization while changing the ligand amount, the polar group-containing monomer concentration, the polymerization temperature, and the polymerization time. A group-containing olefin copolymer was prepared. The polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2.
- Examples 1-13 to 1-15 Based on the method described in Example 1-4, polymerization was carried out without replenishing ethylene after the start of polymerization. At that time, polar group-containing olefin copolymers of Examples 1-13 to 1-15 were prepared by changing the ligand amount, the polar group-containing monomer concentration, the polymerization temperature, and the polymerization time, respectively. . The polymerization conditions and polymerization results are shown in Table 1, and the physical property measurement results are shown in Table 2. Since ethylene is not replenished in this polymerization method, the ethylene partial pressure at the end of the polymerization is lower than that at the start of the polymerization. The ethylene partial pressure in Table 1 is expressed as “2.5 ⁇ 1.5” because the ethylene partial pressure at the start of polymerization is 2.5 MPa and the ethylene partial pressure at the end of polymerization is 1. .5 MPa (the same applies to the following description).
- SHOP ligand synthesis of 2- (2,6-diphenoxyphenyl) (2-phenoxyphenyl) phosphanyl-6- (pentafluorophenyl) phenol (B-114) described in Japanese Patent Application Laid-Open No. 2013-038771
- the following ligand B-114 was obtained according to the method of (Synthesis Example 4).
- the total amount (20 ml) of Ni (COD) 2-toluene solution obtained here was added to an eggplant-shaped flask containing B-114 and stirred in a hot water bath at 40 ° C. for 30 minutes, whereby B-114 and Ni (COD 20 ml of a 10 mmol / l solution of the reaction product of 2) was obtained.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization. Since ethylene is not replenished in this polymerization method, the ethylene partial pressure at the end of the polymerization is lower than that at the start of the polymerization. The polymerization activity was calculated on the assumption that B-114 and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Comparative Example 1-2 It is a copolymer of ethylene and glycidyl methacrylate, and is a polar group-containing olefin copolymer produced by a high-pressure process (Sumitomo Chemical Co., Ltd. brand: Bond First E). The results of physical property measurement are shown in Table 2.
- Examples 1-1 to 1-16 the polar group structural unit amounts are all 0.001 mol% or more, and have practically sufficient adhesion to polyamide. Further, Examples 1-1 to 1-14 have a weight average molecular weight (Mw) of 33,000 or more, and show excellent adhesiveness with polyamide. In comparison, Comparative Example 1 does not contain polar groups and does not adhere to the polyamide at all. From this, it was shown that if the amount of the polar group structural unit contained in the polar group-containing olefin copolymer is 0.001 mol% or more, it has sufficient adhesion with a highly polar substrate.
- Examples 1-1 to 1-3, Example 1-4 to Example 1-15, and Example 1-16 are polar group-containing olefin copolymers produced by different production methods. Even if it is the polar group containing olefin copolymer manufactured by any manufacturing method, each has shown sufficient adhesiveness. This fact is not particularly limited as long as it is a production that polymerizes in the presence of a specific transition metal catalyst in producing a polar group-containing olefin copolymer having sufficient adhesion performance with a highly polar material, It showed that the manufacturing method of the polar group containing olefin copolymer which concerns on this invention is not limited.
- Examples 1-11 and 1-12 are not limited to polyamide resins, and EVOH, polyester, and fluororesin have practically sufficient adhesion. From this fact, it is clear that the polar group-containing olefin copolymer of the present invention has sufficient adhesiveness not only with specific polar materials but also with various polar materials. I made it. Examples 1-1 to 1-16 also show sufficient chemical resistance while having high adhesiveness. On the other hand, Comparative Example 1-2 and Comparative Example 1-3 have sufficient adhesion performance but insufficient chemical resistance. This is presumed to be due to the difference in molecular structure. Since Example 1-1 to Example 1-16 are produced in the presence of a transition metal catalyst, the molecular structure is linear.
- Comparative Example 1-2 and Comparative Example 1-3 are manufactured by a high-pressure method process, and the molecular structure is a structure having an excessive short chain branch and a long chain branch. Conceivable. It is considered that this difference in structure gives a difference in the swelling property of the amorphous part due to the chemical, and the chemical resistance is also different.
- the polar group-containing olefin copolymer according to the present invention is a polar group-containing olefin copolymer having excellent chemical resistance while having high adhesion to a highly polar base material. Indicated. The significance and rationality of the configuration of the present invention (invention specific matter) and the superiority over the prior art are clarified by the good results of each of the above examples and the comparison with each comparative example.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). Further, the molecular weight distribution parameter (Mw / Mn) was further calculated by the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculated by the ratio of Mw to Mn, Mw / Mn. The specific method was implemented by Experimental Example 1 and the method described above.
- Adhesive strength was measured by preparing a press plate as a measurement sample and various substrate films, making a laminate by overlaying the two types and hot pressing, and performing a peel test. . It measured by going through the process similar to Experimental example 1. FIG.
- the obtained molded plate was conditioned for 48 hours or more in an environment of temperature 23 ⁇ 2 ° C. and humidity 50 ⁇ 5 ° C.
- a test piece having the shape of ASTM D1822 Type-S was punched from the press plate after the condition adjustment, and used as a tensile impact strength test sample.
- Aluminum (Al) Amount The aluminum (Al) amount contained in the multi-component polar group-containing olefin copolymer was measured by going through the same steps as in Experimental Example 1.
- Example 2-1 Synthesis of SHOP-based ligand (B-27DM) A SHOP-based ligand (B-27DM) was synthesized in the same manner as in Example 1-4.
- ethylene was supplied to a pressure of 2.8 MPa so that the ethylene partial pressure was 2.4 MPa.
- 10 ml (100 ⁇ mol) of the previously prepared B-27DM-Ni complex solution was injected with nitrogen to initiate copolymerization.
- the temperature was kept at 80 ° C., and ethylene was continuously supplied so that the pressure was maintained.
- the reaction was stopped by cooling and depressurization.
- the reaction solution was poured into 1 liter of acetone to precipitate the polymer, and then collected by filtration, washing, and further dried under reduced pressure at 60 ° C. until a constant weight was obtained.
- the polar group-containing monomer remaining in was removed, and 19.4 g of a polar group-containing olefin copolymer was finally recovered.
- the polymerization conditions and polymerization results are shown in Table 3, and the physical property measurement results are shown in Table 4.
- the polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Example 2-2 Comparative example 2-1, Comparative example 2-2
- the polymerization was carried out by changing the amount of ligand, comonomer type, monomer concentration, polymerization temperature, and polymerization time, respectively, so that Example 2-2 and Comparative Example 2-1 A polar group-containing olefin copolymer of Comparative Example 2-2 was prepared.
- the polymerization conditions and polymerization results are shown in Table 3, and the physical property measurement results are shown in Table 4.
- Ni (COD) 2 bis-1,5-cyclooctadiene nickel (0)
- the total amount (20 ml) of Ni (COD) 2-toluene solution obtained here was added to an eggplant-shaped flask containing B-27DM, and stirred in a hot water bath at 40 ° C. for 30 minutes, whereby B-111 and Ni (COD 20 ml of a 10 mmol / l solution of the reaction product of 2) was obtained.
- the polar group-containing monomer remaining in was removed, and 21.0 g of a polar group-containing olefin copolymer was finally recovered.
- the polymerization conditions and polymerization results are shown in Table 3, and the physical property measurement results are shown in Table 4.
- the polymerization activity was calculated on the assumption that B-111 and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Example 2-4 Among the methods described in Example 2-3, the polar group-containing olefin copolymer of Example 2-4 was polymerized by changing the amount of ligand, comonomer species, monomer concentration, polymerization temperature, and polymerization time. A polymer was prepared. The polymerization conditions and polymerization results are shown in Table 3, and the physical property measurement results are shown in Table 4.
- Examples 2-1 to 2-4 are multi-component polar group-containing olefin copolymers, which show sufficient adhesion, but comparative examples 2-3 of olefin copolymers not containing polar groups are It was clarified that no adhesiveness was exhibited. This has shown that it is essential to contain a polar group in order to express adhesiveness.
- the multi-component polar group-containing olefin copolymers of Examples 2-1 to 2-4 are the same as the binary polar group-containing olefin copolymers of Comparative Examples 2-1 to 2-2 having similar polar groups. It was clarified that the adhesiveness has improved dramatically compared to the coalescence.
- Examples 2-1 to 2-4 also show sufficient impact resistance while having high adhesiveness.
- Comparative Example 2-4 to Comparative Example 2-5 have sufficient adhesion performance but insufficient impact resistance. This is presumed to be due to the difference in molecular structure. Since Example 2-1 to Example 2-4 are produced in the presence of a transition metal catalyst, their molecular structures are linear. However, it is known that Comparative Examples 2-4 to 2-5 are manufactured by a high-pressure process, and the molecular structure thereof is a structure having an excessive number of short-chain branches and long-chain branches. Conceivable.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). Further, the molecular weight distribution parameter (Mw / Mn) was further calculated by the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculated by the ratio of Mw to Mn, Mw / Mn. The specific method was implemented by Experimental Example 1 and the method described above.
- Adhesive strength was measured by preparing a press plate as a measurement sample and various substrate films, making a laminate by overlaying the two types and hot pressing, and performing a peel test. . It measured by going through the process similar to Experimental example 1. FIG.
- Aluminum (Al) Amount The aluminum (Al) amount contained in the polar group-containing olefin copolymer (A ′) was measured by going through the same steps as in Experimental Example 1.
- Melt flow rate (MFR) MFR was measured according to JIS K7120 (1999) at a temperature of 190 ° C. under a load of 2.16 kg. Details are described above.
- the polymerization conditions and polymerization results are shown in Table 5, and the physical property measurement results are shown in Table 6.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization.
- the polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Drent type ligand (2-isopropyl-phenyl) (2'-methoxy-phenyl) (2 ''- Synthesis of sulfonyl-phenyl) phosphine (I)
- the Dren ligand (2-isopropyl-phenyl) (2′-methoxy-phenyl) (2 ′′ -sulfonyl-phenyl) ) Phosphine (I) was obtained.
- Copolymerization of ethylene and 1,2-epoxy-9-decene A copolymer of ethylene and 1,2-epoxy-9-decene was obtained in the same manner as in Example 1-1. The polymerization conditions and polymerization results are shown in Table 5, and the physical property measurement results are shown in Table 6.
- Polar group-containing olefin copolymer (A'-3-9) It is a copolymer of ethylene and glycidyl methacrylate, and is a polar group-containing olefin copolymer produced by a high-pressure process (Sumitomo Chemical Co., Ltd. brand: Bond First E). Table 6 shows the physical properties of the polar group-containing olefin copolymer.
- Example 3-1 0.05 g of polar group-containing olefin copolymer (A′-3-1) and 9.95 g of linear low density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: F30FG, indicated as “LLDPE” in the table) After dry blending, the mixture was put into a small twin-screw kneader (Model: MC15 manufactured by DSM Xplore) and melt-kneaded for 5 minutes. At that time, the barrel temperature was 180 ° C., and the screw rotation speed was 100 rpm.
- the rod-shaped resin composition was extruded from the resin discharge port, placed on a stainless steel tray, and cooled and solidified at room temperature.
- the cooled resin composition was cut into pellets to produce resin composition pellets.
- the obtained pellets of the resin composition were subjected to the above-described adhesive strength measurement, and the adhesive strength was measured.
- the adhesive strength measurement results are shown in Table 7.
- Examples 3-2 to 3-32 Of the methods described in Example 3-1, the type of the polar group-containing olefin copolymer and the blending ratio of the polar group-containing olefin copolymer and the linear low density polyethylene were each changed to produce Example 3. Resin compositions of -2 to 3-32 were produced. Tables 7 and 8 show the blending ratio of the raw material resins and the adhesive strength measurement results.
- Example 3-33 3.0 g of polar group-containing olefin copolymer (A′-3-7) and 7.0 g of linear low density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: F30FG) are dry blended, and a small biaxial kneader ( DSM Xplore model: MC15) and melt-kneaded for 5 minutes. At that time, the barrel temperature was 180 ° C., and the screw rotation speed was 100 rpm. After 5 minutes, the rod-shaped resin composition was extruded from the resin discharge port, placed on a stainless steel tray, and cooled and solidified at room temperature. The cooled resin composition was cut into pellets to produce resin composition pellets. The obtained pellets of the resin composition were subjected to the above-described adhesive strength measurement, and the adhesive strength was measured. The adhesive strength measurement results are shown in Table 10.
- Example 3-34 3.0 g of polar group-containing olefin copolymer (A'-3-8) and 7.0 g of linear low density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: F30FG) are dry blended, and a small biaxial kneader ( DSM Xplore model: MC15) and melt-kneaded for 5 minutes. At that time, the barrel temperature was 180 ° C., and the screw rotation speed was 100 rpm. After 5 minutes, the rod-shaped resin composition was extruded from the resin discharge port, placed on a stainless steel tray, and cooled and solidified at room temperature. The cooled resin composition was cut into pellets to produce resin composition pellets. The obtained pellets of the resin composition were subjected to the above-described adhesive strength measurement, and the adhesive strength was measured. The adhesive strength measurement results are shown in Table 10.
- Example 3-35 to Example 3-39 Resin compositions of Examples 3-35 to 3-39 were produced in the same manner as in Example 3-34 except that the linear low density polyethylene of Example 3-34 was changed to the olefin resin shown in Table 9. The adhesive strength was measured. Table 9 shows the manufacturer, brand name, grade, monomer species used for polymerization, and physical properties of the resin, and Table 10 shows the adhesive strength measurement results. “LLDPE” in Table 9 represents linear low density polyethylene, respectively.
- Comparative Examples 3-1 to 3-10 Of the methods described in Example 3-1, the type of polar group-containing olefin copolymer is the polar group-containing olefin copolymer (A'-3-9), and the type of polar group-containing olefin copolymer is polar. Resin compositions of Comparative Examples 3-1 to 3-10 were produced by changing the blending ratio of the group-containing olefin copolymer and the linear low density polyethylene. Table 11 shows the blending ratio of the raw resin and the measurement results of the adhesive strength.
- Examples 3-1 to 3-7 are resin compositions in which linear low-density polyethylene (LLDPE) is blended in respective proportions with respect to 100 parts by weight of a polar group-containing olefin copolymer (A′-3-1). .
- the blending ratio of the polar group-containing olefin copolymer (A′-3-1) and the adhesive strength with the polyamide are summarized in FIG.
- Comparative Examples 3-1, 3-2, 3-3, 3-5, 3-7, 3-9, 3-10 are polar group-containing olefin copolymers (A′- 3-9)
- the blending ratio of the polar group-containing olefin copolymer (A′-3-9) and the adhesive strength with polyamide are summarized in FIG.
- the resin composition blended with the polar group-containing olefin copolymer (A'-3-9) has sufficient adhesion in a region where the blending ratio of the polar group-containing olefin copolymer (A'-3-9) is large.
- the adhesiveness sharply decreases as the blending ratio decreases.
- the resin composition blended with the polar group-containing olefin copolymer (A′-3-1) maintains high adhesion regardless of the blending ratio of the polar group-containing olefin copolymer (A′-3-1). Has been.
- the resin composition is a blend of a polar group-containing olefin copolymer produced in the presence of a transition metal catalyst and an olefin resin in a specific range of blend ratio
- the blend ratio of the olefin resin is increased. Also showed sufficient adhesion to highly polar materials.
- polar group-containing olefin copolymers having different polar group contents are resin compositions in which LLDPE is blended at various blending ratios with respect to 100 parts by weight.
- FIG. 6 shows the blending ratio of the polar group-containing olefin copolymer (A′-3-3) and the adhesive strength with the polyamide.
- FIG. 6 shows the blending ratio of the polar group-containing olefin copolymer (A′-3-3) and the polyamide.
- FIG. 7 shows the adhesion strength of each of these, and FIG.
- Examples 3-33 to 3-39 233 parts by weight of various olefin-based resins are blended with 100 parts by weight of the polar group-containing olefin copolymer. Regardless of the MFR of the olefin resin, the density, and the monomer species subjected to the polymerization, the resulting olefin resin composition exhibits sufficient adhesion to the polyamide. This fact indicates that, regardless of the type and physical properties of the olefin resin, sufficient adhesion can be obtained if the polar group-containing olefin copolymer and the olefin resin are blended in a specific range of blending ratio. It is expressed.
- Examples 3-24 to 3-28 are resin compositions in which linear low-density polyethylene (LLDPE) is blended in respective proportions with respect to 100 parts by weight of the polar group-containing olefin copolymer (A′-3-4). .
- the blending ratio of the polar group-containing olefin copolymer (A'-3-4) and the adhesive strength with the fluororesin are summarized in FIG. Comparative Examples 3-2, 3-4, 3-6, 3-8, and 3-10 were added to 100 parts by weight of the polar group-containing olefin copolymer (A′-3-9) produced by the high pressure process.
- it is the resin composition which mix
- the blending ratio of the polar group-containing olefin copolymer (A′-3-9) and the adhesive strength with the fluororesin are summarized in FIG.
- the resin composition blended with the polar group-containing olefin copolymer (A'-3-9) has sufficient adhesion in a region where the blending ratio of the polar group-containing olefin copolymer (A'-3-9) is large.
- the adhesiveness sharply decreases as the blending ratio decreases.
- the resin composition containing the polar group-containing olefin copolymer (A'-3-4) maintains high adhesion regardless of the blending ratio of the polar group-containing olefin copolymer (A'-3-4).
- the resin composition is a blend of a polar group-containing olefin copolymer and an olefin resin produced in the presence of a transition metal catalyst at a blending ratio in a specific range, the blending ratio of the olefin resin is increased. Also showed that it has sufficient adhesion to a highly polar material and that this trend is not limited to combinations with certain highly polar substrates.
- the adhesion of the olefin resin composition obtained by blending an olefin resin with a polar group-containing olefin copolymer having a linear structure is maintained regardless of the blending ratio of the polar group-containing olefin copolymer and the olefin resin.
- the reason for this is not clear, but it is considered that the molecular structure of the polar group-containing olefin copolymer contained in the olefin-based resin composition should be a linear structure.
- the adhesion performance between olefin copolymers and different polar materials is a numerical value measured by a peel test as exemplified in JIS K6854-1 to 4 (1999) Adhesive-Peel Adhesion Strength Test Method.
- the numerical value measured by this method is considered to be the sum of the chemical and physical bonding force at the interface between different materials and the cohesive force of the material or the stress at the time of deformation. It is done.
- the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has a highly branched molecular structure containing an excessive amount of short-chain branches and long-chain branches.
- Olefin resins having such a structure are known to have inferior mechanical properties, cohesive strength, impact resistance, etc., compared with olefin resins having a linear structure. It is inferred that the polymer also has this tendency. Even if the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has sufficient chemical bonds with different materials, the cohesive force is inferior to that of the polar group-containing olefin copolymer having a linear structure. As a result, the adhesiveness is considered to decrease.
- Polar group-containing structural unit amount in polar group-containing olefin copolymer (A ′) was determined using a 1 H-NMR spectrum. The specific method was implemented by Experimental Example 1 and the method described above.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). Further, the molecular weight distribution parameter (Mw / Mn) was further calculated by the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculated by the ratio of Mw to Mn, Mw / Mn. The specific method was implemented by Experimental Example 1 and the method described above.
- Adhesive strength was measured by preparing a press plate as a measurement sample and various substrate films, making a laminate by overlaying the two types and hot pressing, and performing a peel test. . It measured by going through the process similar to Experimental example 1. FIG.
- Aluminum (Al) Amount The aluminum (Al) amount contained in the polar group-containing olefin copolymer (A ′) was measured by going through the same steps as in Experimental Example 1.
- the polar group-containing monomer remaining therein was removed, and finally 38 g of the polar group-containing olefin copolymer was recovered.
- Polymerization conditions and polymerization results are shown in Table 12, and physical property measurement results are shown in Table 13.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization.
- the polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Polar group-containing olefin copolymer (A'-4-9) It is a copolymer of ethylene and glycidyl methacrylate, and is a polar group-containing olefin copolymer produced by a high-pressure process (Sumitomo Chemical Co., Ltd. brand: Bond First E). The results of physical property measurement are shown in Table 13.
- Polar group-containing olefin copolymer (A'-4-10) A copolymer of ethylene and glycidyl methacrylate, which is a polar group-containing olefin copolymer manufactured by a high-pressure process (brand name: Bondfast 2C, manufactured by Sumitomo Chemical Co., Ltd.). The results of physical property measurement are shown in Table 13.
- Example 4-1 7.0 g of polar group-containing olefin copolymer (A'-4-1) and 3.0 g of high-density polyethylene (trade name: HS330P, manufactured by Nippon Polyethylene Co., Ltd.) as an olefin resin are dry-blended and compact biaxial kneading It was put into a machine (DSM Xplore model: MC15) and melt-kneaded for 5 minutes. At that time, the barrel temperature was 180 ° C., and the screw rotation speed was 100 rpm.
- a rod-shaped olefin-based resin composition was extruded from a resin discharge port, placed on a stainless steel tray, and solidified by cooling at room temperature.
- the cooled olefin resin composition was cut into pellets to produce olefin resin composition pellets and subjected to various physical property tests.
- Table 14 shows the manufacturer, grade, brand name, resin classification, monomer type used for polymerization, and resin physical properties
- Table 15 shows the blending ratio in the olefin-based resin composition
- Table 16 shows the physical property evaluation results. Shown in In Table 14, “HDPE” represents high density polyethylene, “LLDPE” represents linear low density polyethylene, “PP” represents polypropylene, and “COC” represents cyclic olefin copolymer.
- Example 4-2 to Example 4-12 Comparative Example 4-1 to Comparative Example 4-4
- Examples 4-2 to 4-12 were prepared by changing the types of polar group-containing olefin copolymers, types of olefinic resins, and blending ratios, respectively.
- Resin compositions of Comparative Examples 4-1 to 4-4 were produced.
- Table 14 shows the manufacturer, grade, brand name, resin classification, monomer type used for polymerization, and physical properties of each olefin resin
- Table 15 shows the blending ratio of the raw material resins
- Table 16 shows the physical property evaluation results.
- Examples 4-1 to 4-12 show polar group-containing olefin copolymers (A′-4-1, A′-4-2, A′-4-3, A′-4-4, A ′ -4-5, A′-4-6, A′-4-7, A′-4-8) 1 to 99 olefin resins having a density of 0.890 g / cm 3 or more per 100 parts by weight of each.
- An olefin-based resin composition appropriately blended at a blending ratio of 900 parts by weight, exhibiting sufficient adhesiveness to polyamide, and exhibiting sufficiently excellent heat resistance with a melting point of 119 ° C. or higher.
- Examples 4-1 to 4-3 and Examples 4-5 to 4-12 which are blended with an olefin resin having a melting point of 90 ° C. or higher, have a melting point of 119 ° C. or higher and a heat of fusion ⁇ H. Showed more excellent heat resistance of 80 J / g or more.
- the heat of fusion ⁇ H is also less than 80 J / g, which is inferior in heat resistance.
- Comparative Example 4-3 and Comparative Example 4-4 are based on 100 parts by weight of a polar group-containing olefin copolymer (A′-4-9, A′-4-10) produced by the high-pressure radical process.
- A′-4-9, A′-4-10 a polar group-containing olefin copolymer produced by the high-pressure radical process.
- the polar group-containing olefin copolymer of the present invention has an olefin resin having a density of 0.890 g / cm 3 or more compared to the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process.
- the decrease in adhesion performance when blended is small, and 1 to 99,900 parts by weight of an olefin resin having a density of 0.890 g / cm 3 or more with respect to 100 parts by weight of the polar group-containing olefin copolymer according to the present invention. It has been shown that adhesion and heat resistance can be balanced by blending.
- the olefin-based resin composition obtained by blending a polar group-containing olefin copolymer having a linear structure with an olefin-based resin having a density of 0.890 g / cm 3 or more has a small decrease in adhesion performance and has sufficient adhesion.
- the molecular structure of the polar group-containing olefin copolymer contained in the olefin resin composition needs to be a linear structure.
- Adhesion performance between a highly polar dissimilar material and an olefin copolymer is measured by a peel test as exemplified in JIS K6854-1 to 4 (1999) “Adhesive-Peel Adhesive Strength Test Method”. Although the numerical value is evaluated, the numerical value measured by this method is the sum of the chemical and physical bonding force at the interface between different materials and the cohesive force of the material or the stress at the time of deformation. Conceivable.
- the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has a highly branched molecular structure containing an excessive amount of short-chain branches and long-chain branches.
- Olefin resins having such a structure are known to have inferior mechanical properties, cohesive strength, impact resistance, etc., compared with olefin resins having a linear structure. It is inferred that the polymer also has this tendency. Even if the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has sufficient chemical bonds with different materials, the cohesive force is inferior to that of the polar group-containing olefin copolymer having a linear structure. As a result, the adhesiveness is considered to decrease.
- olefin resin having a density of 0.890 g / cm 3 or more was added to 100 parts by weight of the polar group-containing olefin copolymer. It is an olefin-based resin composition that is appropriately blended at a blending ratio of parts by weight, and exhibits sufficient adhesion to fluororesins. This fact clarified that the olefin resin composition of the present invention has sufficient adhesiveness not only with specific high-polarity materials but also with various high-polarity materials.
- an olefin resin having a density of 0.890 g / cm 3 or more is blended with 100 parts by weight of the polar group-containing olefin copolymer. Regardless of the MFR of the olefin resin, the monomer species used for polymerization, and the blending ratio, the resulting olefin resin composition must be able to balance sufficient heat resistance and excellent adhesion with a highly polar resin. showed that. As long as the density of the olefin resin blended in the polar group-containing olefin copolymer of the present invention is 0.890 g / cm 3 or more, the heat resistance and adhesiveness of the olefin resin composition can be balanced. Represents a thing.
- Polar group-containing structural unit amount in polar group-containing olefin copolymer (A ′) was determined using a 1 H-NMR spectrum. The specific method was implemented by Experimental Example 1 and the method described above.
- Weight average molecular weight (Mw) and molecular weight distribution parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). Further, the molecular weight distribution parameter (Mw / Mn) was further calculated by the number average molecular weight (Mn) by gel permeation chromatography (GPC), and calculated by the ratio of Mw to Mn, Mw / Mn. The specific method was implemented by Experimental Example 1 and the method described above.
- Adhesive strength was measured by preparing a press plate as a measurement sample and various substrate films, making a laminate by overlaying the two types and hot pressing, and performing a peel test. . It measured by going through the process similar to Experimental example 1. FIG.
- Adhesive strength ratio By the adhesive strength measurement method, the resin composition of each Example and Comparative Example, the polar group-containing olefin copolymer contained in these resin compositions, and the respective adhesive strengths were measured, and the resin composition The value obtained by dividing the adhesive strength by the adhesive strength of the polar group-containing olefin copolymer contained in these resin compositions was calculated as the adhesive strength ratio. This value is an index of the effect of improving the adhesiveness by blending the olefin resin with the polar group-containing olefin copolymer. If this value is larger than “1”, the polar group-containing olefin copolymer has It shows that the adhesion was improved by blending olefin resin.
- Aluminum (Al) Content The aluminum (Al) content contained in the polar group-containing olefin copolymer (A ′) was measured by going through the same steps as in Experimental Example 1.
- Drent type ligand (2-isopropyl-phenyl) (2′-methoxy-phenyl) (2 ′′- Synthesis of sulfonyl-phenyl) phosphine (I)
- Dren ligand (2-isopropyl-phenyl) (2′-methoxy-phenyl) (2 ′′ -sulfonyl-phenyl) ) Phosphine (I) was obtained.
- the temperature was kept at 100 ° C., and ethylene was continuously supplied so that the pressure was maintained.
- the reaction was stopped by cooling and depressurization.
- the reaction solution was poured into 1 liter of acetone to precipitate a polymer, and then collected by filtration, washing, and further dried under reduced pressure at 60 ° C. until a constant weight was obtained.
- the polymerization conditions and polymerization results are shown in Table 17, and the physical property measurement results are shown in Table 18.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization.
- the polymerization activity was calculated on the assumption that the ligand and palladium bisdibenzylideneacetone reacted 1: 1 to form a palladium complex.
- the polymerization conditions and polymerization results are shown in Table 17, and the physical property measurement results are shown in Table 18.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization. Since ethylene is not replenished in this polymerization method, the ethylene partial pressure at the end of the polymerization is lower than that at the start of the polymerization. The polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- the polymerization conditions and polymerization results are shown in Table 17, and the physical property measurement results are shown in Table 18.
- the polymerization activity represents the copolymer yield (g) per 1 mol of the complex used for the polymerization.
- the polymerization activity was calculated on the assumption that B-27DM and Ni (COD) 2 reacted one-on-one to form a nickel complex. Further, 4-HBAGE used for copolymerization was dehydrated with molecular sieve 3A.
- Polar group-containing olefin copolymer (A'-5-9) It is a copolymer of ethylene and glycidyl methacrylate, and is a polar group-containing olefin copolymer produced by a high-pressure process (Sumitomo Chemical Co., Ltd. brand: Bond First E). The results of physical property measurement are shown in Table 18.
- Example 5-1 7.0 g of polar group-containing olefin copolymer (A′-5-1) and 3.0 g of ethylene-butene copolymer (Mitsui Chemicals, trade name: Tuffmer (A-4085S)) were dry blended, The mixture was put into a small biaxial kneader (DSM Xplore model: MC15) and melt kneaded for 5 minutes. At that time, the barrel temperature was 180 ° C., and the screw rotation speed was 100 rpm. After 5 minutes, the rod-shaped resin composition was extruded from the resin discharge port, placed on a stainless steel tray, and cooled and solidified at room temperature.
- DSM Xplore model: MC15 small biaxial kneader
- the cooled resin composition was cut into pellets to produce pellets of the olefin resin composition, and the obtained olefin resin composition was subjected to various physical property tests.
- Table 19 shows the manufacturer, grade, brand name, resin classification, monomer type used for polymerization, and physical properties of the resin used
- Table 20 shows the blending ratio in the olefin resin composition
- Table 11 shows the physical property evaluation results. It shows in Table 21.
- LDPE high-pressure low-density polyethylene
- LLDPE linear low-density polyethylene
- EA ethylene-ethyl acrylate copolymer
- EVA ethylene-vinyl acetate copolymer
- EPR ethylene propylene rubber
- Example 5-2 to Example 5-12, Comparative Example 5-1 to Comparative Example 5-3 Of the methods described in Example 5-1, the production was carried out by changing the polar group-containing olefin copolymer, the type of olefin resin, and the blending ratio of the polar group-containing olefin copolymer and olefin resin. Resin compositions of Example 5-2 to Example 5-12 and Comparative Example 5-1 to Comparative Example 5-3 were produced. Table 19 shows the manufacturer, grade, brand name, resin classification, monomer type used for polymerization, and physical properties of the resin used, Table 20 shows the blending ratio in the olefin resin composition, and Table 11 shows the physical property evaluation results. It shows in Table 21.
- Example 5-1, Example 5-3 to Example 5-8, Example 5-10, and Example 5-11 are polar group-containing olefin copolymers (A′-5-1, A′-5-5). 3, A′-5-4, A′-5-6, A′-5-7)
- the olefin-based resin composition blended as appropriate in the above shows a sufficiently excellent adhesiveness to the fluororesin, and an adhesive strength ratio of 1.0 or more shows a sufficient adhesive improvement effect.
- Example 5-1, Example 5-3 to Example 5-8, and Example 5-11 which were blended with an olefin resin having a melting point of 110 ° C. or lower, had an adhesive strength ratio to the fluororesin of 2.0 or more. And showed dramatic improvement in adhesion.
- Comparative Example 5-1 which uses an olefin resin having a melting point exceeding 124 ° C., has very weak adhesion to fluororesin, and the adhesion strength ratio is less than 1.0, showing an effect of improving adhesion. There wasn't.
- Comparative Examples 5-2 and 5-3 have melting points in a specific range with respect to 100 parts by weight of the polar group-containing olefin copolymer (A′-5-9) produced by the high-pressure radical process.
- the olefin resin composition is an olefin resin composition obtained by appropriately blending an olefin resin at a blending ratio of 1 to 99,900 parts by weight, but the adhesion strength to the fluororesin is very low and the adhesion strength ratio is also inferior. From this fact, when the polar group-containing olefin copolymer of the present invention is blended with an olefin resin having a melting point of 124 ° C. or lower, compared with the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process. The adhesion performance of the olefin copolymer having a melting point of 124 ° C. or lower is blended with 1 to 99,900 parts by weight per 100 parts by weight of the polar group-containing olefin copolymer according to the present invention. It was shown that an improvement effect can be obtained.
- Adhesion performance between a highly polar dissimilar material and an olefin copolymer is measured by a peel test as exemplified in JIS K6854-1 to 4 (1999) “Adhesive-Peel Adhesion Strength Test Method”. Although the numerical value is evaluated, the numerical value measured by this method is the sum of the chemical and physical bonding force at the interface between different materials and the cohesive force of the material or the stress at the time of deformation. Conceivable.
- the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has a highly branched molecular structure containing an excessive amount of short-chain branches and long-chain branches.
- Olefin resins having such a structure are known to have inferior mechanical properties, cohesive strength, impact resistance, etc., compared with olefin resins having a linear structure. It is inferred that the polymer also has this tendency. Even if the polar group-containing olefin copolymer produced by the high-pressure radical polymerization process has sufficient chemical bonds with different materials, the cohesive force is inferior to that of the polar group-containing olefin copolymer having a linear structure. As a result, the adhesiveness is considered to decrease.
- Example 5-2, Example 5-9, and Example 5-12 are for the polar group-containing olefin copolymers (A′-5-2, A′-5-5, A′-5-8), respectively.
- Examples 5-1 to 5-12 an olefin resin having a melting point of 124 ° C. or lower is blended with the polar group-containing olefin copolymer. It was shown that a sufficient adhesive improvement effect can be obtained for the olefin resin composition regardless of the MFR of the olefin resin, the monomer type used for polymerization, and the blending ratio.
- Olefin-based resin composition (D ′), and olefin-based resin composition (D ′′) exhibit high adhesiveness to other base materials, making it possible to produce industrially useful laminates.
- the resin composition that can be produced according to the present invention is excellent not only in adhesiveness but also in mechanical and thermal properties, and can be applied as a useful multilayer molded article, and is laminated on various substrates. Widely used in packaging materials, packaging containers, industrial materials such as fibers, pipes, fuel tanks, hollow containers and drums, civil engineering such as water-stopping materials, electronics such as electronics and household appliances, and wires such as electric wires and cables Used in .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%と、下記構造式(I)または構造式(II)で表されるエポキシ基を含む極性基含有モノマーの少なくとも1種に由来する構造単位量が20~0.001mol%と、を含む極性基含有オレフィン共重合体であって、遷移金属触媒の存在下に共重合することで得られ、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体。
Description
本発明は、優れた物性を有する極性基含有オレフィン共重合体、多元系極性オレフィン共重合体、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物、並びにそれらを用いた積層体、および各種の複合化製品に関し、より詳しくは特定の極性基を含有し各種の基材材料に対して優れた接着性能を有する極性基含有オレフィン共重合体、多元系極性オレフィン共重合体、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物、並びにその性能を利用した接着材並びに積層体に係るものである。
一般に、オレフィン系樹脂は機械強度が高く、耐衝撃性や長期耐久性、耐薬品性や耐腐食性などに優れ、安価で、かつ成形性に優れ、更に環境問題や資源再利用性にも適合している為、産業用資材として重用され、例えば、射出成形、押出成形、吹込成形などによって、フィルム、積層体、容器、ブロー瓶などに成形されて、広範囲な用途に使用されている。更には、エチレン-ビニルアルコール共重合体(EVOH)やアルミニウム箔などのガス遮断性材料などの基材と積層することにより、上記特性に加えてガス遮断性などの性質を付加させることができ、高機能の包装用材料や容器とすることが可能となる。
しかし、オレフィン重合体は一般的に非極性であり、積層材料に使用するに際しては、他の合成樹脂、金属、木材などの極性の高い異種材料への接着強度が極めて低いか、接着しないという欠点がある。
そこで、極性の高い異種材料との接着性を向上させるために、有機過酸化物を用いて極性基含有モノマーをグラフトする方法が広く行われている(例えば、特許文献1を参照)。
しかし、この方法では、グラフト化反応と並行してオレフィン系樹脂同士の分子間架橋、及びオレフィン系樹脂の分子鎖切断などが発生するため、グラフト変性物にオレフィン系樹脂の優れた物性が維持されないという問題が発生する。例えば、分子間架橋によって不要な長鎖分岐が導入されることで溶融粘度の上昇や分子量分布の広域化が発生し、接着性や成形性に悪影響を及ぼす。また、分子鎖切断によってオレフィン系樹脂の低分子量成分が増加することにより、成形加工時に目ヤニや煙が発生するといった問題点を呈している。
しかし、この方法では、グラフト化反応と並行してオレフィン系樹脂同士の分子間架橋、及びオレフィン系樹脂の分子鎖切断などが発生するため、グラフト変性物にオレフィン系樹脂の優れた物性が維持されないという問題が発生する。例えば、分子間架橋によって不要な長鎖分岐が導入されることで溶融粘度の上昇や分子量分布の広域化が発生し、接着性や成形性に悪影響を及ぼす。また、分子鎖切断によってオレフィン系樹脂の低分子量成分が増加することにより、成形加工時に目ヤニや煙が発生するといった問題点を呈している。
更に、極性基含有オレフィン共重合体中の極性基含有量を高めることにより、極性の高い異種材料との接着性を上昇させられるが、グラフト変性によって多量の極性基含有モノマーをオレフィン系樹脂にグラフトすることは容易ではない。極性基含有モノマーの含有量を増やす方法として、例えば、グラフト変性に供する極性基含有モノマー量、及び有機過酸化物量を増やす方法が考えられる。その方法を用いた場合、オレフィン系樹脂の更なる分子間架橋や分子鎖切断につながり、各種の物性、例えば、機械物性、耐衝撃性、長期耐久性、成形性等の物性が損なわれる。また、オレフィン系樹脂中に残留する未反応の極性基含有モノマーや有機過酸化物の分解物の量が増加し、オレフィン系樹脂の劣化を早めたり、不快な臭気を発生させたりするという不具合も発生する。そのため、オレフィン系樹脂中の極性基含有モノマーの含量を高めようとしても、自ずと限界があった。
ところで、オレフィン系樹脂同士の分子間架橋やゲル化及び分子鎖の切断を生じさせずに、オレフィン系樹脂中に極性基含有モノマーを含量せしめる手段として、高圧ラジカル法重合プロセスを用いてエチレンと極性基含有モノマーとを共重合させ、極性基含有オレフィン共重合体を得る方法も開示されている(特許文献2~4を参照)。なお、高圧ラジカル法重合プロセスを用いて極性基を導入した極性基含有オレフィン共重合体の分子構造例を図1に示すが、この方法によれば、グラフト変性によって発生する問題点は解決され、極性基含有オレフィン共重合体中の極性基含有モノマーの含有量をグラフト変性と比較して高めることが可能である。しかし、重合プロセスが高圧ラジカル法であるため、得られた極性基含有オレフィン共重合体は多くの長鎖分岐及び短鎖分岐を不規則に持つ分子構造となる。このために、遷移金属触媒を用いて重合される極性基含有オレフィン共重合体と比較して、低弾性率かつ機械物性の低い極性基含有オレフィン共重合体しか得られず、高強度が要求される用途への応用範囲は限定的であった。
一方、従来一般に用いられているメタロセン触媒を用いて、エチレンと極性基含有モノマーとを共重合させようとすると、触媒重合活性が低下し重合し難いとされていたが、近年、特定のリガンドが遷移金属に配位した触媒の存在下で極性基含有オレフィン共重合体を重合する方法が提案されている(特許文献5~8を参照)。これらの方法によれば、高圧ラジカル法プロセスで得られる極性基含有オレフィン共重合体と比較して高い弾性率と機械強度を有し、極性基含有量を高めることが可能だが(なお、遷移金属触媒を用いて重合された極性基含有オレフィン共重合体の分子構造のイメージ図を図2及び図3に示す。)、これらの文献に記載の方法は主にメチルアクリレートやエチルアクリレートといったアクリレート基を含むモノマーや、酢酸ビニルといった特定の極性基含有モノマーとエチレンもしくはα-オレフィンとの共重合体に主眼を置いており、これらの官能基を有する極性基含有オレフィン共重合体は極性の高い異種材料との接着性が十分ではない。また、極性の高い異種材料との具体的な接着性能についても触れられておらず、接着性能を目的とした、特定の極性基含有オレフィン共重合体としての使用は開示されていない。
一方、一般に、極性の高い異種材料と優れた接着性を発現させることが可能な極性基として、エポキシ基が知られているが、通常の触媒重合法では、エポキシ基含有コモノマーを共重合するのは困難であり、現状、主に市販化されているエポキシ基を含んだ極性オレフィン共重合体は高圧ラジカル重合プロセスによるものである。
なお、高圧ラジカル法重合プロセスを用いずに重合された極性基含有オレフィン共重合体の例としては、いわゆるマスキング法と呼ばれる、特定のメタロセン系触媒及び十分な量の有機アルミニウム(極性基含有モノマーと等モル以上)の存在下で重合する製法発明の中に、1,2-epoxy-9-deceneとエチレン、及び1-ブテンを共重合させた極性基含有オレフィン共重合体が示されている(特許文献9を参照)。
しかし、この発明によると、極性基含有オレフィンの共重合に際し、多量の有機アルミニウムを必要とし、製造コストが高くならざるを得ない。また、多量の有機アルミニウムは不純物として極性基含有オレフィン共重合体中に存在する事となり、機械物性の低下や変色、劣化の促進を引き起こし、これを除去するには更なるコストアップにつながる。更に発明の効果は、主として高い重合活性で極性基含有オレフィン共重合体を製造することであり、極性の高い異種材料との具体的な接着性能について触れられていない。しかもこの特許文献には、極性基含有オレフィン共重合体が極性の高い異種材料と十分な接着性を得るために必要な樹脂物性についても全く触れられておらず、高い接着性能を目的とした極性基含有オレフィン共重合体としての使用は開示されていない。
なお、高圧ラジカル法重合プロセスを用いずに重合された極性基含有オレフィン共重合体の例としては、いわゆるマスキング法と呼ばれる、特定のメタロセン系触媒及び十分な量の有機アルミニウム(極性基含有モノマーと等モル以上)の存在下で重合する製法発明の中に、1,2-epoxy-9-deceneとエチレン、及び1-ブテンを共重合させた極性基含有オレフィン共重合体が示されている(特許文献9を参照)。
しかし、この発明によると、極性基含有オレフィンの共重合に際し、多量の有機アルミニウムを必要とし、製造コストが高くならざるを得ない。また、多量の有機アルミニウムは不純物として極性基含有オレフィン共重合体中に存在する事となり、機械物性の低下や変色、劣化の促進を引き起こし、これを除去するには更なるコストアップにつながる。更に発明の効果は、主として高い重合活性で極性基含有オレフィン共重合体を製造することであり、極性の高い異種材料との具体的な接着性能について触れられていない。しかもこの特許文献には、極性基含有オレフィン共重合体が極性の高い異種材料と十分な接着性を得るために必要な樹脂物性についても全く触れられておらず、高い接着性能を目的とした極性基含有オレフィン共重合体としての使用は開示されていない。
以上の従来法を鑑みると、オレフィン共重合体への極性基の導入方法である、グラフト変性、高圧ラジカル法重合プロセス、多量の有機アルミニウムを用いる方法、などのそれぞれの問題点を内包する、いずれの方法にもよらずに製造される、エポキシ基を含んだ極性基含有オレフィン共重合体であって、極性の高い異種材料に対して優れた接着性能を呈する極性基含有オレフィン共重合体、及びそれを用いた積層体の提案が待望されていたと言える。
本発明の目的は、背景技術として前述した、従来の各問題点に鑑み、それぞれの問題点を内包する、従来のいずれの方法にもよらずに製造される、極性の高い異種材料に対して優れた接着性能を呈する極性基含有オレフィン共重合体、多元系極性オレフィン共重合体、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物を開発すること、更に、それを用いた接着材、積層体、各種成形品、並びに各種複合化製品も提供することを発明の課題とするものである。
本発明者らは、上記課題を解決すべく、極性基含有オレフィン共重合体の製造において、簡易で効率的な製法により当共重合体を製造し、かつ当共重合体の異種材料との接着性能を向上させるべく、極性基の導入方法や極性基及び重合触媒の選択、極性基含有オレフィン共重合体の分子構造、更には共重合体の構造と接着性能の相関などを種々勘案参酌し吟味実証して、その結果、各種の異種材料との接着性能に優れた極性基含有オレフィン共重合体、多元系極性オレフィン共重合体、および極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物を見出すことができ、本発明の創作に至った。
本発明の第1の発明の重合体は、遷移金属触媒を用いて重合された特定の極性基含有オレフィン共重合体(A)であり、特定範囲の極性基含有モノマー含有量であれば、格別に優れた接着性を呈しつつ、各種物性に優れることを特徴としている。
本発明の第2の発明の重合体は、特定範囲の極めて狭い分子量分布を持ち、特定範囲の融点を有する多元系極性オレフィン共重合体(B)であり、接着性と機械物性とのバランスの点で飛躍的な向上を示すことを特徴としている。
さらに、本発明の第3の発明は、極性基含有オレフィン共重合体(A’)に特定の割合でオレフィン系樹脂(C)を加える事により、オレフィン系樹脂の持つ優れた物性をも付与せしめ、かつ、極性基含有オレフィン共重合体が持つ、極性の高い異種材料に対する十分な接着性能をも維持させたオレフィン系樹脂組成物(D)である。
≪第1の発明≫
(1)エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%と、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーの少なくとも1種に由来する構造単位量が20~0.001mol%とを含有する極性基含有オレフィン共重合体(A)であって、遷移金属触媒の存在下に共重合することで得られ、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体(A)。
(1)エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%と、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーの少なくとも1種に由来する構造単位量が20~0.001mol%とを含有する極性基含有オレフィン共重合体(A)であって、遷移金属触媒の存在下に共重合することで得られ、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体(A)。
(構造式(I)中、R1は水素原子または炭素数1~10のアルキル基、R2、R3、R4はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R2~R4のいずれか1つはエポキシ基を含む下記特定の官能基である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(構造式(II)中、R5~R8はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R5~R8のいずれか1つはエポキシ基を含む下記特定の官能基である。また、mは0~2である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(2)示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点が50℃~140℃である、(1)に記載の極性基含有オレフィン共重合体(A)。
(3)極性基含有オレフィン共重合体中に含まれるアルミニウム(Al)量が、共重合体1g当たり0~100,000μgである、(1)または(2)に記載の極性基含有オレフィン共重合体(A)。
(4)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、1,000~2,000,000である、(1)~(3)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(5)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、33,000~2,000,000である、(1)~(4)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(6)前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、(1)~(5)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(7)極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、(1)~(6)のいずれかに記載の極性基含有オレフィン共重合体(A)。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(2)示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点が50℃~140℃である、(1)に記載の極性基含有オレフィン共重合体(A)。
(3)極性基含有オレフィン共重合体中に含まれるアルミニウム(Al)量が、共重合体1g当たり0~100,000μgである、(1)または(2)に記載の極性基含有オレフィン共重合体(A)。
(4)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、1,000~2,000,000である、(1)~(3)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(5)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、33,000~2,000,000である、(1)~(4)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(6)前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、(1)~(5)のいずれかに記載の極性基含有オレフィン共重合体(A)。
(7)極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、(1)~(6)のいずれかに記載の極性基含有オレフィン共重合体(A)。
≪第2の発明≫
(8)エチレン及び炭素数3~10のα-オレフィンから選ばれる一種又は二種以上の非極性モノマー(X1)単位とエポキシ基を有するモノマーから選ばれる一種又は二種以上の極性モノマー(Z1)単位と、任意の非環状または環状モノマー(Z2)単位とからなる、多元系極性基含有オレフィン共重合体(但し、X1、Z1、Z2の各単位を各一種以上必須で含む。)であって、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である多元系極性基含有オレフィン共重合体(B)。
(9)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比が1.5~3.5の範囲である、(8)に記載の多元系極性基含有オレフィン共重合体(B)。
(10)示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点Tm(℃)が50<Tm<128-6.0[Z1](但し、Z1に由来するモノマー単位を[Z1](mol%)とする。)である、(8)または(9)に記載の多元系極性基含有オレフィン共重合体(B)。
(11)エポキシ基を有するモノマーから選ばれる極性モノマー(Z1)単位が0.001~20.000mol%である、(8)~(10)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(12)非極性モノマー(X1)単位がエチレンである(8)~(11)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(13)前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、(8)~(12)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(14)多元系極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、(8)~(13)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(8)エチレン及び炭素数3~10のα-オレフィンから選ばれる一種又は二種以上の非極性モノマー(X1)単位とエポキシ基を有するモノマーから選ばれる一種又は二種以上の極性モノマー(Z1)単位と、任意の非環状または環状モノマー(Z2)単位とからなる、多元系極性基含有オレフィン共重合体(但し、X1、Z1、Z2の各単位を各一種以上必須で含む。)であって、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である多元系極性基含有オレフィン共重合体(B)。
(9)ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比が1.5~3.5の範囲である、(8)に記載の多元系極性基含有オレフィン共重合体(B)。
(10)示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点Tm(℃)が50<Tm<128-6.0[Z1](但し、Z1に由来するモノマー単位を[Z1](mol%)とする。)である、(8)または(9)に記載の多元系極性基含有オレフィン共重合体(B)。
(11)エポキシ基を有するモノマーから選ばれる極性モノマー(Z1)単位が0.001~20.000mol%である、(8)~(10)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(12)非極性モノマー(X1)単位がエチレンである(8)~(11)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(13)前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、(8)~(12)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
(14)多元系極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、(8)~(13)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)。
≪第3の発明≫
(15)エチレン及び炭素数3~20のα-オレフィンの少なくとも一方と、エポキシ基を含む極性基含有モノマーとを、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体(A’)と、オレフィン系樹脂(C)とを含むオレフィン系樹脂組成物(D)であって、オレフィン系樹脂(C)の配合量が極性基含有オレフィン共重合体(A’)100重量部に対し、1~99,900重量部であるオレフィン系樹脂組成物(D)。
(16)前記エポキシ基を含む極性基含有モノマーが、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーである(15)に記載のオレフィン系樹脂組成物(D)。
(15)エチレン及び炭素数3~20のα-オレフィンの少なくとも一方と、エポキシ基を含む極性基含有モノマーとを、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体(A’)と、オレフィン系樹脂(C)とを含むオレフィン系樹脂組成物(D)であって、オレフィン系樹脂(C)の配合量が極性基含有オレフィン共重合体(A’)100重量部に対し、1~99,900重量部であるオレフィン系樹脂組成物(D)。
(16)前記エポキシ基を含む極性基含有モノマーが、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーである(15)に記載のオレフィン系樹脂組成物(D)。
(構造式(I)中、R1は水素原子または炭素数1~10のアルキル基、R2、R3、R4はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R2~R4のいずれか1つはエポキシ基を含む特定の官能基である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(構造式(II)中、R5~R8はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R5~R8のいずれか1つはエポキシ基を含む特定の官能基である。また、mは0~2である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(17)前記極性基含有オレフィン共重合体(A’)における、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%、エポキシ基を含む極性基含有モノマーに由来する構造単位量が20~0.001mol%である(15)または(16)に記載のオレフィン系樹脂組成物(D)。
(18)前記オレフィン系樹脂(C)が、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方から選ばれるモノマーを重合する事で得られる単独重合体及び共重合体の少なくとも一方である、(15)~(17)のいずれかに記載のオレフィン系樹脂組成物(D)。
(19)前記オレフィン系樹脂(C)が、エチレン単独重合体又はエチレンと炭素数3~20のα-オレフィンとの共重合体である、(15)~(18)のいずれかに記載のオレフィン系樹脂組成物(D)。
(20)前記極性基含有オレフィン共重合体(A’)の、示差走査型熱量測定(DSC)により測定される吸収曲線のうち、最大ピーク位置の温度で表される融点が、50~140℃の範囲である、(15)~(19)のいずれかに記載のオレフィン系樹脂組成物(D)。
(21)前記極性基含有オレフィン共重合体(A’)が、キレート性配位子を有する第5~11族金属の遷移金属触媒の存在下に重合された共重合体である、(15)~(20)のいずれかに記載のオレフィン系樹脂組成物(D)。
(22)前記極性基含有オレフィン共重合体(A’)が、パラジウム又はニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒の存在下に重合された共重合体である、(15)~(21)のいずれかに記載のオレフィン系樹脂組成物(D)。
(23)前記オレフィン系樹脂(C)のJIS K7112に準拠して測定される密度が0.890~1.20g/cm3の範囲である、(15)~(22)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(24)前記オレフィン系樹脂(C)の、示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、90~170℃の範囲である、(15)~(23)に記載のオレフィン系樹脂組成物(D’)。
(25)示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、119~170℃の範囲である、(15)~(24)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(26)示差走査型熱量測定(DSC)により測定される融解熱量ΔHが、80~300J/gの範囲である、(15)~(25)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(27)前記オレフィン系樹脂(C)の示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、30~124℃である(15)~(22)のいずれかに記載のオレフィン系樹脂組成物(D”)。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(17)前記極性基含有オレフィン共重合体(A’)における、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%、エポキシ基を含む極性基含有モノマーに由来する構造単位量が20~0.001mol%である(15)または(16)に記載のオレフィン系樹脂組成物(D)。
(18)前記オレフィン系樹脂(C)が、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方から選ばれるモノマーを重合する事で得られる単独重合体及び共重合体の少なくとも一方である、(15)~(17)のいずれかに記載のオレフィン系樹脂組成物(D)。
(19)前記オレフィン系樹脂(C)が、エチレン単独重合体又はエチレンと炭素数3~20のα-オレフィンとの共重合体である、(15)~(18)のいずれかに記載のオレフィン系樹脂組成物(D)。
(20)前記極性基含有オレフィン共重合体(A’)の、示差走査型熱量測定(DSC)により測定される吸収曲線のうち、最大ピーク位置の温度で表される融点が、50~140℃の範囲である、(15)~(19)のいずれかに記載のオレフィン系樹脂組成物(D)。
(21)前記極性基含有オレフィン共重合体(A’)が、キレート性配位子を有する第5~11族金属の遷移金属触媒の存在下に重合された共重合体である、(15)~(20)のいずれかに記載のオレフィン系樹脂組成物(D)。
(22)前記極性基含有オレフィン共重合体(A’)が、パラジウム又はニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒の存在下に重合された共重合体である、(15)~(21)のいずれかに記載のオレフィン系樹脂組成物(D)。
(23)前記オレフィン系樹脂(C)のJIS K7112に準拠して測定される密度が0.890~1.20g/cm3の範囲である、(15)~(22)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(24)前記オレフィン系樹脂(C)の、示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、90~170℃の範囲である、(15)~(23)に記載のオレフィン系樹脂組成物(D’)。
(25)示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、119~170℃の範囲である、(15)~(24)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(26)示差走査型熱量測定(DSC)により測定される融解熱量ΔHが、80~300J/gの範囲である、(15)~(25)のいずれかに記載のオレフィン系樹脂組成物(D’)。
(27)前記オレフィン系樹脂(C)の示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、30~124℃である(15)~(22)のいずれかに記載のオレフィン系樹脂組成物(D”)。
さらに本発明は上記の極性基含有オレフィン共重合体(A)(第1の発明)、多元系極性基含有オレフィン共重合体(B)(第2の発明)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)(第3の発明)のうち少なくとも1つを含む接着材、積層体、およびにその他の用途製品に関する。具体的には以下の通りである。
(28)(1)~(7)のいずれかに記載の極性基含有オレフィン共重合体(A)、(8)~(14)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)、または、(15)~(27)のいずれかに記載のオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)を含有する接着材。
(29)(1)~(7)のいずれかに記載の極性基含有オレフィン共重合体(A)、(8)~(14)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)、または、(15)~(27)のいずれかに記載のオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)と、基材層とを少なくとも含む積層体。
(30)基材層が、オレフィン系樹脂、極性の高い熱可塑性樹脂、金属、無機酸化物の蒸着フィルム、紙類、セロファン、織布、不織布から選ばれる、(29)に記載の積層体。
(31)前記基材層が、ポリアミド系樹脂、フッ素系樹脂、ポリエステル系樹脂、及びエチレン-ビニルアルコール共重合体(EVOH)から選ばれる少なくとも1種を含む、(29)または(30)に記載の積層体。
(29)(1)~(7)のいずれかに記載の極性基含有オレフィン共重合体(A)、(8)~(14)のいずれかに記載の多元系極性基含有オレフィン共重合体(B)、または、(15)~(27)のいずれかに記載のオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)と、基材層とを少なくとも含む積層体。
(30)基材層が、オレフィン系樹脂、極性の高い熱可塑性樹脂、金属、無機酸化物の蒸着フィルム、紙類、セロファン、織布、不織布から選ばれる、(29)に記載の積層体。
(31)前記基材層が、ポリアミド系樹脂、フッ素系樹脂、ポリエステル系樹脂、及びエチレン-ビニルアルコール共重合体(EVOH)から選ばれる少なくとも1種を含む、(29)または(30)に記載の積層体。
本発明の第1の発明である極性基含有オレフィン共重合体(A)は、特定の分子構造及び樹脂物性を有することで、第2の発明である多元系極性オレフィン共重合体(B)は特定範囲の極めて狭い分子量分布を持ち、特定範囲の融点を有する事により、第3の発明は、極性基含有オレフィン共重合体(A’)に特定の割合でオレフィン系樹脂(C)を加えてオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、およびオレフィン系樹脂組成物(D”)とすることにより、他の基材との高い接着性を発現し、工業的に有用な積層体および複合化材料の製造を可能にした。なお、かかる顕著な効果は、後述する本発明の各実施例のデータ及び各実施例と各比較例との対照により実証されている。
また、本発明による極性基含有オレフィン共重合体(A)、多元系極性オレフィン共重合体(B)、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、およびオレフィン系樹脂組成物(D”)は、接着性だけでなく機械的かつ熱的な物性に優れ、さらには、耐薬品性も兼ね備え、有用な多層成形体として応用可能であり、さまざまな用途、例えば、押出成形、吹込成形などによって、多層フィルム、多層ブロー瓶などに成形され、広範囲な用途に使用可能である。
以下においては、本発明の極性基含有オレフィン共重合体(A)、多元系極性オレフィン共重合体(B)、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、およびオレフィン系樹脂組成物(D”)、及びそれを用いた接着材と積層体について、項目毎に具体的かつ詳細に説明する。
〔I〕極性基含有オレフィン共重合体(A)について
(1)極性基含有オレフィン共重合体(A)
本発明に係る極性基含有オレフィン共重合体は、エチレン又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとの共重合体であって、該モノマー単位がランダムに共重合したランダム共重合体であり、かつ分子構造が実質的に直鎖状の共重合体である。
(1)極性基含有オレフィン共重合体(A)
本発明に係る極性基含有オレフィン共重合体は、エチレン又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとの共重合体であって、該モノマー単位がランダムに共重合したランダム共重合体であり、かつ分子構造が実質的に直鎖状の共重合体である。
本発明に係る極性基含有オレフィン共重合体(A)は、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとを、遷移金属触媒の存在下に重合することで得られることを特徴とする。重合に供されるエチレン又は炭素数3~20のα-オレフィンは特に限定されないが、好ましくは、エチレンを必須で含み、必要に応じて炭素数3~20のα-オレフィンをさらに含んでもよい。重合に供されるエチレン又は炭素数3~20のα-オレフィンは単独で用いてもよいが、2種類以上を用いてもよい。また、本発明の趣旨を逸脱しない範囲においてならば、その他の極性基を含有しないモノマーをさらに重合に供してもよい。エチレン及び/又はα-オレフィンに由来する構造単位の割合は、通常であれば80~99.999mol%、好ましくは85~99.99mol%、更に好ましくは90~99.98mol%より好適には95~99.97mol%の範囲から選択されることが望ましい。
(2)α-オレフィン
本発明に係るα-オレフィンは構造式:CH2=CHR18で表される、炭素数3~20のα-オレフィンである(R18は炭素数1~18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)。より好ましくは、炭素数3~12のα-オレフィンであり、さらに好ましくは、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテンから選択されるα-オレフィンであり、より好適には、プロピレン、1-ブテン、1-ヘキセン、1-オクテンから選択されるα-オレフィンである。重合に供するα-オレフィンは単独でもよいし、2種以上であっても構わない。
本発明に係るα-オレフィンは構造式:CH2=CHR18で表される、炭素数3~20のα-オレフィンである(R18は炭素数1~18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)。より好ましくは、炭素数3~12のα-オレフィンであり、さらに好ましくは、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテンから選択されるα-オレフィンであり、より好適には、プロピレン、1-ブテン、1-ヘキセン、1-オクテンから選択されるα-オレフィンである。重合に供するα-オレフィンは単独でもよいし、2種以上であっても構わない。
(3)極性基を含有しないモノマー
本発明における極性基を含有しないモノマーは、分子構造中に炭素-炭素二重結合を1つ以上有するモノマーであり、かつ、分子を構成する元素が炭素と水素のみであれば限定されず、例えば、ジエン、トリエン、芳香族ビニルモノマー、環状オレフィン等が挙げられ、好ましくは、ブタジエン、イソプレン、スチレン、ビニルシクロヘキサン、シクロヘキセン、ビニルノルボルネン、ノルボルネンである。
本発明における極性基を含有しないモノマーは、分子構造中に炭素-炭素二重結合を1つ以上有するモノマーであり、かつ、分子を構成する元素が炭素と水素のみであれば限定されず、例えば、ジエン、トリエン、芳香族ビニルモノマー、環状オレフィン等が挙げられ、好ましくは、ブタジエン、イソプレン、スチレン、ビニルシクロヘキサン、シクロヘキセン、ビニルノルボルネン、ノルボルネンである。
(4)極性基含有モノマー
本発明に係る極性基含有モノマーは、エポキシ基を含有する必要がある。エポキシ基を持った極性基含有オレフィン共重合体を含むオレフィン系樹脂組成物であれば、ポリアミド樹脂、ポリエステル樹脂、エチレン-ビニルアルコール共重合体(EVOH)、接着性を付与したフッ素樹脂などの極性の高い熱可塑性樹脂、及びアルミニウム、スチ-ルなどの金属材料の基材と積層接着することが可能となる。
本発明に係る極性基含有モノマーは、エポキシ基を含有する必要がある。エポキシ基を持った極性基含有オレフィン共重合体を含むオレフィン系樹脂組成物であれば、ポリアミド樹脂、ポリエステル樹脂、エチレン-ビニルアルコール共重合体(EVOH)、接着性を付与したフッ素樹脂などの極性の高い熱可塑性樹脂、及びアルミニウム、スチ-ルなどの金属材料の基材と積層接着することが可能となる。
本発明に係る極性基含有モノマーは、好ましくは下記構造式(I)または構造式(II)で示されるエポキシ基を含むモノマーである。
(構造式(I)中、R1は水素原子または炭素数1~10のアルキル基、R2、R3、R4はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R2~R4のいずれか1つはエポキシ基を含む特定の官能基である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(構造式(II)中、R5~R8はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基を示し、R5~R8のいずれか1つはエポキシ基を含む特定の官能基である。また、mは0~2である。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
極性基含有モノマーの分子構造は特に限定されないが、遷移金属触媒存在下における共重合のしやすさや、極性基含有モノマーの取扱い等を考慮すると、構造式(I)で示される極性基含有モノマーがより好ましい。更には、構造式(I)で示される極性基含有モノマーのうち、R1が水素原子または炭素数1~10のアルキル基、R2、R3、R4はそれぞれ独立して、水素原子、炭化水素基、又はエポキシ基を含む下記の特定の官能基のうちいずれかであり、かつ、R2~R4のいずれか1つはエポキシ基を含む特定の官能基であるものが、より好ましい。
(特定の官能基:エポキシ基を必須で含み、さらに、炭化水素基、カルボニル基、エーテル基のいずれかを更に必須で含む、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
(特定の官能基:エポキシ基を必須で含み、さらに、炭化水素基、カルボニル基、エーテル基のいずれかを更に必須で含む、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
上記構造式(I)または構造式(II)で示される極性基含有モノマーとしては、例えば、5-ヘキセンエポキシド、6-ヘプテンエポキシド、7-オクテンエポキシド、8-ノネンエポキシド、9-デセンエポキシド、10-ウンデセンエポキシド、11-ドデセンエポキシドなどのω-アルケニルエポキシド類、2-メチル-6-ヘプテンエポキシド、2-メチル-7-オクテンエポキシド、2-メチル-8-ノネンエポキシド、2-メチル-9-デセンエポキシド、2-メチル-10-ウンデセンエポキシドなどの分子構造内に分岐を持つω-アルケニルエポキシド類、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、o-アリルフェノールのグリシジルエーテル、m-アリルフェノールのグリシジルエーテル、p-アリルフェノールのグリシジルエーテル等の不飽和グリシジルエーテル類、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸、メタクリル酸、p-スチリルカルボン酸グリシジル、エンド-シス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸、エンド-シス-ビシクロ[2,2,1]ヘプト-5-エン-2-メチル-2,3-ジカルボン酸、イタコン酸、シトラコン酸、ブテントリカルボン酸、等の不飽和カルボン酸のグリシジルエステル、エポキシヘキシルノルボルネン、エポキシシクロヘキサンノルボルネン、メチルグリシジルエーテルノルボルネン等のエポキシ基を含む環状オレフィン、その他、2-(o-ビニルフェニル)エチレンオキシド、2-(p-ビニルフェニル)エチレンオキシド、2-(o-アリルフェニル)エチレンオキシド、2-(p-アリルフェニル)エチレンオキシド、2-(o-ビニルフェニル)プロピレンオキシド、2-(p-ビニルフェニル)プロピレンオキシド、2-(o-アリルフェニル)プロピレンオキシド、2-(p-アリルフェニル)プロピレンオキシド、p-グリシジルスチレン、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン、3,4-エポキシ-1-ペンテン、3,4-エポキシ-3-メチル-1-ペンテン、5,6-エポキシ-1-ヘキセン、ビニルシクロヘキセンモノオキシド、アリル-2,3-エポキシシクロペンチルエーテル、2,3‐エポキシ‐5‐ビニルノルボルナン、1,2-エポキシ-4-ビニルシクロヘキサン等のエポキシ基を含むモノマーを挙げる事が出来る。これらの中では特に、下記構造式で示される、1,2-エポキシ-9-デセン、4-ヒドロキシブチルアクリレートグリシジルエーテル、グリシジルメタクリレート、1,2-エポキシ-4-ビニルシクロヘキサン等が好ましい。
重合に供されるエポキシ基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。
重合に供されるエポキシ基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。
エポキシ基を含んだモノマーを用いた極性基含有オレフィン共重合体(A)は、含有するエポキシ基同士の反応によって、分子鎖間架橋が起こる場合がある。本発明の主旨を逸脱しない範囲においてならば、分子鎖間架橋が起こっていても差し支えない。
(5)極性基含有オレフィン共重合体(A)の構造単位
本発明に係る極性基含有オレフィン共重合体の構造単位と構造単位量について説明する。
エチレン又は炭素数3~20のα-オレフィン、及びエポキシ基含有モノマー、それぞれ1分子に由来する構造を、極性基含有オレフィン共重合体中の1構造単位と定義する。そして、極性基含有オレフィン共重合体中の各構造単位の比率をmol%で表したものが構造単位量である。
本発明に係る極性基含有オレフィン共重合体の構造単位と構造単位量について説明する。
エチレン又は炭素数3~20のα-オレフィン、及びエポキシ基含有モノマー、それぞれ1分子に由来する構造を、極性基含有オレフィン共重合体中の1構造単位と定義する。そして、極性基含有オレフィン共重合体中の各構造単位の比率をmol%で表したものが構造単位量である。
(6)極性基含有モノマーの構造単位量
本発明に係る極性基含有オレフィン共重合体(A)のエポキシ基含有モノマーに由来する構造単位量は、通常20~0.001mol%の範囲、好ましくは15~0.01mol%の範囲、より好ましくは10~0.02mol%の範囲、より好適には5~0.03mol%の範囲から選択され、必ず本発明の極性基含有オレフィン共重合体に存在していることが好ましい。もし、この範囲よりエポキシ基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。
本発明に係る極性基含有オレフィン共重合体(A)のエポキシ基含有モノマーに由来する構造単位量は、通常20~0.001mol%の範囲、好ましくは15~0.01mol%の範囲、より好ましくは10~0.02mol%の範囲、より好適には5~0.03mol%の範囲から選択され、必ず本発明の極性基含有オレフィン共重合体に存在していることが好ましい。もし、この範囲よりエポキシ基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。
(7)極性基含有モノマーの構造単位量の測定方法
本発明に係る極性基含有オレフィン共重合体(A)中の極性基の構造単位量は1H-NMRスペクトルを用いて求められる。1H-NMRスペクトルは以下の方法によって測定した。試料200~250mgをo-ジクロロベンゼン/重水素化臭化ベンゼン(C6D5Br)=4/1(体積比)2.4mlおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定に供した。NMR測定は10mmφのクライオプローブを装着したブルカー・バイオスピン(株)のAV400M型NMR装置を用いて120℃で行った。1H-NMRはパルス角1°、パルス間隔1.8秒、積算回数を1,024回以上として測定した。化学シフトはヘキサメチルジシロキサンのメチルプロトンのピークを0.088ppmとして設定し、他のプロトンによるピークの化学シフトはこれを基準とした。13C-NMRはパルス角90°、パルス間隔20秒、積算回数512回以上とし、プロトン完全デカップリング法で測定した。化学シフトはヘキサメチルジシロキサンのメチル炭素のピークを1.98ppmとして設定し、他の炭素によるピークの化学シフトはこれを基準とした。
本発明に係る極性基含有オレフィン共重合体(A)中の極性基の構造単位量は1H-NMRスペクトルを用いて求められる。1H-NMRスペクトルは以下の方法によって測定した。試料200~250mgをo-ジクロロベンゼン/重水素化臭化ベンゼン(C6D5Br)=4/1(体積比)2.4mlおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定に供した。NMR測定は10mmφのクライオプローブを装着したブルカー・バイオスピン(株)のAV400M型NMR装置を用いて120℃で行った。1H-NMRはパルス角1°、パルス間隔1.8秒、積算回数を1,024回以上として測定した。化学シフトはヘキサメチルジシロキサンのメチルプロトンのピークを0.088ppmとして設定し、他のプロトンによるピークの化学シフトはこれを基準とした。13C-NMRはパルス角90°、パルス間隔20秒、積算回数512回以上とし、プロトン完全デカップリング法で測定した。化学シフトはヘキサメチルジシロキサンのメチル炭素のピークを1.98ppmとして設定し、他の炭素によるピークの化学シフトはこれを基準とした。
極性基含有モノマーの構造単位量
〔4―ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)の構造単位量〕
0.3~3.1ppmの範囲の極性基含有オレフィン共重合体によるピークの積分強度和をIA1とし、2.4、2.6、3.0、3.3、3.4、3.5、及び4.1ppmに生じる共重合体中に含まれる4―HBAGEのプロトンによるピークの積分強度の和をIX1とした時に、以下の式に従って求めた。
4―HBAGE含有量(mol%)=40×IX1/(IA1-0.6×IX1)
〔4―ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)の構造単位量〕
0.3~3.1ppmの範囲の極性基含有オレフィン共重合体によるピークの積分強度和をIA1とし、2.4、2.6、3.0、3.3、3.4、3.5、及び4.1ppmに生じる共重合体中に含まれる4―HBAGEのプロトンによるピークの積分強度の和をIX1とした時に、以下の式に従って求めた。
4―HBAGE含有量(mol%)=40×IX1/(IA1-0.6×IX1)
〔1,2-エポキシ-9-デセン(C8-EPO)の構造単位量〕
0.3~3.1ppmの範囲の極性基含有オレフィン共重合体(A)によるピークの積分強度和をIA2とし、2.4、2.6、2.8ppmに生じる共重合体中に含まれるC8-EPOのプロトンによるピークの積分強度の和をIX2とした時に、以下の式に従って求めた。
C8-EPO含有量(mol%)
=(400/3)×IX2/(IA2-11/3×IX2)
0.3~3.1ppmの範囲の極性基含有オレフィン共重合体(A)によるピークの積分強度和をIA2とし、2.4、2.6、2.8ppmに生じる共重合体中に含まれるC8-EPOのプロトンによるピークの積分強度の和をIX2とした時に、以下の式に従って求めた。
C8-EPO含有量(mol%)
=(400/3)×IX2/(IA2-11/3×IX2)
〔1,2-エポキシ-4-ビニルシクロヘキサン(EP-VCH)の構造単位量〕
0.3~3.2ppmの範囲の極性基含有オレフィン共重合体によるピークの積分強度和をIA2とし、3.0ppm付近に生じる共重合体中に含まれるEP-VCHのプロトンによるピークの積分強度の和をIX2とした時に、以下の式に従って求めた。
EP-VCH含量(mol%)=100×IX2/(0.5×IA2-2×IX2)
0.3~3.2ppmの範囲の極性基含有オレフィン共重合体によるピークの積分強度和をIA2とし、3.0ppm付近に生じる共重合体中に含まれるEP-VCHのプロトンによるピークの積分強度の和をIX2とした時に、以下の式に従って求めた。
EP-VCH含量(mol%)=100×IX2/(0.5×IA2-2×IX2)
〔グリシジルメタクリレート(GMA)の構造単位量〕
0.3~3.2ppmの範囲の極性基含有オレフィン共重合体(A)によるピークの積分強度和をIA3とし、2.5、2.6、3.1、3.9、及び4.3 ppmに生じる共重合体中に含まれるGMAのプロトンによるピークの積分強度の和をIX3とした時に、以下の式に従って求めた。
GMA含有量(mol%)=80×IX3/(IA3-0.8×IX3)
0.3~3.2ppmの範囲の極性基含有オレフィン共重合体(A)によるピークの積分強度和をIA3とし、2.5、2.6、3.1、3.9、及び4.3 ppmに生じる共重合体中に含まれるGMAのプロトンによるピークの積分強度の和をIX3とした時に、以下の式に従って求めた。
GMA含有量(mol%)=80×IX3/(IA3-0.8×IX3)
(8)極性基含有オレフィン共重合体(A)の分子構造
本発明に係る極性基含有オレフィン共重合体(A)は、エチレン及び/又は炭素数3~20のα-オレフィンとエポキシ基含有モノマーの共重合体のランダム共重合体である。
本発明における極性基含有オレフィン共重合体(A)の分子構造例を下記段落に示す。ランダム共重合体とは、下記段落に示した分子構造例のA構造単位とB構造単位の、ある任意の分子鎖中の位置においてそれぞれの構造単位を見出す確率が、その隣接する構造単位の種類と無関係な共重合体である。また、極性基含有オレフィン共重合体の分子鎖末端は、エチレン及び/又は炭素数3~20のα-オレフィンであってもよく、エポキシ基含有モノマーであってもよい。下記のように、本発明における極性基含有オレフィン共重合体の分子構造(例)は、エチレン又は炭素数3~20のα-オレフィンとエポキシ基含有モノマーとが、ランダム共重合体を形成している。
本発明に係る極性基含有オレフィン共重合体(A)は、エチレン及び/又は炭素数3~20のα-オレフィンとエポキシ基含有モノマーの共重合体のランダム共重合体である。
本発明における極性基含有オレフィン共重合体(A)の分子構造例を下記段落に示す。ランダム共重合体とは、下記段落に示した分子構造例のA構造単位とB構造単位の、ある任意の分子鎖中の位置においてそれぞれの構造単位を見出す確率が、その隣接する構造単位の種類と無関係な共重合体である。また、極性基含有オレフィン共重合体の分子鎖末端は、エチレン及び/又は炭素数3~20のα-オレフィンであってもよく、エポキシ基含有モノマーであってもよい。下記のように、本発明における極性基含有オレフィン共重合体の分子構造(例)は、エチレン又は炭素数3~20のα-オレフィンとエポキシ基含有モノマーとが、ランダム共重合体を形成している。
なお、グラフト変性によって極性基を導入したオレフィン共重合体の分子構造(例)も参考に掲載すると、エチレン又は炭素数3~20のα-オレフィンが共重合されたオレフィン共重合体の一部が、エポキシ基を含むモノマーにグラフト変性されている。
本発明に係る極性基含有オレフィン共重合体(A)は、遷移金属触媒の存在下で製造されることを特徴としており、その分子構造は直鎖状である。高圧ラジカル重合法プロセスにより重合されたオレフィン共重合体のイメージ図を図1に、金属触媒を用いて重合されたオレフィン共重合体のイメージ図を図2、図3に、それぞれ例示した様に、製造方法によってその分子構造は異なる。この分子構造の違いは製造方法を選択する事によって制御が可能であるが、例えば、日本国特開2010-150532号公報に記載されている様に、回転式レオメータで測定した複素弾性率によっても、その分子構造を推定する事ができる。より具体的には、回転式レオメータで測定した複素弾性率の絶対値G*=0.1MPaにおける位相角δ(G*=0.1MPa)が40度以上である場合、その分子構造は図2及び図3に示されるような直鎖状の構造であって、長鎖分岐を全く含まない構造(図2)か、機械的強度に影響を与えない程度の少量の長鎖分岐を含む構造(図3)を示す。また、回転式レオメータで測定した複素弾性率の絶対値G*=0.1MPaにおける位相角δ(G*=0.1MPa)が40度より低い場合、その分子構造は図1に示されるような、長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。回転式レオメータで測定した複素弾性率の絶対値G*=0.1MPaにおける位相角δは分子量分布と長鎖分岐の両方の影響を受けるが、Mw/Mn≦4、より好ましくはMw/Mn≦3のものに限れば長鎖分岐の量の指標になり、長鎖分岐が多いほどδ(G*=0.1MPa)値は小さくなる。なお、Mw/Mnが1.5以上であれば、長鎖分岐をもたない場合でもδ(G*=0.1MPa)値が75度を上回ることはない。
(9)極性基含有オレフィン共重合体(A)の重量平均分子量(Mw)
本発明に係る極性基含有オレフィン共重合体(A)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、極性の高い異種材料との接着性も劣るものとなる。Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
本発明に係る極性基含有オレフィン共重合体(A)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、極性の高い異種材料との接着性も劣るものとなる。Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
本発明に係る極性基含有オレフィン共重合体(A)重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求められる。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnを算出するものである。
本発明に係るGPCの測定方法は以下の通りである。
(測定条件)使用機種:ウォーターズ社製150C 検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm) 測定温度:140℃ 溶媒:オルトジクロロベンゼン(ODCB) カラム:昭和電工社製AD806M/S(3本) 流速:1.0mL/分 注入量:0.2mL
(試料の調製)試料はODCB(0.5mg/mLのBHT(2,6-ジ-t-ブチル-4-メチルフェノール)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
(分子量の算出)標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは何れも東ソー社製の、(F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000)の銘柄である。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式を用いる。分子量への換算に使用する粘度式[η]=K×Mαは以下の数値を用いる。
PS:K=1.38×10-4、α=0.7
PE:K=3.92×10-4、α=0.733
PP:K=1.03×10-4、α=0.78
(測定条件)使用機種:ウォーターズ社製150C 検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm) 測定温度:140℃ 溶媒:オルトジクロロベンゼン(ODCB) カラム:昭和電工社製AD806M/S(3本) 流速:1.0mL/分 注入量:0.2mL
(試料の調製)試料はODCB(0.5mg/mLのBHT(2,6-ジ-t-ブチル-4-メチルフェノール)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
(分子量の算出)標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは何れも東ソー社製の、(F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000)の銘柄である。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式を用いる。分子量への換算に使用する粘度式[η]=K×Mαは以下の数値を用いる。
PS:K=1.38×10-4、α=0.7
PE:K=3.92×10-4、α=0.733
PP:K=1.03×10-4、α=0.78
(10)極性基含有オレフィン共重合体(A)の融点
本発明に係るオレフィン系樹脂(A)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。最大ピーク温度とは、DSC測定において、縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線に複数ピークが示された場合、そのうちベースラインからの高さが最大であるピークの温度の事を示し、ピークが1つだった場合には、そのピークの温度の事を示している。
ポリエチレンを想定した場合、融点は50℃~140℃であることが好ましく、60℃~138℃であることが更に好ましく、70℃~135℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
本発明に係るオレフィン系樹脂(A)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。最大ピーク温度とは、DSC測定において、縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線に複数ピークが示された場合、そのうちベースラインからの高さが最大であるピークの温度の事を示し、ピークが1つだった場合には、そのピークの温度の事を示している。
ポリエチレンを想定した場合、融点は50℃~140℃であることが好ましく、60℃~138℃であることが更に好ましく、70℃~135℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
〔II〕多元系極性基含有オレフィン共重合体(B)について
(1)多元系極性基含有オレフィン共重合体(B)
本発明に係る多元系極性基含有オレフィン共重合体(B)は、エチレン及び炭素数3~10のα-オレフィンから選ばれる非極性モノマー(X1)とエポキシ基を有するモノマーから選ばれる極性基含有モノマー(Z1)と、他のモノマー(Z2)とからなる3種の成分を必須で含む、多元系極性オレフィン共重合体(B)である。なお、(X1)、(Z1)、(Z2)を共重合することで得られる多元系極性基含有オレフィン共重合体(B)は、グラフト重合や高圧ラジカル法重合その他前述した重合法において既に公知のものであるが、本発明においては、かかる公知の多元系極性基含有オレフィン共重合体に対して、遷移金属の存在下に重合されたランダム共重合体であって、その分子構造が実質的に直鎖状であるという特徴を備えており、かつ、格別の接着効果を有する要件をも備えているから、公知の共重合体と顕著に異なるものである。
(1)多元系極性基含有オレフィン共重合体(B)
本発明に係る多元系極性基含有オレフィン共重合体(B)は、エチレン及び炭素数3~10のα-オレフィンから選ばれる非極性モノマー(X1)とエポキシ基を有するモノマーから選ばれる極性基含有モノマー(Z1)と、他のモノマー(Z2)とからなる3種の成分を必須で含む、多元系極性オレフィン共重合体(B)である。なお、(X1)、(Z1)、(Z2)を共重合することで得られる多元系極性基含有オレフィン共重合体(B)は、グラフト重合や高圧ラジカル法重合その他前述した重合法において既に公知のものであるが、本発明においては、かかる公知の多元系極性基含有オレフィン共重合体に対して、遷移金属の存在下に重合されたランダム共重合体であって、その分子構造が実質的に直鎖状であるという特徴を備えており、かつ、格別の接着効果を有する要件をも備えているから、公知の共重合体と顕著に異なるものである。
(2)非極性モノマー(X1)
本発明に係る、非極性モノマー(X1)としてはエチレン及び/又は炭素数3~10のα-オレフィンが挙げられる。
好ましい具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテンが挙げられ、特に好ましい具体例として、エチレンが挙げられる。また、α-オレフィンは、一種類を使用してもよいし、複数を併用してもよい。
二種の組み合わせとしては、エチレン-プロピレン、エチレン-1-ブテン、エチレン-1-ヘキセン、エチレン-1-オクテン、プロピレン-1-ブテン、プロピレン-1-ヘキセン、プロピレン-1-オクテンなどが挙げられる。
三種の組み合わせとしては、エチレン-プロピレン-1-ブテン、エチレン-プロピレン-1-ヘキセン、エチレン-プロピレン-1-オクテン、プロピレン-1-ブテン-ヘキセン、プロピレン-1-ブテン-1-オクテンなどが挙げられる。
本発明に係る、非極性モノマー(X1)としてはエチレン及び/又は炭素数3~10のα-オレフィンが挙げられる。
好ましい具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテンが挙げられ、特に好ましい具体例として、エチレンが挙げられる。また、α-オレフィンは、一種類を使用してもよいし、複数を併用してもよい。
二種の組み合わせとしては、エチレン-プロピレン、エチレン-1-ブテン、エチレン-1-ヘキセン、エチレン-1-オクテン、プロピレン-1-ブテン、プロピレン-1-ヘキセン、プロピレン-1-オクテンなどが挙げられる。
三種の組み合わせとしては、エチレン-プロピレン-1-ブテン、エチレン-プロピレン-1-ヘキセン、エチレン-プロピレン-1-オクテン、プロピレン-1-ブテン-ヘキセン、プロピレン-1-ブテン-1-オクテンなどが挙げられる。
(3)エポキシ基を含有する極性基含有モノマー(Z1)
本発明に係る極性基含有モノマー(Z1)は、エポキシ基を含有する必要がある。エポキシ基を持ったオレフィン共重合体であれば、ポリアミド樹脂、ポリエステル樹脂、エチレン-ビニルアルコール共重合体(EVOH)、接着性フッ素樹脂などの極性の高い熱可塑性樹脂、及びアルミニウム、スチ-ルなどの金属材料の基材と積層接着することが可能となる。
本発明に係る極性基含有モノマー(Z1)は、エポキシ基を含有する必要がある。エポキシ基を持ったオレフィン共重合体であれば、ポリアミド樹脂、ポリエステル樹脂、エチレン-ビニルアルコール共重合体(EVOH)、接着性フッ素樹脂などの極性の高い熱可塑性樹脂、及びアルミニウム、スチ-ルなどの金属材料の基材と積層接着することが可能となる。
エポキシ基を含有する極性基含有モノマーとしては、上述の極性基含有オレフィン共重合体(A)の記載に例示された物を適宜使用する事が出来る。
(4)他のモノマー(Z2)
第3成分である他のモノマー(Z2)は、(X1)および(Z1)と同一でなければ、任意のモノマーを使用できる。例えば、(X1)としてエチレンを選択した場合、(Z2)としてエチレンを用いる事は出来ないが、例えば、1-ブテン、1-ヘキセンといった、その他のα-オレフィンは用いる事が出来る。同様に、(Z1)として4-hydroxybutyl acrylate glycidyletherを選択した場合、例えば、4-hydroxybutyl acrylate glycidyletherではないエポキシ基含有モノマーや酸無水物を含むモノマーといった4-hydroxybutyl acrylate glycidyletherではないモノマーであれば用いる事が出来る。
第3成分である他のモノマー(Z2)は、(X1)および(Z1)と同一でなければ、任意のモノマーを使用できる。例えば、(X1)としてエチレンを選択した場合、(Z2)としてエチレンを用いる事は出来ないが、例えば、1-ブテン、1-ヘキセンといった、その他のα-オレフィンは用いる事が出来る。同様に、(Z1)として4-hydroxybutyl acrylate glycidyletherを選択した場合、例えば、4-hydroxybutyl acrylate glycidyletherではないエポキシ基含有モノマーや酸無水物を含むモノマーといった4-hydroxybutyl acrylate glycidyletherではないモノマーであれば用いる事が出来る。
他のモノマー(Z2)は、分子中に炭素-炭素二重結合を必須で含む化合物であり、炭素原子と異なった電気陰性度をもつ原子を含む置換基(極性基)を有していてもよいし、有していなくてもよい。
ここで、極性基としては、例えば、ハロゲン類、水酸基(-OH)、カルボキシル基(-COOH)、ホルミル基(-CHO)、アルコキシ基(-OR)、エステル基(-COOR)、ニトリル基(-CN)、エーテル基(-O-)、カルボニル基(=CO)、エポキシ基、酸無水物基が挙げられる。
ここで、極性基としては、例えば、ハロゲン類、水酸基(-OH)、カルボキシル基(-COOH)、ホルミル基(-CHO)、アルコキシ基(-OR)、エステル基(-COOR)、ニトリル基(-CN)、エーテル基(-O-)、カルボニル基(=CO)、エポキシ基、酸無水物基が挙げられる。
本発明に係る他のモノマー(Z2)は、炭素-炭素二重結合の分子中の位置により、非環状モノマー又は環状モノマー、に分類される。なお、非環状モノマーは、炭素-炭素二重結合が分子中の非環状部分に位置していれば、当該分子中に環状の構造を有してもよい。
(4-1)非環状モノマー
非環状モノマーとしては、α-オレフィン、不飽和カルボン酸、不飽和カルボン酸無水物(炭素-炭素二重結合が環状でない場合)、(メタ)アクリル酸エステル等が挙げられる。
非環状モノマーとしては、α-オレフィン、不飽和カルボン酸、不飽和カルボン酸無水物(炭素-炭素二重結合が環状でない場合)、(メタ)アクリル酸エステル等が挙げられる。
本発明に係るα-オレフィンは炭素数3~20のα-オレフィンであり、構造式:CH2=CHR18で表される。ここで、R18は、水素原子または炭素数1~18の炭化水素基であり、直鎖状、分岐状、及び環状でもよく、不飽和結合を有してもよい。さらに、R18内の任意の位置にヘテロ原子を含有してもよい。なかでも、好ましいα-オレフィンとしては、R18が水素原子または炭素数1~10のα-オレフィンが挙げられる。
α-オレフィンの具体的な化合物は、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、1,2-エポキシ-4-ビニルシクロヘキセン、スチレン、6-ヒドロキシ-1-ヘキセン、8-ヒドロキシ-1-オクテン、9,10-オキシ-1-デセン、7-(N,N-ジメチルアミノ)-1-ペプテン、3-トリエトキシシリル-1-プロペン、アリルアルコール、2-アリルオキシエタノール、酢酸アリル等が挙げられる。
α-オレフィンの具体的な化合物は、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、1,2-エポキシ-4-ビニルシクロヘキセン、スチレン、6-ヒドロキシ-1-ヘキセン、8-ヒドロキシ-1-オクテン、9,10-オキシ-1-デセン、7-(N,N-ジメチルアミノ)-1-ペプテン、3-トリエトキシシリル-1-プロペン、アリルアルコール、2-アリルオキシエタノール、酢酸アリル等が挙げられる。
不飽和カルボン酸の具体例は、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等が挙げられる。
不飽和カルボン酸無水物(炭素-炭素二重結合が環状でない場合)の具体例は、無水イタコン酸、2,7-オクタジエン-1-イルコハク酸無水物等が挙げられる。
本発明に係る(メタ)アクリル酸エステルは、構造式:CH2=C(R21)CO2(R22)で表される化合物である。ここで、R21は、水素原子または炭素数1~10の炭化水素基であり、直鎖状、分岐状、または環状でもよく、不飽和結合を有してもよい。R22は、炭素数1~30の炭化水素基であり、直鎖状、分岐状、または環状でもよく、不飽和結合を有してもよい。さらに、R22内の任意の位置にヘテロ原子を含有してもよい。
好ましい(メタ)アクリル酸エステルとして、R21は、水素原子または炭素数1~5の炭化水素基である(メタ)アクリル酸エステルが挙げられる。より好ましいものとしては、R21が水素原子であるアクリル酸エステル又はR21がメチル基であるメタクリル酸エステルが挙げられる。
好ましい(メタ)アクリル酸エステルとして、R21は、水素原子または炭素数1~5の炭化水素基である(メタ)アクリル酸エステルが挙げられる。より好ましいものとしては、R21が水素原子であるアクリル酸エステル又はR21がメチル基であるメタクリル酸エステルが挙げられる。
(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチル、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル(4-HBAGE)、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エチレンオキサイド、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチル等が挙げられる。
なお、単独の(メタ)アクリル酸エステルを使用してもよいし、複数の(メタ)アクリル酸エステルを併用してもよい。
好ましい化合物として、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、(4-ヒドロキシブチル)アクリレートグリシジルエーテルが挙げられる。
なお、単独の(メタ)アクリル酸エステルを使用してもよいし、複数の(メタ)アクリル酸エステルを併用してもよい。
好ましい化合物として、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、(4-ヒドロキシブチル)アクリレートグリシジルエーテルが挙げられる。
(4-2)環状モノマー
環状モノマーとしては、ノルボルネン系オレフィン、不飽和カルボン酸無水物(炭素-炭素二重結合が環状である場合)等が挙げられ、シクロペンテン、シクロヘキセン、ノルボルネン、エチリデンノルボルネンなどの環状オレフィンの骨格を有する化合物及びそれらの誘導体として、水酸基、アルコキサイド基、カルボン酸基、エステル基、アルデヒド基、酸無水物基、エポキシ基を含有する化合物が挙げられる。
環状モノマーとしては、ノルボルネン系オレフィン、不飽和カルボン酸無水物(炭素-炭素二重結合が環状である場合)等が挙げられ、シクロペンテン、シクロヘキセン、ノルボルネン、エチリデンノルボルネンなどの環状オレフィンの骨格を有する化合物及びそれらの誘導体として、水酸基、アルコキサイド基、カルボン酸基、エステル基、アルデヒド基、酸無水物基、エポキシ基を含有する化合物が挙げられる。
不飽和カルボン酸無水物(炭素-炭素二重結合が環状である場合)の具体例は、無水マレイン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、5-ノルボルネン-2,3-ジカルボン酸無水物、3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物等が挙げられる。
ノルボルネン系オレフィンの例は、例えば下記の構造式(E)、構造式(F)で表される化合物が挙げられる。構造式(E)は、酸無水物基を有するノルボルネン(シクロペンタジエンと無水マレイン酸無水物とのディールスアルダー反応物、即ち、5-ノルボルネン-2,3-ジカルボン酸無水物)、また、構造式(F)は、水酸基を有するノルボルネンである。
(5)モノマー(X1)、(Z1)、(Z2)の構造単位量
本発明に係る多次元極性基含有オレフィン共重合体(B)は、(X1)、(Z1)、(Z2)をそれぞれ1種類以上含有し、合計3種以上のモノマー単位を含むことが必要である。
(X1)の構造単位量は80.000mol%~99.998mol%、好ましくは80.000mol%~99.98mol%、より好ましくは80.000mol%~99.94mol%、である。(Z1)の構造単位量は0.001mol%~19.999mol%、好ましくは0.01mol%~15.000mol%、より好ましくは0.02mol%~10.000mol%、さらに好ましくは0.02mol%~5.000mol%である。(Z2)の構造単位量は0.001mol%~19.999mol%、好ましくは0.01mol%~15.000mol%、より好ましくは0.02mol%~10.000mol%、さらに好ましくは0.02mol%~5.000mol%である。(X1)+(Z1)+(Z2)は100mol%でなくてはならない。
本発明に係る多次元極性基含有オレフィン共重合体(B)は、(X1)、(Z1)、(Z2)をそれぞれ1種類以上含有し、合計3種以上のモノマー単位を含むことが必要である。
(X1)の構造単位量は80.000mol%~99.998mol%、好ましくは80.000mol%~99.98mol%、より好ましくは80.000mol%~99.94mol%、である。(Z1)の構造単位量は0.001mol%~19.999mol%、好ましくは0.01mol%~15.000mol%、より好ましくは0.02mol%~10.000mol%、さらに好ましくは0.02mol%~5.000mol%である。(Z2)の構造単位量は0.001mol%~19.999mol%、好ましくは0.01mol%~15.000mol%、より好ましくは0.02mol%~10.000mol%、さらに好ましくは0.02mol%~5.000mol%である。(X1)+(Z1)+(Z2)は100mol%でなくてはならない。
本発明に係る多元系オレフィン共重合体(B)において、遷移金属触媒の存在下で重合され、かつ、(X1)としてエチレンを選択した場合、共重合体の結晶化度はエチレン以外のモノマーの含有量によって決まる。例えば、エチレンと(Z1)の共重合体の場合、(Z1)の含有量が共重合体の結晶化度を決定する強い要因となる。
ところで、本発明の検討過程において本発明者らは、接着性能に影響を与える因子として、共重合体の(Z1)含有量の他に、融点が低い方が高い接着性を示す事を見い出した。すなわち、接着性能をより高める為には、(Z1)を0.001mol%以上含有し、さらに別のモノマー(Z2)を含有せしめることで共重合体の融点を下げる事が重要である事を示した。モノマー(Z2)を共重合体に共重合せしめる主とした理由は、共重合体の融点を制御する事にあり、モノマー(Z2)が限定されないのはこの為である。また、モノマー(Z1)はモノマー(X1)やモノマー(Z2)と比較して高価であることが多い。本発明によれば、接着性を高めるのに最低限必要なモノマー(Z1)量を決定してしまえば、モノマー(Z2)の適当量をさらに共重合する事で融点を下げ、さらに接着性能を高める事が可能となる。
なお、共重合体の融点が低く、柔軟である方が接着性を高められる理由は明確ではないが、おそらく、JIS K6854-1~4(1999年)「接着材-はくり接着強さ試験法」で例示されるような剥離試験を実施する際、接着材が柔軟であると、接着材自身の変形が大きくなり、その変形量の大きさが応力として測定され、結果として高い接着性を示している物と推察している。
さらには、モノマー(Z1)に由来する極性基の含有量を変化させずに、共重合体の融点を任意に調整できる本発明は、共重合体の接着性能と機械物性、特に耐衝撃性を両立させる事が可能である。
ところで、本発明の検討過程において本発明者らは、接着性能に影響を与える因子として、共重合体の(Z1)含有量の他に、融点が低い方が高い接着性を示す事を見い出した。すなわち、接着性能をより高める為には、(Z1)を0.001mol%以上含有し、さらに別のモノマー(Z2)を含有せしめることで共重合体の融点を下げる事が重要である事を示した。モノマー(Z2)を共重合体に共重合せしめる主とした理由は、共重合体の融点を制御する事にあり、モノマー(Z2)が限定されないのはこの為である。また、モノマー(Z1)はモノマー(X1)やモノマー(Z2)と比較して高価であることが多い。本発明によれば、接着性を高めるのに最低限必要なモノマー(Z1)量を決定してしまえば、モノマー(Z2)の適当量をさらに共重合する事で融点を下げ、さらに接着性能を高める事が可能となる。
なお、共重合体の融点が低く、柔軟である方が接着性を高められる理由は明確ではないが、おそらく、JIS K6854-1~4(1999年)「接着材-はくり接着強さ試験法」で例示されるような剥離試験を実施する際、接着材が柔軟であると、接着材自身の変形が大きくなり、その変形量の大きさが応力として測定され、結果として高い接着性を示している物と推察している。
さらには、モノマー(Z1)に由来する極性基の含有量を変化させずに、共重合体の融点を任意に調整できる本発明は、共重合体の接着性能と機械物性、特に耐衝撃性を両立させる事が可能である。
(6)極性基含有オレフィン共重合体(B)の構造単位
本発明に係る多元系極性基含有オレフィン共重合体(B)の構造単位と構造単位量について説明する。
エチレン及び/又は炭素数3~10のα-オレフィン(X1)、エポキシ基含有モノマー(Z1)、および他のモノマー(Z2)それぞれ1分子に由来する構造を、極性基含有オレフィン共重合体(B)中の1構造単位と定義する。そして、極性基含有オレフィン共重合体(B)中の各構造単位の比率をmol%で表したものが構造単位量である。
本発明に係る多元系極性基含有オレフィン共重合体(B)の構造単位と構造単位量について説明する。
エチレン及び/又は炭素数3~10のα-オレフィン(X1)、エポキシ基含有モノマー(Z1)、および他のモノマー(Z2)それぞれ1分子に由来する構造を、極性基含有オレフィン共重合体(B)中の1構造単位と定義する。そして、極性基含有オレフィン共重合体(B)中の各構造単位の比率をmol%で表したものが構造単位量である。
(7)エポキシ基含有モノマー(Z1)の構造単位量
本発明に係る(Z1)の構造単位量は、通常0.001mol%~19.999mol%の範囲、好ましくは0.01mol%~15.000mol%の範囲、より好ましくは0.02mol%~10.000mol%の範囲、より好適には0.02mol%~5.000mol%の範囲から選択され、必ず本発明の共重合体に存在していることが好ましい。もし、この範囲より極性基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。更に、用いられる極性基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。なお、各モノマーの構造単位量は、前述の1H-NMRを用いた方法で測定する事が出来る。
本発明に係る(Z1)の構造単位量は、通常0.001mol%~19.999mol%の範囲、好ましくは0.01mol%~15.000mol%の範囲、より好ましくは0.02mol%~10.000mol%の範囲、より好適には0.02mol%~5.000mol%の範囲から選択され、必ず本発明の共重合体に存在していることが好ましい。もし、この範囲より極性基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。更に、用いられる極性基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。なお、各モノマーの構造単位量は、前述の1H-NMRを用いた方法で測定する事が出来る。
(8)多元系極性基含有オレフィン共重合体(B)の重量平均分子量(Mw)と分子量分布パラメーター(Mw/Mn)
本発明に係る多元系極性基含有オレフィン共重合体(B)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
本発明に係る多元系極性基含有オレフィン共重合体(B)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
本発明に係る多元系極性基含有オレフィン共重合体(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、通常1.5~3.5、好ましくは1.6~3.3、更に好ましくは1.7~3.0の範囲であることが望ましい。Mw/Mnが1.5未満では積層体の成形を始めとして各種加工性が充分でなく、3.5を超えると接着強度が劣るものとなる。また、(Mw/Mn)を分子量分布パラメーターと表現することがある。
(9)融点
本発明に係る多元系オレフィン共重合体(B)の融点Tm(℃)と極性基含有モノマー含量[Z1](モル%)の関係は、
60<Tm<128-6.0[Z1]
である必要がある。
本発明に係る多元系オレフィン共重合体(B)の融点Tm(℃)と極性基含有モノマー含量[Z1](モル%)の関係は、
60<Tm<128-6.0[Z1]
である必要がある。
共重合体の接着性能に影響を与える因子として、共重合体の(Z1)含有量の他に、共重合体の融点が大きく影響し、融点が低い方が高い接着性を示す事を見い出した。しかしながら、本発明者が検討した結果、例えば(X1)としてエチレンを選択したエチレンと(Z1)の2元系共重合体の場合、共重合体の融点は(Z1)含有量に依存し、128-6.0[Z1](℃)よりも低くすることは極めて困難であり、接着性能の向上に限界があった。
そのため、本発明に係る共重合体の融点が128-6.0[Z1]を超える場合、接着性の向上が見込めず充分な接着性が発現しない。また、融点が60℃未満では、エチレン系共重合体として最低限必要な耐熱性が保持できない。
そのため、本発明に係る共重合体の融点が128-6.0[Z1]を超える場合、接着性の向上が見込めず充分な接着性が発現しない。また、融点が60℃未満では、エチレン系共重合体として最低限必要な耐熱性が保持できない。
(10)多元系極性基含有オレフィン共重合体(B)の分子構造
本発明に係る極性基含有オレフィン共重合体(B)は、(X1)、(Z1)、(Z2)のランダム共重合体である。
本発明に係る極性基含有オレフィン共重合体(B)は、(X1)、(Z1)、(Z2)のランダム共重合体である。
本発明に係る多元系極性基含有オレフィン共重合体(B)は、遷移金属触媒の存在下で製造されることを特徴としており、その分子構造は直鎖状である。
〔III〕極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造について
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造方法は、遷移金属触媒を用いて、各種モノマーを適宜共重合させることによって得られる。
(1)極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の重合触媒
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造に用いる重合触媒の種類は、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとを共重合することが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5~11族の遷移金属化合物が挙げられる。
好ましい遷移金属の具体例として、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、白金原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、銅原子などが挙げられる。
これらの中で好ましくは、バナジウム原子、鉄原子、白金原子、コバルト原子、ニッケル原子、パラジウム原子、ロジウム原子、であり、特に好ましくは、白金原子、コバルト原子、ニッケル原子、パラジウム原子である。これらの金属は、単一であっても複数を併用してもよい。
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造方法は、遷移金属触媒を用いて、各種モノマーを適宜共重合させることによって得られる。
(1)極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の重合触媒
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造に用いる重合触媒の種類は、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとを共重合することが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5~11族の遷移金属化合物が挙げられる。
好ましい遷移金属の具体例として、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、白金原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、銅原子などが挙げられる。
これらの中で好ましくは、バナジウム原子、鉄原子、白金原子、コバルト原子、ニッケル原子、パラジウム原子、ロジウム原子、であり、特に好ましくは、白金原子、コバルト原子、ニッケル原子、パラジウム原子である。これらの金属は、単一であっても複数を併用してもよい。
さらに、本発明の遷移金属錯体の遷移金属は、Mがニッケル(II)、パラジウム(II)、白金(II)、コバルト(II)及びロジウム(III)からなる群から選択される元素であることが、さらには第10族の元素であることが重合活性の観点から好ましく、特に価格等の観点から、ニッケル(II)が好ましい。キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、その構造が例示されている(Chem.Rev.,2000,100,1169)。
好ましくは、二座アニオン性P,O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられ、他に、二座アニオン性N,O配位子として例えば、サリチルアルドイミナ-トやピリジンカルボン酸が挙げられ、他に、ジイミン配位子、ジフェノキサイド配位子、ジアミド配位子が挙げられる。
好ましくは、二座アニオン性P,O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられ、他に、二座アニオン性N,O配位子として例えば、サリチルアルドイミナ-トやピリジンカルボン酸が挙げられ、他に、ジイミン配位子、ジフェノキサイド配位子、ジアミド配位子が挙げられる。
キレート性配位子から得られる金属錯体の構造は、置換基を有してもよいアリールホスフィン化合物、アリールアルシン化合物又はアリールアンチモン化合物が配位した下記構造式(A)及び/又は(B)で表される。
(構造式(A)、(B)において、Mは、元素の周期表の第5~11族のいずれかに属する遷移金属、即ち前述の遷移金属を表す。X1は、酸素、硫黄、-SO3-、又は-CO2-を表す。Y1は、炭素又はケイ素を表す。nは、0又は1の整数を表す。E1は、リン、砒素又はアンチモンを表す。R3及びR4は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。R5は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。R6及びR7は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR2、CO2R2、CO2M’、C(O)N(R1)2、C(O)R2、SR2、SO2R2、SOR2、OSO2R2、P(O)(OR2)2-y(R1)y、CN、NHR2、N(R2)2、Si(OR1)3-x(R1)x、OSi(OR1)3-x(R1)x、NO2、SO3M’、PO3M’2、P(O)(OR2)2M’又はエポキシ含有基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは0から2までの整数を表す。なお、R6とR7が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。R1は、水素又は炭素数1ないし20の炭化水素基を表す。R2は、炭素数1ないし20の炭化水素基を表す。L1は、Mに配位したリガンドを表す。また、R3とL1が互いに結合して環を形成してもよい。)より好ましくは、下記構造式(C)で表される遷移金属錯体である。
(構造式(C)において、Mは、元素の周期表の第5~11族のいずれかに属する遷移金属、即ち前述の遷移金属を表す。X1は、酸素、硫黄、-SO3-、又は-CO2-を表す。Y1は、炭素又はケイ素を表す。nは、0又は1の整数を表す。E1は、リン、砒素又はアンチモンを表す。R3及びR4は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。R5は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。R8、R9、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR2、CO2R2、CO2M’、C(O)N(R1)2、C(O)R2、SR2、SO2R2、SOR2、OSO2R2、P(O)(OR2)2-y(R1)y、CN、NHR2、N(R2)2、Si(OR1)3-x(R1)x、OSi(OR1)3-x(R1)x、NO2、SO3M’、PO3M’2、P(O)(OR2)2M’又はエポキシ含有基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。なお、R8~R11から適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。R1は、水素又は炭素数1ないし20の炭化水素基を表す。R2は、炭素数1ないし20の炭化水素基を表す。L1は、Mに配位したリガンドを表す。また、R3とL1が互いに結合して環を形成してもよい。)
ここで、キレート性配位子を有する第5~11族の遷移金属化合物を触媒としては、代表的に、いわゆる、SHOP系及びDrent系と称される触媒が知られている。SHOP系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがニッケル金属に配位した触媒である(例えば、国際公開第2010/050256号を参照)。また、Drent系は、置換基を有してもよいアリール基を有するリン系リガンドがパラジウム金属に配位した触媒である(例えば、日本国特開2010-202647号公報を参照)。
(2)有機金属化合物
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造において、エポキシ基含有モノマーと少量の有機金属化合物とを接触させた後、前記の遷移金属触媒の存在下、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとを共重合させることにより重合活性をより高められる。
有機金属化合物は、置換基を有してもよい炭化水素基を含んだ有機金属化合物であり、下記構造式(H)で示すことができる。
R30 nM30X30m-n 構造式(H)
(式中、R30は、炭素原子数1~12の置換基を有してもよい炭化水素基を示し、M30は、周期表第1族、第2族、第12族及び第13族からなる群から選択される金属、X30は、ハロゲン原子または水素原子を示し、mは、M30の価数、nは、1~mである。)
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の製造において、エポキシ基含有モノマーと少量の有機金属化合物とを接触させた後、前記の遷移金属触媒の存在下、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとを共重合させることにより重合活性をより高められる。
有機金属化合物は、置換基を有してもよい炭化水素基を含んだ有機金属化合物であり、下記構造式(H)で示すことができる。
R30 nM30X30m-n 構造式(H)
(式中、R30は、炭素原子数1~12の置換基を有してもよい炭化水素基を示し、M30は、周期表第1族、第2族、第12族及び第13族からなる群から選択される金属、X30は、ハロゲン原子または水素原子を示し、mは、M30の価数、nは、1~mである。)
上記構造式(H)で示される有機金属化合物としては、トリ-n-ブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウム、トリ-n-デシルアルミニウム等のアルキルアルミニウム類、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジエチルアルミニウムエトキシド等のアルキルアルミニウムハライド類が挙げられ、好ましくはトリアルキルアルミニウムが選択される。より好ましくは炭素数が4以上の炭化水素基を有するトリアルキルアルミニウムが、さらに好ましくは炭素数が6以上の炭化水素基を有するトリアルキルアルミニウムが、より好適にはトリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウム、トリ-n-デシルアルミニウムが選択され、トリ-n-オクチルアルミニウムが最も好適に使用する事ができる。
有機金属化合物は、極性基含有コモノマーに対するモル比が10-5~0.9、好ましくは10-4~0.2、更に好ましくは10-4~0.1となる量を接触させることが、重合活性やコストの観点から好ましい。
有機金属化合物は、極性基含有コモノマーに対するモル比が10-5~0.9、好ましくは10-4~0.2、更に好ましくは10-4~0.1となる量を接触させることが、重合活性やコストの観点から好ましい。
(2-1)アルミニウム(Al)の残留量
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の1g中に残留するアルミニウム(Al)量は、100,000μgAl/g以下が好ましく、70,000μgAl/g以下がより好ましく、20,000μgAl/g以下が更に好ましく、10,000μgAl/g以下が特に好ましく、5,000μgAl/g以下が好適であり、1,000μgAl/g以下がより好適であり、500μgAl/g以下が最も好適である。これよりも多い場合、機械物性の低下、重合生成物の変色や劣化の促進等が起こる。アルミニウム(Al)の残留量は可能な範囲で少ない方がよく、例えば、1μgAl/g程の極少量であってもよいし、0μgAl/gであっても構わない。なお、μgAl/gは極性基含有オレフィン共重合体1g中に含まれるアルミニウム(Al)の量をμg単位で表していることを意味する。
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の1g中に残留するアルミニウム(Al)量は、100,000μgAl/g以下が好ましく、70,000μgAl/g以下がより好ましく、20,000μgAl/g以下が更に好ましく、10,000μgAl/g以下が特に好ましく、5,000μgAl/g以下が好適であり、1,000μgAl/g以下がより好適であり、500μgAl/g以下が最も好適である。これよりも多い場合、機械物性の低下、重合生成物の変色や劣化の促進等が起こる。アルミニウム(Al)の残留量は可能な範囲で少ない方がよく、例えば、1μgAl/g程の極少量であってもよいし、0μgAl/gであっても構わない。なお、μgAl/gは極性基含有オレフィン共重合体1g中に含まれるアルミニウム(Al)の量をμg単位で表していることを意味する。
(2-2)アルミニウム(Al)量
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)に含まれるアルミニウム(Al)量は、重合に供したアルキルアルミニウム中に含有されるアルミニウム量を、得られた極性基含有オレフィン共重合体の収量で除した値として算出することができる。
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)に含まれるアルミニウム(Al)量は、重合に供したアルキルアルミニウム中に含有されるアルミニウム量を、得られた極性基含有オレフィン共重合体の収量で除した値として算出することができる。
また、極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)に含まれるアルミニウム(Al)量はアルキルアルミニウムの重合仕込み量から算出しているが、蛍光X線分析や誘導結合プラズマ発光(ICP)分析により測定してもよい。蛍光X線分析やICP分析を用いる場合は、例えば、以下の方法によって測定することができる。
<1>蛍光X線分析
測定試料を3~10g秤量し、加熱プレス機で加熱加圧成型して直径45mmの平板状サンプルを作製する。測定は平板状サンプルの中心部直径30mmの部分について行い、理学電気工業社製の走査型蛍光X線分析装置「ZSX100e」(Rh管球4.0kW)を用いて、以下の条件で測定する。
・X線出力:50kV-50mA
・分光結晶:PET
・検出器:PC(プロポーショナルカウンター)
・検出線:Al-Kα線
アルミニウム含有量は、予め作成した検量線と上記条件で測定した結果から求める事が出来る。検量線は複数のポリエチレン樹脂のアルミニウム含量をICP分析にて測定し、それらポリエチレン樹脂を上記の条件でさらに蛍光X線分析する事で作成する事ができる。
測定試料を3~10g秤量し、加熱プレス機で加熱加圧成型して直径45mmの平板状サンプルを作製する。測定は平板状サンプルの中心部直径30mmの部分について行い、理学電気工業社製の走査型蛍光X線分析装置「ZSX100e」(Rh管球4.0kW)を用いて、以下の条件で測定する。
・X線出力:50kV-50mA
・分光結晶:PET
・検出器:PC(プロポーショナルカウンター)
・検出線:Al-Kα線
アルミニウム含有量は、予め作成した検量線と上記条件で測定した結果から求める事が出来る。検量線は複数のポリエチレン樹脂のアルミニウム含量をICP分析にて測定し、それらポリエチレン樹脂を上記の条件でさらに蛍光X線分析する事で作成する事ができる。
<2>誘導結合プラズマ発光(ICP)分析
測定試料及び特級硝酸3ml、過酸化水素水(過酸化水素含量30重量%)1mlをテフロン(登録商標)製容器に入れ、マイクロウェーブ分解装置(マイルストーンゼネラル社製 MLS-1200MEGA)を用い、最大500Wで加熱分解操作を実施し、測定試料を溶液化する。溶液化した測定試料をICP発光分光分析装置(サーモジャーレルアッシュ社製 IRIS-AP)に供することによりアルミニウム含有量が測定できる。アルミニウム含有量の定量はアルミニウム元素濃度が既知の標準液を用いて作成した検量線を用いて行う。
測定試料及び特級硝酸3ml、過酸化水素水(過酸化水素含量30重量%)1mlをテフロン(登録商標)製容器に入れ、マイクロウェーブ分解装置(マイルストーンゼネラル社製 MLS-1200MEGA)を用い、最大500Wで加熱分解操作を実施し、測定試料を溶液化する。溶液化した測定試料をICP発光分光分析装置(サーモジャーレルアッシュ社製 IRIS-AP)に供することによりアルミニウム含有量が測定できる。アルミニウム含有量の定量はアルミニウム元素濃度が既知の標準液を用いて作成した検量線を用いて行う。
(3)極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の重合方法
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の重合方法は限定されない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。重合形式としては、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。更に、いわゆるchain shuttling agent(CSA)を併用し、chain shuttling反応や、coordinative chain transfer polymerization(CCTP)を行ってもよい。具体的な製造プロセス及び条件については、例えば、日本国特開2010-260913号公報、日本国特開2010-202647号公報に開示されている。
本発明に係る極性基含有オレフィン共重合体(A)、極性基含有オレフィン共重合体(A’)、多元系極性基含有オレフィン共重合体(B)の重合方法は限定されない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。重合形式としては、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。更に、いわゆるchain shuttling agent(CSA)を併用し、chain shuttling反応や、coordinative chain transfer polymerization(CCTP)を行ってもよい。具体的な製造プロセス及び条件については、例えば、日本国特開2010-260913号公報、日本国特開2010-202647号公報に開示されている。
〔IV〕オレフィン系樹脂組成物(D)
(1)オレフィン系樹脂組成物(D)について
本発明に係るオレフィン系樹脂組成物(D)は、極性基含有オレフィン共重合体(A’)100重量部に対してオレフィン系樹脂(C)を1~99,900重量部配合したものである。オレフィン系樹脂(C)の配合量は、好ましくは1~99,000重量部、より好ましくは1~90,000重量部、更に好ましくは1~50,000重量部、特に1~19,900重量部であれば好適である。オレフィン系樹脂(C)の配合量が1重量部より少なくても、また、99,900重量部より多くても、オレフィン系樹脂組成物(D)の接着性が劣るものとなる。
オレフィン系樹脂組成物(D)中の極性基含有オレフィン共重合体(A’)が、高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体である場合、オレフィン系樹脂(C)を少量配合させただけで、接着性が急激に低下する。それに対し、オレフィン系樹脂組成物中の極性基含有オレフィン共重合体が、本発明に係る極性基含有オレフィン共重合体(A’)であれば、オレフィン系樹脂(C)の配合比率が高くなっても、十分な接着性能を維持している。
(1)オレフィン系樹脂組成物(D)について
本発明に係るオレフィン系樹脂組成物(D)は、極性基含有オレフィン共重合体(A’)100重量部に対してオレフィン系樹脂(C)を1~99,900重量部配合したものである。オレフィン系樹脂(C)の配合量は、好ましくは1~99,000重量部、より好ましくは1~90,000重量部、更に好ましくは1~50,000重量部、特に1~19,900重量部であれば好適である。オレフィン系樹脂(C)の配合量が1重量部より少なくても、また、99,900重量部より多くても、オレフィン系樹脂組成物(D)の接着性が劣るものとなる。
オレフィン系樹脂組成物(D)中の極性基含有オレフィン共重合体(A’)が、高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体である場合、オレフィン系樹脂(C)を少量配合させただけで、接着性が急激に低下する。それに対し、オレフィン系樹脂組成物中の極性基含有オレフィン共重合体が、本発明に係る極性基含有オレフィン共重合体(A’)であれば、オレフィン系樹脂(C)の配合比率が高くなっても、十分な接着性能を維持している。
本発明に係るオレフィン系樹脂組成物(D)に含まれる極性基含有オレフィン共重合体(A’)は単独であってもよく、複数を用いてもよい。また、オレフィン系樹脂(C)は単独であっても複数を用いてもよい。
(2)オレフィン系樹脂組成物(D)の製造方法
本発明に係るオレフィン系樹脂組成物(D)は公知の方法を利用して製造することができ、例えば、極性基含有オレフィン共重合体(A)とオレフィン系樹脂(C)と、所望により添加される他成分を、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー、往復式混練機(BUSS KNEADER)、ロール混練機等、などを用いて溶融混練する方法、極性基含有オレフィン共重合体(A’)とオレフィン系樹脂(C)と、所望により添加される他成分を適当な良溶媒(例えば、へキサン、ヘプタン、デカン、シクロヘキサン、キシレンなどの炭化水素溶媒)に溶解し、次いで溶媒を除去する方法で製造することができる。
本発明に係るオレフィン系樹脂組成物(D)は公知の方法を利用して製造することができ、例えば、極性基含有オレフィン共重合体(A)とオレフィン系樹脂(C)と、所望により添加される他成分を、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー、往復式混練機(BUSS KNEADER)、ロール混練機等、などを用いて溶融混練する方法、極性基含有オレフィン共重合体(A’)とオレフィン系樹脂(C)と、所望により添加される他成分を適当な良溶媒(例えば、へキサン、ヘプタン、デカン、シクロヘキサン、キシレンなどの炭化水素溶媒)に溶解し、次いで溶媒を除去する方法で製造することができる。
(3)その他の成分
本発明に係るオレフィン系樹脂組成物(D)には、本発明の組成物の機能の主旨を逸脱しない範囲において、各種の樹脂改質材などを配合してもよい。その成分としては、ブタジエン系ゴム、イソブチレンゴム、イソプレン系ゴム、天然ゴム、ニトリルゴム、石油樹脂などが挙げられ、これらは単独でも混合物でもよい。
本発明に係るオレフィン系樹脂組成物(D)には、本発明の組成物の機能の主旨を逸脱しない範囲において、各種の樹脂改質材などを配合してもよい。その成分としては、ブタジエン系ゴム、イソブチレンゴム、イソプレン系ゴム、天然ゴム、ニトリルゴム、石油樹脂などが挙げられ、これらは単独でも混合物でもよい。
(4)極性基含有オレフィン共重合体(A’)
本発明に係る極性基含有オレフィン共重合体(A’)は、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとの共重合体である。なお、極性基含有オレフィン共重合体(A’)の分子構造や製造方法は、本発明の第1の発明および第2の発明における極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)と基本的には同一である。
本発明に係る極性基含有オレフィン共重合体(A’)は、エチレン及び/又は炭素数3~20のα-オレフィンと、エポキシ基含有モノマーとの共重合体である。なお、極性基含有オレフィン共重合体(A’)の分子構造や製造方法は、本発明の第1の発明および第2の発明における極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)と基本的には同一である。
(5)極性基含有モノマーの構造単位量
本発明に係る極性基含有オレフィン共重合体(A’)中の極性基含有モノマーに由来する構造単位量は、通常20~0.001mol%の範囲、好ましくは15~0.01mol%の範囲、より好ましくは10~0.02mol%の範囲、より好適には5~0.02mol%の範囲から選択され、必ず本発明の極性基含有オレフィン共重合体に存在していることが好ましい。もし、この範囲より極性基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。更に、用いられる極性基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。
本発明に係る極性基含有オレフィン共重合体(A’)中の極性基含有モノマーに由来する構造単位量は、通常20~0.001mol%の範囲、好ましくは15~0.01mol%の範囲、より好ましくは10~0.02mol%の範囲、より好適には5~0.02mol%の範囲から選択され、必ず本発明の極性基含有オレフィン共重合体に存在していることが好ましい。もし、この範囲より極性基含有モノマーに由来する構造単位量が少なければ、極性の高い異種材料との接着性が充分ではなく、この範囲より多ければ充分な機械物性が得られない。更に、用いられる極性基含有モノマーは単独でもよく、2種類以上を合わせて用いてもよい。
(6)極性基含有オレフィン共重合体(A’)の重量平均分子量(Mw)
本発明に係る極性基含有オレフィン共重合体(A’)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、極性の高い異種材料との接着性も劣るものとなる。Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
本発明に係る極性基含有オレフィン共重合体(A’)の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは20,000~1,000,000、好適なのは31,000~800,000、より好適なのは33,000~800,000の範囲であることが望ましい。Mwが1,000未満では機械的強度や耐衝撃性などの物性が充分ではなく、極性の高い異種材料との接着性も劣るものとなる。Mwが2,000,000を超えると溶融粘度が非常に高くなり、成形加工が困難となる。
(7)オレフィン系樹脂(C)
本発明に係るオレフィン系樹脂(C)は特に特定されない。オレフィン系樹脂(C)は、高圧ラジカル重合法や、チーグラー系、フィリップス型又はシングルサイト触媒を用い高中低圧法及びその他の公知の方法により得られる、エチレン単独重合体又は炭素数3~20のα-オレフィンから選択されるモノマーを重合して得られる単独重合体、若しくはエチレン及び/または炭素数3~20のα-オレフィンから選択される2種類以上のモノマーを共重合して得られる共重合体、更にはエチレン及び/または炭素数3~20のα-オレフィンから選択されるモノマーと極性基を含有したビニルモノマーとの共重合体から選択することができる。その中でも、エチレン単独重合体、若しくはエチレンと炭素数3~20のα-オレフィンの共重合体、エチレンと極性基を含有したビニルモノマーとの共重合体が好ましい。
本発明に係るオレフィン系樹脂(C)は特に特定されない。オレフィン系樹脂(C)は、高圧ラジカル重合法や、チーグラー系、フィリップス型又はシングルサイト触媒を用い高中低圧法及びその他の公知の方法により得られる、エチレン単独重合体又は炭素数3~20のα-オレフィンから選択されるモノマーを重合して得られる単独重合体、若しくはエチレン及び/または炭素数3~20のα-オレフィンから選択される2種類以上のモノマーを共重合して得られる共重合体、更にはエチレン及び/または炭素数3~20のα-オレフィンから選択されるモノマーと極性基を含有したビニルモノマーとの共重合体から選択することができる。その中でも、エチレン単独重合体、若しくはエチレンと炭素数3~20のα-オレフィンの共重合体、エチレンと極性基を含有したビニルモノマーとの共重合体が好ましい。
本発明に係る単独重合体は、エチレン又は炭素数3~20のα-オレフィンから選択される1種類のモノマーのみを重合して得られる。より好ましい単独重合体は、エチレン単独重合体、プロピレン単独重合体、1-ブテン単独重合体、1-ヘキセン単独重合体、1-オクテン単独重合体、1-ドデセン単独重合体等であり、さらに好ましくはエチレン単独重合体、プロピレン単独重合体である。
本発明に係るオレフィン系共重合体は、エチレン、炭素数3~20のα-オレフィン、環状オレフィン、その他の極性基を含有しないビニルモノマー、極性基を含有するビニルモノマー、から選択されるモノマーの2種以上を重合する事で得られる共重合体であって、エチレンもしくは炭素数3~20のα-オレフィンから選択されるモノマーを少なくとも1種類以上を含有してなるオレフィン系共重合体である。重合に供されるモノマーは2種類であってもよいし、3種類以上であってもよい。オレフィン系共重合体として好ましいのは、エチレンと炭素数3~20のα-オレフィンから選択される1種以上のα-オレフィンとの共重合体、エチレンと環状オレフィンから選択される1種以上の環状オレフィンとの共重合体である。更に好ましいのはエチレンと、プロピレン、1-ブテン、1-ヘキセン、1-オクテンから選択される1種、もしくは2種以上のα-オレフィンとの共重合体、エチレンとノルボルネンの共重合体である。
本発明に係る環状オレフィンは、例えば、シクロヘキセン及びシクロオクテン等の単環状オレフィン、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環状オレフィン、これらのオレフィンに官能基が結合した置換体などが挙げられる。なかでも、好ましい環状オレフィンとしてはノルボルネンが挙げられる。ノルボルネンが共重合されたオレフィン系共重合体は一般に、主鎖骨格が脂環構造であるため低吸湿性を有し、また、その付加重合体は耐熱性にも優れる。
本発明に係る極性基を含有しないモノマーは、分子構造中に炭素-炭素二重結合を1つ以上有し、かつ、分子を構成する元素が炭素と水素からなるモノマーである。上記のエチレンとα-オレフィンを除くと、例えば、ジエン、トリエン、芳香族ビニルモノマー等が挙げられ、好ましくは、ブタジエン、イソプレン、スチレン、ビニルシクロヘキサン、ビニルノルボルネンである。
本発明に係る極性基を含有するモノマーは限定されないが、例えば、カルボン酸基又は酸無水基含有モノマー(a)、エステル基含有モノマー(b)、ヒドロキシル基含有モノマー(c)、アミノ基含有モノマー(d)、シラン基含有モノマー(e)から選択する事が出来る。
カルボン酸基又は酸無水基含有モノマー(a)としては、マレイン酸、フマル酸、シトラコン酸、イタコン酸などのα,β-不飽和ジカルボン酸又はこれらの無水物、アクリル酸、メタクリル酸、フラン酸、クロトン酸、酢酸ビニル、ペンテン酸などの不飽和モノカルボン酸が挙げられる。エステル基含有モノマー(b)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(n-、iso-)プロピル(メタ)アクリレート、(n-、iso-、tert-)ブチル(メタ)アクリレートなどが挙げられるが、特に好ましいものとしてはアクリル酸メチルを挙げることができる。ヒドロキシル基含有モノマー(c)としては、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。アミノ基含有モノマー(d)としては、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、シクロヘキシルアミノエチル(メタ)アクリレートなどが挙げられる。シラン基含有モノマー(e)としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセチルシラン、ビニルトリクロロシランなどの不飽和シラン化合物が挙げられる。
(8)オレフィン系樹脂(C)の製造方法
本発明に係るオレフィン系樹脂(C)の製造方法は限定されないが、例えば、高圧ラジカル重合法や、チーグラー系、フィリップス型又はシングルサイト触媒を用い高中低圧法及びその他の公知の方法を例示する事ができる。
本発明に係るオレフィン系樹脂(C)の製造方法は限定されないが、例えば、高圧ラジカル重合法や、チーグラー系、フィリップス型又はシングルサイト触媒を用い高中低圧法及びその他の公知の方法を例示する事ができる。
(9)オレフィン系樹脂(C)のメルトフローレート(MFR)
オレフィン系樹脂(C)のMFRは、JIS K7120(1999年)に準拠し条件Dに基づき、温度190℃において荷重2.16kgの条件で測定され、通常0.01~100g/10分、好ましくは0.1~80g/10分、更に好ましくは0.3~50g/10分の範囲であることが望ましい。MFRが100g/10分を超える場合には機械的強度や耐衝撃性などの物性が充分ではなく、0.01g/10分未満では溶融粘度が非常に高くなり、成形加工が困難となる。
オレフィン系樹脂(C)のMFRは、JIS K7120(1999年)に準拠し条件Dに基づき、温度190℃において荷重2.16kgの条件で測定され、通常0.01~100g/10分、好ましくは0.1~80g/10分、更に好ましくは0.3~50g/10分の範囲であることが望ましい。MFRが100g/10分を超える場合には機械的強度や耐衝撃性などの物性が充分ではなく、0.01g/10分未満では溶融粘度が非常に高くなり、成形加工が困難となる。
(10)オレフィン系樹脂(C)の密度
オレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠し測定され、通常0.840~1.20g/cm3、好ましくは0.850~0.990g/cm3、更に好ましくは0.860~0.980g/cm3、好適には0.870~0.970g/cm3の範囲であることが望ましい。密度が1.20g/cm3を超える場合には耐衝撃性などの物性が充分ではなく、0.840g/cm3未満では耐熱性が劣るものとなる。
オレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠し測定され、通常0.840~1.20g/cm3、好ましくは0.850~0.990g/cm3、更に好ましくは0.860~0.980g/cm3、好適には0.870~0.970g/cm3の範囲であることが望ましい。密度が1.20g/cm3を超える場合には耐衝撃性などの物性が充分ではなく、0.840g/cm3未満では耐熱性が劣るものとなる。
〔V〕オレフィン系樹脂組成物(D’)
(1)オレフィン系樹脂組成物(D’)について
オレフィン系樹脂組成物(D’)は、オレフィン系樹脂組成物(D)に含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲をさらに限定する事により、異種材料との十分な接着性と耐熱性がバランスされたオレフィン系樹脂組成物の製造が可能となる。すなわち、オレフィン系樹脂組成物(D’)は、オレフィン系樹脂組成物(D)と比較して、成分として含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲が異なる以外は基本的に同一である。
(1)オレフィン系樹脂組成物(D’)について
オレフィン系樹脂組成物(D’)は、オレフィン系樹脂組成物(D)に含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲をさらに限定する事により、異種材料との十分な接着性と耐熱性がバランスされたオレフィン系樹脂組成物の製造が可能となる。すなわち、オレフィン系樹脂組成物(D’)は、オレフィン系樹脂組成物(D)と比較して、成分として含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲が異なる以外は基本的に同一である。
(2)オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の密度
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠して測定され、0.890~1.20g/cm3であることが好ましく、0.895~0.990g/cm3であることが更に好ましく、0.900~0.980g/cm3であることがより好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は耐衝撃性が劣るものとなる。
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠して測定され、0.890~1.20g/cm3であることが好ましく、0.895~0.990g/cm3であることが更に好ましく、0.900~0.980g/cm3であることがより好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は耐衝撃性が劣るものとなる。
(3)オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の融点
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)には結晶性のものと非晶性のものが存在する。結晶性の場合、上記の融点測定法によって融点を測定する事ができるが、非晶性のものは融点を示さない場合がある。本発明に係る極性基含有オレフィン共重合体(A’)が結晶性樹脂であることから、オレフィン系樹脂(C)も融点を有する方が好ましいが、オレフィン系樹脂組成物(D’)が好ましい融点範囲および接着性を示すならば、非晶性のオレフィン系樹脂であっても構わない。上記融点測定方法によって融点が測定されるオレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の好ましい融点範囲は90℃~170℃であり、100℃~155℃の範囲であることがより好ましく、110℃~140℃の範囲が特に好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
オレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)には結晶性のものと非晶性のものが存在する。結晶性の場合、上記の融点測定法によって融点を測定する事ができるが、非晶性のものは融点を示さない場合がある。本発明に係る極性基含有オレフィン共重合体(A’)が結晶性樹脂であることから、オレフィン系樹脂(C)も融点を有する方が好ましいが、オレフィン系樹脂組成物(D’)が好ましい融点範囲および接着性を示すならば、非晶性のオレフィン系樹脂であっても構わない。上記融点測定方法によって融点が測定されるオレフィン系樹脂組成物(D’)に含まれるオレフィン系樹脂(C)の好ましい融点範囲は90℃~170℃であり、100℃~155℃の範囲であることがより好ましく、110℃~140℃の範囲が特に好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
(4)オレフィン系樹脂組成物(D’)の融点
本発明に係るオレフィン系樹脂組成物(D’)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
オレフィン系樹脂組成物(D’)の融点は119℃~170℃であることが好ましく、119.5℃~155℃であることが更に好ましく、120℃~140℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
本発明に係るオレフィン系樹脂組成物(D’)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
オレフィン系樹脂組成物(D’)の融点は119℃~170℃であることが好ましく、119.5℃~155℃であることが更に好ましく、120℃~140℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
(5)オレフィン系樹脂組成物(D’)の融解熱量ΔH
本発明に係るオレフィン系樹脂組成物(D’)の融解熱量ΔHは、JIS K7122(1987年)に準拠して測定される。すなわち、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク面積より測定される。融解熱量ΔHは、80~300J/gの範囲であることが好ましく、85~290J/gの範囲であることが更に好ましく、100~280J/gの範囲であるとより好適である。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
本発明に係るオレフィン系樹脂組成物(D’)の融解熱量ΔHは、JIS K7122(1987年)に準拠して測定される。すなわち、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク面積より測定される。融解熱量ΔHは、80~300J/gの範囲であることが好ましく、85~290J/gの範囲であることが更に好ましく、100~280J/gの範囲であるとより好適である。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる。
〔VI〕オレフィン系樹脂組成物(D”)
(1)オレフィン系樹脂組成物(D”)について
オレフィン系樹脂組成物(D”)は、オレフィン系樹脂組成物(D)に含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲をさらに限定する事により、異種材料との接着性能を飛躍的に向上させられ、かつ、オレフィン系樹脂組成物中のエポキシ基含量を低く抑えられる為、エポキシ基同士の自己反応による分子鎖の架橋やゲル化、それに伴う機械物性や耐衝撃性、成形性等を損なう恐れも回避するが可能となった。すなわち、オレフィン系樹脂組成物(D”)は、オレフィン系樹脂組成物(D)と比較して、成分として含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲が異なる以外は基本的に同一である。
(1)オレフィン系樹脂組成物(D”)について
オレフィン系樹脂組成物(D”)は、オレフィン系樹脂組成物(D)に含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲をさらに限定する事により、異種材料との接着性能を飛躍的に向上させられ、かつ、オレフィン系樹脂組成物中のエポキシ基含量を低く抑えられる為、エポキシ基同士の自己反応による分子鎖の架橋やゲル化、それに伴う機械物性や耐衝撃性、成形性等を損なう恐れも回避するが可能となった。すなわち、オレフィン系樹脂組成物(D”)は、オレフィン系樹脂組成物(D)と比較して、成分として含まれるオレフィン系樹脂(C)の密度範囲、および融点範囲が異なる以外は基本的に同一である。
(2)オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)の密度
本発明に係るオレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠して測定され、0.840~0.932g/cm3が好ましく、0.840~0.928g/cm3がより好ましく、0.840~0.922g/cm3が更に好ましく、0.840~0.915g/cm3が好適であり、0.840~0.910g/cm3がより好適である。この範囲より高ければ接着性が劣るものとなる。オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)が柔軟であるほど、すなわち密度が低いほど接着性が向上する。上記理由により、下限は特に制限されないがポリエチレンを想定した場合、密度が0.840g/cm3を下回るオレフィン系樹脂を製造することは困難である。
本発明に係るオレフィン系樹脂(C)の密度は、JIS K7112-A法(1999年)に準拠して測定され、0.840~0.932g/cm3が好ましく、0.840~0.928g/cm3がより好ましく、0.840~0.922g/cm3が更に好ましく、0.840~0.915g/cm3が好適であり、0.840~0.910g/cm3がより好適である。この範囲より高ければ接着性が劣るものとなる。オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)が柔軟であるほど、すなわち密度が低いほど接着性が向上する。上記理由により、下限は特に制限されないがポリエチレンを想定した場合、密度が0.840g/cm3を下回るオレフィン系樹脂を製造することは困難である。
(3)オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)の融点
オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
融点は30~124℃が好ましく、30~120℃がより好ましく、30~115℃が更に好ましく、30~110℃が好適であり、30~100℃がより好適である。この範囲より高い場合は接着性が劣るものとなるオレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)は柔軟であるほど、すなわち融点が低いほど接着性が向上する。上記理由により、下限は特に制限されないがポリエチレンを想定した場合、融点30℃を下回るオレフィン系樹脂を製造することは困難である。
また、DSC測定の吸熱曲線のピーク面積から算出される融解熱量ΔH(J/g)はオレフィン系樹脂の結晶化度に依存するため、オレフィン系樹脂の結晶化度が低くなるにつれ、ΔHは減少し、吸熱曲線のピークが観測されにくくなる。すなわち、結晶化度の低いオレフィン系樹脂では吸熱曲線の最大ピーク温度で定義される融点が測定できない場合がある。本発明の主旨は柔軟なオレフィン系樹脂をブレンドすることであり、融点が定義できない場合であっても、結晶化度の低い柔軟な樹脂であれば、そのような樹脂を用いても差し支えない。融解熱量ΔH(J/g)とはDSC測定において縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線のピーク面積から算出される値であり、試料1g中に含まれる結晶が融解する際に吸収される総熱エネルギー量をJ単位で表したものである。
オレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。
融点は30~124℃が好ましく、30~120℃がより好ましく、30~115℃が更に好ましく、30~110℃が好適であり、30~100℃がより好適である。この範囲より高い場合は接着性が劣るものとなるオレフィン系樹脂組成物(D”)に含まれるオレフィン系樹脂(C)は柔軟であるほど、すなわち融点が低いほど接着性が向上する。上記理由により、下限は特に制限されないがポリエチレンを想定した場合、融点30℃を下回るオレフィン系樹脂を製造することは困難である。
また、DSC測定の吸熱曲線のピーク面積から算出される融解熱量ΔH(J/g)はオレフィン系樹脂の結晶化度に依存するため、オレフィン系樹脂の結晶化度が低くなるにつれ、ΔHは減少し、吸熱曲線のピークが観測されにくくなる。すなわち、結晶化度の低いオレフィン系樹脂では吸熱曲線の最大ピーク温度で定義される融点が測定できない場合がある。本発明の主旨は柔軟なオレフィン系樹脂をブレンドすることであり、融点が定義できない場合であっても、結晶化度の低い柔軟な樹脂であれば、そのような樹脂を用いても差し支えない。融解熱量ΔH(J/g)とはDSC測定において縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線のピーク面積から算出される値であり、試料1g中に含まれる結晶が融解する際に吸収される総熱エネルギー量をJ単位で表したものである。
〔VII〕添加剤
本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)、には、本発明の主旨を逸脱しない範囲において、酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、導電材、充填材などの添加剤を配合してもよい。
本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)、には、本発明の主旨を逸脱しない範囲において、酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、導電材、充填材などの添加剤を配合してもよい。
〔VIII〕接着材
本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)は、他の基材との高い接着性を発現し、工業的に有用な積層体の製造を可能にした。その接着材としての卓越性は、後記の実施例のデータ及び実施例と比較例の対照により実証されている。
本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)は、他の基材との高い接着性を発現し、工業的に有用な積層体の製造を可能にした。その接着材としての卓越性は、後記の実施例のデータ及び実施例と比較例の対照により実証されている。
〔IX〕積層体および複合化製品
(1)積層体の材料
本発明に係る積層体は、極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかからなる層と基材層とを含む積層体であって、該基材の具体例としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体などのポリエチレン系樹脂、アイオノマー、ホモポリプロピレン樹脂、プロピレンと他のα-オレフィンとの共重合体などのポリプロピレン系樹脂、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテンなどのオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリレート、ポリアクリロニトリルなどのビニル系重合体、ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン610、ポリメタキシリレンアジパミドなどのポリアミド系樹脂、ポリエチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート、芳香族ポリエステル類などのポリエステル系樹脂、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリカーボネート樹脂、接着性フッ素樹脂、フェーノル樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、不飽和ポリエステル、ポリウレタン、熱硬化性ポリイミドなどの熱硬化性樹脂、セロハンなどセルロース系ポリマーのようなフィルム形成能を有する熱可塑性樹脂フィルム又はシート(これらの延伸物、印刷物)、アルミニウム、鉄、銅、又はこれらを主成分とする合金などの金属箔又は金属板、シリカ蒸着プラスチックフィルム、アルミナ蒸着プラスチックフィルムなどの無機酸化物の蒸着フィルム、金、銀、アルミニウムなど金属、又はこれら金属の酸化物以外の化合物などの蒸着フィルム、上質紙、クラフト紙、板紙、グラシン紙、合成紙などの紙類、セロファン、織布、不織布などを挙げることができる。
(1)積層体の材料
本発明に係る積層体は、極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかからなる層と基材層とを含む積層体であって、該基材の具体例としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体などのポリエチレン系樹脂、アイオノマー、ホモポリプロピレン樹脂、プロピレンと他のα-オレフィンとの共重合体などのポリプロピレン系樹脂、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテンなどのオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリレート、ポリアクリロニトリルなどのビニル系重合体、ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン610、ポリメタキシリレンアジパミドなどのポリアミド系樹脂、ポリエチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート、芳香族ポリエステル類などのポリエステル系樹脂、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリカーボネート樹脂、接着性フッ素樹脂、フェーノル樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、不飽和ポリエステル、ポリウレタン、熱硬化性ポリイミドなどの熱硬化性樹脂、セロハンなどセルロース系ポリマーのようなフィルム形成能を有する熱可塑性樹脂フィルム又はシート(これらの延伸物、印刷物)、アルミニウム、鉄、銅、又はこれらを主成分とする合金などの金属箔又は金属板、シリカ蒸着プラスチックフィルム、アルミナ蒸着プラスチックフィルムなどの無機酸化物の蒸着フィルム、金、銀、アルミニウムなど金属、又はこれら金属の酸化物以外の化合物などの蒸着フィルム、上質紙、クラフト紙、板紙、グラシン紙、合成紙などの紙類、セロファン、織布、不織布などを挙げることができる。
本発明に係る基材層は、用途や被包装物の種類により適宜選択することができる。例えば、被包装物が腐敗し易い食品である場合には、ポリアミド、ポリ塩化ビニリデン、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール、ポリエステルの如く、透明性、剛性、ガス透過抵抗性の優れた樹脂を用いることができる。また、被包装物が菓子或いは繊維などである場合には、透明性、剛性、水透過抵抗性の良好なポリプロピレンなどを用いることが好ましい。自動車等の燃料タンクや、燃料が通過するチューブ・ホース・パイプ等に適応させる場合には、EVOH、ポリアミド類、フッ素樹脂のような燃料透過防止性能の優れた樹脂を用いる事が出来る。
バリア性樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、EVOH、ポリ塩化ビニリデン系樹脂、ポリカーボネート系樹脂、延伸ポリプロピレン(OPP)、延伸ポリエステル(OPET)、延伸ポリアミド、アルミナ蒸着フィルム、シリカ蒸着フィルムなどの金属、無機酸化物の蒸着フィルム、アルミ蒸着などの金属蒸着フィルム、金属箔などが挙げられる。
バリア性樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、EVOH、ポリ塩化ビニリデン系樹脂、ポリカーボネート系樹脂、延伸ポリプロピレン(OPP)、延伸ポリエステル(OPET)、延伸ポリアミド、アルミナ蒸着フィルム、シリカ蒸着フィルムなどの金属、無機酸化物の蒸着フィルム、アルミ蒸着などの金属蒸着フィルム、金属箔などが挙げられる。
(2)積層体の用途
本発明に係る積層体は、例えば、食品の包装材として好適である。食品の具体例としては、ポテトチップなどのスナック菓子、ビスケット、煎餅、チョコレートなどの菓子類、粉スープなどの粉末調味料、削り節や燻製などの食品などが挙げられる。また、パウチ類の容器としては、上記積層体のエチレン系共重合体層面同士を向かい合わせ、その少なくとも一部をヒートシールすることにより形成することができる。具体的には、例えば、水物包装、一般袋、液体スープ包袋、液体紙器、ラミ原反、特殊形状液体包装袋(スタンディングパウチなど)、規格袋、重袋、セミ重袋、ラップフィルム、砂糖袋、油物包装袋、食品包装用などの各種包装容器、輸液バックなどに好適に使用される。
本発明に係る積層体は、例えば、食品の包装材として好適である。食品の具体例としては、ポテトチップなどのスナック菓子、ビスケット、煎餅、チョコレートなどの菓子類、粉スープなどの粉末調味料、削り節や燻製などの食品などが挙げられる。また、パウチ類の容器としては、上記積層体のエチレン系共重合体層面同士を向かい合わせ、その少なくとも一部をヒートシールすることにより形成することができる。具体的には、例えば、水物包装、一般袋、液体スープ包袋、液体紙器、ラミ原反、特殊形状液体包装袋(スタンディングパウチなど)、規格袋、重袋、セミ重袋、ラップフィルム、砂糖袋、油物包装袋、食品包装用などの各種包装容器、輸液バックなどに好適に使用される。
(3)積層体の製造
本発明に係る積層体の加工方法としては、通常のプレス成形、空冷インフレーション成形、空冷2段冷却インフレーション成形、高速インフレーション成形、フラットダイ成形(T-ダイ成形)、水冷インフレーション成形などの押出成形、押出ラミネート加工、サンドラミネート加工、ドライラミネート加工等のラミネート加工法、ブロー成形、圧空成形、射出成形、回転成形など、従来公知の方法が挙げられる。
本発明に係る積層体の加工方法としては、通常のプレス成形、空冷インフレーション成形、空冷2段冷却インフレーション成形、高速インフレーション成形、フラットダイ成形(T-ダイ成形)、水冷インフレーション成形などの押出成形、押出ラミネート加工、サンドラミネート加工、ドライラミネート加工等のラミネート加工法、ブロー成形、圧空成形、射出成形、回転成形など、従来公知の方法が挙げられる。
(4)ラミネート積層体
本発明に係るラミネート積層体とは、押出ラミネート加工、サンドラミネート加工、ドライラミネート加工等、公知のラミネート加工法で製造する事が出来る積層体であり、該ラミネート積層体は本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなるラミネート材料と、少なくとも1層以上の基材層とラミネート加工することで製造する事ができる積層体である。
本発明に係るラミネート積層体とは、押出ラミネート加工、サンドラミネート加工、ドライラミネート加工等、公知のラミネート加工法で製造する事が出来る積層体であり、該ラミネート積層体は本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなるラミネート材料と、少なくとも1層以上の基材層とラミネート加工することで製造する事ができる積層体である。
(5)押出成形品
本発明に係る押出成形品とは、本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを押出成形によって成形した押出成形品である。
本発明に係る押出成形品とは、本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを押出成形によって成形した押出成形品である。
(6)多層共押出成形品
本発明に係る多層共押出成形品とは、公知の多層共押出成形によって成形する事が可能な多層共押出成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層を少なくとも含む多層共押出成形品である。
本発明に係る多層共押出成形品とは、公知の多層共押出成形によって成形する事が可能な多層共押出成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層を少なくとも含む多層共押出成形品である。
(7)多層フィルム
本発明に係る多層フィルムとは、公知の多層フィルム成形法によって製造する事が可能な多層フィルムであり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層フィルムである。
本発明に係る多層フィルムとは、公知の多層フィルム成形法によって製造する事が可能な多層フィルムであり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層フィルムである。
(8)多層ブロー成形品
本発明に係る多層ブロー成形品とは、公知の多層ブロー成形によって製造する事が可能な多層ブロー成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層ブロー成形品である。
本発明に係る多層ブロー成形品とは、公知の多層ブロー成形によって製造する事が可能な多層ブロー成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層ブロー成形品である。
(9)多層管状成形品
本発明に係る多層管状成形品とは、公知の多層管状成形法によって成形する事が可能な多層管状成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層管状成形品である。
本発明に係る多層管状成形品とは、公知の多層管状成形法によって成形する事が可能な多層管状成形品であり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層管状成形品である。
(10)多層シート
本発明に係る多層シートとは、公知の多層シート成形によって製造する事が可能な多層シートであり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層シートである。
本発明に係る多層シートとは、公知の多層シート成形によって製造する事が可能な多層シートであり、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層と基材層とを少なくとも含む多層シートである。
(11)射出成形品
本発明に係る射出成形品とは、本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを射出成形によって成形した射出成形品である。本発明に係る射出成形品の製造には公知の方法を用いる事ができる。
本発明に係る射出成形品とは、本発明に係る極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを射出成形によって成形した射出成形品である。本発明に係る射出成形品の製造には公知の方法を用いる事ができる。
(12)多層射出成形品
本発明に係る多層射出成形品とは、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層を少なくとも含み、射出成形を用いて複数の層を多層化することで製造できる多層射出成形品である。多層射出成形品は2種類以上の材料が多層化されていればよい。本発明に係る多層射出成形品は、公知の多層射出成形が可能な射出成形法によって成形する事ができる。
本発明に係る多層射出成形品とは、本発明の極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを含有してなる層を少なくとも含み、射出成形を用いて複数の層を多層化することで製造できる多層射出成形品である。多層射出成形品は2種類以上の材料が多層化されていればよい。本発明に係る多層射出成形品は、公知の多層射出成形が可能な射出成形法によって成形する事ができる。
(13)被覆金属部材
本発明に係る被覆金属部材とは、金属に極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを金属被覆材料として用い、金属被覆材料を金属に被覆することにより製造できる、被覆金属部材である。
本発明に係る被覆金属部材とは、金属に極性基含有オレフィン共重合体(A)、多元系極性基含有オレフィン共重合体(B)、オレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、オレフィン系樹脂組成物(D”)のいずれかを金属被覆材料として用い、金属被覆材料を金属に被覆することにより製造できる、被覆金属部材である。
以下において、本発明を実施例及び比較例によって具体的に説明し、好適な各実施例のデータ及び各実施例と各比較例の対照により、本発明の構成の合理性と有意性及び従来技術に対する卓越性を実証する。本発明において製造される極性基含有オレフィン共重合体の物性試験方法、得られた積層体の試験方法は、以下の通りである。
〔実験例1〕極性基含有オレフィン共重合体の評価
(1)極性基含有オレフィン共重合体中の極性基含有構造単位量
極性基含有オレフィン共重合体中の極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。詳しくは前述している。
(1)極性基含有オレフィン共重合体中の極性基含有構造単位量
極性基含有オレフィン共重合体中の極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。詳しくは前述している。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。詳しくは前述している。
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。詳しくは前述している。
(3)融点
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。測定にはエスアイアイ・ナノテクノロジー株式会社社製のDSC(DSC7020)を使用し、次の測定条件で実施した。
試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで上昇し、200℃で5分間保持した後に10℃/分で30℃まで降温させた。30℃で5分間保持した後、再度、10℃/分で昇温させる際の吸収曲線のうち、最大ピーク温度を融点とした。
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。測定にはエスアイアイ・ナノテクノロジー株式会社社製のDSC(DSC7020)を使用し、次の測定条件で実施した。
試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで上昇し、200℃で5分間保持した後に10℃/分で30℃まで降温させた。30℃で5分間保持した後、再度、10℃/分で昇温させる際の吸収曲線のうち、最大ピーク温度を融点とした。
(4)接着強度
接着強度は、プレス板に加工した測定サンプルと各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。各工程の調製方法/測定方法を順に説明する。
接着強度は、プレス板に加工した測定サンプルと各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。各工程の調製方法/測定方法を順に説明する。
〔1〕測定サンプルのプレス板調製方法
測定サンプルを、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約0.5mmのプレス板を作製した。
測定サンプルを、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約0.5mmのプレス板を作製した。
〔2〕EVOHフィルムの調製方法
多層Tダイ成形機を用い、中央層がEVOH、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのEVOH単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:200℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:EVOH((株)クラレ製 銘柄:エバール F101B)
多層Tダイ成形機を用い、中央層がEVOH、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのEVOH単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:200℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:EVOH((株)クラレ製 銘柄:エバール F101B)
〔3〕ポリアミドフィルムの調製方法
多層Tダイ成形機を用い、中央層がポリアミド、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのポリアミド単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:250℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:ポリアミド(東レ(株)製 銘柄:アミラン CM1021FS)
多層Tダイ成形機を用い、中央層がポリアミド、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのポリアミド単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:250℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:ポリアミド(東レ(株)製 銘柄:アミラン CM1021FS)
〔4〕ポリエステルフィルムの調製方法
多層Tダイ成形機を用い、中央層がポリエステル、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのポリエステル単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:250℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:ポリエチレンテレフタレート(三菱化学(株)製 銘柄:ノバペックス IG229Z)
多層Tダイ成形機を用い、中央層がポリエステル、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのポリエステル単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:250℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:ポリエチレンテレフタレート(三菱化学(株)製 銘柄:ノバペックス IG229Z)
〔5〕フッ素樹脂フィルムの調製方法
多層Tダイ成形機を用い、中央層がフッ素樹脂、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのフッ素樹脂単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:230℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:フッ素樹脂(ダイキン工業(株)製 銘柄:ネオフロンEFEP RP-5000)
多層Tダイ成形機を用い、中央層がフッ素樹脂、両外層がLLDPEの2種3層多層フィルムを成形後、外層のLLDPEを剥離することで、厚さ100μmのフッ素樹脂単層フィルムを調製した。フィルム成形条件は以下の通りである。
成形機:2種3層Tダイ
成形温度:230℃
層構成:LLDPE/EVOH/LLDPE
膜厚:300μm(100μm/100μm/100μm)
外層:LLDPE(日本ポリエチレン(株)社製 銘柄:ノバテック UF943)MFR=2.0g/10分、密度=0.937/cm3
中間層:フッ素樹脂(ダイキン工業(株)製 銘柄:ネオフロンEFEP RP-5000)
〔6〕EVOHフィルムと測定サンプルとの積層体の調製方法
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記EVOHフィルムの調製方法によって得られたEVOHフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とEVOHの積層体を調製した。
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記EVOHフィルムの調製方法によって得られたEVOHフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とEVOHの積層体を調製した。
〔7〕ポリアミドフィルムと測定サンプルとの積層体の調製方法
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記ポリアミドフィルムの調製方法によって得られたポリアミドフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度250℃の熱プレス機を用いて4.9MPaで5分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とポリアミドの積層体を調製した。
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記ポリアミドフィルムの調製方法によって得られたポリアミドフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度250℃の熱プレス機を用いて4.9MPaで5分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とポリアミドの積層体を調製した。
〔8〕ポリエステルフィルムと測定サンプルとの積層体の調製方法
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記ポリエステルフィルムの調製方法によって得られたポリエステルフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とポリエステルの積層体を調製した。
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記ポリエステルフィルムの調製方法によって得られたポリエステルフィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とポリエステルの積層体を調製した。
〔9〕フッ素樹脂フィルムと測定サンプルとの積層体の調製方法
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記フッ素樹脂フィルムの調製方法によって得られたフッ素樹脂フィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とフッ素樹脂の積層体を調製した。
上記のプレス板調製方法によって得られた測定サンプルのプレス板と、上記フッ素樹脂フィルムの調製方法によって得られたフッ素樹脂フィルムを50mm×60mmの寸法に切断したものを重ね合わせ、寸法:50mm×60mm、厚さ0.5mmの加熱プレス用モールドに入れ、表面温度200℃の熱プレス機を用いて4.9MPaで3分間加圧した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、測定サンプルのプレス板とフッ素樹脂の積層体を調製した。
〔10〕積層体の接着強度測定方法
積層体の調製方法によって得られた積層体を10mm幅に切断し、テンシロン(東洋精機(株)製)引張試験機を用いて、50mm/分の速さでT剥離することで接着強度を測定した。接着強度の単位はgf/10mmで示した。また、接着強度が非常に強い場合、剥離試験に際して測定サンプル層、もしくは基材層が降伏し、さらには破断する。これは、積層体の接着強度が、測定サンプル層又は基材層の引張破断強度のうち低い方と比較して高い強度を示す為に発生する現象であり、その接着性は非常に高いものと判断できる。該現象により接着強度が測定できない場合、各実施例の接着強度測定結果には「剥離不可」と記載し、接着強度の数値が測定されたものよりも、より高度に接着されたと判断する。
積層体の調製方法によって得られた積層体を10mm幅に切断し、テンシロン(東洋精機(株)製)引張試験機を用いて、50mm/分の速さでT剥離することで接着強度を測定した。接着強度の単位はgf/10mmで示した。また、接着強度が非常に強い場合、剥離試験に際して測定サンプル層、もしくは基材層が降伏し、さらには破断する。これは、積層体の接着強度が、測定サンプル層又は基材層の引張破断強度のうち低い方と比較して高い強度を示す為に発生する現象であり、その接着性は非常に高いものと判断できる。該現象により接着強度が測定できない場合、各実施例の接着強度測定結果には「剥離不可」と記載し、接着強度の数値が測定されたものよりも、より高度に接着されたと判断する。
(5)耐薬品性
〔1〕測定サンプルのプレス板調製方法
測定サンプルを、寸法:50mm×60mm、厚さ1mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約0.9mmの測定サンプルのプレス板を作製した。
〔1〕測定サンプルのプレス板調製方法
測定サンプルを、寸法:50mm×60mm、厚さ1mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約0.9mmの測定サンプルのプレス板を作製した。
〔2〕耐薬品性の評価方法
測定サンプルのプレス板の調製方法によって調製した測定サンプルのプレス板を10mm幅に切断し、耐薬品性評価用試験片を作成した。この評価用試験片を耐圧容器に入れ、イソオクタン455ml/トルエン455ml/エタノール90mlの3種混合溶液をさらに加えた。この耐圧容器を60℃に調整したオーブンに入れ、24時間経過後に評価用試験片を取出し、ドラフト内でさらに24時間風乾させた。
風乾後の評価用試験片が原形を留めていない場合は耐薬品性が「×」、元々の形状を維持している場合には耐薬品性が「○」であると判断した。
測定サンプルのプレス板の調製方法によって調製した測定サンプルのプレス板を10mm幅に切断し、耐薬品性評価用試験片を作成した。この評価用試験片を耐圧容器に入れ、イソオクタン455ml/トルエン455ml/エタノール90mlの3種混合溶液をさらに加えた。この耐圧容器を60℃に調整したオーブンに入れ、24時間経過後に評価用試験片を取出し、ドラフト内でさらに24時間風乾させた。
風乾後の評価用試験片が原形を留めていない場合は耐薬品性が「×」、元々の形状を維持している場合には耐薬品性が「○」であると判断した。
(6)複素弾性率の絶対値G*=0.1MPaにおける位相角δ(G*=0.1MPa)の測定
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作成した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定した。
・プレート:φ25mm パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10-2~1.0×102rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G*(Pa)の常用対数logG*に対して位相角δをプロットし、logG*=5.0に相当する点のδ(度)の値をδ(G*=0.1MPa)とした。測定点の中にlogG*=5.0に相当する点がないときは、logG*=5.0前後の2点を用いて、logG*=5.0におけるδ値を線形補間で求めた。また、測定点がいずれもlogG*<5であるときは、logG*値が大きい方から3点の値を用いて2次曲線でlogG*=5.0におけるδ値を補外して求めた。
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作成した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定した。
・プレート:φ25mm パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10-2~1.0×102rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G*(Pa)の常用対数logG*に対して位相角δをプロットし、logG*=5.0に相当する点のδ(度)の値をδ(G*=0.1MPa)とした。測定点の中にlogG*=5.0に相当する点がないときは、logG*=5.0前後の2点を用いて、logG*=5.0におけるδ値を線形補間で求めた。また、測定点がいずれもlogG*<5であるときは、logG*値が大きい方から3点の値を用いて2次曲線でlogG*=5.0におけるδ値を補外して求めた。
(7)アルミニウム(Al)量
極性基含有オレフィン共重合体に含まれるアルミニウム(Al)量は、重合に供したアルキルアルミニウム中に含有されるアルミニウム(Al)量を、得られた極性基含有オレフィン共重合体の収量で除した値として算出する方法と蛍光X線分析により測定する方法により求めることができる。
極性基含有オレフィン共重合体に含まれるアルミニウム(Al)量は、重合に供したアルキルアルミニウム中に含有されるアルミニウム(Al)量を、得られた極性基含有オレフィン共重合体の収量で除した値として算出する方法と蛍光X線分析により測定する方法により求めることができる。
〔1〕アルキルアルミニウム重合添加量より算出する方法
具体的には以下の計算式により算出した。
アルミニウム(Al)含有量の単位:μgAl/g
(μgAl/gとは極性基含有オレフィン共重合体の1g中に含まれるアルミニウム(Al)量をμg単位で表していることを意味する。)
μgAl=n×Mw(Al)×103(μg)
n:重合に供したアルキルアルミニウム添加量(mmol)
Mw(Al):アルミニウム(Al)元素の分子量(26.9g/mol)
具体的には以下の計算式により算出した。
アルミニウム(Al)含有量の単位:μgAl/g
(μgAl/gとは極性基含有オレフィン共重合体の1g中に含まれるアルミニウム(Al)量をμg単位で表していることを意味する。)
μgAl=n×Mw(Al)×103(μg)
n:重合に供したアルキルアルミニウム添加量(mmol)
Mw(Al):アルミニウム(Al)元素の分子量(26.9g/mol)
〔2〕蛍光X線分析により測定する方法
極性基含有オレフィン共重合体中に含まれるアルミニウム(Al)量は蛍光X線分析を用いて求めた。詳しくは前述している。
極性基含有オレフィン共重合体中に含まれるアルミニウム(Al)量は蛍光X線分析を用いて求めた。詳しくは前述している。
〔実施例1-1〕
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
無水ベンゼンスルホン酸(2g,12.6mmol)のテトラヒドロフラン(20mL)溶液に、ノルマルブチルリチウムヘキサン溶液(2.5M,10mL,25.3mmol)を0℃でゆっくりと滴下し、室温まで温度を上昇させながら1時間撹拌した。反応液を-78℃まで冷却し、三塩化リン(1.0mL,12.6mmol)を加え、2時間撹拌した(反応液A)。
マグネシウムをテトラヒドロフラン(20mL)に分散させ、1-ブロモ-2-メトキシベンゼン(2.3g,12.6mmol)を加え、室温で3時間撹拌した。この溶液を、先ほどの反応液Aに-78℃で滴下し、1時間撹拌した(反応液B)。
1-ブロモ-2-イソプロピルベンゼン(2.5g,12.6mmol)のジエチルエーテル(20mL)溶液に、ノルマルブチルリチウムヘキサン溶液(2.5M,5.0mL,12.6mmol)を-30℃でゆっくりと滴下し、室温で2時間撹拌した。この溶液を、先ほどの反応液Bに-78℃で滴下し、室温で一晩撹拌した。LC-MS純度60%。
水(50mL)を加え、塩酸を加えて酸性にした(PH<3)後、塩化メチレン抽出し(100mL)、硫酸ナトリウムにより乾燥し、溶媒を留去した。メタノールで再結晶化することにより、白色の目的物(I)を1.1g得た。収率22%。
1H NMR(CDCl3,ppm):8.34(t,J=6.0Hz,1H),7.7-7.6(m,3H),7.50(t,J=6.4Hz,1H),7.39(m,1H),7.23(m,1H),7.1-6.9(m,5H),3.75(s,3H),3.05(m,1H),1.15(d,J=6.8Hz,3H),1.04(d,J=6.4Hz,3H).31P NMR(CDCl3,ppm):-10.5.
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
無水ベンゼンスルホン酸(2g,12.6mmol)のテトラヒドロフラン(20mL)溶液に、ノルマルブチルリチウムヘキサン溶液(2.5M,10mL,25.3mmol)を0℃でゆっくりと滴下し、室温まで温度を上昇させながら1時間撹拌した。反応液を-78℃まで冷却し、三塩化リン(1.0mL,12.6mmol)を加え、2時間撹拌した(反応液A)。
マグネシウムをテトラヒドロフラン(20mL)に分散させ、1-ブロモ-2-メトキシベンゼン(2.3g,12.6mmol)を加え、室温で3時間撹拌した。この溶液を、先ほどの反応液Aに-78℃で滴下し、1時間撹拌した(反応液B)。
1-ブロモ-2-イソプロピルベンゼン(2.5g,12.6mmol)のジエチルエーテル(20mL)溶液に、ノルマルブチルリチウムヘキサン溶液(2.5M,5.0mL,12.6mmol)を-30℃でゆっくりと滴下し、室温で2時間撹拌した。この溶液を、先ほどの反応液Bに-78℃で滴下し、室温で一晩撹拌した。LC-MS純度60%。
水(50mL)を加え、塩酸を加えて酸性にした(PH<3)後、塩化メチレン抽出し(100mL)、硫酸ナトリウムにより乾燥し、溶媒を留去した。メタノールで再結晶化することにより、白色の目的物(I)を1.1g得た。収率22%。
1H NMR(CDCl3,ppm):8.34(t,J=6.0Hz,1H),7.7-7.6(m,3H),7.50(t,J=6.4Hz,1H),7.39(m,1H),7.23(m,1H),7.1-6.9(m,5H),3.75(s,3H),3.05(m,1H),1.15(d,J=6.8Hz,3H),1.04(d,J=6.4Hz,3H).31P NMR(CDCl3,ppm):-10.5.
錯体の形成
錯体の形成充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
錯体の形成充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
エチレンと1,2-エポキシ-9-デセンの共重合
内容積2.4リットルの攪拌翼付きオートクレーブを精製窒素で置換したのち、乾燥トルエン(1.0リットル)と、1,2-エポキシ-9-デセンを36ml(0.2mol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が1MPaになるよう圧力が1.3MPaまでエチレンを供給した。圧力調整終了後、遷移金属錯体(I-Pd錯体)150μmolを窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給し、120分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下60℃で恒量になるまで乾燥を行なった。
重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。なお、表2中の「ND」は未測定を意味する(以降の記載において同様とする。)。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、配位子とパラジウムビスジベンジリデンアセトンが1対1で反応してパラジウム錯体を形成しているとして計算した。
内容積2.4リットルの攪拌翼付きオートクレーブを精製窒素で置換したのち、乾燥トルエン(1.0リットル)と、1,2-エポキシ-9-デセンを36ml(0.2mol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が1MPaになるよう圧力が1.3MPaまでエチレンを供給した。圧力調整終了後、遷移金属錯体(I-Pd錯体)150μmolを窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給し、120分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下60℃で恒量になるまで乾燥を行なった。
重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。なお、表2中の「ND」は未測定を意味する(以降の記載において同様とする。)。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、配位子とパラジウムビスジベンジリデンアセトンが1対1で反応してパラジウム錯体を形成しているとして計算した。
〔実施例1-2〕
エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合
極性基含有コモノマーとして4-ビニル―1,2-エポキシシクロへキサン20.9ml(0.2mol)を用い、遷移金属錯体量を50μmol、重合圧力を2.3MPa、重合温度を100℃、重合時間を240分とした以外は、実施例1-1同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合
極性基含有コモノマーとして4-ビニル―1,2-エポキシシクロへキサン20.9ml(0.2mol)を用い、遷移金属錯体量を50μmol、重合圧力を2.3MPa、重合温度を100℃、重合時間を240分とした以外は、実施例1-1同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
〔実施例1-3〕
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
極性基含有コモノマーとして4-HBAGE54ml(0.3mol)を用い、遷移金属錯体量を50μmol、重合温度を90℃、重合時間を70分とした以外は、実施例1-1同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
極性基含有コモノマーとして4-HBAGE54ml(0.3mol)を用い、遷移金属錯体量を50μmol、重合温度を90℃、重合時間を70分とした以外は、実施例1-1同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
〔実施例1-4〕
SHOP系配位子:B-27DMの合成
国際公開第2010/050256号記載(合成例4)の方法に従い、下記の配位子B-27DMを得た。
SHOP系配位子:B-27DMの合成
国際公開第2010/050256号記載(合成例4)の方法に従い、下記の配位子B-27DMを得た。
錯体の形成
充分に窒素置換した50mlのナス型フラスコに、下記B-27DMを112mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-27DMの入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-27DMとNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
充分に窒素置換した50mlのナス型フラスコに、下記B-27DMを112mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-27DMの入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-27DMとNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.1mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.4ml(24μmol)を窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給した。80分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を28g回収した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.1mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.4ml(24μmol)を窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給した。80分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を28g回収した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔実施例1-5~1-12〕
実施例1-4に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例1-5~1-12の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
実施例1-4に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例1-5~1-12の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
〔実施例1-13~1-15〕
実施例1-4記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例1-13~1-15の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。表1中のエチレン分圧が、「2.5→1.5」のような表記になっているのは、重合開始時のエチレン分圧が2.5MPa、重合終了時のエチレン分圧が1.5MPaであったことを表している(以降の記載についても同様とする)。
実施例1-4記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例1-13~1-15の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。表1中のエチレン分圧が、「2.5→1.5」のような表記になっているのは、重合開始時のエチレン分圧が2.5MPa、重合終了時のエチレン分圧が1.5MPaであったことを表している(以降の記載についても同様とする)。
〔実施例1-16〕
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
日本国特開2013-043871号公報記載(合成例4)の方法に従い、下記の配位子B-114を得た。
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
日本国特開2013-043871号公報記載(合成例4)の方法に従い、下記の配位子B-114を得た。
錯体の形成
充分に窒素置換した50mlのナス型フラスコに、上記2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を145mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-114の入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-114とNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
充分に窒素置換した50mlのナス型フラスコに、上記2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を145mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-114の入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-114とNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを1.8ml(10mmol)仕込んだ。攪拌しながらオートクレーブを90℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-114‐Ni錯体溶液を2.0ml(20μmol)を窒素で圧入して共重合を開始させた。反応中は温度を90℃に保った。46分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を32g回収した。
重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
なお、重合活性は、B-114とNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを1.8ml(10mmol)仕込んだ。攪拌しながらオートクレーブを90℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-114‐Ni錯体溶液を2.0ml(20μmol)を窒素で圧入して共重合を開始させた。反応中は温度を90℃に保った。46分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を32g回収した。
重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。表1において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
なお、重合活性は、B-114とNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔比較例1-1〕
エチレン単独重合
極性基含有コモノマーおよびトリn-オクチルアルミニウム(TNOA)を使用せず、遷移金属錯体量を0.2μmol、重合圧力を3.0MPa、重合温度を100℃、重合時間を30分とした以外は、実施例1-4と同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
エチレン単独重合
極性基含有コモノマーおよびトリn-オクチルアルミニウム(TNOA)を使用せず、遷移金属錯体量を0.2μmol、重合圧力を3.0MPa、重合温度を100℃、重合時間を30分とした以外は、実施例1-4と同様に行なった。重合の条件及び重合結果を表1に、物性測定の結果を表2に記載した。
〔比較例1-2〕
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表2に記載した。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表2に記載した。
〔比較例1-3〕
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表2に記載した。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表2に記載した。
〔実施例と比較例の結果の考察〕
実施例1-1~実施例1-16は、極性基構造単位量が全て0.001mol%以上であり、ポリアミドと実用上十分な接着性を有している。更に、実施例1-1~実施例1-14は、重量平均分子量(Mw)が33,000以上であり、ポリアミドと優れた接着性を示している。それと比較して、比較例1は極性基を含んでおらず、ポリアミドと全く接着しない。このことから、極性基含有オレフィン共重合体中に含まれる極性基構造単位量が0.001mol%以上であれば、極性の高い基材と十分な接着性を有する事を示した。
実施例1-1~実施例1-3と、実施例1-4~実施例1-15、実施例1-16は異なる製造方法で製造された極性基含有オレフィン共重合体である。いずれの製造方法で製造した極性基含有オレフィン共重合体であっても、それぞれ十分な接着性を示している。この事実は、極性の高い素材と十分な接着性能を有する極性基含有オレフィン共重合体を製造するにあたり、特定の遷移金属触媒の存在下で重合する製造であれば特に制限されることは無く、本発明に係る極性基含有オレフィン共重合体の製造方法は限定されないことを示した。
実施例1-11、および実施例1-12はポリアミド樹脂にとどまらず、EVOH、ポリエステル、フッ素樹脂とも実用上十分な接着性を有している。この事実は、本発明の極性基含有オレフィン共重合体は、特定の極性の高い素材とのみ接着性を有しているのではなく、各種極性の高い素材とも十分な接着性を有することを明らかにした。
実施例1-1~実施例1-16は、高い接着性を有しながら、十分な耐薬品性をも示している。それに対し比較例1-2および比較例1-3は、接着性能こそ十分であるが耐薬品性が不十分である。この原因は分子構造の違いによるものと推察している。実施例1-1~実施例1-16は遷移金属触媒の存在下で製造されている為、その分子構造は直鎖状である。しかしながら、比較例1-2および比較例1-3は高圧法プロセスで製造されていることが知られており、その分子構造は過多の短鎖分岐、および長鎖分岐を有した構造であると考えられる。この構造の違いが、薬品による非晶部分の膨潤性に違いを与え、耐薬品性にも差が表れたと考えられる。この結果により、本発明に係る極性基含有オレフィン共重合体が、極性の高い基材と高い接着性を有しつつ、耐薬品性にも秀でた極性基含有オレフィン共重合体であることを示した。
以上の各実施例の良好な結果、及び各比較例との対照により、本発明の構成(発明特定事項)の有意性と合理性及び従来技術に対する卓越性が明確にされている。
実施例1-1~実施例1-16は、極性基構造単位量が全て0.001mol%以上であり、ポリアミドと実用上十分な接着性を有している。更に、実施例1-1~実施例1-14は、重量平均分子量(Mw)が33,000以上であり、ポリアミドと優れた接着性を示している。それと比較して、比較例1は極性基を含んでおらず、ポリアミドと全く接着しない。このことから、極性基含有オレフィン共重合体中に含まれる極性基構造単位量が0.001mol%以上であれば、極性の高い基材と十分な接着性を有する事を示した。
実施例1-1~実施例1-3と、実施例1-4~実施例1-15、実施例1-16は異なる製造方法で製造された極性基含有オレフィン共重合体である。いずれの製造方法で製造した極性基含有オレフィン共重合体であっても、それぞれ十分な接着性を示している。この事実は、極性の高い素材と十分な接着性能を有する極性基含有オレフィン共重合体を製造するにあたり、特定の遷移金属触媒の存在下で重合する製造であれば特に制限されることは無く、本発明に係る極性基含有オレフィン共重合体の製造方法は限定されないことを示した。
実施例1-11、および実施例1-12はポリアミド樹脂にとどまらず、EVOH、ポリエステル、フッ素樹脂とも実用上十分な接着性を有している。この事実は、本発明の極性基含有オレフィン共重合体は、特定の極性の高い素材とのみ接着性を有しているのではなく、各種極性の高い素材とも十分な接着性を有することを明らかにした。
実施例1-1~実施例1-16は、高い接着性を有しながら、十分な耐薬品性をも示している。それに対し比較例1-2および比較例1-3は、接着性能こそ十分であるが耐薬品性が不十分である。この原因は分子構造の違いによるものと推察している。実施例1-1~実施例1-16は遷移金属触媒の存在下で製造されている為、その分子構造は直鎖状である。しかしながら、比較例1-2および比較例1-3は高圧法プロセスで製造されていることが知られており、その分子構造は過多の短鎖分岐、および長鎖分岐を有した構造であると考えられる。この構造の違いが、薬品による非晶部分の膨潤性に違いを与え、耐薬品性にも差が表れたと考えられる。この結果により、本発明に係る極性基含有オレフィン共重合体が、極性の高い基材と高い接着性を有しつつ、耐薬品性にも秀でた極性基含有オレフィン共重合体であることを示した。
以上の各実施例の良好な結果、及び各比較例との対照により、本発明の構成(発明特定事項)の有意性と合理性及び従来技術に対する卓越性が明確にされている。
〔実験例2〕多元系極性基含有オレフィン共重合体(B)の評価
(1)極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(1)極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
(3)融点
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
(4)接着強度
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
(5)引張衝撃強さ
〔1〕引張衝撃強さ試験サンプルの作成方法
各実施例および各比較例の樹脂組成物ペレットを、厚さ1mmの加熱プレス用モールドに入れ、表面温度230℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで樹脂を溶融すると共に溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板からASTM D1822 Type-Sの形状の試験片を打ち抜き、引張衝撃強さ試験サンプルとした。
〔1〕引張衝撃強さ試験サンプルの作成方法
各実施例および各比較例の樹脂組成物ペレットを、厚さ1mmの加熱プレス用モールドに入れ、表面温度230℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで樹脂を溶融すると共に溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板からASTM D1822 Type-Sの形状の試験片を打ち抜き、引張衝撃強さ試験サンプルとした。
〔2〕引張衝撃強さ試験条件
上記試験片を用い、JIS K 7160-1996のB法を参考として引張衝撃強さを測定した。なお、JIS K 7160-1996と異なるのは、試験片の形状のみである。その他測定条件等に関しては、JIS K 7160-1996に準じた方法で試験を実施した。
上記試験片を用い、JIS K 7160-1996のB法を参考として引張衝撃強さを測定した。なお、JIS K 7160-1996と異なるのは、試験片の形状のみである。その他測定条件等に関しては、JIS K 7160-1996に準じた方法で試験を実施した。
(6)動的粘弾性測定によるδ(G*=0.1MPa)測定
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
(7)アルミニウム(Al)量
多元系極性基含有オレフィン共重合体に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
多元系極性基含有オレフィン共重合体に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
〔実施例2-1〕
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
錯体の形成
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
(エチレン/4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)/アクリル酸-n-ブチル三元共重合)
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.1mmol)、及び4-HBAGEを3.6ml(20mmol)とアクリル酸-n-ブチル7.1ml(50mmol)を仕込んだ。攪拌しながらオートクレーブを80℃に昇温し、窒素を0.4MPaまで供給した後、エチレン分圧が2.4MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を10ml(100μmol)を窒素で圧入して共重合を開始させた。反応中は温度を80℃に保ち、圧力が保持されるように連続的にエチレンを供給した。180分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を19.4g回収した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.1mmol)、及び4-HBAGEを3.6ml(20mmol)とアクリル酸-n-ブチル7.1ml(50mmol)を仕込んだ。攪拌しながらオートクレーブを80℃に昇温し、窒素を0.4MPaまで供給した後、エチレン分圧が2.4MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を10ml(100μmol)を窒素で圧入して共重合を開始させた。反応中は温度を80℃に保ち、圧力が保持されるように連続的にエチレンを供給した。180分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を19.4g回収した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔実施例2-2、比較例2-1、比較例2-2〕
実施例2-1に記載の方法のうち、配位子量、コモノマー種、モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例2-2、比較例2-1、比較例2-2の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。
実施例2-1に記載の方法のうち、配位子量、コモノマー種、モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例2-2、比較例2-1、比較例2-2の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。
〔実施例2-3〕
SHOP系配位子(B-111)の合成
日本国特開2013-043871号公報記載(合成例1)の方法に従い、下記の配位子B-111を得た。
SHOP系配位子(B-111)の合成
日本国特開2013-043871号公報記載(合成例1)の方法に従い、下記の配位子B-111を得た。
錯体の形成
充分に窒素置換した50mlのナス型フラスコに、下記B-111を137mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-27DMの入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-111とNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
充分に窒素置換した50mlのナス型フラスコに、下記B-111を137mg(200μmol)秤り取った。次に、ビス-1,5-シクロオクタジエンニッケル(0)(以下Ni(COD)2と称する)を50mlナス型フラスコに56mg(200μmol)秤り取り、20mlの乾燥トルエンに溶解させ10mmol/lのNi(COD)2トルエン溶液を調製した。ここで得られたNi(COD)2トルエン溶液全量(20ml)を、B-27DMの入ったナス型フラスコに加え、40℃の湯浴で30分攪拌することで、B-111とNi(COD)2の反応生成物の10mmol/l溶液を20ml得た。
(エチレン/4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)/アクリル酸-n-ブチル三元共重合)
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)、及び4-HBAGEを3.96ml(22mmol)とアクリル酸-n-ブチル19.9ml(140mmol)を仕込んだ。攪拌しながらオートクレーブを70℃に昇温し、窒素を0.4MPaまで供給した後、エチレン分圧が2.4MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-111‐Ni錯体溶液を18ml(180μmol)を窒素で圧入して共重合を開始させた。反応中は温度を70℃に保ち、圧力が保持されるように連続的にエチレンを供給した。120分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を21.0g回収した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。重合活性は、B-111とNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)、及び4-HBAGEを3.96ml(22mmol)とアクリル酸-n-ブチル19.9ml(140mmol)を仕込んだ。攪拌しながらオートクレーブを70℃に昇温し、窒素を0.4MPaまで供給した後、エチレン分圧が2.4MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-111‐Ni錯体溶液を18ml(180μmol)を窒素で圧入して共重合を開始させた。反応中は温度を70℃に保ち、圧力が保持されるように連続的にエチレンを供給した。120分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を21.0g回収した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。重合活性は、B-111とNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔実施例2-4〕
実施例2-3に記載の方法のうち、配位子量、コモノマー種、モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例2-4の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。
実施例2-3に記載の方法のうち、配位子量、コモノマー種、モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、実施例2-4の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表3に、物性測定の結果を表4に記載した。
〔比較例2-3〕
エチレンとプロピレン、ヘキセンの共重合体であって、メタロセン系触媒によって製造されたオレフィン共重合体(日本ポリエチレン(株)製 銘柄:カーネルKF370)である。物性測定の結果を表4に記載した。
エチレンとプロピレン、ヘキセンの共重合体であって、メタロセン系触媒によって製造されたオレフィン共重合体(日本ポリエチレン(株)製 銘柄:カーネルKF370)である。物性測定の結果を表4に記載した。
〔比較例2-4〕
エチレンとグリシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表4に記載した。
エチレンとグリシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表4に記載した。
〔比較例2-5〕
エチレンとグリシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表4に記載した。
エチレンとグリシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表4に記載した。
〔実施例と比較例の結果の考察〕
実施例2-1~実施例2-4は多元系極性基含有オレフィン共重合体であり、充分な接着性を示しているが、極性基を含有しないオレフィン共重合体の比較例2-3は全く接着性を示さないことを明らかにした。このことは、接着性を発現するためには極性基を含有することが必須であることを示している。
実施例2-1~実施例2-4の多元系極性基含有オレフィン共重合体は、同様の極性基を有する比較例2-1~実施例2-2の2元系極性基含有オレフィン共重合体に比べて、接着性が飛躍的に向上していることを明らかにした。このことは、任意の第3コモノマーにより共重合体を柔軟にすることで、極性基や第3コモノマーの種類によらず接着性を向上させられることを示している。
実施例2-1~実施例2-4は、高い接着性を有しながら、充分な耐衝撃性をも示している。それに対し比較例2-4~比較例2-5は、接着性能こそ充分であるが耐衝撃性が不十分である。この原因は分子構造の違いによるものと推察している。実施例2-1~実施例2-4は遷移金属触媒の存在下で製造されている為、その分子構造は直鎖状である。しかしながら、比較例2-4~比較例2-5は高圧法プロセスで製造されていることが知られており、その分子構造は過多の短鎖分岐、および長鎖分岐を有した構造であると考えられる。そのため、結果として耐衝撃性が低下すると考えられる。
以上の結果より、多元系極性基含有オレフィン共重合体であり、接着性と耐衝撃性をバランスよく向上させることが可能な本発明による共重合体の有用性を示した。
実施例2-1~実施例2-4は多元系極性基含有オレフィン共重合体であり、充分な接着性を示しているが、極性基を含有しないオレフィン共重合体の比較例2-3は全く接着性を示さないことを明らかにした。このことは、接着性を発現するためには極性基を含有することが必須であることを示している。
実施例2-1~実施例2-4の多元系極性基含有オレフィン共重合体は、同様の極性基を有する比較例2-1~実施例2-2の2元系極性基含有オレフィン共重合体に比べて、接着性が飛躍的に向上していることを明らかにした。このことは、任意の第3コモノマーにより共重合体を柔軟にすることで、極性基や第3コモノマーの種類によらず接着性を向上させられることを示している。
実施例2-1~実施例2-4は、高い接着性を有しながら、充分な耐衝撃性をも示している。それに対し比較例2-4~比較例2-5は、接着性能こそ充分であるが耐衝撃性が不十分である。この原因は分子構造の違いによるものと推察している。実施例2-1~実施例2-4は遷移金属触媒の存在下で製造されている為、その分子構造は直鎖状である。しかしながら、比較例2-4~比較例2-5は高圧法プロセスで製造されていることが知られており、その分子構造は過多の短鎖分岐、および長鎖分岐を有した構造であると考えられる。そのため、結果として耐衝撃性が低下すると考えられる。
以上の結果より、多元系極性基含有オレフィン共重合体であり、接着性と耐衝撃性をバランスよく向上させることが可能な本発明による共重合体の有用性を示した。
〔実験例3〕オレフィン系樹脂組成物(D)の評価
(1)極性基含有オレフィン共重合体(A’)中の極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(1)極性基含有オレフィン共重合体(A’)中の極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
(3)融点
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
(4)接着強度
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
(5)動的粘弾性測定によるδ(G*=0.1MPa)測定
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
(6)アルミニウム(Al)量
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
(7)メルトフローレート(MFR)
MFRは、JIS K7120(1999年)に準拠し、温度190℃において荷重2.16kgの条件で測定した。詳しくは前述している。
MFRは、JIS K7120(1999年)に準拠し、温度190℃において荷重2.16kgの条件で測定した。詳しくは前述している。
(8)密度
密度は、JIS K7112-A法(1999年)に準拠し測定した。詳しくは前述している。
密度は、JIS K7112-A法(1999年)に準拠し測定した。詳しくは前述している。
〔製造例3-1〕極性基含有オレフィン共重合体(A’-3-1)の製造
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
錯体の形成
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を3.0ml(30μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保ち、圧力が保持されるように連続的にエチレンを供給した。60分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を38g回収した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。表5において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を3.0ml(30μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保ち、圧力が保持されるように連続的にエチレンを供給した。60分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を38g回収した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。表5において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔製造例3-2~3-4〕極性基含有オレフィン共重合体(A’-3-2、A’-3-3、A’-3-4)の製造
製造例3-1に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例3-2~製造例3-4の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
製造例3-1に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例3-2~製造例3-4の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
〔製造例3-5〕極性基含有オレフィン共重合体(A’-3-5)の製造
製造例3-1に記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例3-5の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
製造例3-1に記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例3-5の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
〔製造例3-6〕極性基含有オレフィン共重合体(A’-3-6)の製造
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を得た。
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を得た。
錯体の形成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)とビス-1,5-シクロオクタジエンニッケル(0)(Ni(COD)2)との錯体溶液を得た。
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)とビス-1,5-シクロオクタジエンニッケル(0)(Ni(COD)2)との錯体溶液を得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
実施例1-16と同様の方法により、エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合体を得た。
重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
実施例1-16と同様の方法により、エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合体を得た。
重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
〔製造例3-7〕極性基含有オレフィン共重合体(A’-3-7)の製造
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
錯体の形成
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
エチレンと1,2-エポキシ-9-デセンとの共重合
実施例1-1と同様の方法により、エチレンと1,2-エポキシ-9-デセンとの共重合体を得た。
重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
実施例1-1と同様の方法により、エチレンと1,2-エポキシ-9-デセンとの共重合体を得た。
重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
〔製造例3-8〕極性基含有オレフィン共重合体(A’-3-8)の製造
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
製造例3-7に記載の方法のうち、極性基含有モノマーとして4-HBAGE54ml(0.3mol)を用い、遷移金属錯体量を50μmol、重合温度を90℃、重合時間を70分とした以外は、製造例3-7同様に行なった。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
製造例3-7に記載の方法のうち、極性基含有モノマーとして4-HBAGE54ml(0.3mol)を用い、遷移金属錯体量を50μmol、重合温度を90℃、重合時間を70分とした以外は、製造例3-7同様に行なった。重合の条件及び重合結果を表5に、物性測定の結果を表6に記載した。
極性基含有オレフィン共重合体(A’-3-9)
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。極性基含有オレフィン共重合体の物性を表6に示す。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。極性基含有オレフィン共重合体の物性を表6に示す。
〔実施例3-1〕
極性基含有オレフィン共重合体(A’-3-1)0.05gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG、表中では「LLDPE」と表記する)9.95gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表7に示す。
極性基含有オレフィン共重合体(A’-3-1)0.05gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG、表中では「LLDPE」と表記する)9.95gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表7に示す。
〔実施例3-2~3-32〕
実施例3-1に記載の方法のうち、極性基含有オレフィン共重合体の種類、極性基含有オレフィン共重合体と線状低密度ポリエチレンの配合比率をそれぞれ変更して製造することにより実施例3-2~3-32の樹脂組成物を製造した。原料樹脂の配合比率、及び接着強度測定結果を表7、表8に示す。
実施例3-1に記載の方法のうち、極性基含有オレフィン共重合体の種類、極性基含有オレフィン共重合体と線状低密度ポリエチレンの配合比率をそれぞれ変更して製造することにより実施例3-2~3-32の樹脂組成物を製造した。原料樹脂の配合比率、及び接着強度測定結果を表7、表8に示す。
〔実施例3-33〕
極性基含有オレフィン共重合体(A’-3-7)3.0gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG)7.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表10に示す。
極性基含有オレフィン共重合体(A’-3-7)3.0gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG)7.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表10に示す。
〔実施例3-34〕
極性基含有オレフィン共重合体(A’-3-8)3.0gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG)7.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表10に示す。
極性基含有オレフィン共重合体(A’-3-8)3.0gと線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30FG)7.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表10に示す。
〔実施例3-35~実施例3-39〕
実施例3-34の線状低密度ポリエチレンを表9に示したオレフィン系樹脂に変更した以外は実施例3-34と同様の方法で実施例3-35~3-39の樹脂組成物を製造し、接着強度を測定した。各オレフィン系樹脂のメーカー、商品名、グレード、重合に供されたモノマー種、樹脂物性を表9に、接着強度測定結果を表10に示す。表9中の「LLDPE」は線状低密度ポリエチレンをそれぞれ表す。
実施例3-34の線状低密度ポリエチレンを表9に示したオレフィン系樹脂に変更した以外は実施例3-34と同様の方法で実施例3-35~3-39の樹脂組成物を製造し、接着強度を測定した。各オレフィン系樹脂のメーカー、商品名、グレード、重合に供されたモノマー種、樹脂物性を表9に、接着強度測定結果を表10に示す。表9中の「LLDPE」は線状低密度ポリエチレンをそれぞれ表す。
〔比較例3-1~比較例3-10〕
実施例3-1に記載の方法のうち、極性基含有オレフィン共重合体の種類を極性基含有オレフィン共重合体(A’-3-9)とし、極性基含有オレフィン共重合体の種類、極性基含有オレフィン共重合体と線状低密度ポリエチレンの配合比率をそれぞれ変更して製造することにより比較例3-1~比較例3-10の樹脂組成物を製造した。原料樹脂の配合比率、及び接着強度測定結果を表11に示す。
実施例3-1に記載の方法のうち、極性基含有オレフィン共重合体の種類を極性基含有オレフィン共重合体(A’-3-9)とし、極性基含有オレフィン共重合体の種類、極性基含有オレフィン共重合体と線状低密度ポリエチレンの配合比率をそれぞれ変更して製造することにより比較例3-1~比較例3-10の樹脂組成物を製造した。原料樹脂の配合比率、及び接着強度測定結果を表11に示す。
〔比較例3-11〕
線状低密度ポリエチレン(日本ポリエチレン社製、商品名:ノバテック(F30FG)、表中では「LLDPE」と表記する)10gを、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表11に示す。
線状低密度ポリエチレン(日本ポリエチレン社製、商品名:ノバテック(F30FG)、表中では「LLDPE」と表記する)10gを、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、樹脂組成物のペレットを製造した。得られた樹脂組成物のペレットを上記の接着強度測定に供し、接着強度を測定した。接着強度測定結果を表11に示す。
〔実施例と比較例の結果の考察〕
実施例3-1~3-7は極性基含有オレフィン共重合体(A’-3-1)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-1)の配合比率とポリアミドとの接着強度を図4にまとめた。
また、比較例3-1,3-2,3-3,3-5,3-7,3-9,3-10は高圧法プロセスによって製造された極性基含有オレフィン共重合体(A’-3-9)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-9)の配合比率とポリアミドとの接着強度を図5にまとめた。極性基含有オレフィン共重合体(A’-3-9)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-9)の配合比率が多い領域では十分な接着性を示すが、配合比率の減少に伴い接着性が急激に低下する。一方、極性基含有オレフィン共重合体(A’-3-1)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-1)配合比率によらず高い接着性が維持されている。この結果により、遷移金属触媒の存在下で製造された極性基含有オレフィン共重合体とオレフィン系樹脂を特定範囲の配合比率でブレンドした樹脂組成物であれば、オレフィン系樹脂の配合比率を高めても、極性の高い素材に対して十分な接着性を有することを示した。
実施例3-1~3-7は極性基含有オレフィン共重合体(A’-3-1)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-1)の配合比率とポリアミドとの接着強度を図4にまとめた。
また、比較例3-1,3-2,3-3,3-5,3-7,3-9,3-10は高圧法プロセスによって製造された極性基含有オレフィン共重合体(A’-3-9)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-9)の配合比率とポリアミドとの接着強度を図5にまとめた。極性基含有オレフィン共重合体(A’-3-9)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-9)の配合比率が多い領域では十分な接着性を示すが、配合比率の減少に伴い接着性が急激に低下する。一方、極性基含有オレフィン共重合体(A’-3-1)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-1)配合比率によらず高い接着性が維持されている。この結果により、遷移金属触媒の存在下で製造された極性基含有オレフィン共重合体とオレフィン系樹脂を特定範囲の配合比率でブレンドした樹脂組成物であれば、オレフィン系樹脂の配合比率を高めても、極性の高い素材に対して十分な接着性を有することを示した。
実施例3-1~実施例3-23、および、実施例3-29~実施例3-32は極性基含有量が異なる極性基含有オレフィン共重合体(A’-3―1、A’-3-2、A’-3-3、A’-3-5、A’-3-6)のそれぞれ100重量部に対して、LLDPEをさまざまな配合比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-2)の配合比率とポリアミドとの接着強度を図6に、極性基含有オレフィン共重合体(A’-3-3)の配合比率とポリアミドとの接着強度を図7に、極性基含有オレフィン共重合体(A’-3-5)の配合比率とポリアミドとの接着強度を図8に、それぞれまとめた。これら樹脂組成物は、極性基含有オレフィン共重合体の配合比率によらず十分な接着性を示している。この事実は、本発明に係る樹脂組成物は、配合する極性基含有オレフィン共重合体の極性基構造単位量がいずれであっても、十分な接着性を発現することを明らかにした。
実施例3-33~実施例3-39は極性基含有オレフィン共重合体100重量部に対し、各種オレフィン系樹脂が233重量部配合されている。オレフィン樹脂のMFR、密度、重合に供されたモノマー種がいずれの物であっても、得られるオレフィン系樹脂組成物はポリアミドに対し十分な接着性を示している。この事実は、オレフィン系樹脂がどのような種類、物性のものであっても、特定範囲の配合比率で極性基含有オレフィン共重合体とオレフィン系樹脂がブレンドされていれば、十分な接着性を発現すること示している。
実施例3-24~3-28は極性基含有オレフィン共重合体(A’-3-4)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-4)の配合比率とフッ素樹脂との接着強度を図9にまとめた。また、比較例3-2,3-4,3-6,3-8,3-10は高圧法プロセスによって製造された極性基含有オレフィン共重合体(A’-3-9)100重量部に対し線状低密度ポリエチレン(LLDPE)をそれぞれの比率で配合した樹脂組成物である。極性基含有オレフィン共重合体(A’-3-9)の配合比率とフッ素樹脂との接着強度を図10にまとめた。極性基含有オレフィン共重合体(A’-3-9)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-9)の配合比率が多い領域では十分な接着性を示すが、配合比率の減少に伴い接着性が急激に低下する。一方、極性基含有オレフィン共重合体(A’-3-4)を配合した樹脂組成物は、極性基含有オレフィン共重合体(A’-3-4)配合比率によらず高い接着性が維持されている。この事実は、遷移金属触媒の存在下で製造された極性基含有オレフィン共重合体とオレフィン系樹脂を特定範囲の配合比率でブレンドした樹脂組成物であれば、オレフィン系樹脂の配合比率を高めても、極性の高い素材に対して十分な接着性を有することを示し、かつ、この傾向が特定の極性の高い基材との組み合わせの場合に限定されないことを示した。
直鎖構造を有する極性基含有オレフィン共重合体にオレフィン系樹脂をブレンドしたオレフィン系樹脂組成物の接着性が、極性基含有オレフィン共重合体とオレフィン系樹脂との配合比率によらずに維持される理由は明確ではないが、おそらく、オレフィン系樹脂組成物中に含まれる極性基含有オレフィン共重合体の分子構造が直鎖構造であることが必要であると考えられる。極性の高い異種材料とオレフィン共重合体との接着性能は、JIS K6854-1~4(1999年)接着材-はくり接着強さ試験法」で例示されるような剥離試験により測定される数値で評価されるが、この方法で測定される数値は、異種材料同士の界面での化学的、及び物理的な結合力と、材料の凝集力若しくは変形する際の応力との合算であると考えられる。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体は、短鎖分岐と長鎖分岐を過多に含む、分岐の多い分子構造を有している。この様な構造を持ったオレフィン系樹脂は、直鎖構造を有するオレフィン系樹脂と比較して、その機械物性や凝集力、耐衝撃性等が劣ることが知られており、極性基含有オレフィン共重合体においても、その傾向を有する事が推察される。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体が異種材料と十分な化学結合を有したとしても、凝集力は直鎖構造を有する極性基含有オレフィン共重合体よりも劣るものとなり、結果として接着性は低下すると考えられる。
〔実験例4〕オレフィン系樹脂組成物(D’)の評価
(1)極性基含有オレフィン共重合体(A’)中の極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
(3)融点
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
(4)接着強度
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
(5)動的粘弾性測定によるδ(G*=0.1MPa)測定
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
(6)アルミニウム(Al)量
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
(7)融解熱量ΔH
融解熱量ΔH(J/g)は、示差走査型熱量計(DSC)を用いて、融点測定と同様の条件で測定した。詳しくは前述している。
融解熱量ΔH(J/g)は、示差走査型熱量計(DSC)を用いて、融点測定と同様の条件で測定した。詳しくは前述している。
(8)メルトフローレート(MFR)
MFRの測定は、実験例3と同様の工程を経る事により測定した。
MFRの測定は、実験例3と同様の工程を経る事により測定した。
(9)密度
密度の測定は、実験例3と同様の工程を経る事により測定した。
密度の測定は、実験例3と同様の工程を経る事により測定した。
〔製造例4-1〕極性基含有オレフィン共重合体(A’-4-1)の製造
Drent系配位子(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
Drent系配位子(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
錯体の形成
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合
実施例1-2と同様の方法により、エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合を行なった。
重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。
実施例1-2と同様の方法により、エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合を行なった。
重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。
〔製造例4-2〕極性基含有オレフィン共重合体(A’-4-2)の製造
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
SHOP系配位子(B-27DM)の合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
錯体の形成
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を3.0ml(30μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保ち、圧力が保持されるように連続的にエチレンを供給した。60分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有オレフィン共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を38g回収した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。表12において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を54.9mg(0.15mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を3.0ml(30μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保ち、圧力が保持されるように連続的にエチレンを供給した。60分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有オレフィン共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を38g回収した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。表12において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔製造例4-4~製造例4-7〕極性基含有オレフィン共重合体(A’-4-4~A’-4-7)の製造
製造例4-2に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例4-4~製造例4-7の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。
製造例4-2に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例4-4~製造例4-7の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。
〔製造例4-3、製造例4-8〕極性基含有オレフィン共重合体(A’-4-3、A’-4-8)の製造
製造例4-2に記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例4-3、製造例4-8の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
製造例4-2に記載の方法を基本とし、重合開始後にエチレンの補給を行わないで重合を行った。その際、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例4-3、製造例4-8の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表12に、物性測定の結果を表13に記載した。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
極性基含有オレフィン共重合体(A’-4-9)
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表13に記載した。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表13に記載した。
極性基含有オレフィン共重合体(A’-4-10)
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表13に記載した。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファースト2C)である。物性測定の結果を表13に記載した。
〔実施例4-1〕
極性基含有オレフィン共重合体(A’-4-1)7.0gとオレフィン系樹脂として高密度ポリエチレン(日本ポリエチレン社製、商品名:HS330P)3.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状のオレフィン系樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却したオレフィン系樹脂組成物をペレット状に裁断して、オレフィン系樹脂組成物のペレットを製造し、各種物性試験に供した。使用したポリエチレンのメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表14に、オレフィン系樹脂組成物中の配合比率を表15に、物性評価結果を表16に示す。
なお、表14中の「HDPE」は高密度ポリエチレンを、「LLDPE」は線状低密度ポリエチレンを、「PP」はポリプロピレンを、「COC」は環状オレフィンコポリマーをそれぞれ表している。
極性基含有オレフィン共重合体(A’-4-1)7.0gとオレフィン系樹脂として高密度ポリエチレン(日本ポリエチレン社製、商品名:HS330P)3.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状のオレフィン系樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却したオレフィン系樹脂組成物をペレット状に裁断して、オレフィン系樹脂組成物のペレットを製造し、各種物性試験に供した。使用したポリエチレンのメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表14に、オレフィン系樹脂組成物中の配合比率を表15に、物性評価結果を表16に示す。
なお、表14中の「HDPE」は高密度ポリエチレンを、「LLDPE」は線状低密度ポリエチレンを、「PP」はポリプロピレンを、「COC」は環状オレフィンコポリマーをそれぞれ表している。
〔実施例4-2~実施例4-12、比較例4-1~比較例4-4〕
実施例4-1に記載の方法のうち、極性基含有オレフィン共重合体の種類、オレフィン系樹脂の種類、配合比率をそれぞれ変更して製造することにより実施例4-2~実施例4-12、比較例4-1~比較例4-4の樹脂組成物を製造した。各オレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、樹脂物性を表14に、原料樹脂の配合比率を表15に、物性評価結果を表16に示す。
実施例4-1に記載の方法のうち、極性基含有オレフィン共重合体の種類、オレフィン系樹脂の種類、配合比率をそれぞれ変更して製造することにより実施例4-2~実施例4-12、比較例4-1~比較例4-4の樹脂組成物を製造した。各オレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、樹脂物性を表14に、原料樹脂の配合比率を表15に、物性評価結果を表16に示す。
〔実施例と比較例の結果の考察〕
実施例4-1~実施例4-12は極性基含有オレフィン共重合体(A’-4-1、A’-4-2、A’-4-3、A’-4-4、A’-4-5、A’-4-6、A’-4-7、A’-4-8)各々100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であり、ポリアミドに対して十分な接着性を示し、融点も119℃以上と十分に優れた耐熱性を示している。更に、融点が90℃以上のオレフィン系樹脂をブレンドした実施例4-1~実施例4-3、実施例4-5~実施例4-12は、融点が119℃以上で、かつ融解熱量ΔHが80J/g以上とより優れた耐熱性を示した。
オレフィン系樹脂として密度が0.890g/cm3を下回るものを用いた比較例4-1、比較例4-2は融点が119℃を下回っており、耐熱性が劣るものとなっている。さらには、融解熱量ΔHも80J/gを下回っており、より耐熱性に劣るものとなっている。
比較例4-3、比較例4-4は、同様に高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体(A’-4-9、A’-4-10)100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であるが、耐熱性こそ十分なものの、ポリアミドとの接着性は非常に低かった。この事実より、本発明の極性基含有オレフィン共重合体は、高圧ラジカル重合法プロセスによって製造された極性基含有オレフィン共重合体と比較し、密度が0.890g/cm3以上のオレフィン系樹脂を配合せしめた場合の接着性能の低下が小さく、本発明に係る極性基含有オレフィン共重合体100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部ブレンドしさえすれば、接着性と耐熱性をバランスできる事を示した。
実施例4-1~実施例4-12は極性基含有オレフィン共重合体(A’-4-1、A’-4-2、A’-4-3、A’-4-4、A’-4-5、A’-4-6、A’-4-7、A’-4-8)各々100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であり、ポリアミドに対して十分な接着性を示し、融点も119℃以上と十分に優れた耐熱性を示している。更に、融点が90℃以上のオレフィン系樹脂をブレンドした実施例4-1~実施例4-3、実施例4-5~実施例4-12は、融点が119℃以上で、かつ融解熱量ΔHが80J/g以上とより優れた耐熱性を示した。
オレフィン系樹脂として密度が0.890g/cm3を下回るものを用いた比較例4-1、比較例4-2は融点が119℃を下回っており、耐熱性が劣るものとなっている。さらには、融解熱量ΔHも80J/gを下回っており、より耐熱性に劣るものとなっている。
比較例4-3、比較例4-4は、同様に高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体(A’-4-9、A’-4-10)100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であるが、耐熱性こそ十分なものの、ポリアミドとの接着性は非常に低かった。この事実より、本発明の極性基含有オレフィン共重合体は、高圧ラジカル重合法プロセスによって製造された極性基含有オレフィン共重合体と比較し、密度が0.890g/cm3以上のオレフィン系樹脂を配合せしめた場合の接着性能の低下が小さく、本発明に係る極性基含有オレフィン共重合体100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部ブレンドしさえすれば、接着性と耐熱性をバランスできる事を示した。
直鎖構造を有する極性基含有オレフィン共重合体に密度が0.890g/cm3以上のオレフィン系樹脂をブレンドしたオレフィン系樹脂組成物は接着性能の低下が小さく、十分な接着性を有する理由は明確ではないが、おそらく、オレフィン系樹脂組成物中に含まれる極性基含有オレフィン共重合体の分子構造が直鎖構造であることが必要であると考えられる。極性の高い異種材料とオレフィン共重合体との接着性能は、JIS K6854-1~4(1999年)「接着材-はくり接着強さ試験法」で例示されるような剥離試験により測定される数値で評価されるが、この方法で測定される数値は、異種材料同士の界面での化学的、及び物理的な結合力と、材料の凝集力若しくは変形する際の応力との合算であると考えられる。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体は、短鎖分岐と長鎖分岐を過多に含む、分岐の多い分子構造を有している。この様な構造を持ったオレフィン系樹脂は、直鎖構造を有するオレフィン系樹脂と比較して、その機械物性や凝集力、耐衝撃性等が劣ることが知られており、極性基含有オレフィン共重合体においても、その傾向を有する事が推察される。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体が異種材料と十分な化学結合を有したとしても、凝集力は直鎖構造を有する極性基含有オレフィン共重合体よりも劣るものとなり、結果として接着性は低下すると考えられる。
実施例4-8、実施例4-11、実施例4-12は極性基含有オレフィン共重合体100重量部に対し、密度が0.890g/cm3以上のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であり、フッ素樹脂に対しても十分な接着性を示している。この事実は、本発明のオレフィン系樹脂組成物は特定の極性の高い素材とのみ接着性を有しているのではなく、各種極性の高い素材とも十分な接着性を有することを明らかにした。
実施例4-1~実施例4-12は極性基含有オレフィン共重合体100重量部に対し、密度が0.890g/cm3以上であるオレフィン系樹脂が配合されている。オレフィン系樹脂のMFR、重合に供されたモノマー種、配合割合がいずれであっても、得られるオレフィン系樹脂組成物は十分な耐熱性と極性の高い樹脂との優れた接着性をバランスできる事を示した。この事実は、本発明の極性基含有オレフィン共重合体に配合するオレフィン系樹脂の密度が0.890g/cm3以上であれさえすれば、オレフィン系樹脂組成物の耐熱性と接着性がバランスできる事を表している。
〔実験例5〕オレフィン系樹脂組成物(D”)の評価
(1)極性基含有オレフィン共重合体(A’)中の極性基含有構造単位量
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
極性基含有構造単位量は、1H-NMRスペクトルを用いて求めた。具体的な方法は、実験例1および前述の方法によって実施した。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。具体的な方法は、実験例1および前述の方法によって実施した。
(3)融点
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。実験例1と同様の工程を経る事により測定した。
(4)接着強度
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
接着強度は、測定サンプルのプレス板と各種基材フィルムをそれぞれ調製し、その2種を重ね合わせて熱プレスすることによって積層体を作製し、剥離試験を行うことによって測定した。実験例1と同様の工程を経る事により測定した。
(5)接着強度比
接着強度測定方法によって、各実施例および比較例の樹脂組成物と、それら樹脂組成物に含まれる極性基含有オレフィン共重合体、それぞれの接着強度を測定し、樹脂組成物の接着強度をそれら樹脂組成物に含まれる極性基含有オレフィン共重合体の接着強度で除した値を接着強度比として算出した。
この値は、極性基含有オレフィン共重合体にオレフィン系樹脂をブレンドする事による接着性の向上効果の指標となっており、この値が「1」より大きければ、極性基含有オレフィン共重合体にオレフィン系樹脂をブレンドする事によって接着性が向上したことを示している。
接着強度測定方法によって、各実施例および比較例の樹脂組成物と、それら樹脂組成物に含まれる極性基含有オレフィン共重合体、それぞれの接着強度を測定し、樹脂組成物の接着強度をそれら樹脂組成物に含まれる極性基含有オレフィン共重合体の接着強度で除した値を接着強度比として算出した。
この値は、極性基含有オレフィン共重合体にオレフィン系樹脂をブレンドする事による接着性の向上効果の指標となっており、この値が「1」より大きければ、極性基含有オレフィン共重合体にオレフィン系樹脂をブレンドする事によって接着性が向上したことを示している。
(6)動的粘弾性測定によるδ(G*=0.1MPa)測定
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
動的粘弾性測定によるδ(G*=0.1MPa)測定は、実験例1と同様の工程を経る事により測定した。
(7)アルミニウム(Al)量
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
極性基含有オレフィン共重合体(A’)に含まれるアルミニウム(Al)量は、実験例1と同様の工程を経る事により測定した。
(8)メルトフローレート(MFR)
MFRは、実験例3と同様の工程を経る事により測定した。
MFRは、実験例3と同様の工程を経る事により測定した。
(9)密度
密度は、実験例3と同様の工程を経る事により測定した。
密度は、実験例3と同様の工程を経る事により測定した。
〔製造例5-1〕極性基含有オレフィン共重合体(A’-5-1)の製造
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)の合成
実施例1-1と同様の方法により、Drent系配位子:(2-イソプロピル-フェニル)(2’-メトキシ-フェニル)(2’’-スルホニル-フェニル)ホスフィン(I)を得た。
錯体の形成
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
充分に窒素置換した30mLフラスコに、100μmolのパラジウムビスジベンジリデンアセトンとリンスルホン酸配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを超音波振動機にて10分間処理することで、触媒スラリーを調製した。
エチレンと4-ビニル―1,2-エポキシシクロへキサンとの共重合
内容積2.4リットルの攪拌翼付きオートクレーブを精製窒素で置換したのち、乾燥トルエン(1.0リットル)と、4-ビニル―1,2-エポキシシクロへキサンを20.9ml(0.2mol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2MPaになるよう圧力が2.3MPaまでエチレンを供給した。圧力調整終了後、遷移金属錯体(I-Pd錯体)50μmolを窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給し、240分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下60℃で恒量になるまで乾燥を行なった。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、配位子とパラジウムビスジベンジリデンアセトンが1対1で反応してパラジウム錯体を形成しているとして計算した。
内容積2.4リットルの攪拌翼付きオートクレーブを精製窒素で置換したのち、乾燥トルエン(1.0リットル)と、4-ビニル―1,2-エポキシシクロへキサンを20.9ml(0.2mol)仕込んだ。攪拌しながらオートクレーブを100℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2MPaになるよう圧力が2.3MPaまでエチレンを供給した。圧力調整終了後、遷移金属錯体(I-Pd錯体)50μmolを窒素で圧入して共重合を開始させた。反応中は温度を100℃に保ち、圧力が保持されるように連続的にエチレンを供給し、240分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下60℃で恒量になるまで乾燥を行なった。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。なお、重合活性は、配位子とパラジウムビスジベンジリデンアセトンが1対1で反応してパラジウム錯体を形成しているとして計算した。
〔製造例5-2〕極性基含有オレフィン共重合体(A’-5-2)の製造
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を得た。
SHOP系配位子:2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)の合成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)を得た。
錯体の形成
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)とビス-1,5-シクロオクタジエンニッケル(0)(Ni(COD)2)との錯体溶液を得た。
実施例1-16と同様の方法により、2-(2,6-ジフェノキシフェニル)(2-フェノキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(B-114)とビス-1,5-シクロオクタジエンニッケル(0)(Ni(COD)2)との錯体溶液を得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
実施例1-16と同様の方法により、エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合体を得た。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
実施例1-16と同様の方法により、エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合体を得た。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
〔製造例5-3〕極性基含有オレフィン共重合体(A’-5-3)の製造
SHOP系配位子:B-27DMの合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
SHOP系配位子:B-27DMの合成
実施例1-4と同様の方法で、SHOP系配位子(B-27DM)を合成した。
錯体の形成
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
実施例1-4と同様の方法で、B-27DMとNi(COD)2の反応生成物を得た。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.5ml(25μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保った。170分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を33g回収した。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを105℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.5ml(25μmol)を窒素で圧入して共重合を開始させた。反応中は温度を105℃に保った。170分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を33g回収した。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。この重合方法においてはエチレンの補給を行わない為、重合終了時のエチレン分圧が、重合開始時と比較して低下する。
なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔製造例5-4〕極性基含有オレフィン共重合体(A’-5-4)の製造
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを50℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.0ml(20μmol)を窒素で圧入して共重合を開始させた。反応中は温度を50℃に保ち、圧力が保持されるように連続的にエチレンを供給した。50分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を41g回収した。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。
なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
エチレンと4-ヒドロキシブチルアクリレートグリシジルエーテル(4-HBAGE)との共重合
内容積2.4リットルの攪拌翼付きオートクレーブに、乾燥トルエンを1000mlと、トリn-オクチルアルミニウム(TNOA)を36.6mg(0.10mmol)及び4-HBAGEを2.7ml(15mmol)仕込んだ。攪拌しながらオートクレーブを50℃に昇温し、窒素を0.3MPaまで供給した後、エチレン分圧が2.5MPaになるよう圧力が2.8MPaまでエチレンを供給した。温度と圧力が安定した後、先に調製したB-27DM‐Ni錯体溶液を2.0ml(20μmol)を窒素で圧入して共重合を開始させた。反応中は温度を50℃に保ち、圧力が保持されるように連続的にエチレンを供給した。50分間重合させた後、冷却、脱圧して反応を停止した。反応溶液は、1リットルのアセトンに投入してポリマーを析出させた後、ろ過洗浄を行い回収し、さらに減圧下、60℃で恒量になるまで乾燥を行なうことで、極性基含有共重合体中に残存していた極性基含有モノマーを取り除き、最終的に極性基含有オレフィン共重合体を41g回収した。
重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。表17において重合活性は、重合に用いた錯体1molあたりの共重合体収量(g)を表す。
なお、重合活性は、B-27DMとNi(COD)2が1対1で反応してニッケル錯体を形成しているとして計算した。
また、共重合に用いた4-HBAGEは、モレキュラーシーブ3Aにより脱水したものを使用した。
〔製造例5-5~製造例5-7〕極性基含有オレフィン共重合体(A’-5-5~A’-5-7)の製造
製造例5-4に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例5-5~製造例5-7の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
製造例5-4に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例5-5~製造例5-7の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
〔製造例5-8〕極性基含有オレフィン共重合体(A’-5-8)の製造
製造例5-3に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例5-8の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
製造例5-3に記載の方法のうち、配位子量、極性基含有モノマー濃度、重合温度、重合時間、をそれぞれ変更して重合することにより、製造例5-8の極性基含有オレフィン共重合体を調製した。重合の条件及び重合結果を表17に、物性測定の結果を表18に記載した。
極性基含有オレフィン共重合体(A’-5-9)
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表18に記載した。
エチレンとグルシジルメタクリレートの共重合体であって、高圧法プロセスによって製造された極性基含有オレフィン共重合体(住友化学(株)製 銘柄:ボンドファーストE)である。物性測定の結果を表18に記載した。
〔実施例5-1〕
極性基含有オレフィン共重合体(A’-5-1)7.0gとエチレン-ブテン共重合体(三井化学社製、商品名:タフマー(A-4085S))3.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、オレフィン系樹脂組成物のペレットを製造し、得られたオレフィン系樹脂組成物を各種物性試験に供した。使用したオレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表19に、オレフィン系樹脂組成物中の配合比率を表20に、物性評価結果を表21に示す。
表19中の、「LDPE」は高圧法低密度ポリエチレン、「LLDPE」は線状低密度ポリエチレン、「EEA」はエチレン-エチルアクリレート共重合体、「EVA」はエチレン-酢酸ビニル共重合体、「EPR」はエチレンプロピレンゴムをそれぞれ表す。
極性基含有オレフィン共重合体(A’-5-1)7.0gとエチレン-ブテン共重合体(三井化学社製、商品名:タフマー(A-4085S))3.0gとをドライブレンドし、小型二軸混練機(DSM Xplore社製 型式:MC15)に投入し、5分間溶融混練した。その際のバレル温度は180℃、スクリュー回転数は100rpmとした。5分経過後、樹脂吐出口から棒状の樹脂組成物を押出し、ステンレス製トレーの上に載せ、室温で冷却して固化させた。冷却した樹脂組成物をペレット状に裁断して、オレフィン系樹脂組成物のペレットを製造し、得られたオレフィン系樹脂組成物を各種物性試験に供した。使用したオレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表19に、オレフィン系樹脂組成物中の配合比率を表20に、物性評価結果を表21に示す。
表19中の、「LDPE」は高圧法低密度ポリエチレン、「LLDPE」は線状低密度ポリエチレン、「EEA」はエチレン-エチルアクリレート共重合体、「EVA」はエチレン-酢酸ビニル共重合体、「EPR」はエチレンプロピレンゴムをそれぞれ表す。
〔実施例5-2~実施例5-12、比較例5-1~比較例5-3〕
実施例5-1に記載の方法のうち、極性基含有オレフィン共重合体、オレフィン系樹脂の種類、極性基含有オレフィン共重合体とオレフィン系樹脂の配合比率をそれぞれ変更して製造することにより実施例5-2~実施例5-12、比較例5-1~比較例5-3の樹脂組成物を製造した。使用したオレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表19に、オレフィン系樹脂組成物中の配合比率を表20に、物性評価結果を表21に示す。
実施例5-1に記載の方法のうち、極性基含有オレフィン共重合体、オレフィン系樹脂の種類、極性基含有オレフィン共重合体とオレフィン系樹脂の配合比率をそれぞれ変更して製造することにより実施例5-2~実施例5-12、比較例5-1~比較例5-3の樹脂組成物を製造した。使用したオレフィン系樹脂のメーカー、グレード、商品名、樹脂分類、重合に供されたモノマー種、および樹脂物性を表19に、オレフィン系樹脂組成物中の配合比率を表20に、物性評価結果を表21に示す。
〔実施例と比較例の結果の考察〕
実施例5-1、実施例5-3~実施例5-8、実施例5-10、実施例5-11は極性基含有オレフィン共重合体(A’-5-1、A’-5-3、A’-5-4、A’-5-6、A’-5-7)各々100重量部に対し、融点が124℃以下のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であり、フッ素樹脂に対して十分に優れた接着性を示し、接着強度比も1.0以上と十分な接着性向上効果を示している。更に、融点が110℃以下のオレフィン系樹脂をブレンドした実施例5-1、実施例5-3~実施例5-8、実施例5-11は、フッ素樹脂に対する接着強度比が2.0以上であり飛躍的な接着性向上効果を示した。
オレフィン系樹脂として融点が124℃を上回るものを用いた比較例5-1はフッ素樹脂に対する接着性が非常に弱く、また接着強度比も1.0を下回っており、接着性向上効果が見られなかった。
比較例5-2、比較例5-3は、同様に高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体(A’-5-9)100重量部に対し、特定範囲の融点であるオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であるが、フッ素樹脂に対する接着強度は非常に低く、接着強度比も劣っていた。この事実より、本発明の極性基含有オレフィン共重合体は、高圧ラジカル重合法プロセスによって製造された極性基含有オレフィン共重合体と比較し、融点が124℃以下のオレフィン系樹脂を配合せしめた場合の接着性能の向上が大きく、本発明に係る極性基含有オレフィン共重合体100重量部に対し、融点124℃以下のオレフィン系樹脂を1~99,900重量部ブレンドしさえすれば、高い接着性向上効果が得られることが示された。
実施例5-1、実施例5-3~実施例5-8、実施例5-10、実施例5-11は極性基含有オレフィン共重合体(A’-5-1、A’-5-3、A’-5-4、A’-5-6、A’-5-7)各々100重量部に対し、融点が124℃以下のオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であり、フッ素樹脂に対して十分に優れた接着性を示し、接着強度比も1.0以上と十分な接着性向上効果を示している。更に、融点が110℃以下のオレフィン系樹脂をブレンドした実施例5-1、実施例5-3~実施例5-8、実施例5-11は、フッ素樹脂に対する接着強度比が2.0以上であり飛躍的な接着性向上効果を示した。
オレフィン系樹脂として融点が124℃を上回るものを用いた比較例5-1はフッ素樹脂に対する接着性が非常に弱く、また接着強度比も1.0を下回っており、接着性向上効果が見られなかった。
比較例5-2、比較例5-3は、同様に高圧ラジカル法プロセスによって製造された極性基含有オレフィン共重合体(A’-5-9)100重量部に対し、特定範囲の融点であるオレフィン系樹脂を1~99,900重量部の配合比率で適宜ブレンドしたオレフィン系樹脂組成物であるが、フッ素樹脂に対する接着強度は非常に低く、接着強度比も劣っていた。この事実より、本発明の極性基含有オレフィン共重合体は、高圧ラジカル重合法プロセスによって製造された極性基含有オレフィン共重合体と比較し、融点が124℃以下のオレフィン系樹脂を配合せしめた場合の接着性能の向上が大きく、本発明に係る極性基含有オレフィン共重合体100重量部に対し、融点124℃以下のオレフィン系樹脂を1~99,900重量部ブレンドしさえすれば、高い接着性向上効果が得られることが示された。
直鎖構造を有する極性基含有オレフィン共重合体に融点が124℃以下のオレフィン系樹脂をブレンドしたオレフィン系樹脂組成物の接着性が、極性基含有オレフィン共重合体単体と比較して向上する理由は明確ではないが、おそらく、オレフィン系樹脂組成物中に含まれる極性基含有オレフィン共重合体の分子構造が直鎖構造であることが必要であると考えられる。極性の高い異種材料とオレフィン共重合体との接着性能は、JIS K6854-1~4(1999年)「接着材-はくり接着強さ試験法」で例示されるような剥離試験により測定される数値で評価されるが、この方法で測定される数値は、異種材料同士の界面での化学的、及び物理的な結合力と、材料の凝集力若しくは変形する際の応力との合算であると考えられる。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体は、短鎖分岐と長鎖分岐を過多に含む、分岐の多い分子構造を有している。この様な構造を持ったオレフィン系樹脂は、直鎖構造を有するオレフィン系樹脂と比較して、その機械物性や凝集力、耐衝撃性等が劣ることが知られており、極性基含有オレフィン共重合体においても、その傾向を有する事が推察される。高圧ラジカル重合法プロセスで製造された極性基含有オレフィン共重合体が異種材料と十分な化学結合を有したとしても、凝集力は直鎖構造を有する極性基含有オレフィン共重合体よりも劣るものとなり、結果として接着性は低下すると考えられる。
実施例5-2、実施例5-9、実施例5-12は極性基含有オレフィン共重合体(A’-5-2、A’-5-5、A’-5-8)各々に対し、融点が124℃以下のオレフィン系樹脂を特定範囲の配合比率でブレンドしたオレフィン系樹脂組成物であり、ポリアミドに対して十分な接着性を示し、接着強度比が2.0以上と飛躍的な接着性向上効果を示した。この事実より、直鎖構造を有する極性基含有オレフィン共重合体に融点が124℃以下のオレフィン系樹脂をブレンドすることで得られるオレフィン系樹脂組成物の接着性向上効果は、特定の基材に限定されないことを示した。
実施例5-1~実施例5-12は極性基含有オレフィン共重合体に対し、融点が124℃以下のオレフィン系樹脂が配合されている。オレフィン系樹脂のMFR、重合に供されたモノマー種、配合割合がいずれであっても、オレフィン系樹脂組成物に対し、十分な接着性向上効果が得られる事を示した。
以上の各実施例の良好な結果、及び各比較例との対照により、本発明の構成(発明特定事項)の有意性と合理性及び従来技術に対する卓越性が明確にされている。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2013年3月27日出願の日本特許出願(特願2013-067402)、2013年3月27日出願の日本特許出願(特願2013-067409)、2013年6月26日出願の日本特許出願(特願2013-133857)、2014年2月28日出願の日本特許出願(特願2014-039324)、2014年2月28日出願の日本特許出願(特願2014-039335)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の本発明の極極性基含有オレフィン共重合体(A)、多元系極性オレフィン共重合体(B)、極性基含有オレフィン共重合体とオレフィン系樹脂とを含むオレフィン系樹脂組成物(D)、オレフィン系樹脂組成物(D’)、およびオレフィン系樹脂組成物(D”)は、他の基材との高い接着性を発現し、工業的に有用な積層体の製造を可能にした。本発明によって製造することが可能な樹脂組成物は、接着性だけでなく機械的かつ熱的な物性に優れ、有用な多層成形体として応用可能であり、各種の基材に積層されて、広く包装材、包装容器分野、繊維、パイプ、燃料タンク、中空容器、ドラム缶などの産業資材分野、止水材料などの土木分野、電子・家電部材などの電子分野、電線・ケーブルなどの電線分野などにおいて活用される。
Claims (31)
- エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%と、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーの少なくとも1種に由来する構造単位量が20~0.001mol%とを含む極性基含有オレフィン共重合体であって、遷移金属触媒の存在下に共重合することで得られ、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基) - 示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点が50℃~140℃である、請求項1に記載の極性基含有オレフィン共重合体。
- 極性基含有オレフィン共重合体中に含まれるアルミニウム(Al)量が、共重合体1g当たり0~100,000μgである、請求項1または請求項2に記載の極性基含有オレフィン共重合体。
- ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、1,000~2,000,000である、請求項1~請求項3のいずれか1項に記載の極性基含有オレフィン共重合体。
- ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)が、33,000~2,000,000である、請求項1~請求項4のいずれか1項に記載の極性基含有オレフィン共重合体。
- 前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、請求項1~請求項5のいずれか1項に記載の極性基含有オレフィン共重合体。
- 極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、請求項1~請求項6のいずれか1項に記載の極性基含有オレフィン共重合体。
- エチレン及び炭素数3~10のα-オレフィンから選ばれる一種又は二種以上の非極性モノマー(X1)単位とエポキシ基を有するモノマーから選ばれる一種又は二種以上の極性モノマー(Z1)単位と、任意の非環状または環状モノマー(Z2)単位とからなることを特徴とする、多元系極性基含有オレフィン共重合体(但し、X1、Z1、Z2の各単位を各一種以上必須で含む。)であって、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である多元系極性基含有オレフィン共重合体。
- ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比が1.5~3.5の範囲である、請求項8に記載の多元系極性基含有オレフィン共重合体。
- 示差走査型熱量測定(DSC)法により測定される吸収曲線の最大ピ-ク位置の温度で表される、融点Tm(℃)が50<Tm<128-6.0[Z1](但し、Z1に由来するモノマー単位を[Z1](mol%)とする。)である、請求項8または請求項9に記載の多元系極性基含有オレフィン共重合体。
- エポキシ基を有するモノマーから選ばれる極性モノマー(Z1)単位が0.001~20.000mol%である、請求項8~請求項10のいずれか1項に記載の多元系極性基含有オレフィン共重合体。
- 非極性モノマー(X1)単位がエチレンである請求項8~請求項11のいずれか1項に記載の多元系極性基含有オレフィン共重合体。
- 前記遷移金属触媒が、キレート性配位子と第5~11族金属とを含む遷移金属である、請求項8~請求項12のいずれか1項に記載の多元系極性基含有オレフィン共重合体。
- 多元系極性基含有オレフィン共重合体が、パラジウムまたはニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒である、請求項8~請求項13のいずれか1項に記載の多元系極性基含有オレフィン共重合体。
- エチレン及び炭素数3~20のα-オレフィンの少なくとも一方と、エポキシ基を含む極性基含有モノマーとを、遷移金属触媒の存在下に共重合することで得られる、分子構造が直鎖状でかつランダム共重合である極性基含有オレフィン共重合体(A’)と、オレフィン系樹脂(C)とを含むオレフィン系樹脂組成物であって、オレフィン系樹脂(C)の配合量が極性基含有オレフィン共重合体(A’)100重量部に対し、1~99,900重量部であるオレフィン系樹脂組成物。
- 前記エポキシ基を含む極性基含有モノマーが、下記構造式(I)または下記構造式(II)で表されるエポキシ基を含む極性基含有モノマーである請求項15に記載のオレフィン系樹脂組成物。
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基)
特定の官能基:エポキシ基を必須で含み、炭素原子、酸素原子、水素原子からなる分子構造を有した基) - 前記極性基含有オレフィン共重合体(A’)における、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方に由来する構造単位量が99.999~80mol%、エポキシ基を含む極性基含有モノマーに由来する構造単位量が20~0.001mol%である請求項15又は請求項16に記載のオレフィン系樹脂組成物。
- 前記オレフィン系樹脂(C)が、エチレン及び炭素数3~20のα-オレフィンの少なくとも一方から選ばれるモノマーを重合する事で得られる単独重合体及び共重合体の少なくとも一方である、請求項15~請求項17のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記オレフィン系樹脂(C)が、エチレン単独重合体又はエチレンと炭素数3~20のα-オレフィンとの共重合体である、請求項15~請求項18のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記極性基含有オレフィン共重合体(A’)の、示差走査型熱量測定(DSC)により測定される吸収曲線のうち、最大ピーク位置の温度で表される融点が、50~140℃の範囲である、請求項15~請求項19のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記極性基含有オレフィン共重合体(A’)が、キレート性配位子を有する第5~11族金属の遷移金属触媒の存在下に重合された共重合体である、請求項15~請求項20のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記極性基含有オレフィン共重合体(A’)が、パラジウム又はニッケル金属にトリアリールホスフィン又はトリアリールアルシン化合物が配位した遷移金属触媒の存在下に重合された共重合体である、請求項15~請求項21のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記オレフィン系樹脂(C)のJIS K7112に準拠して測定される密度が0.890~1.20g/cm3の範囲である、請求項15~請求項22のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記オレフィン系樹脂(C)の、示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、90~170℃の範囲である、請求項15~請求項23に記載のオレフィン系樹脂組成物。
- 示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、119~170℃の範囲である、請求項15~請求項24のいずれか1項に記載のオレフィン系樹脂組成物。
- 示差走査型熱量測定(DSC)により測定される融解熱量ΔHが、80~300J/gの範囲である、請求項15~請求項25のいずれか1項に記載のオレフィン系樹脂組成物。
- 前記オレフィン系樹脂(C)の示差走査型熱量測定(DSC)により測定される吸収曲線の最大ピーク位置の温度で表される融点が、30~124℃である請求項15~請求項22のいずれか1項に記載のオレフィン系樹脂組成物。
- 請求項1~請求項7のいずれか1項に記載の極性基含有オレフィン共重合体、請求項8~請求項14のいずれか1項に記載の多元系極性基含有オレフィン共重合体、または請求項15~請求項27のいずれか1項に記載のオレフィン系樹脂組成物を含有する接着材。
- 請求項1~請求項7のいずれか1項に記載の極性基含有オレフィン共重合体、請求項8~請求項14のいずれか1項に記載の多元系極性基含有オレフィン共重合体、または請求項15~請求項27のいずれか1項に記載のオレフィン系樹脂組成物と、基材層とを少なくとも含む積層体。
- 前記基材層が、オレフィン系樹脂、極性の高い熱可塑性樹脂、金属、無機酸化物の蒸着フィルム、紙類、セロファン、織布、及び不織布から選ばれる少なくとも1種を含む、請求項29に記載の積層体。
- 前記基材層が、ポリアミド系樹脂、フッ素系樹脂、ポリエステル系樹脂、及びエチレン-ビニルアルコール共重合体(EVOH)から選ばれる少なくとも1種を含む、請求項29または請求項30に記載の積層体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/780,021 US20160046842A1 (en) | 2013-03-27 | 2014-03-27 | Polar-group-containing olefin copolymer, polar-group-containing multinary olefin copolymer, olefin-based resin composition, and adhesive and layered product each using the same |
CN201480018275.6A CN105102492B (zh) | 2013-03-27 | 2014-03-27 | 含极性基团烯烃共聚物、多元系含极性基团烯烃共聚物、烯烃系树脂组合物以及各自利用其的粘接剂和层叠体 |
EP14775895.7A EP2980107B1 (en) | 2013-03-27 | 2014-03-27 | Polar-group-containing olefin copolymer, adhesive and layered product comprising same |
US16/200,090 US11084957B2 (en) | 2013-03-27 | 2018-11-26 | Polar-group-containing olefin copolymer, polar-group-containing multinary olefin copolymer, olefin-based resin composition, and adhesive and layered product each using the same |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-067402 | 2013-03-27 | ||
JP2013-067409 | 2013-03-27 | ||
JP2013067409 | 2013-03-27 | ||
JP2013067402 | 2013-03-27 | ||
JP2013133857 | 2013-06-26 | ||
JP2013-133857 | 2013-06-26 | ||
JP2014-039335 | 2014-02-28 | ||
JP2014039324A JP6042836B2 (ja) | 2014-02-28 | 2014-02-28 | オレフィン系樹脂組成物及び積層体 |
JP2014039335A JP6050270B2 (ja) | 2014-02-28 | 2014-02-28 | オレフィン系樹脂組成物及び積層体 |
JP2014-039324 | 2014-02-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/780,021 A-371-Of-International US20160046842A1 (en) | 2013-03-27 | 2014-03-27 | Polar-group-containing olefin copolymer, polar-group-containing multinary olefin copolymer, olefin-based resin composition, and adhesive and layered product each using the same |
US16/200,090 Continuation US11084957B2 (en) | 2013-03-27 | 2018-11-26 | Polar-group-containing olefin copolymer, polar-group-containing multinary olefin copolymer, olefin-based resin composition, and adhesive and layered product each using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157583A1 true WO2014157583A1 (ja) | 2014-10-02 |
Family
ID=51624539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059031 WO2014157583A1 (ja) | 2013-03-27 | 2014-03-27 | 極性基含有オレフィン共重合体、多元系極性基含有オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着剤、積層体 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20160046842A1 (ja) |
EP (1) | EP2980107B1 (ja) |
CN (1) | CN105102492B (ja) |
WO (1) | WO2014157583A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016079408A (ja) * | 2014-10-15 | 2016-05-16 | 日本ポリエチレン株式会社 | エチレン系アイオノマーの製造方法及びエチレン系アイオノマー |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6621262B2 (ja) | 2015-08-06 | 2019-12-18 | 藤森工業株式会社 | ホットメルト接着性樹脂フィルムおよびその製造方法 |
US11352453B2 (en) * | 2017-11-09 | 2022-06-07 | The University Of Tokyo | Catalyst for olefin polymerization and production method for polar group-containing olefin-based polymers |
US11472900B2 (en) * | 2017-12-22 | 2022-10-18 | Sabic Global Technologies B.V. | Process for preparation of ethylene and propylene ionomer |
CN109411679A (zh) * | 2018-10-22 | 2019-03-01 | 乐凯胶片股份有限公司 | 陶瓷浆料、陶瓷隔膜和锂离子电池 |
JP7532781B2 (ja) * | 2019-01-28 | 2024-08-14 | 日本ポリエチレン株式会社 | 極性基含有オレフィン共重合体 |
CN113302213B (zh) * | 2019-02-25 | 2023-04-14 | 国立大学法人东京大学 | 烯烃聚合用催化剂及含有极性基的烯烃系聚合物的制造方法 |
WO2020179632A1 (ja) * | 2019-03-04 | 2020-09-10 | 日本ポリエチレン株式会社 | 多元アイオノマー |
JP2021001330A (ja) * | 2019-06-24 | 2021-01-07 | 日本ポリエチレン株式会社 | 射出成形用又は圧縮成形用樹脂組成物 |
US20220251430A1 (en) * | 2019-06-24 | 2022-08-11 | Japan Polyethylene Corporation | Polymer composition for lamination and laminated body using same |
CN115260359A (zh) * | 2021-04-30 | 2022-11-01 | 中国石油化工股份有限公司 | 一种用于制备烯烃-不饱和羧酸酯共聚物的方法、共聚物及应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504144A (ja) | 1973-05-17 | 1975-01-17 | ||
JPH0423813A (ja) * | 1990-05-18 | 1992-01-28 | Daicel Chem Ind Ltd | α―オレフィン共重合体およびその製造方法 |
JPH0455403A (ja) * | 1990-06-25 | 1992-02-24 | Nissan Maruzen Poriechiren Kk | エポキシ基含有共重合体 |
JP2516003B2 (ja) | 1987-01-29 | 1996-07-10 | 日本石油化学株式会社 | エチレン共重合体の製造法 |
JP2009280728A (ja) * | 2008-05-23 | 2009-12-03 | Mitsui Chemicals Inc | エポキシ基含有重合体およびその誘導体の製造方法 |
JP2010511746A (ja) * | 2006-11-30 | 2010-04-15 | エクソンモービル・ケミカル・パテンツ・インク | オレフィン/ジエン共重合体の触媒によるエポキシ化およびヒドロキシル化 |
WO2010050256A1 (ja) | 2008-10-30 | 2010-05-06 | 日本ポリプロ株式会社 | 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法 |
JP2010150246A (ja) | 2008-11-20 | 2010-07-08 | Japan Polyethylene Corp | 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。 |
JP2010202647A (ja) | 2009-02-05 | 2010-09-16 | Japan Polyethylene Corp | 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを使用するα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。 |
JP2010260913A (ja) | 2009-04-30 | 2010-11-18 | Japan Polypropylene Corp | 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法 |
JP4672214B2 (ja) | 2000-09-07 | 2011-04-20 | 三井化学株式会社 | 極性基含有オレフィン共重合体の製造方法 |
JP2013043871A (ja) | 2011-08-25 | 2013-03-04 | Japan Polyethylene Corp | 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法 |
JP2013213121A (ja) * | 2012-03-31 | 2013-10-17 | Japan Polypropylene Corp | オレフィン系極性共重合体 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128086A (en) * | 1985-10-16 | 1992-07-07 | Uniroyal Chemical Company, Inc. | Epoxy-modified encapsulation composition |
JP2606282B2 (ja) * | 1988-05-26 | 1997-04-30 | 住友化学工業株式会社 | エラストマー組成物 |
US5294216A (en) * | 1989-09-28 | 1994-03-15 | Anchor Wall Systems, Inc. | Composite masonry block |
WO1994018250A1 (en) * | 1993-02-05 | 1994-08-18 | Idemitsu Kosan Co., Ltd. | Polyethylene, thermoplastic resin composition containing the same, and process for producing polyethylene |
US6909028B1 (en) * | 1997-09-15 | 2005-06-21 | Kimberly-Clark Worldwide, Inc. | Stable breathable elastic garments |
JPH11292917A (ja) * | 1998-02-10 | 1999-10-26 | Toagosei Co Ltd | オレフィン・極性モノマー共重合体の製造方法 |
JP2002521534A (ja) | 1998-07-27 | 2002-07-16 | バセル テクノロジー カンパニー ビー.ブイ. | 重合方法 |
US6300432B1 (en) * | 1999-03-30 | 2001-10-09 | Eastman Chemical Company | Process for producing polyolefins |
US20110097559A1 (en) | 1999-03-30 | 2011-04-28 | Hawker Craig J | Supramolecular block copolymer compositions for sub-micron lithography |
JP3603785B2 (ja) | 1999-12-27 | 2004-12-22 | Jsr株式会社 | 官能基を有するオレフィン系共重合体およびその製造方法並びにゴム組成物 |
KR100443766B1 (ko) | 2000-07-04 | 2004-08-09 | 미쓰이 가가쿠 가부시키가이샤 | 극성올레핀 공중합체의 제조방법 및 이 방법에 의하여얻어진 극성올레핀 공중합체 |
JP2002145947A (ja) | 2000-11-13 | 2002-05-22 | Mitsui Chemicals Inc | 極性基含有オレフィン共重合体、該共重合体を含む熱可塑性樹脂組成物およびこれらの用途 |
JP2002145944A (ja) | 2000-11-13 | 2002-05-22 | Mitsui Chemicals Inc | 極性基含有オレフィン共重合体および該共重合体を含む熱可塑性樹脂組成物 |
EP1186619B1 (en) | 2000-09-07 | 2006-11-29 | Mitsui Chemicals, Inc. | Polar group-containing olefin copolymer, process for preparing the same, thermoplastic resin composition contaning the copolymer, and uses thereof |
JP2002145949A (ja) | 2000-11-13 | 2002-05-22 | Mitsui Chemicals Inc | 極性基含有オレフィン共重合体および該共重合体を含む熱可塑性樹脂組成物 |
US20030130452A1 (en) * | 2001-10-12 | 2003-07-10 | Johnson Lynda Kaye | Copolymers of ethylene with various norbornene derivatives |
JP4383768B2 (ja) * | 2003-04-23 | 2009-12-16 | スリーエム イノベイティブ プロパティズ カンパニー | 封止用フィルム接着剤、封止用フィルム積層体及び封止方法 |
US7087687B2 (en) | 2003-08-21 | 2006-08-08 | Rohm And Haas Company | Catalytic composition and its preparation and use for preparing polymers from ethylenically unsaturated monomers |
EP1955845B1 (en) * | 2005-11-30 | 2013-04-10 | Mitsubishi Plastics, Inc. | Thermally shrinkable polyolefin film, molded article using the film, thermally shrinkable label, and container |
US20080221275A1 (en) | 2006-11-30 | 2008-09-11 | Baugh Lisa S | Ethylene/dicyclopentadiene/norbornene terpolymer materials having desirable structural and thermal properties |
WO2009122425A1 (en) * | 2008-04-04 | 2009-10-08 | Shodhana Laboratories Limited | Novel crystalline form of carvedilol dihydrogen phosphate and related processes |
WO2010058849A1 (ja) * | 2008-11-20 | 2010-05-27 | 日本ポリエチレン株式会社 | 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα-オレフィン重合触媒、三元共重合体、並びにα-オレフィン・(メタ)アクリル酸系共重合体の製造方法 |
WO2011062248A1 (ja) * | 2009-11-17 | 2011-05-26 | 住友化学株式会社 | エポキシ基含有エチレン系共重合体及び樹脂組成物 |
US8013111B2 (en) | 2009-12-17 | 2011-09-06 | Ineos Usa Llc | Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process |
WO2013094762A1 (ja) * | 2011-12-23 | 2013-06-27 | 日本ポリエチレン株式会社 | 極性基含有オレフィン共重合体、多元系極性オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着材、積層体及びその他の用途製品 |
FR3006493A1 (fr) * | 2013-06-04 | 2014-12-05 | Nexans | Cable electrique a moyenne ou haute tension |
CA2990486C (en) * | 2015-06-29 | 2022-11-29 | Dow Global Technologies Llc | Compositions and methods for making crosslinked polyolefins with peroxide initiator |
-
2014
- 2014-03-27 WO PCT/JP2014/059031 patent/WO2014157583A1/ja active Application Filing
- 2014-03-27 US US14/780,021 patent/US20160046842A1/en not_active Abandoned
- 2014-03-27 CN CN201480018275.6A patent/CN105102492B/zh active Active
- 2014-03-27 EP EP14775895.7A patent/EP2980107B1/en active Active
-
2018
- 2018-11-26 US US16/200,090 patent/US11084957B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504144A (ja) | 1973-05-17 | 1975-01-17 | ||
JP2516003B2 (ja) | 1987-01-29 | 1996-07-10 | 日本石油化学株式会社 | エチレン共重合体の製造法 |
JPH0423813A (ja) * | 1990-05-18 | 1992-01-28 | Daicel Chem Ind Ltd | α―オレフィン共重合体およびその製造方法 |
JPH0455403A (ja) * | 1990-06-25 | 1992-02-24 | Nissan Maruzen Poriechiren Kk | エポキシ基含有共重合体 |
JP4672214B2 (ja) | 2000-09-07 | 2011-04-20 | 三井化学株式会社 | 極性基含有オレフィン共重合体の製造方法 |
JP2010511746A (ja) * | 2006-11-30 | 2010-04-15 | エクソンモービル・ケミカル・パテンツ・インク | オレフィン/ジエン共重合体の触媒によるエポキシ化およびヒドロキシル化 |
JP2009280728A (ja) * | 2008-05-23 | 2009-12-03 | Mitsui Chemicals Inc | エポキシ基含有重合体およびその誘導体の製造方法 |
WO2010050256A1 (ja) | 2008-10-30 | 2010-05-06 | 日本ポリプロ株式会社 | 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法 |
JP2010150532A (ja) | 2008-11-20 | 2010-07-08 | Japan Polyethylene Corp | エチレン−α−オレフィン極性基含有ビニルモノマー三元共重合体 |
JP2010150246A (ja) | 2008-11-20 | 2010-07-08 | Japan Polyethylene Corp | 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。 |
JP2010202647A (ja) | 2009-02-05 | 2010-09-16 | Japan Polyethylene Corp | 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを使用するα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。 |
JP2010260913A (ja) | 2009-04-30 | 2010-11-18 | Japan Polypropylene Corp | 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法 |
JP2013043871A (ja) | 2011-08-25 | 2013-03-04 | Japan Polyethylene Corp | 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法 |
JP2013213121A (ja) * | 2012-03-31 | 2013-10-17 | Japan Polypropylene Corp | オレフィン系極性共重合体 |
Non-Patent Citations (2)
Title |
---|
BROOKHART ET AL., CHEM. REV., vol. 100, 2000, pages 1169 |
See also references of EP2980107A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016079408A (ja) * | 2014-10-15 | 2016-05-16 | 日本ポリエチレン株式会社 | エチレン系アイオノマーの製造方法及びエチレン系アイオノマー |
Also Published As
Publication number | Publication date |
---|---|
EP2980107B1 (en) | 2018-10-24 |
CN105102492A (zh) | 2015-11-25 |
US11084957B2 (en) | 2021-08-10 |
EP2980107A4 (en) | 2017-04-19 |
EP2980107A1 (en) | 2016-02-03 |
US20160046842A1 (en) | 2016-02-18 |
US20190092985A1 (en) | 2019-03-28 |
CN105102492B (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014157583A1 (ja) | 極性基含有オレフィン共重合体、多元系極性基含有オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着剤、積層体 | |
WO2013094762A1 (ja) | 極性基含有オレフィン共重合体、多元系極性オレフィン共重合体及びオレフィン系樹脂組成物並びにそれを利用する接着材、積層体及びその他の用途製品 | |
KR20090117629A (ko) | 폴리에틸렌 수지 조성물 및 이것으로 이루어지는 적층체 | |
WO2020179632A1 (ja) | 多元アイオノマー | |
JP4843977B2 (ja) | 押出ラミネート積層体 | |
JP6050270B2 (ja) | オレフィン系樹脂組成物及び積層体 | |
JP2015028164A (ja) | 多元系極性基含有オレフィン共重合体、接着材および積層体 | |
JP5882885B2 (ja) | 極性基含有オレフィン共重合体とその製造方法並びにそれを利用する接着材、積層体及びその他の用途製品 | |
JP6082630B2 (ja) | オレフィン系樹脂組成物並びにそれを用いた積層体および複合化製品 | |
JP6947535B2 (ja) | オレフィン共重合体、及びその製造方法 | |
JP6042836B2 (ja) | オレフィン系樹脂組成物及び積層体 | |
JP6316053B2 (ja) | オレフィン系樹脂組成物 | |
JP6307321B2 (ja) | 極性基含有オレフィン共重合体及びそれを利用する接着材並びに積層体および複合化製品 | |
JP5150554B2 (ja) | 変性樹脂組成物、及びそれを用いた積層体又は成形品 | |
JP6418807B2 (ja) | 熱可塑性樹脂用相溶化材、改質材及び樹脂組成物 | |
WO2020262369A1 (ja) | ラミネート用重合体組成物及びそれを用いた積層体 | |
WO2023182498A1 (ja) | 周期表2族金属含有アイオノマー | |
JP7132087B2 (ja) | オレフィン共重合体、及びその製造方法 | |
JP2000053819A (ja) | 変性樹脂材料およびこれを用いた積層体 | |
JP2024145495A (ja) | 繊維用樹脂組成物及びそれを用いたエチレン系繊維 | |
JP2021001333A (ja) | フィルム用樹脂組成物及びそれを用いたエチレン系フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480018275.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14775895 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14780021 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014775895 Country of ref document: EP |